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Abstract. The following is a compilation of some techniques in
Alexandrov’s geometry which are directly connected to convexity.

Introduction

This paper is not about results, it is about available techniques in
Alexandrov’s geometry which are linked to semiconcave functions. We con-
sider only spaces with lower curvature bound, but most techniques described
here also work for upper curvature bound and even in more general
settings.

Many proofs are omitted, I include only those which necessary for a
continuous story and some easy ones. The proof of the existence of quasi-
geodesics is included in appendix A (otherwise it would never be published).

I did not bother with rewriting basics of Alexandrov’s geometry but
I did change notation, so it does not fit exactly in any introduction. I
tried to make it possible to read starting from any place. As a result the
dependence of statements is not linear, some results in the very beginning
depend on those in the very end and vice versa (but there should not be any
cycle).

Here is a list of available introductions to Alexandrov’s geometry:
• [BGP] and its extension [Perelman 1991] is the first introduction to

Alexandrov’s geometry. I use it as the main reference.
Some parts of it are not easy to read. In the English translation of

[BGP] there were invented some militaristic terms, which no one ever
used, mainly burst point should be strained point and explosion should
be collection of strainers.

• [Shiohama] intoduction to Alexandrov’s geometry, designed to be reader
friendly.
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138 A. PETRUNIN

• [Plaut 2002] A survey in Alexandrov’s geometry written for topologists.
The first 8 sections can be used as an introduction. The material covered
in my paper is closely related to sections 7–10 of this survey.

• [BBI, Chapter 10] is yet an other reader friendly introduction.

I want to thank Karsten Grove for making me write this paper, Stephanie
Alexander, Richard Bishop, Sergei Buyalo, Vitali Kapovitch, Alexander Lyt-
chak and Conrad Plaut for many useful discussions during its preparation
and correction of mistakes, Irina Pugach for correcting my English.
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Notation and conventions

• By Alexm(κ) we will denote the class of m-dimensional Alexandrov’s
spaces with curvature �κ . In this notation we may omit κ and m , but
if not stated otherwise we assume that dimension is finite.

• Gromov–Hausdorff convergence is understood with fixed sequence of
approximations. I.e. once we write Xn

GH−→ X that means that we fixed
a sequence of Hausdorff approximations fn : Xn → X (or equivalently
gn : X → Xn ).

This makes possible to talk about limit points in X for a sequence
xn ∈ Xn , limit of functions fn : Xn → R , Hausdorff limit of subsets
Sn ⊂ Xn as well as weak limit of measures μn on Xn .

• regular fiber — see page 167
• �xyz — angle at y in a geodesic triangle �xyz ⊂ A
• �(ξ, η) — an angle between two directions ξ, η ∈ Σp

• �̃κxyz — a comparison angle, i.e. angle of the model triangle �̃xyz in
Lκ at y .

• �̃κ(a, b, c) — an angle opposite b of a triangle in Lκ with sides a, b and
c . In case a + b < c or b + c < a we assume �̃κ(a, b, c) = 0.

• ↑qp — a direction at p of a minimazing geodesic from p to q



SEMICONCAVE FUNCTIONS IN ALEXANDROV’S GEOMETRY 139

• ⇑q
p — the set of all directions at p of minimazing geodesics from p to q

• A — usually an Alexandrov’s space
• argmax — see page 184
• ∂A — boundary of A
• distx(y) = |xy| — distance between x and y
• dpf — differential of f at p , see page 140
• gexpp — see section 3
• gexpp(κ; v) — see section 3.2
• γ± — right/left tangent vector, see 2.1
• Lκ — model plane see page 140
• L+

κ — model halfplane see page 156
• Lm

κ — model m-space see page 174
• logp — see page 141
• ∇pf — gradient of f at p , see definition 1.3.2
• ρκ — see page 140
• Σ(X) — the spherical suspension over X see [BGP, 4.3.1], it is called

spherical cone, see [Plaut 2002, 89] and [Berestovskii].
• σκ — see footnote 15 on page 156
• Tp = TpA — tangent cone at p ∈ A , see page 140
• TpE — see page 164
• Σp = ΣpA — see footnote 4 on page 141
• ΣpE — see page 164
• f± — see page 145

1. Semi-concave functions

1.1. Definitions.

Definition for a space without boundary 1.1.1. Let A ∈ Alex ,
∂A = ∅ and Ω ⊂ A be an open subset.

A locally Lipschitz function f : Ω → R is called λ-concave if for any
unit-speed geodesic γ in Ω, the function

f ◦ γ(t)− λt2/2

is concave.

If A is an Alexandrov’s space with non-empty boundary1, then its dou-
bling2 Ã is also an Alexandrov’s space (see [Perelman 1991, 5.2]) and
∂Ã = ∅ .

Set p : Ã→ A to be the canonical map.

Definition for a space without boundary 1.1.2. Let A ∈ Alex ,
∂A �= ∅ and Ω ⊂ A be an open subset.

1Boundary of Alexandrov’s space is defined in [BGP, 7.19].
2i.e. two copies of A glued along their boundaries.



140 A. PETRUNIN

A locally Lipschitz function f : Ω → R is called λ-concave if f ◦ p is
λ-concave in p−1(Ω) ⊂ Ã .

Remark. Note that the restriction of a linear function on Rn to a ball
is not 0-concave in this sense.

1.2. Variations of definition. A function f : A → R is called semi-
concave if for any point x ∈ A there is a neighborhood Ωx $ x and λ ∈ R
such that the restriction f |Ωx is λ-concave.

Let ϕ : R→ R be a continuous function. A function f : A→ R is called
ϕ(f)-concave if for any point x ∈ A and any ε > 0 there is a neighborhood
Ωx $ x such that f |Ωx is (ϕ ◦ f(x) + ε)-concave.

For the Alexandrov’s spaces with curvature � κ , it is natural to consider
the class of (1 − κf)-concave functions. The advantage of such functions
comes from the fact that on the model space3 Lκ , one can construct model
(1−κf)-concave functions which are equally concave in all directions at any
fixed point. The most important example of (1 − κf)-concave function is
ρκ ◦distx , where distx(y) = |xy| denotes distance function from x to y and

ρκ(x) =

⎡⎣ 1
κ(1− cos(x

√
κ)) if κ > 0

x2/2 if κ = 0
1
κ(ch(x

√−κ)− 1) if k < 0

In the above definition of λ-concave function one can exchange Lipschitz
continuity for usual continuity. Then it will define the same set of functions,
see corollary 3.3.2.

1.3. Differential. Given a point p in an Alexandrov’s space A , we
denote by Tp = TpA the tangent cone at p .

For an Alexandrov’s space, the tangent cone can be defined in two equiv-
alent ways (see [BGP, 7.8.1]):
• As a cone over space of directions at a point and
• As a limit of rescalings of the Alexandrov’s space, i.e.:

Given s > 0, we denote the space (A, s · d) by sA , where d denotes
the metric of an Alexandrov’s space A , i.e. A = (A, d). Let is : sA → A
be the canonical map. The limit of (sA, p) for s→∞ is the tangent cone
(Tp, op) at p with marked origin op .

Definition 1.3.1. Let A ∈ Alex and Ω ⊂ A be an open subset.
For any function f : Ω→ R the function dpf : Tp → R , p ∈ Ω defined by

dpf = lim
s→∞ s(f ◦ is − f(p)), f ◦ is : sA→ R

is called the differential of f at p .

3i.e. the simply connected 2-manifold of constant curvature κ (the Russian L is for
Lobachevsky).
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It is easy to see that the differential dpf is well defined for any semicon-
cave function f . Moreover, dpf is a concave function on the tangent cone
Tp which is positively homogeneous, i.e. dpf(r · v) = r · dpf(v) for r � 0.

Gradient. With a slight abuse of notation, we will call elements of the
tangent cone Tp the “tangent vectors” at p . The origin o = op of Tp plays
the role of a “zero vector”. For a tangent vector v at p we define its absolute
value |v| as the distance |ov| in Tp . For two tangent vectors u and v at p
we can define their “scalar product”

〈u, v〉 def= (|u|2 + |v|2 − |uv|2)/2 = |u| · |v| cos α,

where α = �uov = �̃0uov in Tp .
It is easy to see that for any u ∈ Tp , the function x �→ −〈u, x〉 on Tp is

concave.

Definition 1.3.2. Let A ∈ Alex and Ω ⊂ A be an open subset. Given
a λ-concave function f : Ω → R , a vector g ∈ Tp is called a gradient of f
at p ∈ Ω (in short: g = ∇pf ) if

(i) dpf(x) � 〈g, x〉 for any x ∈ Tp , and
(ii) dpf(g) = 〈g, g〉.

It is easy to see that any λ-concave function f : Ω→ R has a uniquely
defined gradient vector field. Moreover, if dpf(x) � 0 for all x ∈ Tp , then
∇pf = op ; otherwise,

∇pf = dpf(ξmax) · ξmax

where ξmax ∈ Σp
4 is the (necessarily unique) unit vector for which the

function dpf attains its maximum.
For two points p, q ∈ A we denote by ↑qp ∈ Σp a direction of a minimizing

geodesic from p to q . Set logp q = |pq|·↑qp∈ Tp . In general, ↑qp and logp q are
not uniquely defined.

The following inequalities describe an important property of the “gradi-
ent vector field” which will be used throughout this paper.

Lemma 1.3.3. Let A ∈ Alex and Ω ⊂ A be an open subset, f : Ω → R
be a λ-concave function. Assume all minimizing geodesics between p and q
belong to Ω, set � = |pq|. Then

〈↑qp,∇pf〉 � {f(q)− f(p)− λ

2
�2}/�,

and in particular
〈↑qp,∇pf〉+ 〈↑pq ,∇qf〉 � −λ�.

4By Σp ⊂ Tp we denote the set of unit vectors, which we also call directions at p .
The space (Σp, �) with angle metric is an Alexandrov’s space with curvature �1. (Σp, �)
it is also path-isometric to the subset Σp ⊂ Tp .
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p

q

↑qp

↑pq

�

∇pf

∇qf

Proof. Let γ : [0, �] → Ω be a unit-speed minimizing geodesic from p
to q , so

γ(0) = p, γ(�) = q, γ+(0) =↑qp .

From definition 1.3.2 and the λ-concavity of f we get

〈↑qp,∇pf〉 = 〈γ+(0),∇pf〉 � dpf(γ+(0)) =

= (f ◦ γ)+(0) � f ◦ γ(�)− f ◦ γ(0)− λ�2/2
�

and the first inequality follows (for definition of γ+ and (f ◦ γ)+ see 2.1).
The second inequality is just a sum of two of the first type. �

Lemma 1.3.4. Let An
GH−→ A, An ∈ Alexm(κ).

Let fn : An → R be a sequence of λ-concave functions and fn → f :
A→ R.

Let xn ∈ An and xn → x ∈ A.
Then

|∇xf | � lim inf
n→∞ |∇xnfn|.

In particular we have lower-semicontinuity of the function x �→ |∇xf | :

Corollary 1.3.5. Let A ∈ Alex and Ω ⊂ A be an open subset.
If f : Ω→ R is a semiconcave function then the function

x �→ |∇xf |

is lower-semicontinuos, i.e. for any sequence xn → x ∈ Ω, we have

|∇xf | � lim inf
n→∞ |∇xnf |.

Proof of lemma 1.3.4. Fix an ε > 0 and choose q near p such that

f(q)− f(p)
|pq| > |∇pf | − ε.
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Now choose qn ∈ An such that qn → q . If |pq| is sufficiently small and n is
sufficiently large, the λ-concavity of fn then implies that

lim inf
n→∞ dpnfn(↑qn

pn
) � |∇pf | − 2ε.

Hence,
lim inf
n→∞ |∇pnfn| � |∇pf | − 2ε for any ε > 0

and therefore
lim inf
n→∞ |∇pnfn| � |∇pf |.

�

Supporting and polar vectors.

Definition 1.3.6. Assume A ∈ Alex and Ω ⊂ A is an open subset,
p ∈ Ω, let f : Ω→ R be a semiconcave function.

A vector s ∈ Tp is called a supporting vector of f at p if

dpf(x) � −〈s, x〉 for any x ∈ Tp

The set of supporting vectors is not empty, i.e.

Lemma 1.3.7. Assume A ∈ Alex and Ω ⊂ A is an open subset,
f : Ω→ R is a semiconcave function, p ∈ Ω. Then set of supporting vectors
of f at p form a non-empty convex subset of Tp .

Proof. Convexity of the set of supporting vectors follows from con-
cavity of the function x → −〈u, x〉 on Tp . To show existence, consider a
minimum point ξmin ∈ Σp of the function dpf |Σp . We will show that the
vector

s = [−dpf(ξmin)] · ξmin

is a supporting vector for f at p . Assume that we know the existence of
supporting vectors in dimension <m . Applying it to dpf |Σp at ξmin , we
get dξmin(dpf |Σp) ≡ 0. Therefore, since dpf |Σp is (−dpf)-concave (see sec-
tion 1.2) for any η ∈ Σp we have

dpf(η) � dpf(ξmin) · cos �(ξmin, η)

hence the result. �
In particular, it follows that if the space of directions Σp has a diameter5

� π/2 then ∇pf = o for any λ-concave function f .
Clearly, for any vector s , supporting f at p we have

|s| � |∇pf |.
5We always consider Σp with angle metric.
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Definition 1.3.8. Two vectors u, v ∈ Tp are called polar if for any
vector x ∈ Tp we have

〈u, x〉+ 〈v, x〉 � 0.

More generally, a vector u ∈ Tp is called polar to a set of vectors V ⊂ Tp if

〈u, x〉+ sup
v∈V
〈v, x〉 � 0.

Note that if u, v ∈ Tp are polar to each other then

dpf(u) + dpf(v) � 0. (∗)

Indeed, if s is a supporting vector then

dpf(u) + dpf(v) � −〈s, u〉 − 〈s, v〉 � 0.

Similarly, if u is polar to a set V then

dpf(u) + inf
v∈V

dpf(v) � 0. (∗∗)

Examples of pairs of polar vectors.
(i) If two vectors u, v ∈ Tp are antipodal, i.e. |u| = |v| and �uopv = π

then they are polar to each other.
In general, if |u| = |v| then they are polar if and only if for any

x ∈ Tp we have �uopx + �xopv � π .
(ii) If ↑pq is uniquely defined then ↑pq is polar to ∇q distp .

More generally, if ⇑q
p⊂ Σp denotes the set of all directions from p

to q then ∇q distp is polar to the set ⇑p
q .

Both statement follow from the identity

dq(v) = min
ξ∈⇑p

q

−〈ξ, v〉

and the definition of gradient (see 1.3.2).
Given a vector v ∈ Tp , applying above property (ii) to the function

distv : Tp → R we get that ∇ofv is polar to ↑vo . Since there is a natural
isometry ToTp → Tp we have

Lemma 1.3.9. Given any vector v ∈ Tp there is a polar vector v∗ ∈ Tp .
Moreover, one can assume that |v∗| � |v|

In A.4.2 using quasigeodesics we will show that in fact one can assume
|v∗| = |v|

2. Gradient curves

The technique of gradient curves was influenced by Sharafutdinov’s
retraction, see [Sharafutdinov]. These curves were designed to simplify
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Perelman’s proof of existence of quasigeodesics. However, it turned out that
gradient curves themselves provide a superior tool, which is in fact almost
universal in Alexandrov’s geometry. Unlike most of Alexandrov’s techniques,
gradient curves work equally well for infinitely dimensional Alexandrov’s
spaces (the proof requires some quasifications, but essentially is the same),
for spaces with curvature bounded above and for locally compact spaces
with well defined tangent cone at each point, see [Lytchak]. It was pointed
out to me that some traces of these properties can be found even in general
metric spaces see [AGS].

2.1. Definition and main properties. Given a curve γ(t) in an
Alexandrov’s space A , we denote by γ+(t) the right, and by γ−(t) the
left, tangent vectors to γ(t), where, respectively,

γ±(t) ∈ Tγ(t), γ±(t) = lim
ε→0+

logγ(t) γ(t± ε)
ε

.

This sign convention is not quite standard; in particular, for a function
f : R→ R , its right derivative is equal to f+ and its left derivative is equal
to −f−(t). For example

if f(t) = t then f+(t) ≡ 1 and f−(t) ≡ −1.

Definition 2.1.1. Let A ∈ Alex and f : A → R be a semiconcave
function.

A curve α(t) is called f -gradient curve if for any t

α+(t) = ∇α(t)f.

Proposition 2.1.2. Given a λ-concave function f on an Alexandrov’s
space A and a point p ∈ A there is a unique gradient curve α : [0,∞)→ A
such that α(0) = p.

The gradient curve can be constructed as a limit of broken geodesics,
made up of short segments with directions close to the gradient. Conver-
gence, uniqueness, follow from lemma 1.3.3, while corollary 1.3.5 guarantees
that the limit is indeed a gradient curve.

Distance estimates.

Lemma 2.1.3. Let A ∈ Alex and f : A → R be a λ-concave function
and α(t) be an f -gradient curve.

Assume ᾱ(s) is the reparametrization of α(t) by arclength. Then f ◦ ᾱ
is λ-concave.
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Proof. For s > s0 ,

(f ◦ ᾱ)+(s0) = |∇ᾱ(s0)f | � dᾱ(s0)f
(
↑ᾱ(s)

ᾱ(s0)

)
�

� f(ᾱ(s))− f(ᾱ(s0))− λ|ᾱ(s) ᾱ(s0)|2/2
|ᾱ(s) ᾱ(s0)|

.

Therefore, since s− s0 � |ᾱ(s) ᾱ(s0)| = s− s0 − o(s− s0), we have

(f ◦ ᾱ)+(s0) � f(ᾱ(s))− f(ᾱ(s0))− λ(s− s0)2/2
s− s0

+ o(s− s0)

i.e. f ◦ ᾱ is λ-concave. �

The following lemma states that there is a nice parametrization of a
gradient curve (by ϑλ ) which makes them behave as a geodesic in some
respects.

Lemma 2.1.4. Let A ∈ Alex, f : A → R be a λ-concave function and
α, β : [0,∞)→ A be two f -gradient curves with α(0) = p, β(0) = q .

Then

(i) for any t � 0,
|α(t)β(t)| � eλt|pq|

(ii) for any t � 0,

|α(t)q|2 � |pq|2 +
{
2f(p)− 2f(q) + λ|pq|2

}
· ϑλ(t) + |∇pf |2 · ϑ2

λ(t),

where

ϑλ(t) =
∫ t

0
eλtdt =

[
t if λ = 0

eλt−1
λ if λ �= 0

(iii) if tp � tq � 0 then
|α(tp)β(tq)|2 � e2λtq

[
|pq|2+

+
{
2f(p)− 2f(q) + λ|pq|2

}
· ϑλ(tp − tq)+

+|∇pf |2 · ϑ2
λ(tp − tq)

]
.

In case λ > 0, this lemma can also be reformulated in a geometer-
friendly way:

Lemma. 2.1.4 ′. Let α , β , p and q be as in lemma 2.1.4 and λ > 0.
Consider points õ, p̃, q̃ ⊂ R2 defined by the following:

|p̃q̃| = |pq|, λ|õp̃| = |∇pf |,
λ

2
(
|õq̃|2 − |õp̃|2

)
= f(q)− f(p)
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Let α̃(t) and β̃(t) be
(

λ
2 dist2õ

)
-gradient curves in R2 with α̃(0) = p̃,

β̃(0) = q̃ . Then,
(i) |α(t)q| � |α̃(t)q̃|. for any t > 0
(ii) |α(t)β(t)| � |α̃(t)β̃(t)|
(iii) if tp � tq then |α(tp)β(tq)| � |α̃(tp)β̃(tq)|

Proof. (ii). If λ = 0, from lemma 2.1.3 it follows that6

f ◦ α(t)− f ◦ α(0) �
∣∣∇ᾱ(0)f

∣∣2 · t.
Therefore from lemma 1.3.3, setting � = �(t) = |qα(t)| , we get7(

�2/2
)′ � f(p)− f(q) + |∇pf |2 · t,

hence the result.
(i) follows from the second inequality in lemma 1.3.3;

(iii) follows from (i) and (ii).

p

q

α(t)

β

�

Passage to the limit. The next lemma states that gradient curves
behave nicely with Gromov–Hausdorff convergence, i.e. a limit of gradient
curves is a gradient curve for the limit function.

Lemma 2.1.5. Let An
GH−→ A, An ∈ Alexm(κ), An $ pn → p ∈ A.

Let fn : An → R be a sequence of λ-concave functions and
fn → f : A→ R.

Let αn : [0,∞) → An be the sequence of fn -gradient curves with
αn(0) = pn and let α : [0,∞)→ A be the f -gradient curve with α(0) = p.

Then αn → α as n→∞.

6For λ �= 0 it will be f ◦ α(t) − f ◦ α(0) �
∣∣∇ᾱ(0)f

∣∣2 · [ϑλ(t) + λϑ2
λ(t)/2] .

7For λ �= 0 it will be
(
�2/2

)′ − λ�2/2 � f(p) − f(q) + |∇pf |2 · [ϑλ(t) + λϑ2
λ(t)/2] .
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Proof. Let ᾱn(s) denote the reparametrization of αn(t) by arc length.
Since all ᾱn are 1-Lipschitz, we can choose a partial limit, say ᾱ(s) in
A . Note that we may assume that f has no critical points and so d(f ◦
ᾱ) �= 0. Otherwise consider instead the sequence A′

n = An × R with
f ′

n(a× x) = fn(a) + x .
Clearly, ᾱ is also 1-Lipschitz and hence, by Lemma 1.3.4,

lim
n→∞ fn ◦ ᾱn|ba = lim

n→∞

∫ b

a
|∇ᾱn(s)fn|ds �

�
∫ b

a
|∇ᾱ(s)f |ds �

∫ b

a
dᾱ(s)f(ᾱ+(s))ds = f ◦ ᾱ|ba,

where ᾱ+(s) denotes any partial limit of logᾱ(s) ᾱ(s + ε)/ε , ε→ 0+.
On the other hand, since ᾱn → ᾱ and fn → f we have

fn ◦ ᾱn|ba → f ◦ ᾱ|ba,

i.e. equality holds in both of these inequalities. Hence

|∇ᾱ(s)f | = lim
n→∞ |∇ᾱn(s)fn|, |ᾱ+(s)| = 1 a.e.

and the directions of ᾱ+(s) and ∇ᾱ(s)f coincide almost everywhere.
This implies that ᾱ(s) is a gradient curve reparametrized by arc length.

It only remains to show that the original parameter tn(s) of αn converges
to the original parameter t(s) of α .

Notice that |∇ᾱn(s)fn|dtn = ds or dtn/ds = ds/d(fn ◦ ᾱn). Likewise,
dt/ds = ds/d(f ◦ ᾱ). Then the convergence tn → t follows from the λ-
concavity of fn◦ᾱn (see Lemma 2.1.3) and the convergence fn ◦ ᾱn → f ◦ ᾱ .

�

2.2. Gradient flow. Let f be a semi-concave function on an Alex-
androv’s space A . We define the f -gradient flow to be the one parameter
family of maps

Φt
f : A→ A, Φt

f (p) = αp(t),
where t � 0 and αp : [0,∞)→ A is the f -gradient curve which starts at p
(i.e. αp(0) = p).8 Obviously

Φt+τ
f = Φt

f ◦ Φτ
f .

This map has the following main properties:
(1) Φt

f is locally Lipschitz (in the domain of definition). Moreover, if
f is λ-concave then it is eλt -Lipschitz.

This follows from lemma 2.1.4(i).

8In general the domain of definition of Φt
f can be smaller than A , but it is defined

on all A for a reasonable type of function, say for λ -concave and for (1 − κf)-concave
functions.
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(2) Gradient flow is stable under Gromov–Hausdorff convergence,
namely:

If An ∈ Alexm(κ), An
GH−→ A , fn : An → R is a sequence

of λ-concave functions which converges to f : A → R then
Φt

fn
: An → An converges pointwise to Φt

f : A→ A .
This follows from lemma 2.1.5.

(3) For any x ∈ A and all sufficiently small t � 0, there is y ∈ A so
that Φt

f (y) = x .
From [Grove–Petersen 1993, lemma 1], this follows for spaces

without boundary. For spaces with boundary one should consider
its doubling.

Gradient flow can be used to deform a mapping with target in A . For
example, if X is a metric space, then given a Lipschitz map F : X → A
and a positive Lipschitz function τ : X → R+ one can consider the map F ′
called gradient deformation of F which is defined by

F ′(x) = Φτ(x)
f ◦ F (x), F ′ : X → A.

From lemma 2.1.4 it is easy to see that the dilation9 of F ′ can be esti-
mated in terms of λ , supx τ(x), dilation of F and the Lipschitz constants
of f and τ .

Here is an optimal estimate for the length element of a curve which
follows from lemma 2.1.4:

Lemma 2.2.1. Let A ∈ Alex. Let γ0(s) be a curve in A parametrized by
arc-length, f : A→ R be a λ-concave function, and τ(s) be a non-negative
Lipschitz function. Consider the curve

γ1(s) = Φτ(s)
f ◦ γ0(s).

If σ = σ(s) is its arc-length parameter then

dσ2 � e2λτ
[
ds2 + 2d(f ◦ γ0)dτ + |∇γ0(s)f |2dτ2]

2.3. Applications. Gradient flow gives a simple proof to the following
result which generalizes a key lemma in [Liberman]. This generalization
was first obtained in [Perelman–Petrunin 1993, 5.3], a simplified proof
was given in [Petrunin 1997, 1.1]. See sections 4 and 5 for definition of
extremal subset and quasigeodesic.

Generalized Lieberman’s Lemma 2.3.1. Any unit-speed geodesic for
the induced intrinsic metric on an extremal subset is a quasigeodesic in the
ambient Alexandrov’s space.

9i.e. its optimal Lipschitz constant.
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Proof. Let γ : [a, b] → E be a unit-speed minimizing geodesic in an
extremal subset E ⊂ A and f be a λ-concave function defined in a neigh-
borhood of γ . Assume f ◦ γ is not λ-concave, then there is a non-negative
Lipschitz function τ with support in (a, b) such that

b∫
a

[
(f ◦ γ)′τ ′ + λτ

]
ds < 0

Then as follows from lemma 2.2.1, for small t � 0

γt(s) = Φt·τ(s)
f ◦ γ0(s)

gives a length-contracting homotopy of curves relative to ends and according
to definition 4.1.1, it stays in E — this is a contradiction. �

The fact that gradient flow is stable with respect to collapsing has the
following useful consequence: Let Mn be a collapsing sequence of Riemann-
ian manifolds with curvature �κ and Mn

GH−→ A . For a regular point p let
us denote by Fn(p) the regular fiber10 over p , it is well defined for all large
n . Let f : A → R be a λ-concave function. If α(t) is an f -gradient curve
in A which passes only through regular points, then for any t0 < t1 there is
a homotopy equivalence Fn(α(t0))→ Fn(α(t1)) with dilation ≈ eλ(t1−t0) .

This observation was used in [KPT] to prove some properties of almost
nonnegatively curved manifolds. In particular, it gave simplified proofs of
the results in [Fukaya–Yamaguchi]:

Nilpotency theorem 2.3.2. Let M be a closed almost nonnegatively
curved manifold. Then a finite cover of M is a nilpotent space, i.e. its
fundamental group is nilpotent and it acts nilpotently on higher homotopy
groups.

Theorem 2.3.3. Let M be an almost nonnegatively curved m-manifold.
Then π1(M) is Const(m)-nilpotent, i.e., π1(M) contains a nilpotent sub-
group of index at most Const(m).

Gradient flow also gives an alternative proof of the homotopy lifting
theorem 4.2.3. To explain the idea let us start with definition:

Given a topological space X , a map F : X → A , a finite sequence of
λ-concave functions {fi} on A and continuous functions τi : X → R+ one
can consider a composition of gradient deformations (see 2.2)

F ′(x) = ΦτN (x)
fN

◦ · · · ◦ Φτ2(x)
f2

◦ Φτ1(x)
f1

◦ F (x), F ′ : X → A,

which we also call gradient deformation of F .

10See footnote 31 on page 167.
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Let us define gradient homotopy to be a gradient deformation of trivial
homotopy

F : [0, 1]×X → A, Ft(x) = F0(x)
with the functions

τi : [0, 1]×X → R+ such that τi(0, x) ≡ 0.

If Y ⊂ X , then to define gradient homotopy relative to Y we assume in
addition

τi(t, y) = 0 for any y ∈ Y, t ∈ [0, 1].

Then theorem 4.2.3 follows from lemma 2.1.5 and the following lemma:

Lemma 2.3.4. [Petrunin GH] Let A be an Alexandrov’s space without
proper
extremal subsets and K be a finite simplicial complex. Then, given ε > 0,
for any homotopy

Ft : K → A, t ∈ [0, 1]
one can construct an ε-close gradient homotopy

Gt : K → A

such that G0 ≡ F0 .

3. Gradient exponent

One of the technical difficulties in Alexandrov’s geometry comes from
nonextendability of geodesics. In particular, the exponential map, expp :
Tp → A , if defined the usual way, can be undefined in an arbitrary small
neighborhood of origin. Here we construct its analog, the gradient exponen-
tial map gexpp : Tp → A , which practically solves this problem. It has many
important properties of the ordinary exponential map, and is even “better”
in certain respects.

Let A be an Alexandrov’s space and p ∈ A , consider the function f =
dist2p /2. Recall that is : sA → A denotes canonical maps (see page 140).
Consider the one parameter family of maps

Φt
f ◦ iet : etA→ A as t→∞ so (etA, p) GH−→ (Tp, op)

where Φt
f denotes gradient flow (see section 2.2). Let us define the gradient

exponential map as the limit

gexpp : TpA→ A, gexpp = lim
t→∞ Φt

f ◦ iet .

Existence and uniqueness of gradient exponential. If A is an Alexandrov’s
space with curvature � 0, then f is 1-concave, and from lemma 2.1.4, Φt

f
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is an et -Lipschitz and therefore compositions Φt
f ◦ iet : etA→ A are short11.

Hence a partial limit gexpp : TpA→ A exists, and it is a short map.12

Clearly for any partial limit we have

Φt
f ◦ gexpp(v) = gexpp(e

t · v) (∗)

and since Φt is et -Lipschitz, it follows that gexpp is uniquely defined.

Property 3.1.1. If E ∈ A is an extremal subset, p ∈ E and ξ ∈ ΣpE
then gexpp(t · ξ) ∈ E for any t � 0.

It follows from above and from definition of extremal subset (4.1.1).

Radial curves. From identity (∗), it follows that for any ξ ∈ Σp , curve

αξ : t �→ gexpp(t · ξ)

satisfies the following differention equation

α+
ξ (t) =

|p αξ(t)|
t

∇αξ(t) distp for all t > 0 and α+
ξ (0) = ξ (')

We will call such a curve radial curve from p in the direction ξ . From above,
such radial curve exists and is unique in any direction.

Clearly, for any radial curve from p , |pαξ(t)| � t ; and if this inequality is
exact for some t0 then αξ : [0, t0] → A is a unit-speed minimizing geodesic
starting at p in the direction ξ ∈ Σp . In other words,

gexpp ◦ logp = idA .13

Next lemma gives a comparison inequality for radial curves.

Lemma 3.1.2. Let A ∈ Alex, f : A→ R be a λ-concave function λ � 0
then for any p ∈ A and ξ ∈ Σp

f ◦ gexpp(t · ξ) � f(p) + t · dpf(ξ) + t2 · λ/2.

11i.e. maps with Lipschitz constant 1.
12For general lower curvature bound, f is only (1+O(r2))-concave in the ball Br(p) .

Therefore Φ1
f : Br/e(p) → Br(p) is e(1+O(r2))-Lipschitz. By taking compositions of these

maps for different r we get that ΦN
f : Br/eN (p) → Br(p) is eN (1 + O(r2))-Lipschitz.

Obviously, the same is true for any t � 0, i.e. Φt
f : Br/et(p) → Br(p) is et(1 + O(r2))-

Lipschitz, or
Φt

f ◦ iet : etA → A

is (1 + O(r2))-Lipschitz on Br(p) ⊂ etA . This is sufficient for existence of partial limit
gexpp : TpA → A , which turns out to be (1 + O(r2))-Lipschitz on a central ball of radius
r in Tp .

13In proposition 3.3.6 we will show that αξ((0, t0)) does not meet any other radial
curve from p .
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Moreover, the function

ϑ(t) = {f ◦ gexpp(t · ξ)− f(p)− t2 · λ/2}/t

is non-increasing.

In particular, applying this lemma for f = dist2q /2 we get

Corollary 3.1.3. If A ∈ Alex(0) then for any p, q,∈ A and ξ ∈ Σp ,

�̃0(t, | gexpp(tξ)q|, |pq|)

is non-increasing in t.14 In particular,

�̃0(t, | gexpp(tξ) q|, |pq|) � �(ξ, ↑qp).
In 3.2 you can find a version of this corollary for arbitrary lower curvature

bound.

Proof of lemma 3.1.2. Recall that ∇q distp is polar to the set ⇑p
q⊂ Tq

(see example (ii) on page 144). From inequality (∗∗) on page 144, we have

dqf(∇q distp) + inf
ζ∈⇑p

q

{dqf(ζ)} � 0

On the other hand, since f is λ-concave,

dqf(ζ) � f(p)− f(q)− λ|pq|2/2
|pq| for any ζ ∈⇑p

q ,

therefore
dqf(∇q distp) � f(q)− f(p) + λ|pq|2/2

|pq| .

Set αξ(t) = gexp(t · ξ), q = αξ(t0), then α+
ξ (t0) = |pq|

t ∇q distp as in (').
Therefore,

(f ◦ αξ)+(t0) = dqf(α+
ξ (t0)) �

� |pq|
t0

[
f(q)− f(p) + λ|pq|2/2

|pq|

]
=

f(q)− f(p) + λ|pq|2/2
t0

�

since |pq| � t0 and λ � 0,

� f(q)− f(p) + λt20/2
t0

=
f(αξ(t0))− f(p) + λt20/2

t0
.

Substituting this inequality in the expression for derivative of ϑ ,

ϑ+(t0) =
(f ◦ αξ)+(t)

t0
−

f ◦ gexpp(t0 · ξ)− f(p)
t20

− λ/2,

we get ϑ+ � 0, i.e. ϑ is non-increasing.
Clearly, ϑ(0) = dpf(ξ) and so the first statement follows. �

14 �̃κ(a, b, c) denotes angle opposite to b in a triangle with sides a, b, c in Lκ .
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3.2. Spherical and hyperbolic gradient exponents. The gradient
exponent described above is sufficient for most applications. It works per-
fectly for non-negatively curved Alexandrov’s spaces and where one does
not care for the actual lower curvature bound. However, for fine analysis on
spaces with curvature � κ , there is a better analog of this map, which we
denote gexpp(κ; v); gexpp(0; v) = gexpp(v).

In addition to case κ = 0, it is enough to consider only two cases:
κ = ±1, the rest can be obtained by rescalings. We will define two maps:
gexpp(−1, ∗) and gexpp(1, ∗), and list their properties, leaving calculations
to the reader. These properties are analogous to the following properties of
the ordinary gradient exponent:
• if A ∈ Alex(0), then gexpp : Tp → A is distance non-increasing.

Moreover, for any q ∈ A , the angle

�̃0(t, | gexpp(t · ξ) q|, |pq|)

is non-increasing in t (see corollary 3.1.5). In particular

�̃0(t, | gexpp(t · ξ) q|, |pq|) � �(ξ, ↑qp).

The calculations for the case κ = 1 are more complicated than for
κ = −1. Note that formulas in definitions of these two cases are really
different; the formulas for κ � 0 and κ � 0 are not analytic extension of
each other.

Case κ = −1. The hyperbolic radial curves are defined by the following
differential equation

α+
ξ (t) =

sh |pαξ(t)|
sh t

∇αξ(t) distp and α+
ξ (0) = ξ.

These radial curves are defined for all t ∈ [0,∞). Let us define

gexpp(−1; t · ξ) = αξ(t).

This map is defined on tangent cone Tp . Let us equip the tangent cone with
a hyperbolic metric h(u, v) defined by the hyperbolic rule of cosines

ch(h(u, v)) = ch |u| ch |v| − sh |u| sh |v| cos α,

where u, v ∈ Tp and α = �uopv . (Tp, h) ∈ Alex(−1), this is a so called
elliptic cone over Σp ; see [BGP, 4.3.2], [Alexander–Bishop 2004]. Here
are the main properties of gexp(−1; ∗):
• if A ∈ Alex(−1), then gexp(−1; ∗) : (Tp, h)→ A is distance non-increasing.

Moreover, the function

t �→ �̃−1(t, | gexp(−1; t · ξ) q|, |pq|)



SEMICONCAVE FUNCTIONS IN ALEXANDROV’S GEOMETRY 155

is non-increasing in t . In particular for any t > 0,

�̃−1(t, | gexp(−1; t · ξ) q|, |pq|) � �(ξ, ↑qp).

Case κ = 1. For unit tanget vector ξ ∈ Σp , the spherical radial curve
is defined to satisfy the following identity:

α+
ξ (t) =

tg |pαξ(t)|
tg t

∇αξ(t) distp and α+
ξ (0) = ξ.

These radial curves are defined for all t ∈ [0, π/2]. Let us define the spherical
gradient exponential map by

gexpp(1; t · ξ) = αξ(t).

This map is well defined on B̄π/2(op) ⊂ Tp . Let us equip B̄π/2(op) with a
spherical distance s(u, v) defined by the spherical rule of cosines

cos(s(u, v)) = cos |u| cos |v|+ sin |u| sin |v| cos α,

where u, v ∈ Bπ(op) ⊂ Tp and α = �uopv . (B̄π(op), s) ∈ Alex(1), this is
isometric to spherical suspension Σ(Σp), see [Alexander–Bishop 2004],
[BGP, 4.3.1]. Here are the main properties of gexp(1; ∗):
• If A ∈ Alex(1) then gexpp(1, ∗) : (B̄π/2(op), s) → A is distance non-

increasing.
Moreover, if |pq| � π/2, then function

t �→ �̃1(t, | gexpp(1; t · ξ) q|, |pq|)

is non-increasing in t . In particular, for any t > 0

�̃1(t, | gexpp(1; t · ξ) q|, |pq|) � �(ξ, ↑qp).

3.3. Applications. One of the main applications of gradient exponent
and radial curves is the proof of existence of quasigeodesics; see property 4
page 169 and appendix A for the proof.

An infinite-dimensional generalization of gradient exponent was intro-
duced in [Perelman–Petrunin QG] to make the last step in the proof
of equality of Hausdorff and topological dimension for Alexandrov’s spaces.
According to [Plaut 1996] (or [Plaut 2002, 151]), if dimH A � m , then
there is a point p ∈ A , the tangent cone of which contains a subcone W ⊂ Tp

isometric to Euclidean m-space. Then infinite-dimensional analogs of prop-
erties in section 3.2 ensure that image gexpp(W ) has topological dimension
� m and therefore dimA � m .

The following statement has been proven in [Perelman 1991], then its
formulation was made more exact in [Alexander–Bishop 2003]. Here we
give a simplified proof with the use of a gradient exponent.
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Theorem 3.3.1. Let A∈Alex(κ) and ∂A �= ∅; then the function f = σκ◦
dist∂A

15 is (−κf)-concave in Ω = A\∂A.16

In particular,
(i) if κ = 0, dist∂A is concave in Ω;
(ii) if κ > 0, the level sets Lx = dist−1

∂A(x) ⊂ A, x > 0 are strictly concave
hypersurfaces.

Proof. We have to show that for any unit-speed geodesic γ , the func-
tion f ◦ γ is (−κf)-concave; i.e. for any t0 ,

(f ◦ γ)′′(t0) � −κf ◦ γ(t0)

in a barrier sense17. Without loss of generality we can assume t0 = 0.

γ̃(0)
γ̃(τ)

α

β̃

p̃ q̃
∂L+

κ

Direct calculations show that the statement is true for A = L+
κ , the

halfspace of the model space Lκ .
Let p ∈ ∂A be a closest point to γ(0) and α = �(γ+(0), ↑pγ(0)).

15σκ : R → R is defined by

σκ(x) =
∞∑

n=0

(−κ)n

(2n + 1)!
x2n+1 =

⎡
⎣

1√
κ

sin(x
√

κ) if κ > 0
x if κ = 0

1√−κ
sh(x

√−κ) if κ < 0
.

16Note that by definition 1.1.2, f is not semiconcave in A .
17For a continuous function f , f ′′(t0) � c in a barrier sense means that there is a

smooth function f̄ such that f � f̄ , f(t0) = f̄(t0) and f̄ ′′(t0) � c .



SEMICONCAVE FUNCTIONS IN ALEXANDROV’S GEOMETRY 157

Consider the following picture in the model halfspace L+
κ : Take a point

p̃ ∈ ∂L+
κ and consider the geodesic γ̃ in L+

κ such that

|γ(0)p| = |γ̃(0)p̃| = |γ̃(0)∂L+
κ |,

so p̃ is the closest point to γ̃(0) on the boundary18 and

�(γ̃+(0), ↑p̃γ̃(0)) = α.

Then it is enough to show that

dist∂A γ(τ) � dist∂L+
κ

γ̃(τ) + o(τ2).

Set
β(τ) = �γ(0) p γ(τ)

and
β̃(τ) = �γ̃(0) p̃ γ̃(τ).

From the comparison inequalities

|pγ(τ)| � |p̃γ̃(τ)|

and
ϑ(τ) = max

{
0, β̃(τ)− β(τ)

}
= o(τ). (∗)

Note that the tangent cone at p splits: TpA = R+ × Tp∂A .19 Therefore
we can represent v = logp γ(τ) ∈ TpA as v = (s, w) ∈ R+ × Tp∂A . Let
q̃ = q̃(τ) ∈ ∂Lκ be the closest point to γ̃(τ), so

�(↑γ(τ)
p , w) =

π

2
− β(τ) � π

2
− β̃(τ)− ϑ(τ) = �γ̃(τ)p̃q̃ + o(τ).

Set q = gexpp

(
κ; |p̃q̃| w

|w|
)

.20 Since gradient curves preserve extremal subsets
q ∈ ∂A (see property 3.1.1 on page 152). Clearly |p̃q̃| = O(τ), therefore
applying the comparison from section 3.2 (or Corollary 3.1.3 if κ = 0)
together with (∗), we get

dist∂A γ(τ) � |qγ(τ)| � |q̃γ̃(τ)|+ O (|p̃q̃| · ϑ(τ)) = dist∂L+
κ

γ̃(τ) + o(τ2).

�
The following corollary implies that the Lipschitz condition in the defi-

nition of convex function 1.1.2–1.1.1 can be relaxed to usual continuity.

18In case κ > 0 it is possible only if |γ(0)p| � π
2
√

κ
, but this is always the case since

otherwise any small variation of p in ∂A decreases distance |γ(0)p| .
19This follows from the fact that p lies on a shortest path between two preimages of

γ(0) in the doubling Ã of A , see [BGP, 7.15].
20Alternatively, one can set q = γ(|p̃q̃|) , where γ is a quasigeodesic in ∂A starting

at p in direction w
|w| ∈ Σp (it exists by second part of property 4 on page 169).
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Corollary 3.3.2. Let A ∈ Alex, ∂A = ∅, λ ∈ R and Ω ⊂ A be open.
Assume f : Ω→ R is a continuous function such that for any unit-speed

geodesic γ in Ω we have that the function

t �→ f ◦ γ − λt2/2

is concave; then f is locally Lipschitz.
In particular, f is λ-concave in the sense of definition 1.1.2.

Proof. Assume f is not Lipschitz at p ∈ Ω. Without loss of generality
we can assume that Ω is convex21 and λ < 022. Then, since f is continuous,
sub-graph

Xf = {(x, y) ∈ Ω̄× R|y � f(x)}
is closed convex subset of A× R , therefore it forms an Alexandrov’s space.

Since f is not Lipschitz at p , there is a sequence of pairs of points
(pn, qn) in A , such that

pn, qn → p and
f(pn)− f(qn)

|pnqn|
→ +∞.

Consider a sequence of radial curves αn in Xf which extend shortest paths
from (pn, f(pn)) to (qn, f(qn)). Since the boundary ∂Xf ⊂ Xf is an
extremal subset, we have αn(t) ∈ ∂Xf for all

t � �n = |(pn, f(pn))(qn, f(qn))| =
√
|pnqn|2 + (f(pn)− f(qn))2.

Clearly, the function h : Xf → R , h : (x, y) �→ y is concave. Therefore, from
3.1.2, there is a sequence tn > �n , so αn(tn) → (p, f(p) − 1). Therefore,
(p, f(p)− 1) ∈ ∂Xf thus p ∈ ∂A , i.e. ∂A �= ∅ , a contradiction. �

Corollary 3.3.3. Let A ∈ Alexm(κ), m � 2 and γ be a unit-speed
curve in A which has a convex κ-developing with respect to any point. Then
γ is a quasigeodesic, i.e. for any λ-concave function f , function f ◦ γ is
λ-concave.

Proof. Let us first note that in the proof of theorem 3.3.1 we used only
two properties of curve γ : |γ±| = 1 and the convexity of the κ-development
of γ with respect to p .

Assume κ = λ = 0 then sub-graph of f

Xf = {(x, y) ∈ A× R | y � f(x)}

is a closed convex subset, therefore it forms an Alexandrov’s space.
Applying the above remark, we get that if γ is a unit-speed curve in

Xf\∂Xf with convex 0-developing with respect to any point then dist∂Xf
◦ γ

21Otherwise, pass to a small convex neighborhood of p which exists by by corol-
lary 7.1.2.

22Otherwise, add a very concave (Lipschitz) function which exists by theorem 7.1.1.
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is concave. Hence, for any ε > 0, the function fε , which has the level set
dist−1

∂Xf
(ε) ⊂ R×A like the graph, has a concave restriction to any curve γ

in A with a convex 0-developing with respect to any point in A\γ . Clearly,
fε → f as ε→ 0, hence f ◦ γ is concave.

For λ-concave function the set Xf is no longer convex, but it becomes
convex if one changes metric on A×R to parabolic cone23 and then one can
repeat the same arguments. �

Remark One can also get this corollary from the following lemma:

Lemma 3.3.4. Let A ∈ Alexm(κ), Ω be an open subset of A and f :
Ω→ R be a λ-concave L-Lipschitz function. Then function

fε(y) = min
x∈Ω
{f(x) + 1

ε |xy|2}

is (λ+ δ)-concave in the domain of definition24 for some25 δ = δ(L, λ, κ, ε),
δ → 0 as ε→ 0.

Moreover, if m � 2 and γ is a unit-speed curve in A with κ-convex
developing with respect to any point then fε ◦ γ is also (λ + δ)-concave.

Proof. It is analogous to theorem 3.3.1. We only indicate it in the
simplest case, κ = λ = 0. In this case δ can be taken to be 0.

Let γ be a unit-speed geodesic (or it satisfies the last condition in the
lemma). It is enough to show that for any t0

(fε ◦ γ)′′(t0) � 0

in a barrier sense.
Let y = γ(t0) and x ∈ Ω be a point for which fε(y) = f(x)+ 1

ε |xy|2 . The
tangent cone Tx splits in direction ↑xy , i.e. there is an isometry
Tx → R× Cone such that ↑yx �→ (1, o), where o ∈ Cone is its origin. Let

logx γ(t) = (a(t), v(t)) ∈ R× Cone = Tx.

Consider vector

w(t) = (a(t)− |xy|, v(t)) ∈ R× Cone = Tx.

Clearly |w(t)| � |xγ(t)| . Set x(t) = gexpy(w(t)) then lemma 3.1.2 gives an
estimate for f ◦ x(t) while corollary 3.1.3 gives an estimate for |γ(t)x(t)|2 .
Hence the result. �

23i.e. warped-product R ×exp(Const t) A , which is an Alexandrov’s space, see
[BGP, 4.3.3], [Alexander–Bishop 2004].

24i.e. at the set where the minimum is defined.
25This function δ(L, λ, κ, ε) is achieved for the model space Λκ.
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Here is yet another illustration for the use of gradient exponents. At first
sight it seems very simple, but the proof is not quite obvious. In fact, I did
not find any proof of this without applying the gradient exponent.

Lytchak’s problem 3.3.5. Let A ∈ Alexm(1). Show that

volm−1 ∂A � volm−1 Sm−1

where ∂A denotes the boundary of A and Sm−1 the unit (m− 1)-sphere.

The problem would have followed from conjecture 9.1.1 (that boundary
of an Alexandrov’s space is an Alexandrov’s space), but before this conjec-
ture has been proven, any partial result is of some interest. Among other
corollaries of conjecture 9.1.1, it is expected that if A ∈ Alex(1) then ∂A ,
equipped with induced intrinsic metric, admits a noncontracting map to
Sm−1 . In particular, its intrinsic diameter is at most π , and perimeter of
any triangle in ∂A is at most 2π . This does not follow from the proof below,
since in general gexpz(1; ∂Bπ/2(oz)) �⊂ ∂A , i.e. gexpz(1; ∂Bπ/2(oz)) might
have some creases left inside of A , which might be used as a shortcut for
curves with ends in ∂A .

Let us first prepare a proposition:

Proposition 3.3.6. The inverse of the gradient exponential map
gexp−1

p (κ; ∗) is uniquely defined inside any minimizing geodesic starting
at p.

Proof. Let γ : [0, t0] → A be a unit-speed minimizing geodesic,
γ(0) = p , γ(t0) = q . From the angle comparison we get that
|∇x distp | � −cos�̃κpxq . Therefore, for any ζ we have

|pαζ(t)|+t � −|α+
ζ (t)| cos �̃κp αζ(t) q and |αζ(t)q|+t � −|α+

ζ (t)|.

Therefore, �̃κp q αζ(t) is nondecreasing in t , hence the result. �
Proof of 3.3.5. Let z ∈ A be the point at maximal distance from ∂A ,

in particular it realizes maximum of f = σ1 ◦ dist∂A = sin ◦dist∂A . From
theorem 3.3.1, f is (−f)-concave and f(z) � 1.

Note that A ⊂ B̄π/2(z), otherwise if y ∈ A with |yz| > π/2, then
since f is (−f)-concave and f(y) � 0, we have df(↑yz) > 0, i.e. z is not a
maximum of f .

From this it follows that gradient exponent

gexpz(1; ∗) : (B̄π/2(oz), s)→ A

is a short onto map.
Moreover,

∂A ⊂ gexpz(∂Bπ/2(oz)).
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Indeed, gexp gives a homotopy equivalence ∂Bπ/2(oz) → A\z . Clearly,
Σz = ∂(Bπ/2(oz), s) has no boundary, therefore Hm−1(∂A, Z2) �= 0, see
[Grove–Petersen 1993, lemma 1]. Hence for any point x ∈ ∂A , any min-
imizing geodesic zx must have a point of the image gexp(1; ∂Bπ/2(o)) but,
as it is shown in proposition 3.3.6, it can only be its end x .

Now since
gexpz(1; ∗) : (B̄π/2(oz), s)→ A

is short and (∂Bπ/2(o), s) is isometric to ΣzA we get vol ∂A � vol ΣzA and
clearly, vol ΣzA � volSm−1 . �

4. Extremal subsets

Imagine that you want to move a heavy box inside an empty room
by pushing it around. If the box is located in the middle of the room, you
can push it in any direction. But once it is pushed against a wall you can not
push it back to the center; and once it is pushed into a corner you cannot
push it anywhere anymore. The same is true if one tries to move a point in
an Alexandrov’s space by pushing it along a gradient flow, but the role of
walls and corners is played by extremal subsets.

Extremal subsets first appeared in the study of their special case — the
boundary of an Alexandrov’s space (see [Perelman–Petrunin 1993], and
[Petrunin 1997], [Perelman 1997]).

An Alexandrov’s space without extremal subsets resembles a very non-
smooth Riemannian manifold. The presence of extremal subsets makes it
behave as something new and maybe intersting; it gives an interesting addi-
tional combinatoric structure which reflects geometry and topology of the
space itself, as well as of nearby spaces.

4.1. Definition and properties. It is best to define extremal subsets
as “ideals” of the gradient flow, i.e.

Definition 4.1.1. Let A ∈ Alex .
E ⊂ A is an extremal subset, if for any semiconcave function f on A ,

t � 0 and x ∈ E , we have Φt
f (x) ∈ E .

Recall that Φt
f denotes the f -gradient flow for time t , see 2.2. Here is

a quick corollary of this definition:

(1) Extremal subsets are closed. Moreover:
(i) For any point p ∈ A , there is an ε > 0, such that if an

extremal subset intersects ε-neighborhood of p then it
contains p .

(ii) On each extremal subset the intrinsic metric is locally finite.
These properties follow from the fact that the gradient flow for a
λ-concave function with dpf |Σp < 0 pushes a small ball Bε(p) to
p in time proportionate to ε .
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Examples.
(i) An Alexandrov’s space itself, as well as the empty set, forms an

extremal subsets.
(ii) A point p ∈ A forms a one-point extremal subset if its space of direc-

tions Σp has a diameter �π/2
(iii) If one takes a subset of points of an Alexandrov’s space with tan-

gent cones homeomorphic26 to each other then its closure27 forms an
extremal subset.

In particular, if in this construction we take points with tangent
cone homeomorphic to R+ × Rm−1 then we get the boundary of an
Alexandrov’s space.

This follows from theorem 4.1.2 and the Morse lemma (property 7
page 181).

(iv) Let A/G be a factor of an Alexandrov’s space by an isometry group,
and SH ⊂ A be the set of points with stabilizer conjugate to a sub-
group H ⊂ G (or its connected component). Then the closure of the
projection of SH in A/G forms an extremal subset.

For example: A cube can be presented as a quotient of a flat torus
by a discrete isometry group, and each face of the cube forms an
extremal subset.

The following theorem gives an equivalence of our definition of extremal
subset and the definition given in [Perelman–Petrunin 1993]:

Theorem 4.1.2. A closed subset E in an Alexandrov’s space A is
extremal if and only if for any q ∈ A\E , the following condition is fulfilled:

If distq has a local minimum on E at a point p, then p is a critical
point of distq on A, i.e., ∇p distq = op .

Proof. For the “only if” part, note that if p ∈ E is not a critical point
of distq , then one can find a point x close to p so that ↑xp is uniquely defined
and close to the direction of ∇p distq , so dp distq(↑xp) > 0. Since ∇p distx is
polar to ↑xp (see page 143) we get

dp distq(∇p distx) < 0,

see inequality 1.3 on page 144. Hence, the gradient flow Φt
distx

pushes the
point p closer to q , which contradicts the fact that p is a minimum point
distq on E .

To prove the “if” part, it is enough to show that if F ⊂ A satisfies
the condition of the theorem, then for any p ∈ F , and any semiconcave
function f , either ∇pf = op or ∇pf

|∇pf | ∈ ΣpF . If so, an f -gradient curve

26Equivalently, with homeomorphic small spherical neigborhoods. The equivalence
follows from Perelman’s stability theorem.

27As well as the closure of its connected component.
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can be obtained as a limit of broken lines with vertexes on F , and from
uniqueness, any gradient curve which starts at F lives in F .

Let us use induction on dimA . Note that if F ⊂ A satisfies the condi-
tion, then the same is true for ΣpF ⊂ Σp , for any p ∈ F . Then using the
inductive hypothesis we get that ΣpF ⊂ Σp is an extremal subset.

If p is isolated, then clearly diam Σp � π/2 and therefore ∇pf = o , so
we can assume ΣpF �= ∅ .

Note that dpf is (−dpf)-concave on Σp (see 1.2, page 140). Take ξ =
∇pf
|∇pf | , so ξ ∈ Σp is the maximal point of dpf . Let η ∈ ΣpF be a direction
closest to ξ , then �(ξ, η) � π/2; otherwise F would not satisfy the condition
in the theorem for a point q with ↑qp≈ ξ . Hence, since ΣpF ⊂ Σp is an
extremal subset, ∇ηdpf ∈ ΣηΣpF and therefore

dηdpf(↑ξη) � 〈∇ηdpf, ↑ξη〉 � 0.

Hence, dpf(η) � dpf(ξ), and therefore ξ = η , i.e. ∇pf
|∇pf | ∈ ΣpF . �

From this theorem it follows that in the definition of extremal subset
(4.1.1), one has to check only squares of distance functions. Namely: Let
A ∈ Alex, then E ⊂ A is an extremal subset, if for any point p ∈ A, and
any x ∈ E , we have Φt

dist2p
(x) ∈ E for any t � 0.

In particular, applying lemma 2.1.5 we get

Lemma 4.1.3. The limit of extremal subsets is an extremal subset.
Namely, if An ∈ Alexm(κ), An

GH−→ A and En ⊂ An is a sequence of
extremal subsets such that En → E ⊂ A then E is an extremal subset of A.

The following is yet another important technical lemma:

Lemma 4.1.4. [Perelman–Petrunin 1993, 3.1(2)] Let A ∈ Alex be
compact, then there is ε > 0 such that distE has no critical values in (0, ε).
Moreover,

|∇x distE | > ε if 0 < distE(x) < ε.

For a non-compact A, the same is true for the restriction distE |Ω to
any bounded open Ω ⊂ A.

Proof. Follows from lemma 4.1.5 and theorem 4.1.2. �

Lemma about an obtuse angle 4.1.5. Given v > 0, r > 0, κ ∈ R
and m ∈ N , there is ε = ε(v, r, κ, m) > 0 such that if A ∈ Alexm(κ), p ∈ A ,
volm Br(p) > v , then for any two points x, y ∈ Br(p), |xy| < ε there is
point z ∈ Br(p) such that �zxy > π/2 + ε or �zyx > π/2 + ε .

The proof is based on a volume comparison for logx : A→ Tx similar to
[Grove–Petersen 1988, lemma 1.3].
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Note that the tangent cone TpE of an extremal subset E ⊂ A is well
defined; i.e. for any p ∈ E , subsets sE in (sA, p) converge to a subcone
of TpE ⊂ TpA as s → ∞ . Indeed, assume E ⊂ A is an extremal subset
and p ∈ E . For any ξ ∈ ΣpE

28, the radial curve gexp(t · ξ) lies in E .29

In particular, there is a curve which goes in any tangent direction of E .
Therefore, as s → ∞ , (sE ⊂ sA, p) converges to a subcone TpE ⊂ TpA ,
which is simply cone over ΣpE (see also [Perelman–Petrunin 1993, 3.3])

Next we list some properties of tangent cones of extremal subsets:
(2) A closed subset E ⊂ A is extremal if and only if the following

condition is fulfilled:
• At any point p ∈ E , its tangent cone TpE ⊂ TpA is well defined,

and it is an extremal subset of the tangent cone TpA .(compare
[Perelman–Petrunin 1993, 1.4])
(Here is an equivalent formulation in terms of the space of direc-

tions: For any p ∈ E , either (a) ΣpE = ∅ and diam Σp � π/2 or
(b) ΣpE = {ξ} is one point extremal subset and B̄π/2(ξ) = Σp or
(c) ΣpE is extremal subset of Σp with at least two points.)

TpE is extremal as a limit of extremal subsets, see lemma 4.1.3.
On the other hand for any semiconcave function f and p ∈ E , the
differential dpf : Tp → R is concave and since TpE ⊂ Tp is extremal
we have ∇pf ∈ TpE . I.e. gradient curves can be approximated by
broken geodesics with vertices on E , see page 145.

(3) [Perelman–Petrunin 1993, 3.4–5] If E and F are extremal sub-
sets then so are

(i) E∩F and for any p ∈ E∩F we have Tp(E∪F ) = TpE∪ΣpF
(ii) E∪F and for any p ∈ E∪F we have Tp(E∩F ) = TpE∩ΣpF

(iii) E\F and for any p ∈ E\F we have Tp(E\F ) = TpE\TpF
In particular, if TpE = TpF then E and F coincide in a
neighborhood of p .

The properties (i) and (ii) are obvious. The property (iii) follows
from property 2 and lemma 4.1.4.

We continue with properties of the intrinsic metric of extremal subsets:
(4) [Perelman–Petrunin 1993, 3.2(3)] Let A ∈ Alexm(κ) and E ⊂ A

be an extremal subset. Then the induced metric of E is locally bi-
Lipschitz equivalent to its induced intrinsic metric. Moreover, the
local Lipschitz constant at point p ∈ E can be expressed in terms
of m , κ and volume of a ball v = volBr(p) for some (any) r > 0.

From lemma 4.1.5, it follows that for two sufficiently close points
x, y ∈ E near p there is a point z so that 〈∇x distz, ↑yx〉 > ε or
〈∇y distz, ↑xy〉 > ε . Then, for the corresponding point, say x , the

28For a closed subset X ⊂ A , and p ∈ X , ΣpX ⊂ Σp denotes the set of tangent
directions to X at p , i.e. the set of limits of ↑qn

p for qn → p , qn ∈ X .
29That follows from the fact that the curves t �→ gexp(t ·↑qn

p ) starting with qn belong
to E and their converge to gexp(t · ξ) .
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gradient curve t → Φt
distz

(x) lies in E , it is 1-Lipschitz and the
distance |Φt

distz
(x) y| is decreasing with the speed of at least ε .

Hence the result.
(5) Let An ∈ Alexm(κ), An

GH−→ A without collapse (i.e. dimA = m)
and En ⊂ An be extremal subsets. Assume En → E ⊂ A as
subsets. Then

(i) [Kapovitch 2007, 9.1] For all large n , there is a homeomor-
phism of pairs (An, En) → (A, E). In particular, for all large
n , En is homeomorphic to E ,

(ii) [Petrunin 1997, 1.2] En
GH−→ E as length metric spaces (with

the intrinsic metrics induced from An and A).
The first property is a coproduct of the proof of Perelman’s stability
theorem. The proof of the second is an application of
quasigeodesics .

(6) [Petrunin 1997, 1.4]The first variation formula. Assume A ∈ Alex
and E ⊂ A is an extremal subset, let us denote by |∗∗|E its intrinsic
metric. Let p, q ∈ E and α(t) be a curve in E starting from p in
direction α+(0) ∈ ΣpE . Then

|α(t) q|E = |pq|E − cos ϕ · t + o(t).

where ϕ is the minimal (intrinsic) distance in ΣpE between α+(0)
and a direction of a shortest path in E from p to q (if ϕ > π , we
assume cos ϕ = −1).

(7) Generalized Lieberman’s Lemma. Any minimizing geodesic for the
induced intrinsic metric on an extremal subset is a quasigeodesic
in the ambient space.

See 2.3.1 for the proof and discussion.

Let us denote by Ext(x) the minimal extremal subset which contains
a point x ∈ A . Extremal subsets which can be obtained this way will be
called primitive. Set

Ext◦(x) = {y ∈ A|Ext(y) = Ext(x)};

let us call Ext◦(x) the main part of Ext(x). Ext◦(x) is the same as Ext(x)
with its proper extremal subsets removed. From property 3iii on page 162,
Ext◦(x) is open and everywhere dense in Ext(x). Clearly the main parts of
primitive extremal subsets form a disjoint covering of M .

(8) [Perelman–Petrunin 1993, 3.8] Stratification. The main part of
a primitive extremal subset is a topological manifold. In particular,
the main parts of primitive extremal subsets stratify Alexandrov’s
space into topological manifolds.

This follows from theorem 4.1.2 and the Morse lemma (pro-
perty 7 page 181); see also example iii, page 162.
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4.2. Applications. The notion of extremal subsets is used to make
more precise formulations. Here is the simplest example, a version of the
radius sphere theorem:

Theorem 4.2.1. Let A ∈ Alexm(1), diamA > π/2 and A have no
extremal subsets. Then A is homeomorphic to a sphere.

From lemma 5.2.1 and theorem 4.1.2, we have A ∈ Alex(1), radA >
π/2 implies that A has no extremal subsets. I.e. this theorem does indeed
generalize the radius sphere theorem 5.2.2(ii).

Proof. Assume p, q ∈ A realize the diameter of A . Since A has no
extremal subsets, from example iii, page 162, it follows that a small spherical
neighborhood of p ∈ A is homeomorphic to Rm . From angle comparison,
distp has only two critical points p and q . Therefore, this theorem follows
from the Morse lemma (property 7 page 181) applied to distp . �

The main result of such type is the result in [Perelman 1997]. It
roughly states that a collapsing to a compact space without proper extremal
subsets carries a natural Serre bundle structure.

This theorem is analogous to the following:

Fibration theorem 4.2.2. [Yamaguchi].Let An ∈ Alexm(κ) and
An

GH−→M , M be a Riemannian manifold.
Then there is a sequence of locally trivial fiber bundles σn : An → M .

Moreover, σn can be chosen to be almost submetries30 and the diameters of
its fibers converge to 0.

The conclusion in Perelman’s theorem is weaker, but on the other hand
it is just as good for practical purposes. In addition it is sharp, i.e. there
are examples of a collapse to spaces with extremal subsets which do not
have the homotopy lifting property. Here is a source of examples: take a
compact Riemannian manifold M with an isometric and non-free action by
a compact connected Lie group G , then (M × εG)/G

GH−→ M/G as ε → 0
and since the curvature of G is non-negative, by O’Naill’s formula, we get
that the curvature of (M × εG)/G is uniformly bounded below.

Homotopy lifting theorem 4.2.3. Let An
GH−→ A , An ∈ Alexm(κ),

A be compact without proper extremal subsets and K be a finite simplicial
complex.

Then, given a homotopy

Ft : K → A, t ∈ [0, 1]

30i.e. Lipshitz and co-Lipschitz with constants almost 1.
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and a sequence of maps G0;n : K → An such that G0,n → F0 as n → ∞
one can extend G0;n by homotopies

Gt;n : K → A

such that Gt;n → Ft as n→∞ .

An alternative proof is based on Lemma 2.3.4.

Remark 4.2.4. As a corollary of this theorem one obtains that for all
large n it is possible to write a homotopy exact sequence:

· · ·πk(Fn) −→ πk(An) −→ πk(A) −→ πk−1(Fn) · · · ,

where the space Fn can be obtained the following way: Take a point p ∈ A ,
and fix ε > 0 so that distp : A → R has no critical values in the interval
(0, 2ε). Consider a sequence of points An $ pn → p and take Fn = Bε(pn) ⊂
An . In particular, if p is a regular point then for large n , Fn is homotopy
equivalent to a regular fiber over p31.

Next we give two corollaries of the above remark. The last assertion
of the following theorem was conjectured in [Shioya] and was proved in
[Mendonça].

Theorem 4.2.5. [Perelman 1997, 3.1]. Let M be a complete noncom-
pact Riemannian manifold of nonnegative sectional curvature. Assume that
its asymptotic cone Cone∞(M) has no proper extremal subsets, then M
splits isometrically into the product L×N , where L is a compact Riemann-
ian manifold and N is a non-compact Riemannian manifold of the same
dimension as Cone∞(M).

In particular, the same conclusion holds if radius of the ideal boundary
of M is at least π/2.

The proof is a direct application of theorem 4.2.3 and remark 4.2.3 for
collapsing

εM
GH−→ Cone∞(M), as ε→ 0.

Theorem 4.2.6. [Perelman 1997, 3.2]. Let An ∈ Alexm(1), An
GH−→ A

be a collapsing sequence (i.e. m > dimA), then Cone(A) contains proper
extremal subsets. In particular, radA � π/2.

31It is constructed the following way: take a distance chart G : B2ε(p) → R
k , k =

dim A around p ∈ A and lift it to An . It defines a map Gn : Bε(pn) → R
k . Then take

Fn = G−1
n ◦ G(p) for large n . If An are Riemannian then Fn are manifolds and they

do not depend on p up to a homeomorphism. Moreover, Fn are almost non-negatively
curved in a generalized sense; see [KPT, definition 1.4].
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The last assertion of this theorem (in a stronger form) has been proven
in [Grove–Petersen 1993, 3(3)].

The proof is a direct application of theorem 4.2.3 and remark 4.2.3 for
collapsing of spherical suspensions

Σ(An) GH−→ Σ(A), n→∞.

5. Quasigeodesics

The class of quasigeodesics32 generalizes the class of geodesics to non-
smooth metric spaces. It was first introduced in [Alexandrov 1945] for
2-dimensional convex hypersurfaces in the Euclidean space, as the curves
which “turn” right and left simultaneously. This type of curves was studied
further in [Alexandrov–Burago], [Pogorelov], [Milka 1971]. They were
generalized to surfaces with bounded integral curvature [Alexandrov 1949],
to multidimensional polyhedral spaces [Milka 1968], [Milka 1969] and to
multidimensional Alexandrov’s spaces [Perelman–Petrunin QG].

In Alexandrov’s spaces, quasigeodesics behave more naturally than
geodesics, mainly:

• There is a quasigeodesic starting in any direction from any point;
• The limit of quasigeodesics is a quasigeodesic.

Quasigeodesics have beauty on their own, but also due to the generalized
Lieberman lemma (2.3.1), they are very useful in the study of intrinsic metric
of extremal subsets, in particular the boundary of Alexandrov’s space.

Since quasigeodesics behave almost as geodesics, they are often used
instead of geodesics in the situations when there is no geodesic in a given
direction. In most of these applications one can instead use the radial curves
of gradient exponent, see section 3; a good example is the proof of the-
orem 3.3.1, see footnote 20, page 157. In this type of argument, radial
curves could be considered as a simpler and superior tool since they can
be defined in a more general setting, in particular, for infinitely dimensional
Alexandrov’s spaces.

5.1. Definition and properties. In section 1, we defined λ-concave
functions as those locally Lipschitz functions whose restriction to any unit-
speed minimizing geodesic is λ-concave. Now consider a curve γ in an
Alexandrov’s space such that restriction of any λ-concave function to γ
is λ-concave. It is easy to see that for any Riemannian manifold γ has to
be a unit-speed geodesic. In a general Alexandrov’s space γ should only be
a quasigeodesic.

32It should be noted that the class of quasigeodesics described here has nothing to
do with the Gromov’s quasigeodesics in δ -hyperbolic spaces.
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Definition 5.1.1. A curve γ in an Alexandrov’s space is called quasi-
geodesic if for any λ ∈ R , given a λ-concave function f we have that f ◦ γ
is λ-concave.

Although this definition works for any metric space, it is only reasonable
to apply it for the spaces where we have λ-concave functions, but not all
functions are λ-concave, and Alexandrov’s spaces seem to be the perfect
choice.

The following is a list of corollaries from this definition:

(1) Quasigeodesics are unit-speed curves. i.e., if γ(t) is a quasigeodesic
then for any t0 we have

lim
t→t0

|γ(t)γ(t0)|
|t− t0|

= 1.

To prove that quasigeodesic γ is 1-Lipschitz at some t = t0 ,
it is enough to apply the definition for f = dist2γ(t0) and use the
fact that in any Alexandrov’s space dist2p is (2+O(r2))-concave in
Br(p). The lower bound is more complicated, see theorem 7.3.3.

(2) For any quasigeodesic the right and left tangent vectors γ+ , γ−
are uniquely defined unit vectors.

To prove, take a partial limits ξ± ∈ Tγ(t0) for

logγ(t0) γ(t0 ± τ)
τ

, as τ → 0+

It exists since quasigeodesics are 1-Lipschitz (see the previous prop-
erty). For any semiconcave function f , (f ◦ γ)± are well defined,
therefore

(f ◦ γ)±(t0) = dγ(t0)f(ξ±).

Taking f = dist2q for different q ∈ A , one can see that ξ± is defined
uniquely by this identity, and therefore γ±(t0) = ξ± .

(3) Generalized Lieberman’s Lemma. Any unit-speed geodesic for the
induced intrinsic metric on an extremal subset is a quasigeodesic
in the ambient Alexandrov’s space.

See 2.3.1 for the proof and discussion.
(4) For any point x ∈ A , and any direction ξ ∈ Σx there is a quasi-

geodesic γ : R→ A such that γ(0) = x and γ+(0) = ξ .
Moreover, if E ⊂ A is an extremal subset and x ∈ E , ξ ∈ ΣxE ,

then γ can be chosen to lie completely in E .
The proof is quite long, it is given in appendix A.

Applying the definition locally, we get that if f is a (1 − κf)-concave
function then f ◦ γ is (1− κf ◦ γ)-concave (see section 1.2). In particular,
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if A is an Alexandrov’s space with curvature � κ , p ∈ A and hp(t) =
ρκ ◦ distp ◦γ(t)33 then we have the following inequality in the barrier sense

h′′
p � 1− κhp.

This inequality can be reformulated in an equivalent way: Let
A ∈ Alexm(κ), p ∈ A and γ be a quasigeodesic, then function

t �→ �̃κ(|γ(0)p|, |γ(t)p|, t)

is decreasing for any t > 0 (if κ > 0 then one has to assume t � π/
√

κ).
In particular,

�̃κ(|γ(0)p|, |γ(t)p|, t) � �(↑pγ(0), γ
+(0))

for any t > 0 (if κ > 0 then in addition t � π/
√

κ).
It also can be reformulated more geometrically using the notion of devel-

oping (see below):
Any quasigeodesic in an Alexandrov’s space with curvature � κ, has a

convex κ-developing with respect to any point.

Definition of developing 5.1.2. [Alexandrov 1957] Fix a real κ .
Let X be a metric space, γ : [a, b] → X be a 1-Lipschitz curve and

p ∈ X\γ . If κ > 0, assume in addition that |pγ(t)| < π/
√

κ for all t ∈ [a, b] .
Then there exists a unique (up to rotation) curve γ̃ : [a, b] → Lκ ,

parametrized by the arclength, and such that |oγ̃(t)| = |pγ(t)| for all t and
some fixed o ∈ Lκ , and the segment oγ̃(t) turns clockwise as t increases
(this is easy to prove). Such a curve γ̃ is called the κ-development of γ with
respect to p .

The development γ̃ is called convex if for every t ∈ (a, b), for sufficiently
small τ > 0 the curvilinear triangle, bounded by the segments oγ̃(t±τ) and
the arc γ̃|t−τ,t+τ , is convex.

In [Milka 1971], it has been proven that the developing of a quasigeo-
desic on a convex surface is convex.

(5) Let A ∈ Alexm(κ), m > 134. A curve γ in A is a quasigeodesic if
and only if it is parametrized by arc-length and one of the following
properties is fulfilled:

(i) For any point p ∈ A\γ the κ-developing of γ with respect to
p is convex.

(ii) For any point p ∈ A , if hp(t) = ρκ ◦ distp ◦γ(t), then we have
the following inequality in a barrier sense

h′′
p � 1− κhp.

33Function ρκ : R → R is defined on page 140.
34This condition is only needed to ensure that the set A\γ is everywhere dense.
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(iii) Function

t �→ �̃κ(|γ(0)p|, |γ(t)p|, t)

is decreasing for any t > 0 (if κ > 0 then in addition
t � π/

√
κ).

(iv) The inequality

�(↑pγ(0), γ
+(0)) � �̃κ(|γ(0)p|, |γ(t)p|, t)

holds for all small t > 0.
The “only if” part has already been proven above, and the “if”
part follows from corollary 3.3.3

(6) A pointwise limit of quasigeodesics is a quasigeodesic. More
generally:

Assume An
GH−→ A, An ∈ Alexm(κ), dimA = m (i.e. it is not

a collapse).
Let γn : [a, b] → An be a sequence of quasigeodesics which

converges pointwise to a curve γ : [a, b] → A. Then γ is a
quasigeodesic.

As it follows from lemma 7.2.3, the statement in the definition is
correct for any λ-concave function f which has controlled convexity
type (λ, κ). I.e. γ satisfies the property 7.3.4. In particular, the κ-
developing of γ with respect to any point p ∈ A is convex, and as
it is noted in remark 7.3.5, γ is a unit-speed curve. Therefore, from
corollary 3.3.3 we get that it is a quasigeodesic.

Here is a list of open problems on quasigeodesics:
(i) Is there an analog of the Liouvile theorem for “quasigeodesic flow”?
(ii) Is it true that any finite quasigeodesic has bounded variation of turn?

or
Is it possible to approximate any finite quasigeodesic by sequence of
broken lines with bounded variation of turn?

(iii) Is it true that in an Alexandrov’s space without boundary there is an
infinitely long geodesic?

As it was noted by A. Lytchak, the first and last questions can be reduced
to the following: Assume A is a compact Alexandrov’s m-space without
boundary. Let us set V (r) =

∫
A volm(Br(x)), then

V (r) = volm(A)ωmrm + o(rm+1).

The technique of tight maps makes it possible to prove only that V (r) =
volm(A)ωmrm + O(rm+1). Note that if A is a Riemannian manifold with
boundary then

V (r) = volm(A)ωmrm + volm−1(∂A)ω′
mrm+1 + o(rm+1).
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5.2. Applications. The quasigeodesics is the main technical tool in
the questions linked to the intrinsic metric of extremal subsets, in particular
the boundary of Alexandrov’s space. The main examples are the proofs of
convergence of intrinsic metric of extremal subsets and the first variation
formula (see properties 5ii and 6, on page 165).

Below we give a couple of simpler examples:

Lemma 5.2.1. Let A ∈ Alexm(1) and radA > π/2. Then for any p ∈ A
the space of directions Σp has radius >π/2.

Proof. Assume that Σp has radius ≤π/2, and let ξ ∈ Σp be a direc-
tion, such that B̄ξ(π/2) = Σp . Consider a quasigeodesic γ starting at p in
direction ξ .

Then for q = γ(π/2) we have B̄q(π/2) = A . Indeed, for any point
x ∈ A we have �(ξ, ↑xp) � π/2. Therefore, by the comparison inequality
(property 5iv, page 171), |xq| � π/2. This contradicts our assumption that
radA > π/2. �

Corollary 5.2.2. Let A ∈ Alexm(1) and radA > π/2 then
(i) A has no extremal subsets.
(ii) [Grove–Petersen 1993](radius sphere theorem) A is homeomorphic

to an m-sphere.

Yet another proof of the radius sphere theorem follows immediately from
[Perelman–Petrunin 1993, 1.2, 1.4.1]; theorem 4.2.1 gives a slight gener-
alization.

Proof. Part (i) is obvious.
Part (ii): From lemma 5.2.1, rad Σp > π/2. Since dim Σp < m , by

the induction hypothesis we have Σp � Sm−1 . Now the Morse lemma (see
property 7, page 181) for distp : A → R gives that A � Σ(Σp) � Sm , here
Σ(Σp) denotes a spherical suspension over Σp . �

6. Simple functions

This is a short technical section. Here we introduce simple functions,
a subclass of semiconcave functions which on one hand includes all func-
tions we need and in addition is liftable; i.e. for any such function one can
construct a nearby function on a nearby space with “similar” properties.

Our definition of simple function is a modification of two different def-
initions of so called “admissible functions” given in [Perelman 1993, 3.2]
and [Kapovitch 2007, 5.1].

Definition 6.1.1. Let A ∈ Alex , a function f : A→ R is called simple if
there is a finite set of points {qi}Ni=1 and a semiconcave function Θ : RN → R
which is non-decreasing in each argument such that

f(x) = Θ(dist2q1
, dist2q2

, . . . ,dist2qN
)
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It is straightforward to check that simple functions are semiconcave.
Class of simple functions is closed under summation, multiplication by a
positive constant35 and taking the minimum.

In addition this class is liftable; i.e. given a converging sequence of Alex-
androv’s spaces An

GH−→ A and a simple function f : A → R there is a
way to construct a sequence of functions fn : An → R such that fn → f .
Namely, for each qi take a sequence An $ qi,n → qi ∈ A and consider
function fn : An → R defined by

fn = Θ(dist2q1,n
, dist2q2,n

, . . . ,dist2qN,n
).

6.2. Smoothing trick. Here we present a trick which is very use-
ful for doing local analysis in Alexandrov’s spaces, it was introduced in
[Otsu–Shioya, section 5].

Consider function
d̃istp =

∮
Bε(p)

distx dx.

In this notation, we do not specify ε assuming it to be very small. It is easy
to see that d̃istp is semiconcave.

Note that
dyd̃istp =

∮
Bε(p)

dy distx dx.

If y ∈ A is regular, i.e. Ty is isometric to Euclidean space, then for almost all
x ∈ Bε(p) the differential dy distx : Ty → R is a linear function. Therefore
d̃istp is differentiable at every regular point, i.e.

dyd̃istp : Ty → R

is a linear function for any regular y ∈ A .
The same trick can be applied to any simple function

f(x) = Θ(dist2q1
, dist2q2

, . . . ,dist2qN
).

This way we obtain function

f̃(x) =
∮

Bε(q1)×Bε(q2)×···×Bε(qN )
Θ(dist2x1

, dist2x2
, . . . ,dist2xN

)dx1dx2 · · · dxN ,

which is differentiable at every regular point, i.e. if Ty is isometric to the
Euclidean space then

dyf̃ : Ty → R

is a linear function.

35As well as multiplication by positive simple functions.
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7. Controlled concavity

In this and the next sections we introduce a couple of techniques
which use comparison of m-dimensional Alexandrov’s space with a model
space of the same dimension Lm

κ (i.e. simply connected Riemannian man-
ifold with constant curvature κ). These techniques were introduced in
[Perelman 1993] and [Perelman DC].

We start with the local existence of a strictly concave function on an
Alexandrov’s space.

Theorem 7.1.1. [Perelman 1993, 3.6]. Let A ∈ Alex.
For any point p ∈ A there is a strictly concave function f defined in an

open neighborhood of p.
Moreover, given v ∈ Tp , the differential, dpf(x), can be chosen arbitrar-

ily close to x �→ −〈v, x〉

Proof. Consider the real function

ϕr,c(x) = (x− r)− c(x− r)2/r,

so we have
ϕr,c(r) = 0, ϕ′

r,c(r) = 1 ϕ′′
r,c(r) = −2c/r.

Let γ be a unit-speed geodesic, fix a point q and set

α(t) = �(γ+(t), ↑qγ(t)).

If r > 0 is sufficiently small and |qγ(t)| is sufficiently close to r , then direct
calculations show that

(ϕr,c ◦ distq ◦γ)′′(t) � 3− c cos2 α(t)
r

.

q

γ(t)
α(t)
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Now, assume {qi} , i = {1, .., N} is a finite set of points such that |pqi| =
r for any i . For x ∈ A and ξx ∈ Σx , set αi(ξx) = �(ξx, ↑qi

p ). Assume
we have a collection {qi} such that for any x ∈ Bε(p) and ξx ∈ Σx we
have maxi |αi(ξx) − π/2| � ε > 0. Then taking in the above inequality
c > 3N/ cos2 ε , we get that the function

f =
∑

i

ϕr,c ◦ distqi

is strictly concave in Bε′(p) for some positive ε′ < ε .
To construct the needed collection {qi} , note that for small r > 0 one

can construct Nδ � Const /δ(m−1) points {qi} such that |pqi| = r and
�̃κqipqj > δ (here Const = Const(Σp) > 0). On the other hand, the set of
directions which is orthogonal to a given direction is smaller than Sm−2 and
therefore contains at most Const(m)/δ(m−2) directions with angles at least
δ . Therefore, for small enough δ > 0, {qi} forms the needed collection.

If r is small enough, points qi can be chosen so that all directions ↑qi
p

will be ε-close to a given direction ξ and therefore the second property
follows. �

Note that in the theorem 7.1.1 (as well as in theorem 7.2.2), the function
f can be chosen to have maximum value 0 at p , f(p) = 0 and with dpf(x)
arbitrary close to −|x| . It can be constructed by taking the minimum of the
functions in these theorems.

In particular it follows that

Claim 7.1.2. For any point of an Alexandrov’s space there is an arbitrary
small closed convex neighborhood.

By rescaling and passing to the limit one can even estimate the size of
the convex hull in an Alexandrov’s space in terms of the volume of a ball
containing it:

Lemma on convex hulls 7.1.3. [Perelman–Petrunin 1993, 4.3].For
any v > 0, r > 0 and κ ∈ R, m ∈ N there is ε > 0 such that, if
A ∈ Alexm(κ) and volBr(p) � v then for any ρ < εr ,

diam Conv Bρ(p) � ρ/ε.

In particular, for any compact Alexandrov’s A space there is Const ∈ R
such that for any subset X ⊂ A

diam (Conv X) � Const ·diamX.

7.2. General definition. The above construction can be generalized
and optimized in many ways to fit particular needs. Here we introduce one
such variation which is not the most general, but general enough to work in
most applications.
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Let A be an Alexandrov’s space and f : A→ R ,

f = Θ(dist2q1
, dist2q2

, . . . ,dist2qN
)

be a simple function (see section 6). If A is m-dimensional, we say that
such a function f has controlled concavity of type (λ, κ) at p ∈ A , if for any
ε > 0 there is δ > 0, such that for any collection of points {p̃, q̃i} in the
model m-space36 Lm

κ satisfying

|q̃iq̃j | > |qiqj | − δ and
∣∣|p̃q̃i| − |pqi|

∣∣ < δ for all i, j,

we have that the function f̃ : Lm
κ → R defined by

f̃ = Θ(dist2q̃1
, dist2q̃2

, ..,dist2q̃n
)

is (λ− ε)-concave in a small neighborhood of p̃ .
The following lemma states that the conrolled concavity is stronger than

the usual concavity.

Lemma 7.2.1. Let A ∈ Alexm(κ).
If a simple function

f = Θ(dist2q1
, dist2q2

, ..,dist2qN
), f : A→ R

has a conrolled concavity type (λ, κ) at each point p ∈ Ω, then f is
λ-concave in Ω.

The proof is just a direct calculation similar to that in the proof of 7.1.1.
Note also, that the function constructed in the proof of theorem 7.1.1 has
controlled concavity. In fact from the same proof follows:

Existence 7.2.2. Let A ∈ Alex, p ∈ A, λ, κ ∈ R. Then there is a
function f of controlled concavity (λ, κ) at p.

Moreover, given v ∈ Tp , the function f can be chosen so that its differ-
ential dpf(x) will be arbitrary close to x �→ −〈v, x〉.

Since functions with a conrolled concavity are simple they admit liftings,
and from the definition it is clear that these liftings also have controlled
concavity of the same type, i.e.

Concavity of lifting 7.2.3. Let A ∈ Alexm .
Assume a simple function

f : A→ R, f = Θ(dist2q1
, dist2q2

, ..,dist2qN
)

has controlled concavity type (λ, κ) at p.

36i.e. a simply connected m -manifold with constant curvature κ .
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Let An ∈ Alexm(κ), An
GH−→ A (so, no collapse) and {pn}, {qi,n} ∈ An

be sequences of points such that pn → p ∈ A and qi,n → qi ∈ A for each i.
Then for all large n, the liftings of f ,

fn : An → R, fn = Θ(dist2q1,n
, dist2q2,n

, ..,dist2qN,n
)

have controlled concavity type (λ, κ) at pn .

In other words, if f : A→ R has controlled concavity type (λ, κ) at all
points of some open set Ω ⊂ A , then fn : An → R have controlled concavity
type (λ, κ) at all points of some sequence of open sets Ωn ⊂ An , such that
Ωn complement-converges to Ω (i.e. An\Ωn → A\Ω in Hausdorff sense).

7.3. Applications. As was already noted, in the theorems 7.1.1 and
7.2.2, the function f can be chosen to have a maximum value 0 at p ,
and with dpf(x) arbitrary close to −|x| . This observation was used in
[Kapovitch 2002] to solve the second part of [Petersen 1996, problem 32]:

Petersen’s problem 7.3.1. Let A be a smoothable Alexandrov’s
m-space, i.e. there is a sequence of Riemannian m-manifolds Mn with
curvature � κ such that Mn

GH−→ A.
Prove that the space of directions ΣxA for any point x ∈ A is homeo-

morphic to the standard sphere.

Note that Perelman’s stability theorem only gives that ΣxA has to be
homotopically equivalent to the standard sphere.

Sketch of the proof. Fix a big negative λ and construct a function
f : A → R with dpf(x) ≈ −|x| and controlled concavity of type (λ, κ).
From 7.2.1, the liftings fn : Mn → R of f (see 7.2.3) are strictly concave
for large n . Let us slightly smooth the functions fn keeping them strictly
concave. Then the level sets f−1

n (a), for values of a , which are little below
the maximum of fn , have strictly positive curvature and are diffeomorphic
to the standard sphere37.

Let us denote by pn ∈ Mn a maximum point of fn . Then it is not
hard to choose a sequence {an} and a sequence of rescalings {sn} so that
(snMn, pn) GH−→ (Tp, op) and snf−1

n (an) ⊂ snMn converge to a convex hyper-
surface S close to Σp ⊂ Tp . Then, from Perelman’s stability theorem, it fol-
lows that S and therefore Σp is homeomorphic to the standard sphere. �

Remark. From this proof it follows that Σp is itself smoothable. More-
over, there is a non-collapsing sequence of Riemannian metrics gn on Sm−1

such that (Sm−1, gn) GH−→ Σp . This observation makes possible to proof a
similar statement for iterated spaces of directions of smoothable Alexandrov
space.

37Since f has only one critical value above a and it is a local maximum.
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In the case of collapsing, the liftings fn of a function f with controlled
concavity type do not have the same controlled concavity type.

Nevertheless, the liftings are semiconcave and moreover, as was noted in
[Kapovitch 2005], if Mn is a sequence of m + k -dimensional Riemannian
manifolds with curvature � κ , Mn

GH−→ A , dimA = m , then one has a good
control over the sum of k+1 maximal eigenvalues of their Hessians. In partic-
ular, a construction as in the proof of theorem 7.1.1 gives a strictly concave
function on A for which the liftings fn on An have Morse index � k . It
follows that one can retract an ε-neighborhood of pn to a k -dimensional
CW-complex38, where pn ∈ An is a maximum point of fn and ε does not
depend on n . This observation gives a lower bound for the codimension of a
collapse39 to particular spaces. For example, for any lower curvature bound
κ , the codimension of a collapse to Σ(HPm)40 is at least 3, and for Σ(CaP2)
is at least 8 (it is expected to be ∞). In addition, it yields the following the-
orem, which seems to be the only sphere theorem which does not assume
positiveness of curvature.

Funny sphere theorem 7.3.2. If a 4(m + 1) Riemannian manifold
M with sectional curvature �κ is sufficiently close41 to Σ(HPm), then it is
homeomorphic to a sphere.

The controlled concavity also gives a short proof of the following result:

Theorem 7.3.3. Any quasigeodesic is a unit-speed curve.

Proof. To prove that a quasigeodesic γ is 1-Lipschitz at some t = t0 ,
it is enough to apply the definition for f = dist2γ(t0) and use the fact that in
any Alexandrov’s space dist2p is (2 + O(r2))-concave in Br(p).

Note that if An, A ∈ Alexm(κ), An
GH−→ A without collapse, and γn in

An is a sequence of quasigeodesics which converges to a curve γ in A , then
γ has the following property42:

Property 7.3.4. For any function f on A with controlled concavity
type (λ, κ) we have that f ◦ γ is λ-concave.

If γ is a quasigeodesic in A with γ(0) = p , then the curves γ(t/s) are
quasigeodesics in sA . Therefore, as s→∞ , the limit curve

γ∞(t) =
[
|t|γ+(0) if t � 0
|t|γ−(0) if t < 0

38It is unknown whether it could be retracted to an k -submanifold. If true, it would
give some interesting applications.

39In our case, it is k ; the difference between the dimension of spaces from the col-
lapsing sequence and the dimension of the limit space.

40i.e. a spherical suspension over HPm .
41i.e. ε -close for some ε = ε(κ, m) .
42From statement 6, page 171, we that γ is a quasigeodesic, but its proof is based on

this theorem.
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in Tp has the above property. By a construction similar43 to theorem 7.1.1,
for any ε > 0 there is a function f of controlled concavity type (−2+ε,−ε)
on a neighborhood of γ± ∈ Tp such that

f(t · γ±) = −(t− 1)2 + o((t− 1)2).

Applying the property above we get |γ±(0)| � 1. �

Remark 7.3.5. Note that we have proven a slightly stronger statement;
namely, if a curve γ satisfies the property 7.3.4 then it is a unit-speed
curve.

Question 7.3.6. Is it true that for any point p ∈ A and any ε > 0,
there is a (−2+ε)-concave function fp defined in a neighborhood of p , such
that fp(p) = 0 and fp � −dist2p?

Existence of a such function would be a useful technical tool. In particu-
lar, it would allow for an easier proof of the above theorem.

8. Tight maps

The tight maps considered in this section give a more flexible version of
distance charts.

Similar maps (so called regular maps) were used in [Perelman 1991,
Perelman 1993]; in [Perelman DC], they were modified to nearly this
form. This technique is also useful for Alexandrov’s spaces with upper cur-
vature bound, see [Lytchak–Nagano].

Definition 8.1.1. Let A ∈ Alexm and Ω ⊂ A be an open subset. A
collection of semiconcave functions f0, f1, . . . , f� on A is called tight in Ω if

sup
x∈Ω, i�=j

{dxfi(∇xfj)} < 0.

In this case the map

F : Ω→ R�+1, F : x �→ (f0(x), f1(x), . . . , f�(x))

is called tight.
A point x ∈ Ω is called a critical point of F if mini dxfi � 0, otherwise

the point x is called regular.

43Setting v = γ±(0) ∈ Tp and w = 2γ±(0) , this function can be presented as a sum

f = A(ϕr,c ◦ disto +ϕr,c ◦ distw) + B
∑

i

ϕr′,c′ ◦ distqi ,

for appropriately chosen positive reals A, B, r, r′, c, c′ and a collection of points qi

such that, �opqi = �̃0opqi = π/2, |pqi| = r .
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Main example 8.1.2. If A ∈ Alexm(κ) and a0, a1, . . . , a�, p ∈ A such
that

�̃κaipaj > π/2 for all i �= j

then the map x �→ (|a0x|, |a1x|, . . . , |a�x|) is tight in a neighborhood of p .

The inequality in the definition follows from inequality (∗∗) on page 144
and a subsequent to it example (ii).

This example can be made slightly more general. Let f0, f1, . . . , f� be a
collection of simple functions

fi = Θi(dist2a1,i
, dist2a2,ix, . . . ,dist2ani,ix)

and the sets of points Ki = {ak,i} satisfy the following inequality

�̃κxpy > π/2 for any x ∈ Ki, y ∈ Kj , i �= j.

Then the map x �→ (f0(x), f1(x), . . . , f�(x)) is tight in a neighborhood of p .
We will call such a map a simple tight map.

Yet further generalization is given in the property 1 below.
The maps described in this example have an important property, they

are liftable and their lifts are tight. Namely, given a converging sequence
An

GH−→ A , An ∈ Alexm(κ) and a simple tight map F : A → R�+1 around
p ∈ A , the construction in section 6 gives simple tight maps Fn : An → R�

for large n , Fn → F .
I was unable to prove that tightness is a stable property in a sense

formulated in the question below. It is not really important for the theory
since all maps which appear naturally are simple (or, in the worst case
they are as in the generalization and as in the property 1). However, for
the beauty of the theory it would be nice to have a positive answer to the
following question.

Question 8.1.3. Assume An
GH−→ A , An ∈ Alexm(κ), f, g : A → R is a

tight collection around p and fn, gn : An → R , fn → f , gn → g are two
sequences of λ-concave functions and An $ pn → p ∈ A . Is it true that for
all large n , the collection fn, gn must be tight around pn?

If not, can one modify the definition of tightness so that
(i) it would be stable in the above sense,
(ii) the definition would make sense for all semiconcave functions
(iii) the maps described in the main example above are tight?

Let us list some properties of tight maps with sketches of proofs:
(1) Let x �→ (f0(x), f1(x), . . . , f�(x)) be a tight map in an open subset

Ω ⊂ A , then there is ε > 0 such that if g0, g1, . . . , gn is a collection
of ε-Lipschitz semiconcave functions in Ω then the map

x �→ (f0(x) + g0(x), f1(x) + g1(x), . . . , f�(x) + g�(x))

is also tight in Ω.
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(2) The set of regular points of a tight map is open.
Indeed, let x ∈ Ω be a regular point of tight map F = (f0, f1,

. . . , f�). Take real λ so that all fi are λ-concave in a neighborhood
of x . Take a point p sufficiently close to x such that dxfi(↑px) >
0 and moreover fi(p) − fi(x) > λ|xp|2/2 for each i . Then, from
λ-concavity of fi , there is a small neighborhood Ωx $ x such that
for any y ∈ Ωx and i we have dyfi(↑py) � ε for some fixed ε > 0.

(3) If one removes one function from a tight collection (in Ω) then
(for the corresponding map) all points of Ω become regular. In
other words, the projection of a tight map F to any coordinate
hyperplane is a tight map with all regular points (in Ω).

This follows from the property 3 on page 149 applied to the
flow for the removed fi .

(4) The converse also holds, i.e. if F is regular at x then one can find
a semiconcave function g such that map z �→ (F (z), g(z)) is tight
in a neighborhood of x . Moreover, g can be chosen to have an
arbitrary controlled concavity type.

Indeed, one can take g = distp , where p as in the property 2.
Then we have

dxg(v) = −max
ξ∈⇑p

x

〈ξ, v〉

and therefore

dxg(∇xfi) = −max
ξ∈⇑p

x

〈ξ,∇xfi〉 � −max
ξ∈⇑p

x

dxf(ξ) � −ε.

On the other hand, from inequality (∗∗) on page 144 and example
(ii) subsequent to it, we have

dxfi(∇xg) + min
ξ∈⇑p

x

dxfi(ξ) � 0.

The last statement follows from the construction in theorem 7.1.1.
(5) A tight map is open and even co-Lipschitz 44 in a neighborhood of

any regular point.
This follows from lemma 8.1.4.

(6) Let A ∈ Alex , Ω ⊂ A be an open subset. If F : Ω → R�+1 is tight
then � � dimA .

Follows from the properties 3 and 5.
(7) Morse lemma. A tight map admits a local splitting in a neighbor-

hood of its regular point, and a proper everywhere regular tight
map is a locally trivial fiber bundle. Namely

44A map F : X → Y between metric spaces is called L -co-Lipschitz in Ω ⊂ X if for
any ball Br(x) ⊂ Ω we have F (Br(x)) ⊃ Br/L(F (x)) in Y .
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(i) If F : Ω→ R�+1 is a tight map and p ∈ Ω is a regular point,
then there is a neighborhood Ω ⊃ Ωp $ p and homeomor-
phism

h : Υ× F (Ωp)→ Ωp,

such that F ◦ h coincides with the projection to the second
coordinate Υ× F (Ωp)→ F (Ωp).

(ii) If F : Ω → Δ ⊂ R�+1 is a proper tight map and all points in
Δ ⊂ R�+1 are regular values of F , then F is a locally trivial
fiber bundle.

The proof is a backward induction on � , see [Perelman 1993, 1.4],
[Perelman 1991, 1.4.1] or [Kapovitch 2007, 6.7].

The following lemma is an analog of lemmas [Perelman 1993, 2.3] and
[Perelman DC, 2.2].

Lemma 8.1.4. Let x be a regular point of a tight map

F : x �→ (f0(x), f1(x), . . . , f�(x)).

Then there is ε > 0 and a neighborhood Ωx $ x such that for any y ∈ Ωx

and i ∈ {0, 1, . . . , �} there is a unit vector wi ∈ Σx such that dxfi(wi) � ε
and dxfj(wi) = 0 for all j �= i.

Moreover, if E ⊂ A is an extremal subset and y ∈ E then wi can be
chosen in ΣyE .

Proof. Take p as in the property 2 page 181. Then we can find a
neighborhood Ωx $ x and ε > 0 so that for any y ∈ Ωx

(i) dyfi(↑py) > ε for each i ;
(ii) −dyfi(∇yfj) > ε. for all i �= j .

Note that if α(t) is an fi -gradient curve in Ωx then

(fi ◦ α)+ > 0 and (fj ◦ α)+ � −ε for any j �= i.

Applying lemma 2.1.5 for (sA, y) GH−→ Ty , s[fi − fi(y)] → dyfi , we get the
same inequalities for dyfi -gradient curves on Ty , i.e. if β(t) is an dyfi -
gradient curve in Ty then

(dyfi ◦ β)+ > 0 and (dyfj ◦ β)+ � −ε for any j �= i.

Moreover, dyfi(v) > 0 implies 〈∇vdyfi, ↑ov〉 < 0, therefore in this case
|β(t)|+ > 0.

Take w0 ∈ Ty to be a maximum point for dyf0 on the set

{v ∈ Ty|fi(v) � 0, |v| � 1}.
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Then
dyf0(w0) � dyf0(↑py) > ε.

Assume for some j �= 0 we have fj(w0) > 0. Then

min
i�=j
{dw0dyfi, dw0ν} � 0,

where the function ν is defined by ν : v �→ −|v| ; this is a concave function
on Ty . Therefore, if βj(t) is a dyfj -gradient curve with an end45 point at
w0 , then moving along βj from w0 backwards decreases only dyfj , and
increases the other dyfi and ν in the first order; this is a contradiction.

To prove the last statement it is enough to show that w0 ∈ TyE , which
follows since TyE ⊂ Ty is an extremal subset (see property 2 on page 164).

�

Main theorem 8.1.5. Let A ∈ Alexm(κ), Ω ⊂ A be the interior of a
compact convex subset, and

F : Ω→ R�+1, F : x �→ (f0(x), f1(x), . . . , f�(x))

be a tight map. Assume all fi are strictly concave. Then
(i) the set of critical points of F in Ω forms an �-submanifold M
(ii) F : M → R�+1 is an embedding.
(iii) F (M) ⊂ R�+1 is a convex hypersurface which lies in the boundary of

F (Ω)46.

Remark 8.1.6. The condition that all fi are strictly concave seems to
be very restrictive, but that is not really so; if x is a regular point of a tight
map F then, using properties 1 and 4 on page 180, one can find ε > 0 and
g such that

F ′ : y �→ (f0(y) + εg(y), . . . , f�(y) + εg(y), g(y))

is tight in a small neighborhood of x and all its coordinate functions are
strictly concave. In particular, in a neighborhood of x we have

F = L ◦ F ′

where L : R�+2 → R�+1 is linear.

Corollary 8.1.7. In the assumptions of theorem 8.1.5, if in addi-
tion m = � then M = Ω, F (Ω) is a convex hypersurface in Rm+1 and
F : Ω→ Rm+1 is a locally bi-Lipschitz embedding. Moreover, each projection
of F to a coordinate hyperplane is a locally bi-Lipschitz homeomorphism.

45It does exist by property 3 on page 149.
46In fact F (M) = ∂F (Ω) ∩ F (Ω).
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Proof of theorem 8.1.5. Let γ : [0, s]→ A be a minimal unit-speed
geodesic connecting x, y ∈ Ω, so s = |xy| . Consider a straight segment γ̄
connecting F (x) and F (y):

γ̄ : [0, s]→ R�+1, γ̄(t) = F (x) + t
s [F (y)− F (x)] .

Each function fi ◦ γ is concave, therefore all coordinates of

F ◦ γ(t)− γ̄(t)

are non-negative. This implies that the Minkowski sum47

Q = F (Ω) + (R−)�+1

is a convex set.
Let x0 ∈ Ω be a critical point of F . Since mini dx0fi � 0, at least one of

coordinates of F (x) is smaller than the corresponding coordinate of F (x0)
for any x ∈ Ω. In particular, F sends its critical point to the boundary
of Q .

Consider map

G : R�+1 → A, G : (y0, y1, . . . , y�) �→ argmax{min
i
{fi − yi}}

where argmax{f} denotes a maximum point of f . The function mini{fi−yi}
is strictly concave; therefore argmax{mini{fi− yi}} is uniquely defined and
G is continuous in the domain of definition.48 The image of G coincides
with the set of critical points of F and moreover G◦F |M = idM . Therefore
F |M is a homeomorphism49. �

Proof of corollary 8.1.7. It only remains to show that F is locally
bi-Lipschitz.

Note that for any point x ∈ Ω, one can find ε > 0 and a neighbor-
hood Ωx $ x , so that for any direction ξ ∈ Σy , y ∈ Ωx one can choose fi ,
i ∈ {0, 1, . . . , m} , such that dxfi(ξ) � −ε . Otherwise, by a slight perturba-
tion50 of collection {fi} we get a map F : Am → Rm+1 regular at y , which
contradicts property 5.

47Equivalently Q = {(x0, x1, . . . , x�) ∈ R
�+1|∃(y0, y1, . . . , y�) ∈ F (Ω)∀i xi � yi} .

48We do not need it, but clearly

G(y0, y1, . . . , y�) = G(y0 + h, y1 + h, . . . , y� + h)

for any h ∈ R .
49In general, G is not Lipschitz (even on F (M)); even in the case when all functions

fi are (−1)-concave it is only possible to prove that G is Hölder continuous of class
C0; 12 . (In fact the statement in [Perelman 1991], page 20, lines 23–25 is wrong but the
proposition 3.5 is still OK.)

50As in the property 1 on page 180.
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Therefore applying it for ξ =↑yz and ↑zy , z, y ∈ Ω, we get two values i, j
such that

fi(y)− fi(z) � ε|yz| and fj(z)− fj(y) � ε|yz|.

Therefore F is bi-Lipschits.
Clearly i �= j and therefore at least one of them is not zero. Hence the

projection map F ′ : x �→ (f1(x), . . . , fm(x)) is also locally bi-Lipschitz. �

8.2. Applications. One series of applications of tight maps is Morse
theory for Alexandrov’s spaces, it is based on the main theorem 8.1.5. It
includes Morse lemma (property 7 page 181) and
• Local structure theorem [Perelman 1993]. Any small spherical neighbor-

hood of a point in an Alexandrov’s space is homeomorphic to a cone over
its boundary.

• Stability theorem [Perelman 1991]. For any compact A ∈ Alexm(κ)
there is ε > 0 such that if A′ ∈ Alexm(κ) is ε-close to A then A and A′
are homeomorphic.

The other series is the regularity results on an Alexandrov’s space. These
results obtained in [Perelman DC] are improvements of earlier results in
[Otsu–Shioya], [Otsu]. It use mainly the corollary 8.1.7 and the smoothing
trick; see subsection 6.2.
• Components of metric tensor of an Alexandrov’s space in a chart are

continuous at each regular point51. Moreover they have bounded variation
and are differentiable almost everywhere.

• The Christoffel symbols in a chart are well defined as signed Radon
measures.

• Hessian of a semiconcave function on an Alexandrov’s space is defined
almost everywhere. I.e. if f : Ω → R is a semiconcave function, then for
almost any x0 ∈ Ω there is a symmetric bi-linear form Hessf such that

f(x) = f(x0) + dx0f(v) + Hessf (v, v) + o(|v|2),

where v = logx0
x . Moreover, Hessf can be calculated using standard

formulas in the above chart.
Here is yet another, completely Riemannian application. This statement

has been proven by Perelman, a sketch of its proof is included in an appendix
to [Petrunin 2003]. The proof is based on the following observation: if Ω
is an open subset of a Riemannian manifold and F : Ω → R�+1 is a tight
map with strictly concave coordinate functions, then its level sets F−1(x)
inherit the lower curvature bound.
• Continuity of the integral of scalar curvature. Given a compact Riemann-

ian manifold M , let us define F(M) =
∫
M Sc. Then F is continuous on

51i.e. at each point with Euclidean tangent space.
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the space of Riemannian m-dimensional manifolds with uniform lower
curvature and upper diameter bounds.52

9. Please deform an Alexandrov’s space

In this section we discuss a number of related open problems. They seem
to be very hard, but I think it is worth to write them down just to indicate
the border between known and unknown things.

The main problem in Alexandrov’s geometry is to find a way to vary
Alexandrov’s space, or simply to find a nearby Alexandrov’s space to a given
Alexandrov’s space. Lack of such variation procedure makes it impossible to
use Alexandrov’s geometry in the way it was designed to be used:

For example, assume you want to solve the Hopf conjecture 53. Assume
it is wrong, then there is a volume maximizing Alexandrov’s metrics d on
S2×S2 with curvature �154. Provided we have a procedure to vary d while
keeping its curvature �1, we could find some special properties of d and in
ideal situation show that d does not exist.

Unfortunately, at the moment, except for boring rescaling, there is no
variation procedure available. The following conjecture (if true) would give
such a procedure. Although it will not be sufficient to solve the Hopf conjec-
ture, it will give some nontrivial information about the critical Alexandrov’s
metric.

Conjecture 9.1.1. The boundary of an Alexandrov’s space equipped
with induced intrinsic metric is an Alexandrov’s space with the same lower
curvature bound.

This also can be reformulated as:

Conjecture 9.1.1.′ Let A be an Alexandrov space without boundary.
Then a convex hypersurface in A equipped with induced intrinsic metric is
an Alexandrov’s space with the same lower curvature bound.

This conjecture, if true, would give a variation procedure. For example if
A is a non-negatively curved Alexandrov’s space and f : A→ R is concave
(so A is necessarily open) then for any t the graph

At = {(x, tf(x)) ∈ A× R}

with induced intrinsic metric would be an Alexandrov’s space. Clearly
At

GH−→ A as t → 0. An analogous construction exists for semiconcave

52In fact F is also bounded on the set of Riemannian m -dimensional manifolds with
uniform lower curvature, this is proved in [Petrunin 2007] by a similar method.

53i.e. you want to find out if S2×S2 carries a metric with positive sectional curvature.
54There is no reason to believe that this metric d is Riemannian, but from Gromov’s

compactness theorem such Alexandrov’s metric should exist.
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functions on closed manifolds, but one has to take a parabolic cone55 instead
of the product.

It seems to be hopeless to attack this problem with purely synthetic
methods. In fact, so far, even for a convex hypersurface in a Riemann-
ian manifold, there is only one proof available (see [Buyalo]56) which uses
smoothing and the Gauss formula. There is one beautiful synthetic proof (see
[Milka 1979]) for a convex surface in the Euclidian space, but this proof
heavily relies on Euclidean structure and it seems impossible to generalize
it even to the Riemannian case.

There is a chance of attacking this problem by proving a type of the
Gauss formula for Alexandrov’s spaces. One has to start with defining a
curvature tensor of Alexandrov’s spaces (it should be a measure-valued ten-
sor field), then prove that the constructed tensor is really responsible for the
geometry of the space. Such things were already done in the two-dimensional
case and for spaces with bilaterly bounded curvature, see [Reshetnyak] and
[Nikolaev] respectively. So far the best results in this direction are given
in [Perelman DC], see also section 8.2 for more details. This approach, if
works, would give something really new in the area.

Almost everything that is known so far about the intrinsic metric of
a boundary is also known for the intrinsic metric of a general extremal
subset. In [Perelman–Petrunin 1993], it was conjectured that an analog
of conjecture 9.1.1 is true for any primitive extremal subset, but it turned
out to be wrong; a simple example was constructed in [Petrunin 1997].
All such examples appear when codimension of extremal subset is �3. So it
still might be true that

Conjecture 9.1.2. Let A ∈ Alex(κ), E ⊂ A be a primitive extremal
subset and codimE = 2 then E equipped with induced intrinsic metric
belongs to Alex(κ)

The following question is closely related to conjecture 9.1.1.

Question 9.1.3. Assume An
GH−→ A , An ∈ Alexm(κ), dimA = m (i.e.

it is not a collapse).
Let f be a λ-concave function of an Alexandrov’s space A . Is it always

possible to find a sequence of λ-concave functions fn : An → R which
converges to f : A→ R?

Here is an equivalent formulation:

Question 9.1.3.′ Assume An
GH−→ A , An ∈ Alexm(κ), dimA = m (i.e.

it is not a collapse) and ∂A = ∅ .

55see footnote 23 on page 159.
56In fact in this paper the curvature bound is not optimal, but the statement follows

from nearly the same idea; see [AKP].
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Let S ⊂ A be a convex hypersurface. Is it always possible to find a
sequence of convex hypersurfaces Sn ⊂ An which converges to S ?

If true, this would give a proof of conjecture 9.1.1 for the case of a
smoothable Alexandrov’s space (see page 177).

In most of (possible) applications, Alexandrov’s spaces appear as limits
of Riemannian manifolds of the same dimension. Therefore, even in this
reduced generality, a positive answer would mean enough.

The question of whether an Alexandrov space is smoothable is also far
from being solved. From Perelamn’s stability theorem, if an Alexandrov’s
space has topological singularities then it is not smoothable. Moreover,
from [Kapovitch 2002] one has that any space of directions of a smooth-
able Alexandrov’s space is homeomorphic to the sphere. Except for the 2-
dimensional case, it is only known that any polyhedral metric of non-negative
curvature on a 3-manifold is smoothable (see [Matveev–Shevchishin]).
There is yet no procedure of smoothing an Alexandrov’s space even in a
neighborhood of a regular point.

Maybe a more interesting question is whether smoothing is unique up to
a diffeomorphism. If the answer is positive it would imply in particular that
any Riemannian manifold with curvature �1 and diam > π/2 is diffeomor-
phic(!) to the standard sphere, see [Grove–Wilhelm] for details. Again,
from Perelman’s stability theorem ([Perelman 1991]), it follows that any
two smoothings must be homeomorphic. In fact it seems likely that any two
smoothings are PL-homeomorphic; see [Kapovitch 2007, question 1.3] and
discussion right before it. It seems that today there is no technique which
might approach the general uniqueness problem (so maybe one should try
to construct a counterexample).

One may also ask similar questions in the collapsing case. In [PWZ]
there were constructed Alexandrov’s spaces with curvature �1 which can
not be presented as a limit of an (even collapsing) sequence of Riemann-
ian manifolds with curvature � κ > 1/4. In [Kapovitch 2005] there were
found some lower bounds for codimension of collapse with arbitrary lower
curvature bound to some special Alexandrov’s spaces, see section 7.3 for
more discussion. It is expected that the same spaces (for example, the spher-
ical suspension over the Cayley plane) can not be approximated by sequence
of Riemannian manifolds of any fixed dimension and any fixed lower curva-
ture bound, but so far this question remains open.

A. Existence of quasigeodesics

This appendix is devoted to the proof of property 4 on page 169, i.e.

Existence theorem A.0.1. Let A ∈ Alexm , then for any point x ∈ A,
and any direction ξ ∈ Σx there is a quasigeodesic γ : R → A such that
γ(0) = x and γ+(0) = ξ .
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Moreover if E ⊂ A is an extremal subset and x ∈ E , ξ ∈ ΣxE then γ
can be chosen to lie completely in E .

The proof is quite long; it was obtained by Perelman around 1992; here
we present a simplified proof similar to [Perelman–Petrunin QG] which
is based on the gradient flow technique. We include a complete proof here,
since otherwise it would never be published.

Quasigeodesics will be constructed in three big steps.
A.2: Monotonic curves −→ convex curves.
A.3: Convex curves −→ pre-quasigeodesics.
A.4: Pre-quasigeodesics −→ quasigeodesics.

In each step, we construct a better type of curves from a given type of
curves by an extending-and-chopping procedure and then passing to a limit.
The last part is most complicated.

The second part of the theorem is proved in the subsection A.5.

A.1. Step 1: Monotonic curves. As a starting point we use radial
curves, which do exist for any initial data (see section 3), and by lemma 3.1.2
are monotonic in the sense of the following definition:

Definition A.1.1. A curve α(t) in an Alexandrov’s space A is called
monotonic with respect to a parameter value t0 if for any λ-concave function
f , λ � 0, we have that function

t �→ f ◦ α(t + t0)− f ◦ α(t0)− λt2/2
t

is non-increasing for t > 0.

Here is a construction which gives a new monotonic curve out of two. It
will be used in the next section to construct convex curves.

Extention A.1.2. Let A ∈ Alex, α1[a,∞) → A and α2 : [b,∞) → A
be two monotonic curves with respect to a and b respectively.

Assume

a � b, α1(b) = α2(b) and α+
1 (b) = α+

2 (b).

Then its joint

β : [a,∞)→ A, β(t) =
[
α1(t) if t < b
α2(t) if t � b

is monotonic with respect to a and b.

Proof. It is enough to show that

t �→ f ◦ α2(t + a)− f ◦ α1(a)− λt2/2
t
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is non-increasing for t � b − a . By simple algebra, it follows from the
following two facts:
• α2 is monotonic and therefore

t �→ f ◦ α2(t + b)− f ◦ α2(b)− λt2/2
t

is non-increasing for t > 0.
• From monotonicity of α1 ,

(f ◦ α2)+(b) = dα1(b)f(α+
1 (b)) = (f ◦ α1)+(b) �

� f ◦ α1(b) + f ◦ α1(a)− λ(b− a)2/2
b− a

.

�
A.2. Step 2: Convex curves. In this step we construct convex curves

with arbitrary initial data.

Definition A.2.1. A curve β : [0,∞) → A is called convex if for any
λ-concave function f , λ � 0, we have that function

t �→ f ◦ β(t)− λt2/2

is concave.

Properties of convex curves. Convex curves have the following prop-
erties; the proofs are either trivial or the same as for quasigeodesics:

(1) A curve is convex if and only if it is monotonic with respect to any
value of parameter.

(2) Convex curves are 1-Lipschitz.
(3) Convex curves have uniquely defined right and left tangent vectors.
(4) A limit of convex curves is convex and the natural parameter con-

verges to the natural parmeter of the limit curves (the proof the
last statement is based on the same idea as theorem 7.3.3).

The next is a construction similar to A.1.2 which gives a new convex
curve out of two. It will be used in the next section to construct pre-
quasigeodesics.

Extention A.2.2. Let A ∈ Alex, β1 : [a,∞) → A and β2 : [b,∞) → A
be two convex curves. Assume

a � b, β1(b) = β2(b) and β+
1 (b) = β+

2 (b)

then its joint

γ : [a,∞)→ A, γ(t) =
[
β1(t) if t � b
β2(t) if t � b

is a convex curve.
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Proof. Follows immidetely from A.1.2 and property 1 above. �

Existence A.2.3. Let A ∈ Alex, x ∈ A and ξ ∈ Σx . Then there is a
convex curve βξ : [0,∞)→ A such that βξ(0) = x and β+

ξ (0) = ξ .

Proof. For v ∈ TxA , consider the radial curve

αv(t) = gexpx(tv)

According to lemma 3.1.2 if |v| = 1 then αv is 1-Lipschitz and mono-
tonic. Moreover, straightforward calculations show that the same is true for
|v| � 1.

Fix ε > 0. Given a direction ξ ∈ Σx , let us consider the following
recursively defined sequence of radial curves αvn(t) such that v0 = ξ and
vn = α+

vn−1
(ε). Then consider their joint

βξ,ε(t) = αv�t/ε�(t− ε(t/ε)).

Applying an extension procedure A.1.2 we get that βξ,ε : [0,∞) → A is
monotonic with respect to any t = nε .

By property 1 on page 190, passing to a partial limit βξ,ε → βξ as ε→ 0
we get a convex curve βξ : [0,∞)→ A .

It only remains to show that β+
ξ (0) = ξ .

Since βξ is convex, its right tangent vector is well defined and
|β+

ξ (0)|� 157. On the other hand, since βξ,ε are monotonic with respect
to 0, for any semiconcave function f we have

dxf(β+
ξ (0)) = (f ◦ βξ)+(0) � lim

εi→0
(f ◦ βξ,ε)+(0) = dxf(ξ).

Substituting in this inequality f = disty with �(↑yx, ξ) < ε , we get

〈β+
ξ (0), ↑yx〉 > 1− ε

for any ε > 0. Together with |β+
ξ (0)| � 1 (property 2 on page 190), it

implies that
β+(0) = ξ.

�

A.3. Step 3: Pre-quasigeodesics. In this step we construct a pre-
quasigeodesic with arbitrary initial data.

Definition A.3.1. A convex curve γ : [a, b) → A is called a pre-
quasigeodesic if for any s ∈ [a, b) such that |γ+(s)| > 0, the curve γs

defined by

γs(t) = γ

(
s +

t

|γ+(s)|

)
57See properties 3 and 2, page 190.
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is convex for t � 0, and if |γ+(s)| = 0 then γ(t) = γ(s) for all t � s .

Let us first define entropy of pre-quasigeodesic, which measures “how
far” a given pre-quasigeodesic is from being a quasigeodesic.

Definition A.3.2. Let γ be a pre-quasigeodesic in an Alexandrov’s
space.

The entropy of γ , μγ is the measure on the set of parameters defined by

μγ((a, b)) = ln |γ+(a)| − ln |γ−(b)|.

Here are its main properties:
(1) The entropy of a pre-quasigeodesic γ is zero if and only if γ is a

quasigedesic.
(2) For a converging sequence of pre-quasigeodesics γn → γ , the

entropy of the limit is a weak limit of entropies, μγn ⇀ μγ .
It follows from property 4 on page 190.

The next statement is similar to A.1.2 and A.2.2; it makes a new pre-
quasigeodesic out of two. It will be used in the next section to construct
quasigeodesics.

Extention A.3.3. Let A ∈ Alex, γ1 : [a,∞) → A and γ2 : [b,∞) → A
be two pre-quasigeodesics. Assume

a � b, γ1(b) = γ2(b), γ−
1 (b) is polar to γ+

2 (b) and |γ+
2 (b)| � |γ−

1 (b)|

then its joint

γ : [a,∞)→ A, γ(t) =
[
γ1(t) if t � b
γ2(t) if t � b

is a pre-quasigeodesic. Moreover, its entropy is defined by

μγ |(a,b) = μγ1 , μγ |(b,c) = μγ2 and μγ({b}) = ln |γ+(b)| − ln |γ−(b)|.

Proof. The same as for A.1.2. �

Existence A.3.4. Let A ∈ Alex, x ∈ A and ξ ∈ Σx . Then there is a
pre-quasigeodesic γ : [0,∞)→ A such that γ(0) = x and γ+(0) = ξ .

Proof. Let us choose for each point x ∈ A and each direction ξ ∈ Σx

a convex curve βξ : [0,∞)→ A such that βξ(0) = x , β+
ξ (0) = ξ . If v = rξ ,

then set
βv(t) = βξ(rt).

Clearly βv is convex if 0 � r � 1.
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Let us construct a convex curve γε : [0,∞) → M such that there is a
representation of [0,∞) as a countable union of disjoint half-open intervals
[ai, āi), such that |āi − ai| � ε and for any t ∈ [ai, āi) we have

|γ+
ε (ai)| � |γ+

ε (t)| � (1− ε)|γ+
ε (ai)|. (∗)

Moreover, for each i , the curve γai
ε : [0,∞)→ A ,

γai
ε (t) = γε

(
ai +

t

|γ+
ε (ai)|

)
is also convex.

Assume we already can construct γε in the interval [0, tmax), and can-
not do it any further. Since γε is 1-Lipschitz, we can extend it continuously
to [0, tmax] . Use lemma 1.3.9 to construct a vector v∗ polar to γ−

ε (tmax)
with |v∗| � |γ−

ε (tmax)| . Consider the joint of γε with a short half-open
segment of βv , a longer curve with the desired property. This is a contra-
diction.

Let γ be a partial limit of γε as ε → 0. From property 4 on page 190,
we get that for almost all t we have |γ+(t)| = lim |γ+

εn
(t)| . Combining this

with inequality (∗) shows that for any a � 0

γa(t) = γ

(
a +

t

|γ+(a)|

)
is convex. �

A.4. Step 4: Quasigeodesics. We will construct quasigeodesics in an
m-dimensional Alexandrov’s space, assuming we already have such a con-
struction in all dimensions <m . This construction is much easier for the case
of an Alexandrov’s space with only δ -strained points; in this case we con-
struct a sequence of special pre-quasigeodesics only by extending/chopping
procedures (see below) and then pass to the limit. In a general Alexandrov’s
space we argue by contradiction, we assume that Ω is a maximal open set
such that for any initial data one can construct an Ω-quasigeodesic (i.e. a
pre-quasigeodesic with zero entropy on Ω, see A.3.2), and arrive at a con-
tradiction with the assumption Ω �= A .

The following extention and chopping procedures are essential in the
construction:

Extention procedure A.4.1. Given a pre-quasigeodesic
γ : [0, tmax)→ A we can extend it as a pre-quasigeodesic γ : [0,∞)→A
so that

μγ({tmax}) = 0.
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Proof. Let us set γ(tmax) to be the limit of γ(t) as t→ tmax (it exists
since pre-quasigeodesics are Lipschitz).

From Milka’s lemma A.4.2, we can construct a vector γ+(tmax) which
is polar to γ−(tmax) and such that |γ+(tmax)| = |γ−(tmax)| . Then extend γ
by a pre-quasigeodesic in the direction γ+(tmax). By A.3.3, we get

μγ{tmax} = ln |γ+(tmax)| − ln |γ−(tmax)| = 0. �

Milka’s lemma A.4.2. (existence of the polar direction). For any unit
vector ξ ∈ Σp there is a polar unit vector ξ∗ , i.e. ξ∗ ∈ Σp such that

〈ξ, v〉+ 〈ξ∗, v〉 � 0

for any v ∈ Tp .

The proof is taken from [Milka 1968]. That is the only instance where
we use existence of quasigeodesics in lower dimensional spaces.

Proof. Since Σp is an Alexandrov’s (m− 1)-space with curvature �1,
given ξ ∈ Σp we can construct a quasigeodesic in Σp of length π , starting
at ξ ; the comparison inequality (theorem 5(5iv)) implies that the second
endpoint ξ∗ of this quasigeodesic satisfies

|ξ η|Σq + |η ξ∗|Σq = �(ξ, η) + �(η, ξ∗) ≤ π for all η ∈ Σp,

which is equivalent to the statement that ξ and ξ∗ are polar in Tp . �

Chopping procedure A.4.3. Given a pre-quasigeodesic γ : [0,∞) →
A, for any t � 0 and ε > 0 there is t̄ > t such that

μγ ((t, t̄)) < ε[ϑ + t̄− t], t̄− t < ε, ϑ < ε,

where
ϑ = ϑ(t, t̄) = �

(
γ+(t), ↑γ(t̄)

γ(t)

)
.

γ(t) γ(t̄)
ϑ

γ

Proof. For all sufficiently small τ > 0 we have

ϑ(t, t + τ) < ε
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and from convexity of γt it follows that

μ ((t, t + τ/3)) < Cϑ2(t, t + τ).

The following exercise completes the proof. �

Exercise A.4.4. Let the functions h, g : R+ → R+ be such that for any
sufficiently small s ,

h(s/3) � g2(s), s � g(s) and lim
s→0

g(s) = 0.

Show that for any ε > 0 there is s > 0 such that

h(s) < 10g2(s) and g(s) � ε.

Construction in the δ -strained case.. From the extension proce-
dure, it is sufficient to construct a quasigeodesic γ : [0, T ) → A with any
given initial data γ+(0) = ξ ∈ Σp for some positive T = T (p).

The plan: Given ε > 0, we first construct a pre-quasigeodesic

γε : [0, T )→ A, γ+
ε (0) = ξ

such that one can present [0, T ) as a countable union of disjoint half-open
intervals [ai, āi) with the following property (ϑ is defined in the chopping
procedure A.4.3):

μ ([ai, āi)) < εϑ(ai, āi), āi − ai < ε, ϑ(ai, āi) < ε. (�)

Then we show that the entropies μγε([0, T )) → 0 as ε → 0 and passing to
a partial limit of γε as ε→ 0 we get a quasigeodesic.

Existence of γε : Assume that we already can construct γε on an interval
[0, tmax), tmax < T and cannot construct it any further, then applying the
extension procedure A.4.1 for γε : [0, tmax)→ A and then chopping it (A.4.3)
starting from tmax , we get a longer curve with the desired property; that is
a contradiction.

Vanishing entropy: From (�) we have that

μγε([0, T )) < ε

[
T +

∑
i

ϑ(ai, āi)

]
.

Therefore, to show that μγε([0, T )) → 0, it only remains to show that∑
i ϑ(ai, āi) is bounded above by a constant independent of ε .
That will be the only instance, where we apply that p is δ -strained for

a small enough δ .
It is easy to see that there is ε = ε(δ)→ 0 as δ → 0 and T = T (p) > 0

such that there is a finite collection of points {qk} which satisfy the following
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property: for any x ∈ BT (p) and ξ ∈ Σx there is qk such that �(ξ, ↑qk
x ) < ε .

Moreover, we can assume distqk
is λ-concave in BT (p) for some λ > 0.

Note that for any convex curve γ : [0, T ) → BT (p) ⊂ A , the measures
χk on [0, T ), defined by

χk((a, b)) = (distqk
◦γ)−(b)− (distqk

◦γ)+(a) + λ(b− a),

are positive and their total mass is bounded by λT + 2 (this follows from
the fact that distqk

is λ-concave and 1-Lipschitz).
Let x ∈ BT (p), and δ be small enough. Then for any two directions

ξ, ν ∈ Σx there is qk which satisfies the following property:

1
10

�x(ξ, ν) � dx distqk
(ξ)− dx distqk

(ν) and dx distqk
(ν) � 0. (∗)

Substituting in this inequality

ξ = γ+(ai)/|γ+(ai)|, ν =↑γ(āi)
γ(ai)

,

and applying lemma A.4.5, we get

ϑ(ai, āi) = �(ξ, ν) � 10
∑

n

χk([ai, āi)).

Therefore ∑
i

ϑ(ai, āi) � 10N(λT + 2),

where N is the number of points in the collection {qk} . �

Lemma A.4.5. Let A ∈ Alex, γ : [0, t]→ A be a convex curve |γ+(0)| =
1 and f be a λ-concave function, λ � 0. Set p = γ(0), q = γ(t), ξ =
(γ)+(0) and ν =↑qp . Then

dpf(ξ)− dpf(ν) � (f ◦ γ)+(0)− (f ◦ γ)−(t) + λt,

provided that dpf(ν) � 0.

p q

ξ

ν

γ

Proof. Clearly,

f(q) ≤ f(p) + dpf(ν)|pq|+ λ|pq|2/2 � f(p) + dpf(ν)t + λt2/2.
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On the other hand,

f(p) � f(q)− (f ◦ γ)−(t)t + λt2/2.

Clearly, dpf(ξ) = (f ◦ γ)+(0), whence the result. �
What to do now? We have just finished the proof for the case, where

all points of A are δ -strained. From this proof it follows that if we denote
by Ωδ the subset of all δ -strained points of A (which is an open everywhere
dense set, see [BGP, 5.9]), then for any initial data one can construct a pre-
quasigeodesic γ such that μγ(γ−1(Ωδ)) = 0. Assume A has no boundary;
set C = A\Ωδ . In this case it seems unlikely that we hit C by shooting a pre-
quasigeodesic in a generic direction. If we could prove that it almost never
happens, then we obtain existence of quasigeodesics in all directions as the
limits of quasigeodesics in generic directions (see property 6 on page 171)
and passing to doubling in case ∂A �= ∅ . Unfortunately, we do not have any
tools so far to prove such a thing58. Instead we generalize inequality (∗).

The (∗) inequality A.4.6. Let A ∈ Alexm(κ) and C ⊂ A be a closed
subset. Let p ∈ C be a point with δ -maximal volm−1 Σp , i.e.

volm−1 Σp + δ > inf
x∈C

volm−1 Σp.

Then, if δ is small enough, there is a finite set of points {qi} and ε > 0,
such that for any x ∈ C ∩ B̄ε(p) and any pair of directions ξ ∈ ΣxC59 and
ν ∈ Σx we can choose qi so that

1
10

�x(ξ, ν) � dx distqi(ξ)− dx distqi(ν) and dx distqk
(ν) � 0.

Proof. We can choose ε > 0 so small that for any x ∈ B̄ε(p), Σx is
almost bigger than Σp .60 Since volm−1 Σp is almost maximal we get that
for any x ∈ C ∩ B̄ε(p), Σx is almost isometric to Σp . In particular, if one
takes a set {qi} so that directions ↑qi

p form a sufficiently dense set and
�qipqj ≈ �̃κqipqj , then directions ↑qi

x will form a sufficiently dense set in
Σx for all x ∈ C ∩ B̄ε(p).

Note that for any x ∈ C ∩ B̄ε(p) and ξ ∈ ΣxC , there is an almost
isometry Σx → Σ(ΣξΣx) such that ξ goes to north pole of the spherical
suspension Σ(ΣξΣx) = ΣξTx .61

Using these two properties, we can find qi so that ↑νξ≈↑
↑qi

x

ξ in ΣνΣxA

and �(ξ, ↑qi
x ) > π/2, hence the statement follows. �

58It might be possible if we would have an analog of the Liouvile theorem for “pre-
quasigeodesic flow”.

59ΣxC is defined on page 164.
60i.e. for small δ > 0 there is a map f : Σp → Σx such that |f(x)f(y)| > |xy| − δ .
61Otherwise, taking a point y ∈ c , close to x in direction ξ we would get that

volm−1 Σy is essentially bigger than volm−1 Σx , which is impossible since both are almost
equal to volm−1 Σp .
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Now we are ready to finish construction in the general case. Let us define
a subtype of pre-quasigeodesics:

Definition A.4.7. Let A ∈ Alex and Ω ⊂ A be an open subset. A
pre-quasigeodesic γ : [0, T ) → A is called Ω-quasigeodesic if its entropy
vanishes on Ω, i.e.

μγ(γ−1(Ω)) = 0

From property 2 on page 192, it follows that the limit of Ω-quasigeodesics
is a Ω-quasigeodesic. Moreover, if for any initial data we can construct an
Ω-quasigeodesic and an Ω′ -quasigeodesic, then it is possible to construct an
Ω ∪ Ω′ -quasigeodesic for any initial data; for Υ � Ω ∪ Ω′ , Υ-quasigeodesic
can be constructed by joining together pieces of Ω and Ω′ -quasigeodesics
and Ω∪Ω′ -quasigeodesic can be constructed as a limit of Υn -quasigeodesics
as Υn → Ω ∪ Ω′ .

Let us denote by Ω the maximal open set such that for any initial data
one can construct an Ω-quasigeodesic. We have to show then that Ω = A .

Let C = A\Ω, and let p ∈ C be the point with almost maximal volm−1
Σp . We will arrive to a contradiction by constructing a Bε(p) ∪
Ω-quasigeodesic for any initial data.

Choose a finite set of points qi as in A.4.6. Given ε > 0, it is enough to
construct an Ω-quasigeodesic γε : [0, T )→ A , for some fixed T > 0 with the
given initial data x ∈ B̄ε(p), ξ ∈ Σx , such that the entropies μγε((0, T ))→ 0
as ε→ 0.

The Ω-quasigeodesic γε which we are going to construct will have the
following property: one can present [0, T ) as a countable union of disjoint
half-open intervals [ai, āi) such that

if
γ+(ai)
|γ+(ai)|

∈ Σγ(ai)C then μγ([ai, āi)) � εϑ(ai, āi)

and

if
γ+(ai)
|γ+(ai)|

�∈ Σγ(ai)C then μγ([ai, āi)) = 0

Existence of γε is being proved the same way as in the δ -strained case,
with the use of one additional observation: if

γ+(tmax)
|γ+(tmax)|

�∈ Σγ(ai)C

then any Ω-quasigeodesic in this direction has zero entropy for a short time.
Then, just as in the δ -strained case, applying inequality A.4.6 we get that

μγε(0, T ) → 0 as ε → 0. Therefore, passing to a partial limit γε → γ gives
a Bε(p) ∪ Ω-quasigeodesic γ : [0, T )→ A for any initial data in Bε(p). �
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A.5. Quasigeodesics in extremal subsets. The second part of
theorem A.1.4 follows from the above construction, but we have to mod-
ify Milka’s lemma A.4.2:

Extremal Milka’s lemma A.5.1. Let E ⊂ Tp be an extremal subset
of a tangent cone then for any vector v ∈ E there is a polar vector v∗ ∈ E
such that |v| = |v∗|.

Proof. Set X = E ∩ Σp . If ΣξX �= ∅ then the proof is the same as
for the standard Milka’s lemma; it is enough to choose a direction in ΣξX
and shoot a quasigedesic γ of length π in this direction such that γ ⊂ X
(γ exists from the induction hypothesis).

If X = {ξ} then from the extremality of E we have Bπ/2(ξ) = Σp .
Therefore ξ is polar to itself.

Otherwise, if ΣξX = ∅ and X contains at least two points, choose ξ∗ to
be closest point in X\ξ from ξ . Since X ⊂ Σp is extremal we have that for
any η ∈ Σp �Σpηξ∗ξ � π/2 and since ΣξX = ∅ we have �Σpηξξ∗ � π/2.
Therefore, from triangle comparison we have

|ξη|Σp + |ηξ∗|Σp = �(ξ, η) + �(η, ξ∗) � π �

References

[AGS] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Gradient flows in metric spaces
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