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The aim of this paper is to survey some results on nonnegatively and
positively curved Riemannian manifolds. One of the important features of
lower curvature bounds in general is the invariance under taking Gromov
Hausdorff limits. Celebrated structure and finiteness results provide a par-
tial understanding of the phenomena that occur while taking limits. These
results however are not the subject of this survey since they are treated in
other surveys of this volume.

In this survey we take the more classical approach and focus on “effec-
tive” results. There are relatively few general “effective” structure results in
the subject. By Gromov’s Betti number theorem the total Betti number of
a nonnegatively curved manifold is bounded above by an explicit constant
which only depends on the dimension. The Gromoll Meyer theorem says
that a positively curved open manifold is diffeomorphic to the Euclidean
space. In the case of nonnegatively curved open manifolds, the soul theo-
rem of Cheeger and Gromoll and Perelman’s solution of the soul conjecture
clearly belong to the greatest structure results in the subject, as well.

Also relatively good is the understanding of fundamental groups of
nonnegatively curved manifolds. A theorem of Synge asserts that an even
dimensional orientable compact manifold of positive sectional curvature is
simply connected. An odd dimensional positively curved manifold is known
to be orientable (Synge), and its fundamental group is finite by the classical
theorem of Bonnet and Myers. The fundamental groups of nonnegatively
curved manifolds are virtually abelian, as a consequence of Toponogov’s
splitting theorem. However, one of the “effective” conjectures in this con-
text, the so called Chern conjecture, was refuted: Shankar [1998] constructed
a positively curved manifold with a non cyclic abelian fundamental group.

As we will discuss in the last section the known methods for constructing
nonnegatively curved manifolds are somewhat limited. The most important
tools are the O’Neill formulas which imply that the base of a Riemann-
ian submersion has nonnegative (positive) sectional curvature if the total
space has. We recall that a smooth surjective map σ : M → B between
two Riemannian manifolds is called a Riemannian submersion if the dual
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σad∗ : Tσ(p)B → TpM of the differential of σ is length preserving for all
p ∈ M . Apart from taking products, the only other method is a special
glueing technique, which was used by Cheeger, and more recently by Grove
and Ziller to construct quite a few interesting examples of nonnegatively
curved manifolds.

By comparing with the class of known positively curved manifolds, the
nonnegatively curved manifolds form a huge class. In fact in dimensions
above 24 all known simply connected compact positively curved manifolds
are diffeomorphic to rank 1 symmetric spaces. Due to work of the author the
situation is somewhat better in the class of known examples of manifolds
with positive curvature on open dense sets, see section 4.

Given the drastic difference in the number of known examples, it is
somewhat painful that the only known obstructions on positively curved
compact manifolds, which do not remain valid for the nonnegatively curved
manifolds, are the above quoted results of Synge and Bonnet Myers on the
fundamental groups.

Since the list of general structure results is not far from being complete
by now, the reader might ask why a survey on such a subject is necessary.
The reason is that there are a lot of other beautiful theorems in the subject
including structure results, but they usually need additional assumptions.

We have subdivided the paper in five sections. Section 1 is on sphere the-
orems and related rigidity results some notes on very recent significant devel-
opments were added in proof and can be found in section 6. In section 2,
we survey results on compact nonnegatively curved manifolds, and in sec-
tion 3, results on open nonnegatively curved manifolds. Then follows a sec-
tion on compact positively curved manifolds with symmetry, since this was
a particularly active area in recent years. Although we pose problems and
conjectures throughout the paper we close the paper with a section on open
problems.

We do not have the ambition to be complete or to sketch all the sig-
nificant historical developments that eventually led to the stated results.
Instead we will usually only quote a few things according to personal taste.

1. Sphere theorems and related rigidity results

A lot of techniques in the subject were developed or used in connec-
tion with proving sphere theorems. In this section we survey some of these
results. We recall Toponogov’s triangle comparison theorem. Let M be a
complete manifold with sectional curvature K ≥ κ and consider a geodesic
triangle Δ in M consisting of minimal geodesics with length a, b, c ∈ R. Then
there exists a triangle in the 2-dimensional complete surface M2

κ of constant
curvature κ with side length a, b, c and the angles in the comparison triangle
bound the corresponding angles in Δ from below.

1.1. Topological sphere theorems. We start with the classical sphere
theorem of Berger and Klingenberg.
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Theorem 1.1 (Quarter pinched sphere theorem). Let M be a complete
simply connected manifold with sectional curvature 1/4 < K ≤ 1. Then M
is homeomorphic to the sphere.

The proof has two parts. The first part is to show that the injectivity
radius of M is at least π/2. This is elementary in even dimensions. In fact
by Synge’s Theorem any even dimensional oriented manifold with curvature
0 < K ≤ 1 has injectivity radius ≥π. In odd dimensions the result is due
to Klingenberg and relies on a more delicate Morse theory argument on the
loop space.

The second part of the proof is due to Berger. He showed that any
manifold with injectivity radius ≥π/2 and curvature >1 is homeomorphic
to a sphere. In fact by applying Toponogov’s theorem to two points of max-
imal distance, he showed that the manifold can be covered by two balls,
which are via the exponential map diffeomorphic to balls in the Euclidean
space.

Grove and Shiohama [1977] gave a significant improvement of Berger’s
theorem, by replacing the lower injectivity radius bound by a lower diameter
bound.

Theorem 1.2 (Diameter sphere theorem). Any manifold with sectional
curvature ≥1 and diameter >π/2 is homeomorphic to a sphere.

More important than the theorem was the fact the proof introduced a
new concept: critical points of distance functions. A point q is critical with
respect to the distance function d(p, ·) if the set of initial vectors of minimal
geodesics from q to p intersect each closed half space of TqM . If the point q is
not critical it is not hard to see that there is a gradient like vectorfield X in a
neighborhood of q. A vectorfield is said to be gradient like if for each integral
curve c of X the map t �→ d(p, c(t)) is a monotonously increasing bilipschitz
map onto its image. An elementary yet important observation is that local
gradient like vectorfields can be glued together using a partition of unity.

Proof of the diameter sphere theorem. We may scale the mani-
fold such that its diameter is π/2 and the curvature is strictly >1. Choose
two points p, q of maximal distance π/2, and let z be an arbitrary third point.
Consider the spherical comparison triangle (p̃, q̃, z̃). We do know that the side
length of (p̃, z̃) and (q̃, z̃) are less or equal to π/2 whereas dS2(p̃, q̃) = π/2.
This implies that the angle of the triangle at z̃ is ≥π/2. By Toponogov’s
theorem any minimal geodesic triangle with corners p, q, z in M has an angle
strictly larger than π/2 based at z. This in turn implies that the distance
function d(p, ·) has no critical points in M \ {p, q}. Thus there is a gradi-
ent like vectorfield X on M \ {p, q}. Furthermore without loss of generality
X is given on Br(p) \ {p} by the actual gradient of the distance function
d(p, ·), where r is smaller than the injectivity radius. We may also assume
‖X(z)‖ ≤ d(q, z)2 for all z ∈M \ {p, q}. Then the flow Φ of X exists for all
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future times and we can define a diffeomorphism

ψ : TpM →M \ {q}

as follows: for a unit vector v ∈ TpM and a nonnegative number t put
ψ(t · v) = exp(tv) if t ∈ [0, r] and ψ(t · v) = Φt−r(exp(rv)) if t ≥ r. Clearly
this implies that M is homeomorphic to a sphere. �

There is another generalization of the sphere theorem of Berger and
Klingenberg. A manifold is said to have positive isotropic curvature if for all
orthonormal vectors e1, e2, e3, e4 ∈ TpM the curvature operator satisfies

R(e1∧e2 +e3∧e4, e1∧e2 +e3∧e4)+R(e1∧e3 +e4∧e2, e1∧e3 +e4∧e2) > 0

By estimating the indices of minimal 2 spheres in a manifold of positive
isotropic curvature, Micallef and Moore [1988] were able to show that

Theorem 1.3. A simply connected compact Riemannian manifold of
positive isotropic curvature is a homotopy sphere.

A simple computation shows that pointwise strictly quarter pinched
manifolds have positive isotropic curvature. Thus the theorem of Micallef
and Moore is a generalization of the quarter pinched sphere theorem. A
more direct improvement of the quarter pinched sphere theorem is due to
Abresch and Meyer [1996].

Theorem 1.4. Let M be a compact simply connected manifold with
sectional curvature 1

4(1+10−6)2 ≤ K ≤ 1. Then one of the following holds

• M is homeomorphic to a sphere.
• n is even and the cohomology ring H∗(M, Z2) is generated by one

element.

It is a well known result in topology that the Z2 cohomology rings
of spaces which are generated by one element are precisely given by the
Z2-cohomology rings of rank 1 symmetric spaces RPn, CPn, HPn, CaP2 and
Sn, cf. [Zhizhou, 2002].

The proof of Theorem 1.4 has again two parts. Abresch and Meyer first
establish that the injectivity radius of M is bounded below by the conjugate
radius which in turn is bounded below by π. From the diameter sphere
theorem it is clear that without loss of generality diam(M, g) ≤ π(1+10−6).
They then establish the horse shoe inequality, which was conjectured by
Berger: for p ∈M and any unit vector v ∈ TpM one has

d(exp(πv), exp(−πv)) < π.

In particular exp(πv) and exp(−πv) can be joined by a unique minimal
geodesic. Once the horse shoe inequality is established it is easy to see that
there is a smooth map f : RPn → Mn such that in odd dimensions the
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integral degree is 1 and in even dimensions the Z2-degree is 1. The theorem
then follows by a straightforward cohomology computation.

The horse shoe inequality relies on a mixed Jacobi field estimate. We only
state the problem here in a very rough form. Let c be a normal geodesic in
M and J a Jacobifield with J(0) = 0. Suppose that at time t0 = 2π

3 the value
‖J(t0)‖ is quite a bit smaller than one would expect by Rauch’s comparison
from the lower curvature bound. Can one say that ‖J(t)‖ is also quite a bit
smaller than in Rauch’s comparison for t ≥ [t0, π]? Abresch and Meyer gave
an affirmative answer. If one wants to improve the pinching constant one
certainly needs to improve their Jacobifield estimate.

1.2. Differentiable sphere theorems. It is not known whether there
are exotic spheres with positive sectional curvature. A closely related ques-
tion is whether one can improve in any (or all) of the above mentioned
topological sphere theorems the conclusion from homeomorphic to being
diffeomorphic to a sphere. In other words, can one turn the topological
sphere theorems into differentiable sphere theorems. In each case this is an
open question. However, there are quite a few differentiable sphere theorems,
which hold under stronger assumptions.

The first differentiable sphere theorem was established in his thesis by
Gromoll. He had a pinching condition δ(n) < K ≤ 1 but his pinching
constant δ(n) depended upon the dimension, i.e. δ(n)→ 1 for n→∞.

Sugimoto and Shiohama [1971] established the first bound which was
independent of the dimension with δ = 0.87. In a series of papers Grove, Im
Hof, Karcher and Ruh obtained the following result

Theorem 1.5. There is a decreasing sequence of numbers δ(n) with
limn→∞ δ(n) = 0.68 such that any simply connected manifold (M, g) with
δ(n) < K ≤ 1 is diffeomorphic to the sphere Sn. Furthermore the dif-
feomorphism may be chosen such that the natural action Iso(M, g) on M
corresponds under f to a linear action on Sn.

If one does not insist on an equivariant diffeomorphisms, then the pinch-
ing constant can be improved somewhat. Suyama [1995] showed that a sim-
ply connected manifold with 0.654 < K ≤ 1 is diffeomorphic to the sphere.

The work of Weiss [1993] goes in a different direction. He uses the fact
that a quarter pinched sphere Mn has Morse perfection n. A topological
sphere Mn is said that to have Morse perfection ≥ k if there is a smooth
map Ψ: Sk → C∞(M, R) satisfying Ψ(−p) = −Ψ(p), and for each p ∈ Sk

the function Ψ(p) is a Morse function with precisely two critical points. It
is not hard to see that a quarter pinched sphere has Morse perfection n.
Weiss used this to rule out quite a few of the exotic spheres by showing that
their Morse perfection is <n. He showed that in dimensions n = 4m− 1 any
exotic sphere bounding a parallelizable manifold has odd order in the group
of exotic spheres unless the Morse perfection ≤n− 2.
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By Hitchin there are also exotic spheres with a non-vanishing α-invariant,
and thus these spheres do not even admit metrics with positive scalar
curvature, see the survey of Jonathan Rosenberg.

Similar to the quarter pinched sphere theorem, one can also strengthen
the assumptions in the diameter sphere theorem in order to get a differen-
tiable sphere theorem. This was carried out by Grove and Wilhelm [1997].

Theorem 1.6. Let M be an n-manifold with sectional curvature ≥1 con-
taining (n−2)-points with pairwise distance >π/2. Then M is diffeomorphic
to a sphere.

If one has only k points with pairwise distance >π/2, then Grove and
Wilhelm obtain restrictions on the differentiable structure of M .

With a slight variation of the proof of Grove and Wilhelm one can actu-
ally get a slightly better result. Let M be an inner metric space. We say
that M has a weak 2-nd packing radius ≥r if diam(M) ≥r. We say it has a
weak k-th packing radius ≥r if there is a point p ∈ M such that ∂Br(p) is
connected and endowed with its inner metric has weak (k − 1)-th packing
radius ≥r.

Theorem 1.7. Let (M, g) be an n-manifold with sectional curvature ≥1
and weak (k+1)-th packing radius >π/2. Then there is a family of metrics gt

(t ∈ [0, 1) with sectional curvature ≥1 and g0 = g such that (M, gt) converges
for t→ 1 to an n-dimensional Alexandrov space A satisfying: If k ≥ n, then
A is isometric to the standard sphere. If k < n, then A is given by the k-th
iterated suspension ΣkA′ of an n− k-dimensional Alexandrov space A′.

Corollary 1.8. Let ε > 0. A manifold with sectional curvature ≥1
and diameter >π/2 also admits a metric with sectional curvature ≥1 and
diameter >π − ε.

As in the paper of Grove and Wilhelm, one can show in the situation of
Theorem 1.7 that there is a sequence of positively metrics g̃i on the standard
sphere with curvature ≥1 such that (Sn, g̃i)i∈N converges to A as well. In
particular, Grove and Wilhelm showed that an affirmative answer to the
following question would imply the differentiable diameter sphere theorem.

Question 1.9 (Smooth stability conjecture). Suppose a sequence of
compact n-manifolds (Mk, gk) with curvature ≥−1 converges in the Gromov
Hausdorff topology to an n-dimensional compact Alexandrov space A. Does
this imply that for all large k1 and k2 the manifolds Mk1 and Mk2 are
diffeomorphic?

By Perelman’s stability theorem it is known that Mk1 and Mk2 are home-
omorphic for all large k1 and k2, see the article of Vitali Kapovitch in this
volume.
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Sketch of the proof of Theorem 1.7. Let p, q ∈M be points such
that d(p, q) > π/2+ε for some ε > 0. We claim that we can find a continuous
family of metrics with g0 = g and Kt ≥ 1 such that (M, gt) converges for
t→ 1 to the suspension of ∂Bπ/2(p).

We consider the suspension X of M , i.e., X = [−π/2, π/2] × M/ ∼
where the equivalence classes of ∼ are given by p+ := {π/2} ×M , p− :=
{−π/2} ×M and the one point sets {(t, p)} for |t| �= π/2. Recall that X
endowed with the usual warped product metric is an Alexandrov space with
curvature ≥1.

We consider the curve c(t) = ((1 − t)π/2, p) as a curve in X, r(t) :=
π/2 + ε(1 − t) and the ball Br(t)(c(t)) ⊂ X. Put Nt := ∂Br(t)(c(t)). Since
X\Br(t)(c(t)) is strictly convex and Nt is contained in the Riemannian mani-
fold X \ {p±} for all t �= 1, it follows that Nt is an Alexandrov space with
curvature ≥1 for all t ∈ [0, 1]. Clearly N0 is up to a small scaling factor iso-
metric to M . Moreover N1 is isometric to the suspension of ∂Bπ/2(p) ⊂M .

Using that Nt is strictly convex in the Riemannian manifold X \{p±} for
t ∈ [0, 1), it follows that the family Nt can be approximated by a family of
strictly convex smooth submanifolds Ñt ⊂ X \{p±}, t ∈ [0, 1). Furthermore,
one may assume that limt→1 Nt = N1 = limt→1 Ñt.

We found a family of metrics gt of curvature >1 such that (M, gt) con-
verges to the suspension of ∂Bπ/2(p). We may assume that ∂Bπ/2(p) has
weak k-th packing radius >π/2 and k ≥ 2.

We now choose a curve of points qt ∈M converging for t→ 1 to a point
on the equator q1 ∈ ∂Bπ/2(p) of the limit space such that there is a point
q2 in ∂Bπ/2(p) whose intrinsic distance to q1 is >π/2.

We now repeat the above construction for all t ∈ (0, 1) with (M, g, p)
replaced by (M, gt, qt). This way we get for each t an one parameter family
of smooth metrics g(t, s) with K ≥ 1 which converges for s→ 1 to the sus-
pension of the boundary of Bπ/2(qt) ⊂ (M, gt). It is then easy to see that one
can choose the metrics such that they depend smoothly on s and t. More-
over, after a possible reparameterization of g(s, t) the one parameter family
t �→ g(t, t) converges to the double suspension of the boundary of Bπ/2(q1) ⊂
∂Bπ/2(p). Clearly the theorem follows by iterating this process. �

We recall that to each Riemannian manifold (M, g) and each point p ∈M
one can assign a curvature operator R : Λ2TpM → Λ2TpM . We call the
operator 2-positive if the sum of the smallest two eigenvalues is positive.
It is known that manifolds with 2-positive curvature operator have positive
isotropic curvature.

Theorem 1.10. Let (M, g) be a compact manifold with 2-positive cur-
vature operator. Then the normalized Ricci flow evolves g to a limit metric
of constant sectional curvature.

In dimension 3 the theorem is due to Hamilton [1982]. Hamilton [1986]
also showed that the theorem holds for 4-manifolds with positive curvature
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operator. This was extended by Chen to 4-manifolds with 2-positive curva-
ture operator. In dimension 2 it was shown by Hamilton and Chow that for
any surface the normalized Ricci flow converges to limit metric of constant
curvature. In dimensions above 4 the theorem is due to Böhm and Wilking
[2006]. For n ≥ 3 the proof solely relies on the maximum principle and works
more generally in the category of orbifolds.

We recall that a family of metrics gt on M is said to be a solution of the
Ricci flow if

∂
∂tgt = −2 Rict

Hamilton showed that if one represents the curvature operator R with
respect to suitable moving orthonormal frames, then

∂
∂tR = ΔR + 2(R2 + R#)

where R# = ad ◦R ∧ R ◦ ad∗, ad: Λ2so(TpM) → so(TpM) is the adjoint
representation and where we have identified Λ2TpM with the Lie algebra
so(TpM). Hamilton’s maximum principle allows to deduce certain dynamical
properties of the PDE from dynamical properties of the ODE

d
dtR = R2 + R#.

Sketch of the proof of Theorem 1.10. We let S2
B

(
so(n)

)
denote

the vectorspace of algebraic curvature operators satisfying the Bianchi
identity.

We call a continuous family C(s)s∈[0,1) ⊂ S2
B(so(n)) of closed convex

O(n)-invariant cones of full dimension a pinching family, if
(1) each R ∈ C(s) \ {0} has positive scalar curvature,
(2) R2 + R# is contained in the interior of the tangent cone of C(s) at

R for all R ∈ C(s) \ {0} and all s ∈ (0, 1),
(3) C(s) converges in the pointed Hausdorff topology to the one-

dimensional cone R+I as s→ 1.
The argument in [Böhm and Wilking, 2006] has two parts. One part is a

general argument showing for any pinching family C(s) (s ∈ [0, 1)) that on
any compact manifold (M, g) for which the curvature operator is contained
in the interior of C(0) at every point the normalized Ricci flow evolves g
to a constant curvature limit metric. In the proof of this result one first
constructs to such a pinching family a pinching set in the sense Hamilton
which in turn gives the convergence result.

The harder problem is actually to construct a pinching family with C(0)
being the cone of 2-nonnegative curvature operators. Here a new tool is
established. It is a formula that describes how this ordinary differential
equation R′ = R2 + R# changes under O(n)-equivariant linear transforma-
tions. By chance the transformation law is a lot simpler than for a generic
O(n)-invariant quadratic expression. The transformation law often allows
to construct new ODE-invariant curvature cones as the image of a given
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invariant curvature cone under suitable equivariant linear transformation
l : S2

B

(
so(n)

)
→ S2

B

(
so(n)

)
. This in turn is used to establish the existence

of a pinching family. �

1.3. Related rigidity results. We first mention the diameter rigidity
theorem of Gromoll and Grove [1987]

Theorem 1.11 (Diameter rigidity). Let (M, g) be a compact manifold
with sectional curvature K ≥ 1 and diameter ≥π/2. Then one of the following
holds:

a) M is homeomorphic to a sphere.
b) M is locally isometric to a rank one symmetric space.

The original theorem allowed a potential exceptional case
• M has the cohomology ring of the Cayley plane, but is not isometric

to the Cayley plane.
This case was ruled out much later by the author, see [Wilking, 2001].

The proof of the diameter rigidity theorem is closely linked to the rigidity
of Hopf fibrations which was established by Gromoll and Grove [1988] as well

Theorem 1.12 (Rigidity of Hopf fibrations). Let σ : Sn → B be a
Riemannian submersion with connected fibers. Then σ is metrically con-
gruent to a Hopf fibration. In particular the fibers are totally geodesic and
B is rank one symmetric space.

Similarly to the previous theorem, the original theorem allowed for a pos-
sible exception, Grove and Gromoll assumed in addition (n, dimB) �= (15, 8).
Using very different methods, the rigidity of this special case was proved by
the author in [Wilking, 2001]. This in turn ruled out the exceptional case in
the diameter rigidity theorem as well.

Sketch of the proof of the diameter rigidity theorem. The
proof of the diameter rigidity theorem is the most beautiful rigidity argu-
ment in positive curvature. One assumes that the manifold is not homeo-
morphic to a sphere. Let p be a point with N2 := ∂Bπ/2(p) �= ∅. One defines
N1 = ∂Bπ/2(N2) as the boundary of the distance tube Bπ/2(N2) around
N2. It then requires some work to see that N1 and N2 are totally geodesic
submanifolds without boundary satisfying N2 = ∂Bπ/2(N1).

Not both manifolds can be points, since otherwise one can show that M
is homeomorphic to a sphere. If one endows the unit normal bundle ν1(Ni)
with its natural connection metric, then Grove and Gromoll show in a next
step that the map σi : ν1(Ni)→ Nj , v �→ exp(π/2v) is a Riemannian submer-
sion, {i, j} = {1, 2}. Furthermore σi restricts to a Riemannian submersion
ν1

q (Ni)→ Nj for all q ∈ Ni.
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In the simply connected case one shows that Ni is simply connected as
well, i = 1, 2. By the rigidity of submersions defined on Euclidean spheres
(Theorem 1.12) we deduce that Ni is either a point or a rank one symmetric
space with diameter π/2. Going back to the definition of N1, it is then
easy to see that N1 = {p}. Using that σ1 : Sn−1 → N2 is submersion with
totally geodesic fibers, one can show that the pull back metric exp∗

p g on
Bπ/2(0) ⊂ TpM is determined by σ1. Thus M is isometric to a rank one
symmetric space.

In the non simply connected case one can show that either the universal
cover is not a sphere and thereby symmetric or dim(N1)+dim(N2) = n−1.
In the latter case it is not hard to verify that M has constant curvature
one. �

Since the proof of the differentiable sphere theorem for manifolds with
2-positive curvature follows from a Ricci flow argument it is of course not
surprising that it has a rigidity version as well.

Theorem 1.13. A simply connected compact manifold with 2-nonnegative
curvature operator satisfies one of the following statements.

• The normalized Ricci flow evolves the metric to a limit metric which
is up to scaling is isometric to Sn or CPn/2.

• M is isometric to an irreducible symmetric space.
• M is isometric to nontrivial Riemannian product.

Of course in the last case the factors of M have nonnegative curvature
operators. By Theorem 2.2 (M, g) admits a possibly different metric g1 such
that (M, g1) is locally isometric to (M, g) and (M, g1) is finitely covered by
a Riemannian product T d×M ′ where M ′ is simply connected and compact.
This effectively gives a reduction to the simply connected case.

The theorem has many names attached to it. Of course Theorem 1.10
(Hamilton [1982,1986], Böhm and Wilking [2006]) enters as the ‘generic’
case. This in turn was used by Ni and Wu [2006] to reduce the problem
from 2-nonnegative curvature operators to nonnegative curvature operators.
One has to mention Gallot and Meyer’s [1975] investigation of manifolds
with nonnegative curvature operator using the Bochner technique. Berger’s
classification of holonomy groups, as well as Mori’s [1979], Siu and Yau’s
[1980] solution of the Frankel conjecture are key tools. Based on this Chen
and Tian [2006] proved convergence of the Ricci flow for compact Kähler
manifolds with positive bisectional curvature.

Sketch of a proof of Theorem 1.13. Consider first the case that
the curvature operator of M is not nonnegative. We claim that then the Ricci
flow immediately evolves g to a metric with 2-positive curvature operator.

We consider a short time solution g(t) of the Ricci flow and let f : [0, ε)×
M → R, denote the function which assigns to (t, p) the sum of the lowest
two eigenvalues of the curvature operator of (M, g(t)) at p. We first want to
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show that f(t, ·) is positive somewhere for small t > 0. We may assume that
f(0, p) = 0 for all p. It is straightforward to check that f satisfies

∂f
∂t |t=0+

(0, p) ≥ q(R) := ∂
∂t |t=0+

(λ1 + λ2)
(
R + t(R2 + R#)

)
.

From the invariance of 2-nonnegative curvature operators it is known that
q(R) ≥ 0. In fact a detailed analysis of the proof shows that q(R) ≥
2(λ1(R))2. In the present situation we deduce by a first order argument
that f(t, p) becomes positive somewhere for small t > 0. Now it is not
hard to establish a strong maximum principle that shows that f(t, ·) is
everywhere positive for small t > 0, see Ni and Wu [2006]. In other words
(M, gt) has 2-positive curvature operator for t > 0 and the result follows
from Theorem 1.10.

We are left with the case that the curvature operator of (M, g) is nonneg-
ative. Essentially this case was already treated by Gallot and Meyer using the
Bochner technique, see [Petersen, 2006]. We present a slightly different argu-
ment following Chow and Yang (1989). Using Hamilton’s [1986] strong max-
imum principle one deduces that for t > 0 the curvature operator of (M, gt)
has constant rank and that the kernel is parallel. Thus either Rt is positive
or the holonomy is non generic. We may assume that M does not split as a
product. Hence without loss of generality M is irreducible with non generic
holonomy. Since (M, gt) clearly has positive scalar curvature Berger’s clas-
sification of holonomy groups implies that Hol(M) ∼= U(n/2), Sp(1)Sp(n/4)
unless (M, g) is a symmetric space. In the case of Hol(M) ∼= Sp(1)Sp(n) we
can employ another theorem of Berger [1966] to see that M is up to scal-
ing isometric to HPn/4, since in our case the sectional curvature of (M, gt)
is positive. In the remaining case Hol(M) = U(n/2) it follows that M is
Kähler and (M, gt) has positive (bi-)sectional curvature. By Mori [1979] and
Siu and Yau’s [1980] solution of the Frankel conjecture M is biholomorphic
to CPn/2. In particular, M admits a Kähler Einstein metric. Due to work
of Chen and Tian [2006] it follows, that the normalized Ricci flow on M
converges to the Fubini study metric which completes the proof. �

2. Compact nonnegatively curved manifolds

The most fundamental obstruction to this date is Gromov’s Betti number
theorem.

Theorem 2.1 (Gromov, 1981). Let Mn be an n-dimensional complete
manifold with nonnegative sectional curvature, and let F be a field. Then the
total Betti number satisfies

b(M, F) :=
n∑

i=0

bi(M, F) ≤ 1010n4
.
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Gromov’s original bound on the total Betti number was depending dou-
ble exponentially on the dimension. The improvement is due to Abresch
[1987]. However, this bound is not optimal either. In fact Gromov posed the
problem whether the best possible bound is 2n, the total Betti number of the
n-dimensional torus. The statement is particularly striking since the non-
negatively curved manifolds in a fixed dimension ≥7 have infinitely many
homology types with respect to integer coefficients. More generally Gromov
gave explicit estimates for the total Betti numbers of compact n-manifolds
with curvature ≥−1 and diameter ≤D. The proof is an ingenious combina-
tion of Toponogov’s theorem and critical point theory.

Sketch of the proof of Theorem 2.1. The most surprising part in
the proof is a definition: Gromov assigns to every ball Br(p) ⊂ M a finite
number called the corank of the ball. It is defined as the maximum over all
k such that for all q ∈ B2r(p) there are points q1, . . . , qk with

d(q, q1) ≥ 2n+3r, d(q, qi+1) ≥ 2nd(p, qi)

and qi is a critical point of the distance function of q in the sense of Grove
and Shiohama. One can show as follows that the corank of a ball is at
most 2n: Choose a minimal geodesic cij from qi to qj , i < j and minimal
geodesic ci from q to qi, i = 1, . . . , k. Since qi is a critical point we can find a
possibly different minimal geodesic c̃i from q to qi such that the angle of the
triangle (c̃i, cj , cij) based at qi is ≤π/2. Therefore L(cj)2 ≤ L(cij)2 + L(ci)2.
Applying Toponogov’s theorem to the triangle (ci, cj , cij) gives that the angle
ϕij between ci and cj satisfies tan(ϕij) ≥ 2n. Thus ϕij ≥ π/2 − 2−n. The
upper bound on k now follows from an Euclidean sphere packing argument
in TqM .

By reverse induction on the corank, one establishes an estimate for the
content of a ball cont(Br(p)) which is defined as the dimension of the image
of H∗(Br(p)) in H∗(B5r(p)). A ball Br(p) with maximal corank is necessarily
contractible in B5r(p) since for some q ∈ B2r(p) the distance function of q
has no critical points in B8r(q) \ {q}. This establishes the induction base.
It is immediate from the definition that corank(Bρ(q)) ≥ corank(Br(p)) for
all q ∈ B3r/2(p) and all ρ ≤ r/4. In the induction step one distinguishes
between two cases.

In the first case, one assumes that corank(Bρ(q)) > corank(Br(p)) for
all q ∈ Br(p) and ρ := r

4n . Using the Bishop Gromov inequality it is easy
to find a covering of Br(q) with at most 4n(n+2) balls of radius ρ. By the
induction hypothesis the balls Bρ(q) have a bounded content. Using a rather
involved nested covering argument one can give an explicit estimate of the
content of Br(p).

In the remaining case there is one point q ∈ Br(p) such that
corank(Bρ(q)) = corank(Br(p)) with ρ = r

4n . Thus for some point x ∈ B2ρ(q)
there is no critical point of the distance function of x in B8r(x)\B2−n+3r(x).
This implies that one can homotop Br(p) to a subset of Br/4(x) in B5r(p).
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From this it is not hard to deduce that cont(Br/4(x)) ≥ cont(Br(p)). We
have seen above corank(Br/4(x)) ≥ corank(Br(p)). One can now apply the
same argument again with Br(p) replaced by Br/4(x). Since small balls are
contractible, the process has to stop after finitely many steps unless possibly
cont(Br(p)) = 1. �

Fundamental groups. Fundamental groups of nonnegatively curved
manifolds are rather well understood. On the other hand, the known results
are essentially the same as for compact manifolds with nonnegative Ricci
curvature. In fact there is a general belief that the general structure results
for fundamental groups should coincide for the two classes. One of the main
tools in this context is the splitting theorem of Toponogov, resp. the split-
ting theorem of Cheeger and Gromoll [1971]. Recall that a line is a normal
geodesic c : R → (M, g) satisfying d(c(t), c(s)) = |t − s| for all t, s ∈ R. By
Cheeger and Gromoll’s splitting theorem complete manifolds of nonnega-
tive Ricci curvature split as products R ×M ′ provided they contain lines.
In the special case of nonnegative sectional curvature, the result is due to
Toponogov.

By the work of Cheeger and Gromoll [1971], the splitting theorem implies
that a nonnegatively curved manifold M is isometric to Rk×B where B has
a compact isometry group. The same results holds for the universal cover
of a compact manifold M of nonnegative Ricci curvature. As a consequence
they deduced that the fundamental group of M is virtually abelian, i.e., it
contains an abelian subgroup of finite index. Moreover one can show

Theorem 2.2. Let (M, g) be a compact manifold of nonnegative Ricci
curvature or an open manifold of nonnegative sectional curvature. Then
there is a family of complete metrics gt on M with g0 = g, (M, gt) is locally
isometric to (M, g) for all t and (M, g1) is finitely covered by a Riemannian
product T d ×M ′, where M ′ is simply connected and T d is a flat torus.

The theorem is due to author [2000] but is based on a slightly weaker
version of Cheeger and Gromoll [1971]. Moreover, it was shown in [Wilking,
2000] that any finitely generated virtually abelian fundamental group occurs
in some dimension as the fundamental group of a nonnegatively curved mani-
fold. However, the more interesting and challenging problem is what one can
say about fundamental groups in a fixed dimension.

To the best of the authors knowledge the only other “effective” result
known for fundamental groups of nonnegative sectional curvature is

Theorem 2.3 (Gromov, 1978). The fundamental group of a nonnega-
tively curved n-manifold is generated by at most n · 2n elements.

The proof of the theorem is a simple application of Toponogov’s theorem
applied to the short generating system of π1(M, p).
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Although we mentioned in the introduction that we will report on results
which are based on collapsing techniques, we quote, for the sake of complete-
ness, the following recent theorem of Kapovitch, Petrunin and Tuschmann
[2005].

Theorem 2.4. For each n there is a constant C(n) such that the funda-
mental group of any compact nonnegatively curved n-manifold (M, g)
contains a nilpotent subgroup of index at most C(n).

The theorem remains valid for almost nonnegatively curved manifolds
and it improves a similar theorem of Fukaya and Yamaguchi from “solvable”
to “nilpotent”. The proof relies on a compactness result and it remains an
open problem whether one can make the bound effective, in other words
whether one can give explicit estimates on C(n). It is also remains open
whether in case of nonnegative curvature one can improve it from “nilpotent”
to “abelian”.

Other structure results. By the Gauss-Bonnet formula a compact
nonnegatively curved compact surface is given by RP2, S2, T 2 or the Klein
bottle. Due to Hamilton [1982] a compact 3-manifold of nonnegative Ricci
curvature and finite fundamental group is diffeomorphic to spherical space
form, see Theorem 1.13. In dimension 4 a classification remains open. The
best result is a theorem in Kleiner’s thesis.

Theorem 2.5 (Kleiner). Let (M, g) be a nonnegatively curved simply
connected 4-manifold. If the isometry group is not finite then M is homeo-
morphic to S4, CP2, S2 × S2 or to a connected sum CP2#± CP2.

The Bott conjecture (see last section) would imply that the theorem
remains valid if one removes the assumption on the isometry group. It would
be interesting to know whether one can improve the conclusion in Theo-
rem 2.5 from homeomorphic to diffeomorphic. Kleiner never published his
thesis, but Searle and Yang [1994] reproved his result. We present a slightly
shorter proof which has also the advantage that it does not make use of
a signature formula of Bott for four manifolds with Killing fields. This in
turn implies that part of the proof carries over to simply connected nonneg-
atively curved 5-manifolds with an isometric 2-torus action. In fact using
minor modifications it is not hard to check that the second rational Betti
number of such a manifold is bounded above by 1.

Lemma 2.6. Let ρ : S1 → O(4) be a representation such that there is no
trivial subrepresentation. Consider the induced action of S1 on the standard
sphere S3.

a) Any four pairwise different points p1, . . . , p4 ∈ B := S3/S1 satisfy∑
1≤i<j≤4

d(pi, pj) ≤ 2π.
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and equality occurs if and only if B is isometric to the 2-sphere
S2(1/2) of constant curvature 4 and {p1, p2, p3, p4} = {±p,±q}.

b) The diameter of B is equal to π/2. In fact for p ∈ B there is most
one point q ∈ B with d(p, q) ≥ π/2.

Proof. We may assume that ρ is faithful. If the action of S1 is given
by the Hopf action, then B := S3/S1 is the 2-sphere S2(1/2) of constant
curvature 4. Recall that a triangle in S2(1/2) has perimeter ≤π and that
equality can only occur if two of the points on the boundary triangle have
distance π/2. Using this for all triangles {q1, q2, q3} ⊂ {p1, p2, p3, p4}, we
get the claimed inequality. Equality can only occur if the four points are
on a great circle. A more detailed analysis shows that equality implies
{p1, p2, p3, p4} = {±p,±q}.

In general it is easy to construct a distance non-increasing homeo-
morphism

f : S2(1/2)→ B.

For the proof notice that B admits an isometric action of a circle T1, since
the centralizer of ρ(S1) in SO(4) acts isometrically on B, the quotient space
B/T1 is isometric to the interval [0, π/2]. The same holds for the quotient
space S2(1/2)/T1. It is now easy to see that the orbits of the T1 action on
S2(1/2) are at least as long as the corresponding orbits in B.

Finally if the action is not given by the Hopf action, then we can not
find four different points p1, p2, p3, p4 ∈ B with d(p1, p2) = d(p3, p4) = π/2.
Since f is distance non-increasing part b) follows as well. �

Proof of Theorem 2.5. By Freedman’s classification of simply con-
nected topological 4-manifolds, it suffices to show that χ(M) ≤ 4. Since the
Eulercharacteristic of M equals the Eulercharacteristic of the fixed point set
of S1 ⊂ Iso(M, g), it suffices to estimate the latter.

We now consider the orbit space A3 := M4/S1 as an Alexandrov space.
We first want to rule out that S1 has more than four isolated fixed points.
Suppose p1, . . . , p5 are pairwise different isolated fixed points in M .

We can view these points also as points in the orbit space A. Choose a
fixed minimal normal geodesic γij : [0, 1] → A between pi and pj for i �= j.
We may assume γij and γji are equal up to a change of direction.

We also consider all angles αijk between γij and γik for all pairwise dif-
ferent i, j and k. A simple counting argument shows that there are precisely
30 angles. We next prove two different estimates for the sum of these angles.

For any three points in {p1, p2, p3, p4, p5} we get a triangle. The sum
of the angles in the triangle is ≥π, as X is nonnegatively curved in the
Alexandrov sense. Therefore the sum of all 30 angles is ≥10π.

On the other hand we can consider for a fixed point pi all 6 angles based
at pi. The angles are given as the pairwise distances of four distinct points
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in the space of directions ΣpiX. Since ΣpiX is isometric to the quotient of
S3 by a S1-action, we infer from Lemma 2.6 that the sum of these 6 angles
is ≤2π. This proves that the sum of all 30 angles is at most 10π.

Hence equality must hold everywhere. It follows that the space of direc-
tions at pi is given by a sphere of constant curvature 4. There are precisely
10 angles of size π/2 and for each triangle corresponding to three points in
{p1, . . . , p5} the sum of the angles is π and hence precisely one angle in such
a triangle equals π/2. We may assume d(p1, p2) = mini�=j d(pi, pj). For one
point q ∈ {p3, p4, p5} the triangle (p1, p2, q) has neither an angle π/2 at p1
nor an angle π/2 at p2. Thus there is an angle π/2 at q. Since equality holds
in Toponogov’s comparison theorem we see

d(p1, q)2 + d(p2, q)2 = d(p1, p2)2

a contradiction since d(p1, p2) was minimal.
Suppose next that the fixed point set Fix(S1) of S1 contains at least two

2-dimensional components. These components form totally geodesic sub-
manifolds of the Alexandrov space A. Since they do not intersect it is easy
to see that A is isometric to F × [0, l] where F is a fixed point component.
In particular S1 has no fixed points outside the two components. Since each
component has Eulercharacteristic ≤2 the result follows.

It remains to consider the case that S1 has precisely one 2-dimensional
fixed point component F . We have to show that the S1-action has at most
two isolated fixed points. Notice that F is the boundary of the Alexandrov
space A and the distance function h := d(F, ·) : A → R is concave. Let
p ∈ A denote one isolated fixed point with minimal distance r to the bound-
ary. The set h−1

(
[r,∞[

)
is convex. Let v ∈ ΣpA be the initial direction of

a minimal geodesic from p to F . The tangent cone Cph
−1
(
[r,∞[

)
consist of

‘vectors’ which have an angle ≥π/2 with v. From Lemma 2.6 we deduce that
Cph

−1
(
[r,∞[

)
is at most one dimensional. Thus the convex set h−1

(
[r,∞[

)
is either a point or an interval. By construction h−1

(
[r,∞[

)
contains all

isolated fixed points of S1. Since for each fixed point the space of direc-
tion has diameter π/2, we deduce that there are at most two isolated fixed
points. �

Gursky and LeBrun [1999] obtained strong restrictions on 4-dimensional
nonnegatively curved Einstein manifolds.

One might ask whether any nonnegatively curved compact manifold with
finite fundamental group also admits nonnegatively curved metrics with pos-
itive Ricci curvature. A partial result in direction was proved recently.

Theorem 2.7 (Böhm and Wilking, 2005). Let (M, g) be a compact non-
negatively curved manifold with finite fundamental group, and let gt be a
solution of the Ricci flow. Then for all small t > 0, gt has positive Ricci
curvature.
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The proof applies a dynamical version of Hamilton’s maximum principle
to a family of curvature conditions lying in between nonnegative sectional
curvature and nonnegative Ricci curvature. It then follows that gt has non-
negative Ricci curvature for t ∈ [0, ε] with ε depending on an upper curvature
bound. Then the theorem follows easily from a strong maximum principle.
In the same paper it was also shown that there is no Ricci flow invariant
curvature condition in between nonnegative sectional curvature and nonneg-
ative Ricci curvature in dimensions above 11. This in turn generalized previ-
ous results saying that neither nonnegative Ricci curvature nor nonnegative
sectional curvature are invariant under the Ricci flow in dimensions above 3,
see [Ni, 2004].

In particular, any compact nonnegatively curved manifold with finite
fundamental group satisfies all obstructions coming from positive Ricci cur-
vature. In the simply connected case the only general known obstruction for
positive Ricci curvature is that the manifold admits a metric with positive
scalar curvature. By the work of Gromov and Lawson and Stolz the latter
statement is equivalent to saying: Either M is not spin or M is a spin mani-
fold with a vanishing α-invariant. For more details and references we refer
the reader to the surveys of Jonathan Rosenberg and Guofang Wei published
in this volume.

Grove–Ziller examples. Recently Grove and Ziller generalized a glu-
ing technique which by the work of Cheeger [1973] was previously only known
to work in the special case of connected sums of two rank one symmetric
spaces. Since they are discussed in more detail in the survey of Wolfgang
Ziller we will be brief.

Theorem 2.8 (Grove and Ziller, 2000). Let G be a compact Lie group,
and let G//H be a compact biquotient. Suppose there are two subgroups K± ⊂
G × G such that K±/H ∼= S1 and the action of K± on G is free. Then the
manifold obtained by gluing the two disc bundles associated to the two sphere
bundles G//H→ G//K± along their common boundary G//H has a metric of
nonnegative sectional curvature.

The stated theorem is slightly more general than the original version of
Grove and Ziller, who considered cohomogeneity one manifolds or equiva-
lently the case where all groups H, K± act from the right on G and hence
the corresponding quotients are homogeneous. Of course it would be inter-
esting to know whether the generalization gives rise to any interesting new
examples. One can actually reduce the more general statement to the one
of Grove and Ziller as follows

Proof. We consider the manifold M which admits a cohomogeneity
one action of G × G with principal isotropy group H and singular isotropy
groups K± ⊂ G × G. By Grove and Ziller this manifold has an invariant
metric of nonnegative sectional curvature, see the survey of Wolfgang Ziller
for details. By assumption the diagonal ΔG ⊂ G×G acts freely on M . Clearly
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the manifold in the theorem is the quotient M/ΔG. Thus the result follows
from the O’Neill formulas. �

Theorem 2.9 (Grove and Ziller). Any principal SO(n)-bundle over S4

admits a cohomogeneity one action of S3 × SO(n) with singular orbits of
codimension 2.

The proof uses the classification of bundles over S4 in terms of character-
istic classes. Grove and Ziller endow S4 with the unique cohomogeneity one
action of S3 with singular orbits of codimension 2. Then they compute for all
S3×SO(n)-cohomogeneity one manifolds which are SO(n)-principal bundles
over the given cohomogeneity one manifold S4 all characteristic classes. By
comparing the set of invariants, it follows that one gets all bundles this way.
The details are involved.

By taking quotients of such principal bundles it follows that any sphere
bundle over S4 admits a metric of nonnegative sectional curvature. This is
particular striking since 10 of the 14 exotic spheres in dimension 7 can be
realized as such bundles.

Grove and Ziller conjectured in their paper that any cohomogeneity one
manifold admits an invariant nonnegatively curved metric. A partial answer
was given by Schwachhöfer and Tuschmann [2004] who showed that these
manifolds admit metrics of almost nonnegative sectional curvature. How-
ever, counterexamples to the Grove-Ziller conjecture were recently found
by Grove, Verdiani, Wilking and Ziller [2006]. The counterexamples con-
tain all higher dimensional Kervaire spheres and therefore all exotic spheres
of cohomogeneity one. Additional counterexamples are given but to this
day it remains an open question how big the class of nonnegatively curved
cohomogeneity one manifolds is.

3. Open nonnegatively curved manifolds

Noncompact nonnegatively curved spaces often occur as blow up limits
of sequences of manifolds converging with lower curvature bound −1 to a
limit. Also recall a result of Hamilton and Ivey saying that for any singu-
larity of the Ricci flow in dimension 3 the corresponding blow up limit has
nonnegative sectional curvature. This in turn was one key feature which
allowed Hamilton and Perelman to classify the possible singularities of the
Ricci flow in dimension 3.

By a result of Gromov [1986] any noncompact manifold admits a pos-
itively curved metric. However Gromov’s metrics are not complete and we
assume throughout the paper that all metrics are complete.

The structure of open manifolds of nonnegative (positive) sectional cur-
vature is better understood than the compact case. By a theorem of Gromoll
and Meyer [1969] a positively curved open manifold is diffeomorphic to
the Euclidean space. For a nonnegatively curved manifold there is the soul
theorem.
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Theorem 3.1 (Cheeger and Gromoll, 1971). For an open nonnegatively
curved manifold M there is a totally geodesic submanifold Σ called the soul
such that M is diffeomorphic to the normal bundle of Σ.

Sketch of the proof. The basic observation in the proof is that for
each point p ∈M the function f0(q) := limr→∞ d(∂Br(p), q)− r is concave,
proper and bounded above. Hence the maximal level of f0 is a convex closed
subset C1 of M . Cheeger and Gromoll showed that C1 is a totally geodesic
compact submanifold with a possibly non-empty and non-smooth intrinsic
boundary ∂C1. One can then show that if ∂C1 �= ∅, then the function f1(q) =
d(∂C1, q) is concave on C1. As before the maximal level set C2 of f1 is a
convex subset of M . Since dim(C2) < dim(C1) one can iterate the process
until one arrives at a convex level set Ck without intrinsic boundary. Then
Σ := Ck is a soul of M . One can show that the distance function rΣ := d(Σ, ·)
has no critical points on M \ Σ in the sense of Grove and Shiohama, for a
definition see section 1. Thus there is a gradient like vectorfield X on M \Σ,
with ‖X‖ ≤ 1. Similarly to the proof of the diameter sphere theorem one
can now construct a diffeomorphism ψ : ν(Σ)→M . �

We emphasize that the diffeomorphism ν(Σ)→M is in general not given
by the exponential map. On the other hand it was shown by Guijarro [1998],
that there is always at least one complete nonnegatively curved metric on
M such that this is the case.

From the soul construction it is clear that there is a Hausdorff continuous
family (C(s))s∈[0,∞) of convex compact subsets of M such that C(0) = Σ,
C(s1) ⊂ C(s2) for s1 < s2 and

⋃
s≥0 C(s) = M . In fact from the above

sketch this family can be obtained by collecting all nonempty sublevels
f−1

i ([c,∞[) of the functions f0, . . . , fk−1 in one family. Given such a family,
Sharafutdinov [1979] showed, independent of curvature assumptions, that
there is a distance non-increasing retraction P : M → Σ.

Theorem 3.2 (Perelman, 1994). Let Σ be a soul of M , ν(Σ) its normal
bundle and P : M → Σ a Sharafutdinov retraction. Then

a) P ◦ expν(Σ) = π, where π : ν(Σ)→ Σ denotes the projection.
b) Each two vectors u ∈ νp(Σ) and v ∈ TpΣ are tangent to a totally

geodesic immersed flat R2.
c) P is a Riemannian submersion of class C1.

The theorem also confirmed the soul conjecture of Cheeger and Gromoll:
A nonnegatively curved open manifold with positive sectional curvature at
one point is diffeomorphic to Rn. Although this conjecture was open for
more than two decades, the proof of the above theorem is very short and
just uses Rauch’s comparison theorem.

Guijarro [2000] showed that P is of class C2 and it was shown in [Wilking,
2005] that P is of class C∞. The latter result is a consequence of another
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structure theorem on open nonnegatively curved manifolds whose explana-
tion requires a bit of preparation: One defines a dual foliation F# to the
foliation F given by the fiber decomposition P : M → Σ as follows. For a
point p ∈M we define the dual leaf L#(p) as the set of all points which can
be connected with p by a piecewise horizontal curve. We recall that a curve
is called horizontal with respect to P , if it is everywhere perpendicular to
the fibers of P .

Because of Theorem 3.2 each dual leaf can also be obtained as follows.
Consider a vector v in the normal bundle ν(Σ) of the soul. Let S(v) denote
set of all vectors in ν(Σ) which are parallel to v along some curve in Σ. Then
exp(S(v)) = L#(exp(v)). The structure of the dual foliation is thus closely
linked to the normal holonomy group of the soul.

If the normal holonomy group is transitive on the sphere, then the
dual leaves are just given by distance spheres to the soul. If the holonomy
group is trivial, then by a result of Strake [1988] and Yim [1990] Mn splits
isometrically as Σk×(Rn−k, g) and the dual leaves are just given by isometric
copies of Σ. In general the holonomy group is neither transitive nor trivial.
In fact, by an unpublished result of the author, any connected subgroup of
SO(n − k) can occur as the normal holonomy group of a simply connected
soul.

Theorem 3.3 (Wilking, 2005). Let M, Σ, P,F# be as above.
a) Then F# is a singular Riemannian foliation, i.e., geodesics ema-

nating perpendicularly to dual leaves stay perpendicularly to dual
leaves.

b) If u ∈ TpM is horizontal with respect to P and v ∈ TpM is perpen-
dicular to the dual leaf L#(p), then u and v are tangent to a totally
geodesic immersed flat R2.

An analogous theorem holds for Riemannian submersions on compact
nonnegatively curved manifolds. A consequence of the above theorem is
that any non-contractible open nonnegatively curved manifold has an honest
product as a metric quotient.

Corollary 3.4. Let M be an open nonnegatively curved manifold and
Σ a soul of M . Then there is a noncompact Alexandrov space A and a
submetry

σ : M → Σ×A

onto the metric product Σ×A. The fibers of σ are smooth compact subman-
ifolds without boundary.

We recall that σ : M → B is called a submetry if σ(Br(p)) = Br(σ(p))
for all p and r. The space A is given by the space of closures of dual leaves,
which by Theorem 3.3 can be endowed with a natural quotient metric.

The main new tool used to prove these results is a simple and gen-
eral observation which may very well be useful in different context as well.
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It allows to give what we call transversal Jacobi field estimates. Let c : I →
(M, g) be a geodesic in a Riemannian manifold (M, g), and let Λ be an
(n − 1)−dimensional family of normal Jacobi fields for which the corre-
sponding Riccati operator is self adjoint. Recall that the Riccati operator
L(t) is the endomorphism of (ċ(t))⊥ defined by L(t)J(t) = J ′(t) for J ∈ Λ.
Suppose we have a vector subspace Υ ⊂ Λ. Put

T v
c(t)M := {J(t) | J ∈ Υ} ⊕ {J ′(t) | J ∈ Υ, J(t) = 0}.

Observe that the second summand vanishes for almost every t and that
T v

c(t)M depends smoothly on t. We let T⊥
c(t)M denote the orthogonal comple-

ment of T v
c(t)M , and for v ∈ Tc(t)M we define v⊥ as the orthogonal projection

of v to T⊥
c(t)M . If L is non-singular at t we put

At : T v
c(t)M → T⊥

c(t)M, J(t) �→ J ′(t)⊥ for J ∈ Υ.

It is easy to see that A can be extended continuously on I. For a vector field
X(t) ∈ T⊥

c(t)M we define ∇⊥X
∂t = (X ′(t))⊥.

Theorem 3.5. Let J ∈ Λ−Υ and put Y (t) := J⊥(t). Then Y satisfies
the following Jacobi equation

(∇⊥)2

∂t2
Y (t) +

(
R(Y (t), ċ(t))ċ(t)

)⊥ + 3AtA
∗
t Y (t) = 0.

One should consider
(
R(·, ċ(t))ċ(t)

)⊥ +3AtA
∗
t as the modified curvature

operator. The crucial point in the equation is that the additional O’Neill
type term 3AtA

∗
t is positive semidefinite.

Corollary 3.6. Consider an n − 1-dimensional family Λ of normal
Jacobi fields with a self adjoint Riccati operator along a geodesic c : R→M
in a nonnegatively curved manifold. Then

Λ = spanR

{
J ∈ Λ | J(t) = 0 for some t

}
⊕
{
J ∈ Λ | J is parallel

}
.

3.1. Which bundles occur? The major open problem in the
subject is

Problem 1. Let (Σ, g) be a nonnegatively curved compact manifold.
Which vectorbundles E over Σ admit nonnegatively curved metrics such
that the zero section of the bundle is a soul?

If L is a nonnegatively curved compact manifold with a free isometric
O(k) action, then the corresponding bundle L×O(k) Rk has a nonnegatively
curved metric with the zero section being the soul. It is remarkable that
all examples of open nonnegatively curved manifolds constructed so far are
diffeomorphic to examples arising in this way. On the other hand the above
method is rather flexible already. From Theorem 2.8 it follows.
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Theorem 3.7 (Grove and Ziller). All vectorbundles over S4 admit com-
plete nonnegatively curved metrics.

It is not known whether one can find nonnegatively metrics such that the
souls are isometric to the round sphere. The souls of the Grove–Ziller met-
rics have lots zero curvature planes. All of the relatively few vectorbundles
over S5 also admit nonnegatively curved metrics [Rigas, 1985]. However, in
general Cheeger and Gromoll’s question which bundles over a sphere admit
nonnegatively curved metrics remains open.

We mention in some cases one can say a bit more about which bundles
occur: if either the soul has infinite fundamental group or if one fixes the
isometry type of the soul. Özaydin and Walschap [1994] observed that a flat
soul necessarily has a flat normal bundle. If one has an open manifold with
infinite fundamental group then, by Theorem 2.2 one can deform the metric
within the space of nonnegatively curved metrics such that a finite cover is
isometric to T d×M , where M is simply connected. This in turn shows that
the normal bundle of the soul T d × Σ′ is canonically isomorphic to the pull
back of a bundle over the simply connected factor Σ′. The question whether
such a bundle can also be written as a twisted bundle over T d × Σ′ was
studied in great detail by Belegradek and Kapovitch [2003] using rational
homotopy theory.

Moreover one can analyze the situation if the soul is isometric to a sim-
ply connected product Σ = Σ1 × Σ2. Although this is just an observation
due to the author we carry out some details here since they can not be
found in the literature. If ui ∈ TpΣ is tangent to the i-th factor (i = 1, 2),
then R(u1, u2)v = 0 for v ∈ νp(σ). By “integrating” this equation we deduce
that for a closed curve γ(t) = (γ1(t), γ2(t)) the normal parallel transport
Parγ decomposes Parγ = Parγ1 ◦Parγ2 = Parγ2 ◦Parγ1 . Thus the normal
holonomy group is given as the product of two commuting subgroups. Each
subgroup gives rise to a principle bundle over Σ which is isomorphic to the
pull back bundle of a principle bundle over Σi under the natural projec-
tion Σ → Σi. If we decompose the normal bundle into parallel subbun-
dles ν(Σ) = ν1(Σ) ⊕ · · · ⊕ νl(Σ) such that on each summand the holonomy
group is irreducible, then each summand is isomorphic to a tensor product
νi(Σ) = νi1(Σ)⊗K νi2(Σ) where νij(Σ) is isomorphic to the pull back of a K
vectorbundle bundle over Σj under the natural projection Σ→ Σj , j = 1, 2
and K ∈ {R, C, H} depends on i.

Since any vectorbundle over S3 is trivial, we deduce.

Corollary 3.8. Suppose the soul is isometric to a product S3×S3 then
the normal bundle of the soul is trivial.

3.2. The space of nonnegatively curved metrics. Perelman’s
theorem indicates that the moduli space of metrics should be rather small.
On the other hand one can not expect too much. Belegradek used the method
of Grove and Ziller to exhibit the following phenomena.
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Theorem 3.9 (Belegradek). There is a non-compact manifold M that
admits a sequence of complete nonnegatively curved metrics (gk)k∈N such
that the souls of (M, gk) are pairwise non-diffeomorphic.

The theorem shows that the moduli space of nonnegatively curved met-
rics on M has infinitely many components. This is in sharp contrast to the
space of nonnegatively curved metrics on S2 × R2.

Theorem 3.10 (Gromoll and Tapp). Up to a diffeomorphism a nonneg-
atively curved metric on S2 ×R2 is either a product metric or the metric is
invariant under the effective action of a two torus and it can be obtained as
a quotient of a product metric on S2 × R2 × R by a free R-action.

For a nontrivial 2-dimensional vector bundles over S2 the space of non-
negatively curved metrics is somewhat more flexible. In fact Walschap [1988]
showed that given an open four manifold with a soul S2 for which any zero
curvature plane is tangent to one of the Perelman flats from Theorem 3.2
the following holds: Let ∂

∂ϕ denote one of the two unit vectorfields in M \Σ
tangent to the fibers of the Sharafutdinov retraction and whose integral
curves have constant distance to the soul. If f is an arbitrary function on
M with compact support contained in M \Σ, then the following metric has
nonnegative sectional curvature as well,

gt(u, v) := g(u, v) + tf(p)g
(
u, ∂

∂ϕ

)
g
(
v, ∂

∂ϕ

)
for all u, v ∈ TpM and all small t.

A partial rigidity result was established by Guijarro and Petersen [1997],

Theorem 3.11. Let (M, g) be an open nonnegatively curved manifold
and p ∈ M . Suppose that for any sequence pn ∈ M converging to ∞ the
corresponding sequence scal(pn) of scalar curvatures tends to 0. Then the
soul of M is flat.

4. Positively curved manifolds with symmetry

Grove (1991) suggested to classify manifolds of positive sectional
curvature with a large isometry group. The charm of this proposal is that
everyone who starts to work on this problem is himself in charge of what
‘large’ means. One can relax the assumption if one gets new ideas. One
potential hope could be that if one understands the obstructions for posi-
tively manifolds with a ‘large’ amount of symmetry, one may get an idea for
a general obstruction. However the main hope of Grove’s program is that
the process of relaxing the assumptions should lead toward constructing new
examples.

That this can be successful was demonstrated by the classification of
simply connected homogeneous spaces of positive sectional curvature car-
ried out by Berger [1961], Wallach [1972], Aloff Wallach [1975] and Berard
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Bergery [1976]. The classification led to new examples in dimension 6, 7
and 12, 13 and 24. For the sake of completeness it should be said that the
only other source of known positively curved examples are biquotients, i.e.,
quotients G//H, where G is a compact Lie group and H is a subgroup of
G× G acting freely on G from the left and the right. Eschenburg [1982] and
Bazaikin [1996] found infinite series of such examples in dimensions 7 and
13. We refer the reader to the survey of Wolfgang Ziller for more details.

Another motivation for Grove’s proposal was the following theorem.

Theorem 4.1 (Hsiang and Kleiner, 1989). Let M4 be an orientable
compact 4-manifold of positive sectional curvature. Suppose that there is
an isometric nontrivial action of S1 on M4. Then M4 is homeomorphic to
S4 or CP2.

The theorem is a special case of Theorem 2.5. Grove and Searle [1994]
realized that the proof of the above theorem can be phrased naturally in
terms of Alexandrov geometry of the orbit space M4/S1. A careful analysis
of the orbit space also allowed them to establish the following result.

Theorem 4.2 (Grove and Searle). Let Mn be an orientable compact
Riemannian manifold of positive sectional curvature. Then

symrank(M, g) := rank(Iso(M, g)) ≤
[

n+1
2

]
and if equality holds, then M is diffeomorphic to Sn, CPn/2 or to a lens
space.

The inequality is a simple consequence of a theorem of Berger saying
that a Killing field on an even dimensional positively curved manifold has a
zero. For the equality discussion Grove and Searle first show, that there in
an isometric S1 action on M such that the fixed point set has a component
N of codimension 2. They then prove that the distance function d(N, ·) has
no critical points in M \N except for precisely one S1-orbit where it attains
its maximum. This is used to recover the structure of the manifold.

Another result which essentially relies on the study of the orbit space is
due to Rong [2002]. He showed that a simply connected positively curved
5-manifold with symmetry rank 2 is diffeomorphic to S5.

Recently, the author made the following basic observation, see [Wilking,
2003].

Theorem 4.3 (Connectedness Lemma). Let Mn be a compact Riemann-
ian manifold with positive sectional curvature.

a) Suppose Nn−k ⊂ Mn is a compact totally geodesic embedded sub-
manifold. Then the inclusion map Nn−k →Mn is n− 2k + 1 con-
nected. If there is a Lie group G that acts isometrically on Mn and
fixes Nn−k pointwise, then the inclusion map is n− 2k + 1 + δ(G)
connected where δ(G) is the dimension of the principal orbit.



NONNEGATIVELY AND POSITIVELY CURVED MANIFOLDS 49

b) Suppose Nn−k1
1 , Nn−k2

2 ⊂ Mn are two compact totally geodesic
embedded submanifolds, k1 ≤ k2, k1 + k2 ≤ n. Then the inter-
section Nn−k1

1 ∩Nn−k2
2 is a totally geodesic embedded submanifold

as well and the inclusion

Nn−k1
1 ∩Nn−k2

2 → Nn−k2
2

is n− k1 − k2 connected.

Theorem 4.3 turns out to be a very powerful tool in the analysis of group
actions on positively curved manifolds. In fact by combining the theorem
with the following lemma, one sees that a totally geodesic submanifold of
low codimension in a positively curved manifold has immediate consequences
for the cohomology ring of the manifold.

Lemma 4.4. Let Mn be a closed differentiable oriented manifold, and let
Nn−k be an embedded compact oriented submanifold without boundary. Sup-
pose the inclusion Nn−k →Mn is n−k− l connected and n−k−2l > 0. Let
[N ] ∈ Hn−k(M, Z) be the image of the fundamental class of N in H∗(M, Z)
and let e ∈ Hk(M, Z) be its Poincare dual. Then the homomorphism

∪e : H i(M, Z)→ H i+k(M, Z)

is surjective for l ≤ i < n− k − l and injective for l < i ≤ n− k − l.

Notice that in the case of a simply connected manifold M the submani-
fold N is simply connected as well and hence it is orientable. Recall that the
pull back of e to Hk(N, Z) is the Euler class of the normal bundle of N in M .

Part b) of the Theorem 4.3 says in particular that Nn−k1
1 ∩ Nn−k2

2 is
not empty which is exactly the content of Frankel’s Theorem. In fact sim-
ilarly to Frankel’s Theorem a Synge type argument is crucial in the proof
of Theorem 4.3. The proof of Theorem 4.3 is a very simple Morse theory
argument in the space of all curves from N to N , respectively from N1 to
N2. The critical points of the energy functional are geodesics starting and
emanating perpendicularly to the submanifolds. Using the second variation
formulas it is then easy to give lower bounds on the indices of the nontrivial
critical points.

The above result is the main new tool that is used in [Wilking, 2003] to
show.

Theorem 4.5. Let Mn be a simply connected n-dimensional manifold of
positive sectional curvature, n ≥ 8, and let d ≥ n

4 + 1. Suppose that there is
an effective isometric action of a torus Td on Mn. Then M is homotopically
equivalent to CPn/2 or homeomorphic to HPn/4 or Sn.

In dimensions 8 and 9 the theorem is due to Fang and Rong [2005].
Thus dimensions 6, 7 remain the only dimensions where one needs maximal
symmetry rank assumptions for a classification.
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If Mn is an odd-dimensional manifold, that is not simply connected but
satisfies all other assumptions of the theorem, then its fundamental group is
cyclic, see Rong [2000]. A conjecture of Mann [1965] asserts that an exotic
sphere Σn can not support an effective smooth action of a d-dimensional
torus with d ≥ n

4 + 1.
Notice that F4, the isometry group of CaP2 has rank 4. Thus in dimension

16 the result is optimal. Similarly the isometry group of the 12-dimensional
Wallach flag has rank 3. In dimension 13 the Berger space SU(5)/S1 · Sp(2)
is an optimal counterexample.

There are three major constants to measure the amount of symmetry of
a Riemannian manifold (M, g):

symrank(M, g) = rank
(
Iso(M, g)

)
,

symdeg(M, g) = dim
(
Iso(M, g)

)
cohom(M, g) = dim

(
(M, g)/ Iso(M, g)

)
.

So far we have mostly considered the first of these constants.

Theorem 4.6 (Wilking, 2006). Let (Mn, g) be a simply connected
Riemannian manifold of positive sectional curvature. If symdeg(Mn, g) ≥
2n − 6, then (M, g) is tangentially homotopically equivalent to a rank 1
symmetric space or isometric to a homogeneous space of positive sectional
curvature.

Notice that all homogeneous spaces of positive sectional curvature sat-
isfy the assumptions of the theorem. In dimension 7 the theorem gives the
optimal bound as there are positively curved Eschenburg space SU(3)//S1

with a seven dimensional isometry group.
Finally we consider the cohomogeneity of a Riemannian manifold.

Theorem 4.7 (Wilking, 2006). Let k be a positive integer. In dimen-
sions above 18(k + 1)2 each simply connected Riemannian manifold Mn of
cohomogeneity k ≥ 1 with positive sectional curvature is tangentially homo-
topically equivalent to a rank one symmetric space.

The proof of Theorem 4.7 actually establishes the existence of an infinite
sequence of (connected) Riemannian manifolds

M = M0 ⊂M1 ⊂ · · ·

such that dim(Mi) = n + ih, where h ≤ 4k + 4 is a positive integer that
depends on M . All inclusions are totally geodesic, all manifolds are of coho-
mogeneity k and all have positive sectional curvature. One then considers
M∞ :=

⋃
Mi. On the one hand one can use the connectedness lemma to

show that M∞ has h-periodic integral cohomology ring. On the other hand,
using Alexandrov geometry of the orbit space, one can show that M∞, has
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the homotopy type of the classifying space of a compact Lie group. The
results combined show that M∞ is either contractible or has the homotopy
type of CP∞ or HP∞. The connectedness lemma then implies that M has
the corresponding homotopy type. The details are quite involved and we
refer the reader to [Wilking, 2006].

Of course one might hope that for small k one can use similar techniques
to get a classification in all dimensions, or at least a classification up to some
potential candidates for positively curved manifolds.

The following theorem carries out such a program in the case of k = 1.

Theorem 4.8 (Verdiani, Grove, Wilking, Ziller). Let Mn be a sim-
ply connected compact Riemannian manifold of positive sectional curvature.
Suppose that a connected Lie group G acts by isometries with cohomogene-
ity one, i.e., the orbit space Mn/G is one dimensional. Then one of the
following holds:

• Mn is equivariantly diffeomorphic to one of the known positively
curved biquotients endowed with a natural cohomogeneity action.

• n = 7 and M is the two fold cover of a 3-Sasakian manifold that
corresponds to one of the self dual Einstein 4-orbifolds of cohomo-
geneity one that were found by Hitchin.

• n = 7 and M is equivariantly diffeomorphic to one particular
cohomogeneity one manifold.

In even dimensions the theorem is due to Verdiani [2001], in this case
only rank 1 symmetric spaces occur. The odd dimensional case is more
involved and is due to Grove, Wilking and Ziller [2006]. This is partly due
to the fact that in dimensions 7 and 13, there are infinitely many positively
curved biquotients of cohomogeneity one.

It remains open whether the last two cases can indeed occur. The proof
of the theorem uses a lot of the techniques that we have mentioned above.
We refer to the survey of Ziller for a more detailed discussion. Very different
results on positively curved manifolds with symmetry were found by Dessai
[2005].

Theorem 4.9. Suppose (M, g) is a positively curved spin manifold of
dimension ≥12. Let G be a connected Lie group acting smoothly and sup-
pose a subgroup Z2

2 ⊂ G acts by isometries. Then the characteristic number
Â(M, TM) vanishes.

The proof is a clever combination of Frankel’s theorem on the intersec-
tion of totally geodesic submanifolds and a vanishing theorem of Hirzebruch
and Slodowy. The non-vanishing of Â(M, TM) would by that result ensure
that each of the three involutions in Z2

2 has a fixed point set of codimension 4.
By Frankel these three components have a common intersection and the con-
tradiction arises by inspecting the isotropy representation of Z2

2 at a fixed
point.
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In the presence of stronger symmetry assumptions he can show the van-
ishing of more characteristic numbers. These numbers occur naturally as
coefficients of a power series expanding the elliptic genus.

4.1. Manifolds with positive sectional curvature almost
everywhere. As mentioned before there are relatively few known exam-
ples of positively curved manifolds. The lists of examples is quite bit longer
if one includes manifolds which have positive sectional curvature on an open
dense set.

The most interesting example in the class is the Gromoll Meyer sphere.
Gromoll and Meyer [1974] considered the subgroup H ⊂ Sp(2)×Sp(2) given
by

H :=
{(

diag(1, q), diag(q, q)
) ∣∣ q ∈ S3}

and the induced free two sided action of H on Sp(2). They showed that
the corresponding biquotient Σ7 := Sp(2)//H is diffeomorphic to an exotic
sphere.

Furthermore, by the O’Neill formulas the metric on Sp(2)//H induced
by the biinvariant metric g on Sp(2) has nonnegative sectional curvature. In
fact it is not hard to see that there is a point p ∈ Σ7 such that all planes
based at p have positive curvature.

It was shown later by Wilhelm [1996] that there is a left invariant metric
on Sp(2) such that the induced metric on Σ7 has positive sectional curvature
on an open dense set of points. Gromoll and Meyer mention in their paper
the so called deformation conjecture:

Problem 2. (Deformation conjecture) Let M be a complete nonnega-
tively curved manifold for which there is point p ∈ M such that all planes
based at p have positive sectional curvature. Does (M, g) admit a positively
curved metric, as well?

In the case of an open manifold M the conjecture is by Perelman’s
solution of the soul conjecture valid. However in general counter examples
were found in [Wilking, 2002].

Theorem 4.10. The projective tangent bundles PRTRPn, PCTCPn and
PHTHPn of the projective spaces admit metrics with positive sectional
curvature on open dense sets.

It is easy to see that the projective tangent bundle of PRTRP2n+1 is odd
dimensional and not orientable. By a theorem of Synge it can not admit a
metric with positive sectional curvature. In dimensions 4n−1, (n ≥ 3) there
are infinitely many homotopy types of simply connected compact manifolds
with positive sectional curvature on open dense sets. In fact one ‘half’ of the
circle bundles over PCTCPn give rise to such examples.

It is also interesting to note that the natural inclusions among these
examples remain totally geodesic embeddings and that the isometry groups
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of the manifolds act with cohomogeneity 2. By the results on positively
manifolds with symmetry, these properties could not persist for positively
curved metrics. Another consequence is that S2 × S3, the universal cover
of PRTRP3, admits a metric with positive sectional curvature on an open
dense set.

Finally we should mention that prior to [Wilking, 2002], Petersen and
Wilhelm [1999] constructed a slightly different metric on the unit tangent
bundle of S4, the universal cover of PRTRP4, with positive curvature on an
open dense set.

5. Open Problems

In this final section we mention some of the major open problems in
the subject. The authors favorite conjecture in this context is the so called
Bott-conjecture which was promoted by Grove and Halperin.

Conjecture 5.1. Any nonnegatively curved manifold is rationally
elliptic.

We recall that a manifold is called rationally elliptic if π∗(M)⊗Q is finite
dimensional. The conjecture would for example show that the total rational
Betti number of a nonnegatively curved manifold M is bounded above by
2n with equality if and only if M is a flat torus.

There is a conceptual reason why the Bott-conjecture holds for all known
nonnegatively curved manifolds. Up to deformation of metrics all known
nonnegatively manifolds are constructed from Lie groups endowed with
biinvariant metrics using the following three techniques

• One can take products of nonnegatively curved manifolds.
• One can pass from a nonnegatively curved manifold endowed with

a free isometric group action to the orbit space endowed with its
submersion metric.

• Due to work of Cheeger[1973] and Grove and Ziller [2000] one can
sometimes glue disc bundles, i.e., if M is a nonnegatively curved
manifold which is in two ways the total space of a sphere bundle
(with the structure group being a Lie group), then sometimes the
manifold obtained by glueing the two corresponding disc bundles
has nonnegative curvature as well.

It is well known that Lie groups are rationally elliptic. Furthermore,
by the exact homotopy sequence the class of rationally elliptic manifolds is
invariant under taking quotients of free actions. By the work of Grove and
Halperin [1987], a manifold obtained by gluing two disc bundles along their
common boundary is rationally elliptic if and only if the boundary is.

Grove suggested that the conjecture should hold more generally for the
class of simply connected almost nonnegatively curved manifolds. Here we
call a manifold almost nonnegatively curved if it admits a sequence gk of
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metrics with diameter 1 and sectional curvature ≥−ε(k) → 0. The latter
class contains more known examples. On the other hand the only additional
technique needed to construct all of the known simply connected almost
nonnegatively curved manifolds is:

• If M is an almost nonnegatively curved manifold and P is a prin-
cipal G-bundle over M with G being a compact Lie group, then P
has almost nonnegative sectional curvature as well.

Clearly with this method one can not leave the class of rationally ellip-
tic manifolds either. Grove suggested that it might be possible to prove the
Bott conjecture by induction on the dimension. In this context he posed the
problem whether any compact nonnegatively curved manifold has a nontriv-
ial collapse: Is there a sequence of metrics gn on M with diameter ≤D and
curvature ≥− 1 such that (M, gn) converges to a k-dimensional Alexandrov
space with 0 < k < n. Of course it would be also interesting if there is
a property that is shared by all nonnegatively curved Alexandrov spaces,
and which in the case of manifolds is equivalent to saying that the space is
rationally elliptic. Alexandrov spaces are more flexible since one can take
quotients of non free group actions and in the case positive curvature joins
of spaces.

Totaro [2003] posed the problem whether any nonnegatively curved mani-
fold has a good complexification, i.e., is M diffeomorphic to the real points
of complex smooth affine variety defined over R such that the inclusion into
the complex variety is a homotopy equivalence. Totoro’s work shows that
these manifolds share many properties of rationally elliptic manifolds.

The Bott conjecture would also imply that the Eulercharacteristic of a
nonnegatively curved manifold is nonnegative and positive only if the odd
rational Betti numbers vanish. The former statement is part of the Hopf
conjecture.

Conjecture 5.2 (Hopf). A compact nonnegatively (positively) curved
manifold has nonnegative respectively positive Eulercharacteristic.

Slightly more modest (and vague) one might ask

Question 5.3. Is there any obstruction that distinguishes the class of
simply connected compact manifolds admitting nonnegatively curved metrics
from the corresponding class admitting positively curved metrics?

Of course the huge difference in the number of known examples suggests
that plenty of such obstructions should exist, but to this day there is not a
single dimension where such an obstruction has been found. Closely related
is another Hopf conjecture.

Conjecture 5.4 (Hopf). S2 × S2 does not admit a metric of positive
sectional curvature.
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Unlike on S2 × S3 it is not known whether there is metric on S2 × S2

with positive curvature almost everywhere. For that reason one could hope
that the nonnegatively curved metrics on S2 × S2 are rather rigid. In fact a
partial confirmation of this view was given by Bourguignon, Deschamps, and
Sentenac [1972]. They showed that for a product metric on S2 × S2 with-
out Killing fields any analytical deformation which preserves nonnegative
curvature is up to diffeomorphisms given by a deformation through product
metrics.

However, one should be careful to expect too much rigidity in this con-
text. The author learned the following observation from Bruce Kleiner. We
consider S2 × S2 endowed with the Müter metric

(S2 × S2, g) = S1 × S1 × {1}
∖
SO(3)× SO(3)× SO(3)

/
Δ SO(3)

where SO(3)3 is endowed with a biinvariant metric. Clearly the metric is of
cohomogeneity one, since there is an SO(3)-action from the left on SO(3)3

commuting with the left action of S1×S1. The two singular orbits are given
by two 2-dimensional spheres and we let Mreg ⊂ S2 × S2 denote the union
of all principal orbits. Müter [1987] showed for each point p ∈ Mreg that
there is precisely one zero curvature plane based at p. Moreover the plane
is tangent to a totally geodesic torus in M .

In particular the generic part of the manifold Mreg ⊂ S2× S2 is foliated
by totally geodesic flat submanifolds. We now consider a symmetric (2, 0)
tensor b, whose compact support is contained in Mreg and for which b(v, ·) =
0 for all v contained in a zero curvature plane. It is then straightforward to
check that the foliation of Mreg by totally geodesic flats remains a totally
geodesic foliation by flats for all metrics in the family g(t) = g + tb. There-
fore, the set of zero curvature planes of (M, g(t)) contains the set of zero cur-
vature planes in (M, g(0)). What is more: the zero curvature planes remain
critical points of the sectional curvature. Since the zero curvature planes in
(Mreg, g(0)) form a submanifold of the Grassmannian Gr2(Mreg) and the
Hessian of the sectional curvature function is nondegenerate transversal to
this submanifold, it is clear that (M, g(t)) has nonnegative sectional curva-
ture for all small t.

This shows that the space of nonnegatively curved metrics of S2 × S2 is
somewhat larger than one would expect at first glance.

One way to give new impulses to the subject is to construct new exam-
ples. In this context we pose the following question.

Question 5.5. Are there any positively curved compact Alexandrov spaces
satisfying Poincare duality which are not homeomorphic to one of the known
positively curved manifolds?

Of course an easy way to check that an Alexandrov space satisfies
Poincare duality is to show that the space of directions at each point is
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homeomorphic to a sphere. One could try to look at non free isometric
group actions on nonnegatively curved manifolds and ask whether the orbit
space is homeomorphic to a manifold without boundary. It would be also
interesting to know, whether in special circumstances one can resolve the
metric singularities of a positively curved Alexandrov space while keeping
positive curvature.

6. Added in Proof

One of the most significant developments in the subject took place after
this survey was completed. We will briefly explain it here. We recall that a
manifold is strictly pointwise quarter pinched if at each point p ∈ M there
is a constant κ(p) ≥ 0 such that for all planes based at p have curvature
strictly between κ(p) and 4κ(p).

Theorem 6.1 (Brendle and Schoen, 2007). For any strictly pointwise
quarter pinched manifold (M, g), the normalized Ricci flow evolves g to a
limit metric of constant sectional curvature.

We use the notation that we introduced in section 1 in connection with
Theorem 1.10. The theorem relies on the following result.

Theorem 6.2 (Böhm and Wilking, 2006). Let C be an O(n)-invariant
cone C in the vector space of curvature operators S2

B(so(n)) with the follow-
ing properties

• C is invariant under the ODE d
dtR = R2 + R#.

• C contains the cone of nonnegative curvature operators or slightly
weaker all nonnegative curvature operators of rank 1.

• C is contained in the cone of curvature operators with nonnegative
sectional curvature.

Then for any compact manifold (M, g) whose curvature operator is contained
in the interior of C at every point p ∈M , the normalized Ricci flow evolves
g to a limit metric of constant sectional curvature.

It actually suffices to assume that the curvature operator of (M, g) is
contained in C at all points, and in the interior of C at some point, cf. [Ni
and Wu, 2006].

We should remark that the theorem was not stated like this in [Böhm
and Wilking 2006]. However by Theorem 5.1 in that paper it suffices to
construct a pinching family with C(0) = C. Furthermore, the construction
of a pinching family for the cone of nonnegative curvature operators only
relied on the above three properties. In other words, one can define a pinching
family C(s) with C(0) = C by

C(s) := la(s),b(s)
(
{R ∈ C | Ric ≥ scal

n p(s)}
)
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where the parameters a(s), b(s) defining the linear map la(s),b(s) : S2
B(so(n))→

S2
B(so(n)) and p(s) are chosen exactly as in [Böhm and Wilking, 2006].

Sketch of the proof of Theorem 6.1.. The most important step
was proved independently by Nguyen [2007] and Brendle and Schoen [2007]:
Nonnegative isotropic curvature defines a Ricci flow invariant curvature con-
dition. Both proofs are similar. By Hamilton’s maximum principle it suffices
to show that the cone C of curvature operators with nonnegative isotropic
curvature is invariant under the ODE

d
dtR = R2 + R#.

The idea is to make use of the second variation formula at a four frame where
the isotropic curvature attains a zero – that is one uses the fact that the
Hessian of the isotropic curvature function is positive semidefinite. Although
the computation is elementary it is quite long and that it succeeds comes
close to being a miracle.

Brendle and Schoen then proceed as follows. They consider the condition
that a Riemannian manifold crossed with R2 has nonnegative isotropic cur-
vature. It is easy to see that the cone C of curvature operators corresponding
to this curvature condition satisfies the hypothesis of Theorem 6.2.

Finally Brendle and Schoen establish that any pointwise quarter pinched
manifold (M, g) has the property that (M, g)×R2 has nonnegative isotropic
curvature. This is again a lengthly computation. �

Remark 6.3. Ni and Wolfson [2007] observed that the condition that
the manifold crossed with R2 has nonnegative isotropic curvature is equiv-
alent to saying that (M, g) has nonnegative complex sectional curvature.
They also give an alternative shorter argument that nonnegative complex
curvature is preserved by the Ricci flow. Finally they remark that the state-
ment that quarter pinched manifolds have nonnegative complex curvature
was essentially known. In fact Yau and Zheng showed in a different context
that a curvature operator with sectional curvature between −4 and −1 has
nonpositive complex sectional curvature.
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