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Abstract. This is a survey article on collapsed Riemannian man-
ifolds with bounded sectional curvature. Instead of attempting to
cover many results in related topics, we will concentrate on one
path that includes most of the main ideas and techniques devel-
oped in the last two decades.

1. Introduction

Consider a complete n-manifold M of sectional curvature normalized to
be bounded in absolute value, |secM | ≤ 1. Given ε > 0, there is an ε thick-
thin decomposition of M : the thick part consists of points whose injectivity
radius is ≥ε and the complement is the thin part. According to [12], the local
topology of the thick part is under control: after a small perturbation of the
boundary, any ball of radius one in the thick part has only finitely many
possible topological types. On the other hand, when ε < ε(n) (a constant
depending only on n), there exists a special geometric/topological structure
on any unit ball in the thin part [14], consisting of a sort of generalized
foliation with orbits consisting of nilmanifolds.

Unless otherwise specified, a collapsed manifold means a complete
Riemannian manifold M with |secM | ≤ 1, whose injectivity radii are less
than ε(n) everywhere, i.e., M is thin. Since the 1980s, Riemannian geometry
has experienced an explosive development, and one of the most important
achievements is the theory of collapsed manifolds.

Before discussing collapsing in detail, we recall the Cheeger-Gromov
compactness theorem [11, 12, 36], which, in its pointed version, controls
the thick part. A sequence of Riemannian n-manifolds, (Mi, gi), is
said to converge in the C1,α-topology to a C1,α manifold (M∞, g∞) if
there are diffeomorphisms fi : M∞ → Mi such that the pullback metrics
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converge to g∞ in the C1,α sense, where g∞ is a C1,α metric. Specifically,
there is an atlas on M∞, with C2,α transition functions, such that in local
coordinates corresponding to each chart, the convergence of the gi,j is in the
C1,α-topology.

Theorem 1.1. Given positive constants, n, d, v, and a sequence of closed
n-manifolds Mi satisfying

|secMi | ≤ 1, diam(Mi) ≤ d, vol(Mi) ≥ v > 0,

there is a subsequence converging in the C1,α topology to a C1,α-manifold.

An important consequence of Theorem 1.1 is that for any n, d, v, there
are only finitely many closed manifolds in the given class up to diffeomor-
phism. Essentially, this is obtained in [11, 12] by estimating a uniform lower
bound on the injectivity radius and by constructing an atlas whose charts
are normal coordinate systems defined on balls of a definite size, for which
the transition functions are controlled; compare [45]. It is also observed
in [11] that assuming additional bounds on higher covariant derivatives of
curvature gives correspondingly better control of the transition functions.
In an unpublished work of Cheeger (part of which was the subject of a lec-
ture at the Summer Institute on Global Analysis held at Stanford in 1973),
under the assumptions of Theorem 1.1, Lipschitz control of the metric was
obtained via regularization arguments. One should point out, however, that
from the standpoint of regularity normal coordinates systems are far from
optimal.

In [36], Gromov noted that employing distance function coordinates
gives control of one more derivative of the transition functions and of metric,
i.e., C2 and C1 control, respectively. He also made the powerful observation
that Toponogov’s comparison theorem for geodesic triangles has a formu-
lation which passes to limits under such convergence, or even under (the
weaker) Gromov-Hausdorff convergence.

Given the assumptions of Theorem 1.1, harmonic coordinate systems on
balls of a definite size, in which the metric has definite C1,α-bounds, were
constructed in [40]. Harmonic coordinates were used in [30] to obtain the
optimal regularity in Theorem 1.1.

A natural question is: What can be said if the assumption of positive
lower bound on volume in Theorem 1.1 is removed? In general, one asks the
same question when removing bounds on diameter and volume but assuming
that the local volume is arbitrarily small (equivalently, the injectivity radii
are everywhere uniformly small).

The first non-trivial example of collapsing was observed by M. Berger.
It is obtained from the standard metric on S3 by multiplying the compo-
nent tangent to the Hopf fibration on S3 by ε2 while keeping the metric in
the orthogonal complement. Then as ε→ 0 the sectional curvature lies in
[ε2, 4− 3ε2] while the injectivity radii converge to zero everywhere. The first
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theorem on collapsing is Gromov’s characterization of “almost flat” mani-
folds [32], which became a cornerstone of the subsequent more general col-
lapsing theory (see Section 3). Gromov classified the maximally collapsed
situation, i.e., when the diameter of M is very small. He showed that a
finite normal covering of M is diffeomorphic to a nilpotent manifold [32].

A simple but powerful idea used in [32] is the notion of Gromov-Hausdorff
distance, which measures the closeness of metric spaces, and a compactness
theorem for this distance (see Section 2), whose importance, as further devel-
opments showed, cannot be overstated.

The more general collapsing theory was established in the 1980s in the
works of Cheeger-Gromov, [15, 16], Fukaya [24, 28] and Cheeger-Fukaya-
Gromov (see Sections 4 and 5). Since the early 1990s, several interesting
applications of collapsing theory have been obtained (see Section 6).

Acknowledgment. The author would like to thank Jeff Cheeger for
his invaluable comments and suggestions on this paper.

2. Gromov-Hausdorff distances and compactness

Let (Z, d) be a metric space. The collection of all compact subsets of Z
forms a metric space under the Hausdorff distance, dH(A, B) = max{d(x, A),
d(y, B), x ∈ A, y ∈ B}. Comparing this to the distance, d(A, B) = min
{d(x, y), x ∈ A, y ∈ B}, notice that d(A, B) = 0 if and only if A ∩ B �= ∅
while dH(A, B) = 0 if and only if A = B. Hence, dH(A, B) measures the
“uniform closeness” of A and B.

Gromov introduced an abstract version of the Hausdorff distance between
any two compact metric spaces X and Y . A metric on the disjoint union,
X
∐

Y , is called admissible if it extends the metrics on X and on Y . For
example, any disjoint isometric embedding of X and Y into the metric pro-
duct, X × Y × [0, 1], induces an admissible metric on X

∐
Y .

Definition 2.1 (Gromov-Hausdorff distance). For any two compact
metric spaces X and Y , we call

dGH(X, Y ) = inf
{

dH(X, Y ), all admissible metrics on X
∐

Y
}

,

the Gromov-Hausdorff distance (simply, the GH-distance).

It is easy to check that dGH satisfies the triangle inequality, and
dGH(X, Y ) = 0 if and only if X is isometric to Y . LetMetc denote the set of
isometric classes of all compact metric spaces. Then (Metc, dGH) is a metric
space. Observe that for X ∈ Metc and given any ε > 0, dGH(X, A) < ε for
any finite ε-dense subset A ⊂ X. This shows that dGH may not measure
differences in local geometry. The power and usefulness of dGH lie in its
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pre-compact criterion below, which applies to many interesting geometric
situations in Riemannian geometry (see Lemma 2.1).

Let’s first observe two obvious properties of a Cauchy sequence, {Xi} ⊂
Metc:

(2.1) There is a uniform upper bound on the diameter of Xi.
(2.2) Given ε > 0, each Xi has an ε-dense subset Ai(ε) of size |Ai(ε)| ≤

�(ε), a constant depending only on ε.
We now verify that (2.1) and (2.2) are also sufficient conditions for any

sequence in Metc to contain a convergent subsequence (so (Metc, dGH) is a
complete metric space): To construct a limit for Xi, we may assume, passing
to a subsequence if necessary, that for all i, an admissible metric di,i+1 on
Xi

∐
Xi+1 such that di,i+1,H(Xi, Xi+1) < 2−i. We then define an admissible

metric d on Y =
∐

Xi by assigning an admissible metric di,i+j on each
Xi

∐
Xi+j :

d(xi, xi+j) = inf
xi+k∈Xi+k

{
j−1∑
k=0

di+k,i+k+1(xi+k, xi+k+1)

}
.

It is easy to see that Xi is a Cauchy sequence in (Y, d) with respect to dH . Let
X = {{xi} : equivalent Cauchy sequences in Y , xi ∈ Xi} with {xi} equiva-
lent to {yi} if d(xi, yi)→ 0 as i→∞. Using (2.1) and (2.2), one verifies that
X is a compact metric space with the metric dX({xi},
{yi}) = lim

i→∞
d(xi, yi). Finally, we define an admissible metric on Y

∐
X by

d(y, {xi}) = lim
i→∞

d(y, xi), and check that dGH(Xi, X) ≤ dH(Xi, X) → 0. As

a by-product, we see that Xi
dGH−−−−→ X can be understood as Xi

dH−−−−→ X
in the compact metric space Y

∐
X. In particular, it makes sense to say that

xi ∈ Xi and xi → x ∈ X.

The Bishop-Gromov volume comparison theorem asserts that if M is
a complete n-manifold of Ricci curvature ≥ k(n − 1), then for p ∈ M ,
the ratio of volumes of r-balls, vol(Br(p))/vol(Bk

r ), is not increasing in r,
where Bk

r is an r-ball in a simply connected n-space form of curvature k. As
an application, Gromov observed that (2.2) is satisfied under the following
geometric conditions:

Lemma 2.1 (Precompactness). Any sequence of closed n-manifolds, Mi,
with Ricci curvature RicMi ≥ −k and diameter diam(Mi) ≤ d, contains a
dGH-convergent subsequence.

In the rest of this section, we will discuss the equivariant and pointed
Gromov-Hausdorff convergence (a motivation will be given at the end of this
subsection).

Consider Xi
dGH−−−−→ X such that each Xi also admits an effective and

isometric action by a compact group Gi. It is natural to ask if there is a sym-
metry structure on X related to these Gi-actions. To give a positive answer,
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we need the following ‘equivalent’ definition of dGH : a map f : X→Y is
called an ε-GH approximation if |d(x1, x2)−d(f(x1), f(x2))| < ε and if f(X)
is ε-dense in Y . Define

d̂GH(X, Y ) = inf
{
ε, ∃ ε-Hausdorff approximation from X to Y

and vice versa
}
.

It turns out that 2
3dGH ≤ d̂GH ≤ 2dGH , and thus we may view “dGH = d̂GH”

as far as the convergence is concerned (but d̂GH may not satisfy the triangle
inequality.).

By the above, Xi
dGH−−−−→ X is equivalent to the condition that given

(decreasing) εi→ 0, there are εi-GH approximations, fi : Xi→X and hi :
X→Xi. We now construct a limit group G of Gi as follows: take a sequence
of finite εi-dense subsets, A(εi)⊂X, such that A(εi)⊂A(εj) for all i < j,
and define, for each i, a sequence of maps: φj : Gj → C(A(εi);X), φj(g)(x) =
fjghj(x), g ∈ Gj , x ∈ A(εi), where C(A(εi);X) denotes the compact metric
space consisting of maps α : A(εi) → X, with di(α, α′) = max{dX(α(x),
α′(x)), x ∈ A(εi)}. Passing to a subsequence if necessary, we may assume

that φj(Gj)
di,H−−−−→ G′

i ⊂ C(A(εi);X). Clearly, g ∈ G′
i : A(εi) ↪→ X is

an isometric embedding. Because A(εi)⊂A(εj) (i < j), G′
j |A(εi) = G′

i, we
take the direct limit of {G′

i}, G, whose elements are isometric embeddings
∪iA(εi) ↪→ X and thus extend to isometries of X. Clearly, G is a closed
subgroup of the isometry group of X and their quotient spaces satisfy
Xi/Gi

dGH−−−−→ X/G. Hence, we say that (Xi, Gi) equivariantly GH-converges

to (X, G), denoted by (Xi, Gi)
deqGH−−−−→ (X, G).

Summarizing the above discussion, we give

Lemma 2.2 (Equivariant convergence). Let Xi be a sequence of compact
metric spaces such that Xi admits an isometric action by a closed group Gi.
If Xi

dGH−−−−→ X, then there is a closed group of isometries on X such that

(Xi, Gi)
deqGH−−−−→ (X, G) and Xi/Gi

dGH−−−−→ X/G.

Note that the above assertion on convergence actually means a subse-
quence converging. Let’s now make it a convention for the rest of the paper
that a ‘convergence’ means up to a subsequence.

The GH-convergence and the equivariant GH-convergence, and Lem-
mas 2.1 and 2.2, can be extended to the (pointed) non-compact metric spaces
whose bounded subsets are precompact. We say that a sequence of such
pointed metric spaces converges, (Xi, xi)

dGH−−−−→ (X, x), if for all r > 0, the
sequence of closed r-balls, Br(xi) ⊂ Xi, dGH -converges to Br(x) ⊂ X such
that xi → x. For instance, if a closed group Gi acts isometrically on Xi,

then (Xi, xi)
dGH−−−−→ (X, x) implies that (Xi, xi, Gi)

deqGH−−−−→ (X, x, G) for

some closed group of isometries of X and that (Xi/Gi, x̄i)
dGH−−−−→ (X/G, x̄).
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However, a significant difference for pointed GH-convergence is that for a
sequence, different choice of base points may yield different limits.

We conclude this section by applying the above results to two con-
vergent sequences associated to a given sequence of Riemannian manifolds
Mi

dGH−−−−→ X:
(2.3)

(M̃i, x̃i, Γi)
deqGH−−−−→ (X̃, x̃,Γ)⏐⏐�πi

⏐⏐�π̄

Mi
dGH−−−−→ X = X̃/Γ

and

(F (Mi), O(n))
deqGH−−−−→ (Y, O(n))⏐⏐�pi

⏐⏐�p̄

Mi
dGH−−−−→ X = Y/O(n)

where πi : M̃i → Mi is the Riemannian universal covering, Γi = π1(Mi) is
the group of deck transformations and F (Mi) is the orthogonal frame bun-
dle equipped with a canonical metric: the parallel transport on Mi defines
‘horizontal subspaces’ on T (F (M)), and thus introduces a canonical met-
ric on F (M) (up to a choice of a bi-invariant metric on O(n)) such that
p : F (M)→M is a Riemannian submersion.

A reason for studying the above associated sequences is that more infor-

mation on Mi
dGH−−−−→ X may be seen from (M̃i, x̃i, Γi)

deqGH−−−−→ (X̃, x̃,Γ) (espe-

cially when dim(X) < dim(X̃)) and from (F (Mi), O(n))
deqGH−−−−→ (Y, O(n))

(see the next two sections).

3. Almost flat manifolds

Gromov’s theorem on almost flat manifolds is the first result on col-
lapsing, and it has become a cornerstone of the collapsing theory ([32], cf.
[4, 14, 28, 53]).

A closed manifold M is called almost flat if the scaling invariant,
max |sec| · diam2(M), is very small. A flat manifold is almost flat, but an
almost flat manifold may admit no flat metric (Example 3.1). If we scale
the metric so that |secM | ≤ 1, then M is almost flat if and only if M is
maximally collapsed, i.e., M is close to a point with respect to dGH .

Theorem 3.1 (Almost flat manifolds). There exist positive constants
ε(n) and w(n) such that if a closed n-manifold satisfies max |sec|·diam2(M) <
ε(n), then M is finitely covered by a nilpotent manifold (the quotient of a
simply connected nilpotent group Ñ by a cocompact discrete subgroup Γ) with
order ≤w(n).

Ruh [53] improved Theorem 3.1, showing that M itself is diffeomorphic
to the quotient, Γ\ Ñ , where Γ ⊂ Ñ �Aut(Ñ) (the group of automorphisms
on Ñ) and [Γ : Γ∩Ñ ] ≤ w(n). Such a manifold is called an infra-nilmanifold.

The key ingredient in Theorem 3.1 is the following Margulis
lemma [32].
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Lemma 3.1. If G is a connected Lie group, then its identity has a neigh-
borhood Ue such that if Γ is a discrete subgroup, then Γ ∩ Ue generates a
nilpotent subgroup.

Lemma 3.1 follows from the property d(e, g1g2g
−1
1 g−1

2 )≤Cd(e, g1)d(e, g2)
for any g1, g2 close to the identity e ∈ G (equipped with a left invariant
metric), which is seen by (twice) applying the mean value theorem to f(t) =
d(e, g1(t)g2(t)g1(t)−1g2(t)−1), where gi(t) is a geodesic from gi to e and C is
a constant.

Lemma 3.1 easily implies Theorem 3.1 in the following special situation:
let Γ be a cocompact discrete subgroup of a simply connected Lie group
Ñ . Assume that Ñ admits a left invariant metric such that |sec| ≤ 1 and
diam(Γ \ Ñ) < ε. Then Γ∩Ue generates Γ and exp−1

e (Γ∩Ue) spans the Lie
algebra h̄ of Ñ . Thus Γ is nilpotent (Lemma 3.1), which implies that Ñ is
nilpotent.

On the other hand, given a simply connected nilpotent group, one can
construct a family of left invariant metrics via inhomogeneous rescaling so
that the diameter of any compact subset goes to zero (Example 3.1). This
implies that for any discrete cocompact subgroup, the quotient is almost flat.

Example 3.1. A Lie group G is nilpotent if [G, Gk] = 1 for some natural
number k, where Gi+1 = [G, Gi] denotes the commutator of G0 = G and Gi.
Then Gi+1 is a normal subgroup of Gi such that Gi/Gi+1 is abelian. If �i

denotes the Lie algebra of Gi, then [�i, �] ⊂ �i+1, and thus one can choose
a basis for �, {eik}, such that {ejl, i ≤ j} spans �i, and

[eik, ejl] =
∑
s≥i

∑
p

Cp
ijklesp,

∑
j≤s

∑
p

|Cp
ijkl| ≤ C (Cp

ijkl, C are constants).

Given any left invariant metric g, one can estimate the curvature tensor,
|R(U, V )W | ≤ 6‖ad‖g · |U | · |V | · |W |, where ‖ad‖g = max{|[U, V ]|, |U | =
|V | = 1, U, V ∈ �}. We now define a one-parameter family of left invariant
metrics by assigning {eik}, an orthogonal basis, with norm gε(eik, eik) = ε2

i

(inhomogeneous scaling). It is easy to check that |ad|gε ≤ C for all ε, and
thus gε has the desired property.

One can easily extend the above construction in a fibration setting: let
M → N be a fibration with fiber a nilpotent manifold with a flat connection,
and let M have a metric such that when restricting to a fiber, parallel
fields are Killing fields. Thus the structural group is a subgroup of the affine
automorphisms of a fiber. By collapsing a fiber to a point as in the above,
one obtains a sequence of metrics, gε, on the total space of the fibration such
that (M, gε)

dGH−−−−→ N with |secgε | ≤ 1 [27].

Sketch of a Proof of Theorem 3.1. Recall that a Lie group has
the unique canonical flat connection, i.e., left invariant fields are parallel,
and thus the torsion is parallel. Conversely, if a simply connected manifold
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M admits a flat connection with a parallel torsion, then parallel fields form
a Lie algebra which then determines a Lie group structure on M . The goal
of the proof is to construct a flat Riemannian connection with a parallel
torsion on the Riemannian universal covering space M̃ such that the deck
transformations preserve the flat connection. It then follows that M̃ is a Lie
group and π1(M) ⊂ M̃ � Aut(M̃). By the discussion following Lemma 3.1,
we can conclude the desired result.

By an obvious contradiction argument, it suffices to prove Theorem 3.1
for a sequence (see Lemma 2.1),

(3.1) Mi
dGH−−−−→ pt, |secMi | ≤ i−1.

Let F (Mi) denote the orthogonal frame bundle. Since we will work on F (Mi)
with a canonical metric where a bound on curvature is required, we will
need a bound on the covariant derivative of the curvature tensor. Deform-
ing the metric gi on Mi a short (but definite) time along the Ricci flows,
one gets another almost flat metric with the required regularity [39, 50].
Hence, without loss of generality, we may assume that gi satisfies this extra
regularity.

For the sake of exposition, let’s assume that (M, gi) is obtained by
slightly perturbing a ‘left invariant’ almost flat metric g′

i on a nilpotent
manifold Λ \ N , as in Example 3.1. Because the injectivity radius of g̃′

i is
infinite, it is expected that

(3.2) the injectivity radius of (M̃i, g̃i) is bounded below by a constant
ρ(n) > 0.

Since |secM̃i
| ≤ 1, (3.2) implies a positive lower bound for the convexity

radius of M̃i, say ρc(n) > 0. Given a finite number points {ỹj} in a ball
Bi ⊂ M̃i of radius ρc(n), the function h̃(x̃) = 1

2
∑

j d2(ỹj , x̃) : Bi → R is
strictly convex and thus achieves the minimum at a unique point, call the
center of mass for {ỹj}.

Assuming (3.2) (whose proof will be delayed until the next section),
we will first construct a cross section for F (M) → M via the technique
of ‘the center of mass’: fixing x̃ ∈ M̃ , α(x̃) ∈ F (M̃), by parallel transla-
tion of α(x̃) along radial geodesics in Bρ(x̃), one obtains a cross section,
α : Bρ(x̃) → F (Bρ(x̃)). Of course, α may not be ‘π1(M)-invariant,’ i.e.,
α(γ(ỹ)) �= γ∗(α(ỹ)), where ỹ ∈ Bρ(x̃), γ ∈ π1(M) such that γ(ỹ) ∈ Bρ(x̃).
However, for any z̃ ∈ Bρ(x̃), if the following inclusion holds for the finite
set A(z̃),

A(z̃) = {γ∗(α(ỹ)), ỹ ∈ Bρ(z̃), γ ∈ π1(M) such that γ(ỹ) = z̃}
⊂ Bρ′(α(z̃)), (ρ′ > 0 is the convex radius of F (M̃)),

(3.3)
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then the map z̃ → the center of mass of A(z̃), is well-defined and defines
a π1(M)-invariant cross section, and thus a cross section on F (M) → M
(note that Bρ(x̃)→M is onto, because diam(M) << ρ)).

We now verify (3.3). Consider an equivariant sequence, (M̃i, x̃i, Γi)
deqGH−−−−→ (X̃, x̃,Γ), associated to (3.1) as in (2.3). By (3.1) and (3.2), we may

identify (X̃, x̃) = (Rn, 0), and thus G is a closed subgroup of Isom(Rn) =
Rn � O(n). Because Rn/G is a point, G = Rn � H, where H is a subgroup
of O(n). By an argument similar to the proof of (3.2), one concludes that
H is finite. This implies, from the equivariant convergence, that a short
geodesic loop, γi (representing a nontrivial element in Γi), has either a non-
small holonomy or has a very small holonomy compared to its length. This
implies a homomorphism, φi : Γi → H, whose kernel, Λi = ker(φi), has a
very small holonomy. In other words, if M̂i = M̃i/Λi, then (3.3) is satisfied
for i large, and therefore we obtain a cross section, M̂i → F (M̂i).

The flat connection may be viewed as a small perturbation of the Levi-
Civita connection on Mi, and thus its torsion should be very small. Using
some PDE techniques, one may deform the flat connection by a gauge trans-
formation so as to obtain a flat connection with a parallel torsion [53, 29]. By
now we can conclude, following the discussion at the beginning of the proof,
that M̂i is a nilpotent manifold and [Γi : Λi] = |H|. Therefore, Mi = M̂i/H
is an infra-nilpotent manifold. �

Note that the flat connection constructed in the above proof may depend
on the choice of α(x̃). Removing this dependence is necessary for reducing
the structural group of the fibration to an affine automorphism group, as
seen in Example 3.1 [14].

4. Collapsed manifolds with bounded diameter

After Theorems 1.1 and 3.1, we consider a sequence of closed n-manifolds,
Mi

dGH−−−−→ X, with |secMi | ≤ 1, diam(Mi) ≤ d, and 0 < dim(X) < n.
Without loss of generality, we may assume the sequence of orthogonal frame
bundles, pi : F (Mi)→Mi, equipped with a canonical metric (see Section 2),
satisfy (2.3):

(4.1)

(F (Mi), O(n))
deqGH−−−−→ (Y, O(n))⏐⏐�pi

⏐⏐�p̄

Mi
dGH−−−−→ X = Y/O(n)

The main issue is to investigate

(4.2) links between geometrical and topological structures of Mi and X.
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A significant consequence of the two-sided bound on curvature is that
Y is a manifold [25]. This essentially reduces (4.1) to the following special
situation [14, 24, 25, 9]:

Theorem 4.1 (Fibration). Let a compact Lie group G act isometrically
on manifolds M, N , which satisfy

secM ≥ −1, |secN | ≤ 1, injrad (N) ≥ i0 > 0.

There is a constant ε(m, i0) > 0 (m = dim(M)) such that if deqGH((M, G),
(N, G)) < ε ≤ ε(n, i0), then there is a G-invariant fibration map, f :
(M, G)→ (N, G), with a connected fiber F such that:

(4.1.1) d(x, f(x)) < τ(ε), where d is an admissible metric on M
∐

N ,
τ(ε) ε→0−−−−→ 0.

(4.1.2) f : M → N is an almost Riemannian submersion: any vector ξ

orthogonal to F satisfies that e−τ(ε) ≤ |df(ξ)|/|ξ| ≤ eτ(ε).
(4.1.3) If secM ≤ 1, then the second fundamental form of fibers |IIF | ≤

c(m).

Sketch of Proof. We will present a proof with G = {e}, and the
general case can be obtained with suitable ‘equivariant’ modification.

Given an admissible metric d on M
∐

N such that dH(M, N) < ε, there
is a natural projection that maps x ∈ M to y ∈ N which is closest to x,
but this projection may not even be continuous if y is not unique. Using
the geometric bounds on M and N , one overcomes this ambiguity by con-
structing a smooth embedding, Φ : N ↪→ Rs, and a C1-map, Ψ : M → Rs,
such that Ψ(M) is contained in a tube U of Φ(N) where the projection
P : U → Φ(N), to the nearest point in Φ(N), is smooth, and then defining
f = Φ−1 ◦ P ◦ Ψ : M → N . Furthermore, f will satisfy (4.1.2) if Φ and Ψ
are also ‘C1-close’ in ‘horizontal directions’ as follows: let ui ∈ N, vi ∈ M
such that d(u1, ui) = i0/10 (i = 2, 3) and d(ui, vi) < ε, and let ξ and η be
tangent vectors of the minimal geodesics from u1 to u2 and from v1 to v2
respectively. Then there are constants C, τ(ε) such that

(4.3) |dΦ(ξ)− dΨ(η)|Rs ≤ C · τ(ε) · |ξ|, lim
ε→0

τ(ε) = 0.

To construct Φ and Ψ, we first choose a pair of closed ‘ε-nets’ in M and
in N (i.e., {xi} ⊂ N and {yi} ⊂ M are ε-dense in N and Y respectively
such that d(xi, xj) ≥ ε and d(xi, yi) < ε), and a smooth ‘cut-off’ function,
ρ(t) ≥ 0, with h((−∞, 0]) = ρ(0) = 1, supp(ρ) = (−∞, i0/100], ρ′(t) ≤ 0
and ρ′(t) ∼ −t−1 near 0. Then, define Φ(x) = (ρ(d(x, xi))) ∈ Rs and Ψ(y) =
(ρ(ψi(y))) ∈ Rs, where s = |netε(N)| and ψi(y) is the average distance
from y to z ∈ Bε(yi) (this guarantees that ρ(d(y, yi)) is C1 smooth). The
bounds on curvature and injectivity radius of N guarantee (4.1.1) and that
Φ is an embedding (the verification is somewhat tedious). The ‘C1-close’ in
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(4.3) can be verified from the ‘angle-close’ from dGH(M, N) < ε: Let α be
the angle between segments u1ui, β the angle between v1vi, i = 2, 3. Then
using the Toponogov comparison theorem, one can show that |α − β| <
τ(ε) [13].

One may prove (4.1.3) by contradiction, and with a suitable rescaling
and taking pointed convergence for a sequence of counterexamples, one ends
up with a Riemannian submersion of a flat manifold to Rm whose fiber is
not totally geodesic, a contradiction. �

Remark 4.1. Note that the image, f(x), depends only on the local
geometry around x ∈ M

∐
N (because of a cut-off function). Thus there is

a local version of Theorem 4.1 (and 5.1), see Corollary 5.1.

Using Theorem 4.1, we can give a proof of (3.2) and thus complete
the proof of Theorem 3.1. This, in turn, implies that in (4.1.3), a fiber is
almost flat.

Sketch of Proof of (3.2).

We argue by contradiction: let (Mi, gi)
dGH−−−−→ pt be as in (3.1) and γi be

a non-trivial geodesic loop at xi ∈ Mi such that γi is homotopically trivial
and length(γi) ≤ 2diam(Mi) = 2�i → 0. By scaling, we may assume that

(Mi, �
−2
i gi)

dGH−−−−→ X with diam(X) = 1 (Lemma 2.1). We claim that X is
a flat manifold, and this implies that length�−2

i gi
(γi, ) → 0; otherwise, we

may assume that γi converges to a non-trivial geodesic loop in X which is
homotopically trivial, a contradiction.

Let’s first assume the claim and derive a contradiction. By Theorem 4.1,
we obtain a fibration, fi : Mi → X, with fiber Fi an almost flat mani-
fold. We may assume that γi is homotopically equivalent, through curves of
length ≤ 100 · length(γi), to a geodesic loop γ̂i in a fiber Fi (γ̂i may not be a
geodesic in Mi). Note that γ̂i is not trivial because secMi ≤ i−1 implies that
γi is not homotopically trivial through short curves. We now proceed by
induction on n, and we will show that a short geodesic loop in Mi cannot be
homotopically trivial. By the inductive assumption, we conclude that γ̂i is
not homotopically trivial in Fi. On the other hand, from the homotopy exact
sequence of Mi → X and π2(X) = 0, we conclude that π1(Fi) → π1(Mi) is
an injection; a contradiction.

Finally, we verify the claim. Let Bi(0i) ⊂ TxiMi denote the ball of radius
iπ/2. Then expxi

: Bi(0i) → Mi is non-singular and thus there is a pull-
back metric g̃i. Furthermore, short geodesic loops at xi generate a pseudo-
group that acts isometrically on Bi(0i) (e.g., the Γi-orbit at X ∈ Bi(0i)

is exp−1
xi

(expxi
(X))∩Bi(0i)) [28]. We may assume that (Bi(0i), Γi, 0i)

deqGH−−−−→
(Rn, G, 0), and thus Mi = Bi(0i)/Γi

dGH−−−−→ X1 = Rn/G (see the discus-
sion at the end of Section 1). It suffices to show that G acts freely on Rn.
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If G0 denotes the identity component of G, G0 is normal and thus every
G0-orbit is isometric to G0(0) = Rk. This implies that G0 acts freely on
Rn. If 1 �= t ∈ G such that t(0) = 0, then tm = 1. Let ti ∈ Γi such that
ti → t (see Section 1). By the discreteness of G/G0 and the compactness of
X = (Rn−k/G0)/(G/G0) = Rn/G, we can see that tmi = 1, a contradiction
because ti fixes the center of mass of {ti(xi), . . . , tm(xi)} for i large. �

A natural question is if the converse of Theorem 4.1 holds. Motivated
by Example 3.1, a positive answer requires that the structural group of the
fibration in Theorem 4.1 reduce to a subgroup of affine automorphisms. This
issue will be resolved below.

We first return to (4.1): Mi
dGH−−−−→ X and X is not a manifold. As

mentioned there, (4.1) can be answered through studying the convergent

sequence of the frame bundles, F (Mi)
dGH−−−−→ Y and Y is always a manifold.

A pure nilpotent Killing structure on F (M) (with a canonical metric)

is a fibration, N → F (M)
f−−−−→ Y , with fiber N a nilpotent manifold

(equipped with a flat connection) on which parallel fields are Killing fields
and the O(n)-action preserves the affine fibration. The underlying O(n)-
invariant affine bundle structure is called a pure N-structure and a metric
for which the N-structure becomes a nilpotent Killing structure is called
invariant. Let Y be equipped with a metric such that f is a Riemannian
submersion. By the O(n)-invariance, the O(n)-action on F (M) descends to
an isometric O(n)-action on Y so that f is an O(n)-map. Because a general
N -fiber meets an O(n)-orbit transversally, the O(n)-action on Y is effective.
Furthermore, the N -fibration descends to a possible singular fibration on M
such that the following diagram commutes:

(4.4)

(F (M), O(n))
f−−−−→ (Y, O(n))⏐⏐�p

⏐⏐�p̄

M
f̄−−−−→ X = Y/(n)

We call a torus bundle, T k → F (M) h−−−−→ Z, a sub-bundle of N →
F (M)

f−−−−→ Y , if each T k-fiber is contained in a fiber N . A pure N-stru-
cture has a natural T k-sub-bundle determined by the center of the nilpotent
group, called a canonical pure F-structure. Observe that if π1(M) is finite, so
is π1(F (M)), and the homotopy exact sequence of N → F (M) → Y yields
that π1(N) is abelian. This implies that N = T k, i.e., the pure N-structure
coincides with a pure F-structure [47]. Observe that on a simply connected
manifold, a pure F-structure is equivalent to a torus action.

Combining Theorems 3.1 and 4.1, we obtain the following result
[14, 24, 25].



COLLAPSED MANIFOLDS 13

Theorem 4.2 (Singular fibration). Let a sequence of closed n-manifolds

Mi
dGH−−−−→ X with |secMi | ≤ 1 and X be a compact metric space. Then:

(4.2.1) The frame bundles F (Mi), equipped with a canonical metric, con-
verge to Y , which is homeomorphic to a manifold and on which
O(n) acts isometrically.

(4.2.2) There is an O(n)-invariant fibration, f̃ : F (Mi)→ Y , satisfying the
conditions in Theorem 3.3, which becomes, for ε > 0, a nilpotent
Killing structure with respect to an ε C1-closed metric.

Note that Theorem 4.2 provides a satisfactory answer to (3.1).

Sketch of Proof of Theorem 4.2.
(4.2.1) Let (F (Mi), O(n))

deqGH−−−−→ (Y, O(n)) be the associated sequence
in (2.3). We first show that any y ∈ Y has a manifold neighborhood. Let
(xi, αi) ∈ F (Mi) such that (xi, αi) → y, where αi is an orthogonal basis
at xi ∈ Mi. Let Bi denote the unit ball at xi, and let B̃i denote the unit
ball in the tangent space TxiMi. The short geodesic loops at y generate a
pseudogroup, Γi, that ‘acts’ isometrically on B̃i (equipped with the pull-
back metric by the exponential map) so that B̃i/Γi = Bi [26]. Via the
differentials, Γi acts isometrically on F (B̃i) such that F (B̃i)/Γi = F (Bi).
Because the injectivity radius at the center of B̃i is at least 1/3 (because

secMi ≤ 1), the limit, (B̃i, Γi)
deqGH−−−−→ (Z,Γ), is a C1,α-manifold (a local ver-

sion of Theorem 1.1) and thus the limit, (F (B̃i), Γi)
deqGH−−−−→ (F (Z), Γ), is the

frame bundle of Z. Hence, the Γ-action on F (Z) is free because it is induced
from the Γ-action on Z (any nontrivial isometry acts freely on the frame bun-

dle via its differential). Consequently, F (Bi) = F (B̃i)/Γi
dGH−−−−→ F (Z)/Γ

(see the end of Section 1) is a manifold neighborhood of y.
(4.2.2) For each i, let gi,ε be the solution of the Ricci equation as in the

proof of Theorem 3.1. From the above, it is clear that the extra regularity
implies that the limit Yε of (F (Mi), gi,ε) is a smooth Riemannian manifold,
and thus we can apply Theorem 4.1 to conclude that for all ε ≤ ε0 (small),
there are O(n)-invariant fibrations,

(F (Mi)ε, O(n))
f̃ε−−−−→ (Yε, O(n))⏐⏐�pi

⏐⏐�p

Mi,ε
dGH−−−−→ Xε = Yε/O(n)

By the continuity, it is clear that (F (Mi)ε, O(n)) is conjugate to
(F (Mi)ε0 , O(n)), and thus (Yε, O(n)) is conjugate to (Yε0 , O(n)). This implies
that Yε

dGH−−−−→ Y is equivalent to a convergent sequence of metrics on Yε0 ,
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and thus (Y, O(n)) is conjugate to (Yε0 , O(n)). Consequently, the composi-
tion of maps,

(F (Mi), O(n)) � (F (Mi)ε0 , O(n))
fε0−−−−→ (Yε0 , O(n)) � (Y, O(n)),

has the desired property. �

Let’s look at a simple example of a singular fibration in Theorem 4.2:
consider an isometric T 2-action on the unit S3. Let R1 ⊂ T 2 be a dense
subgroup. Then R1 acts isometrically on S3 such that every orbit is one-
dimensional. Write g = g1 + g⊥

1 , and define, for ε > 0, gε = ε2g1 + g⊥
1 , where

g1 is the restriction of g on the tangent space of an R1-orbit, and g⊥
1 is the

orthogonal complement. Then (S3, gε)
dGH−−−−→ S3/T 2 = [0, π/2] as ε → 0

such that |secgε | ≤ C. The O(3)-invariant fibration on F (S3) = O(4) is a
principal T 2-bundle, T 2 → O(4) → O(4)/T 2 = Y (defined by dt : F (S3) →
F (S3), t ∈ T 2), and the induced singular fibration on S3 coincides with the
orbits of the T 2-action.

A natural question is whether M , carrying a pure nilpotent Killing struc-
ture with all orbits of positive dimension, admits a sequence of metrics with
bounded curvature collapsing to the orbit space. In general, the answer is
negative (there are such manifolds of non-vanishing signature, [15]). This
clearly suggests a possible constraint on the pure nilpotent Killing structure
arising in Theorem 4.2 (cf. [18]).

5. Collapsed manifolds (without a bound on diameters)

Consider a collapsed complete n-manifold, that is, M satisfies |secM | ≤ 1
and vol(B1(x)) < ε for all x ∈ M . By a simple limiting argument, using
Theorem 4.2 one can see that B1(x) is contained in some open set which
admits a pure nilpotent Killing structure of some nearby metric. The main
issue is how these ‘charts’ of local pure nilpotent Killing structures can be
patched together.

To be precise, let’s consider a collapsed metric on (−R, R)× T 1 × T 1:

g = dr2 + e−(R+r)dθ2
1 + e−(R−r)dθ2

2.

Clearly, one gets (from the above) a pure T 2-structure around the point
(0, θ1, θ2) and pure T 1-structures near (−R, θ1, θ2) and (R, θ1, θ2). This illus-
trates that the local pure structure cannot be made completely canonical,
because a T 1-action cannot be continuously deformed to a T 2-action. How-
ever, in the region where a T 2- and a T 1-action meet, the latter is conjugate
to a T 1-subgroup of the former (easily seen for an obvious topological rea-
son). In general, the tool for this kind of compatibility is the rigidity of any
two C1-closed compact Lie group actions [37].

We now define a (mixed) nilpotent Killing structure. Consider a pure
nilpotent Killing structure, N , on an open subset U ⊂M , N → F (U)→ Y .
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Another pure nilpotent Killing structure on U , N1 → F (U) → Y1, is called
a sub-nilpotent Killing structure if every N1-fiber is an affine submanifold
of some N -fiber. If a nilpotent Killing structure does not coincide with its
center, then its canonical F-structure is a proper substructure.

A (mixed) nilpotent Killing structure N on a complete manifold M con-
sists of {(Ui,Ni)}, where {Ui} is a locally finite open cover for M , Ni is a
pure nilpotent Killing structure on Ui such that if Ui ∩Uj �= ∅, then Ui ∩Uj

is an invariant subsets of both Ni and Nj , and Ni is a substructure of Nj or
vice versa. By the compatibility, M decomposes into N -orbits; an N -orbit
at x is the minimal invariant subset of all (Ui,Ni) that contains x.

Theorem 5.1 (Mixed nilpotent Killing structure, [14]). There exists a
constant ε(n) > 0 such that if a complete n-manifold M satisfies

|secM | ≤ 1, vol(B1(x)) < ε(n) ∀x ∈M,

then M admits a Killing nilpotent structure of some nearby metric (with a
higher regularity) whose orbits have positive dimension and diameter <ε(n).

A consequence of the existence of such a nilpotent Killing structure is
the vanishing of the Euler characteristic of M [16]. Another consequence
(with Theorem 1.1) is the so-called thick-thin decomposition on any complete
manifold of bounded sectional curvature (the thin part consists of points
satisfying the conditions of Theorem 5.1). Its local structure is as follows:

Corollary 5.1 (Local structure). There exists ε(n) > 0 such that if
Mn is a complete manifold with sectional curvature |secMn | ≤ 1 and x ∈M ,
then either Bε(x) is diffeomorphic to a Euclidean ball or there is an open
subset U ⊃ Bε(x) such that the frame bundle F (U) admits an O(n)-invariant
fibration as in Theorem 4.2.

Sketch of a Proof of Theorem 5.1.
By a simple limiting argument, one easily sees that for any x ∈ M ,

B1(x) is contained in an open subset U ⊂ M such that U admits a pure
nilpotent Killing structure N with respect to a nearby metric, i.e., F (U)
admits an O(n)-invariant fibration as in Theorem 4.2 (see Remark 4.1).
Thus one obtains a locally finite open cover, {(Ui,Ni)}, for M . Note that
on Ui ∩ Uj �= ∅, Ni may not be a substructure of Nj or vice versa (because
the construction of Ni cannot be made completely canonical). However, on
Ui∩Uj , the two pure nilpotent Killing structures should be close in a suitable
sense, because both are constructed from the same geometry data.

The goal of the proof is to systematically modify (Ui,Ni) and (Uj ,Nj)
wherever Ui ∩ Uj �= ∅ so as to form new charts, still denoted by {(Ui,Ni)},
with a compatibility condition: on Ui ∩ Uj �= ∅, Ni ⊆ Nj or vice versa. For
the sake of simple exposition, let’s first consider the case where Ni = Fi, i.e.,
Ni coincides with its canonical F-structure Fi. Note that Fi is also defined
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by some torus T ki-action on a finite normal covering of Ui, and thus the
problem essentially reduces to showing that the two T ki- and T kj -actions
are C1-close [37]. A technical issue arises around a multiple intersection:
in performing consecutively ordered modifications, it is necessary that each
modification preserves the C1-closeness up to a controlled factor (indeed,
such a construction is not easy and quite technical).

In the general case, one performs the modification on the Riemannian
universal covering space of Ui ∩ Uj by applying the technique of center of
mass. �

Similar to the discussion at the end of last section, it is natural to ask
if a (mixed) N-structure implies a collapsing (roughly, if the converse of
Theorem 4.1 holds). The following implies a positive partial answer:

Theorem 5.2. [15] Suppose a manifold M admits an F-structure of
positive rank. Then Madmits a one-parameter family of invariant metrics
gε such that |secgε | ≤ 1 and the diameters of all orbits uniformly converge
to zero (consequently, volgε(B1(x)) → 0 (ε → 0) for all x ∈ M). More-
over, if all local pure F-structures have orbits of constant dimension, then
volgε(M)→ 0.

Combining Theorems 5.1 and 5.2, one easily concludes a classification of
collapsed 3-manifolds: a closed 3-manifold M admits a collapsed metric with
bounded sectional curvature if and only if M is diffeomorphic to a graph
manifold [47]. This also confirms the Gap conjecture of Gromov [34] for
n = 3: there is vn > 0 such that if a complete n-manifold M with |sec| ≤ 1
has volume < vn, then M admits a sequence of volume collapsed metrics
(cf. [19, 48]).

An interesting problem is to prove Theorem 5.2 for a mixed N-structure
with orbits of positive dimension [14] and [43].

6. Applications

In Sections 4 and 5, we construct a pure (resp. mixed) nilpotent Killing
structure on a collapsed manifold with (resp. without) a bound on the
diameter. In this section, we will present some applications based on the
existence of such a structure; most are in various especially interesting
geometric/topological situations. It is a special geometric/topological con-
dition that puts additional constraints on a nilpotent Killing structure,
which in turn implies additional topological constraints on the underlying
manifold.

It turns out that in every collapsed situation discussed in this section,
the pure/mixed nilpotent Killing structure arising from a collapsed met-
ric actually coincides with its canonical F-structure. Recall that if a mani-
fold of finite fundamental group admits a pure nilpotent Killing structure
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N , then N = F , i.e., it coincides with its canonical F-structure (see the
discussion prior to Theorem 4.2). This implies that on a collapsed manifold
with pinched positive sectional curvature, a pure nilpotent Killing struc-
ture coincides with the canonical F-structure. If M is a collapsed manifold
with bounded non-positive sectional curvature, then a (mixed) nilpotent
Killing structure also coincides with its canonical F-structure. Basically,
this is due to the fact that a solvable subgroup of π1(M) is actually Bieber-
bach [55, 31, 41].

a. Finiteness results. A typical diffeomorphism finiteness theorem,
such as Theorem 1.1, concerns non-collapsed manifolds, or equivalently,
manifolds where there is a positive lower bound on (local) volume. An
interesting application of Theorem 4.2 is the following finiteness result that
includes collapsed manifolds:

Theorem 6.1. [20, 23, 44] For n, d > 0, there is a constant c(n, δ)
such that the class of closed 2-connected n-manifolds satisfying

|sec| ≤ 1, diam ≤ d,

contains at most c(n, d) many diffeomorphic types.

Note that the conclusion of Theorem 6.1 remains true for n ≤ 6 without
assuming vanishing π2 [21, 56], and is false if we remove either π2 = 0 [1]
or an upper bound on curvature without imposing further restrictions [38].

Sketch of a Proof of Theorem 6.1. By Theorem 1.1, Theorem 6.1
is true if it holds for any collapsing sequence, Mi

dGH−−−−→ X, as in (4.1), and

T k → SF (Mi)
fi−−−−→ Y is a principal T k-bundle as in (4.4) (Theorem 4.2),

where SF (Mi) denotes the SO(n)-frame bundle. Because the induced SO(n)-
actions on Y are C1-close, without loss of generality we may choose fi

so that the induced SO(n)-action is independent of i [37]. We will con-
struct an SO(n)-conjugate map between SF (Mi) and SF (Mj). First, by
the standard bundle theory, a principal T k-bundle whose total space is 2-
connected is unique up to a fiber automorphism, and thus we may assume a
T k-conjugate diffeomorphism, f : SF (Mi) → SF (Mj), such that f induces
an identity map on Y . We will use the center of mass technique to mod-
ify f into an SO(n)-conjugate map. Because the SO(n)-action commutes
with the T k-action, one sees that f maps the T k-fiber at s(x) to that
at f(s(x)), s ∈ SO(n). Consequently, s−1f(s(x)) ⊆ T k(f(x)) for all s.
Because the diameter of T k(f(x)) is very small, we consider the lifting map,
Sp(n) → Rk(f(x)), where SP (n) → SO(n) and Rk(f(x)) → T k(f(x)) are
the Riemannian universal coverings. By now we can take the center of mass
of Sp(n)→ Rk(f(x)), which is clearly invariant under the deck transforma-
tions, and thus obtain the desired SO(n) conjugate map. �
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Using Theorem 4.2, one can prove the following finiteness result without
assuming a lower volume bound:

Theorem 6.2. [22] For n, d > 0, there is a constant v(n, d) > 0 such
that if a closed symplectic n-manifold of finite fundamental group satisfies

|sec| ≤ 1, diam ≤ d,

then vol(M) ≥ v(n, d). In particular, M has finitely many possible diffeo-
morphic types depending on n and d.

Note that Theorem 6.2 is false if we remove the restriction on the fun-
damental group without imposing further restrictions (e.g., a flat torus).

Sketch of a Proof of Theorem 6.2. Arguing by contradiction, we
may assume a sequence satisfying Theorem 6.2, Mi

dGH−−−−→ X with
dim(X) < n. Then Mi admits a pure F-structure with orbits of positive
dimensions (Theorem 4.2). Equivalently, the universal covering space M̃i

admits a torus action without fixed points, and thus there is a circle sub-
group without fixed points, a contradiction to a topological result obtained
in [22]: any effective circle action on a closed symplectic manifold has a
non-empty fixed point set. �

Using Theorem 4.2, one can also prove an isomorphism finiteness result
for the q-th homotopy groups of closed n-manifolds in terms of n, q and
bounds on curvature and diameter [22, 50]. Note that the homotopy group
finiteness does not hold if we remove the upper curvature bound (compare
to [33]).

b. Manifolds with pinched positive sectional curvature. Let M
be a closed n-manifold of positive sectional curvature. Recall that the fun-
damental group π1(M) is finite, and if n is even and M is orientable, then
π1(M) = 1 (cf. [13]). However, in odd dimensions no general constraint on
π1(M) is known that could distinguish positive curvature from non-negative
curvature. A conjectured obstruction is that there is γ ∈ π1(M) such that
the ratio |π1(M)|/|γ| ≤ w(n), a constant depending only on n, where |γ| is
the order of γ [50].

Based on Theorem 4.2, one can partially verify the above conjecture.

Theorem 6.3. [50, 51] Let M be a closed n-manifold of δ-pinched
curvature. If |π1(M)| ≥ w(n, δ), then π1(M) has a non-trivial normal cyclic
subgroup of index at most w(n).

Sketch of a Proof of Theorem 6.3. We may assume dim(M) is
odd. The condition ‘secM ≥ δ’ implies that the diameter ≤ π/

√
δ (Bonnet

theorem) and the volume ≤ vol(Sn
δ )

w(n,δ) (volume comparison) which is small when
w(n, δ) is large, where Sn

δ is the n-sphere of constant curvature δ. Hence,
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M admits a pure F-structure of rank k ≥ 1 and a nearby invariant metric
(Theorem 4.1). As it turns out, it is crucial to have an invariant metric of
positive curvature. Based on the regularity of the Ricci flows, one can get a
nearby invariant metric with δ/2-pinched curvature [50].

The above symmetry structure of a positively curved metric is all one
needs to prove the desired property of π1(M). For instance, if k = 1 and
circle orbits on M form a fibration, then the homotopy class of a circle orbit
generates a normal cyclic subgroup < σ >⊆ π1(M) such that π1(M)/ <
σ >∼= π1(M∗), where M∗ denotes the orbit space. Note that π1(M∗) = 1 or
Z2 because dim(M∗) is even and M∗ has a unique metric so that M →M∗
is a Riemannian submersion (thus secM∗ ≥ δ/2, Gray-O’Neill submersion
equations).

The proof in general is quite involved, and the constant w(n) is related
to Gromov’s Betti number estimate [33]. �

Recall that the injectivity radius of a closed even-dimensional manifold
of 0 < secM ≤ 1 is at least π/2 while there is no positive lower bound in
odd dimensions (e.g., Berger sphere). The Klingenberg-Sakai conjecture says
once δ is fixed, there is a positive lower bound on the injectivity radius of a
δ-pinched metric depending on δ. However, there are infinitely many simply
connected 7-manifolds of uniformly pinched positive sectional curvature [1].
Hence, to have a possible universal lower bound, i.e., one depending only on
n and δ, additional restrictions are required.

Theorem 6.4. [46] Let M be a closed n-manifold of δ-pinched curvature.
If M is 2-connected, then the injectivity radius of M is at least ε(n, δ) > 0,
a constant depending only on n and δ.

Note that in the above-mentioned 7-manifolds, each second homotopy
group has rank one.

Sketch of a Proof of Theorem 6.4. We argue by contradiction,
assuming a sequence Mi satisfying Theorem 6.4 such that Mi

dGH−−−−→ X,
where dim(X) < n. From the proof of Theorem 6.1, we may assume a
manifold M �Mi admitting a T k-action without fixed points and a sequence
of invariant metrics gi such that gi collapses along F , i.e., the diameters of all
F converge uniformly to zero and the induced metrics di on M/T k converge
to d pointwise. As seen in the proof of Theorem 6.3, we may assume the
invariant metrics are δ/2-pinched. By now, we are in a situation similar to
the collapsing of Berger’s sphere (where, however, the minimal curvature
converges to zero).

Indeed, given any sequence of metrics gi on a manifold, λ ≤ secgi ≤ 1,
collapsing along a (fixed) F-structure, one can construct a complete non-
compact length space with curvature ≥λ, and the non-compactness forces
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λ ≤ 0 (a generalized Bonnet theorem, [45]). By now, one sees a contradiction
to the above.

For simplicity, we will explain the idea with the special case k = 1. To
get a contradiction, we take a finite open cover {Uα} for M such that each
Uα is a tube of radius ρ > 0 with respect to d. Clearly, (Uα, gi) converges to
a ρ-ball in X. For Uα ∩ Uβ �= ∅, let φαβ : Uα ⊃ Uα ∩ Uβ → Uα ∩ Uβ ⊂ Uβ

denote a gluing map. On Uα∩Uβ∩Uγ �= ∅, these maps satisfy φαβ◦φβγ◦φγα =
id. Let Ũ → Uα denote the Riemannian universal covering space. Then there
is a lifting map, φ̃αβ : Ũα ⊃ Ũα∩ Ũβ → Ũα∩ Ũβ ⊂ Ũβ. However, these lifting
maps do not satisfy the compatibility condition: φ̃αβ ◦ φ̃βγ ◦ φ̃γα = ξαβγ �= id.
We may view {ξαβγ} as an obstruction to gluing {Ũα} together. The key

observation is that when taking limits, (Ũα, xα, gi)
dGH−−−−→ (Ũα,∞, xα) and

φ̃αβ → φ̃αβ,∞ simultaneously, the collapsing condition implies that ξαβγ →
id as i → ∞. Consequently, using {φ̃αβ,∞}, one can glue {Ũα,∞} together
to form a complete non-compact manifold (because Ũα,∞ � D2 × R) with
curvature ≥λ (e.g., for Berger’s sphere, N = S2

1
2
× R). �

c. Collapsed manifolds with non-positive sectional curvature.
A flat manifold (of small volume) is a trivial example of a collapsed manifold
with (bounded) non-positive curvature, and a nontrivial example is that any
graph 3-manifold whose fundamental group contains no cyclic subgroup of
finite index admits a collapsed metric with (bounded) non-positive curvature
[34]. S. Buyalo studied a collapsed 3-manifold M with −1 ≤ secM ≤ 0 and
found that there are a finite number of totally geodesic flat tori, T 2

i ⊂ M ,
such that each component Uj of M − ⋃

i T
2
i is a metric product, Uj =

Σ2
j × S1 [5–7]. By definition, M is a graph manifold with a graph system
{T 2

i }. Note that {(Ui, T
1)} actually defines an F-structure, called a Cr-

structure, with the additional properties that Ui is a product (in general,
up to a finite covering space) and the fundamental group of an orbit injects
into π1(M).

One may describe the local metric product structure in terms of the
subgroups of π1(M) generated by loops in orbits (up to a finite covering).
Recall that for each non-trivial abelian subgroup A ⊂ π1(M), there is an
isometric immersion of a flat torus, i : T rank(A) →M , such that the induced
maps on the fundamental groups satisfy i∗π1(T rank(A)) = A [31, 41]. More
generally, the minimal set splits, Min(A) = D × Rrank(A), where Min(A)
denotes the set of points in the Riemannian universal covering of M at
which the displacement of any element in A achieves the minimum, and
whose projection contains the immersed flat torus.

Let A = {Aα} denote a collection of abelian subgroups Aα ⊂ π1(M)
which are preserved by conjugation. We say that A determines an abelian
structure (resp. a local splitting structure) on M if the following conditions
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(resp. (6.5.1)) hold:

The Riemannian universal covering space M̃ =
⋃

Aα∈A
Min(Aα).(6.1)

Min(Aα) ∩Min(Aβ) �= ∅ if and only if Aα and Aβ commute.(6.2)

If π1(M) has a nontrivial normal abelian subgroup A, then A = {A}
determines an abelian structure for any non-positively curved metric on M
[31, 41].

Theorem 6.5. [55] Let M be a closed n-manifold with −1 ≤ secM ≤ 0.
If vol(B1(x)) < ε(n) for all x ∈ M , then there is A = {Aα} ⊂ π1(M)
that determines an abelian structure. Moreover, any abelian structure deter-
mines a canonical Cr-structure (i.e., one whose orbits are totally geodesic
flat submanifolds).

Theorem 6.5 was essentially conjectured by Buyalo, who also verified it
for n = 3, 4. Indeed, one easily concludes that if a graph manifold admits a
Cr-structure compatible with one metric of non-positive curvature, then it
is compatible with every non-positively curved metric.

Recall that geometrical rigidity results often assert that a class of cer-
tain metrics are unique up to a scaling (e.g., the higher rank rigidity, [2]).
In this spirit, one may view the above as a weak rigidity: the underlying
Cr-structure captures the local splitting structure of every metric of non-
positive curvature. (In this sense, all these metrics are alike.) It is conjectured
that such a weak rigidity should hold in all dimensions.

The following result partially supports the conjecture.

Theorem 6.6. [10] Let M be a closed manifold which admits a metric
of non-positive sectional curvature. If M admits an F-structure, then every
metric of non-positive sectional curvature has a splitting structure.

Here we omit the outline of proofs. A remaining problem is to show that
the local splitting structure in Theorem 6.6 satisfies (6.2).

References

[1] S. Aloff and N.R. Wallach, An infinite family of 7-manifolds admitting positive curved
Riemannian structures, Bull. Amer. Math. Soc., 81 (1975), 93–97.

[2] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature,
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