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This essay grew from a talk I gave on the occasion of the seventieth
anniversary of the Chinese Mathematical Society. I dedicate the lecture to
the memory of my teacher S.S. Chern who had passed away half a year
before (December 2004).

During my graduate studies, I was rather free in picking research topics.
I [731] worked on fundamental groups of manifolds with non-positive curva-
ture. But in the second year of my studies, I started to look into differential
equations on manifolds. However, at that time, Chern was very much inter-
ested in the work of Bott on holomorphic vector fields. Also he told me that
I should work on Riemann hypothesis. (Weil had told him that it was time
for the hypothesis to be settled.) While Chern did not express his opinions
about my research on geometric analysis, he started to appreciate it a few
years later. In fact, after Chern gave a course on Calabi’s works on affine
geometry in 1972 at Berkeley, S.Y. Cheng told me about these inspiring lec-
tures. By 1973, Cheng and I started to work on some problems mentioned
in Chern’s lectures. We did not realize that the great geometers Pogorelov,
Calabi and Nirenberg were also working on them. We were excited that we
solved some of the conjectures of Calabi on improper affine spheres. But
soon after we found out that Pogorelov [563] published his results right be-
fore us by different arguments. Nevertheless our ideas are useful in handling
other problems in affine geometry, and my knowledge about Monge-Ampère
equations started to broaden in these years. Chern was very pleased by
my work, especially after I [736] solved the problem of Calabi on Kähler
Einstein metric in 1976. I had been at Stanford, and Chern proposed to the
Berkeley Math Department that they hire me. I visited Berkeley in 1977 for
a year and gave a course on geometric analysis with emphasis on isometric
embedding.

Chern nominated me to give a plenary talk at the International Congress
in Helsinki. The talk [737] went well, but my decision not to stay at Berkeley
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did not quite please him. Nevertheless he recommended me for a position on
the faculty at the Institute for Advanced Study. Before I accepted a faculty
position at the Institute, I organized a special year on geometry in 1979 at
the Institute at the invitation of Borel. That was an exciting year because
most people in geometric analysis came.

In 1979, I visited China at the invitation of Professor L.K. Hua. I gave a
series of talks on the bubbling process of Sacks-Uhlenbeck [581]. I suggested
to the Chinese mathematicians that they apply similar arguments for a
Jordan curve bounding two surfaces with the same constant mean curvature.
I thought it would be a good exercise for getting into this exciting field
of geometric analysis. The problem was indeed picked up by a group of
students of Professor G.Y. Wang [362]. But unfortunately it also initiated
some ugly fights during the meeting of the sixtieth anniversary of the Chinese
Mathematical Society. Professor Wang was forced to resign, and this event
hampered development of this beautiful subject in China in the past ten
years.

In 1980, Chern decided to develop geometric analysis on a large scale.
He initiated a series of international conferences on differential geometry and
differential equations to be held each year in China. For the first year, a large
group of the most distinguished mathematicians was gathered in Beijing to
give lectures (see [148]). I lectured on open problems in geometry [739].
It took a much longer time than I expected for Chinese mathematicians to
pick up some of these problems.

To his disappointment, Chern’s enthusiasm about developing differential
equations and differential geometry in China did not stimulate as much
activity as he had hoped. Most Chinese mathematicians were trained in
analysis but were rather weak in geometry. The goal of geometric analysis
for understanding geometry was not appreciated. The major research center
on differential geometry came from students of Chern, Hua and B.C. Su.
The works of J.Q. Zhong (see, e.g., [755, 527, 528]) were remarkable.
Unfortunately he died about twenty years ago. Q.K. Lu studied the Bergman
metric extensively. C.H. Gu [296] studied gauge theory and considered
harmonic map where the domain is R1,1. J.X. Hong (see, e.g., [345, 318])
did some interesting work on isometric embedding of surfaces into R

3. In
the past five years, the research center at the Chinese University of Hong
Kong, led by L.F. Tam and X.P. Zhu, has produced first class work related
to Hamilton’s Ricci flow (see, e.g., [125, 126, 129, 130, 113]).

In the hope that it will advance Chern’s ambition to build up geomet-
ric analysis, I will explain my personal view to my Chinese colleagues. I
will consider this article to be successful if it conveys to my readers the
excitement of developments in differential geometry which have been taking
place during the period when it has been my good fortune to contribute. I
do not claim this article covers all aspects of the subject. In fact, I have
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given priority to those works closest to my personal experience, and, conse-
quently, I have given insufficient space to aspects of differential geometry in
which I have not participated. In spite of these shortcomings, I hope that
my readers, particularly those too young to know the origins of geometric
analysis, will be interested to learn how the field looks to someone who was
there. I would like to thank comments given by R. Bryant, H.D. Cao, J.
Jost, H. Lawson, N.C. Leung, T.J. Li, Peter Li, J. Li, K.F. Liu, D. Phong,
D. Stroock, X.W. Wang, S. Scott, S. Wolpert, and S.W. Zhang. I am also
grateful to J.X. Fu, especially for his help of tracking down references for
the major part of this survey. When Fu went back to China, this task was
taken up by P. Peng and X.F. Sun to whom I am grateful also.

In this whole survey, I follow the following:

Basic Philosophy:

Functions, tensors and subvarieties governed by
natural differential equations provide deep insight
into geometric structures. Information about these
objects will give a way to construct a geometric
structure. They also provide important informa-
tion for physics, algebraic geometry and topology.
Conversely it is vital to learn ideas from these
fields.

Behind such basic philosophy, there are basic
invariants to understand how space is twisted. This
is provided by Chern classes [149], which appear
in every branch of mathematics and theoretical
physics. So far we barely understand the analytic
meaning of the first Chern class. It will take much
more time for geometers to understand the an-
alytic meaning of the higher Chern forms. The
analytic expression of Chern classes by differen-
tial forms has opened up a new horizon for global
geometry. Professor Chern’s influence on mathe-
matics is forever.
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An old Chinese poem says:

The reeds and rushes are abundant,

and the white dew has yet to dry.

The man whom I admire is on the bank of the river.

I go against the stream in quest of him,

But the way is difficult and turns to the right.

I go down the stream in quest of him,

and Lo! He is on the island in the midst of the water.

May the charm and beauty be always the guiding principle of
geometry!
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1. History and contributors of the subject

1.1. Founding fathers of the subject. Since the whole development
of geometry depends heavily on the past, we start out with historical de-
velopments. The following are samples of work before 1970 which provided
fruitful ideas and methods.

• Fermat’s principle of calculus of variation (Shortest path in
various media).

• Calculus (Newton and Leibnitz): Path of bodies governed by
law of nature.

• Euler, Lagrange: Foundation for the variational principle and
the study of partial differential equations. Derivations of equations
for fluids and for minimal surfaces.

• Fourier, Hilbert: Decomposition of functions into eigenfunctions,
spectral analysis.

• Gauss, Riemann: Concept of intrinsic geometry.
• Riemann, Dirichlet, Hilbert: Solving Dirichlet boundary value

problem for harmonic function using variational method.
• Maxwell: Electromagnetism, gauge fields, unification of forces.
• Christoffel, Levi-Civita, Bianchi, Ricci: Calculus on mani-

folds.
• Riemann, Poincaré, Koebe, Teichmüller: Riemann surface

uniformization theory, conformal deformation.
• Frobenius, Cartan, Poincaré: Exterior differentiation and Poin-

caré lemma.
• Cartan: Exterior differential system, connections on fiber bundle.
• Einstein, Hilbert: Einstein equation and Hilbert action.
• Dirac: Spinors, Dirac equation, quantum field theory.
• Riemann, Hilbert, Poincaré, Klein, Picard, Ahlfors, Beurl-

ing, Carlsson: Application of complex analysis to geometry.
• Kähler, Hodge: Kähler metric and Hodge theory.
• Hilbert, Cohn-Vossen, Lewy, Weyl, Hopf, Pogorelov, Efi-

mov, Nirenberg: Global surface theory in three space based on
analysis.

• Weierstrass, Riemann, Lebesgue, Courant, Douglas, Radó,
Morrey: Minimal surface theory.

• Gauss, Green, Poincaré, Schauder, Morrey: Potential the-
ory, regularity theory for elliptic equations.

• Weyl, Hodge, Kodaira, de Rham, Milgram-Rosenbloom,
Atiyah-Singer: de Rham-Hodge theory, integral operators, heat
equation, spectral theory of elliptic self-adjoint operators.

• Riemann, Roch, Hirzebruch, Atiyah-Singer: Riemann-Roch
formula and index theory.

• Pontrjagin, Chern, Allendoerfer-Weil: Global topological in-
variants defined by curvature forms.
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• Todd, Pontrjagin, Chern, Hirzebruch, Grothendieck,
Atiyah: Characteristic classes and K-theory in topology and al-
gebraic geometry.

• Leray, Serre: Sheaf theory.
• Bochner-Kodaira: Vanishing of cohomology groups based on the

curvature consideration.
• Birkhoff, Morse, Bott, Smale: Critical point theory, global

topology, homotopy groups of classical groups.
• De Giorgi-Nash-Moser: Regularity theory for the higher dimen-

sional elliptic equation and the parabolic equation of divergence
type.

• Kodaira, Morrey, Grauert, Hua, Hörmander, Bergman,
Kohn, Andreotti-Vesentini: Embedding of complex manifolds,
∂̄-Neumann problem, L2 method, kernel functions.

• Kodaira-Spencer, Newlander-Nirenberg: Deformation of geo-
metric structures.

• Federer-Fleming, Almgren, Allard, Bombieri, De Giorgi,
Giusti: Varifolds and minimal varieties in higher dimensions.

• Eells-Sampson, Al’ber: Existence of harmonic maps into mani-
folds with non-positive curvature.

• Calabi: Affine geometry and conjectures on Kähler Einstein met-
ric.

1.2. Modern Contributors. The major contributors can be roughly
mentioned in the following periods:

I. 1972 to 1982: M. Atiyah, R. Bott, I. Singer, E. Calabi, L. Nirenberg,
A. Pogorelov, R. Schoen, L. Simon, K. Uhlenbeck, S. Donaldson, R. Hamil-
ton, C. Taubes, W. Thurston, E. Stein, C. Fefferman, Y.T. Siu, L. Caffarelli,
J. Kohn, S.Y. Cheng, M. Kuranishi, J. Cheeger, D. Gromoll, R. Harvey, H.
Lawson, M. Gromov, T. Aubin, V. Patodi, N. Hitchin, V. Guillemin, R.
Melrose, Colin de Verdière, M. Taylor, R. Bryant, H. Wu, R. Greene, Pe-
ter Li, D. Phong, S. Wolpert, J. Pitts, N. Trudinger, T. Hildebrandt, S.
Kobayashi, R. Hardt, J. Spruck, C. Gerhardt, B. White, R. Gulliver, F.
Warner, J. Kazdan.

Highlights of the works in this period include a deep understanding of the
spectrum of elliptic operators, introduction of self-dual connections for four
manifolds, introduction of a geometrization program for three manifolds, an
understanding of minimal surface theory, Monge-Ampére equations and the
application of the theory to algebraic geometry and general relativity.

II. 1983 to 1992: In 1983, Schoen and I started to give lectures on
geometric analysis at the Institute for Advanced Study. J.Q. Zhong took
notes on the majority of our lectures. The lectures were continued in 1985
in San Diego. During the period of 1985 and 1986, K.C. Chang and W.Y.
Ding came to take notes of some part of our lectures. The book Lectures on
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Differential Geometry was published in Chinese around 1989 [606]. It did
have great influence for a generation of Chinese mathematicians to become
interested in this subject. At the same time, a large group of my students
made contributions to the subject. This includes A. Treibergs, T. Parker,
R. Bartnik, S. Bando, L. Saper, M. Stern, H.D. Cao, B. Chow, W.X. Shi,
F.Y. Zheng and G. Tian.

At the same time, D. Christodoulou, C.S. Lin, N. Mok, J.Q. Zhong, J.
Jost, G. Huisken, D. Jerison, P. Sarnak, T. Ilmanen, C. Croke, D. Stroock,
J. Bismut, Price, F. H. Lin, S. Zelditch, S. Klainerman, V. Moncrief, C.L.
Terng, Michael Wolf, M. Anderson, C. LeBrun, M. Micallef, J. Moore, K.
Fukaya, T. Mabuchi, John Lee, A. Chang, N. Korevaar were making contri-
butions in various directions. One should also mention that in this period
important work was done by the authors in the first group. For example,
Donaldson, Taubes [655] and Uhlenbeck [688, 689] did spectacular work
on Yang-Mills theory of general manifolds which led Donaldson [195] to
solve the outstanding question on four manifold topology. Donaldson [196],
Uhlenbeck-Yau [691] proved the existence of Hermitian Yang-Mills connec-
tion on stable bundles. Schoen [590] solved the Yamabe problem.

III. 1993 to now: Many mathematicians joined the subject. This in-
cludes P. Kronheimer, B. Mrowka, J. Demailly, T. Colding, W. Minicozzi, T.
Tao, R. Thomas, Zworski, Y. Eliashberg, Toth, Andrews, L.F. Tam, N.C.
Leung, Y.B. Ruan, W.D. Ruan, R. Wentworth, A. Grigor’yan, L. Saloff-
Coste, J.X. Hong, X.P. Zhu, M. T. Wang, A.K. Liu, K.F. Liu, X.F. Sun,
T.J. Li, X.J. Wang, J. Loftin, H. Bray, J.P. Wang, L. Ni, P.F. Guan, N.
Kapouleas, P. Ozsváth, Z. Szabó and Y.I. Li. The most important event is
of course the major breakthrough of Hamilton [315] in 1995 on the Ricci
flow. I did propose to him in 1982 to use his flow to solve Thurston’s con-
jecture. Only after this paper by Hamilton, it is finally realized that it is
feasible to solve the full geometrization program by geometric analysis. (A
key step was the estimates on parabolic equations initiated by Li-Yau [445]
and accomplished by Hamilton for Ricci flow [312, 313].) In 2002, Perel-
man [551, 552] brought in fresh new ideas to solve important steps that
remained in the program. Many contributors, including Colding-Minicozzi
[173], Shioya-Yamaguchi [616] and Chen-Zhu [129], [130] have helped in
filling gaps in the arguments of Hamilton-Perelman. Cao-Zhu has just fin-
ished a long manuscript which gives the first complete detailed account of
the program. The paper appeared in Asian J. Math., 10(2) (2006), 165–
492 while the monograph will be published by International Press. In the
other direction, we see the important development of Seiberg-Witten the-
ory [721]. Taubes [661, 662, 663, 664] was able to prove the remarkable
theorem for counting pseudo-holomorphic curves in terms of his invariants.
Kronheimer-Mrowka [402] were able to solve the Thom conjecture that holo-
morphic curves provide the lowest genus surfaces in representing homology
in algebraic surfaces. (Ozsváth-Szabó had a symplectic version [548].)
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2. Construction of functions in geometry

The following is the basic principle [737]:
Linear or non-linear analysis is developed to un-
derstand the underlying geometric or combinator-
ial structure. In the process, geometry will provide
deeper insight of analysis. An important guideline
is that space of special functions defined by the
structure of the space can be used to define the
structure of this space itself.

Algebraic geometers have defined the Zariski topology of an algebraic
variety using ring of rational functions. In differential geometry, one should
extract information about the metric and topology of the manifolds from
functions defined over it. Naturally, these functions should be defined either
by geometric construction or by differential equations given by the under-
lying structure of the geometry. (Integral equations have not been used
extensively as the idea of linking local geometry to global geometry is more
compatible with the ideas of differential equations.) A natural generaliza-
tion of functions consists of the following: differential forms, spinors, and
sections of vector bundles.

The dual concepts of differential forms or sections of vector bundles
are submanifolds or foliations. From the differential equations that arise
from the variational principle, we have minimal submanifolds or holomorphic
cycles. Naturally the properties of such objects or the moduli space of
such objects govern the geometry of the underlying manifold. A very good
example is Morse theory on the space of loops on a manifold (see [518]).

I shall now discuss various methods for constructing functions or tensors
of geometric interest.

2.1. Polynomials from ambient space. If the manifold is isometri-
cally embedded into Euclidean space, a natural class of functions are the
restrictions of polynomials from Euclidean space. However, isometric em-
bedding in general is not rigid, and so functions constructed in such a way
are usually not too useful.

On the other hand, if a manifold is embedded into Euclidean space in a
canonical manner and the geometry of this submanifold is defined by some
group of linear transformations of the Euclidean space, the polynomials
restricted to the submanifold do play important roles.

2.1.1. Linear functions being the harmonic function or eigenfunction of
the submanifold. For minimal submanifolds in Euclidean space, the restric-
tions of linear functions are harmonic functions. Since the sum of the norm
square of the gradient of the coordinate functions is equal to one, it is fruitful
to construct classical potentials using coordinate functions. This principle
was used by Cheng-Li-Yau [140] in 1982 to give a comparison theorem for



284 S.-T. YAU

the heat kernel of minimal submanifolds in Euclidean space, sphere and hy-
perbolic space. Li-Tian [439] also considered a similar estimate for complex
submanifolds of CPn. But this follows from [140] as such submanifolds can
be lifted to a minimal submanifold in S2n+1.

Another very important property of a linear function is that when it is
restricted to a minimal hypersurface in a sphere Sn+1, it is automatically
an eigenfunction. When the hypersurface is embedded, I conjectured that
the first eigenfunction is linear and the first eigenvalue of the hypersurface
is equal to n (see [739]). While this conjecture is not completely solved, the
work of Choi-Wang [155] gives strong support. They proved that the first
eigenvalue has a lower bound depending only on n. Such a result was good
enough for Choi-Schoen [153] to prove a compactness result for embedded
minimal surfaces in S3.

2.1.2. Support functions. An important class of functions that are con-
structed from the ambient space are the support functions of a hypersurface.
These are functions defined on the sphere and are related to the Gauss map
of the hypersurface. The famous Minkowski problem reduces to solving
some Monge-Ampère equation for such support functions. This was done
by Nirenberg [540], Pogorelov [560], Cheng-Yau [144]. The question of
prescribed symmetric functions of principal curvatures has been studied by
many people: Pogorelov [564], Caffarelli-Nirenberg-Spruck [92], P.F. Guan
and his coauthors (see [298, 297]), Gerhardt [249], etc. It is not clear
whether one can formulate a useful Minkowski problem for higher codimen-
sional submanifolds.

The question of isometric embedding of surfaces into three space can
also be written in terms of the Darboux equation for the support function.
The major global result is the Weyl embedding theorem for convex surfaces,
which was proved by Pogorelov [561, 562] and Nirenberg [540]. The rigid-
ity part was due to Cohn-Vossen and an important estimate was due to
Weyl himself. For local isometric embeddings, there is work by C.S. Lin
[455, 456], which are followed by Han-Hong-Lin [318]. The global problem
for surfaces with negative curvature was studied by Hong [345]. In all these
problems, infinitesimal rigidity plays an important role. Unfortunately they
are only well understood for a convex hypersurface. It is intuitively clear
that generically, every closed surface is infinitesimally rigid. However, sig-
nificant works only appeared for very special surfaces. Rado studied the
set of surfaces that are obtained by rotating a curve around an axis. The
surfaces constructed depend on the height of the curve. It turns out that
such surfaces are infinitesimally rigid except on a set of heights which form
part of a spectrum of some Sturm-Liouville operator.

2.1.3. Gradient estimates of natural functions induced from ambient
space. A priori estimates are the basic tools for nonlinear analysis. In gen-
eral the first step is to control the ellipticity of the problem. In the case
of the Minkowski problem, we need to control the Hessian of the support
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function. For minimal submanifolds and other submanifold problem, we
need gradient estimates which we shall discuss in Chapter 4. In 1974 and
1975, S.Y. Cheng and I [143, 147] developed several gradient estimates for
linear or quadratic polynomials in order to control metrics of submanifolds
in Minkowski spacetime or affine space. This kind of idea can be used to
deal with many different metric problems in geometry.

The first theorem concerns a spacelike hypersurface M in the Minkowski
space R

n,1. The following important question arose: Since the metric on R
n,1

is
∑

(dxi)2 − dt2, the restriction of this metric on M need not be complete
even though it may be true for the induced Euclidean metric. In order to
prove the equivalence of these two concepts for hypersurfaces whose mean
curvatures are controlled, Cheng and I proved the gradient estimate of the
function

〈X,X〉 =
∑

i

(xi)2 − t2

restricted on the hypersurface.
By choosing a coordinate system, the function 〈X,X〉 can be assumed

to be positive and proper on M . For any positive proper function f defined
on M , if we prove the following gradient estimate

| �f |
f

≤ C

where C is independent of f , then we can prove the induced metric on M
is complete. This is obtained by integrating the inequality to get

| log f(x) − log f(y) |≤ Cd(x, y)

so that when f(y) → ∞, d(x, y) → ∞. Once we knew the metric was com-
plete, we proved the Bernstein theorem which says that maximal spacelike
hypersurface must be linear. Such work was then generalized by Treibergs
[685], C. Gerhardt [248] and R. Bartnik [40] for hypersurfaces in more gen-
eral spacetime. (It is still an important problem to understand the behavior
of a maximal spacelike hypersurface foliation for general spacetime when we
assume the spacetime is evolved by Einstein equation from a nonsingular
data set.)

Another important example is the study of affine hypersurfaces Mn in
an affine space An+1. These are the improper affine spheres

det(uij) = 1

where u is a convex function or the hyperbolic affine spheres

det(uij) =
(
−1

u

)n+2

where u is convex and zero on ∂Ω and Ω is a convex domain. Note that
these equations describe hypersurfaces where the affine normals are either
parallel or converge to a point.
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For affine geometry, there is an affine invariant metric defined on M
which is

(det hij)
− 1

n+2

∑
hijdxidxj

where hij is the second fundamental form of M . A fundamental question is
whether this metric is complete or not.

A coordinate system in An+1 is chosen so that the height function is a
proper positive function defined on M . The gradient estimate of the height
function gives a way to prove completeness of the affine metric. Cheng and
I [147] did find such an estimate which is similar to the one given above.

Once completeness of the affine metric is known, it is straight forward to
obtain important properties of the affine spheres, some of which were con-
jectured by Calabi. For example we proved that an improper affine sphere
is a paraboloid and that every proper convex cone admits a foliation of hy-
perbolic affine spheres. The statement about improper affine sphere was
first proved by Jörgens [364], Calabi [94] and Pogorelov [563]. Conversely,
we also proved that every hyperbolic affine sphere is asymptotic to a con-
vex cone. (The estimate of Cheng-Yau was reproduced again by a Chinese
mathematician who claimed to prove the result ten years afterwards.) Much
more recently, Trudinger and X. J. Wang [687] solved the Bernstein problem
for an affine minimal surface, thereby settling a conjecture by Chern. They
found a counterexample for dim≥ 10. These results are solid contributions
to fourth order elliptic equations.

The argument of using gradient estimates for some naturally defined
function was also used by me to prove that the Kähler Einstein metric
constructed by Cheng and myself is complete for any bounded pseudo-convex
domain [145]. (It appeared in my paper with Mok [526] who proved the
converse statement which says that if the Kähler Einstein metric is complete,
the domain is pseudo-convex.)

It should be noted that in most cases, gradient estimates amount to
control of ellipticity of the nonlinear elliptic equation.

Comment: To control a metric, find functions that are ca-
pable of describing the geometry and give gradient or higher
order estimates for these functions.

2.2. Geometric construction of functions.
2.2.1. Distance function and Busemann function. When manifolds can-

not be embedded into the linear space, we construct functions adapted to
the metric structure. Obviously the distance function is the first major func-
tion to be constructed. A very important property of the distance function
is that when the Ricci curvature of the manifold is greater than the Ricci
curvature of a model manifold which is spherical symmetric at one point, the
Laplacian of the distance function is not greater than the Laplacian of the
distance function of the model manifold in the sense of distribution. This
fact was used by Cheeger-Yau [124] to give a sharp lower estimate of the
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heat kernel of such manifolds. An argument of this type was also used by
Perelman in his recent work.

Gromov [284] developed a remarkable Morse theory for the distance
function (a preliminary version was developed by K. Grove and K. Shiohama
[295]) to compare the topology of a geodesic ball to that of a large ball,
thereby obtaining a bound on the Betti numbers of compact manifolds with
nonnegative sectional curvature. (He can also allow the manifolds to have
negative curvature. But in this case the diameter and the lower bound of
the curvature will enter into the estimate.)

We can also take the distance function from a hypersurface and compute
the Hessian of the distance function. In general, one can prove comparison
theorems, and the principle curvatures of the hypersurface will come into
the estimates. However, the upper bound of the Laplacian of the function
depends only on the Ricci curvature of the ambient manifold and the mean
curvature of the hypersurface. This kind of calculation was used in the six-
ties by Penrose and Hawking to study the focal locus of a closed surface
under the assumption that the surface is “trapped,” which means the mean
curvatures are negative in both the ingoing and the outgoing null directions.
This information allowed them to prove the first singularity theorem in gen-
eral relativity (which demonstrates that the black hole singularity is stable
under perturbation). The distance to hypersurfaces can be used as bar-
rier functions to prove the existence of a minimal surface as was shown by
Meeks-Yau [507], [508]. T. Frankel used the idea of minimizing the distance
between two submanifolds to detect the topology of minimal surfaces. In
particular, two maximal spacelike hypersurfaces in spacetime which satisfy
the energy condition must be disjoint if they are parallel at infinity.

Out of the distance function, we can construct the Busemann function
in the following way:

Given a geodesic ray γ : [0,∞) → M so that

distance(γ(t1), γ(t2)) = t2 − t1,

where ‖ dγ
dt ‖= 1, one defines

Bγ(x) = lim
t→∞

(d(x, γ(t)) − t).

This function generalizes the notion of a linear function. For a hyper-
bolic space form, its level set defines horospheres. For manifolds with posi-
tive curvature, it is concave. Cohn-Vossen (for surface) and Gromoll-Meyer
[279] used it to prove that a complete noncompact manifold with positive
curvature is diffeomorphic to R

n.
A very important property of the Busemann function is that it is su-

perharmonic on complete manifolds with nonnegative Ricci curvature in
the sense of distribution. This is the key to prove the splitting principle
of Cheeger-Gromoll [119]. Various versions of this splitting principle have
been important for applications to the structure of manifolds. When I [736]
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proved the Calabi conjecture, the splitting principle was used by me and
others to prove the structure theorem for Kähler manifolds with a nonneg-
ative first Chern Class. (The argument for the structure theorem is due
to Calabi [93] who knew how to handle the first Betti number. Kobayashi
[387] and Michelsohn [516] wrote up the formal argument and Beauville
[45] had a survey article on this development.)

In 1974, I was able to use the Busemann function to estimate the volume
of complete manifolds with nonnegative Ricci curvature [734]. After long
discussions with me, Gromov [285] realized that my argument of Busemann
function amounts to compare volumes of geodesic balls. The comparison
theorem of Bishop-Gromov had been used extensively in metric geometry.

If we consider infγ Bγ , where γ ranges from all geodesic rays from a
point on the manifold, we may be able to obtain a proper exhaustion of
the manifold. When M is a complete manifold with finite volume and its
curvature is pinched by two negative constants, Siu and I [634] did prove
that such a function gives a concave exhaustion of the manifold. If the
manifold is also Kähler, we were able to prove that one can compactify the
manifold by adding a point to each end to form a compact complex variety.
In the other direction, Schoen-Yau [603] was able to use the Busemann
function to construct a barrier for the existence of minimal surfaces to prove
that any complete three dimensional manifold with positive Ricci curvature
is diffeomorphic to Euclidean space.

The Busemann function also gives a way to detect the angular structure
at infinity of the manifold. It can be used to construct the Poisson kernel
of hyperbolic space form. For a simply connected complete manifold with
bounded and strongly negative curvature, it is used as a barrier to solve the
Dirichlet problem for bounded harmonic functions, after they are mollified
at infinity. This was achieved by Sullivan [647] and Anderson [8]. Schoen
and Anderson [9] obtained the Harnack inequality for a bounded harmonic
function and identified the Martin boundary of such manifolds. W. Ball-
mann [27] then studied the Dirichlet problem for manifolds of non-positive
curvature. Schoen and I [606] conjectured that nontrivial bounded har-
monic function exists if the manifold has bounded geometry and a positive
first eigenvalue. Many important cases were settled in [606]. Lyons-Sullivan
[487] proved the existence of nontrivial bounded harmonic functions using
the non-amenability of groups acting on the manifold.

The abundance of bounded harmonic functions on the universal cover of
a compact manifold should mean that the manifold is “hyperbolic”. Hence
if the Dirichlet problem is solvable on the universal cover, one expects the
Gromov volume of the manifold to be greater than zero.

The Martin boundary was studied by L. Ji and MacPherson (see [303,
361]) for the compactification of various symmetric spaces. For product
of manifolds with negative curvature, it was determined by A. Freire [232].
For rank one complete manifolds with non-positive curvature, work has been
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done by Ballman-Ledrappier [28] and Cao-Fan-Ledrappier [105]. It should
be nice to generalize the work of L.K. Hua on symmetric spaces with higher
rank to general manifolds with non-positive curvature. Hua found that
bounded harmonic functions satisfy extra equations (see [348]).

2.2.2. Length function defined on loop space. If we look at the space of
loops in a manifold, we can take the length of each loop and thereby de-
fine a natural function on the space of loops. This is a function for which
Morse theory found rich application. Bott [71] made use of it to prove his
periodicity theorem. Bott [68, 70] and Morse also developed a formula
for computing index of a geodesic. Bott showed that the index of a closed
geodesic and its linearized Poincaré map determine the indexes of iterates
of this geodesic. Starting from the famous works of Poincaré, Birkhoff,
Morse and Ljusternik-Shnirel’man, there has been extensive work on prov-
ing the existence of a closed geodesic using Morse theory on the space of
loops. Klingenberg and his students developed powerful tools (see [386]).
Gromoll-Meyer [280] did important work in which they proved the existence
of infinitely many closed geodesics assuming the Betti number of the free
loop space of the manifold grows unboundedly. They used the results of
Bott [70], Serre and some version of degenerate Morse theory. There was
also later work by Ballmann, Ziller, G. Thorbergsson, Hingston and Kramer
(see, e.g., [30, 328, 401]), who improved the Gromoll-Meyer theorem to
give a low estimate of the growth of the number of geometrically distinct
closed geodesics of length ≤ t. In most cases, they grow at least as fast
as the prime numbers. The classical important question that every metric
on S2 supports an infinite number of closed geodesics was also solved affir-
matively by Franks [228], Bangert [35] and Hingston [329]. An important
achievement was made by Vigué-Poirrier and D. Sullivan [695] who proved
that the Gromoll-Meyer condition for the existence of infinite numbers of
closed geodesics is satisfied if and only if the rational cohomology algebra
of the manifold has at least two generators. They made use of Sullivan’s
theory of the rational homotopic type. When the metric is Finsler, the most
recent work of Victor Bangert and Yiming Long [36] showed the existence
of two closed geodesics on the two dimensional sphere. (Katok [377] pro-
duced an example which shows that two is optimal.) Length function is a
natural concept in Finsler geometry. In the last fifty years, Finsler geometry
has not been popular in western world. But under the leadership of Chern,
David Bao, Z. Shen, X. H. Mo and M. Ji did develop Finsler geometry much
further (see, e.g., [37]).

A special class of manifolds, all of whose geodesics are closed, has oc-
cupied quite a lot of interest of distinguished geometers. It started from
the work of Zoll (1903) for surfaces where Guillemin did important contri-
butions. Bott [69] has determined the cohomology ring of these manifolds.
The well known Blaschke conjecture was proved by L. Green [270] for two
dimension and by M. Berger and J. Kazdan (see [51]) for higher dimensional
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spheres. Weinstein [713] and C.T. Yang [727, 728, 729] made important
contributions to the conjecture for other homotopic types.

2.2.3. Displacement functions. When the manifold has negative curva-
ture, the length function of curves is related to the displacement function
defined in the following way:

If γ is an element of the fundamental group acting on the universal
cover of a complete manifold with non-positive curvature, we consider the
function d(x, γ(x)): The study of such a function gives rise to properties of
compact manifolds with non-positive curvature. For example, in my thesis,
I generalized the Preissmann theorem to the effect that every solvable sub-
group of the fundamental group must be a finite extension of an Abelian
group which is the fundamental group of a totally geodesic flat sub-torus
[731]. Gromoll-Wolf [281] and Lawson-Yau [412] also proved that if the
fundamental group of such a manifold has no center and splits as a product,
then the manifold splits as a metric product. Strong rigidity result for a
discrete group acting on product of manifolds irreducibly was obtained by
Jost-Yau [372] where they proved that these manifolds are homogeneous if
the discrete group also appears as fundamental group of compact manifolds
with nonpositive curvature.

When the manifold has bounded curvature, Margulis studied those points
where d(x, γ(x)) is small and proved the famous Margulis lemma which was
used extensively by Gromov [282] to study the structure of manifolds with
non-positive curvature.

Comment: The lower bound of sectional curvature (or Ricci
curvature) of a manifold gives upper estimate of the Hessian
(or the Laplacian) of the distance functions. Since most func-
tions constructed in geometry come from distance functions,
we have partial control of the Hessian of these functions. The
information provides us with basic tools to construct barrier
functions for harmonic analysis or to produce convex func-
tions. The Hessian of distance functions come from compu-
tations of second variation of geodesics. If we consider the
second variation of closed geodesic loops, we get information
about the Morse index of the loop, which enable us to link
global topology to the existence of many closed geodesics or
curvatures of the manifold.

We always look for canonical objects through geometric
constructions and deform them to find their global proper-
ties.

2.3. Functions and tensors defined by linear differential equa-
tions. Direct construction of functions or tensors based on geometric in-
tuitions alone is not rich enough to handle the very complicated geometric
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world. One should produce global geometric objects based on global differ-
ential equations. Often the construction depends on the maximal principle,
integration by part, or the method of contradictions, and they are not nec-
essarily geometric intuitive. On the other hand, the basic principle of global
differential equations does fit well with modern geometry in relating local
data to global behavior. In order for the theory to be effective, the global
differential operator has to be constructed from a geometric structure nat-
urally.

The key to understanding any self-adjoint linear elliptic differential op-
erator is to understand its spectral resolution and the detail of the structure
of objects in the process of the resolution: eigenvalues or eigenfunctions
are particularly important for their relation to geometry. Low eigenvalues
and low eigenfunctions give deep information about global geometry such as
topology or isoperimetric inequalities. High eigenvalues and high eigenfunc-
tions are related to local geometry such as curvature forms or characteristic
forms. Semiclassical analysis in quantum physics give a way to relate these
two ends. This results in using either the heat equation or the hyperbolic
equation.

There are many important first order differential operators: d, δ, ∂̄,
Dirac operator. All these operators have contributed to a deeper under-
standing of geometry. They form systems of equations. Our understanding
of them is not as deep as our understanding of the Laplacian acting on func-
tions. The future of geometry will rest on an understanding of global systems
of equations and their relation to global topology. The index theorem has
given many important contributions as it provides significant information
about the dimension of the kernel (or cokernel). However, a deeper under-
standing of the spectrum of these operators is still needed.

2.3.1. Laplacian.
(a). Harmonic functions. The spectral resolution of the Laplacian gives

rise to eigenfunctions. Harmonic functions are therefore the simplest func-
tions that play important roles in geometry.

If the manifold is compact, the maximum principle shows that harmonic
functions are constant. However, when we try to understand the singulari-
ties of compact manifolds, we may create noncompact manifolds by scaling
and blowing up processes, at which point harmonic functions can play an
important role.

The first important question about harmonic functions on a complete
manifold is the Liouville theorem. I started my research on analysis by
understanding the right formulation of the Liouville theorem. In 1971, I
thought that it is natural to prove that for complete manifolds with a non-
negative Ricci curvature, there is no nontrivial harmonic function [732].
I also thought that in the opposite case, when a complete manifold has
strongly negative curvature and is simply connected, one should be able to
solve Dirichlet problem for bounded harmonic functions.
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The gradient estimates [732] that I derived for a positive harmonic func-
tion come from a suitable interpretation of the Schwarz lemma in complex
analysis. In fact, I generalized the Ahlfors Schwarz lemma before I un-
derstood how to work out the gradient estimates for harmonic functions.
The generalized Schwarz lemma [738] says that holomorphic maps, from a
complete Kähler manifold with Ricci curvature bounded from below to a
Hermitian manifold with holomorphic bisectional curvature bounded from
above by a negative constant, are distance decreasing with constants de-
pending only on the bound on the curvature. This generalization has since
found many applications such as the study of the geometry of moduli spaces
by Liu-Sun-Yau [471, 472]. They used it to prove the equivalence of the
Bergman metric with the Kähler-Einstein metric on the moduli space. They
also proved that these metrics are equivalent to the Teichmüller metric and
the McMullen metric.

The classical Liouville theorem has a natural generalization: Polyno-
mial growth harmonic functions are in fact polynomials. Motivated by this
fact and several complex variables, I asked whether the space of polynomial
growth harmonic functions with a fixed growth rate is finite dimension with
the upper bound depending only on the growth rate [741]. This was proved
by Colding-Minicozzi [168] and generalized by Peter Li [437]. (Functions
can be replaced by sections of bundles). In a beautiful series of papers (see,
e.g., [440, 441]), P. Li and J.P. Wang studied the space of harmonic func-
tions in relation to the geometry of manifolds. In the case when harmonic
functions are holomorphic, they form a ring. I am curious about the struc-
ture of this ring. In particular, is it finitely generated when the manifold
is complete and has a nonnegative Ricci curvature? A natural generaliza-
tion of such a question is to consider holomorphic sections of line bundles,
especially powers of canonical line bundles. This is part of Mori’s minimal
model program.

(b). Eigenvalues and eigenfunctions. Eigenvalues reflect the geometry
of manifolds very precisely. For domains, estimates of them date back to
Lord Rayleigh. Hermann Weyl [711] solved a problem of Lorentz’s on the
asymptotic behavior of eigenvalues in relation to the volume of the domain
and hence initiated a new subject of spectral geometry. Pólya-Szegö, Faber,
Krahn and Levy gave estimates of eigenvalues of various geometric problems.
On a general manifold, Cheeger [114] was the first person to relate a lower
estimate of the first eigenvalue with the isoperimetric constant (now called
the Cheeger constant). One may note that many questions on the eigenvalue
for domains are still unsolved. The most noted one is the Pólya conjecture
which gave a sharp lower estimate of the Dirichlet problem in terms of
volume. Li-Yau [444] did settle the average version of the Pólya conjecture.

The gradient estimate that I found for harmonic functions can be gener-
alized to cover eigenfunctions and Peter Li [436] was the first one to apply
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it to finding estimates for eigenvalues for manifolds with positive Ricci cur-
vature. (If the Ricci curvature has a positive lower bound, this is due to
Lichnerowicz.) Li-Yau [442] then solved the well-known problem of esti-
mating eigenvalues of manifolds in terms of their diameter and the lower
bound on their Ricci curvature. Li-Yau conjectured the sharp constant for
their estimates, and Zhong-Yang [755] were able to prove this conjecture
by sharpening Li and Yau’s arguments. A probabilistic argument was later
developed by Chen and Wang [133] to derive these inequalities. The pre-
cise upper bound for the eigenvalue was first obtained by S. Y. Cheng [137]
also in terms of diameter and lower bound of the Ricci curvature. Cheng’s
theorem gives a very good demonstration of how the analysis of functions
provides information about geometry. As a corollary of his theorem, he
proved that if a compact manifold Mn has a Ricci curvature ≥ n − 1 and
the diameter is equal to π, then the manifold is isometric to the sphere.
He used a lower estimate for eigenvalues based on the work of Lichnerowicz
and Obata. Colding [167] was able to use functions with properties close
to those of the first eigenfunction to prove a pinching theorem which states
that: When the Ricci curvature is bounded below by n − 1 and the vol-
ume is close to that of the unit sphere, the manifold is diffeomorphic to the
sphere. There is extensive work by Colding-Cheeger [116, 117, 118] and
Perelman (see, e.g., [88]) devoted to the understanding of Gromov’s theory
of Hausdorff convergence for manifolds. The tools they used include the
comparison theorem, the splitting theorem of Cheeger and Gromoll, and
the ideas introduced earlier by Colding.

A very precise estimate of eigenvalues of the Laplacian has been im-
portant in many areas of mathematics. For example, the idea of Szegö
[651]-Hersch [327] on the upper bound of the first eigenvalue in terms of
the area alone was generalized by me to the higher genus in joint works with
P. Yang [730] and P. Li [443]. For genus one, this was Berger’s conjecture,
as I was informed by Cheng. After Cheng showed me the paper of Hersch,
I realized how to create trial functions by taking the branched conformal
cover of S2. While the constant in the paper of Yang-Yau [730] for torus
is not the best possible, the recent work of Jakobson, Levitin, Nadirashvili,
Nigam and Polterovich [358] demonstrated that the constant for a genus two
surface may be the best possible and may be achieved by Bolza’s surface.

Shortly afterwards, I applied the argument of [730] to prove that a
Riemann surface defined by an arithmetic group must have a relative high
degree when it is branched over the sphere. This observation of using Sel-
berg’s estimate coupled with Li-Yau [443] was made in 1985 when I was in
San Diego, where I also used similar idea to estimate genus of mini-max sur-
face in three dimensional manifolds and also to prove positivity of Hawking
mass. After I arrived in Harvard, I discussed the idea with my colleague N.
Elkies and B. Mazur. The paper was finally written up and published in
1995 [745]. In the meanwhile, ideas of using my work on eigenvalue coupled
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with Selberg’s work to study congruence subgroup was generalized by D.
Abramovich [1] (my idea was conveyed by Elkies to him) and by P. Zograf
[758] to the case where the curve has cusps. Most recently Ian Agol [2] also
used a similar idea to study arithmetic Kleinian reflection groups.

In a beautiful article, N. Korevaar [397] gave an upper bound, depend-
ing only on genus and n, for the n-th eigenvalue λn of a Riemann surface.
His result answered a challenge of mine (see [739]) when I met him in
Utah in 1989. Grigor’yan, Netrusov and I [278] were able to give a simpli-
fied proof and apply the estimate to bound the index of minimal surfaces.
There are also works by P. Sarnak (see, e.g., [586, 357]) on understanding
eigenfunctions for such Riemann surfaces. Iwaniec-Sarnack [357] showed
that the estimate of the maximum norm of the n-th eigenfunction on an
arithmetic surface has significant interest in number theory. Wolpert [725]
analyzes perturbation stability of embedded eigenvalues and applies asymp-
totic perturbation theory and harmonic map theory to show that stability
is equivalent to the non-vanishing of certain standard quantities in number
theory. There was also the work of Schoen-Wolpert-Yau [595] on the be-
havior of eigenvalues λ1, · · · , λ2g−3 for a compact Riemann surface of genus
g. These are eigenvalues that may tend to zero for metrics with curvature
−1. However, λ2g−2, λ2g−1, · · · , λ4g−1 always appear in [cg,

1
4 ] where cg > 0

depends only on g. It will be nice to find the optimal cg.

In this regard, one may mention the very deep problem of Selberg on
lower estimate of λ1 for surfaces defined by an arithmetic group. Selberg
proved that it is greater than 3

16 and it was later improved by Luo-Rudnick-
Sarnak [482]. For a higher dimensional locally symmetric space, there is a
similar question of Selberg and results similar to Selberg’s were found by J.S.
Li [425] and Cogdell-Li-Piatetski-Shapiro-Sarnak [166]. Many researchers
attempt to use Kazdhan’s property T for discrete groups to study Selberg’s
problem.

There are many important properties of eigenfunctions that were stud-
ied in the seventies. For example, Cheng [138] found a beautiful estimate
of multiplicities of eigenvalues of Riemann surfaces based only on genus.
The idea was used by Colin de Verdière [175] to embedded graphes into R

3

when they satisfy nice combinatorial properties. The connectivity and the
topology of nodal domains are very interesting questions. Melas [510] did
prove that for a convex planar domain, the nodal line of second eigenfunc-
tions must intersect the boundary in exactly two points. Very little is known
about the number of nodal domains except the famous theorem of Courant
that the number of nodal domains of the m-th eigenfunction is less than m.

There are several important questions related to the size of nodal sets
and the number of critical points of eigenfunctions. I made a conjecture
(see [739]) about the area of nodal sets, and significant progress toward
its resolution was made by Donnelly-Fefferman [207], Dong [206] and F.H.
Lin [458]. The number of critical points of an eigenfunction is difficult to
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determine. I [746] managed to prove the existence of a critical point near
the nodal set. Jakobson and Nadirashvili [359] gave a counterexample to
my conjecture that the number of critical points of the n-th eigenfunction
is unbounded when n tends to infinity. I believe the conjecture is true for
generic metrics and deserves to be studied extensively. Nadirashvili and
his coauthors [344, 319] were also the first to show that the critical sets
of eigenfunctions in n-dimensional manifold have a finite Hn−2-Hausdorff
measure. Afterwards, Han-Hardt-Lin [317] gave an explicit estimate.

When there is potential V , the eigenvalues of −
+V are also important.
When V is convex, with Singer, Wong and Stephen Yau, I applied the
argument that I had with Peter Li to estimate the gap λ2 −λ1 [624]. When
V is arbitrary, I [747] observed how this gap depends on the lower eigenvalue
of the Hessian of − log ψ, where ψ is the ground state. The method of
continuity was used by me in 1980 to reprove the work of Brascamp-Lieb
[79] on the convexity of − log ψ when V is convex. (This work appeared in
the appendix of [624].) When V is the scalar curvature, this was studied by
Schoen and myself extensively. In fact, in [604], we found an upper estimate
of the first Dirichlet eigenvalue of the operator −
 + 1

2R in terms of 3π2

2r2

where r is a certain concept of radius related to loops in a three dimensional
manifold. (If we replace loops with higher dimensional spheres, one can
define a similar concept of radius. It will be nice if such a concept can
be related to eigenvalues of differential forms.) This operator is naturally
related to conformal deformation, stability of minimal surfaces, etc. (The
works of D. Fischer-Colbrie and Schoen [223], Micallef [512], Schoen-Yau
[597, 603] on stable minimal surfaces all depend on an understanding of
spectrum of this operator.) The parabolic version appears in the recent work
of Perelman.

If there is a closed non-degenerate elliptic geodesic in the manifold, Babič
[25], Guillemin and Weinstein [302] found a sequence of eigenvalues of the
Laplacian which can be expressed in terms of the length, the rotation angles
and the Morse index of the geodesic.

Comment: It is important to understand how harmonic
functions or eigenfunctions oscillate. Gradient estimate is a
good tool to achieve this. Gradient estimate for the log of
the eigenfunction can be used to prove the Louville theorem
or give a good estimate of eigenvalues. For higher eigen-
functions, it is important to understand its zero set and its
growth. By controlling this information, one can estimate
the dimension of these functions. A good upper estimate for
eigenvalues depends on geometric intuition which may lead
to construction of trial functions that are more adaptive to
geometry. It should be emphasized that a clean and sharp
estimate for the linear operator is key to obtaining good es-
timates for the nonlinear operator.
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(c). Heat kernel. Most of the work on the heat kernel over Euclidean
space can be generalized to those manifolds where Sobolev and Poincaré
inequalities hold. (It should be noted that Aubin [22, 24] and Talenti [652]
did find the best constant for various Sobolev inequalities on Euclidean
space.) These inequalities are all related to isoperimetric inequalities. C.
Croke [178] was able to follow my work [733] on Poincaré inequalities to
prove the Sobolev inequality depending only on volume, diameter and the
lower bound of Ricci curvature. Arguments of John Nash were then used
by Cheng-Li-Yau [139] to give estimates of the heat kernel and its higher
derivatives. In this paper, an estimate of the injectivity radius was derived
and this estimate turns out to play a role in Hamilton’s theory of Ricci flow.
A year later, Cheeger-Gromov-Taylor [122] made use of the wave kernel
to reprove this estimate. In other direction, D. Stroock (see [538]) used
Malliavin’s calculus to give remarkable estimates for the heat kernel at a
pair of points where one point is at the cut locus of another point.

The estimate of the heat kernel was later generalized by Davies [185,
186], Saloff-Coste [582] and Grigor’yan [276, 277] to complete manifolds
with polynomial volume growth and volume doubling property. Since these
are quasi-isometric invariants, their analysis can be applied to graphs or
discrete groups. See Grigor’yan’s survey [277] and Saloff-Coste’s survey
[583].

On the other hand, the original gradient estimate that I derived is a
pointwise inequality that is much more adaptable to nonlinear theory. Peter
Li and I [445] were able to find a parabolic version of it in 1984. We
observed its significance for estimates on the heat kernel and its relation
to the variational principle for paths in spacetime. Coupled with the work
of Cheeger-Yau [124], this gives a very precise estimate of the heat kernel.
Such ideas turn out to provide fundamental estimates which are crucial for
the analysis of Hamilton’s Ricci flow [312, 313].

Not much is known about the heat kernel on differential forms or dif-
ferential forms with twisted coefficients. The fundamental idea of using the
heat equation to prove the Hodge theory came from Milgram-Rosenbloom.
The heat kernel for differential forms with twisted coefficients does play an
important role in the analytic proof of the index theorem, as was demon-
strated by Atiyah-Bott-Patodi [13]. It is the alternating sum that exhibits
cancellations and gives rise to index of elliptic operators. When t is small,
the alternating sum reduces to a calculation of curvature forms. When t is
large, it gives global information on harmonic forms. Since the index of the
operator is independent of t, we can relate the index to characteristic forms.

If a compact manifold is the quotient of a non-compact manifold by
a discrete group and if the heat kernel of the non-compact manifold can
be computed explicitly, it can be averaged to give the heat kernel of the
quotient manifold. Since the integral of the later kernel on the diagonal can
be computed by the spectrum to be

∑
e−tλi , one can relate the displacement



PERSPECTIVES ON GEOMETRIC ANALYSIS 297

function of the discrete group to the spectrum. This is the Selberg trace
formula relating length of closed geodesics to the spectrum of the Laplacian.

Heat kernel converges to delta function when t approaches zero. This
property was used by Kefeng Liu [469, 470] in an elegant way to obtain
various localization formulas on the moduli space of bundles. Liu’s idea was
used later by Bismut to treat the formula of E. Verlinde [54].

Comment: Understanding the heat kernel is almost the
same as understanding the heat equation. However, heat
kernel satisfies semi-group properties, which enables one to
give a good estimate of the maximum norm or higher order
derivative norms as long as the Sobolev inequality can be
proved. It is useful to look at the heat equation in spacetime
where the Li-Yau gradient estimate is naturally defined. The
estimate provides special pathes in spacetime for the esti-
mate of the kernel. However, the effects of closed geodesics
have not been found in the heat equation approach. A sharp
improvement of the Li-Yau estimate may lead to such infor-
mation.

(d). Isoperimetric inequalities. Isoperimetric inequality is a beautiful
subject. It has a long history. Besides its relation to eigenvalues, it reviews
the deep structure of manifolds. The best constant for the inequality is
important. Pólya-Szegö [565], G. Faber (1923), E. Krahn (1925) and P.
Lévy (1951) made fundamental contributions. Gromov generalized the idea
of Lévy to obtain a good estimate of Cheeger’s constant (see [289]). C.
Croke [179] and Cao-Escobar [104] have worked on domains in a simply
connected manifold with non-positive curvature. It is assumed that the
inequality holds for any minimal subvariety in Euclidean space. But it is
not known to be true for the best constant. Li-Schoen-Yau [438] did prove it
in the case of a minimal surface with a connected boundary, and E. Lutwak,
Deane Yang and G.Y. Zhang did some beautiful work in the affine geometry
case (see, e.g., [484, 485]). In Hamilton’s proof of Ricci flow convergent to
the round metric on S2, he demonstrated that the isoperimetric constant of
the metric is improving and geometry of the manifold is controlled.

Comment: The variational principle has been the most im-
portant method in geometry since the Greek mathematicians.
Fixing the area of the domain and minimizing the length of
the boundary is the most classical form of isoperimetric in-
equality. This principle has been generalized to much more
general situations in geometry and mathematical physics. In
most cases, one tries to prove existence of the extremal object
and establish isoperimetric inequalities by calculating corre-
sponding quantities for the extremal object. There is also the
idea of rearrangement or symmetrization to prove isoperimet-
ric inequalities. In the other direction, there is the duality
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principle in the calculus of variation: instead of minimizing
the length of the boundary, one can fix it and maximize the
area it encloses. The principle can be effective in complicated
variational problems.

(e). Harmonic analysis on discrete geometry. There are many other
ideas in geometric analysis that can be discretized and applied to graph
theory. This is especially true for the theory of spectrum of graphs. Some
of these were carried out by F.Chung, Grigor’yan and myself (see the ref-
erence of Chung’s survey [164]). But the results in [164] are far away
from being exhaustive. On the other hand, Margulis [491] and Lubotzky-
Phillips-Sarnak [480] were able to make use of discrete group and number
theory to construct expanding graphs. Methods to construct and classify
these expanding graphs are important for application in computer science.
It should be noted that Kazhdan’s property (T) [380] did play an impor-
tant role in such discussions. It is also important to see how to give a good
decomposition of any graph using the spectral method.

The most important work for the geometry of a finitely presented group
was done by Gromov [284]. He proved the fundamental structure theorem
of groups where volume grows at most polynomially. These groups must
be virtually nilpotent. Geometric ideas were developed by Varopoulos and
his coauthors [693, 38] on the precise behaviors of the heat kernel in terms
of volume growth. As an application of the theory of amenable groups,
R. Brooks [81] was able to prove that if a manifold covers a compact set
by a discrete group Γ, then it has positive eigenvalue if and only if Γ is
non-amenable.

Gromov [283] also developed a rich theory of hyperbolic groups using
concepts of isoperimetric type inequalities. It would be nice to characterize
these groups that are fundamental groups of compact manifolds with non-
positive curvature or locally symmetric spaces.

Comment: The geometry of a graph or complex can be
used as a good testing ground for geometric ideas. They
can be important in understanding smooth geometric struc-
tures. Many rough geometric concepts, such as isoperimetric
inequalities, can be found on graphs, and in fact they play
some roles in computer network theory. On the other hand,
many natural geometric concepts should be generalized to
graphs: for example, the concept of the fiber bundle, bundle
theory over graphs and harmonic forms. It is likely that one
needs to have a good way to define the concept of equivalence
between such objects. When we approximate a smooth man-
ifold by a graph or complex, we only care about the limiting
object and therefore some equivalence relations should be al-
lowed. In the case of Cayley graph of a finitely generated
group, it depends on the choice of the generating set, and
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properties independent of this generating set are preferable
if we are only interested in the group itself. In the other di-
rection, computer networks and other practical subjects have
independent interest in graph theory. A close collaboration
between geometer and computer scientists would be fruitful.

(f). Harmonic analysis via hyperbolic operators. There are important
works of Fefferman, Phong, Lieb, Duistermaat, Guillemin, Melrose, Colin de
Verdier, Taylor, Toth, Zelditch and Sarnak on understanding the spectrum
of the Laplacian from the point of view of semi-classical analysis (see, e.g.
[221, 210, 325, 587]). Some of their ideas can be traced back to the geomet-
ric optics analysis of J. Keller. The fundamental work of Duistermaat and
Hörmander [209] on propagation of singularities was also used extensively.
There has been a lot of progress on the very difficult question of determin-
ing when one “Can hear the shape of a drum” by, among others, Melrose
(see [511]), Guillemin [299] and Zelditch [753]. (Priori to this, Guillemin
and Kazhdan [300] proved that no negatively curved closed surface can be
isospectrally deformed.) The first counterexample for closed manifolds was
given by J. Milnor [519] on a 16 dimensional torus. The idea was gener-
alized by Sunada [649], Gordon-Wilson [263]. For domains in Euclidean
spaces, there were examples by Urakawa in three dimensions. Two dimen-
sional counterexamples were given by Gordon-Webb-Wolpert [262], Wilson
and Szabó [650]. Most of the ideas for counterexamples are related to the
Selberg trace formula discussed in the section of heat kernel. The semi-
classical analysis based on the hyperbolic operator also gives a very precise
estimate or relation between the geodesic and the spectrum. The support
of the singularities of the trace of the wave kernel

∑
e
√−1t

√
λi is a subset

of the set of the lengths of closed geodesics. It is difficult to achieve such
results by elliptic theory. However, most results are asymptotic in nature.
It will be remarkable if both methods can be combined.

Comment: Fourier expansion has been a very powerful tool
in analysis and geometry. Practically any general theorem in
classical Fourier analysis should have a counterpart in analy-
sis of the spectrum of the Laplacian. The theory of geometric
optics and the propagation of a singularity gives deep under-
standing of the singularity of a wave kernel. Geodesic and
closed geodesic becomes an important means to understand
eigenvalues. However, the theory has not been fruitful for the
Laplacian acting on differential forms. Should areas of min-
imal submanifolds play a role? In the case of Kähler mani-
folds, holomorphic cycles or the volume of special Lagrangian
cycles should be important, as the length of close geodesics
appear in the exponential decay term of the heat kernel. It
would be useful to sharpen the heat equation method to cap-
ture this lower order information.
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(g). Harmonic forms. Natural generalizations of harmonic or holomor-
phic functions are harmonic or holomorphic sections of bundles with con-
nections. The most important bundles are the exterior power of cotangent
bundles. Using the Levi-Civita connection, harmonic sections are harmonic
forms which, by the theory of de Rham and Hodge, give canonical represen-
tation of cohomology classes. The major research on harmonic forms comes
from Bochner’s vanishing theorem [59]. But our understanding is still poor
except for 1-forms or when the curvature operator is positive, in which case
the Bochner argument proved the manifold to be a homology sphere. If
there is any nontrivial operator which commutes with the Laplacian, the
eigenforms split accordingly. Making use of special structures of such split-
ting, the Bochner method can be more effective. For example, when the
manifold is Kähler, differential forms can be decomposed further to (p, q)-
forms and the Kodaira vanishing theorem [390] yields much more powerful
information, when the (p, q) forms are twisted with a line bundle or vector
bundles. Similar arguments can be applied to manifolds with a special holo-
nomy group depending on the representation theory of the holonomy group.
When the complex structure moves holomorphically, the subbundles of (p, q)
forms in the bundle of (p + q) forms do not necessarily deform holomorphi-
cally. The concept of Hodge filtration is therefore introduced. When we
deform the complex structure around a point where the complex structure
degenerates, there is a monodromy group acting on the Hodge filtration.
The works of Griffiths-Schmid [275] and Schmid’s SL2(R) theorem [588]
give powerful control on the degeneration of the Hodge structure. Deligne’s
theory of mixed Hodge structure [187] plays a fundamental role for studying
singular algebraic varieties. The theory of variation of Hodge structures is
closely related to the study of period of the differential forms. This theory
also appears in the subject of mirror symmetry. It is desirable to give a
precise generalization of these works to higher dimensional moduli spaces
where Kaplan-Cattani-Schmid made important contributions.

Harmonic forms give canonical representation to de Rham cohomology.
However, the wedge product of harmonic forms need not be harmonic. The
obstruction comes from secondary cohomology cooperation. K.T. Chen
[132] studied the case of 1-forms and Sullivan [646] studied the general
case and gave a minimal model theory for a rational homotopic type of a
manifold. Using ∂∂̄-lemma of Kähler manifolds, Deligne-Griffiths-Morgan-
Sullivan [188] showed that the rational homotopic type is formal for Kähler
manifolds.

The importance of harmonic forms is that they give canonical representa-
tion to the de Rham cohomology which is isomorphic to singular cohomology
over real numbers. It gives a powerful tool to relate local geometry to global
topology. In fact the vanishing theorem of Bochner-Kodaira-Lichnerowicz
allows one to deduce from sign of curvature to vanishing of cohomology.
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This has been one of the most powerful tools in geometry in the past fifty
years.

The idea of harmonic forms came from fluid dynamics and Maxwell
equations. The non-Abelian version is the Yang-Mills theory. Most of the
works on Yang-Mills theory have been focused on these gauge fields where
the absolute minimum is achieved by some (topological) characteristic num-
ber. (These are called BPS state in physics literature.) When the dimension
of the manifold is four, the star operator maps two form to two form and
it makes sense to require the curvature form to be self-dual or anti-self-dual
depending on whether the curvature form is invariant or anti-invariant under
the star operator. These curvature forms can be interpreted as non-Abelian
harmonic forms. The remarkable fact is that when the metric is Kähler,
the anti-self-dual connections give rise to holomorphic bundles. The mod-
uli space of such bundles can often be computed using tools from algebraic
geometry.

On the product space M ×M where M is the four dimensional manifold
and M is the moduli space of anti-self-dual connections, there is a universal
bundle V over M × M. By studying the slant product and the Chern
classes of V , we can construct polynomials on the cohomology of M that
are invariants of the differentiable structure of M . These are Donaldson
polynomials (see [204]). In general M is not compact and Donaldson has to
construct cycles in M for such operations. Donaldson invariants are believed
to be equivalent to Seiberg-Witten invariants, where the vanishing theorem
can apply and powerful geometric consequences can be found. Kronheimer
and Mrowka [402] built an important concept of simple type for Donaldson
invariants. It is believed that Donaldson invariants of algebraic surfaces of
general type are of simple type.

If the manifold is symplectic, we can look at the moduli space of pseudo-
holomorphic curves. (These are J-invariant maps from Riemann surfaces to
the manifold. J is an almost complex structure that is tame to the symplec-
tic form.) Symplectic invariants can be created and they are called Gromov-
Witten invariants. Y. Ruan [579] has observed that they need not be dif-
feomorphic invariants. It may still be interesting to know whether Gromov-
Witten invariants are invariants of differentiable structures for Calabi-Yau
manifolds.

De Rham cohomology can only capture the non-torsion part of the sin-
gular cohomology. Weil [710] and Allendoerfer-Eells [5] attempted to use
differential forms with poles to compute cohomology with integer coeffi-
cients. Perhaps one should study Chern forms of a complex bundle with
a connection that satisfies the Yang-Mills equation and whose curvature is
square integrable. The singular set of the connection may be allowed to be
minimal submanifolds. The moduli space of such objects may give infor-
mation about integral cohomology. It should be noted that Cheeger-Simons
[123] did develop a rich theory of differential character with values in R/Z.
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It depends on the connections of the bundle. Witten managed to integrate
the Chern-Simons forms [152] on the space of connections to obtain the
knot invariants of Jones [363].

When we look for different operators acting on different forms, we may
have to look into different kinds of harmonic forms. For example, if we
are interesting in ∂∂̄ cohomology, we may look for the operator

(
∂∂̄

)∗
∂∂̄ +

∂∂∗ + ∂̄∂̄∗. It would be interesting to see how super-symmetry may be used
to generalize the concept of harmonic forms.

Comment: The theory of harmonic form is tremendously
powerful because it provides a natural link between global
topology, analysis, geometry, algebraic geometry and arith-
metic geometry. However, our analytic understanding of high
degree forms is poor. For one forms, we can integrate along
paths. For two forms, we can take an interior product with a
vector field to create a moment map. For closed (1, 1)-forms
in a Kähler manifold, we can express them locally as ∂∂̄f .
However, we do not have good ways to reduce a high de-
gree form to functions which are easier to understand. Good
estimates of higher degree forms will be very important.

2.3.2. ∂̄-operator. Construction of holomorphic functions or holomor-
phic sections of vector bundles and holomorphic curves are keys to under-
standing complex manifolds.

In order to demonstrate the idea behind the philosophy of determining
the structure of manifolds by function theory, I was motivated to generalize
the uniformization theory of a Riemann surface to higher dimensions when
I was a graduate student. During this period, I was influenced by the works
of Greene-Wu [273] in formulating these conjectures. Greene and Wu were
interested in knowing whether the manifolds are Stein or not.

When the complete Kähler manifold is compact with positive bisectional
curvature, this is the Frankel conjecture, as was proved independently by
Mori [530] and Siu-Yau [633]. Both arguments depend on the construction
of rational curves of low degree. Mori’s argument is stronger, and it will be
good to capture his result by the analytic method. When the manifold has
nonnegative bisectional curvature and positive Ricci curvature, Mok-Zhong
[527] and Mok [523], using ideas of Bando [31] in his thesis on Hamilton’s
Ricci flow, proved that the manifold is Hermitian symmetric unless it is
biholomorphic to projective space.

When the complete Kähler manifold is noncompact with positive bisec-
tional curvature, I conjectured that it must be biholomorphic to C

n (see
[739]). Siu-Yau [632] made the first attempt to prove such a conjecture by
using the L2-method of Hörmander [347] to construct holomorphic functions
with slow growth. (Note that Hörmander’s method goes back to Kodaira,
which was also generalized by Calabi-Vesentini [95].) Singular weight func-
tions were used in this paper and later much more refined arguments were
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developed by Nadel [535] and Siu [630] using what is called the multiplier
ideal sheaf method. Siu found important applications of this method in al-
gebraic geometry and also related the idea to the powerful work of J. Kohn
on weakly pseudo-convex domain.

This work of Siu-Yau was followed by Siu-Mok-Yau [524] and Mok
[521, 522] under assumptions about the decay of curvature and volume
growth. Shi [611, 612, 613] introduced Hamilton’s Ricci flow to study
my conjecture, and his work is fundamental. This was followed by beau-
tiful works of Cao [101, 102], Chen-Zhu [127, 128] and Chen-Tang-Zhu
[125]. Assuming the manifold has maximal Euclidean volume growth and
bounded curvature, Chen-Tang-Zhu [125] (for complex dimension two) and
then Ni [539] (for all higher dimension) were able to prove the manifold
can be compactified as a complex variety. Last year, Albert Chau and Tam
[113] were finally able to settle the conjecture assuming maximal Euclidean
volume growth and bounded curvature. An important lemma of L. Ni [539]
was used, where a conjecture of mine (see [742] or the introduction of [539])
was proved. The conjecture says that maximal volume growth implies scalar
curvature decays quadratically in the average sense.

While we see great accomplishments for Kähler manifolds with positive
curvature, very little is known for Kähler manifolds, which are complete
simply connected with strongly negative curvature. It is conjectured to be
a bounded domain in C

n. (Some people told me that Kodaira considered a
similar problem. But I cannot find the appropriate reference.) The major
problem is to construct bounded holomorphic functions.

The difficulty of construction of bounded holomorphic functions is that
the basic principle of the L2-method of Hörmander comes from Kodaira’s
vanishing theorem. It is difficult to obtain elegant results by going from
weighted L2 space to bounded functions. In this connection, I was able
to show that non-trivial bounded holomorphic functions do not exist on a
complete manifold with non-negative Ricci curvature [738].

If the manifold is the universal cover of a compact Kähler manifold M
which has a homotopically nontrivial map to a compact Riemann surface
with genus > 1, then one can construct a bounded holomorphic function,
using arguments of Jost-Yau [370]. In particular, if M has a map to a
product of Riemann surfaces with genus > 1 with nontrivial topological
degree, the universal cover should have a good chance to be a bounded
domain.

Of course, this kind of construction is based on the fact that holomor-
phic functions are harmonic. Certain rigidity based on curvature forced the
converse to be true. For functions, the target space has no topology and
rigidity is not expected. Bounded holomorphic functions can not be con-
structed by solving the Dirichlet problem unless some boundary condition
is assumed. This would make good sense if the boundary has a nice CR
structure. Indeed, for odd dimensional real submanifold in C

n which has
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maximal complex linear subspace on each tangent plane, Harvey-Lawson
[321, 322] proved the remarkable theorem that they bound complex sub-
manifolds. Unfortunately the boundary of a complete simply connected
manifold with bounded negative curvature does not have a smooth bound-
ary. It will be nice to define a CR structure on such a singular boundary.
One may mention the remarkable work of Kuranishi [405, 406, 407] on
embedding of an abstract CR structure.

Historically a motivation for the development of the ∂̄ operator came
from the Levi problem, which was solved by Morrey, Grauert and greatly
improved by Kohn and Hörmander. Their methods are powerful in studying
pseudoconvex manifolds.

In this regard, one may mention the conjecture of Shafarevich that the
universal cover of an algebraic manifold is pseudoconvex. Many years ago, I
conjectured that if the second homotopy group of the manifold is trivial, its
universal cover can be embedded into a domain of some algebraic manifold
where the covering transformations act on the domain by birational trans-
formations. One may also mention the work of S. Frankel [227] on proving
that an algebraic manifold is Hermitian symmetric if the universal cover is
a convex domain in complex Euclidean space.

Comment: The ∂̄ operator is the fundamental operator
in complex geometry. Classically it was used to solve the
uniformization theorem, the Levi problem and the Corona
problems. We have seen much progress on the higher dimen-
sional generalizations of the first two problems. However, due
to poor understanding of the construction of bounded holo-
morphic functions, we are far away from understanding the
Corona problem in higher dimensional manifolds and many
related geometric questions.

2.3.3. Dirac operator. A very important bundle is the bundle of spinors.
The Dirac operator acting on spinors is the most mysterious but major geo-
metric operator. Atiyah-Singer were the first mathematicians to study it
in detail in geometry and by thoroughly understanding the Dirac operator,
they were able to prove their celebrated index theorem [20]. On a Kähler
manifold, the Dirac operator can be considered as a ∂̄ + ∂̄∗ operator acting
on differential forms with coefficients on the square root of the canonical line
bundle. Atiyah-Singer’s original proof can be traced back to the celebrated
Riemann-Roch-Hirzebruch formula and the Hirzebruch index formula. The
formulas of Gauss-Bonnet-Chern and Atiyah-Singer-Hirzebruch should cer-
tainly be considered as the most fundamental identities in geometry. The
vanishing theorem of Lichnerowicz [453] on harmonic spinors over spin man-
ifolds with positive scalar curvature gives strong information. Through the
Atiyah-Singer index theorem, it gives the vanishing theorem for the Â-genus
and the α invariants for spin manifolds with positive scalar curvature. The
method was later sharpened by Hitchin [331] to prove that every Einstein



PERSPECTIVES ON GEOMETRIC ANALYSIS 305

metric over K3−surfaces must be Kähler and Ricci flat. An effective use of
Lichnerowicz formula for a spinC structure for a four dimensional manifold is
important for Seiberg-Witten theory, which couples the Dirac operator with
a complex line bundle. Lawson-Yau [413] were able to use Lichnerowicz’s
work coupled with Hitchin’s work to prove a large class of smooth manifolds
have no smooth non-Abelian group action and, by using modular forms,
K.F. Liu proved a loop space analogue of the Lawson-Yau’s theorem for the
vanishing of the Witten genus in [467].

On the basis of the surgery result of Schoen-Yau [597, 600] and Gromov-
Lawson [290, 291], one expects that a suitable converse to Lichnerowicz’s
theorem exists. The chief result is that surgery on spheres with codimension
≥ 3 preserves a class of metrics with positive scalar curvature. Once geo-
metric surgery is proved, standard works on cobordism theory allow one to
deduce existence results for simply connected manifolds with positive scalar
curvature. The best work in this direction is due to Stolz [641] who gave a
complete answer in the case of simply connected manifolds with dimension
greater then 4. I also suggested the possibility of performing surgery on
an asymptotic hyperbolic manifold with conformal boundary whose scalar
curvature is positive. This is related to the recent work of Witten-Yau [722]
on the connectedness of the conformal boundary.

The study of metrics with positive scalar curvature is the first impor-
tant step in understanding the positive mass conjecture in general relativity.
Schoen-Yau [598, 602] gave the first proof using ideas of minimal surfaces.
Three years later, Witten [716] gave a proof using harmonic spinors. Both
approaches have been fundamental to questions related to mass and other
conserved quantities in general relativity. In the other direction, Schoen-Yau
[600] generalized their argument in 1979 to find topological obstructions for
higher dimensional manifolds with positive scalar curvature. Subsequently
Gromov-Lawson [290, 291] observed that the Lichnerowicz theorem can be
coupled with a fundamental group and give topological obstructions for a
metric with positive scalar curvature. This work was related to the Novikov
conjecture where many authors, including Lusztig [483], Rosenberg [571],
Weinberger [712] and G.L. Yu [751] made contributions.

Besides its importance in demonstrating the stability of Minkowski space-
time, the positive mass conjecture was used by Schoen [590] in a remarkable
manner to finish the proof of the Yamabe problem where Trudinger [686]
and Aubin [21] made substantial contributions.

Comment: The Dirac operator is perhaps one of the most
mysterious operators in geometry. When it is twisted with
other bundles, it gives the symbol of all first order elliptic
operators. When it couples with a complex line bundle it
gives the Seiberg-Witten theory which provides powerful in-
formation for four manifolds. On the other hand, there were
two different methods to study metrics with positive scalar
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curvature. It should be fruitful to combine both methods:
the method of Dirac operator and the method of minimal
submanifolds.

2.3.4. First order operator twisted by vector fields or endomorphisms of
bundles. Given a vector field X on a manifold, we can consider the complex
of differential forms ω so that LXω = 0. On such a complex, d+ ιX defines a
differential and the resulting cohomology is called equivariant cohomology.

During the seventies, Bott [72] and Atiyah-Bott [12] developed the lo-
calization formula for equivariant cohomology. Both the concepts of a mo-
ment map and equivariant cohomology have become very important tools
for computations of various geometric quantities, especially Chern numbers
of natural bundles. The famous work of Atiyah, Guillemin-Sternberg on
the convexity of the image of the moment map gives a strong application
of equivariant cohomology to toric geometry. The formula of Duistermaat-
Heckman [208] played an important role in motivation for evaluation of
path integrals. These works have been used by Jeffrey and Kirwan [360]
and by K.F. Liu and his coauthors on several topics: the mirror principle
(Lian-Liu-Yau [449, 450, 451, 452]), topological vertex (Li-Liu-Liu-Zhou
[430]), etc. The idea of applying localization to enumerative geometry was
initiated by Kontsevich [393] and later by Givental [257] and Lian-Liu-Yau
[449] independently. (Lian-Liu-Yau [449] formulated a functorial localiza-
tion formula which has been fundamental for various calculations in mirror
geometry.) These works solve the identities conjectured by Candelas et al
[99] based on mirror symmetry, and provide good examples of the ways in
which conformal field theory can be a source of inspiration when looking at
classical problems in mathematics.

If we twist the ∂̄ operator with an endomorphism valued holomorphic one
form s so that s ◦ s = 0, it gives rise to a complex ∂̄ + s. This was the Higgs
theory initiated by Hitchin [332] and studied extensively by Simpson [621].
There is extensive work of Zuo Kang and Jost-Zuo (see [759]) on Higgs
theory and representation of fundamental groups of algebraic manifold.

In string theory, there is a three form H and the cohomology of dc + H
has not been well understood. It would be interesting to develop a deeper
understanding of such twisted cohomology and its localization.

Comment: The idea of deforming a de Rham operator by
twisting with some other zero order operators has given pow-
erful information to geometry. Witten’s idea of the analytic
proof of Morse theory is an example. Equivariant cohomol-
ogy is another example. We expect to see more works in such
directions.

2.3.5. Spectrum and global geometry. Weyl made a famous address in
the early fifties. The title of his talk was The Eigenvalue Problem Old and
New. He was excited by the work of Minakshisundaram and Pleijel which
asserts that the zeta function ζ(s) =

∑
λ λ−s, where λ are eigenvalues of the
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Laplacian, not only makes sense for Re’s large, but also has meromorphic
extension to the whole complex s-plane, the position of whose poles could
be described explicitly. In particular, it is analytic near s = 0. Formally
dζ(s)

ds |s=0 can be viewed as − log det(Δ). This gives a definition of determi-
nant of Laplacian which entered into the fundamental work of Ray-Singer
relating Reidemeister’s combinational invariant of a manifold with analytic
torsion defined by determinants of the Laplacians acting on differential forms
of various degrees. Other application of zeta function expressed in terms of
kernel is the calculation of the asymptotic growth of eigenvalues in terms of
volume of the manifold. Tauberian type theorem is needed.

This initiated the subject of finding a formula to relate spectrum of
manifolds with their global geometry. Atiyah and Singer [20] were the most
important contributors to this beautiful subject. Atiyah-Bott-Patodi [13]
applied the heat kernel expansion to a proof of the local index theorem
where Gilkey [256] also made an important contributions. Atiyah-Patodi-
Singer [17, 18, 19] initiated the study of spectrum flow and gave important
global spectral invariants on odd dimensional manifolds. These global in-
variants become boundary terms for the L2-index theorem developed by
Atiyah-Donnelly-Singer [14] and Mark Stern [640]. (A method of Callias
[96] has been used for such calculations.) Witten [717, 718] has introduced
supersymmetry and analytic deformation of the de Rham complex to Morse
theory, and thereby revealed a new aspect of the connection between global
geometry and theoretical physics. Witten’s work has been generalized by
Demailly [190] and Bismut-Zhang [56, 57] to study the holomorphic Morse
inequality and analytic torsion. Novikov [541] also studied Morse theory
for one forms. Witten’s work on Morse theory inspired the work of Floer
(see, e.g., [224, 225, 226]) who used his ideas in Floer cohomology to prove
Arnold’s conjecture in the case where the manifold has vanishing higher ho-
motopic group. Floer’s theory is related to knot theory (through Chern-
Simon’s theory [152]) on three manifolds. Atiyah, Donaldson, Taubes,
Dan Freed, P. Braam, and others (see, e.g., [10, 658, 77, 229]) all con-
tributed to this subject. Fukaya-Ono [241], Oh [544], Kontsevich [394],
Hofer-Wysocki-Zehnder [341], G. Liu-Tian [466], all studied such a theory
in symplectic geometry. Some part of Arnold’s conjecture on fixed points
of groups acting on symplectic manifolds was claimed to be proven. But a
satisfactory proof has not been forthcoming.

One should also mention here the very important work of Cheeger [115]
and Müller [533] in which they verify the conjecture of Ray-Singer equat-
ing analytic torsion with the combinational torsion of the manifold. The
fundamental idea of Ray-Singer [567] on holomorphic torsion is still being
vigorously developed. It appeared in the beautiful work of Vafa et al [50].
Many more works on analytic torsion were advanced by Quillen, Todorov,
Kontsevich, Borcherds, Bismut, Lott, Zhang, and Z.Q. Lu (see [55] and
its reference, [365], [64, 65]). The local version of the index theorem by
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Atiyah-Bott-Patodi [13] was later extended by Bismut [53] to an index the-
orem for a family of elliptic operators. However, the pushed forward Chern
forms have not been calculated and the formula has not been used effectively.
(The local index argument dates back to the foundational work of McKean-
Singer [499] where methods were developed to calculate coefficients of heat
kernel expansion.) The study of elliptic genus by Witten [719], Bott-Taubes
[73], Taubes [657], K.F. Liu [468] and M. Hopkins [346] has built a bridge
between topology and modular form.

Comment: The subject of relating the spectrum to global
topology is extremely rich. It is likely that we have only
touched part of this rich subject. The deformation of spec-
trum associated with the deformation of geometric structure
is always a fascinating subject. Global invariants are cre-
ated by spectral flows. Determinants of elliptic operators are
introduced to understand measures of infinite dimensional
space. Geometric invariants that are created by asymptotic
expansion of heat or wave kernels are in general not well un-
derstood. It will be a long time before we have a much better
understanding of the global behavior of spectrum.

3. Mappings between manifolds and rigidity
of geometric structures

There is a need to exhibit a geometric structure in a simpler space: hence
we embed algebraic manifolds into complex projective space, we isometri-
cally embed a Riemannian manifold into Euclidean space and we classify
structures such as bundles by studying maps into Grassmannian.

We are also interested in probing the structure of a manifold by mapping
Riemann surfaces inside the manifold, an important example being holomor-
phic curves in algebraic manifolds. Of course, we are also interested in maps
that can be used to compare the geometric structures of different manifolds.

3.1. Embedding.
3.1.1. Embedding theorems. Holomorphic sections of holomorphic line

bundles have always been important in algebraic geometry. The Riemann-
Roch formula coupled with vanishing theorems gave very powerful existence
results for sections of line bundles. The Kodaira embedding theorem [391]
which said that every Hodge manifold is projective has initiated the theory
of holomorphic embedding of Kähler manifolds. For example, Hirzebruch-
Kodaira [330] proved that every odd (complex) dimensional Kähler manifold
diffeomorphic to projective space is biholomorphic to projective space. (I
proved the same statement for even dimensional Kähler manifolds based on
Kähler Einstein metric.)

Given an orthonormal basis of holomorphic sections of a very ample
line bundle, we can embed the manifold into projective space. The induced
metric is the Bergman metric associated with the line bundle. Note that
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the original definition of the Bergman metric used the canonical line bundle
and L2-holomorphic sections.

In the process of understanding the relation between stability of a man-
ifold and the existence of the Kähler Einstein metric, I [741] proposed that
every Hodge metric can be approximated by the Bergman metric as long
as we allow the power of the line bundle to be large. Following the ideas
of the paper of Siu-Yau [632], Tian [676] proved the C2 convergence in his
thesis under my guidance. My other student W. D. Ruan [575] then proved
C∞ convergence in his thesis. This work was followed by Lu [479], Zelditch
[752] and Catlin [110] who observed that the asymptotic expansion of the
kernel function follows from some rather standard expressions of the Szegö
kernel, going back to Fefferman [220] and Boutet de Monvel-Sjöstrand [75]
on the circle bundle associated with the holomorphic line bundle over the
Kähler manifold. Recently, Dai, Liu, Ma and Marinescu [182] [488] ob-
tained the asymptotic expansion of the kernel function by using the heat
kernel method, and gave a general way to compute the coefficients, thus
also extended it to symplectic and orbifold cases.

Kodaira’s proof of embedding Hodge manifolds by the sufficiently high
power of a positive line bundle is not effective. Matsusaka [493] and later
Kollár [392], Siu [628] were able to provide effective estimate of the power.
Demailly [192, 193] and Siu [628, 630] made a significant contribution
toward the solution of the famous Fujita conjecture [237] (see also Ein and
Lazarsfeld [213]). Siu’s powerful method also leads to a proof of the defor-
mation invariance of plurigenera of algebraic manifolds [629]. It should be
noticed that the extension theorem of Ohsawa-Takegoshi played an impor-
tant role in this last work of Siu.

Comment: The idea of embedding a geometric structure
is clearly important because once they are put in the same
space, we can compare them and study the moduli space of
the geometric structure. For example, one can define Chow
coordinate of a projective manifold and we can study various
concepts of geometric stability of these structures. However,
there is no natural universal space of Kähler manifolds or
complex manifolds as we may not have a positive holomor-
phic line bundle over such manifolds to embed into complex
projective space. In a similar vein, it will be nice to find a
universal space for symplectic manifolds.

3.1.2. Compactification. The problem of compactification of the man-
ifold dates back to Siegel, Satake, Baily-Borel [26] and Borel-Serre [67].
They are important for representation theory, for algebraic geometry and
for number theory.

For geometry of non-compact manifolds, we like to control behavior of
differentiable forms at infinity. A good exhaustion function is needed.
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Construction of a proper exhaustion function with a bounded Hessian on
a complete manifold with bounded curvature was achieved by Schoen-Yau
[606] in 1983 in our lectures in Princeton. Based on this exhaustion function,
M. Dafermos [180] was able to give a transparent proof of the theorem of
Cheeger-Gromov [121] that such manifolds admit an exhaustion by compact
hypersurfaces with bounded second fundamental form. Such exhaustions are
useful to understand characteristic forms on noncompact manifolds as the
boundary term can be controlled by the second fundamental form of the
hypersurfaces.

After my work with Siu [634] on compactification of a strongly, neg-
atively curved Kähler manifold with finite volume, I proposed that every
complete Kähler manifold with bounded curvature, finite volume and finite
topology should be compactifiable to be a compact complex variety. I sug-
gested this problem to Mok and Zhong in 1982 who did significant work
[528] in this direction. (The compactification by Mok-Zhong is not canoni-
cal and it is desirable to find an algebraic geometric analogue of Borel-Baily
compactification [26] so that we can study the L2-cohomology in terms of
the intersection cohomology of the compactification.) Recall that the impor-
tant conjecture of Zucker on identifying L2-cohomology with the intersection
cohomology of the Borel-Baily compactification was settled by Saper-Stern
[585] and Looijenga [476]. (Intersection cohomology was introduced by
Goresky-MacPherson [265, 266]. It is a topological concept and hence
the Zucker conjecture gives a topological meaning of the L2-cohomology.)
It would be nice to find compactification for algebraic varieties so that a
suitable form of intersection cohomology can be used to understand L2 co-
homology. Goresky-Harder-MacPherson [264] and Saper [584] have con-
tributed a lot toward this kind of question. For moduli space of bundles,
or polarized projective structures, compactification means studying of de-
generation of these structures in a suitable canonical manner. For algebraic
curves, there is Deligne-Mumford compactification [189] which has played
a fundamental role in understanding algebraic curves. Geometric invariant
theory (see [534]) gives a powerful method to introduce the concept of stable
structures. Semi-stable structures can give points at infinity. The compacti-
fication based on the geometric invariant theory for moduli space of surfaces
of the general type was done by Gieseker [254]. For a higher dimension, this
was done by Viehweg [694]. Detailed analysis of the divisors at infinity is
still missing.

Comment: Compactification of a manifold is very much re-
lated to the embedding problem. One needs to construct
functions or sections of bundles near infinity. For the moduli
space of geometric structures, it amounts to study of degen-
eration of the structures canonically, e.g., the degeneration of
Hermitian Yang-Mills connections and Kähler Einstein met-
rics.
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3.1.3. Isometric embedding. Given a metric tensor on a manifold, the
problem of isometric embedding is equivalent to find enough functions f1, ...,
fN so that the metric can be written as

∑
(dfi)2. Much work was accom-

plished for two dimensional surfaces as was mentioned in section 2.1.2. Iso-
metric embedding for the general dimension was solved by the famous work
of J. Nash [536, 537]. Nash used his famous implicit function theorem
which depends on various smoothing operators to gain derivatives. In a re-
markable work, Günther [307] was able to avoid the Nash procedure. He
used only the standard Hölder regularity estimate for the Laplacian to re-
produce the Nash isometric embedding with the same regularity result. In
his book [287], Gromov was able to lower the codimension of the work of
Nash. He called his method the h-principle.

When the dimension of the manifold is n, the expected dimension of the
Euclidean space for the manifold to be isometrically embedded is n(n+1)

2 . It
is important to understand manifolds isometrically embedded into Euclidean
space with this optimal dimension. Only in such a dimension does it make
sense to talk about rigidity questions. It remains a major open problem
whether one can find a nontrivial smooth family of isometric embeddings of
a closed manifold into Euclidean space with an optimal dimension. Such a
nontrivial family was found for a polyhedron in Euclidean three space by
Connelly [176]. For a general manifold, it is desirable to find a canonical
isometric embedding into a given Euclidean space by minimizing the L2

norm of its mean curvature within the space of isometric embeddings.

Chern told me that he and H. Lewy studied local isometric embedding
of a three manifold into six dimensional Euclidean space. But they didn’t
have any publication on it. The major work was done by E. Berger, Bryant,
Griffiths and Yang [85], [47]. They showed that a generic three dimensional
embedding system is strictly hyperbolic, and the generic four dimensional
system is a real principal type. Local existence is true for a generic metric
using a hyperbolic operator and the Nash-Moser implicit function theorem.

If the target space of isometric embedding is a linear space with indefinite
metric, it is possible that the problem is easier. For example, by a theorem of
Pogorelov [561, 562], any metric on the two dimensional sphere can be iso-
metrically embedded into a three dimensional hyperbolic space-form (where
the sectional curvature may be a large negative constant). Hence it can
always be embedded into the hyperboloid of the Minkowski spacetime. This
statement may also be true for surfaces with higher genus. The fundamen-
tal group may cause obstruction, hence the first step should be an attempt
to canonically embed any complete metric (with bounded curvature) on a
simply connected surface into a three dimensional hyperbolic space form. It
should be also very interesting to study the rigidity problem of a space-like
surface in Minkowski spacetime. Besides requesting the metric to be the
induced metric, we shall need one more equation. Such an equation should
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be related to the second fundamental form. A candidate appeared in the
work of M. Liu-Yau [464, 465] on the quasi-local mass in general relativity.

In the other direction, Calabi found the condition for a Kähler metric to
be isometrically and holomorphically embedded into Hilbert space with an
indefinite signature. In the course of his investigation, he introduced some
kind of distance function that can be defined by the Kähler potential and
enjoys many interesting properties. Calabi’s work in this direction which
should be relevant to the flat coordinate appeared in the recent works of
Vafa et al [50].

Comment: The theory of isometric embedding is a classical
subject. But our knowledge is still rather limited, especially
in dimension greater than three. Many difficult problems
are related to nonlinear mixed type equation or hyperbolic
differential systems over a closed manifold.

3.2. Rigidity of harmonic maps with negative curvature. One
can define the energy of maps between manifolds and the critical maps
are called harmonic maps. In 1964, Eells-Sampson [212] and Al’ber [3]
independently proved the existence of such maps in their homotopy class if
the image manifold has a non-positive curvature.

When I was working on manifolds with non-positive curvature, I realized
that it is possible to use harmonic map to reprove some of the theorems in
my thesis. I was convinced that it is possible to use harmonic maps to study
rigidity questions in geometry such as Mostow’s theorem [531]. In 1976, I
proved the Calabi conjecture and applied the newly proved existence of the
Kähler Einstein metric and the Mostow rigidity theorem to prove unique-
ness of a complex structure on the quotient of the ball [735]. Motivated by
this theorem, I proposed to use the harmonic map to prove the rigidity of
a complex structure for Kähler manifolds with strongly negative sectional
curvature. I proposed this to Siu who carried out the idea when the image
manifold satisfies a stronger negative curvature condition [625]. Jost-Yau
[368] proved that for harmonic maps into manifolds with non-positive curva-
ture, the fibers give rise to holomorphic foliations even when the map is not
holomorphic. Such a work was found to be useful in the work of Corlette,
Simpson et al.

A further result was obtained by Jost-Yau [371] and Mok-Siu-Yeung
[525] on the proof of the superrigidity theorem of Margulis [490], improving
an earlier result of Corlette [177] who proved superrigidity for a certain rank
one locally symmetric space. Complete understanding of superrigidity for
the quotient of a complex ball is not yet available. One needs to find more
structures for harmonic maps which reflect the underlying structure of the
manifold. The analytic proof of super-rigidity was based on an argument of
Matsushima [495] as was suggested by Calabi. (This was a topic discussed
by Calabi in the special year on geometry in the Institute for Advanced
Study.)
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The discrete analogue of harmonic maps is also important. When the
image manifold is a metric space, there are works by Gromov-Schoen [292],
Korevaar-Schoen [399] and Jost [367]. Margulis knew that the super-
rigidity for both the continuous and the discrete case is enough to prove
Selberg’s conjecture for the arithmeticity of lattices in groups with rank
≥ 2. Unfortunately, the analytic argument mentioned above only works if
the lattices are cocompact as it is difficult to find a degree one smooth map
with finite energy for non-cocompact lattices. Harmonic maps into a tree
have given interesting applications to group theory. When the domain man-
ifold is a simplicial complex, there are articles by Ballmann-Śwwia̧tkowski
[29] and M.T. Wang [703, 704], where they introduce maps from complices
which are generalizations of buildings. They also generalized the work of H.
Garland [245] on the vanishing of the cohomology group for p-adic buildings.

Using the concept of the center of gravity, Besson-Courtois-Gallot [52]
give a metric rigidity theorem for rank one locally symmetric space. They
also proved a rigidity theorem for manifolds with negative curvature: if the
fundamental group can be split as a nontrivial free product over some other
group C, the manifold can be split along a totally geodesic submanifold with
the fundamental group C.

Comment: The harmonic map gives the first step in match-
ing geometric structures of different manifolds. Eells-
Sampson derived it from the variational principle. One can
also use different elliptic operators to define maps which sat-
isfy elliptic equations. Higher dimensional applications are
mostly based on the assumption that the image manifold has
a metric with non-positive curvature. In such a case, exis-
tence is easier and uniqueness (as shown by Hartman) is also
true. Up to now, significant results on higher dimensional
harmonic maps are based on such assumptions. Generaliza-
tion to Kähler manifold should be reasonable. The second
homotopic group should play a role as one may look at it as
a generalization of the work of Sacks-Uhlenbeck. It may be
possible to use harmonic maps to study the moduli of geo-
metric structure on a fixed manifold as was done by Michael
Wolf for Riemann surfaces. It will also be nice to see how a
harmonic map can be used to compare graphs.

3.3. Holomorphic maps. The works of Liouville, Picard, Schwarz-
Pick and Ahlfors show the importance of hyperbolic complex analysis.
Grauèrt-Reckziegel [268] generalized this kind of analysis to higher dimen-
sional complex manifolds. Kobayashi [388] and H. Wu [726] put this theory
in an elegant setting. Kobayashi introduced the concept of hyperbolic com-
plex manifolds. Its elegant formulation has been influential. An important
application of the negative curvature metric is the extension theorem for
holomorphic maps, as was achieved by the work of Griffiths-Schmid [275]
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on maps to a period domain and by the extension theorem of Borel [66]
on compactification of Hermitian symmetric space. A major question was
Lang’s conjecture: on an algebraic manifold of a general type, there exists
a proper subvariety such that the image of any holomorphic map from C

must be a subset of this subvariety. It has deep arithmetic geometric mean-
ing. In terms of the Kobayashi metric, it says that the Kobayashi metric is
nonzero on a Zariski open set. Many works were done towards subvarieties
of Abelian variety by Bloch, Green-Griffiths, Kobayashi-Ochiai, Voitag and
Faltings. For generic hypersurfaces in CPn, there is work by Siu [631]. They
developed the tool of jet differentials and meromorphic connections. For al-
gebraic surfaces with C2

1 > 2C2, Lu-Yau [477] proved Lang’s conjecture,
based on the ideas of Bogomolov.

Comment: Holomorphic maps have been studied for a long
time. There is no general method to construct such maps
based on the knowledge of topology alone, except the har-
monic map approach proposed by me and carried out by Siu,
Jost-Yau and others. But the approach is effective only for
manifolds with negative curvature. For rigidity questions,
the most interesting manifolds are Kähler manifolds with
non-positive Ricci curvature, which give the major chunk of
algebraic manifolds of a general type. The Kähler-Einstein
metric should provide tools to study such problems. Is there
any intrinsic way, based on the metric, to find the largest
subvariety where the image of all holomorphic maps from
the complex line lie? Deformation theory of such a subvari-
ety should be interesting. There is also the question of when
the holomorphic image of the complex line will intersect a
divisor. Cheng and I did find good conditions for the com-
plement of a divisor to admit the complete Kähler-Einstein
metric. For such a geometry, the holomorphic line should
either intersect the divisor or a subset of some subvarieties.
These kinds of questions are very much related to arithmetic
questions if the manifolds are defined over number fields.

3.4. Harmonic maps from two dimensional surfaces and pseudo-
holomorphic curves. Harmonic maps behave especially well for Riemann
surface. Morrey was the first one who solved the Dirichlet problem for en-
ergy minimizing harmonic map into any Riemannian manifold.

Another major breakthrough was made by Sacks-Uhlenbeck [581] in
1978 where they constructed minimal spheres in Riemannian manifolds rep-
resenting elements in the second homotopy group using a beautiful extension
theorem of a harmonic map at an isolated point. By pushing their method
further, Siu-Yau [633] studied the bubbling process for the harmonic map
and made use of it to prove a stable harmonic map must be holomorphic
under curvature assumptions. As a consequence, they proved the famous
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conjecture of Frankel that a Kähler manifold with positive bisectional cur-
vature is CPn, as was discussed in Section [2.3.2].

Gromov [286] then realized that a pseudoholomorphic curve for an al-
most complex structure can be used in a similar way to prove rigidity of a
symplectic structure on CPn. The bubbling process mentioned above was
sharpened further to give compactification of the moduli space of pseudo-
holomorphic maps by Ye [749] and Parker-Wolfson [549]. Based on these
ideas, Kontsevich [393] introduced the concept of stable maps and the com-
pactification of their moduli spaces.

The formal definitions of Gromov-Witten invariants and quantum coho-
mology were based on these developments and the ideas of physicists. For
example, quantum cohomology was initiated by Vafa (see, e.g., [692]) and
his coauthors (the name was suggested by Greene and me). Associativity
in quantum cohomology was due to four physicists WDVV [720, 194]. The
mathematical treatment (done by Ruan [579] and subsequently by Ruan-
Tian [580]) followed the gluing ideas of the physicists. Ruan-Tian made
use of the ideas of Taubes [656]. But important points were overlooked. A.
Zinger [756, 757] has recently completed these arguments.

In close analogy with Donaldson’s theory, one needs to introduce the
concept of virtual cycle in the moduli space of stable maps. The algebraic
setting of such a concept is deeper than the symplectic case and is more
relevant to the development for algebraic geometry. The major idea was
conceived by Jun Li who also did the algebraic geometric counterpart of
Donaldson’s theory (see [426, 431]). (The same comment applies to the
concept of the relative Gromov-Witten invariant, where Jun Li made the vi-
tal contribution in the algebraic setting [428, 429].) The symplectic version
of Li-Tian [432] ignores difficulties, many of which were completed recently
by A. Zinger [756, 757].

Sacks-Uhlenbeck studied harmonic maps from higher genus Riemann
surfaces. Independently, Schoen-Yau [601] studied the concept of the ac-
tion of an L2

1 map on the fundamental group of a manifold. It was used
to prove the existence of a harmonic map with prescribed action on the
fundamental group. Jost-Yau [369] generalized such action on fundamental
group to a more general setting which allows the domain manifold to be
higher dimensional. Recently F. H. Lin developed this idea further [460].
He studied extensively geometric measure theory on the space of maps (see,
e.g., [457, 459]). The action on the second homotopy group is much more
difficult to understand. I think there should exist a harmonic map with
nontrivial action on the second homotopic group if such a continuous map
exists. Such an existence theorem will give interesting applications to Kähler
geometry.

There is a supersymmetric version of harmonic maps studied by string
theorists. This is obtained by coupling the map with Dirac spinors in dif-
ferent ways (which corresponds to different string theories). While this kind
of world sheet theory is fundamental for the development of string theory,
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geometers have not paid much attention to the supersymmetric harmonic
map. Interesting applications may be found. The most recent paper of
Chen, Jost, Li and Wang [134] does address to a related problem where
they studied the regularity and energy identities for Dirac-Harmonic maps.

Comment: Maps from circle or Riemann surfaces into a
Riemannian manifold give a good deal of information about
the manifold. The capability to construct holomorphic or
pseudo-holomorphic maps from spheres with low degree was
the major reason that Mori, Siu-Yau and Taubes were able
to prove the rigidity of algebraic or symplectic structures on
the complex projective space. It will be desirable to find
more ways to construct such maps from low genus curves to
manifolds that are not of a rational type. Their moduli space
can be used to produce various invariants. An outstanding
problem is to understand the invariants on counting curves
of a higher genus which appeared in the fundamental paper
of Vafa et al [50].

3.5. Morse theory for maps and topological applications. The
energy functional for maps from S2 into a manifold does not quite give
rise to Morse theory. But the perturbation method of Sacks-Uhlenbeck did
provide enough information for Micallef-Moore [513] to prove some struc-
ture theorem for manifolds with positive isotropic curvature. (Micallef and
Wang [514] then proved the vanishing of second Betti number in the even
dimensional case. If the manifold is irreducible, has non-negative isotropic
curvature and non-vanishing second Betti number, then they proved that
its second Betti number equals to one and it is Kähler with positive first
Chern class.)

If the image manifold has negative curvature, the theorem of Eells-
Sampson [212] says that any map can be canonically deformed by the heat
flow to a unique harmonic map. Hence the topology of the space of maps is
given by the space of homomorphism between the fundamental groups of the
manifolds. This gives some information of the topology of manifolds with
negative curvature. Farrell and Jones [218] have done much deeper analysis
on the differentiable structure of manifolds with negative curvature.

Schoen-Yau [601] exploited the uniqueness theorem for harmonic maps
to demonstrate that only finite groups can act smoothly on a manifold which
admits a non-zero degree map onto a compact manifold with negative cur-
vature. The size of the finite group can also be controlled. If the image man-
ifold has non-positive curvature, then the only compact continuous group
actions are given by the torus.

The topology of the space of maps into Calabi-Yau manifolds should
be very interesting for string theory. Sullivan [648] has developed an equi-
variant homology theory for loop space. It will be interesting to link such
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a theory with quantum cohomology when the manifold has a symplectic
structure.

Comment: Morse theory has been one of the most pow-
erful tools in geometry and topology as it connects local to
global information. One does not expect full Morse theory
for harmonic maps as we have difficulty even proving their
existence. However, if their existence can be proven, the per-
turbation technique may be used and powerful conclusions
may be drawn.

3.6. Wave maps. In the early eighties, C.H. Gu [296] studied har-
monic maps when the domain manifold is the two dimensional Minkowski
spacetime. They are called wave maps. Unfortunately, good global theory
took much longer to develop as there were not many good a priori esti-
mates. This subject was studied extensively by Christodoulou, Klainerman,
Tao, Tataru and M. Struwe (see, e.g., [161, 385, 653, 654, 610]). It is
hoped that such theory may shed some light on Einstein equations.

Comment: The geometric or physical meaning of wave maps
should be studied. The problem of vibrating membrane gives
a good motivation to study time-like minimal hypersurface
in a Minkowski spacetime. One can study the vibration of
a submanifold by looking into the minimal time-like hyper-
surface with the boundary given by the submanifold. It is a
mystery how such vibrations can be related to the eigenvalues
of the submanifold.

3.7. Integrable system. Classically, Bäcklund (1875) was able to find
a nonlinear transformation to create a surface with constant curvature in R

3

from another one. The nonlinear equation behind it is the Sine-Gordon equa-
tion. Then in 1965, Kruskal and Zabusky (see [403]) discovered solitons and
subsequently in 1967, Gardner, Greene, Kruskal and Miura [244] discovered
the inverse scatting method to solve the KdV equations. The subject of a
completely integrable system became popular.

Uhlenbeck [690] used techniques from integrable systems to construct
harmonic maps from S2 to U(n), Bryant [83] and Hitchin [334] also con-
tributed to related constructions using twistor theory and spectral curves.
These inspired Burstall, Ferus, Pedit and Pinkall [89] to construct harmonic
maps from a torus to any compact symmetric space. In a series of papers,
Terng and Uhlenbeck [668, 669] used loop group factorizations to solve
the inverse scattering problem and to construct Bäcklund transformations
for soliton equations, including Schrödinger maps from R

1,1 to a Hermitian
symmetric space. There have been recent attempts by Martin Schmidt [589]
to use an integrable system to study the Willmore surface.
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The integrable system also appeared naturally in several geometric ques-
tions such as the Schottky problem (see Mulase [532]) and the Witten con-
jecture on Chern numbers of bundles over moduli space of curves.

Geroch found the Backlund transformation for axially symmetric sta-
tionary solutions of Einstein equations. It will be nice to find such nonlinear
transformations for more general geometric structures.

Comment: It is always important to find an explicit solution
to a nonlinear problem. Hopefully an integrable system can
help us to understand general structures of geometry.

3.8. Regularity theory. The major work on regularity theory of har-
monic maps in higher dimensions was done by Schoen-Uhlenbeck [592, 593].
(There is a weaker version due to Giaquinta-Giusti [252] and also the earlier
work of Ladyzhenskaya-Ural’ceva and Hildebrandt-Kaul-Widman where the
image manifolds for the maps are more restrictive.) Leon Simon (see [620])
made a deep contribution to the structure of harmonic maps or minimal
subvarieties near their singularity. This was followed by F.H. Lin [459].
The following is still a fundamental problem: Are singularities of harmonic
maps or minimal submanifolds stable when we perturb the metric of the
manifolds? Presumably some of them are. Can we characterize them? How
big is the codimension of generic singularities?

In the other direction Schoen-Yau [596] also proved that degree one har-
monic maps are one to one if the image surface has a non-positive curvature.
Results of this type work only for two dimensional surfaces. It will be nice
to study the set where the Jacobian vanishes.

Comment: There is a very rich theory of stable singularity
for smooth maps. However, in most problems, we can only
afford to deform certain background geometric structures,
while the extremal objects are still constrained by the ellip-
tic variational problem. Understanding this kind of stable
singularity should play fundamental roles in geometry.

4. Submanifolds defined by variational principles

4.1. Teichmüller space. The totality of the pair of polarized
Kähler manifolds with a homotopic equivalence to a fixed manifold gives
rise to the Teichmüller space. For an algebraic curve, this is the classi-
cal Teichmüller space. This space is important for the construction of the
mapping problem for minimal surfaces of a higher genus.

In fact, given a conformal structure on a Riemann surface Σ, a harmonic
map from Σ to a fixed Riemannian manifold may minimize energy within a
certain homotopy class. However, it may not be conformal and may not be
a minimal surface. In order to obtain a minimal surface, we need to vary
the conformal structure on Σ also. Since the space of conformal structures
on a surface is not compact, one needs to make sure the minimum can be
achieved.
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If the map f induces an injection on the fundamental group of the do-
main surface, Schoen-Yau [597] proved the energy of the harmonic map is
proper on the moduli space of conformal structure on this surface by making
use of a theorem of Linda Keen [381]. Based on a theory of topology of the
L2

1 map, they proved the existence of incompressible minimal surfaces. As
a product of this argument, it is possible to find a nice exhaustion function
for the Teichmüller space. Michael Wolf [723] was able to use harmonic
maps to give a compactification of Teichmüller space which he proved to be
equivalent to the Thurston compactification. S. Wolpert studied extensively
the behavior of the Weil-Petersson metric (see Wolpert’s survey [724]). A
remarkable theorem of Royden [574] says that the Teichmüller metric is
the same as the Kobayashi metric. C. McMullen [502] introduced a new
Kähler metric on the moduli space which can be used to demonstrate that
the moduli space is hyperbolic in the sense of Gromov [288]. The great
detail of comparison of various intrinsic metrics on the Teichmüller space
had been a major problem [741]. It was accomplished recently in the works
of Liu-Sun-Yau [471, 472]. Actually Liu-Sun-Yau introduced new metrics
with bounded negative curvature and geometry and found the stability of
the logarithmic cotangent bundle of the moduli spaces. Recently L. Haber-
mann and J. Jost [308, 309] also studied the geometry of the Weil-Petersson
metric associated to the Bergmann metric on the Riemann surface instead
of the Poincaré metric.

Comment: For a conformally invariant variational problem,
Teichmüller space plays a fundamental role. It covers the
moduli space of curves and in many ways behaves like a Her-
mitian symmetric space of noncompact type. Unfortunately,
there is no good canonical realization of it as a pseudo-convex
domain in Euclidean space. For example, we do not know
whether it can be realized as a smooth domain or not.

There is also Teichmüller space for other algebraic mani-
folds, such as Calabi-Yau manifolds. It is an important ques-
tion in understanding their global behavior.

4.2. Classical minimal surfaces in Euclidean space. There is a
long and rich history of minimal surfaces in Euclidean space. Recent con-
tributions include works by Meeks, Osserman, Lawson, Gulliver, White,
Hildebrandt, Rosenberg, Collin, Hoffman, Karcher, Ros, Colding, Minicozzi,
Rodŕıguez, Nadirashvili and others (see the reference in Colding and Mini-
cozzi’s survey [174]) on embedded minimal surfaces in Euclidean space.
They come close to classifying complete embedded minimal surfaces and give
a good understanding of complete minimal surface in a bounded domain.
For example, Meeks-Rosenberg [503] proved that the plane and helicoid are
the only properly embedded simply connected minimal surfaces in R

3.
Calabi also initiated the study of isometric embedding of Riemann sur-

faces into SN as minimal surfaces. The geometry of minimal spheres and
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minimal torus was then pursued by many geometers [107], [150], [83], [334],
[410].

Comment: This is one of the most beautiful subjects in
geometry where Riemann made important contributions. Clas-
sification of complete minimal surface is nearly accomplished.
However, a similar problem for compact minimal surfaces in
S3 is far from being solved. It is also difficult to detect which
set of disjoint Jordan curves can bound a connected minimal
surface. The classification of moduli space of complete mini-
mal surfaces with finite total curvature should be studied in
detail.

4.3. Douglas-Morrey solution, embeddedness and application
to topology of three manifolds. In a series of papers started in 1978,
Meeks-Yau [505, 506, 507, 508] settled a classical conjecture that the
Douglas solution for the Plateau problem is embedded if the boundary curve
is a subset of a mean convex boundary. (One should note that Osserman
[546] had already settled the old problem of non-existence of branched points
for the Douglas solution while Gulliver [306] proved non-existence of false
branched points.) We made use of the area minimizing property of minimal
surfaces to prove these surfaces are equivariant with respect to the group
action. Embedded surfaces which are equivariant play important roles for
finite group actions on manifolds. Coupling with a theorem of Thurston, we
can then prove the Smith conjecture [748] for cyclic groups acting on the
spheres: that the set of fixed points is not a knotted curve.

The Douglas-Morrey solution of the Plateau problem is obtained by fix-
ing the genus of the surfaces. However, it is difficult to minimize the area
when the genus is allowed to be arbitrary large. This was settled by Hardt-
Simon [320] by proving the boundary regularity of the varifold solution of
the Plateau problem. In the other direction, Almgren-Simon [7] succeeded
in minimizing the area among embedded disks with a given boundary in
Euclidean space. The technique was used by Meeks-Simon-Yau [504] to
prove the existence of embedded minimal spheres enclosing a fake ball. This
theorem has been important to prove that the universal covering of an ir-
reducible three manifold is irreducible. They also gave conditions for the
existence of embedding minimal surfaces of a higher genus. This work was
followed by topologists Freedman-Hass-Scott [231]. Pitts [557] used the
mini-max argument for varifolds to prove the existence of an embedded min-
imal surfaces. Simon-Smith (unpublished) managed to prove the existence
of an embedded minimax sphere for any metric on the three sphere. J. Jost
[366] then extended it to find four mini-max spheres. Pitts-Rubinstein (see,
e.g., [558]) continued to study such mini-max surfaces. Since such mini-max
surfaces have Morse index one, I was interested in representing such a min-
imal surface as a Heegard splitting of the three manifolds. I estimated its
genus based on the fact that the second eigenvalue of the stability operator
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is nonnegative. This argument (dates back to Szego-Hersch) is to map the
surface conformally to S2. Hence we can use three coordinate functions, or-
thogonal to the first eigenfunction, to be trial functions. The estimate gave
an upper bound of the genus for mini-max surfaces in compact manifolds
with positive scalar curvature. About twenty years ago, I was hoping to use
such an estimate to control a Heegard genus as a way to prove Poincaré con-
jecture. While the program has not materialized, three manifold topologists
did adapt the ideas of Meeks-Yau to handle combinational type minimal
surfaces and gave applications in three manifold topology.

The most recent works of Colding and Minicozzi [169, 170, 171, 172] on
lamination by minimal surfaces and estimates of minimal surfaces without
the area bound are quite remarkable. They [173] made contributions to
Hamilton’s Ricci flow by bounding the total time for evolution. Part of the
idea came from the above mentioned inequality.

Comment: The application of minimal surface theory to
three manifold topology is a very rich subject. However, one
needs to have a deep understanding of the construction of
minimal surfaces. For example, if minimal surfaces are con-
structed by the method of mini-max, one needs to know the
relation of their Morse index to the dimension of the family
of surfaces that we use to perform the procedure of mini-
max. A detailed understanding may lead to a new proof of
the Smale conjecture, as we may construct a minimal surface
by a homotopic group of embeddings of surfaces. Conversely,
topological methods should help us to classify closed minimal
surfaces.

4.4. Surfaces related to classical relativity. Besides minimal sur-
faces, another important class of surfaces are surfaces with constant mean
curvature and also surfaces that minimize the L2-norm of the mean cur-
vature. It is important to know the existence of such surfaces in a three
dimensional manifold with nonnegative scalar curvature, as they are rele-
vant to the questions in general relativity.

The existence of minimal spheres is related to the existence of black
holes. The most effective method was developed by Schoen-Yau [604] where
they [599] proved the existence theorem for the equation of Jang. It should
be nice to find new methods to prove existence of stable minimal spheres.
The extremum of the Hawking mass is related to minimization of the L2

norm of mean curvature. Their existence and behavior have not been un-
derstood.

For surfaces with constant mean curvature, we have the concept of sta-
bility. (Fixing the volume it encloses, the second variation of area is non-
negative.) Making use of my work on eigenvalues with Peter Li, I proved
with Christodoulou [162] that the Hawking mass of such a surface is posi-
tive. (This was part of my contribution to the proposed joint project with
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Christodoulou-Klainerman which did not materialize.) This fact was used
by Huisken and me [354] to prove uniqueness and the existence of foliation
by constant mean curvature spheres for a three dimensional asymptotically
flat manifold with positive mass. (We initiated this research in 1986. Ye
studied our work and proved existence of similar foliations under various
conditions, see [750].)

This foliation was used by Huisken and Yau [354] to give a canonical
coordinate system at infinity. It defines the concept of center of gravity
where important properties for general relativity are found. The most no-
table is that total linear momentum is equal to the total mass multiple with
the velocity of the center of the mass. One expects to find good asymp-
totic properties of the tensors in general relativity along these canonical
surfaces. We hope to find a good definition of angular momentum based on
this concept of center of gravity so that global inequality like total mass can
dominate the square norm of angular momentum.

The idea of using the foliation of surfaces satisfying various properties
(constant Gauss curvature, for example) to study three manifolds in general
relativity was first developed by R. Bartnik [41]. His idea of quasi-spherical
foliation gives a good parametrization of a large class of metrics with positive
scalar curvature.

Some of these ideas were used by Shi-Tam [614] to study quantities
associated to spheres which bound three manifolds with positive scalar cur-
vature. Such a quantity is realized to be the quasi-local mass of Brown-York
[82]. At the same time, Melissa Liu and Yau [464, 465] were able to define
a new quasi-local mass for general spacetimes in general relativity, where
some of the ideas of Shi-Tam were used. Further works by M. T. Wang
and myself generalized Liu-Yau’s work by studying surfaces in hyperbolic
space-form.

My interest in quasi-local mass dates back to the paper that I wrote
with Schoen [604] on the existence of a black hole due to the condensation
of matter. It is desirable to find a quasi-local mass which includes the effect
of matter and the nonlinear effect of gravity. Hopefully one can prove that
when such a mass is larger than a constant multiple of the square root of
the area, a black hole forms. This has not been achieved.

Comment: When surfaces theory appears in general rel-
ativity, we gain intuitions from both geometry and physics
together. This is a fascinating subject.

4.5. Higher dimensional minimal subvarieties. Higher dimens-
ional minimal subvarieties are very important for geometry. There are works
by Federer-Fleming [219], Almgren [6] and Allard [4]. The attempt to prove
the Bernstein conjecture, that minimal graphs are linear, was a strong drive
for its development. Bombieri, De Giorgi and Giusti [63] found the famous
counterexample to the Bernstein problem. It initiated a great deal of in-
terest in the area minimizing cone (as a graph must be area minimizing).
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Schoen-Simon-Yau [591] found a completely different approach to the proof
of Bernstein problem in low dimensions. This paper on stable minimal hy-
persurfaces initiated many developments on curvature estimates for the codi-
mension one stable hypersurfaces in higher dimension. There are also works
by L. Simon with Caffarelli and Hardt [91] on constructing minimal hyper-
surfaces by deforming stable minimal cones. Recently N. Wickramasekera
[714, 715] did some deep work on stable minimal (branched) hypersurfaces
which generalizes Schoen-Simon-Yau.

Michael-Simon [515] proved the Sobolev inequality and mean valued
inequalities for such manifolds. This enables one to apply the classical argu-
ment of harmonic analysis to minimal submanifolds. For a minimal graph,
Bombieri-Giusti [62] used ideas of De Giorgi-Nash to prove gradient esti-
mates of the graph. N. Korevaar [396] was able to reprove this gradient
estimate based on the maximal principle.

The best regularity result for higher codimension was done by F. Alm-
gren [6] when he proved that for any area minimizing variety, the singular
set has the codimension of at least two. How such a result can be used for
geometry remains to be seen.

It was observed by Schoen-Yau [597] that for a closed stable minimal
hypersurface in a manifold with positive scalar curvature, the first eigenfunc-
tion of the second variational operator can be used to conformally deform
the metric so that the scalar curvature is positive. This provides an in-
duction process to study manifolds with a positive scalar curvature. For
example, if the manifold admits a nonzero degree map to the torus, one
can then construct stable minimal hypersurfaces inductively until we find a
two dimensional surface with higher genus which cannot support a metric
with positive scalar curvature. At this moment, the argument encounters
difficulty for dimensions greater than seven as we may have problems of sin-
gularity. In any case, we did apply the argument to prove the positive action
conjecture in general relativity. The question of which type of singularities
for minimal subvariety are generic under metric perturbation remains a ma-
jor one for the theory of minimal submanifolds.

Perhaps the most important possible application of the theory of min-
imal submanifolds is the Hodge conjecture: whether a multiple of a (p, p)
type integral cohomology class in a projective manifold can be represented
by an algebraic cycle. Lawson made an attempt by combining a result of
Lawson-Simons [411] and work of J. King [383] and Harvey-Shiffman [324].
(Lawson-Simons proved that currents in CPn which are minimizing with re-
spect to the projective group action are complex subvarieties.) The problem
of how to use the hypothesis of (p, p) type has been difficult. In general,
the algebraic cycles are not effective. This creates difficulties for analytic
methods. The work of King [383] and Shiffman [615] on complex currents
may be relevant.
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Perhaps one should generalize the Hodge conjecture to include general
(p, q) classes, as it is possible that every integral cycle in

⊕k
i=−k Hp−i,p+i

is rationally homologous to an algebraic sum of minimal varieties such that
there is a p − k dimensional complex space in the tangent space for almost
every point of the variety: it may be important to assume the metric to be
canonical, e.g. the Kähler Einstein metric.

A dual question is how to represent a homology class by Lagrangian
cycles which are minimal submanifolds also. When the manifold is Calabi-
Yau, these are special Lagrangian cycles. Since they are supposed to be dual
to holomorphic cycles, there should be an analogue of the Hodge conjecture.
For example, if dimC M = n is odd, any integral element in

⊕
i+j=n H i,j

should be representable by special Lagrangian cycles up to a rational mul-
tiple provided the cup product of it with the Kähler class is zero.

A very much related question is: if the Chern classes of a complex vector
bundle are of (p, p) type, does the vector bundle, after adding a holomorphic
vector bundle, admit a holomorphic structure? If the above generalization of
the Hodge conjecture holds, there should be a similar generalization for the
vector bundle. It should also be noted that Voisin [696] observed that Chern
classes of all holomorphic bundles do not necessarily generate all rational
(p, p) classes. On the other hand, the Kähler manifold that she constructed
is not projective.

These questions had a lot more success for four dimensional symplectic
manifolds by the work of Taubes both on the existence of pseudoholomorphic
curves [665] and on the existence of anti-self-dual connections [655, 656].
On a Kähler surface, anti-self-dual connections are Hermitian connections
for a holomorphic vector bundle. In particular, Taubes gave a method to
construct holomorphic vector bundles over Kähler surfaces. Unfortunately
this theorem does not provide much information on the Hodge conjecture
as it follows from Lefschetz theorem in this dimension.

Another important class of minimal varieties is the class of special La-
grangian cycles in Calabi-Yau manifolds. Such cycles were first developed
by Harvey-Lawson [323] in connection to calibrated geometry. Major works
were done by Schoen-Wolfson [594], Yng-Ing Lee [417] and Butscher [90].
One expects Lagrangian cycles to be mirror to holomorphic bundles and
special Lagrangian cycles to be mirror to Hermitian-Yang-Mills connections.
Hence by the Donaldson-Uhlenbeck-Yau theorem, it is related to stability.
The concept of stability for Lagrangian cycles was discussed by Joyce and
Thomas. Since the Yang-Mills flow for Hermitian connection exists for all
time, Thomas-Yau [671] suggested an analogy with the mean curvature flow
for Lagrangian cycles. For stable Lagrangian cycles, mean curvature flow
should converge to special Lagrangian cycles. See M.T. Wang [705, 706],
Smoczyk [636] and Smoczyk-Wang [637]. The geometry of mirror sym-
metry was explained by Strominger-Yau-Zaslow in [643] using a family of
special Lagrangian tori. There are other manifolds with special holonomy
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group. They have similar calibrated submanifolds. Conan Leung has con-
tributed to studies of such manifolds and their mirrors (see, e.g., [420, 421]).

Submanifolds of space forms are called isoparametric if the normal bun-
dle is flat and the principal curvatures are constants along parallel normal
fields. These were studied by E. Cartan [108]. Minimal submanifolds with
constant scalar curvature are believed to be isoparametric surfaces. There
is work done by Lawson [409], Chern-de Carmo-Kobayashi [151] and Peng-
Terng [550]. Recently there have been works by Terng and Thorbergsson
(see Terng’s survey [667] and Thorbergsson [672]). Terng [666] related iso-
metric embedded hyperbolic spaces in Euclidean space to soliton theory. A
theory of Lax pair and loop groups related to geometry has been developed.

Comment: The theory of higher dimensional minimal sub-
manifolds is one of the deepest subjects in geometry. Unfor-
tunately our knowledge of the subject is not mature enough
to give applications to solve outstanding problems in geom-
etry, such as the Hodge conjecture. But the future is bright.

4.6. Geometric flows. The major geometric flows are flows of sub-
manifold driven by mean curvature, gauss curvature, inverse mean curva-
ture. Flows that change geometric structures are Ricci flows and Einstein
flow.

Mean curvature flow for varifolds was initiated by Brakke [78]. The level
set approach was studied by many people: S. Osher, L. Evans, Giga, etc (see
[545, 217, 136]). Huisken [349, 350] did the first important work when
the initial surface is convex. His recent work with Sinestrari [352, 353] on
mean convex surfaces is remarkable and gives a good understanding of the
structure of singularities of mean curvature flow. Mean curvature flow has
many geometric applications. For example, the work of Huisken-Yau men-
tioned in 4.4 was achieved by mean curvature flow. Mean curvature flow for
spacelike hypersurfaces in Lorentzian manifolds should be very interesting.
Ecker [211] did interesting work in this direction. It will be nice to find the
Li-Yau type estimate for such flows.

The inverse mean curvature was proposed by Geroch [250] to understand
the Penrose conjecture relating the mass with the area of the black hole.
Such a procedure was finally carried out by Huisken-Ilmanen [351] when
the scalar curvature is non-negative. There was a different proof by H. Bray
[80] subsequently.

Ricci flow has had spectacular successes in recent years. However, not
much progress has been made on the Calabi flow (see Chang’s survey [111])
for Kähler metrics. They are higher order problems where the maximal
principle has not been effective. An important contribution was made by
Chrúsciel [163] for Riemann surface. Inspired by the concept of the Bondi
mass in general relativity, Chruściel was able to give a new estimate for the
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Calabi flow. Unfortunately, a higher dimensional analogue had not been
found.

Natural higher order elliptic problems are difficult to handle. Affine
minimal surfaces and Willmore surfaces are such examples. L. Simon [619]
made an important contribution to the regularity of the Willmore surfaces.
The corresponding flow problem should be interesting.

The dynamics of Einstein equations for general relativity is a very dif-
ficult subject. The Cauchy problem was considered by many people: A.
Lichnerowicz, Y. Choquet-Bruhat, J. York, V. Moncrief, H. Friedrich, D.
Christodoulou, S. Klainerman, H. Lindblad, M. Dafermos (see, e.g., [454],
[158], [157], [234], [159], [384], [461], [181]). But the global behavior is
still far from being understood. The major unsolved problem is to formu-
late and prove the fundamental question of Penrose on Cosmic censorship.
I suggested to Klainerman and Christodoulou to consider small initial data
for the Einstein system. The treatment of stability of Minkowski spacetime
was accomplished by Christodoulou-Klainerman [160] under small pertur-
bation of flat spacetime and fast fall off conditions. Recently Lindblad and
Rodnianski [461] gave a simpler proof. A few years ago, N. Zipser (Har-
vard thesis) added Maxwell equation to gravity and still proved stability of
Minkowski spacetime. There is remarkable progress on the problem of Cos-
mic censorship by M. Dafermos [181]. He made an important contribution
for the spherical case. Stability for Schwarzschild or Kerr solutions is far
from being known. Finster-Kamran-Smoller-Yau [222] had studied decay
properties of Dirac particles with such background. The work does indicate
the stability of these classical spacetimes.

The no hair theorem for stationary black holes is a major theorem in
general relativity. It was proved by W. Israël [355], B. Carter [109], D.
Robinson [570] and S. Hawking [326]. But the proof is not completely
rigorous for the Kerr metric. In any case, the existing uniqueness theorem
does assume regularity of the horizon of the black hole. It is not clear to
me whether a nontrivial asymptotically flat solitary solution of a vacuum
Einstein equation has to be the Schwarzschild solution. There is a possibility
that the Killing field is spacelike. In that case, there may be a new interesting
vacuum solution.

There is extensive literature on spacelike hypersurfaces with constant
mean curvature. The foliation defined by them gives interesting dynam-
ics of Einstein equation. These surfaces are interesting even for R

n,1. A.
Treiberges studied it extensively [685]. Li, Choi-Treibergs [154] and T. Wan
[699] observed that the Gauss maps of such surfaces give very nice exam-
ples of harmonic maps mapping into the disk. Recently Fisher and Moncrief
used them to study the evolution equation of Einstein in 2 + 1 dimension.

Comment: The dynamics of submanifolds and geometric
structures reveal the true nature of these geometric objects
deeply. In the process of arriving at a stationary object or a
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solitary solution, it encounters singularities. Understanding
the structures of such singularity will solve many outstanding
conjectures in topology such as Shoenflies conjecture.

5. Construction of geometric structures on bundles and
manifolds

A fundamental question is how to build geometric structures over a given
manifold. In general, the group of topological equivalences that leaves this
geometric structure invariant should be a special group. With the exception
of symplectic structures, these groups are usually finite dimensional. When
the geometric structure is unique (up to equivalence), it can be used to
produce key information about the topological structure.

The study of special geometric structures dates back to Sophus Lie, Klein
and Cartan. In most cases, we like to be able to parallel transport vectors
along paths so that we can define the concept of holonomy group.

5.1. Geometric structures with noncompact holonomy group.
When the holonomy group is not compact, there are examples of projective
flat structure, affine flat structure and conformally flat structure. It is not
a trivial matter to determine which topological manifolds admit such struc-
tures. Since the structure is flat, there is a unique continuation property
and hence one can construct a developing map from a suitable cover of the
manifold to the real projective space, the affine space and the sphere re-
spectively. The map gives rise to a representation of the fundamental group
of the manifold to the real projective group, the special linear group and
the Möbius group respectively. This holonomy representation gives a great
deal of information for the geometric structure. Unfortunately, the map is
not injective in general. In the case where it is injective, the manifold can
be obtained as a quotient of a domain by a discrete subgroup of the corre-
sponding Lie group. In this case, a lot more can be said about the manifold
as the theories of partial differential equations and discrete groups can play
important roles.

5.1.1. Projective flat structure. If a projective flat manifold can be pro-
jectively embedded as a bounded domain, Cheng-Yau [145] were able to
construct a canonical metric from the real Monge-Ampère equation which
generalizes the Hilbert metric. When the manifold is two dimensional, there
are works of C.P. Wang [700] and J. Loftin [473] on how to associate such
metrics to a conformal structure and a holomorphic section of the cubic
power of a canonical bundle. This is a beautiful theory related to the hy-
perbolic affine sphere mentioned in chapter one.

There are fundamental works by S.Y. Choi, W. Goldman (see the refer-
ence of Choi-Goldman [156]), N. Hitchin [335] and others on the geometric
decomposition and the moduli of flat projective structures on Riemann sur-
faces. It should be interesting to extend them to three or four dimensional
manifolds.
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5.1.2. Affine flat structure. It is a difficult question to determine which
manifolds admit flat affine structures. For example, it is still open whether
the Euler number of such spaces is zero, although great progress was made by
D. Sullivan [644]. W. Goldman [259] has also found topological constraints
on three manifolds in terms of fundamental groups. The difficulty arises
as there is no useful metric that is compatible with the underlining affine
structure. This motivated Cheng-Yau [146] to define the concept of affine
Kähler metric.

When Cheng and I considered the concept of affine Kähler metric, we
thought that it was a natural analogue of Kähler metrics. However, com-
pact nonsingular examples are not bountiful. Strominger-Yau-Zaslow [643]
proposed the construction of mirror manifolds by constructing the quotient
space of a Calabi-Yau manifold by a special Lagrangian torus. At the limit
of the large Kähler class, it was pointed out by Hitchin [336] that the quo-
tient space admits a natural affine structure with a compatible affine Kähler
structure. But in general, we do expect singularities of such a structure.
It now becomes a deep question to understand what kind of singularity is
allowed and how we build the Calabi-Yau manifold from such structures.
Loftin-Yau-Zaslow [474] have initiated the study of the structure of a “Y”
type singularity. Hopefully one can find an existence theorem for affine
structures over compact manifolds with prescribed singularities along codi-
mension two stratified submanifolds.

5.1.3. Conformally flat structure. Construction of conformally flat man-
ifolds is also a very interesting topic. Similar to projective flat or affine flat
manifolds, there are simple constraints from curvature representation for the
Pontrjagin classes. The deeper problem is to understand the fundamental
group and the developing map. When the structure admits a conformal
metric with positive scalar curvature, Schoen-Yau [605] proved the rather
remarkable theorem that the developing map is injective. Hence such a
manifold must be the quotient of a domain in Sn by a discrete subgroup of
Möbius transformations. It would be interesting to classify such manifolds.
In this regard, the Yamabe problem as was solved by Schoen [590] did pro-
vide a conformal metric with constant scalar curvature. One hopes to be
able to use such metrics to control the conformal structure. Unfortunately
the metric is not unique and a deep understanding of the moduli space of
conformal metrics with constant scalar curvature is needed.

Kazdan-Warner [379] and Korevaar-Mazzeo-Pacard-Schoen [398] devel-
oped a conformal method to understand Nirenberg’s problem on prescribed
scalar curvature. It was followed by Chen-Lin [131], Chang-Gursky-Yang
[112]. Chen-Lin have related this problem to mean field theory. Their com-
putations in the relevant degree theory involve deep analysis. One should
be able to generalize their works to functions which are sections of a flat
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line bundle because it is related to the previously mentioned work of Loftin-
Yau-Zaslow [474]. In any case, the integrability condition of Kazdan and
Warner is still not fully understood.

It is curious that while bundle theory was used extensively in Riemann-
ian geometry, it has not been used in the study of these geometries. One can
construct real projective space bundles, affine bundles or sphere bundles by
mapping coordinate charts projectively, affinely or conformally to the corre-
sponding model spaces (possible with dimensions different from the original
manifold) and gluing the target model spaces together to form natural bun-
dles. Perhaps one may study their associated Chern-Simons forms [152].

Many years ago, H.C. Wang [702] proved the theorem that if a compact
complex manifold has trivial holomorphic tangent bundle, it is covered by a
complex Lie group. It will be nice to generalize and interpret such a theorem
in terms of Hermitian connections on the manifold with a special holonomy
group and torsion.

This program was discussed in my paper [744] on algebraic characteriza-
tion of locally Hermitian symmetric spaces. For a holomorphic stable vector
bundle V , we can form a stable vector bundles from V by taking irreducible
representation of GL(n, C) from decomposition of the tensor product repre-
sentation

⊗
p V

⊗
q V ∗. By twisting with powers of canonical line bundle,

we can form irreducible stable bundles with trivial determinant line bun-
dle. In general, such bundles may not have holomorphic sections. If they
do, the section must be parallel with respect to the Hermitian-Yang-Mills
connection on the bundle, and the structure group of V can be reduced to
a smaller group. Hermitian-Yang-Mills connections with reduced holonomy
group have good geometric properties. We may formulate a principle: For
stable holomorphic bundles, existence of nontrivial holomorphic invariants
implies the existence of parallel tensors and therefore the reduction of struc-
ture group. If the holonomy group is reduced to a discrete group, the bundle
will provide representations of the fundamental group into unitary group.
This should compare with Wang’s theorem when the bundle is the tangent
bundle.

Comment: Geometric structures with a noncompact ho-
lonomy group are less intuitive than Riemannian geometry.
Perhaps we need to deepen our intuitions by relating them
to other geometric structures, especially those structures that
may carry physical meaning.

5.2. Uniformization for three manifolds. An important goal of
geometry is to build a canonical metric associated to a given topology. Be-
sides the uniformization theorem in two dimensions, the only (spectacular)
work in higher dimensions is the geometrization program of Thurston (see
[674]).
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W. Thurston made use of ideas from Riemann surface theory, W. Haken’s
work [310] on three-manifolds, G. Mostow’s rigidity [531] to build his man-
ifolds. Many mathematicians have contributed to the understanding of this
program of Thurston’s (e.g., J. Morgan [529], C. McMullen [500, 501], J.
Otal [547], J. Porti [566]). Thurston’s orbifold program was finally settled
by M. Boileau, B. Leeb and J. Porti [61]. However, one needs to assume
that an incompressible surface (or corresponding surface in case of orbifold)
exists. When R. Hamilton [311] had his initial success on his Ricci flow, I
suggested (around 1981) to him to use his flow to break up the manifold and
prove Thurston’s conjecture. His generalization of the theory of Li-Yau [445]
to Ricci flow [312, 313] and his seminal paper in 1996 [315] on breaking
up the manifold mark a cornerstone of the remarkable program. Perelman’s
recent idea [551, 552] built on these two works and has gone deeply into
the problem. Detailed discussions have been pursued by Hamilton, Zhu,
Cao, Colding-Minicozzi, Shioya-Yamaguchi, and Huisken in the past two
years. Hopefully it may lead to the final settlement of the geometrization
program. This theory of Hamilton and Perelman should be considered as a
crowning achievement of geometric analysis in the past thirty years. Most
ideas developed in this period by geometric analysts are used.

Let me now explain briefly the work of Hamilton and Perelman.

In the early 90’s, Hamilton [313, 314, 315] developed methods and the-
orems to understand the structure of singularities of the Ricci flow. Taking
up my suggestions, he proved a fundamental Li-Yau type differential in-
equality (now called the Li-Yau-Hamilton estimate) for the Ricci flow with
non-negative curvature in all dimensions. He gave a beautiful interpretation
of the work of Li-Yau and observed the associated inequalities should be
equalities for solitary solutions. He then established a compactness theorem
for (smooth) solutions to the Ricci flow, and observed (also independently
by T. Ivey[356]) a pinching estimate for the curvature for three-manifolds.
By imposing an injectivity radius condition, he rescaled the metric to show
that each singularity is asymptotic to one of the three singularity models.
For type I singularities in dimension three, Hamilton established an isoperi-
metric ratio estimate to verify the injectivity radius condition and obtained
spherical or neck-like structures. Based on the Li-Yau-Hamilton estimate,
Hamilton showed that any type II model is either a Ricci soliton with a neck-
like structure or the product of the cigar soliton with the real line. Similar
characterization for type III model was obtained by Chen-Zhu [126]. Hence
Hamilton had already obtained the canonical neighborhood structures (con-
sisting of spherical, neck-like and cap-like regions) for the singularities of
three-dimensional Ricci flow.

But two obstacles remained: one is the injectivity radius condition and
the other is the possibility of forming a singularity modelled on the product
of the cigar soliton with a real line which could not be removed by surgery.
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Recently, Perelman [551] removed these two stumbling blocks in Hamil-
ton’s program by establishing a local injectivity radius estimate (also called
“Little Loop Lemma” by Hamilton in [314]). Perelman proved the Little
Loop Lemma in two ways, one with an entropy functional he introduced in
[551], the other with a reduced distance function based on the same idea as
Li-Yau’s path integral in obtaining their inequality [551]. This reduced dis-
tance question gives rise to a Gaussian type integral which he called reduced
volume. The reduced volume satisfies monotonicity property. Furthermore,
Perelman [552] developed a refined rescaling argument (by considering local
limits and weak limits in Alexandrov spaces) for singularities of the Ricci
flow on three-manifolds to obtain a uniform and global version of the canon-
ical neighborhood structure theorem.

After obtaining the canonical neighborhoods for the singularities, one
performs geometric surgery by cutting off the singularities and continuing
the Ricci flow. In [315], Hamilton initiated such a surgery procedure for
four-manifolds with a positive isotropic curvature. Perelman [552] adapted
Hamilton’s geometric surgery procedure to three-manifolds. The most im-
portant question is how to prevent the surgery times from accumulations
and make sure there are only a finite number of surgeries on each finite time
interval. When one performs the surgeries with a given accuracy at each
surgery time, it is possible that the errors may add up, which causes the
surgery times to accumulate. Hence at each step of surgery one is required
to perform the surgery more accurately than the former one. In [553], Perel-
man presented a clever idea on how to find “fine” necks, how to glue “fine”
caps and how to use rescaling arguments to justify the discreteness of the
surgery times. In the process of rescaling for surgically modified solutions,
one encounters the difficulty of how to use Hamilton’s compactness theorem,
which works only for smooth solutions. The idea to overcome such difficulty
consists of two parts. The first part, due to Perelman [552], is to choose
cutoff radius (in neck-like regions) small enough to push the surgical regions
far away in space. The second part, due to Chen-Zhu [130] and Cao-Zhu
[103], is to show that the solutions are smooth on some uniform small time
intervals (on compact subsets) so that Hamilton’s compactness theorem can
be used.

Once surgeries are known to be discrete in time, one can complete
Schoen-Yau’s classification [603] for three-manifolds with positive scalar cur-
vature. For simply connected three manifolds, if one can show solution to
the Ricci flow with surgery extincts in finite time, Poincaré conjecture will
be proved. Recently, such a finite extinction time result was proposed by
Perelman [553] and a proof appeared in Colding-Minicozzi [173].

For the full geometrization program, one still needs to find the long
time behavior of surgically modified solutions. In [316], Hamilton studied
the long time behavior of the Ricci flow on a compact three-manifold for a
special class of (smooth) solutions called “nonsingular solutions”. Hamilton
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proved that any (three-dimensional) nonsingular solution either collapses or
subsequently converges to a metric with constant curvature on the compact
manifold, or at large time it admits a thick-thin decomposition where the
thick part consists of a finite number of hyperbolic pieces and the thin part
collapses. Moreover, by adapting Schoen-Yau’s minimal surface arguments
to a parabolic version, Hamilton showed that the boundary of hyperbolic
pieces are incompressible tori. Then by combining with the collapsing re-
sults of Cheeger-Gromov [120], any nonsingular solution to the Ricci flow
is geometrizable.

In [551, 552], Perelman modified Hamilton’s arguments to analyze the
long-time behavior of arbitrary solutions to the Ricci flow and solutions with
surgery in dimension three. Perelman also argued by showing a thick-thin
decomposition, except that he can only show the thin part has (local) lower
bound on sectional curvature. For the thick part, based on Li-Yau-Hamilton
estimate, Perelman established a crucial elliptic type Harnack estimate to
conclude that the thick part consists of hyperbolic pieces. For the thin part,
he announced a new collapsing result which states that if a three-manifold
collapses with a (local) lower bound on the sectional curvature, then it is a
graph manifold. However, the proof of the new collapsing result has not been
published. Shioya and Yamaguchi [616, 617] offered a proof for compact
manifolds. Very recently, Cao-Zhu claimed to have a complete proof for
compact manifolds based only on the Shioya-Yamaguchi’s collapsing result.

Hopefully all these arguments can be checked thoroughly in the near
future. It should also be interesting to see whether other famous problems
in three manifold can be settled by analysis: Does every three dimensional
hyperbolic manifold admit a finite cover with nontrivial first Betti number?

Hyperbolic metrics have been used by topologists to give invariants for
three dimensional manifolds. Thurston [673] observed that the volume of
a hyperbolic metric is an important topological invariant. The associated
Chern-Simons [152] invariant, which is defined by mod integers, can be
looked upon as a phase for such manifolds. These invariants appeared later
in Witten’s theory of 2 + 1 dimensional gravity [719] and S. Gukov [304]
was able to relate them to fundamental questions in knot theory.

Comment: This is the most spectacular development in
the last thirty years. Once the three manifold is hyperbolic,
Ricci flow does not give much more information. Perhaps,
one may obtain further information by performing reduction
from four dimension Ricci flow to three dimension by circle
action. Is there any effective way to understand the totality
of all hyperbolic manifolds with finite volume by constructing
flows that may break up topology?

5.3. Four manifolds. The major accomplishment of Thurston, Hamil-
ton, Perelman et al is the ability to create a canonical structure on three
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manifolds. Such a structure has not even been conjectured for four manifolds
despite the great success of Donaldson invariants and Seiberg-Witten invari-
ants. Taubes [659] did prove a remarkable existence theorem for self-dual
metrics on a rather general class of four dimensional manifolds. Unfortu-
nately their moduli space is not understood and their topological implication
is not clear at this moment. Since the twistor space of Taubes metric admits
integrable complex structure, ideas from complex geometry may be helpful.
Prior to the construction of Taubes, Donaldson-Friedman [205] and LeBrun
[414] have used ideas from twistor theory to construct self-dual metrics on
the connected sum of CP 2.

The problem of the four manifold is the lack of good diffeomorphic in-
variants. Donaldson or Seiberg-Witten provide such invariants. But they
are not powerful enough to control the full structure of the manifold. A
true understanding of four manifolds probably should come from under-
standing the question of existence of the integrable complex structures. The
Riemann-Roch-Hirzebruch formula has been the basic tool to find the inte-
grability condition. In the last twenty-five years, there are nonlinear meth-
ods from Käher-Einstein metrics, harmonic maps, anti-self-dual connections
and Seiberg-Witten invariants. However, one needs an existence theorem
to find a canonical way to deform an almost complex structure to an inte-
grable complex structure. What kind of obstructions do we expect? The
work of Donaldson [199, 201] and Gompf [261] gave a good characteri-
zation of symplectic manifolds in terms of Lefschetz fibration. It may be
useful to know under which condition such fibration will give rise to com-
plex structures. I did ask several of my students to work on it. But no
definite answer is known. J Jost and I [370] studied the rigidity part: if
a Kähler surface has a topological map to a Riemann surface with higher
genus, it can be deformed to be a holomorphic map by changing the complex
structure of the Riemann surface. One can derive from the work of Griffiths
[274] that every algebraic surface has a Zariski open set which admits a
complete Kähler-Einstein metric with finite volume and is covered by a con-
tractible pseudo-convex domain. Perhaps one can classify these manifolds
by topological means.

While the Donaldson invariant gave the first counterexample to the h-
cobordism theorem and irreducibility (nontrivial connected sum with man-
ifolds not homotopic to CP 2) of four manifolds, the Seiberg-Witten invari-
ant gave the remarkable result that an algebraic surface of general type
can not be diffeomorphic to rational or elliptic surfaces. It also solves the
famous Thom conjecture that holomorphic curves realize the lowest genus
for embedded surface in a Kähler surface (Kronheimer-Mrowka [402] and
Ozsváth-Szabó [548]). One wonders whether one can construct a diffeomor-
phic invariant based on metrics which are a generalization of Kähler-Einstein
metrics.
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Comment: A good conjectural statement needs to be made
on the topology of four manifolds that may admit an in-
tegrable complex structure. Pseudo-holomorphic curve and
fibration by Riemann surfaces should provide important in-
formation. Geometric flows may still be the major tool.

5.4. Special connections on bundles. In the seventies, theoretic
physicists were very much interested in the theory of instantons: self-dual
connections on four manifolds. Singer was able to communicate the flavor
of this excitement to the mathematical community which soon led to his
paper with Atiyah and Hitchin [16] and also the complete solution of the
problem over the four sphere by Atiyah-Hitchin-Drinfel’d-Manin [15] using
twistor technique of Penrose.

While the paper of Atiyah-Hitchin-Singer [16] laid the algebraic and
geometric foundation for self-dual connections, the analytic foundation was
laid by Uhlenbeck [688, 689] where she established the removable singu-
larity theorem and compactness theorem for Yang-Mills connections. This
eventually led to the fundamental works of Taubes [656] and Donaldson
[195] which revolutionized four manifold topology.

In the other direction, Atiyah-Bott [11] applied Morse theory to the
space of connections over Riemann surface. They solved important ques-
tions on the moduli space of holomorphic bundles which was studied by
Narasimhan, Seshadri, Ramanathan, Newstead and Harder. In the paper
of Atiyah-Bott, Morse theory, moment map and localization of equivariant
cohomology were introduced on the subject of vector bundle. It laid the
foundation of works in the last twenty years.

The analogue of anti-self dual connections over Kähler manifolds are
Hermitian Yang-Mills connections, which was shown by Donaldson [196] for
Kähler surfaces and Uhlenbeck-Yau [691] for general Kähler manifolds to
be equivalent to the polystability of bundles. (That polystability of bundle
is a consequence of the existence of Hermitian Yang-Mills connection was
first observed by Lübke [486]. Donaldson [197] was able to make use of
the theorem of Mehta-Ramanathan [509] and ideas of the above two papers
to prove the theorem for projective manifold). It was generalized by C.
Simpson [621], using ideas of Hitchin [333], to bundles with Higgs fields. It
has important applications to the theory of variation of a Hodge structure
[622, 623]. G. Daskalopoulos and R. Wentworth [184] studied such a theory
for moduli space of vector bundles over curves. Li-Yau [433] generalized
the existence of Hermitian Yang-Mills connections to non-Kähler manifolds.
(Buchdahl [87] subsequently did the same for complex surfaces.) Li-Yau-
Zheng [435] then used the result to give a complete proof of Bogomolov’s
theorem for class VII0 surfaces. The only missing parts of the classification
of non-Kähler surfaces are those complex surfaces with a finite number of
holomorphic curves. It is possible that the argument of Li-Yau-Zheng can
be used. One may want to use Hermitian Yang-Mills connections with poles
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along such curves. I expect more applications of Donaldson-Uhlenbeck-Yau
theory to algebraic geometry.

It should be noted that the construction of Taubes [659] on the anti-self-
dual connection is achieved by singular perturbation after gluing instantons
from S4. The method is rather different from Donaldson-Uhlenbeck-Yau.
While it applies to arbitrary four manifolds, it does require some careful
choice of Chern classes for the bundle. It will be nice to find a concept
of stability for a general complex bundle so that a similar procedure of
Donaldson-Uhlenbeck-Yau can be applied. The method of singular pertur-
bation has an algebraic geometric counterpart as was found by Gieseker-Li
[255] and O’Grady [542], who proved that moduli spaces of algebraic bun-
dles with fixed Chern classes over algebraic surfaces are irreducible. Li [427]
also obtained information about Betti number of such moduli space. Not
many general theorems are known for bundles over algebraic manifolds of a
higher dimension. It will be especially useful for bundles over Calabi-Yau
manifolds.

D. Gieseker [253] developed the geometric invariant theory for the mod-
uli space of bundles and introduced the Gieseker stability of bundles. Conan
Leung [419] introduced the analytic counterpart of such bundles in his thesis
under my guidance. While it is a natural concept, there is still an analytic
problem to be resolved. (He assumed the curvature of the bundles to be
uniformly bounded.)

There were attempts by de Bartolomeis-Tian [43] to generalize Yang-
Mills theory to symplectic manifolds and also by Tian [679] to manifolds
with a special holonomy group, as was initiated by the work of Donaldson
and Thomas. However, the arguments for both papers are not complete and
still need to be finished.

For a given natural structure on a manifold, we can often fix a structure
and linearize the equation to obtain a natural connection on the tangent
bundle. Usually we obtain Yang-Mills connections with the extra structure
given by the holonomy group of the original structure. It is interesting
to speculate whether an iterated procedure can be constructed to find an
interesting metric or not. In any case, we can draw analogous properties be-
tween bundle theory and metric theory. The concept of stability for bundles
is reasonably well understood for the holomorphic category. I believed that
for each natural geometric structure, there should be a concept of stability.
Donaldson [197] was able to explain stability in terms of moment map, gen-
eralizing the work of Atiyah-Bott [11] for bundles over Riemann surfaces.
It will be nice to find moment maps for other geometric structures.

Comment: Bundles with anti-self-dual connections or Her-
mitian Yang-Mills connections have been important for geom-
etry. However, we do not have good estimates of the curva-
ture of such connections. Such an estimate would be useful
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to handle important problems such as the Hartshorne ques-
tion (see, e.g., [39]) on the splitting of rank two bundle over
high dimension complex projective space.

5.5. Symplectic structures. Symplectic geometry had many impor-
tant breakthroughs in the past twenty years. A moment map was developed
by Atiyah-Bott [12], Guillemin-Sternberg [301] who proved the image of
the map is a convex polytope. Kirwan and Donaldson had developed such
a theory to be a powerful tool. The Marsden-Weinstein [492] reduction
has become a useful method in many branches of geometry. At around the
same time, other parts of symplectic topology were developed by Donaldson
[200], Taubes [660], Gompf [260], Kronheimer-Mrowka [402] and others.

The phenomenon of symplectic rigidity is manifested by the existence
of symplectic invariants measuring the 2–dimensional size of a symplectic
manifold. The first such invariant was discovered by Gromov [286] via
pseudo-holomorphic curves. Hofer [340] then developed several symplectic
invariants based on variational methods and successfully applied them to
Weinstein conjectures. Ekeland-Hofer [214] introduced a concept of sym-
plectic capacity and used it to provide a characterization of a symplectomor-
phism not involving any derivatives. The C0-closed property of the symplec-
tomorphism group as a subgroup of the diffeomorphism group then follows,
which was independently established by Y. Eliashberg [215] via wave front
methods. Hofer-Zehnder [343] introduced another capacity and discovered
the displacement-energy on R

2n. By relating the two invariants with the
energy-capacity inequality, Hofer [339] found a bi-invariant norm on the in-
finite dimensional group of Hamiltonian symplectomorphisms of R

2n. The
existence of such a norm has now been established for general symplec-
tic manifolds by Lalonde-McDuff [408] via pseudo-holomorphic curves and
symplectic embedding techniques. The generalized Weinstein conjecture on
the existence of periodic orbits of Reeb flows for many 3-manifolds including
the 3-sphere was also established in Hofer [340] by studying the finite energy
pseudo-holomorphic plane in the symplectization of contact 3-manifolds.

Eliashberg-Givental-Hofer [216] recently introduced the concept of sym-
plectic field theory, which is about invariants of punctured pseudo-holomor-
phic curves in a symplectic manifold with cylindrical ends. Though it has
not been rigorously established, some applications in contact and symplectic
topology have been found.

By analyzing the singularities of pseudo-holomorphic curves in a sym-
plectic 4–manifold, D. McDuff [498] established rigorously the positivity of
intersections of two distinct curves and the adjunction formula of an irre-
ducible curve. Applying these basic properties to symplectic 4-manifolds
containing embedded pseudo-holomorphic spheres with self-intersections at
least −1, she was able to construct minimal models of general symplectic 4–
manifolds, and classify those containing embedded symplectic spheres with
non-negative self-intersections.
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A fundamental question in symplectic geometry is to decide which topo-
logical manifold admits a symplectic structure and how, as was pointed out
by Smith-Thomas-Yau [635], mirrors of certain non-Kähler complex man-
ifolds should be symplectic manifolds. Based on this point of view, they
construct a large class of symplectic manifolds with trivial first Chern class
by reversing the procedure of Clemens-Friedman on non-Kähler Calabi-Yau
manifolds [165, 233]. In dimension four, the Betti numbers of such mani-
folds are determined by T. J. Li [446]. In the last ten years, there has been
extensive work on symplectic manifolds, initiated by Gromov [286], Taubes
[661, 662, 663, 664], Donaldson [198, 199, 201] and Gompf [261]. These
works are based on the understanding of pseudo-holomorphic curves and Lef-
schetz fibrations. They are most successful for four dimensional manifolds.
The major tools are Seiberg-Witten theory [607, 608, 721] and analysis.
The work of Taubes on the existence of pseudo-holomorphic curves and the
topological meaning of its counting is one of the deepest works in geome-
try. Based on this work, Taubes [661] was able to prove the old conjecture
that there is only one symplectic structure on the standard CP 2. However,
the following question of mine is still unanswered: If M is a symplectic 4-
manifold homotopic to CP 2, is M symplectomorphic to the standard CP 2?
(The corresponding question for complex geometry was solved by me in
[735].) On the other hand, based on the work of Taubes [660], T.J. Li and
A.K. Liu [447] did find a wall crossing formula for four dimensional mani-
folds that admit metrics with a positive scalar curvature. Subsequently A.
Liu [462] gave the classification of such manifolds. (The surgery result by
Stolz [641] based on Schoen-Yau-Gromov-Lawson for manifolds with pos-
itive scalar curvature is not effective for four dimensional manifolds.) As
another application of the general wall crossing formula in [447], it was
proved by T.J. Li and A. Liu in [448] that there is a unique symplectic
structure on S2-bundles over any Riemann surface. A main result of D.
McDuff in [497] is used here.

McDuff [496] also used a refined bordism type Gromov-Witten invari-
ant to distinguish two cohomologous and deformation equivalent symplectic
forms on S2×S2×T 2, showing that they are not isotopic. Notice that there
are also cohomologous but non-deformation equivalent symplectic forms on
K3×S2 as shown by Y. Ruan [578]. In contrast, it is not known whether ex-
amples of this kind exist in dimension 4 or not. This phenomenon might be
related to the special features of pseudo-holomorphic curves in a 4-manifold.

Fukaya and Oh [239] have developed an elaborate theory for symplec-
tic manifolds with Lagrangian cycles. Pseudo-holomorphic disks appeared
as trace of motions of curves according to Floer theory. Due to bound-
ary bubbles, the Lagrangian Floer homology is not always defined. Oh
[543] developed some works on pseudo-holomorphic curves with Lagrangian
boundary conditions and extended the Lagrangian Floer homology to all
monotone symplectic manifolds. In order to understand open string theory,
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Katz-Liu [378] and Melissa Liu [463] developed the theory in analogue of
the Gromov-Witten invariant for a holomorphic curve with boundaries on
a given Lagrangian submanifold. Fukaya [238] discovered the underlying
A∞ structure of the Lagrangian Floer homology on the chain level, leading
to the Fukaya category. By carefully analyzing this A∞ structure, Fukaya,
Oh, Ohta and Ono in [240] have constructed a sequence of obstruction
classes which elucidate the rather difficult Lagrangian Floer homology the-
ory to a great extent. Seidel-Thomas [609] and W.D. Ruan [577] discussed
Fukaya’s category in relation to Kontsevich’s homological mirror conjecture
[395]. One wonders whether Fukaya’s theory can help to construct canon-
ical metrics for symplectic structures. For symplectic manifolds that admit
an almost complex structure with zero first Chern class, it would be nice to
construct Hermitian metrics with torsion that admit parallel spinor. Such
structures may be considered as a mirror to the system constructed by Stro-
minger on non-Kähler complex manifolds. Perhaps one can also gain some
knowledge by reduction of G2 or Spin(7) structures to six dimensions.

Comment: Geometry from the symplectic point of view has
seen powerful development in the past twenty years. Its rela-
tion to Seiberg-Witten theory and mirror geometry is fruitful.
More interesting development is expected.

5.6. Kähler structure. The most interesting geometric structure is
the Kähler structure. There are two interesting pre-Kähler structures. One
is the complex structure and the other is the symplectic structure. The
complex structure is rather rigid for complex two dimensional manifolds.
However, it is much more flexible in dimension greater than two. For ex-
ample, the twistor space of anti-self-dual four manifolds admits complex
structures. Taubes [659] constructed a large class of such manifolds and
hence a large class of complex three manifolds. There is also the construc-
tion of Clemens-Friedman for non-Kähler Calabi-Yau manifolds which will
be explained later.

For quite a long time, it was believed that every compact Kähler man-
ifold can be deformed to a projective manifold until C. Voisin [697, 698]
found many counterexamples. We still need to digest the distinction between
these two categories.

Besides some obvious topological obstruction from Hodge theory and the
rational homotopic type theory of Deligne-Griffiths-Morgan-Sullivan [188],
it has been difficult to decide which complex manifolds admit Kähler struc-
ture. The harmonic map argument does give some information. But it
requires the fundamental group to be large.

Many years ago, Sullivan [645] proposed to use the Hahn-Banach theo-
rem to construct Kähler metrics. This involves the concept of duality and
hence closed currents. P. Gauduchon [246] has proposed those Hermitian
metrics ω which is ∂∂̄ωn−1 = 0. Siu [627] was able to use these ideas to
prove that every K3 surface is Kähler. Demailly [191] did some remarkable
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work on regularization of closed positive currents. Singular Kähler metrics
have been studied and used by many researchers. In fact, in my paper on
proving the Calabi conjecture, I proved the existence of the Kähler met-
rics singular along subvarieties with control on volume element. They can
be used to handle problems in algebraic geometry, including Chern number
inequalities, and possibly problems arising in the minimal model program.

Comment: The Kähler structure is one of the richest struc-
tures in geometry. Deeper understanding may require some
more generalized structure such as a singular Kähler metric
or balanced metrics.

5.6.1. Calabi-Yau manifolds. The construction of Calabi-Yau manifolds
was based on the existence of a complex structure which can support a
Kähler structure and a pluriharmonic volume form.

A fundamental question is whether an almost complex manifold admits
an integrable complex structure when complex dimension is greater than
two. The condition that the first Chern class is zero is equivalent to the
existence of pluriharmonic volume for Kähler manifolds. Such a condition is
no more true for non-Kähler manifolds. It would be nice to find a topological
method to construct an integrable complex structure with pluriharmonic
volume form.

Once we have an integrable complex structure, we can start to search
for Hermitian metrics with special properties. As was mentioned earlier, if
we would like the geometry to have supersymmetries, then a Kähler metric
is the only choice if the connection is torsion free. Further supersymmetry
would then imply the manifold to be Calabi-Yau. However, if we do not
require the connection to be torsion free, Strominger [642] did derive a set
of equations that exhibit supersymmetries without requiring the manifold
to be Kähler. It is a coupled system of Hermitian Yang-Mills connections
with Hermitian metrics. Twenty years ago, I tried to develop such a cou-
pled system. The attempt was unsuccessful as I restricted myself to Kähler
geometry. My student Bartnik with Mckinnon [42] did succeed in doing so
in the Lorentzian case. They found non-singular solutions for such a cou-
pled system. (The mathematically rigorous proof was provided by Smoller-
Wasserman-Yau-Mcleod [639] and [638]).

The Strominger’s system was shown to be solvable in a neighborhood
of a Calabi-Yau structure by Jun Li and myself [434]. Fu and I [235] were
also able to solve it for many complex manifolds which admit no Kähler
structure. These manifolds are balanced manifolds and were studied by M.
Michelsohn [517]. These manifolds can be used to explain some questions
of flux in string theory (see, e.g., [46, 106]). Since Strominger has shown
such manifolds admits parallel spinors, I have directed my student C.C. Wu
to decompose cohomology group of such manifolds correspondingly. It is
expected that many theorems in Kähler geometry may have counterparts in
such geometry.
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Such a structure may help to understand a proposal of Reid [568] in
connecting Calabi-Yau manifolds with a different topology. This was initi-
ated by a construction of Clemens [165] who proposed to perform complex
surgery by blowing down rational curves with negative normal bundles in
a Calabi-Yau manifold to rational double points. Friedman [233] found
the condition to smooth out such singularities. Based on this Clemens-
Friedman procedure, one can construct a complex structure on connected
sums of S3×S3. It would be nice to construct Strominger’s system on these
manifolds.

The Calabi-Yau structure was used by me and others to solve impor-
tant problems in algebraic geometry before it appeared in string theory. For
example, the proof of the Torelli theorem (by Piatetskii-Shapiro and Shafare-
vich [559]) for a K3 surface by Todorov [683]-Siu [627] and the surjectivity
of the period map of a K3 surface (by Kulikov [404]) by Siu [626]-Todorov
[683] are important works for algebraic surfaces. The proof of the Bogo-
molov [60]-Tian [675]-Todorov [684] theorem also requires the metric. (One
needs to use the statement that the holomorphic n-form is parallel. This
was overlooked in [675].) The last theorem helps us to understand the mod-
uli space of Calabi-Yau manifolds. It is important to understand the global
behavior of the Weil-Petersson geometry for Calabi-Yau manifolds. C.L.
Wang [701] was able to characterize these points which have finite distance
in terms of the degeneration of the Hodge structure.

In my talk [737] in the Congress in 1978, I outlined the program and
the results of classifying noncompact Calabi-Yau manifolds. Some of this
work was written up in Tian-Yau [681, 682] and Bando-Kobayashi [32, 33].
During the period of 1984, there was an urgent request by string theorists to
construct Calabi-Yau threefolds with a Euler number equal to ±6. During
the Argonne Lab conference, I [740] constructed such a manifold with a Z3

fundamental group by taking the quotient of a bi-degree (1, 1) hypersurface
in the product of two cubics. Soon afterwards, more examples were con-
structed by Tian and myself [680]. However, it was pointed out by Brian
Greene that all the manifolds constructed by Tian-Yau can be deformed to
my original manifold. The idea of producing Calabi-Yau manifolds by the
complete intersection of hypersurfaces in products of weighted projective
space was soon picked up by Candelas et al [97]. By now, on the order of ten
thousand examples of different homotopic types had been constructed. The
idea of using toric geometry for construction was first performed by S. Roan
and myself [569]. A few years later, the systematic study by Batyrev [44]
on toric geometry allowed one to construct mirror pairs for a large class of
Calabi-Yau manifolds, generalizing the construction of Greene-Plesser [271]
and Candelas et al [97]. Tian and I [680] were also the first one to apply flop
construction to change topology of Calabi-Yau manifolds. Greene-Morrison-
Plesser [272] then made the remarkable discovery of isomorphic quantum
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field theory on two topological distinct Calabi-Yau manifolds. Most Calabi-
Yau threefolds are a complete intersection of some toric varieties and they
admit a large set of rational curves. It will be important to understand the
reason behind it. Up to now all the Calabi-Yau manifolds that have a Euler
number ±6 and a nontrivial fundamental group can be deformed from the
birational model of the manifold (or their mirrors) that I constructed. It
would be important if one could give a proof of this statement.

The most spectacular advancement on Calabi-Yau manifolds come from
the work of Greene-Plesser, Candelas et al on construction of pairs of mir-
ror manifolds with isomorphic conformal field theories attached to them. It
allows one to calculate Gromov-Witten invariants. Existence of such mirror
pairs was conjectured by Lerche-Vafa-Warner [418] and rigorous proof of
mirror conjecture was due to Givental [258] and Lian-Liu-Yau [449] inde-
pendently. The deep meaning of the symmetry is still being pursued.

In [643], Strominger, Yau and Zaslow proposed a mathematical explana-
tion for the mirror symmetry conjecture for Calabi-Yau manifolds. Roughly
speaking, mirror Calabi-Yau manifolds should admit special Lagrangian tori
fibrations and the mirror transformation is a nonlinear analog of the Fourier
transformation along these tori.

This proposal has opened up several new directions in geometric analy-
sis. The first direction is the geometry of special Lagrangian submani-
folds in Calabi-Yau manifolds. This includes constructions of special La-
grangian submanifolds ([417] and others) and (special) Lagrangian fibra-
tions by Gross [293, 294] and W.D. Ruan [576], mean curvature of La-
grangian submanifolds in Calabi–Yau manifolds by Thomas and Yau
[670] [671], structures of singularities on such submanifolds by Joyce [376],
and Fourier transformations along special Lagrangian fibration by Leung-
Yau-Zaslow [424] and Leung [422].

The second direction is affine geometry with singularities. As explained
in [643], the mirror transformation at the large structure limit corresponds
to a Legendre transformation of the base of the special lagrangian fibration
which carries a natural special affine structure with singularities. Solving
these affine problems is not trivial in geometric analysis [473] [474] and
much work is still needed to be done here.

The third direction is the geometry of special holonomy and duality
and triality transformation in M-theory. In [305], Gukov, Yau and Zaslow
proposed a similar picture to explain the duality in M-theory. The corre-
sponding differential geometric structures are fibrations on G2 manifolds by
coassociative submanifolds. These structures are studied by Kovalev [400],
Leung and others [416] [423].

Comment: Although the first demonstration of the exis-
tence of Kähler Ricci flat metric was shown by me in 1976,
it was not until the first revolution of string theory in 1984
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that a large group of researchers did extensive calculations
and changed the face of the subject. It is a subject that pro-
vides a good testing ground for analysis, geometry, physics,
algebraic geometry, automorphic forms and number theory.

5.6.2. Kähler metric with harmonic Ricci form and stability. The exis-
tence of a Kähler Einstein metric with negative scalar curvature was proved
by Aubin [23] and me [736] independently. I [735] found many impor-
tant applications for solving classical problems in algebraic geometry, e.g.,
the uniqueness of complex structure over CP 2 [735], the Chern number in-
equality of Miyaoka [520]-Yau [735] and the rigidity of algebraic manifolds
biholomorphic to Shimura varieties. The problem of existence of Kähler
Einstein metrics with positive scalar curvature in the general case is not
solved. However, my proof of the Calabi conjecture already provided all the
necessary estimates except some integral estimate on the unknown. This of
course can be turned into hypothesis. I conjectured that an integral esti-
mate of this sort is related to the stability of manifolds. Tian [678] called
it K-stability. Mabuchi’s functional [489] made the integral estimate more
intrinsic and it gave rise to a natural variational formulation of the problem.
Siu has pointed out that the work of Tian [677] on two dimensional surfaces
is not complete. The work of Nadel [535] on the multiplier ideal sheaf did
give useful methods for the subject of the Kähler-Einstein metric.

For Kähler Einstein manifolds with positive scalar curvature, it is pos-
sible that they admit a continuous group of automorphisms. Matsushima
[494] was the first one to observe that such a group must be reductive. Fu-
taki [242] introduced a remarkable invariant for general Kähler manifolds
and proved that it must vanish for such manifolds. In my seminars in the
eighties, I proposed that Futaki’s theorem should be generalized to under-
stand the projective group acting on the embedding of the manifold by a
high power of anti-canonical embedding and that Futaki’s invariant should
be relevant to my conjecture [743] relating the Kähler Einstein manifold to
stability. Tian asked what happens when manifolds have no group actions.
I explained that the shadow of the group action is there once it is inside the
projective space and one should deform the manifold to a possibly singular
variety to obtain more information. The connection of Futaki invariant to
stability of manifolds has finally appeared in the recent work of Donaldson
[202, 203]. Donaldson introduced a remarkable concept of stability based
purely on concept of algebraic geometry. It is not clear that Donaldson’s
algebraic definition has anything to do with Tian’s analytic definition of
stability. Donaldson proved that the existence of Kähler-Einstein did imply
his K-stability which in turn implies Hilbert stability and asymptotic Chow
stability of the manifold. This theorem of Donaldson already gives nontriv-
ial information for manifolds with negative first Chern class and Calabi-Yau
manifolds, where existence of Kähler-Einstein metrics was known. Some
part of the deep work of Gieseker [253] and Viehweg [694] can be recovered
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by these theorems. One should also mention the recent interesting work of
Ross-Thomas [572, 573] on the stability of manifolds. Phong-Strum [555]
also studied solutions of certain degenerate Monge-Ampére equations and
[556] the convergence of the Kähler-Ricci flow.

A Kähler metric with constant scalar curvature is equivalent to the har-
monicity of the first Chern form. The uniqueness theorem for harmonic
Kähler metric was due to X. Chen [135], Donaldson [202] and Mabuchi for
various cases. (Note that the most important case of the uniqueness of the
Kähler Einstein metric with positive scalar curvature was due to the remark-
able argument of Bando-Mabuchi [34].) My general conjecture for existence
of harmonic Kähler manifolds based on stability of such manifolds is still
largely unknown. In my seminar in the mid-eighties, this problem was dis-
cussed extensively. Several students of mine, including Tian [676], Luo [481]
and Wang [709] had written a thesis related to this topic. Prior to them,
my former students Bando [31] and Cao [100] had made attempts to study
the problem of constructing Kähler-Einstein metrics by Ricci flow. The fun-
damental curvature estimate was due to Cao [101]. The Kähler Ricci flow
may either converge to Kähler Einstein metric or Kähler solitons. Hence in
order for the approach, based on Ricci flow, to be successful, stability of the
projective manifold should be related to such Kähler solitons. The study
of harmonic Kähler metrics with constant scalar curvature on toric variety
was initiated by S. Donaldson [203], who proposed to study the existence
problem via the real Monge-Ampère equation. This problem of Donaldson
in the Kähler-Einstein case was solved by Wang-Zhu [708]. LeBrun and
his coauthors [382] also have found special constructions, based on twistor
theory, for harmonic Kähler surfaces. Bando was also interested in Kähler
manifolds with harmonic i-th Chern form. (There should be an analogue of
stability of algebraic manifolds associated to manifolds with harmonic i-th
Chern form.)

In the early 90’s, S.W. Zhang [754] studied heights of manifolds. By
comparing metrics on Deligne pairings, he found that a projective variety is
Chow semistable if and only if it can be mapped by an element of a special
linear group to a balanced subvariety. (Note that a subvariety in CPN is
called balanced if the integral of the moment map with respect to SU(N +1)
is zero, where the measure for the integral is induced from the Fubini-Study
metric.) Zhang communicated his results to me. It is clearly related to
Kähler-Einstein metric and I urged my students, including Tian, to study
this connection.

Zhang’s work has a nontrivial consequence on the previous mentioned
development of Donaldson [202, 203]. Assume the projective manifold is
embedded by an ample line bundle L into projective space. If the manifold
has a finite automorphism group and admits a harmonic Kähler metric in
c1(L), then Donaldson showed that for k large, Lk gives rise to an embedding
which is balanced. Furthermore, the induced Fubini-Study form divided by
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k will converge to the harmonic Kähler form. Combining the work of Zhang
and Luo, he then proved that the manifold given by the embedding of Lk is
stable in the sense of geometric invariant theory. Recently, Mabuchi gener-
alized Donaldson’s theorem to certain case which allow nontrivial projective
automorphism.

Donaldson considered the problem from the point of view of symplec-
tic geometry (Kähler form is a natural symplectic form). The Hamiltonian
group then acts on the Hilbert space H of square integrable sections of the
line bundle L where the first Chern class is the Kähler form. For each in-
tegrable complex structure on the manifold compatible with the symplectic
form, the finite dimensional space of holomorphic sections gives a subspace
of H. The Hamiltonian group acts on the Grassmannian of such subspaces.
The moment map can be computed to be related to the Bergman kernel∑

α sα(x) ⊗ s∗α(y) where sα form an orthonormal basis of the holomorphic
sections. On the other hand, Fujiki [236] and Donaldson [200] computed
the moment map for the Hamiltonian group action on the space of inte-
grable complex structure, which turns out to be the scalar curvature of the
Kähler metric. These two moment maps may not match, but for the line
bundle Lk with large k, one can show that they converge to each other af-
ter normalization. Lu [479] has shown the first term of the expansion (in
terms of 1/k) of the Bergman kernel gives rise to scalar curvature. Hence we
see the relevance of constant scalar curvature for a Kähler metric to these
with a constant Bergman kernel function. S.W. Zhang’s result says that
the manifold is Chow semistable if and only if it is balanced. The balanced
condition implies that there is a Kähler metric where the Bergman kernel is
constant. With the work of Zhang and Donaldson, what remains to settle
my conjecture is the convergence of the balanced metric when k is large. In
general, we should not expect this to be true. However, for toric manifolds,
this might be the case.

It may be noted that in my paper with Bourguignon and P. Li [74] on
giving an upper estimate of the first eigenvalue of an algebraic manifold,
this balanced condition also appeared. Perhaps the first eigenfunction may
play a role for questions of stability.

Comment: Kähler metrics with constant scalar curvature
is a beautiful subject as it is related to structure questions of
algebraic varieties including the concept of stability of man-
ifolds. The most effective application of such metrics to al-
gebraic geometry are still restricted to the Kähler-Einstein
metric. The singular Kähler-Einstein metric as was initiated
by my paper on Calabi conjecture should be studied further
in application to algebraic geometry.

5.7. Manifolds with special holonomy group. Besides Kähler
manifolds, there are manifolds with special holonomy groups. Holonomy
groups of Riemannian manifolds were classified by Berger [48]. The most
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important ones are O(n), U(n), SU(n), G2 and Spin(7). The first two
groups correspond to Riemannian and Kähler geometry respectively. SU(n)
corresponds to Calabi-Yau manifolds. A G2 manifold is seven dimensional
and a Spin(7) is eight dimensional (assuming they are irreducible manifolds).
These last three classes of manifolds have zero Ricci curvature. It may be
noted that before I [736] proved the Calabi conjecture in 1976, there was
no known nontrivial compact Ricci flat manifold. Manifolds with a special
holonomy group admit nontrivial parallel spinors and they correspond to
supersymmetries in the language of physics. The input of ideas from string
theory did give a lot of help to understand these manifolds. However, the
very basic question of constructing these structures on a given topological
space is still not well understood. In the case of G2 and Spin(7), it was
initiated by Bryant (see [84, 86]). The first set of compact examples was
given by Joyce [373, 374, 375]. Recently Dai-Wang-Wei [183] proved the
stability of manifolds with parallel spinors.

The nice construction of Joyce was based on a singular perturbation
which is similar to the construction of Taubes [655] on anti-self-dual con-
nections. However, it is not global enough to give a good parametrization of
G2 or Spin(7) structures. A great deal more work is needed. The beautiful
theory of Hitchin [337, 338] on three forms and four forms may lead to a
resolution of these important problems.

Comment: Recent interest in M-theory has stimulated a lot
of activities on manifolds with special holonomy group. We
hope a complete structure theorem for such manifolds can be
found.

5.8. Geometric structures by reduction. One can also obtain new
geometric structures by imposing some singular structures on a manifold
with a special holonomy group. For example, if we require a metric cone to
admit a G2, Spin(7) or Calabi-Yau structure, the link of the cone will be
a compact manifold with special structures. They give interesting Einstein
metrics. When the cone is Calabi-Yau, the structure on the odd dimensional
manifold is called Sasakian Einstein metric.

There is a natural Killing field called the Reeb vector field defined on a
Sasakian Einstein manifold. If it generates a circle action, the orbit space
gives rise to a Kähler Einstein manifold with positive scalar curvature. How-
ever, it need not generate a circle action and J. Sparks, Gauntlelt, Martelli
and Waldram [247] gave many interesting explicit examples of non-regular
Sasakian Einstein structures. They have interesting properties related to
conformal field theory. For quasi-regular examples, there was work by Boyer,
Galicki and Kollár [76]. The procedure gave many interesting examples of
Einstein metrics on odd dimensional manifolds.

Sparks, Matelli and I have been pursuing general theory of Sasakian
Einstein manifolds. I would like to consider them as a natural generalization
of Kähler manifolds.
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Comment: The recent development of the Sasakian Ein-
stein metric shows that it gives a natural generalization of
the Kähler-Einstein metric. Its relation with the recent ac-
tivities on ADS/CFT theory is exciting.

5.9. Obstruction for existence of Einstein metrics on general
manifolds. The existence of Einstein metrics on a fixed topological mani-
fold is clearly one of the most important questions in geometry. Any metrics
with a compact special holonomy group are Einstein. Besides Kähler geom-
etry, we do not know much of their moduli space. For an Einstein metric
with no special structures, we know only some topological constraints on
four dimensional manifolds. There is work by Berger [49], Gray [269] and
Hitchin [332] in terms of inequalities linking a Euler number and the sig-
nature of the manifold. (This is of course based on Chern’s work [149] on
the representation of characteristic classes by curvature forms.) Gromov
[285] made use of his concept of Gromov volume to give further constraint.
LeBrun [415] then introduced the ideas from Seiberg-Witten invariants to
enlarge such classes and gave beautiful rigidity theorems on Einstein four
manifolds. Unfortunately it is very difficult to understand moduli space of
Einstein metrics when they admit no special structures. For example, it is
still an open question of whether there is only one Einstein metric on the four
dimensional sphere. M. Wang and Ziller [707] and C. Boehm [58] did use
symmetric reductions to give many examples of Einstein metrics for higher
dimensional manifolds. There may be much more examples of Einstein man-
ifolds with negative Ricci curvature than we expected. This is certainly true
for compact manifolds, with negative Ricci curvature. Gao-Yau [243] was
the first one to demonstrate that such a metric exists on the three sphere.
A few years later, Lokhamp [475] used the h-principle of Gromov to prove
such a metric exists on any manifold with a dimension greater than three.
It would be nice to prove that every manifold with a dimension greater than
4 admits an Einstein metric with negative Ricci curvature.

Comment: The Einstein manifold without extra special
structures is a difficult subject. Do we expect a general clas-
sification for such an important geometric structure?

5.10. Metric Cobordism. In the last five years, a great deal of at-
tention was addressed by physicists on the holographic principle: boundary
geometry should determine the geometry in the interior. The ADS/CFT
correspondence studies the conformal boundary of the Einstein manifold
which is asymptotically hyperbolic. Gauge theory on the boundary is sup-
posed to be dual to the theory of gravity in the bulk. Much fascinating
work was done in this direction. Manifolds with positive scalar curvature
appeared as conformal boundary are important for physics. Graham-Lee
[267] have studied a perturbation problem near the standard sphere which
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bounds the hyperbolic manifold. Witten-Yau [722] proved that for a mani-
fold with positive scalar curvature to be a conformal boundary, it must be
connected. It is not known whether there are further obstructions.

Cobordism theory had been a powerful tool in the classification of the
topology of manifolds. The first fundamental work was done by Thom who
determined the cobordism group. Characteristic numbers play important
roles. When two manifolds are cobordant to each other, the theory of surgery
helps us to deform one manifold to another. It is clear that any construction
of surgery that may preserve geometric structures would play a fundamental
role in the future of geometry.

There are many geometric structures that are preserved under a con-
nected sum construction. This includes the category of conformally flat
structures, metrics with positive isotropic curvature and metrics with posi-
tive scalar curvature. For the last category, there was work by Schoen-Yau-
Gromov-Lawson where they perform surgery on spheres with a codimension
greater than or equal to 3. A key part of the work of Hamilton-Perelman
is to find a canonical neighborhood to perform surgery. If we can deform
the spheres in the above SYGL construction to a more canonically defined
position, one may be able able to create an extra geometric structure for the
result of SYGL. In fact, the construction of Schoen-Yau did provide some
information about the conformal structures of the manifold. In complex
geometry, there are two important canonical neighborhoods given by the
log transform of Kodaira and the operation of flop. There should be similar
constructions for other geometric structures.

The theory of quasi-local mass mentioned in Section 4.4 is another ex-
ample of how boundary geometry can be controlled by the geometry in the
bulk. The work of Choi-Wang [155] on the first eigenvalue is also based
on the manifold that it bounds. There can be interesting theory of metric
cobordism.

In the other direction, there are also beautiful rigidity of inverse problems
for metric geometry by Gerver-Nadirashvili [251] and Pestov-Uhlmann [554]
on recovering a Riemannian metric when one knows the distance functions
between a pair of points on the boundary, if the Riemannian manifold is
reasonably convex.

Comment: There should be a mathematical foundation of
the holographic principle of physicists. Good understanding
of metric cobordism may be useful.
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Birkhäuser, Basel, 1994.

[395] M. Kontsevich, Homological algebra of mirror symmetry, Proceedings of the Inter-
national Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 120–139, Birkhäuser,
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[582] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat.
Math. Res. Notices 2 (1992), 27–38.

[583] L. Saloff-Coste, Analysis on Riemannian co-compact covers, Surveys in Differential
Geometry, IX, 351-385. International Press, Somerville, MA, 02143.

[584] L. Saper, On the cohomology of locally symmetric spaces and of their compactifica-
tions, Current developments in mathematics, 2002, 219–289, Int. Press, Somerville,
MA, 2003.

[585] L. Saper and M. Stern, L2-cohomology of arithmetic varieties, Ann. of Math. (2)
132(1) (1990), 1–69.

[586] P. Sarnak, Additive number theory and Maass forms, Lecture Notes in Math., 1052,
286–309, Springer, Berlin, 1984.

[587] P. Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. (N.S.) 40(4) (2003),
441–478.

[588] W. Schmid, Variation of Hodge structure: the singularities of the period mapping,
Invent. Math. 22 (1973), 211–319.

[589] M. Schmidt, A proof of the Willmore conjecture, math.DG/0203224
[590] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar cur-

vature, J. Differential Geom. 20(2) (1984), 479–495.
[591] R. Schoen, L. Simon, and S.-T. Yau, Curvature estimates for minimal hypersurfaces,

Acta Math. 134(3-4) (1975), 275–288.
[592] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential

Geom. 17(2) (1982), 307–335.
[593] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for

harmonic maps, J. Differential Geom. 18(2) (1983), 253–268.
[594] R. Schoen and J. Wolfson, Minimizing area among Lagrangian surfaces: the mapping

problem, J. Differential Geom. 58(1) (2001), 1–86.
[595] R. Schoen, S. Wolpert, and S.-T. Yau, Geometric bounds on the low eigenval-

ues of a compact surface, Geometry of the Laplace operator (Proc. Sympos. Pure
Math., Univ. Hawaii, Honolulu, Hawaii, 1979), 279–285, Proc. Sympos. Pure Math.,
XXXVI, Amer. Math. Soc., Providence, RI, 1980.

[596] R. Schoen and S.-T. Yau, On univalent harmonic maps between surfaces, Invent.
Math. 44(3) (1978), 265–278.

[597] R. Schoen and S. T. Yau, Existence of incompressible minimal surfaces and the
topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of
Math. (2) 110(1) (1979), 127–142.

[598] R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general
relativity, Comm. Math. Phys. 65(1) (1979), 45–76.

[599] R. Schoen and S.-T. Yau, Positivity of the total mass of a general space-time, Phys.
Rev. Lett. 43(20) (1979), 1457–1459.

[600] R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curva-
ture, Manuscripta Math. 28(1-3) (1979), 159–183.

[601] R. Schoen and S.-T. Yau, Compact group actions and the topology of manifolds with
nonpositive curvature, Topology 18(4) (1979), 361–380.

[602] R. Schoen and S.-T. Yau, Proof of the positive mass theorem, II, Comm. Math. Phys.
79(2) (1981), 231–260.



PERSPECTIVES ON GEOMETRIC ANALYSIS 373

[603] R. Schoen and S.-T. Yau, Complete three-dimensional manifolds with positive Ricci
curvature and scalar curvature, Seminar on Differential Geometry, 209–228, Ann. of
Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982.

[604] R. Schoen and S.-T. Yau, The existence of a black hole due to condensation of matter,
Comm. Math. Phys. 90(4) (1983), 575–579.

[605] R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar
curvature, Invent. Math. 92(1) (1988), 47–71.

[606] R. Schoen and S.-T. Yau, Lectures on differential geometry, Lecture notes prepared
by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi
Chao Xu; Translated from the Chinese by Ding and S.Y. Cheng, Preface translated
from the Chinese by Kaising Tso, Conference Proceedings and Lecture Notes in
Geometry and Topology, I, International Press, Cambridge, MA, 1994.

[607] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and
confinement in N = 2 supersymmetric Yang-Mills theory, Nuclear Phys. B 426(1)
(1994), 19–52.

[608] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2
supersymmetric QCD, Nuclear Phys. B 431(3) (1994), 484–550.

[609] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent
sheaves, Duke Math. J. 108(1) (2001), 37–108.

[610] J. Shatah and M. Struwe, Regularity results for nonlinear wave equations, Ann. of
Math. (2) 138(3) (1993), 503–518.

[611] W.X. Shi, Complete noncompact Kähler manifolds with positive holomorphic bisec-
tional curvature, Bull. Amer. Math. Soc. (N.S.) 23(2) (1990), 437–440.

[612] W.X. Shi, Ricci flow and the uniformization on complete noncompact Kähler mani-
folds, J. Differential Geom. 45(1) (1997), 94–220.

[613] W.X. Shi, A uniformization theorem for complete Kähler manifolds with positive
holomorphic bisectional curvature, J. Geom. Anal. 8(1) (1998), 117–142.

[614] Y.G. Shi and L.F. Tam, Positive mass theorem and the boundary behaviors of com-
pact manifolds with nonnegative scalar curvature, J. Differential Geom. 62(1) (2002),
79–125.

[615] B. Shiffman, Complete characterization of holomorphic chains of codimension one,
Math. Ann. 274(2) (1986), 233–256.

[616] T. Shioya and T. Yamaguchi, Collapsing three-manifolds under a lower curvature
bound, J. Differential Geom. 56(1) (2000), 1–66.

[617] T. Shioya and T. Yamaguchi, Volume collapsed three-manifolds with a lower curva-
ture bound, math.DG/0304472

[618] L. Simon, Theorems on the regularity and singularity of minimal surfaces and har-
monic maps, Geometry and global analysis (Sendai, 1993), 111–145,

[619] L. Simon, Existence of Willmore surfaces, Miniconference on geometry and partial
differential equations (Canberra, 1985), 187–216, Proc. Centre Math. Anal. Austral.
Nat. Univ., 10, Austral. Nat. Univ., Canberra, 1986.

[620] L. Simon, Theorems on regularity and singularity of energy minimizing maps, Lec-
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[710] A. Weil, Sur les théorémes de de Rham, Comment. Math. Helv. 26 (1952), 119–145.
[711] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dif-

ferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)
(German), Math. Ann. 71(4) (1912), 441–479.

[712] S. Weinberger, Aspects of the Novikov conjecture, in Geometric and Topological In-
variants of Elliptic Operators, J. Kaminker, editor, 1990, 281–297, AMS, Providence,
RI.

[713] A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Dif-
ferential Geometry 9 (1974), 513–517.

[714] N. Wickramasekera, A rigidity theorem for stable minimal hypercones, J. Differential
Geom. 68(3) (2004), 433–514.

[715] N. Wickramasekera, On the singularities and a Bernstein property of immersed stable
minimal hypersurfaces, Calc. Var. Partial Differential Equations 22(1) (2005), 1–20.

[716] E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80(3)
(1981), 381–402.

[717] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17(4) (1982),
661–692.

[718] E. Witten, Holomorphic Morse inequalities, Algebraic and differential topology–
global differential geometry, 318–333, Teubner-Texte Math., 70, Teubner, Leipzig,
1984.

[719] E. Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109(4)
(1987), 525–536.

[720] E. Witten, On the structure of the topological phase of two-dimensional gravity,
Nuclear Phys. B 340(2-3) (1990), 281–332.

[721] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1(6) (1994), 769–796.
[722] E. Witten and S.-T. Yau, Connectedness of the boundary in the AdS/CFT corre-

spondence, Adv. Theor. Math. Phys. 3(6) (1999), 1635–1655.
[723] M. Wolf, The Teichmuller theory of harmonic maps, J. Differential Geom. 29(2)

(1989), 449–479.



378 S.-T. YAU

[724] S.A. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space,
Surveys in differential geometry, Vol. VIII, 357–393, Int. Press, Somerville, MA,
2003.

[725] S.A. Wolpert, Disappearance of cusp forms in special families, Ann. of Math. (2)
139 (1994), 239–291.

[726] H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233.
[727] C.T. Yang, Odd-dimensional wiedersehen manifolds are spheres, J. Differential

Geom. 15(1) (1980), 91–96.
[728] C.T. Yang, Smooth great circle fibrations and an application to the topological

Blaschke conjecture, Trans. Amer. Math. Soc. 320(2) (1990), 507–524.
[729] C.T. Yang, Any Blaschke manifold of the homotopy type of CPn has the right volume,

Pacific J. Math. 151(2) (1991), 379–394.
[730] P.C. Yang and S.-T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces

and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7(1) (1980),
55–63.

[731] S.-T. Yau, On the fundamental group of compact manifolds of non-positive curvature,
Ann. of Math. (2) 93 (1971), 579–585.

[732] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure
Appl. Math. 28 (1975), 201–228.

[733] S.-T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian
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