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Notes on GIT and symplectic reduction for
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R.P. Thomas

1. Introduction

These notes give an introduction to Geometric Invariant Theory (GIT)
and symplectic reduction, with lots of pictures and simple examples. We
describe their applications to moduli of bundles and varieties, leaving the
technical work on the analysis of the Hilbert-Mumford criterion in these
situations to the final sections. We outline their infinite dimensional ana-
logues (so called Hitchin-Kobayashi correspondences) in gauge theory and in
the theory of constant scalar curvature Kéhler (cscK) and Kéhler-Einstein
(KE) metrics on algebraic varieties. Donaldson’s work on why these should
be thought of as the classical limits of the original finite dimensional con-
structions — which are then their “quantisations” — is explained. The many
analogies and connections between the bundle and variety cases are empha-
sised; in particular the GIT analysis of stability of bundles is shown to be a
special case of the (harder) problem for varieties.

For GIT we work entirely over C and skip or only sketch many proofs.
The interested reader should refer to the excellent [D1, GIT, Ne| for more
details. Throughout this survey we mention many names, but only include
certain key papers in the references — apologies to those omitted but com-
piling a truly comprehensive bibliography would be fraught with danger.
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2. A brief review of affine and projective geometry

This section can be safely skipped by readers with any knowledge of
algebraic geometry. We fix some notation and speedily review some standard
theory of complex affine and projective varieties (and schemes). These are
much simpler than arbitrary varieties in that they can be described by a
single ring. Throughout “ring” means finitely generated commutative C-
algebra — i.e. a Noetherian ring with a scalar action of C making it into a
C-vector space and commuting with multiplication.

Affine varieties. Affine varieties X are just the irreducible compo-
nents of the zero sets of finite collections of polynomials p1,...,p; in some
affine space C™. They are in one-to-one correspondence with rings with
no zero divisors (i.e., integral domains); in coordinates this is particularly
simple:

Clxi,...,zp] «— c",
C[Cm, ce ,:L‘n]
2.1 —0=...=p) CC",
( ) (pb o ’pk) (pl pk) =
Ox — X.

The arrow « replaces a variety by the ring of functions on it (i.e. the
functions Clzy,...,x,] on C™ divided out by the ideal of those that vanish
on X). The arrow — recovers X from its ring of functions Ox by taking
a finite number of generators z1,...,z, and a finite (by the Hilbert basis
theorem) number of relations pi,...,pg (considered as polynomials in the
generators) and setting X to be the affine variety in C" cut out by the
polynomials p;.

The embedding is equivalent to the choice of generators: each is a map
X — C so n of them give the map X — C™. (Invariantly, we embed X in
the dual of the vector space on the generators,

(2.2) Xz evg € (Clry, ... xn))", evz(f) :== f(x),

each point x of X mapping to the linear functional that evaluates functions
at x.) The ideal of functions (p1,...,pg) vanishing on X C C" is prime (if
it contains fg then it contains one of f or g) reflecting the fact that the ring
Ox has no zero divisors and that X is irreducible.

So really (2.1) is a correspondence between

(1) Affine varieties X C C" with a fixed embedding into n-dimensional
affine space;

(2) prime ideals I C Clzy,...,z,)], and

(3) rings without zero divisors plus a choice of n generators.

The coordinate-free approach (which also shows the above construction
is independent of choices) is to note that the points x of X are in one-to-one
correspondence with the maximal ideals .Z, C Ox of functions vanishing
at x. So to any ring without zero divisors R we associate an affine variety
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Spec R whose points are maximal ideals in R; the coordinate-independent
version of (2.1):

Ox =R +«+— X =SpecR.

This can be extended to a correspondence between arbitrary rings and affine
schemes, which are allowed nilpotents in their ring of functions, correspond-
ing to multiplicities or infinitesimal directions in the scheme.

Projective varieties. Now we just do everything C*-equivariantly. Re-
call that a C*-action on a vector space V is equivalent to a grading, i.e., a
splitting into subspaces (the eigen- or weight spaces) Vi parameterised by
the integers (the eigenvalues or weights). So we replace rings by graded
rings, ideals by homogeneous ideals (those which are the sum of their graded
pieces — i.e. which are C*-invariant), and get a correspondence between
graded rings without zero divisors and projective varieties. This is easiest
to express in coordinates when the ring is generated by its degree one piece:

Clxoy...,zn] «— P,
Clzo, . .., zn]
2.3 p1=0=...=p;) CP"
( ) (plu e 7pk) ( ! )
Here C[xo,...,x,] is given the standard grading it inherits from the scalar

C*-action on C"*! (i.e. the z; have weight one), and the p; are homogeneous
polynomials (eigenvectors for the C*-action). They cut out an affine variety
X = (pp =0 =...=pg) in C"", which is C*-invariant and so a cone,
determined by its set of lines through the origin X C P". (X and P" are
of course the quotients of X\{0} and C"*1\{0} by C*, but we have yet to
develop a theory of quotients (!).)

This describes the arrow —. For < we cannot simply take the ring of
functions on X since this consists of just the constants; we have to take the
ring of functions on the cone X , which can be described on X in terms of a
line bundle. _

Since X is the space of lines in X, it has a tautological line bundle
Ox(—1) = Opn(—1)|x over it whose fibre over a point in X is the corre-
sponding line in X C C™*!. The total space of Ox(—1) therefore has a
tautological map to X which is an isomorphism away from the zero section
X C Ox(—1), which is all contracted down to the origin in X. In fact the

total space of Oy (—1) is the blow up of X in the origin.
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[ Ox(-1)
\J

|

Linear functions on C"*! like x;, restricted to X and pulled back to
the total space of Ox(—1), give functions which are linear on the fibres,
so correspond to sections of the dual line bundle Ox(1). Similarly degree
k homogeneous polynomials on X define functions on the total space of
Ox(—1) which are of degree k on the fibres, and so give sections of the kth
tensor power Ox (k) of the dual of the line bundle Ox(—1).

So the grading that splits the functions on X into homogeneous degree
(or C*-weight spaces) corresponds to sections of different line bundles Ox (k)
on X. So « takes the direct sum @,~, H’(Ox(k)), considered a graded

ring by tensoring sections O(k) ® O(l) — O(k + ). For the line bundle
Ox (1) sufficiently positive, this ring will be generated in degree one. It is
often called the (homogeneous) coordinate ring of the polarised (= endowed
with an ample line bundle) variety (X, Ox(1)).

The degree one restriction is for convenience and can be dropped (by
working with varieties in weighted projective spaces), or bypassed by re-
placing Ox (1) by Ox(p), i.e. using the ring RP) = @, Rip; for p > 0
this will be generated by its degree one piece R,. a

The choice of generators of the ring is what gives the embedding in
projective space. In fact the sections of any line bundle L over X define a
(rational) map

(2.4) X - P(HY(X,L)%), T evy, evg(s) == s(x),

(compare (2.2)) which in coordinates maps x to (so(z) : ... : s,(z)) € P,
where s; form a basis for H%(L). This map is only defined for those = with
evy # 0, i.e., for which s(z) is not zero for every s.

It remains to describe — in a coordinate-free manner, by noting that the
points of X, i.e. lines of X, are C*-invariant subvarieties that are minimal
among those which are not the origin in X C C"*!; i.e. homogeneous
ideals of the homogeneous coordinate ring that are maximal amongst all
homogeneous ideals minus the one corresponding to the origin. So to any
graded ring R we associate a projective variety Proj R whose points are the
homogeneous ideals of R maximal amongst those except the irrelevant ideal
R = @D~ Rk It comes equipped with an ample line bundle, the sections
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of whose kth power gives Ry, for k > 0. This gives the coordinate-free (not
quite one-to-one) correspondence (2.3):

Og=R +«— (X,0x(1)) =ProjR.

Replacing R by R® leaves the variety Proj R unaltered but changes the line
bundle from Ox (1) to Ox(p).

Similarly arbitrary graded rings with zero divisors (finitely generated,
as usual) correspond (not quite one-to-one) to polarised schemes.

Notation. Throughout G will be a connected reductive complex lin-
ear algebraic group with Lie algebra g. Reductive means that all (com-
plex) representations split into sums of irreducibles, but equivalently it is the
complexification of a compact real Lie group K < G with Lie algebra £ < g
such that g = € 4 €. Therefore representations are also representations of
the compact group, which preserve a hermitian inner product (by averaging
any inner product on the representation using Haar measure on K) and so
split into direct sums of irreducibles by taking orthogonal complements to
invariant subspaces. These splittings are by complex subspaces, so are then
also preserved by the complexification G.

For the purposes of these notes one can always assume that K < G is
St <C*, (SH™ < (C*)™ or SU(m) < SL(m,C).

3. Geometric Invariant Theory

GIT is a way of taking quotients in algebraic geometry. This may sound
like a dry and technical subject, but it is beautifully geometric (as we hope to
show) and leads, through its link with symplectic reduction, to unexpected
mathematics (some of which we describe later).

Suppose we are in the following situation, of G acting on a projective
variety X through SL transformations of the projective space.

G N X
(3.1) ! N
SLn+1,C) ~ P

We would like to form a quotient X/G, ideally within the same category of
projective varieties. There are a number of problems with this.

The topological quotient is not Hausdorff. Since X is compact
but G is noncompact, a nontrivial G-action cannot be proper. There are
nonclosed orbits (with lower dimensional orbits in their closures) so the
topological quotient is not Hausdorff.
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It is clear from the above simple illustration of 3 orbits, all of whose
closures contain the smaller orbit, that we must remove some orbits to get
a separated (Hausdorff) quotient. In the above case this would be the lower
dimensional orbit; just as we would expect to remove the origin from C"*!
if we wanted to quotient by the scalar action of C* to get P" (an example
to which we shall return).

Removing smaller orbits does not suffice. Another simple exam-
ple shows that the quotient can still be nonseparated if we remove all lower
dimensional orbits. Consider the action of C* on C? (or its projective com-
pletion P? O C?) by matrices

(32) C 5 A <A 0 ) € SL(2,C)

0 At

In this case removing the origin would make the topological quotient the
affine line with nonseparated doubled point at the origin: it is clear that the
punctured (origin removed) z- and y-axes are both orbits in the limit of the
orbits {zy = a} as a — 0.

In this simple case it is clear that we would like the quotient to be C,
with a € C\{0} representing the orbit {ry = a}. But what then should
the point a = 0 of this “quotient” represent ? There are three standard
solutions to the problem.

e Kapranov’s Chow quotient (and the closely related Hilbert quo-
tient, of which it is a contraction) parameterises the invariant con-
ics in this example. For a # 0 these are just the closed orbits of top
dimension, while & = 0 represents the invariant conic {zy = 0}, the
union of all 3 bad orbits. We will not say more about the Chow
quotient; instead see [Hu], for example (which, unsurprisingly, uses
the same example for illustration).

e The Geometric Invariant Theory quotient gives the same for
a # 0, but a = 0 represents any one of the 3 orbits: GIT identifies
all 3 orbits with each other in an equivalence class.
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e The Symplectic reduction throws away the two nonclosed orbits
— the (punctured) z- and y-axes — and keeps the origin. So in this
case the quotient represents the closed orbits, including the lower
dimensional one.

In this simple case all three quotients give the same answer C, but in
general one expects the Chow quotient to dominate the GIT and symplectic
quotients, which are isomorphic.

In general GIT and the symplectic quotient choose certain “unstable”
orbits to remove to give a separated quotient. GIT also identifies some
“semistable” orbits (those whose closures intersect each other) to compactify
the quotient, resulting in a projective variety which we call X/G. The
symplectic quotient compactifies by taking a distinguished representative of
each semistable equivalence class above — the intersection of their closures,
which turns out to be the unique closed semistable orbit in the equivalence
class.

The construction of the GIT quotient. This is trivial, a formality.
We consider X projective first, since although the affine case is often even
easier, sometimes it is best embedded in the projective case, as we shall see
below.

Since we have assumed that G acts through SL(n + 1,C) (rather than
just its quotient PSL(n+1,C)), the action lifts from X to one covering it on
Ox(—1). In other words we don’t just act on the projective space (and X
therein) but on the vector space overlying it (and the cone X on X therein).
This is called a linearisation of the action. Thus G acts on each H(Ox(r)).

Then, just as (X, Ox (1)) is determined by its graded ring of sections of
O(r) (i.e., the ring of functions on X),

(X,001)) — @H(X,0()),

we simply construct X /G (with a line bundle on it) from the ring of invariant
sections:

X/G — @H(X,0(r)°.

This is sensible, since if there is a good quotient then functions on it pullback
to give G-invariant functions on X, i.e. functions constant on the orbits,
the fibres of X — X/G. For it to work we need

LeEMMA 3.3. @, H(X,0(r))Y is finitely generated.

PROOF. Since R := @, H°(X,O(r)) is Noetherian, Hilbert’s basis the-
orem tells us that the ideal R. (D,.,H’(X,0(r))%) generated by RS :=
@D, -0 H(X,0O(r))C is generated by a finite number of elements so, ... , s €
RC.
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Thus any element s € H(X,O(r))%, r > 0, may be written s =
Z?:o fisi, for some f; € R of degree < r. To show that the s; generate
Rf as an algebra we must show that the f; can be taken to lie in R®.

We now use the fact that G is the complexification of the compact group
K. Since K has an invariant metric, we can average over it and use the facts
that s and s; are invariant to give

k
s =y Av(fi)si,
=0

where Av(f;) is the (K-invariant) K-average of f;. By complex linearity
Av(f;) is also G-invariant (for instance, since G has a polar decomposition
G = K exp(it)). The Av(f;) are also of degree < r, and so we may assuine,
by an induction on r, that we have already shown that they are generated
by the s; in Rf. Thus s is also. O

Thus we simply define X/G to be Proj@, H(X,0(r))%. If X is a
variety (rather than a scheme) then so is X/G, as its graded ring sits in-
side that of X and so has no zero divisors. Unfortunately this is not all
there is to GIT, however. We have to work out what X /G is, which orbits
points of X/G represent, and so on, which we tackle in the next section.
Another important question, that we barely touch on, is how the quotient
X/G changes with the linearisation. For some linearisations the quotient is
empty, but if under a change of linearisation the moduli space remains the
same dimension then it undergoes only a small birational transformation, a
type of flip [DH, Th].

The affine case. The affine case is even easier; if G acts on Spec R
we can form Spec(RG) as a putative quotient. For instance in our example
(3.2) the ring of invariants

RY = Clz,y]®" = Clay]

is generated by xy, so that the quotient is Spec C[zy] = C, as anticipated.
The function xy does not distinguish between any of the “bad” orbits (the
punctured z- and y- axes, and the origin), lumping them all in an equivalence
class of orbits which get identified in the quotient.

In other cases this does not work so well; for instance under the scalar
action of C* on C""! the only invariant polynomials in Clzg,..., ,] are
the constants and this recipe for the quotient gives a single point. In the
language of the next section, this is because there are no stable points in this
example, and all semistable orbits’ closures intersect (or equivalently, there
is a unique polystable point, the origin). More generally in any affine case all
points are always at least semistable (as the constants are always G-invariant
functions) and so no orbits gets thrown away in making the quotient (though
many may get identified with each other — those whose closures intersect
which therefore cannot be separated by invariant functions). But for the
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scalar action of C* on C"™! we clearly need to remove at least the origin to
get a sensible quotient.

So we should change the linearisation, from the trivial linearisation to a
nontrivial one, to get a bigger quotient.

Example: P" from GIT. That is, we consider the trivial line bundle
on C"*! but with a nontrivial linearisation, by composing the C*-action
on C"*! by a character A\ — AP of C* acting on the fibres of the trivial
line bundle over C**!. The invariant sections of this no longer form a ring;
we have to take the direct sum of spaces of sections of all powers of this
linearisation, just as in the projective case, and take Proj of the invariants
of the resulting graded ring.

If p < 0 then there are no invariant sections and the quotient is empty.
We have seen that for p = 0 the quotient is a single point. For p > 0 the
invariant sections of the kth power of the linearisation are the homogeneous
polynomials on C" of degree kp. So for p = 1 we get the quotient

(3.4) C""'/C* = Proj @ (Clzo, - .., zp)k) = ProjClzo, ..., z,) = P".
k>0

For p > 1 we get the same geometric quotient but with the line bundle O(p)
on it instead of O(1).

Another way to derive this is to embed C"*! in P"*! as z,, ;1 = 1, act by
C* on the latter by diag()\, A, )\*("H)) € SL(n+2,C), and do projective
GIT. This gives, on restriction to C**' € P*"*! the p = n + 1 linearisation
above. The invariant sections of O((n + 2)k) are of the form 2% .f, where
f is a homogeneous polynomial of degree (n + 1)k in z1,...,z,. Therefore
the quotient is

Proj@P (Clay, ..., 2nl(nay) = (P, O(n + 1)).
k>0

In the language of the next section this is because the complement of C**! ¢
P! and the origin {0} € C"* C P"*! are unstable (either by noting that
all of the nonconstant invariant polynomials above vanish on them, or by an
easy exercise in using the Hilbert-Mumford criterion below — these loci are
fixed points, but with a nontrivial action on the line above them). So these
are removed and the projective quotient reduces to the affine case.

What are the points of a GIT quotient? By its very definition (and
Lemma 3.3), for » > 0, X/G is just the image of X under the linear system
H°(Ox(r))¥. That is, consider the Kodaira “embedding” of X/G (2.4),

(3.5) X - P((H(X,0(r)%)"),
T evg (evz(s) = s(x)),
that in coordinates takes x to (so(x) : ... : sp(x)) € P¥ (where the s; form a

basis for H°(X,O(r))%).
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This is only a rational map, since it is only defined on points for which
ev, # 0 (equivalently the s;(z) are not all zero). That is, it is defined on
the semistable points of X:

DEFINITION 3.6. z € X is semistable if and only if there exists s €
HO(X,0(r))¥ with r > 0 such that s(x) # 0.

Points which are not semistable we call (controversially) unstable.

So semistable points are those that the G-invariant functions “see”. The
map (3.5) is well defined on the (Zariski open, though possibly empty) locus
X% C X of semistable points, and it is clearly constant on G-orbits, i.e. it
factors through the set-theoretic quotient X**/G. But it may contract more
than just G-orbits, so we need another definition.

DEFINITION 3.7. A semistable point z is stable if and only if
@, HO(X,O(r))" separates orbits near x and the stabiliser of z is finite.

By “separates orbits near £” we mean the following. Since x is semistable
there exists an s € H°(Ox(r))” such that s(z) # 0. So now we work on
the open set U C X on which s # 0 and use s to trivialise Oy(r) (i.e.,
divide all sections of Oy (r) by s to consider them as functions). Then we
ask that in U any orbit can be distinguished from G.z by H°(X,O(r))¢.
That is, there is an element of H(X, O(r))¢ which takes different values on
the two orbits, and this should also be true infinitesimally: given a vector
v € T, X\T,(G.x), there is an element of H(X,O(r))¢ whose derivative
down v is nonzero.

So we have a (surjective) map X*¥ — X /G under which the line bundle
on X/G (that arises from its Proj construction) pulls back to Oxss(1). This
map has good geometric properties over the locus of stable points X*® C
X*% C X (it only contracts single orbits, for instance; more properly it is a
geometric quotient in the sense of [GIT, Definition 0.6]). The definitions of
stable and semistable are the algebraic ones designed to make this true, but
now we can relate them more to geometry.

Topological characterisation of (semi)stability. If we work up-
stairs in the vector space C**1 > X (or equivalently in the total space
of Ox(—1)) instead of in the projective space P" D X, we can get a beau-
tiful topological characterisation of (semi)stability. Given our topological
discussion about nonclosed orbits at the start of these notes, it is what one
might guess, and the best one could possibly hope for. So for x € X, pick
Z € Ox(—1) covering it.

THEOREM 3.8. L
x is semistable <— 0 ¢ G.x.
x is stable <= G.% is closed in C"t! and & has finite stabiliser.

When G.Z is closed, but not necessarily of full dimension, we call x
polystable. (This is called “Kempf-stable” in [DIl], “weakly stable” in
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[Ti4] and plain “stable” in [Do5]. Originally [GIT] the terms for stable
and polystable were “properly stable” and “stable” respectively.)

In one direction the theorem is clear. G-invariant homogeneous functions
of degree r > 0 on X are constant on orbits and so also their closures. So
if the closure of the orbit of  contains the origin then every such function
is zero on T and x cannot be semistable. Similarly if the invariant functions
separate orbits around the orbit of & then it is the zero locus of a collection
of invariant functions and so closed.

One can make the criterion (3.8) much simpler to calculate with, by
considering one parameter subgroups instead of all of G.

The Hilbert-Mumford criterion. The key result is that  is (semi)-
stable for G if and only if it is (semi)stable for all one parameter subgroups
(1 - PSs) C* < G. We will outline a proof of this remarkable result once
we have done some symplectic geometry.

So we may apply Theorem 3.8 to each of these 1-PS orbits, and de-
termining the closedness of these one dimensional orbits is much easier by
using their asymptotics. Setting x¢ = limy_,g A.z, this is a fixed point of
the C*-action, so C* acts on the line O, (—1) in C"*! that xy € P" repre-
sents. Letting p(x) € Z denote the weight of this action (i.e. C* 3 X acts on
Oy (—1) as \@)) we find the following, the Hilbert-Mumford criterion.

THEOREM 3.9.

o If p(x) <0 for all 1-PS then x is stable,
o If p(x) <0 for all 1-PS then x is semistable,
o If p(x) >0 for a 1-PS then x is unstable.

The proof is the picture below; the 1-PS orbit is closed if and only if
it is asymptotic to a negative weight C*-action on the limiting line at both
A — 0 and A — oco. But we can restrict to the former since the latter arises
from the inverse 1-PS.

stable
semistable

unstable

C*.x Zo

So we “just” have to compute the weight p(z) for all C* < SL(n+1,C);
x is stable for G if and only if p(x) is always < 0.

To sum up; the 1-PS orbits are not (in general) closed in the projective
space, but they may be upstairs in the vector space. To decide if z is stable
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we first take the limit zg as we move through isomorphic objects A.x; this
limit is not (in general) isomorphic to z under the C*-action; it is only in
the closure of the C*-orbit. This point z( represents a line O,,(—1) in the
vector space, on which C* acts. If this weight is negative then = (not xo!)
is stable for this 1-PS; if this is true for all 1-PSs then z is stable for G.

Fundamental example: points in P'. The standard example, from
for instance [GIT], is to consider configurations of n (unordered) points in
P! up to the symmetries of P'. (This is of course a 0-dimensional alge-
braic variety, and so the easiest example of the stability of varieties that
we shall study later.) In fact we allow multiplicities, i.e. we take length-n
0-dimensional subschemes of P! — S"P! — modulo SL(2,C).

To linearise the action we note that specifying any such n points is
the same as specifying a degree n homogeneous polynomial on P!, unique
up to scale, by taking the roots of the polynomial. That is, S"P! is the
projectivisation of H(Op1(n)), so giving us a natural linearisation of the
problem; we use the induced SL(2, C)-action on H%(Op1(n)) = S™(C?)*.

We find that the configuration is stable unless it has a very singular
point.

THEOREM 3.10. A length-n subscheme of P! is

e semistable if and only if each multiplicity < n/2,
e stable if and only if each multiplicity < n/2.

PRrROOF. 1. Diagonalise a given C* < SL(2,C) :

k
(3.11) <)E) )\Ok> in [z : y] coordinates on P'. (k > 0.)

In these coordinates write our degree n homogeneous polynomial (whose
roots give the n points) as f = > jaz'y" " As A — 0 the first half
(precisely the first [n/2 — 1]) of these monomials tend to infinity (as there
are more ys than xs in the monomial).

Thus A.f tends to oo and the orbit is closed about A — 0 unless a; = 0
for i <mn/2. That is, it is closed so long as f does not vanish to order > n/2
at ¢ = 0.

Repeating over all 1-PS changes the coordinates [z : y], so f is stable if
and only if it does not vanish to order > n/2 at any point. O

Alternatively, we can use the Hilbert-Mumford criterion in terms of the
weight on the limiting line.

PrROOF. 2. Up to rescaling, under the action (3.11), \.f — fo =
aj:cj y"~J, where j is smallest such that a; # 0.

The weight of (3.11) on C.fy is k(j — (n—j)) = k(2§ —n). So f is stable
if and only if k(2j —n) <0 <= j <n/2 < ord,—o(f) < n/2 for all
1-PS (and so all points x = 0) as before. Semistability is similar. O
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Geometrically what is happening is that the 1-PS moves almost all points
to the “attractive” fixed point at = = 0 (weight —k), and this is the generic,
stable, situation. Only those points stuck at “repulsive” fixed point y = 0
contribute positively (+k) to the weight. So the total weight is negative
unless more than half of the points are at the repulsive fixed point.

More generally if we consider hypersurfaces D C P modulo the action of
SL(n+1,C), then the existence of the discriminant of the defining equation
(which is automatically an invariant polynomial) means that

(3.12) D smooth = D semistable,

since its discriminant does not vanish.

Another topological characterisation of stability. Instead of work-
ing in X, we can give a topological characterisation of stability (not semi-
stability) downstairs in X which, in the language of the first section, says
that we have removed enough orbits to get a Hausdorff quotient.

Namely, polystability of x is equivalent to the orbit of x being closed in
the locus of semistable points.

For stability, one direction is clear; by the original definition of stability
of z, the closed locus where the invariant sections @, H°(L*)¢ take the
value that they take on G.x is precisely G.x.

For the converse we note that given any 1-PS orbit of a stable point
x, its limit point zq is unstable, by the Hilbert-Mumford criterion applied
to the inverse 1-PS (under which zg is fixed and O, (—1) is acted on with
positive weight). Thus once xg is removed, i.e. in the locus of semistable
points, the 1-PS orbit of x is closed (at the A — 0 end; then one can consider
the inverse 1-PS). Then one has to show that this enough to show that the
whole of G.x is closed in X*%.

The polystable case follows by showing that for any semistable point z,

is a single orbit, which is therefore closed. This is the unique polystable rep-
resentative of the semistable equivalence class of orbits which are identified
together in the GIT quotient. This can be proved using the Kempf-Ness
theorem in a later Section.
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Another form of the Hilbert-Mumford criterion. The Hilbert-
Mumford criterion can be recast in terms of Z only (with no mention of x¢)
in a form that can be useful in calculations.

In our usual set-up of G acting on X C P" linearised over Ox(—1), any
1-PS therefore gives a 1-PS of SL(n + 1,C) (in fact GL(n + 1,C), but it is
an easy exercise to see that if it does not lie in SL(n + 1,C) then all points
are unstable).

Diagonalising we can write the action as A +— diag (\°,... A7), in
which basis & = (zg,...,%,). Then it is clear that the orbit {\.Z} tends
to oo as A — 0 if and only if there is an ¢ such that

(3.13) z; #0 and p; <O.

This is true for all 1-PSs if and only if 2 is stable. The semi- and poly-
stable cases are left as an exercise for the reader.

So the vector space C"™t = W+ @ W% @ W~ can be split into a sum
of positive and negative weight spaces (with the sum of all weights, with
multiplicities, zero) for the C* < SL(n + 1,C). The condition that Z be
stable with respect to this 1-PS and its inverse is then that its components
in both of W+ and W~ be nonzero; i.e., that it have components of both
positive and negative weight. Hence generic points are stable if the group
acts effectively through SL(n + 1,C).

4. Symplectic reduction
In this section we use the compact subgroup K < G to enlarge (3.1) to

K < G N X

(4.1) ! l N
SUn+1) < SL(n+1,C) ~ P

So K acts on PV, preserving the complex structure .J (as SL(n+1,C) does)
but also the Fubini-Study metric g. Thus K preserves the symplectic form
w=g(-,J ) and acts through symplectomorphisms in Aut(X,w).

Hamiltonian automorphisms. The Lie algebra of the symplectomor-
phism group consists of vector fields Y on X which preserve the symplectic
form, i.e.

Lyw=d(Y.w)=0.

Since contraction with w is an isomorphism TX — T*X, the Lie algebra
is isomorphic to the space of closed 1-forms Z1(X).

The subspace of ezact 1-forms dC°°(X,R) (which is all of them for sim-
ply connected spaces like PV) generate hamiltonian automorphisms — those
which can be connected to the identity through a path of automorphisms
whose flux homomorphism is zero (i.e., integration of w over the cylinder
traced out in this path by any loop in X is zero).
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Since d has kernel the constants, the Lie algebra of the hamiltonian
automorphisms is C*°(X,R)/R; the function h generating the vector field

X3 such that Xjpow = dh.

That is, using the metric, X}, is the symplectic gradient JVh of the hamil-
tonian h.

The Lie bracket of hamiltonian vector fields works out to be the Poisson
bracket {f, g} on functions, given by pairing df and dg using the (inverse
of) the symplectic form and dividing out by constants. (Equivalently, this
is the class of Xf(g) = —X,(f) in C*(X,R)/R.)

This bracket clearly lifts to C*°(X,R), and can be checked to satisfy the
Jacobi identity there too. The constants are central — they Poisson commute
with all of C*(X,R) — so we get a central extension of the Lie algebra of
hamiltonian automorphisms:

(4.2) 0 — R — C®(X,R) — C°(X,R)/R — 0.

One might ask what C°°(X,R) is the Lie algebra of, or what it acts
on infinitesimally. Since R is the Lie algebra of isometries of the line C,
one might consider isometries of a line bundle L — X covering hamiltonian
automorphisms on X .

This indeed can be made to work if w is integral, i.e. its cohomology
class lies in H?(X,Z)/torsion < H?(X,R) (as in our projective case, for
instance). Then 27miw is the curvature of a hermitian line bundle L with
unitary connection, and we let }/Iz;ur/n(X ,w) be the isometries of L preserving
its connection; these then cover hamiltonian automorphisms on X. Infini-
tesimally h € C*°(X,R) acts through vector fields on L given by

(4.3) X, + ih.

Here X, is the horizontal lift of the hamiltonian vector field X n, and ¢h is
the multiplication operator taking element of the line L to a perpendicular
element in its tangent space (using the natural isomorphism between a line L
and its tangent space). This action defines a homomorphism of Lie algebras
(the Poisson bracket on C°°(X,R) maps to the Lie bracket on vector fields
on the total space of L), and the constants R act as the Lie algebra of
global constant rotations {e?} = U(1) of the fibres of L, yielding the exact
sequence (4.2).

(This is often called prequantisation, giving a representation of the hamil-
tonian diffeomorphisms on the projectivisation of the Hilbert space of L*-
sections of L. This is considered too big a Hilbert space to be the set of
quantum mechanical wave functions, and geometric quantisation attempts
to replace it with holomorphic sections; about which more later.)

Moment maps and linearisations. Since K acts through symplec-
tomorphisms of P, which is simply connected (so that Z'(X) = dC*(X)),
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we get a Lie algebra homomorphism
t = Lie(K) — C*(P",R)/R — C*(X,R)/R, v = [my),

where any v € € generates a hamiltonian vector field X, on X such that
X, Jw = dm,,, for some function m, unique up to a constant.
We would like to choose these constants consistently, i.e., choose a lift

COO(X, R) My
(4.4) / l / I
¢ > C%(X,R)/R o [my] = X, = dm,

which is a homomorphism of Lie algebras. One such always exists, since (4.2)
is split by the Poisson subalgebra C*°(X,R)y = C*°(X,R)/R of functions
of integral zero; i.e., we can choose each m, to have integral zero. But
we want to consider arbitrary lifts since from (4.3) we know that each is
equivalent to a lift of ¥ to isometries of L preserving the connection and
covering its hamiltonian action downstairs. This is the infinitesimal version
of a linearisation, assigning to v € £ the vector field

(4.5) f(v + 1my,

on the total space of L. It may or may not integrate up to an action of K
on (X, L) covering that on X.

Said differently, we want to put together all of the hamiltonians m,, to
give a moment map

(4.6) m: X — ¢

such that (m(x),v) = my(x) for all v € £&. m is just a collection of dim K
hamiltonians m,,, written invariantly. Then our lifting condition (4.4) be-
comes the condition that the undetermined constants in m, be chosen such
that (4.6) is K-equivariant (using the coadjoint action on the right hand
side). Thus a moment map is unique up to the addition of a central element
of ¢*.

Yet another way of saying the same thing is that the derivative of the K-
action maps € to T'X, so by contraction with the symplectic form Jw: T X =
T*X is a section of £* ® T*X. It is closed and K-invariant, so we ask for it
to be invariantly exact, i.e. d of a K-invariant section p of C*°(X,¢*).

(The name comes from the case of a cotangent bundle X = T*M with
its canonical symplectic form and action induced from an action of K on M.
Then the moment map really gives the momentum of the image X,, € T'M
of v € & my(p,q) = (p, Xy) at a point ¢ € M and p € Ty M. Hence for
translations we get the usual linear momentum, and for rotations angular
momentum.)

In the projective case that we have been considering, a natural m exists
because we picked a linearisation. SU(n + 1) ~ (P, O(1)) has a canonical
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moment map given by
(-,2)®T
% € su(n +1)* = su(n + 1),

z
where ( )o denotes the trace-free part of an endomorphism. Restricting to

X and projecting to € by the adjoint of the map ¢ — su(n + 1) gives a
moment map for the K-action on X.

(4.7) T +—

The Kempf-Ness theorem. The key to the link between symplectic
geometry and GIT is the following calculation. Suppose (X, L = Ox (1)) is
a polarised variety with a hermitian metric on L inducing a connection with
curvature 2miw. Lift 2 to any & € O,(—1) = L;! and consider the norm
functional ||Z||. (If X is embedded in P(H°(L)*) then one way to get a
metric on O(—1) is to induce it from one on HY(L)* upstairs; then ||Z|| is
just the usual norm in the vector space that X lives in.) As we move down a
1-PS orbit {\.Z: A € C*} in the direction of v € € we see how log ||Z|| varies;
for A € U(1) < C* (which preserves the metric) not at all, but for A in the
complexified, radial direction A € (0,00) < C* we get

d -
(4.8) My = oy /\leogHA:UH,\e(o,oo)-
That is, X, (log||AZ||) = 0, but
(4.9) (JXy)(log [[AZ|]) = Xiv(log [[AZ]]) = me.

(This is just an unravelling of (4.5). For instance if = is a fixed point, then
C* acts on the line () with a weight p, and

(4.10) my = p,
which is therefore an integer.)
Moreover, log ||AZ|| is conver on C*/U(1) = (0, 00), as its second deriv-
ative is positive:
Xipmy = dmy(JXy) = w(Xy, JXy) = HXvH2'
It follows that the orbit tends to infinity at both ends, i.e., is closed, if and
only if it contains a critical point (i.e. absolute minimum) of log ||AZ]|.

my, =0

C*.% Ox(=1)
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So a 1-PS orbit is polystable if and only if it contains a zero of the
corresponding hamiltonian. That zero is then unique, up to the action of
U(1). This is the Kempf-Ness theorem for C*-actions.

Next we would like to consider a full G orbit, and find a zero of all the
hamiltonians simultaneously, i.e. a zero of m. Pick v; to form a basis for the
Lie algebra of a maximal torus in K such that each generates a 1-PS. If an
orbit is polystable then each 1-PS orbit is closed, so by the above there is a
point with m,, = 0 in the first 1-PS. Now we move down the second 1-PS
orbit of this point to a point with m,, =0 and m,, = 0 since the two 1-PSs
commute (i.e., {my,,my,} = 0). Inductively we find a point with m, = 0
for all v in the Lie algebra of the torus, and so for all v conjugate to such
(i.e. all v) by equivariance of the moment map. Thus the orbit contains a
point with m = 0. Moreover, by the convexity of log||Z|| on G/K, the zero
is in fact unique up to the action of K.

(Alternatively, we could have proved this without using the Hilbert-
Mumford criterion by noting that log ||g.Z|| is convex on the whole of G/K,
instead of each C*/U(1), so an orbit is closed if and only if this functional
has a minimum, at which point m = 0 by (4.8).)

THEOREM 4.11. [Kempf-Ness| A G-orbit contains a zero of the moment
map if and only if it is polystable. It is unique up to the action of K.

A G-orbit is semistable if and only if its closure contains a zero of the
moment map; this zero is in the unique polystable orbit in the closure of the
original orbit.

In particular, as sets,

X o m~1(0)
G K
X//K := m~1(0)/K is called the symplectic reduction of X, invented
by Marsden-Weinstein and Meyer.

= X//K.

unstable orbit G-orbit
> [/ m- 1 (0)
/

3 K-orbit

Y

So on the locus of stable points m~!(0) provides a (K-equivariant) slice
to the i€ < g = €+ it part of orbit; since this is topologically trivial (G
retracts onto K') it makes topological sense that one could take a slice instead
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of a quotient. This leaves only the K-action to divide by to get the GIT
quotient.

The Kempf-Ness theorem is a nonlinear generalisation of the isomor-
phism V/W = W+ for vector spaces W < V. It works due to convex-
ity, giving a unique distinguished K-orbit of points of least norm in each
polystable G-orbit upstairs in X.

When 0 is a regular value of m (which implies that m~1(0) is smooth and
the £-action on it is injective, so the K-action has finite stabilisers and the
quotient is a smooth orbifold at worst) then the restriction of w to m~=1(0)
is degenerate precisely along the K-orbits, and so descends to a symplectic
form on the quotient. This is in fact compatible with the complex (algebraic)
structure on the GIT quotient, giving a Kéhler form representing the first
Chern class of the polarisation that X/G inherits from its Proj construction.

Example. U(1) < C* acts on C"*! with moment map m = |z|? — a for
any constant a € R. For a > 0 this gives

ch{o} _ S ={z: |z? =a}
c U(1)

St = m=1(0) is a slice to the (0, 00)-action, leaving the U(1)-action to
divide by. The resulting Kahler form on P" varies with the level a.

For a = 0 we get just a single point, while for a < 0 we get the empty
set — as we showed already using GIT for different polarisations (3.4), where
p played the role of a (but took integer values so that the lifted action of ¢
descended to an action of K = U(1) on the trivial line bundle over C"*1).

=~ P

Example: n points in P! again. (Kirwan [Ki]) The moment map
SL(2,C) D SU((2) ~ P! ™ su(2)*

is just the inclusion of the unit sphere S? C R3.
Adding gives, for n points, the moment map m = Y | m;:

(4.12) S"P! — R,

the sum of the n points in R?, i.e., (n times) their centre of mass.

So m~1(0) is the set of balanced configurations of points with centre
of mass 0 € R3.

Since by Kempf-Ness polystability is equivalent to the existence of an
SL(2,C) transformation of P! that balances the points, Theorem 3.10 yields

THEOREM 4.13. A configuration of points with multiplicities in the unit
sphere S C R3 can be moved by an element of SL(2,C) to have centre of
mass the origin if and only if either each multiplicity is strictly less than half
the total, or there are only 2 points and both have the same multiplicity.

The first case is the stable case, the second the polystable case with a
C*-stabiliser.



240 R.P. THOMAS

Example: Grassmannians from GIT and symplectic reduction.
We have seen how to get P by GIT and symplectic reduction; we can do
something similar for Grassmannians.

Consider SL(r,C) acting on Hom(C", C™), r < n, linearising the induced
action on the projectivisation P of this vector space (we choose the left action
of multiplying on the right by ¢~ !).

PROPOSITION 4.14. [A] € P is stable if A € Hom(C",C") has full rank
r, and unstable otherwise.

PrROOF. If rank(A4) < r then we can pick a splitting C" = (v) @ W with
A(v) = 0. Then the 1-PS that acts as A"~ on v and A™! on W fixes [A] € P
and acts on the line C.A with weight +1. Therefore [A] is unstable by the
Hilbert-Mumford criterion.

Conversely, if A has full rank then, up to the action of SL(r,C) some
multiple of it is the inclusion of the first factor of some splitting C™ =
C" @ C™". Diagonalising a given 1-PS, we may assume further that in this
basis we have the action

diag(API’“"APr% PlEPZE---ZPm szzo
%

Ignoring the trivial 1-PS, there is some p such that py = p, > pp41. Then
the limit [Ao] of [A] under this 1-PS is the inclusion of C? as the first p basis
vectors of C™, with the 1-PS acting with weight —p; < 0 on C.Ag. Therefore
A is stable. O

So the points of the GIT quotient are the injections of C" into C"™ modulo
the automorphisms of C”; i.e., they are the images of the injections — the
Grassmannian Gr(r,n) of r dimensional subspaces of C".

For symplectic reduction, it is easier to consider the affine case of U(r) <
GL(r,C) acting on Hom(C",C"), with all vector spaces endowed with their
standard metrics. (Above, by working with P, we had already divided out
by the centre of GL(r,C) but didn’t describe it this way because, as we
have seen, it is easier to deal with the linearisation issues in the symplectic
picture, where it just amounts to changing the moment map by a central
scalar.) The moment map is

(4.15) A i(A*A—id),

with zeros the orthogonal linear maps that embed C" isometrically. Thus
Kempf-Ness recovers the obvious fact that a linear map is congruent by
GL(r,C) to an isometric embedding if and only if it is injective. Dividing
these isometric embeddings by U(r) gives Gr(r,n) again.

More affine examples. Our simple example (3.2) has moment map

2 2

(" = 1yI%) /2,
whose zero set intersects each good orbit zy = a # 0 in a unique U (1) orbit
Va(e? e, Tt intersects the origin (another U(1) orbit, corresponding
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to @ = 0) and misses the other two orbits (the punctured z- and y-axes).
Therefore the symplectic quotient is a copy of C parameterised by «, repre-
senting the closed, polystable orbits, as anticipated.

If we chose the moment map (|z|? — |y|*> +a)/2, a > 0, then we miss the
x-axis and the origin, and gain a unique U(1) orbit on the y-axis. So the
symplectic quotient is isomorphic, but with a different interpretation. This
corresponds in GIT to a different linearisation, in which the z-axis and the
origin are unstable and the punctured y-axis is stable. (So this nonclosed
orbit becomes closed upstairs in the new linearisation, and is closed in the
locus of semistable points.)

Another standard example is to consider n x n complex matrices acted
on by the adjoint action of SL(n,C). The invariant polynomials are the
symmetric functions in the eigenvalues of the matrix (by the denseness of
the set of diagonalisable matrices) — i.e. functions in the coefficients of the
characteristic polynomial. This reflects the fact that the matrices with non-
diagonal Jordan canonical form have the corresponding diagonal matrices
in the closure of their orbits — all matrices are semistable for this linearisa-
tion (the constant 1 does not vanish on any orbit!), with the diagonalisable
matrices being polystable (their stabiliser is at least (C*)", after all).

The moment map (for the standard symplectic structure inherited from
C"’) for the induced action of SU(n) is A — 1A, A*] with zeros the normal
matrices. Since normal matrices are those that can be orthogonally diag-
onalised, the symplectic quotient {normal matrices}/ SU(n) is the set of
diagonal matrices up to the action of the symmetric group, and so equal to
the GIT quotient. (So in this case Kempf-Ness is the obvious fact that a
matrix can be diagonalised if and only if it is similar to a matrix that can
be orthogonally diagonalised.)

Back to the Hilbert-Mumford criterion. For simplicity of exposi-
tion we used the Hilbert-Mumford criterion to prove the Kempf-Ness the-
orem, to reduce everything to single hamiltonians. But as we noted there,
we could have avoided this and proved it directly by noting that log ||g.Z|| is
convex on the whole of G/K, so an orbit is closed if and only if this log-norm
functional is proper, in which case it has a minimum, at which point m =0
by (4.8).

We can then use this to go back and give a sketch proof (more of a
discussion, really) of the Hilbert-Mumford criterion. That is we want to
show that properness is equivalent to properness on 1-PSs. As usual one
direction is trivial; for the other one can try to work on G/K as in, for
instance, [DK]. The idea is that while 1-PSs cover very little of G, since K
preserves the norm functional it descends to G/ K, in which 1-PSs are dense
(see the torus case below where the 1-PSs correspond to directions in g/ = ¢
of rational slope). Although it is not a priori clear that properness down
each such rational direction is enough to give properness on all of G/K, it
is clear by openness that if a G-orbit is strictly unstable then there will be
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a rational direction (1-PS) that detects it. So we see that (semi)stability of
each 1-PS implies semistability for G.

So this leaves the hard part — that strict stability for each 1-PS implies
strict stability for G. That is, we want to show that if a G-orbit is strictly
semistable, then there is a 1-PS with zero weight; i.e. the non-properness is
detected by a rational direction.

We first show this for G' a torus T¢ = (C*)". A T‘-action on a vector
space splits it into a sum of weight spaces W,,,, m € t*, on which exp(v) €
T, v € t°, acts as the character exp(i(m,v)).

Given any vector Z, we let Az C t* denote the convex hull of only
those weights m in whose weight spaces & has nonzero components (i.e. the
projection of & to W, is nonzero). Any 1-PS corresponds to an integral
vector v € t and so a hyperplane H, < t*. The points of A; on the negative
side of this hyperplane correspond to negative weights in whose weight space
Z has a nonzero component, so their existence implies that \.Zz — oo as
A — 0 under this 1-PS, as in (3.13). Similarly the existence of points in Az
on the positive side of the hyperplane prove that \.Z — oo as A — oc.

Thus C*.z is closed, and T is stable for this 1-PS, if and only if its
hyperplane H, < t* cuts Az through its interior. Applying this to all integral
points v € t (including those whose hyperplanes H, are parallel to the faces
of Az) gives the first part of the following result, which was explained to me
by Gébor Székelyhidi [Sz2].

THEOREM 4.16. The point T is stable for every 1-PS if and only if 0 € t*
s in the interior of Az, if and only if T is stable for TC.

® = origin € t* H,
x = weight m € t*

Semistable

Stable

Unstable

For the second result we cover the whole of T¢/T (where T' < T° is the
maximal compact subgroup T' = (S!)") by going in nonrational directions
v € ttoo. And if the origin is in the interior, any such v has negative pairing
with at least one of the weights, so the associated orbit (of an analytic C-
subgroup of 7€, if v is irrational) will go to infinity as we move along v. In
fact the log-norm function will be proper with a growth that can be bounded
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below by the minimal |[(m,v)|. Thus the functional will be proper on all of
T¢/T, and we can deduce the Hilbert-Mumford criterion.

Perhaps an easier proof, using the full Kempf-Ness theorem, comes from
observing that the interior of Az is the moment polytope of the orbit — the
image of T°Z under the moment map — so the moment map has a zero in
this orbit if and only if the origin is in the interior.

But the first proof illustrates the key point, which is that the faces of
Aj; are rational — parallel to hyperplanes H,. So if there is an irrational
v € t that destabilises (has weight > 0) then since it cannot be contained
in a face there is in fact a rational v, giving rise to a 1-PS, with the same
property. So we can avoid the situation of a sequence of stable 1-PSs of
negative weight converging to an irrational “semistable” direction of weight
zero lying in a face, making the T%-orbit non-proper but without a 1-PS or
rational direction to detect it.

For an arbitrary group G, we can try to reduce to the torus case by
dividing G by K on both the left and right instead of considering just G/K.
That is, by spectral theory we can write G = KT°K for any maximal torus
T°¢ < G; then since the norm functional is invariant under the left hand
action of K we are left with proving its properness on a compact family of
T“-actions — the conjugates of the original action by all £k € K. The result is
then basically routine, the point being that in a compact family of polytopes
each containing the origin in its interior, the distance of the origin to the
boundary is bounded below by some ¢ > 0.

As an application of Theorem 4.16, we can strengthen (3.12) to recover
standard results [GIT, Mu| about which hypersurfaces of degree d in P"
are stable. Namely, forming the Newton polygon of degree d homogeneous
polynomials in (n + 1) variables, a hypersurface (f = 0) defines a subset
of integral points of this polytope — those that appear in f with nonzero
coefficient. Then (f = 0) is semistable (or stable) if and only if these points
do not lie to one side of (or strictly to one side of) any hyperplane through
the centre of the Newton polytope.

5. Moduli of polarised algebraic varieties (X, L)

The GIT problem. This section is unnecessarily technical, and the sque-
amish reader can skip it once it is clear why forming moduli of algebraic
varieties should be a GIT problem.

Suppose we want to form a moduli space of polarised algebraic varieties
[Mu]. The polarisation allows us to embed X into a projective space

X —P(HY(X,L")*), r>0.

In fact for X smooth, a theorem of Matsusaka tells us that » can be chosen
uniformly amongst all (X, L) with the same Hilbert polynomial P(r) =
X (X, L"). Moreover we can also assume that all higher cohomology groups
H=Y(X, L") vanish so that H°(X, L") has dimension P(r), and that any two
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(X;, L;) are isomorphic if and only if their embeddings X; — PN, N 4+ 1 =
P(r), differ by a projective linear map.
Picking an isomorphism

(5.1) HO(X, L")~ CcN+,

(X, L) defines a point in the Hilbert scheme of subvarieties (in fact sub-
schemes) of PV, This moduli space is easy to construct; for instance as a
subscheme of a Grassmannian of subspaces of S¥(CN+1)*; X < PV corre-
sponding to the subspace HO(PY | .7x(k)) < HY(PN,O(k)) = SF(CN+t1)* of
degree k polynomials vanishing on X. The natural Pliicker line bundle then
pulls back to give an anti-ample line bundle on Hilb whose fibre at a point
(X,L) is

(5.2) AP HO(X, LR @ Amax sk O (X L.

Then we must divide out the choice of isomorphism (5.1), i.e., take the GIT
quotient of Hilb by SL(N + 1,C).

So by abstract GIT, any choice of SL(N +1, C)-equivariant (anti-)ample
line bundle on Hilb gives rise to a notion of stability for (X, L). There are
many such; we describe some of those whose associated weights can all be
characterised in terms of weights on the line (5.2).

The Hilbert-Mumford criterion requires us to consider C* < SL(N +

1,C) orbits of X € PN. This gives rise to a C*-equivariant flat family, or
test configuration, (2,£) — C.

v (%o, Lo) (21, L) = (X, L)
V£ 0

C

The weight w, j, of the C*-action on (5.2) is
(5.3) Wy g = A1 (ME +an(r)E™ + ...
where

ai(r) = apr”™ + aivn_lr"_l +....

Then doing GIT on Hilb with the line (5.2), Mumford’s Chow line, or Tian’s
CM line, gives rise to Hilbert-Mumford criteria that C* < SL(N + 1,C)
destabilises (X, L) if w,; > 0 in the following senses:
HM (r )-unstable: wy., > 0 for all k> 0.
Asymptotically HM-unstable: for all v >0, w,; > 0 for all k> 0.
Chow(r )-unstable: leading k™*!-coefficient a,1(r) > 0.
Asymptotically Chow unstable: an+1(r) >0 for r > 0.
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e K-unstable: leading coefficient any1, > 0.

To make “if” into “iff” requires a few technicalities on the size of r; see
[RT1]. In particular K-stability, which is Donaldson’s refinement of Tian’s
original notion, requires one to pick a test configuration first, and then
choose r > 0. The coefficient a,,11, is Donaldson’s version of the Futaki
invariant of the C*-action on (%2, L); see (5.20).

There are also notions semistability and polystability in all of these
cases; both defined by nonstrict inequalities, the latter requiring also that
whenever the inequality is an equality, the test configuration should arise
from an automorphism of (X, L), i.e., it should be isomorphic as a scheme
to the product X x C, but with a nontrivial C*-action.

In particular we have the following implications (see [RT1], where our
a; are denoted —e;):

Asymptotically Chow stable = Asymptotically Hilbert stable = As-
ymptotically Hilbert semistable = Asymptotically Chow semistable = K-
semistable.

The increasing number of test configurations that have to be tested
as r — oo currently prevents one from proving that K-stability implies
asymptotic Chow stability.

The moment map problem. Fix a metric on CN*! and so Jgpg on
P and an induced hermitian metric on @(—1). This induces the symplectic
form wpg on a smooth X C PV. This induces a natural symplectic, in fact
Kaéhler, structure on (any smooth subset of smooth points of) Hilb:

n
wrs

(5.4) Q(v1,v2) i=/ wrs(v1,v2) =52
X iz

where the v; are the normal components of holomorphic vector fields along
X c PV, This is also (a multiple of) the first Chern class of a natural
line bundle on Hilb coming from the “Deligne pairing” of Ox (1) with itself
(n + 1)-times [Zh].

Let m: PN < su(N + 1)* denote the usual moment map (4.7).

Then [Do3], just as for a finite number of points in P! (4.12), the moment
map for SU(N + 1) ~ (Hilb, Q) takes X C PV to a multiple of its centre of
mass in su(N + 1)*:

(5.5) p(x) = [ m

w

n
F|S € su(N +1)*.
n!
So zeros of moment map correspond to balanced varieties X C PV.
The fact that Hilb is not smooth means there are complications in ap-
plying the Kempf-Ness theorem directly, but nonetheless the following is an
essentially finite dimensional result. It was first proved by Zhang [Zh], and
then rediscovered and reproved in different forms by Luo, Paul, Wang and
Phong-Sturm.
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THEOREM 5.6. X C PV can be balanced by an element of SL(N +
1,C) <= X is Chow polystable.

The balanced condition can be re-expressed as follows. The metric on
Ox(1) = L" is the quotient metric induced from that on H°(Ox (1)) =
HO(X, L") by the surjection of vector bundles

H°(Ox(1)) — Ox(1) = 0
on X. So picking an orthonormal basis o; € H°(X, L"), we have the identity

(5.7) Z loi(x)]? = 1

on X. (More generally, given an orthonormal basis e; of an inner product
space V and a surjection V' 75 W, we have the identity >_, |7 (e;)|*> = dim W
in the induced metric on W. Given any basis o; of H°(L") the above expres-
sion (5.7) is the pointwise ratio of the given metric on L" and the Fubini-
Study metric on L" induced by embedding in H°(L")* and pulling back the
metric gotten by declaring the o; to be orthonormal. This is constant if and
only if the metric on (X, L") really is such a Fubini-Study metric.)

But then in these coordinates, the moment map (5.5) constructed using
(4.7), takes X to the matrix with (ij)th entry

(5.8) i (/X Ui(a:)aj(x)*wf!s - N#H@-J-) € su(N +1).

Thus the balanced condition is equivalent to the o; being orthonormal (up
to a constant scale) in the induced L2-metric on H°(Ox(1)). That is, up
to scale, the original metric on CN*! = H9(Ox (1)) = HY(X, L") equals the
L?-metric given by integration against gp¢|y. By (5.7) this is equivalent to

(5.9) Z |si(x)|* = const,

2

where the s; are now an orthonormal basis with respect to the L*-metric on
HO(X, L") (rather than the original metric). A final way of saying this is that
starting with a metric on CV*! we can induce another by first inducing the
Fubini-Study metric on X C PV and the hermitian metric on Ox(—1), and
then using this to give, by integration, an L?-metric on CN*! = H%(Ox(1)).
Balanced metrics are then the fixed points of this operator.

Asymptotics as r — oo. Fix a metric on (X, L) (e.g., by picking
a metric on HY(L) and then inducing the Fubini-Study metric on X C
P(H°(L*)) and L = O(1)|x). This then induces one on L" for all r, and so
L2-metrics on H(X, L") for all r.

Picking an L2-orthonormal basis s; € H°(X, L"), we can then define, for
each r, the Bergman kernel

(5.10) B(x1,m9) = Y si(11) @ si(w2)"

i
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on X x X. This is the integral kernel for the L?-orthogonal projection of
C™> sections of L" onto holomorphic sections. Restricting to the diagonal
gives

(5.11) By(w) =) lsi(@)P,

so the balanced condition (5.9) is equivalent to B, (5.11) being constant on
X.

This expresses the finite dimensional balanced condition (a condition for
a metric on HY(X,L")) as a pointwise condition for a metric on (X, L) (a
fact that will be explained later via Donaldson’s double quotient construc-
tion) and we can look at the asymptotics of the “density of states” function
B, (x) as r — oo and expect it to only depend on local differential-geometric
data. This is because, as is well known to quantum physicists and is made
precise in [Ti3], one can form a basis of sections of H(L") whose norms are
approximately peaked Gaussians concentrated in balls of radius const//r
and so volume const/r™. (These are the coherent states of geometric quan-
tisation; under the metric isomorphism HY(L") = H°(L™)* they correspond
to evaluating sections at points — the centres of the peaks.) The relationship
between the volume of small balls about x € X and the scalar curvature s(z)
at x means that as r — oo the number of peaked sections that can be packed
into a fixed ball of volume € about z is ~ e(r" + %s(x)r" ' 4 ...). Globally
this gives rise to

n n w" n—1 n—2\ __ L n KX'Lnil n—1 n—2
VOI(X)'I” + 5 AS HT‘ + O(T ) = HT‘ — m’f‘ + O(T‘ )
sections — approximating the Riemann-Roch formula.

In fact, as r — oo (= N — o0) B,(x) has an asymptotic expansion
(Tian, Zelditch, Catlin, W.-D. Ruan, Z. Lu)

(5.12) By(x) ~ 1" + %s(l‘)r”_l +O0Gm2),

More precisely, ||Br(z) — r" + 3=s(2)r" || ca < Cr"~2 for a > 0, where the
constant C' depends on both a and the metric — it can only be taken to be
uniform for metrics in a compact subset of the space of metrics.

Roughly speaking then, balanced metrics should tend towards cscK met-
rics with [w] = [e1(L)]. What we have seen so far should motivate the
following results.

THEOREM 5.13. If (X, L) admits a cscK metric in [c1(L)] and has finite
automorphism group then (X, L") can be balanced in P(H°(X, L")*) for r >
0. Thus it is Chow stable, and so K-semistable.

The metrics given by r—' times by the pull backs of the balanced metrics
converge to the cscK metric.

Conversely if (X,L") C PN s balanced for r > 0 and the resulting
Wpg, are convergent, then the limit metric is cscK.
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Finally, cscK metrics compatible with o fixed compler structure are
unique up to holomorphic automorphisms of X.

This result is due to Donaldson [Do3|; we will discuss the proof of
the balanced result in a later section. Tian had previously proved K-
semistability for KE metrics [Ti4], and a related convergence result for se-
quences of Fubini-Study metrics [Ti3], following a suggestion of Yau [Y2].
Using [Do3] Mabuchi proved that cscK manifolds with automorphisms are
Chow polystable if the automorphisms satisfy a certain stability condition
[Mb2]. Donaldson [Do6] then showed that cscK = K-semistable without
any condition on automorphisms.

Uniqueness was originally proved by Bando-Mabuchi [BM] for KE met-
rics, by Chen [Ch] for cscK metrics when ¢; < 0, then by Donaldson in
the general cscK case with finite automorphisms. Again the finite automor-
phisms condition was relaxed by Mabuchi, and, in the more general setting
of extremal metrics and Kéhler non-projective metrics, Chen-Tian [CT].

When our polarisation L is a power of the canonical bundle Ky, then
cscK metrics are in fact KE: those with Ricci form (the induced curvature
of K)_(l) a constant multiple of the Kéhler form. It is clear that KE metrics
are cscK; the converse follows from the calculation

ARic = —i00A Ric = —id0s.

Here A is the adjoint of wA, and we use the fact that Ric is a closed real
(1,1)-form, so it is O- and O-closed. s = A Ric is the scalar curvature. So
for s a constant, Ric is harmonic, as is w. But, after scaling, they represent
the same cohomology class, and so are identically equal.

KE metrics were first proved to exist on compact Kéahler manifolds with
positive canonical bundle by Aubin [Au] and Yau [Y1], and with trivial
canonical bundle by Yau [Y1]. It was Calabi [Ca] who initiated the study
of cscK and eztremal metrics: those which extremise the Calabi functional
S X 52w™ over cohomologous Kihler forms; they are the metrics with Vs a
holomorphic vector field. Apart from Aubin and Yau’s (nonconstructive) re-
sults, there are few compact examples of cscK or KE metrics. Siu [S], Tian
and Nadel [Na] found examples with symmetry, Tian showed Fano surfaces
with reductive automorphism groups admit KE metrics [Ti2], Burns-de Bar-
tolomeis [BdB] and Hong [Ho] gave constructions of cscK metrics on certain
projective bundles over cscK bases, and there are constructions for blow ups
of these [AP, LB, RS| and smooth fibrations of cscK manifolds [Fi]. Bour-
guignon [Bo] and Biquard [Bi] have given excellent surveys of KE and cscK
metrics respectively.

An example — blow ups of cscK manifolds. The results of [AP]
give a beautiful illustration of the theory described here and the link between
cscK and balanced metrics. Arezzo and Pacard consider a cscK manifold
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(X,w) and its blow up in some points p;,

X — X,

It is proved that there is a cscK metric in the class 7*[w] — €, m;[E;j]
for ,m; > 0 and e sufficiently small, if the m;p; satisfy two conditions
with respect to Aut(X,w). Arezzo and Michael Singer observed that one of
these conditions could be rewritten as a balanced condition. Namely there
is a moment map X £% ham(X,.J,w)* for the action of the hamiltonian
isometry group of X, and the conditions are that

(5.14) Zmiua(pi) =0, and the uq(pi) generate ham(X, J, w)*.

(2

We can interpret this in the projective case, where ham(X, J,w) becomes
aut(X, L), as follows. Taking e very small is equivalent to replacing the
polarisation by a very large power r» > 0, whereupon the cscK condition
approximates the balanced condition (5.12) (for what follows we only need
that the approximation is valid for the linearisation of the equations as
r — o0). Then morally, in replacing (X, L") by (X,7*L"(— Y m;E;)) we
are perturbing a balanced X c PV = P(H°(L")*) only a little bit and so
end up with a manifold that is nearly balanced. Slightly more precisely, set
I =HYL" ® H;m;p;) and split the exact sequence

0 — HY(L" ® I mip;) — HO(L)

by picking peaked approximately Gaussian sections of L™ on X at the p;, as
in our discussion of (5.12). Away from the p;, therefore, points in the image
of X — P(H°(L")*) almost annihilate this @, Cp", i.e. they lie very close
to P(I*), as in the following diagram.

P(HO(L")*)

P(I*) = ]P)(HO(LT ® ‘]Uimipi)*)

The dashed arrows denote the rational map P(HO(L")*)- - >P(I*)

blowing up P(€D; C;,,); on restriction to X this blows up the p; and embeds
the result in P(I*).
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So away from the p;, the moment map PV — su(N + 1)* of (4.7),
projected to su(l)*, is very close (as 7 — o00) to the rational projection to
P(1*) followed by the moment map P(I*) — su(l)*.

Since the exceptional divisors are small, we can integrate over X (or its
blow up in the p;) to find that the centre of mass in su(l)* is close to the
projection of that in su(N +1)*. But this is zero, so X is close to balanced,
as claimed.

Now the exact sequence expressing the derivative D of the SU(N + 1)
action on the Hilbert scheme of P(H°(X, L")*) D X,

0 — aut(X, L") — su(N + 1) = T Hilb = T* Hilb

(with the last isomorphism induced by the symplectic form), has dual

(5.15) 0 aut(X, L7)* — su(N + 1)* <% T Hilb,

by the definition of the moment map p = [y mwpg/n! (5.5).

If the automorphism group of (X, L") is finite (so the condition (5.14)
is vacuous) then D is injective and its adjoint du is onto. So we expect
to be able to move a little in the orbit to move back to a balanced metric
with g = 0 to correct the perturbation introduced by the p;. This of course
involves some estimates, which is what [AP] work out for the cscK problem,
to show that for aut = 0 there is always a cscK metric on the blow up.

When the automorphism group is nontrivial this map du is not onto, so
we must ensure that on perturbing as above we end up inside its image to
apply the same argument. That is, by (5.15), the image of the moment map
in aut(X, L")* should be zero. Since the moment map is the centre of mass,
and since we have added masses m; at the exceptional divisors E; lying over
p;, we must ensure that, to first order, the U;m;p; should be balanced in
aut(X, L")*.

This recovers (5.14) as the necessary linearised condition. The second
condition is a nondegeneracy condition that allows one to perturb the metric
on and around the exceptional divisors to move the moment map enough to
solve the equation to higher orders.

As pointed out by Donaldson, Hong’s results [Ho] on when a cscK metric
exists on the projectivisation of a HYM bundle over a cscK base involves a
similar moment map condition for the action of the automorphism group of
the base on the moduli of vector bundles.

These examples illustrate a general principle about moment map prob-
lems: that transverse (regular) points of ;~'(0) have no automorphisms,
whereas for nontransverse points = the cokernel of du is canonically (g*)*,
the dual of the Lie algebra of the stabiliser subgroup of the point z € X.
Thus when one perturbs a solution x of u = 0 with stabiliser subgroup
G® < @G, the obstruction to extending a first order deformation lies in (g*)*,
and is nothing but the derivative of the moment map of the action of G* < G.
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This follows from the exact sequence
T,X % g* — (g°)" =0,
the dual of
0— gx —g— T; X,

with the last map the composition of the g-action on 7, X and contraction
with the symplectic form (cf. (5.15)).

The infinite dimensional setup. Instead of letting the dimension N
of our quotient problem go to infinity, Donaldson [Dol] also gave a purely
infinite dimensional formal symplectic quotient formulation.

The group of Hamiltonian diffeomorphisms acts on (X,w) and so on the
space of complex structures which make (X,w) Kahler:

Ham(X,w) ~ J := {w-compatible complex structures on X }.

Acting by pullback, the infinitesimal action of a hamiltonian h, with hamil-
tonian vector field X}, on a complex structure J is Lx, J. At the Lie algebra
level this can be complexified so that ih acts as

JLx,J = Lix,J = Lx,,J,
by the integrability of J. Thus it acts through the vector field
Xin = JXp.
We note that the action of this vector field on w is
Lyx,w = d(JXp.w) = d(Jdh) = d(—idh + i0h) = 2i00h,

changing w within its cohomology class by the Kahler potential A to another
form compatible with J.

We can contract these vector fields with w to write them as one-forms.
By Hodge theory,

QN(X) =do>®(X) @ HY(X,R) @ d*Q°

The first summand corresponds to the hamiltonian vector fields, the second
to symplectomorphisms modulo those which are hamiltonian, and inside the
third lies d*(C*°(X)w) as those which preserve the compatibility of w with
J (i.e. down which the Lie derivative of w is of type (1,1)). These constitute
the complexified hamiltonian action, by the Kéhler identity

d*(hw) = i(0 — 0)h = Jdh,
whose contraction with (the inverse of) w is JX; = Xjj.
So, assuming H!(X,R) = 0 for simplicity, integrating up this complex-
ified Lie algebra suggests defining the complexification of Ham(X,w) to be

the set of diffeomorphisms of X such that the pullback of w is compatible
with J (i.e., of type (1,1)):

(5.16) {f: X —> X : Jh e C®(X,R) such that f*w =w + 2i00h}.
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While this description depends on J, it does formally complexify Ham (X, w):
we have already seen that it has the right tangent space C*°(X,R)o ® C at
each point, and it is, crucially, contractible onto Ham (X, w) by Moser’s
theorem and the convexity of the space of Kéhler forms.

The complexified orbits. Although (5.16) is not actually a group, its
orbits on J (consisting of pullbacks of complex structures by the above
diffeomorphisms) make perfect sense and complexify the Ham (X,w) or-
bits.

Since any two complex structures J, f*J in such an orbit differ by a
diffeomorphism, we consider them isomorphic. They are both, by construc-
tion, compatible with w, but the Kéahler structures (J,w), (f*J,w) they de-
fine need not be isomorphic as the latter is only isomorphic to (J, (f~!)*w).
Pulling back by the diffecomorphisms f in this way (i.e., fixing J and moving
w instead of the other way round) we get an exact sequence

(5.17) Ham(X,w) — Ham(X,w).J —
{compatible Kihler metrics on (X, J) in the H? class [w]}.

The last arrow is onto because any such &’ is of the form w + 2i90h, and
so diffeomorphic to w (since by the convexity of the space of Kéhler forms
it is connected to w through a family of Kahler forms w + ti00h which
are therefore all diffecomorphic by Moser’s theorem). Thus the space of
Kaéhler metrics on (X, J) is formally of the form G/K. This sequence should
be compared to its (more familiar) bundle analogue in (6.1).

The set-theoretic “quotient” by the complexified group (i.e., the set of
complexified orbits) is therefore the set of isomorphism classes of integrable
complex structures on X (that are compatible with one of the symplectic
forms f*w).

Moment map = scalar curvature. The Kahler structure on X in-
duces one on J by integration. This is preserved by Ham(X,w), and we can
ask for a moment map. Considering C*°(X,w)q (the functions of integral
zero) to lie in the dual of the Lie algebra C*° (X, R) / R by integration against
w™, and setting sy to be the topological constant [y ¢1(X).w" !/ [\ w" =
[ sw™/ [ w™ (the average scalar curvature), Fujiki [Fj] and Donaldson [Do1]
show that

(5.18) Moment map = s — sg.

This should be no surprise, since we were looking for a function depend-
ing algebraically on the second derivatives of the metric, i.e., an invariant
scalar derived from the curvature, which can only be a multiple of the scalar
curvature. Thus zeros of the moment map correspond to cscK metrics.
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Norm functional = Mabuchi’s K-energy. The formula (4.9) for the
change in the log-norm functional M = log ||Z|| along a complexified orbit,
gives the following in this infinite dimensional set-up. Moving down the orbit
of ih, h € C*®(X,R), i.e., in the family of Kéhler forms w; = w + 2itd0h,

dM
1 e
(5.19) =
where mj, = (m,h) is the hamiltonian function on J for the element of
the Lie algebra h € C*°(X,R). Since the moment map m = s — sg (5.18),

mp, = [y (s — so)hw} /n!, and

M) = [ [ (= s an,
0 X n.

where s; is the scalar curvature of wy. This is precisely the Mabuchi func-
tional or K-energy [Mb1], defined up to a constant (equivalent to the am-
biguity in the choice of a lift of a point to the line bundle above it). It can
indeed be written as the log-norm functional for a Quillen metric on a line
bundle over the space of Kahler metrics; see for example [MW]. Its critical
points are cscK metrics, and one expects such a metric to exist on (X, J) if
and only if M is proper on the space of Kahler metrics on (X, J) (which is
the infinite dimensional analogue of G/K by (5.17)).

Weight = Futaki invariant. The formula (5.19) at a fixed point (e.g.
the limit point of a 1-PS when this exists and is smooth), on the line over
which C* acts with weight p, is

dM w
(5.20) o P = /X(s — So)hm .

Compare (4.5, 4.9, 4.10). This is the statement that “the derivative of the
Mabuchi energy is the Futaki invariant” [Mb1, DT].

The right hand side is, up to a sign, the original definition of the Futaki
invariant [Fu] for a smooth polarised manifold (X,L) with a C*-action.
Noting as above that it is the weight of the induced action on a line led
Donaldson to give the more general definition a,41, described earlier, for
an arbitrary polarised scheme (X, L).

Approximation and quantisation. As Donaldson explains in [Do4],
the finite dimensional problem of balanced metrics can be thought of as
the quantisation of the infinite dimensional problem of cscK metrics, which
emerges as the classical limit as r, N — oc.

As in quantum theory we think of the spaces of sections of the line
bundle L™ as wave functions on X, with a basis of Gaussian sections, peaked
around points on x. As r — oo these peak more, largely supported in balls
of radius const/r. Our SL(N + 1,C) group action moves these sections
around the manifold, which may be thought of as moving quantised chunks
of manifold of volume ~ 1/r™ around X (thanks to Anton Gerasimov for
this analogy). In the limit this is meant to approximate the classical limit
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of the diffeomorphisms (5.16) in the complexification of I/{;_I/H(X ,w) moving
points of the manifold around.

There is in fact a natural map su(N + 1) — C°°(X,R), though it is
only a homomorphism of Lie algebras to leading order in 7 [CGR/]. A skew-
adjoint endomorphism iA € su(N + 1) gives an infinitesimal automorphism
of PV whose vector field v4 is hamiltonian with respect to the Fubini-Study
symplectic form. Its hamiltonian is the function (Berezin symbol)

(Az, T)

(5.21) PN 5z =[i] — “TEE

=: hy4.
On X, halx induces a hamiltonian vector field which is the orthogonal
projection of v4 from TPV|x to TX.

Using the fact that T'X is invariant under the complex structure J,
and working with complexified hamiltonian vector fields (of the form X} +
JX, =: Xj1ig), the same working shows that the same formula defines a
map from sl(N + 1,C) to the Lie algebra C*°(X, C) of the complexification

(5.16) of ITI;;_I/H(X,W). Thus the change in metric on X induced by pulling
back the metric along an sl(N + 1,C) vector field in PV is the same as
that induced by pulling back along its orthogonal projection tangent to X.
(Thanks to Gabor Székelyhidi for this observation [Sz2].)

In this way algebraic 1-PS orbits,/i./e. test configurations, give rise to
curves in the complexification of the Ham (X, w)-action on J which approx-
imate 1-PS orbits. Using the description of these orbits in terms of a fixed
complex structure and varying Kéhler form (5.17), this simply corresponds
to restricting the Fubini-Study metric of PV to the test configuration.

To get _a map back we orthogonally project the prequantisation repre-
sentation Ham(X,w) — Aut(I'(L")) to HO(L") < I'(L") using the Bergman
kernel (5.10). That is h € C°°(X,R) maps to the infinitesimal automor-
phism iA € su(H°(L")) defined by

iA(s) = Z<th3 +ihs, s;) ;25i-
7
Again, this is not a homomorphism (except to leading order in r). The
problem is that we had to use the Bergman kernel because quantisation is
not a symplectic invariant (it cannot be done equivariantly with respect to
symplectomorphisms or elements of ITI;_I/II(X ,w)). That is, it is not indepen-
dent of choices of complex structure because the pullback of s € HY(L") by
ITI;_I;I(X ,w) is not in general holomorphic.

Donaldson’s double quotient construction. Because of this prob-
lem Donaldson [Do3] considers pairs of a complex structure J € J and a
section s € I'(L") which is holomorphic with respect to J; these are clearly

acted on by I/{;IJH(X ,w). In fact he considers N + 1 = h°(X, L")-tuples of
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sections:
S={(J{s;}) e T xDL)N* : 958, =0, i=1,...,N +1}.

Here, as usual, L has a metric and hermitian connection, and 0, is the
the (0,1)-part of the induced connection on L" with respect to the com-
plex structure J. Since the curvature 27riw is compatible with J (by the

definition of J), i.e. of type (1,1), 53 = 0 and J; defines an integrable
holomorphic structure on L" by the Newlander-Nirenberg theorem.

We now have actions of GL(N + 1,C) and Ham(X,w)¢. These com-
mute, anigoth have centre C* acting by scalars on L, so we can quo-
tient by Ham(X, w)® and then SL(N +1,C), or by GL(N + 1,C) and then
Ham(X,w)¢. In this way we will see how an infinite dimensional moment
map problem is equivalent to a finite dimensional one.

Dividing by GL(N + 1,C) leaves J (with a fibration over it by the
Grassmannian of (N + 1)-planes in H°(L",d;), by Proposition 4.14, but for
L sufficiently ample N + 1 = h?(L") and this is a single point). In turn the
formal complex quotient of this by Ham (X, w)¢, discussed above, is the space
of complex structures on X (compatible with some symplectic structure in
the diffeomorphism group orbit of w). Taking symplectic reductions instead
we end up with cscK metrics (together with orthonormal bases of H(L")
modulo the unitary group — i.e. just a point). So far then, we have just
reproduced what we already knew.

However, we can put a different symplectic structure €. on J, and
one that tends to Q as r — oco. Namely, the fact that the s; determine
an embedding of X into P(HY(L")*) for » > 0 means that the natural
projection

S — T(L)NH!

is an embedding, and we can pullback the natural L?-symplectic form from
the latter to define €2,..
Now [Do3, Do4] the moment map for the Ham(X, w)-action becomes

(%A +7) Y lsilo)P,
7

with zeros the solutions of Y, |s;(z)|> = constant.
If we first take the symplectic reduction by Ham(X,w) then this in-
volves solving >, |si(z)[* = constant, which we have already observed in
(5.7) says that the metric on X is the restriction of the Fubini-Study metric
on P(HY(L")*) D X when we put the metric on H°(L") that makes the rs;
orthonormal (the scaling arising because we have ignored the central scalar
action). But since this is a Kéhler metric in the same class as w, we have al-
ready observed (5.17) that we can solve this in a Ham (X, w)¢ orbit, uniquely
up to the action of Ham(X, w). Next we take the reduction by SU(N+1,C),
which by (5.5) means we try to balance X C P(H°(L")*) in the metric in

which the rs; are orthonormal. By Theorem 5.6 there is a solution to this
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problem in a SL(N + 1,C)-orbit of X, unique up to SU(N), if and only if
X C P(HO(L")*) is Chow polystable.

So that gives us the finite dimensional problem of solving (5.8), (which,
as observed there, is equivalent to the metric on H°(L") being the L*-
metric).

Taking the symplectic reduction in the opposite direction gives instead
the pointwise description (5.9) of the balanced condition. Namely, first
taking the reduction by SU(N + 1) gives us an orthonormal basis s; (up
to an overall scale which could be removed by putting back the central C*-
action) in each SL(N + 1, C) orbit, unique up to SU(N +1), if and only the
original s; were linearly independent (Proposition 4.14). Then taking the
reduction by Ham(X,w) involves solving (5.9) B,(z) = const for the metric.
So we see how solving this infinite dimensional moment map problem has
been reduced to the finite dimensional balanced moment map problem.

This latter equation has the advantage that it is asymptotically close to
the cscK equation (5.12). If quantisation really “worked” it would be exactly
the cscK equation, and proving Donaldson’s result that cscK = balanced
would be trivial. Since it is only asymptotically close, Donaldson crucially
uses the “failure” of quantisation to move from a cscK solution to a balanced
solution, as we now describe.

CscK = balanced. In [Do3], Donaldson proves a “quantitative” ver-
sion of the Kempf-Ness theorem: if the moment map m(z) at a point z is
small, and the action of the Lie algebra at z is injective, with a sufficiently
large lower bound on its smallest eigenvalue in a sufficiently large neighbour-
hood of z, then there exists a zero of m close to x in its complexified orbit.
Flowing down the gradient of —||m||?, i.e. down JX,,« (where m* € ¢ is
dual to m € * under the Killing form), the conditions ensure that X« is
sufficiently large and so ||m||? decreases sufficiently fast for sufficiently long
to converge to a zero of m.

He applies this to the SU (NN + 1)-action on the symplectic reduction of
S by Ham(X,w). The cscK metric ensures that we are close to a balanced
metric (zero of the moment map) as r — oo. Then to give a lower bound for
the injectivity of the su(N 4 1)-action it is equivalent to give a bound for the
orthogonal projection of its action perpendicular to the orbits of Ham (X, w)
upstairs on S.

Donaldson shows that the projection of the action of iA € su(N + 1)
onto the tangent to the Ham(X,w) orbits is just what one might expect
from quantisation: it is the action of its Berezin symbol h4 (5.21). So the
normal projection we require is given by the difference in the actions of 74
and hy on S.

It is here is where the failure of quantisation to be equivariant with
respect to Ham(X,w) is used — to show that this difference is sufficiently
large in some sense. Of course quantisation is invariant with respect to
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holomorphic hamiltonian vector fields, i.e., those functions satisfying
Dh := 0X), = 9(dhow™) = 0.

[Do3| assumes that Aut(X,.J) = 0, so that ker D is just the constants. Then
the (fixed) lowest eigenvalue of D gives the lower bound on the difference
of the actions of iA and h,. This gives the required estimates, as r — oo
and we get closer to a zero of the balanced moment map equation, to apply
Donaldson’s quantitative Kempf-Ness theorem.

So SU(N + 1) really “approximates” I/{;_I/H(X ,w), in the sense that its
finite dimensional moment map converges to the infinite dimensional one
(5.12), the symplectic structures €2, — €, and the natural norm functionals
and weights tend to their infinite dimensional analogues (the Mabuchi func-
tional and Futaki invariant) as r — oo; see [Do4]. Also the space of “alge-
braic metrics” (the restrictions of the Fubini-Study metrics SL(N+1,C).wrs
from PY) becomes dense in the space of all Kihler metrics as r, N — 00
[Ti3]. Thus the quantum picture tends to the classical one as r — oo.

The Yau-Tian-Donaldson conjecture. By analogy with the Kempf-
Ness theorem in finite dimensions (and by taking the infinite limit of Theo-
rem 5.6) it is natural to conjecture a Hitchin-Kobayashi correspondence (the
name coming from the analogy with the bundle case in the next section).
That is a variety should admit a cscK metric if and only if it is polystable
in a certain sense.

In fact Yau [Y3] first suggested that there should be a relationship
between stability and the existence of KE metrics. Tian [Ti2] proved this for
surfaces, introduced his notion of K-stability, and, building on his work with
Ding [DT], showed it was satisfied by Kéahler-Einstein manifolds [Ti4]. The
definition of K-stability was generalised to more singular test configurations
by Donaldson [Do5| who also showed that cscK implies K-semistability
[Do3]. So it was thought that K-polystability, as defined above, should
be the right notion to be equivalent to cscK.

Recent explicit examples [ACGT] in the extremal metrics case (where
there is a similar conjecture due to Székelyhidi [Sz1]) suggest that this
should be strengthened to analytic K-polystability, allowing more general
analytic (instead of just algebraic) test configurations. In particular one
should allow the line bundle L over the test configuration to be an R-line
bundle: an R-linear combination (by tensor product) of C*-linearised line
bundles. So the most likely Yau-Tian-Donaldson conjecture as things stand
at the end of 2005 is the following.

CONJECTURE 5.22. (X, L) is analytically K-polystable <= (X, L)

admits a cscK metric. This is unique up to the holomorphic automorphisms
of (X, L).

This would be the right higher dimensional generalisation of the uni-
formisation theorem for Riemann surfaces.
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There is very little progress on this conjecture in the = direction except
for projective bundles [BdB, Ho, RT2] and Donaldson’s deep work on toric
surfaces [Do5]. In the KE case there are sufficient conditions for existence
given by Tian’s a-invariant [Til] and Nadel’s multiplier ideal sheaf [Na],
but no one has successfully related these to stability. Part of the problem,
quite apart from the analytical difficulties, is that we do not have a good
intrinsic understanding of stability for varieties —i.e., no one has successfully
analysed the Hilbert-Mumford criterion for varieties.

Summarising the status of the whole theory for varieties, we have the
infinite dimensional analogue of the balanced condition for points in P! (i.e.,
cscK metrics) and part of the relationship to stability, but not the algebro-
geometric description of stability. That is, the Hilbert-Mumford criterion,
giving the analogue of the multiplicity < n/2 condition for points in P!, is
missing.

Kempf-Ness

Stability of varieties
(X’ LT) Zhang
[

Balanced X ¢ PN (") SU(N(r)+1)

|

|

Tian \
! Donaldson L — 00

~ I

HM, criterion ? S o Donaldson }
! l
I I

v v

277 T
For dim=0, multiplicity = "~~~ """ 7"°° = cscK Ham(X, w)

of any point < % total

6. Moduli of bundles over (X, L)

For holomorphic bundles E over a polarised algebraic variety (X, L)
there is a very similar story which is more-or-less completely worked out.
Again there are subtleties due to different notions of stability, but for bundles
for which Gieseker and slope stability coincide, for simplicity (such as those
with coprime rank and degree, or bundles over curves), we have, for r > 0,
Kempf-Ness

Stability of bundles

E— (X,L") Wang Balanced X — Gr(N(r)) SU(N(r)+1)

Donaldson

r — 0o
HM| criterion Wang
Mumford| Gieseker
Maruyama| Simpson
Donaldson-
o Uhlenbeck-Y:
Slope criterion ool HYM U(E)

We now briefly explain this theory.

The gauge theory picture. The formal infinite dimensional picture
was described by Atiyah-Bott [AB]. Fix a compatible hermitian metric on
a C*°-bundle E and consider the gauge group U(E) = {unitary C'°°-maps
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E — E} and its (genuine) complexification GL(E) of all C* invertible
bundle maps F — FE. These act on

A= {unitary connections A with FX’Q = 0}.

The U(FE)-action is obvious; GL(E) acts by pulling back the (0, 1)-part 94
of the connection and then taking the unique Chern connection compatible
with both this and the metric. The integrability condition Fg’2 = 5124 =0
ensures that 04 defines a holomorphic structure on E. Thus any two O-
operators define isomorphic holomorphic structures on E if and only if they
lie in the same G L(E)-orbit. So the formal complex quotient of A by GL(E)
is the moduli space of holomorphic vector bundles on X with topological
type E. (Of course we expect to need a stability condition to form this
quotient.)

Alternatively, fixing the OJ-operator and pulling back the metric by
GL(E) gives the direct analogue of (5.17) for the complexified orbit of Ja:

(6.1) U(E) — GL(E).04 — {compatible metrics on (F,d4)}.

The last map is onto since GL(F) acts transitively on the space of com-
patible hermitian metrics on E (the space of metrics being GL(E)/U(E)),
so a complexified orbit can be thought of as giving all compatible metrics
on a fixed holomorphic bundle (E,d4), up to the action of U(E).

Fix a compatible hermitian metric on L, inducing a Kahler form w on
X. Then A inherits a natural Kéhler structure, with symplectic form given
by Q(a,b) = [y tr(a Ab) Aw™ ! for a,b € Q' (End E) tangent vectors to A.
Atiyah-Bott show that U(E) ~ A has a moment map

A Fj"l AWt Nidw” € QZ”(su(E)),

thinking of the latter space as dual to Q°(su(FE)) by the trace pairing and
integration. Here A = 2mipu(FE) / Jx w™ is a topological constant, where

fX &1 (E).wnfl
(6.2) ME) = =—
is the slope of E.

Thus zeros of the moment map are Hermitian-Yang-Mills connec-
tions; solutions of AFj"l =const.id. An infinite dimensional version of the
Kempf-Ness theorem would be that in a polystable orbit of GL(E) there
should be a HYM connection (i.e. a metric whose associated Chern connec-
tion is HYM; we call this a HYM metric), unique up to the action of U(E),
as conjectured by Hitchin and Kobayashi.

THEOREM 6.3 (Donaldson-Uhlenbeck-Yau). E slope polystable <—= E
admits a HYM metric. It is unique up to the automorphisms of E.

The notion of stability that arises here (also called Mumford stability)
comes from GIT.
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The GIT picture. Suppose we wanted form an algebraic moduli space
of bundles E over (X, L) of fixed topological type. (More generally, to get a
compact moduli space, we have to consider coherent sheaves E of the same
Hilbert polynomial x(E(r)).) We can twist E(r) :== F® L", r > 0 until (a
bounded subset of ) the Es have no higher cohomology and are generated by
their holomorphic sections:

(6.4) 0 — ker — HY(E(r)) — E(r) — 0 on X.

Fixing an isomorphism H°(E(r)) = CN, N = x(E(r)), we have expressed all
such Es as quotients of O(—r)®V. Such quotients are easily parameterised
algebraically by a Quot scheme (for instance as a subset of the Grassmannian
of subspaces H(ker(s)) < H°(O(s))®N given by taking sections of (6.4)
tensored by L*, s> 0.)

So we divide by choices of the isomorphism H?(E(r)) = CV, ie., by
SL(N,C), to get the moduli space of (semistable) sheaves.

In this case the Hilbert-Mumford criterion can be manipulated (Mum-
ford, Takemoto, Gieseker, Maruyama, Simpson [HL]) to give an algebro-
geometric understanding of stability. We describe this in a later section; the
upshot is the following.

We write the Hilbert polynomial x(E(r)) = agr™ + a1 ! + ..., where
ap =rank E [ w"/nl, a1 = [y c1(E)w" 1 /(n —1)! +&(X), ete. are topo-
logical. We use its monic version, the reduced Hilbert polynomial
(6.5) pp(r) = XE) _n Wty

ag ag

Then E is stable if and only if for all coherent subsheaves F' — E, pp(r)
< pg(r) in the following sense (depending on the line bundle chosen on the
Quot scheme):

o Gieseker stable if and only if pp(r) < pp(r) Vr>0.

a1 (F a1 (FE
all) < 4l (= u(F) < w(E).

Here, as before, u(E) = [y c1(E).w" ! /rank(E) is the slope of E (6.2).
Gieseker and slope stability coincide on curves X. Slope stability cor-
responds to taking a certain semi-ample line bundle on the Quot scheme
(roughly speaking given by restricting sheaves to high degree complete in-
tersection curves in X and using the usual line bundle for moduli of bundles
on the curve). GIT needs amending for this situation; so far this has been
carried out only for X a surface by Jun Li [HL].

Semistability is similar (replacing < by <), while polystability is equiv-
alent to semistability where the only destabilising subsheaves F' are direct
summands of F. Slope polystability then turns out to be the right stability
notion for the infinite dimensional quotient and HYM of Theorem 6.3.

e Slope stable if and only if

The symplectic reduction picture. For E a bundle, we can interpret
the quotient CN — E(r) — 0 (6.4) differently, via its classifying map X —
Gr to the Grassmannian of quotients of CY.
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Then, much as in the varieties case, we fix compatible hermitian metrics
on L and E inducing a Kihler form on X and an L?-metric on CV
HP(E(r)). Then there are actions of SU(N) < SL(N,C) on Gr, inducing a
moment map m: Gr — su(N)* and an action SU(N) ~ Maps(X, Gr). Its
moment map is the integral of (the pullback of) m over X, so we can again
talk about balanced X — Gr (those with centre of mass zero in su(N)*) and
asymptotics as r, N — o0.

Proving conjectures of Donaldson [Do2], Wang shows that the existence
of a balanced map is equivalent to the Gieseker polystability of E [Wal].
Slope stable bundles (which are therefore Gieseker stable) admit balanced
maps X — Gr for r > 0 [Wa2], and pulling back the canonical quotient
connection on Gr and taking lim, ., gives a conformally Hermitian-Yang-
Mills connection on E (which is HYM after rescaling). (Unfortunately, this
is not how the results are proved; Wang uses the Donaldson-Uhlenbeck-Yau
theorem to give an a priori HYM connection which can be compared to the
sequence of balanced metrics.)

7. Slope criteria for algebraic varieties

Slope for K-stability. So we have seen that the finite and infinite di-
mensional GIT and symplectic reduction pictures work for bundles, and tend
to one another as r — co. In particular the stability notion for bundles and
sheaves involves only subsheaves F' < E. So one might ask if the subvariety
P(F) C P(E) can destabilise the variety P(E). Or if, more generally, sub-
schemes Z C (X, L) can destabilise (X, L). (Cf. length > n/2 subschemes
destabilising length-n schemes in P! (3.10).)

We need some topological data for (X, L) analogous to that for bundles
(6.5). Fixing Z C (X, L), we have the Hilbert polynomial of L = Ox (1)

RO(Ox(r)) = agr™ 4+ ayr™ 1 + ...,
and the Hilbert-Samuel polynomial of .#; (for x € Q and rz € N):
RO(FE (1)) = ag(z)r™ 4 ay (x)r" P4 ... .

Then by working on the blow up of X in Z one can see that the a;(z) are
polynomials in z € QN [0,e(Z)) for r > 0. (More precisely, there is a
constant p and a polynomial which is equal to a;(z) for zr > p or x = 0.)
Here €(Z) is the Seshadri constant of Z, the supremum of = such that 77" (r)
is generated by global sections for r > 0.

For X normal, ag(0) = ag, and a1(0) = ay. All the a;(x) are given by
topological formulae by Riemann-Roch, for instance

_ Sy w" _ [x cr(X)wn

WETr o T T )
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For any ¢ < ¢(Z), analogously to the definition of slope for bundles (6.2),
we define the slope of Z to be

_ Jo ar(z) + #dm

(71) HC('%Z) foc (Io(l‘)dl‘
Z =) gives
u(X) =2t

We then have the following [RT2].

THEOREM 7.2. (X, L) K-semistable = slope semistable: pu.(-%7) < u(X)
for all closed subschemes Z C X and ¢ < e(Z).

Removing the “semi” is a little more involved. If we use the algebraic
K-stability of [Do5, RT1] then we define slope stability to mean
 pe(Fz) <pu(X) Vee (0,6(2))NQ, and
o () (Iz) < u(X)if (Z) € Q and ,ﬂé(z)r(r) is saturated by global
sections for r > 0.
(The quickest definition of saturated [RT1] is that on the blow up 7: Blzy X
— X of X in Z with exceptional divisor F, W*fg(Z)T(T‘) =7 L' (—e(Z)r)
should be generated by global sections.) Similarly slope polystability is
defined as slope stability except in the second part of the definition we allow
te(z)(Fz) to equal p(X) if on Bl (01 (X x C), L(—€(Z)P) (where P is the
exceptional divisor) is pulled back from a contraction Bly, o (X x C) —
X X C (which of course won’t be the original blowup map).

If we use analytic K-stability [RT2], which is what should be relevant
to the cscK problem (Conjecture 5.22), then the relevant definition of slope
stability allows irrational c:

* pe(Fz) <u(X) Vee (0,e(2)), and
o () (Iz) < u(X)if e(Z) € Q and ,ﬂg(z)r(r) is saturated by global
sections for r > 0.
Again slope polystability is defined in the same way except for the sec-
ond condition in which we allow ji.(7)(F7z) = pu(X) if on Blg, oy (X X
C), L"(—e(Z)rP) is pulled back from a contraction to X x C.

Then the analogue of Theorem 7.2, for the either notion of K-stability,

is the following [RT1].

THEOREM 7.3. (X, L) K-(poly)stable = slope (poly)stable.

As a corollary of Theorem 7.2 and the results of Donaldson and Chen-
Tian mentioned in Theorem 5.13 we find the following.

COROLLARY 7.4. If pc(Fz) > w(X) then X does not admit a cscK
metric in the class of ¢1(L).

We give some examples.
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o If ' < FE is a slope-destabilising subbundle of a vector bundle
E — X the P(F) C P(F) destabilises for suitable polarisations
T L™ @ Op(gy(1), m > 0, on P(E). Conversely [Ho], if £ is slope-
stable and the base X is cscK with discrete automorphism group
then P(E) is cscK for m > 0.

e When the base is a curve, we can do better [RT2]. In fact, for
P(F) with discrete automorphism group and any polarisation,

P(E) cscK < E HYM <= F stable.

The converses follow from the Narasimhan-Seshadri theorem [BdB]
that stable bundles admit projectively flat connections.

e —1-curves destabilise del Pezzo surfaces (X, L) for appropriate L.
In particular one can find examples with reductive (even trivial)
automorphism group, showing that the folklore conjecture Aut (X)
reductive = cscK does not hold for surfaces. (Tian showed that it
does not hold for threefolds [Ti4], but that it does hold for anti-
canonically polarised surfaces [Ti2].)

e For instance P? blown up in one point cannot admit a cscK met-
ric for any polarisation because Aut (X) is not reductive. From
the above point of view this is because it is destabilised by the
exceptional —1-curve for all polarisations.

e Generically stable varieties can specialise to unstable ones. For
instance moving two —1-curves together on a stable del Pezzo gives
a limiting —2-curve (if the —1-curves arise from blowing up distinct
points, then blow up two “infinitely near” points — one point and
then another on the exceptional divisor) which can destabilise for
suitable L.

e Calabi-Yau manifolds, and varieties with canonical singularities and
numerically trivial canonical bundle (mKx ~ 0) are slope stable.

e Canonically polarised varieties with canonical singularities (i.e., the
canonical models of Mori theory) are slope stable.

e Remarkably, the product of a (nongeneric) smooth curve with itself
can admit polarisations which are slope unstable, giving surfaces
of general type which are neither K- nor Chow stable, and which
do not admit cscK metrics in that class [Ro].

We will sketch the algebro-geometric proof of the above results later.
But differential-geometrically, what the proofs amount to is the following.

We know that the Mabuchi energy (or log-norm functional, in GIT lan-
guage) is convex over the space of all Kdhler metrics on our fixed complex
manifold X. Intuitively, if it is proper in some sense (roughly, tends to
+oo at infinity) then it should have a unique absolute minimum, which,
modulo regularity issues, would be cscK. Conversely the manifold is strictly
K-unstable, with no cscK metric, if the Mabuchi energy is unbounded be-
low. If X is slope destabilised by some subscheme Z then there is a family of
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Kahler metrics on X, given by “stretching the neck” around Z, along which
the Mabuchi energy tends to —oo, so X cannot be cscK.

Slope for Chow stability. Fix Z C (X,0x(1)) C (PY,0(1)) embed-
ded by sections of Ox (1), and, as before,
Y(Ox (1)) = agr™ + arr™ L + ...,
RO(ZE"(r)) = ag(z)r™ + ag(x)r™ 1 4+ ... .
Then, for all ¢ < e(Z) € N, define the Chow slope of Z to be
> i B2 (1))
foc ao(z)dx
a discrete version of (7.1). Z = () gives

Ch(X) = h(Ox(1) _N+1 ’

ao ao

Che(F7) =

and we have the following [RT1].

THEOREM 7.5. Chow (semi)stable = slope (semi)stable:
Che(.#7) 5 Oh(X) V2 C X.

To see where these results come from, and to explain how far one can
get towards a converse, we need to analyse the Hilbert-Mumford criterion
for varieties (X, L). We first warm up with a brief overview of the bundle
case.

The Hilbert-Mumford criterion for vector bundles. Given a co-
herent sheaf E on X, recall (6.4) how an picking an identification H°(E(r))=
CN for r > 0, N = x(E(r)), realises E(r) as a point of a Quot scheme of
quotients

(7.6) O(—?”)@N — F —0.

Dividing out by the identification, i.e., quotienting the relevant subset of
Quot by SL(N,C), gives a moduli space of sheaves.

To apply the Hilbert-Mumford criterion, we consider the E-orbit of a
1-PS C* < GL(N,C) on Quot [HL] (we shall normalise to SL(N, C) later),
whose eigenvalues we can assume are all positive, without loss of generality.
The eigenspaces Vy, < CN = HO(E(r)) give a weight filtration Vai = ®a<i Vi
of CN. Their images F; < E under the map (7.6) give a filtration of E,

FOSFISSF]JSE’
and the orbit gives a sheaf over X x C described in terms of the F; as
follows. Let F;, E denote the pullbacks of the sheaves F;, E to X x C, so

F; = F; ® C[t] where ¢ is the variable pulled back from C. Then the orbit
gives the following subsheaf of E,

(7.7) Fo+ t.Fy +t*Fo+ ...+ tP.F, + t!''E < E® C[t].
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This is a degeneration of the general fibre ' to
(78) Fy & Fl/FO ® ... & Fp/Fp—l D E/Fp

over the central fibre X x {0}. One can prove this inductively as follows.

Set Q; = E/F;, giving exact sequences 0 — F;/F;_1 — Q;—1 — Q; — 0.
In the p = 0 case, Ey := Fy + ¢.E is the kernel of the composition E —
E — @, where the latter two sheaves are considered to be supported on
the central fibre X x {0}. (So Eg is the elementary transform of E in )y on
X x {0}.) E¢ has a map to Fy induced by the diagram

(7.9) 0 Eo E Qo 0
0 FO E QO 0 )
and one to Qo:

0 Eo E Qo 0

L l C[1]

0— Qo —— Qo ® 5 —> Qo —0.

The pair make the central fibre of £y isomorphic to Fjy ® (0o, while the map
Ey — Qo can be composed with the surjection )y — )1 to continue the
induction by defining E; as its kernel. This is clearly just Fo + t.F; + t2.E,
and similar working shows it has central fibre Fy @ Fy/Fy @ @1, and so on.

Different 1-PSs can give the same filtration (if the ith piece of the weight
filtration of CV generates the same subsheaf F; < E). But for every filtration
F; and sequence of weights there is a canonical least stable 1-PS, given by
choosing the weight filtration to be V<; = H°(F;(r)) < HY(E(r)).

So we need only consider these canonical 1-PSs: they have the largest
GIT weight in their class. Since (7.8) gives the weight space decomposi-
tion of the limiting sheaf over the central fibre, the weights of these 1-PSs
S, nh?((F,/Fy-1)(k)), k> 0, are positive linear combinations of weights
of the canonical 1-PSs associated to the splittings

(7.10) F, @ E/F,.

So in fact we need only control the weights of these simpler splittings. Cal-
culating their weights (and then normalising into SL(N,C) [HL]) gives the
Gieseker stability condition for bundles described earlier, controlled by single
subsheaves F' < F and their reduced Hilbert polynomials.

The Hilbert-Mumford criterion for varieties. We can now try to
do the analogous thing for varieties, following [Mu, RT1].

Any test configuration (2, L) is C*-birational to (X x C, L), so is (a
contraction p of) the blow up of X x C in a C*-invariant ideal I supported on
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the central fibre, with polarisation p*L = (7*L)(—cP) = 7*(L ® I¢), where
P is the exceptional divisor.

BII(X X (C)
(7.11) " N
X xC Z
Classifying such C*-invariant ideals, there exist subschemes
(7.12) Zp1C...CZ1CZyCX
with ideal sheaves %, 1 D ... D % D % such that [Mul]
(7.13) [= S +tA+ I+ . P a1
X xC /Z
7 Xo| ([ — 71 x Spec C[t]/(t?)
- 3
Zo~ [} L Zy x Spec C[t]/(t%)
Zo—1

T Zox {0}

Firstly we have an analogue of the fact that, in the bundle case, one need
only consider canonical 1-PSs. Namely, under any map of test configurations
like p above, the weights are less stable (more positive) on the dominating
test configuration. (Notice that the blow up map Bl;(X x C) — X x C
above is not such a map of test configurations, since it does not preserve
polarisations: the line bundle is not a pullback from downstairs.)

PRrROPOSITION 7.14. Suppose X is normal. Given a test configuration
(Z°,L) for (X,L) and another flat C*-family % — C with a birational
C*-equivariant map p: % — 2, there exists an a > 0 such that

w(HY(£")) = w (HY (5" L") [tHY (5" £4)) = ak™ + O(k" ).

(Here w denotes the total weight of a C*-action — i.e. its weight on the
determinant of the C*-module. The normality of X is required to equate
HO(X,L*) with sections of p*£* on a general fibre of %. The result is
stated in rather more generality than we require here (in particular allowing
% to have general fibre some blow up of X, rather than just X) for future
use. We are forced to use HY (p*L*)/tHY (p*LF), rather than Hg% (p*LF),

because p*L need not be ample on #.)

So we need only consider weights on the normalisation of the blow up
of X x C in I, as this is is itself a perfectly good test configuration. (In
the Chow stability case this test configuration may not arise from a linear
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transformation of the given projective space — only from an embedding by a
higher twist of L — but this does not concern us as Proposition 7.14 gives an
equality in weights to O(k™), which is all that is required for Chow stability.)
Next we consider the easiest case of p =1, i.e., [ = #y+ (t). So we blow
up in Zp x {0} € X x C, giving the deformation to normal cone of Zy. This
is the analogue of the simplest degenerations of bundles and sheaves earlier;
the canonical degenerations of a one-step filtration to a direct sum (7.10).

Zo X {t}‘

(2)o=XU.P

The exceptional divisor P is the normal cone of Zy: if Zy C X is smooth
then this is the projective completion IF’(VZO ®C) — Zp of the normal bundle
Vg, — Zp.

C* 3 X acts on the blow up (as [1: A] = [\ : 1] on P(v,, & C) in the
smooth case) and on the line bundle 7*L(—cP) over Bl , 0}(X x C).

This deformation to the normal cone of Z replaces HY% (L") (filtered by
HY(L"® fé)) by the associated graded of the filtration on the central fibre:

HY(I5 (r) @ tHY (5 Hr) | I5 () & . ..
St HY (I2(r) ) IZ(r) @ tTHS (Oz(r)).

Here t is the coordinate on the C-base. This is the splitting of sections of
L"(—crP) on the central fibre into those on the proper transform of the
original central fibre X (the first term) plus the polynomials on P. In
turn the latter can be split into their C*-weight spaces as ¢/ times by the
homogeneous polynomials on the normal bundle of Z C X of degree cr — j.

So this is the weight space decomposition, with C* acting on #/ with
weight —j, and the weight on top exterior power is

we o= =Y (50 )
j=1

(7.15) = = h(ILr)) — erh®(Ox ().
7j=1
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This looks like a discrete approximation (Riemann sum) for

/ 1O(s (r))d,

0

so we estimate it by the trapezium rule, giving

- </oca0($)d$> . /Oc <“1(93) + a@é@)dm P O(rmY).

Normalising (to make the 1-PS lie in SL(N, C) instead of GL(N, C)) we find
the K-stability slope criterion of (7.1) and Theorems 7.2 and 7.3.

Alternatively, taking the leading order term of (7.15) and normalising
gives the Chow slope criterion of Theorem 7.5.

General test configurations. So we have the analogue of the result in
the bundle case that one need only consider canonical 1-PS orbits — i.e. we
need only consider test configurations that are normalisations of the form
(7.11). And we have the analogue of the simple degenerations (7.10), given
by the deformation to the normal cone of a subscheme Z C X yielding the
right analogue of slope stability. For bundles any canonical 1-PS weight
turned out to be a positive linear combination of these simple weights, so
ideally one would like to write the weight of a test configuration (7.11) as a
positive linear combination of weights (7.15) — if so one could conclude that
stability of varieties was equivalent to slope stability.

So we need the analogue of the induction (7.9) that we did in the bundle
case to handle (7.7). In fact it turns out we can mirror it almost com-
pletely; moreover the bundle induction is a special case of what follows
below when we consider the sheaf E of (7.7) to be the sections of the po-
larisation Op(g+)(1) on the variety P(E*) x C. The correspondence between
(7.7) and (7.13) is clear, and the elementary transformations we did in the
bundle case become, on projectivisation, the blowups below.

The proper transform Zy x C of Zy x C is flat over the base C. It defines
a copy Z|, of Zy in the central fibre of the deformation to the normal cone
of Z()Z
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Xy
Zy X {t}—7 A
L >®--[" | ~
Zl X {t}
(2)y=XU,P
By (7.12) this defines subschemes 21/071 C ... C Z] C Z,. So next
we blow up in Z}, giving Z; ; C ... C Z{; next blow up Zj, and so on

inductively up to Z}S}i El).

(For X = P(E*) and the degeneration (7.7), we are blowing up the
subschemes P(Q}) (in the central fibre), then the central fibre of the proper
transform of P(Q7), and so on; but this is just the projectivisation of the
elementary transformations (7.9).)

THEOREM 7.16. The blow up of X xC in I = S+t 71 +.. .-i-tp_l,ﬂpfl-i-
tP is a contraction of this iterated blow up.

This is meant in the C*-equivariant polarised sense — the polarisation
L(—cP) on Bl;(X x C) is the pullback of the natural polarisation on the
iterated blow up given by starting with L and, at each stage, pulling back
and subtracting ¢ times the exceptional divisor.

Thus, by our result (Proposition 7.14) that one need only calculate
weights on dominating test configurations, we are left with calculating the
amount that each blow up in Zi(z) adds to the weight of the resulting C*-
action on the determinant of the space of sections of the rth power of the
polarisation on the central fibre.

THEOREM 7.17. Consider the ith step, when we blow up Zi(i). If all
thickenings of (Z; x C) are flat over C then this adds w(Z;) to the weight,
to O(r™).

(Here w(Z;) is weight on deformation to normal cone of Z;.)

In fact under certain conditions one can get the result to O(r"~1) [RT1].
So if this flatness condition holds, the total (normalised) weight is w(Z)
+---4+w(Zy—1). So X is stable if and only if

(7.18) w(Zo) + ...+ w(Zy1) <0 <= w(Z) <0 VZ.
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So if this flatness condition held in general, then stability and slope stability
would be equivalent.

The flatness problem. In fact (Z; x C) is flat over C, but since blow
ups use all powers of an ideal, we require all of its scheme theoretic thick-

enings k(Z; x C) (defined by the ideal jgw) to be flat too. The idea

of the proof of Theorem 7.17 is then that a formal neighbourhood of Zi(l)
in the test configuration looks sufficiently like a formal neighbourhood of
Z; x {0} € X x C for the weights added by the two blow ups to be com-
parable to O(r™) — the corrections being due to estimates on the sizes of
nonvanishing cohomology groups.

This flatness condition holds for Z; C X smooth, or reduced simple
normal crossing (snc) divisors.

In general, one can use resolution of singularities

(X D Z) < (X D> m;D;), D snc divisors,

to replace (X, L) by (X,n*L). Test configurations for the latter dominate
those of the former, so Proposition 7.14 allows us to obtain (7.18) for X
normal, so long as m; = 1 for all 7.

So finally we need to be able to deal with the snc divisors D; being
possibly nonreduced. We can attempt to do this by basechange [RT1],
which we illustrate with an example.

Consider the case where Zy C X is a double point in a smooth curve.
Locally then %y = (22), and the deformation to normal cone of Zj is the
blow up of X x C in (22, ).

Now consider squaring the C*-action. This is trivial from a GIT point
of view (it just doubles the weight, which we can later halve). But it funda-
mentally alters our geometric description of the test configuration, blowing
up X x C in the ideal (22, ¢?).

Taking the integral closure of this ideal corresponds to normalising the
blow up, which we can deal with by Proposition 7.14. That is, we get a
more unstable test configuration by blowing up in (22, zt,t?) = (z,t)?, and
it suffices to control the weights of this test configuration.

But this is now a much nicer ideal, and corresponds to blowing up in (x, t)
and using a different line bundle (squaring the exceptional divisor P +— 2P
or ¢ — 2¢). So modulo doubling ¢ and the weight, we have removed the
multiplicity 2 of the double point Zj.

In this way we can deal with D; with multiplicities m; when they all
have the same support. This is enough to prove that (K- and Chow) stability
coincides with (K- and Chow) slope stability for smooth curves, and indeed
gives probably the “right” geometric proof, rather than the old combinatorial
(for Chow stability) and analytical (for K-stability) proofs.

Of course, for higher dimensions, one would like to combine the two
approaches to deal with snc divisors with intersecting components of differ-
ent multiplicities, for instance, Dy = (2%y = 0), D1 = (z = 0). This is still
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work in progress, but its difficulty suggests that slope stability is not enough
to describe stability (unlike for the more linear bundle case) except in one
dimension or on projective bundles over stable bases.
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