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ABSTRACT. A key step in the proof of global existence for Yang-Mills
fields, propagating in curved, 4-dimensional, globally hyperbolic, back-
ground spacetimes, was the derivation and reduction of an integral equa-
tion satisfied by the curvature of an arbitrary solution to the Yang-Mills
field equations. This article presents the corresponding derivation of
an integral equation satisfied by the curvature of a vacuum solution to
the Einstein field equations of general relativity. The resultant formula
expresses the curvature at a point in terms of a ‘direct’ integral over
the past light cone from that point, a so-called ‘tail’ integral over the
interior of that cone and two additional integrals over a ball in the initial
data hypersurface and over its boundary. The tail contribution and the
integral over the ball in the initial data surface result from the break-
down of Huygens’ principle for waves propagating in a general curved,
4-dimensional spacetime.

By an application of Stokes’ theorem and some integration by parts
lemmas, however, one can re-express these ‘Huygens-violating’ contri-
butions purely in terms of integrals over the cone itself and over the
2-dimensional intersection of that cone with the initial data surface.
Furthermore, by exploiting a generalization of the parallel propagation,
or Cronstrom, gauge condition used in the Yang-Mills arguments, one
can explicitly express the frame fields and connection one-forms in terms
of curvature. While global existence is certainly false for general rela-
tivity one anticipates that the resulting integral equation may prove
useful in analyzing the propagation, focusing and (sometimes) blow up
of curvature during the course of Einsteinian evolution and thereby shed
light on the natural alternative conjecture to global existence, namely
Penrose’s cosmic censorship conjecture.

1. Introduction

Global existence fails to hold for many, otherwise reasonable solutions
to the Einstein field equations. Examples of finite-time blowup include solu-
tions developing black holes and solutions evolving to form cosmological big
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bang or big crunch singularities. The singularities that arise in such exam-
ples often, but not always, involve the blowup of certain spacetime curvature
invariants. More subtle types of singular behavior include the formation of
Cauchy horizons, at which the curvature can remain bounded, but across
which global hyperbolicity, and hence classical determinism, is lost.

Examples of this latter phenomenon are provided by the Kerr and Kerr-
Newman rotating black hole spacetimes and by non-isotropic, cosmolog-
ical models of Taub-NUT-type wherein violations of strong causality (as
signaled by the occurrence of closed timelike curves or the appearance of
naked curvature singularities) develop beyond the Cauchy horizons arising
in these solutions. On the other hand a variety of arguments and calcu-
lations strongly suggest that such Cauchy horizons, when they occur, are
highly unstable-giving way, under generic perturbations, to the formation
of strong curvature singularities that block the extension of such perturbed
solutions beyond their maximal Cauchy developments.

Considerations such as these led Roger Penrose to propose the so-called
(strong) cosmic censorship conjecture [12] according to which (in a here
deliberately loosely stated form):

globally hyperbolic solutions to the FEinstein field equations evolving from
non-singular Cauchy data are generically inextendible beyond their maximal
Cauchy developments.

For the non-vacuum cases of this conjecture it is natural to consider only
those matter sources which exhibit, in the absence of gravitational coupling,
the global existence property at least in Minkowski space but perhaps also
(being somewhat more cautious) in generic globally hyperbolic ‘background’
spacetimes. Otherwise, rather straightforward counterexamples can be pre-
sented involving, for instance, self-gravitating perfect fluids that evolve to
blow up in a nakedly singular but stable fashion [15, 16]. But Penrose’s
conjecture was never intended to suggest that Einsteinian gravity should
miraculously hide the defects of inadequate models of matter inside black
holes or cause their singularities to harmlessly merge with big bang or big
crunch cosmological singularities.

There are a number of known types of relativistic matter sources that
do exhibit the desired global existence property, but one is currently so far
from a proof of cosmic censorship that their inclusion into the picture only
presents an unwanted distraction from the more essential issues. Thus it
seems natural to set these complications aside until genuine progress can be
made in the vacuum special case.

On the other hand there is one particular class of matter fields whose
study seems to be directly relevant to the analysis of the vacuum gravita-
tional equations-namely the class of Yang-Mills fields propagating in a given,
4-dimensional, globally hyperbolic, background spacetime. First of all, these
are examples of sources for which global existence results (for the case of
compact Yang-Mills gauge groups) have already been established in both
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flat [4, 5] and curved [2] background spacetimes. Secondly however, the
vacuum Einstein equations, when expressed in the Cartan formalism and
combined with the Bianchi identities, imply that the spacetime curvature
tensor, written as a matrix of two-forms, satisfies a propagation equation of
precisely (curved-space) Yang-Mills type.

But in contrast to the case of ‘pure’ Yang-Mills fields this Einsteinian
curvature propagation equation is coupled to another equation (the van-
ishing torsion condition) which links the connection one-form field to the
(orthonormal) frame field and thus reinstates that frame (or metric) as the
fundamental dynamical variable of general relativity. An additional, related
distinction from conventional Yang-Mills theory is that the effective Yang-
Mills gauge group for Einsteinian gravity, when formulated in this way, is
the non-compact group of Lorentz transformations which acts (locally) to
generate automorphisms of the bundle of orthonormal frames while leaving
the metric invariant.

An initially disconcerting consequence of this non-compactness of the
effective gauge group is that the associated, canonical Yang-Mills stress-
energy tensor (a symmetric, second rank tensor quadratic in the curvature)
need no longer have a positive definite energy density (as it always does
in conventional, compact gauge group, Yang-Mills theory) and indeed this
tensor vanishes identically in the gravitational case. Fortunately however
the Bel-Robinson tensor (a fourth rank, totally symmetric tensor quadratic
in curvature and having positive definite ‘energy’ density) is available to
take over its fundamental role [3].

The proofs of flat and curved space global existence for conventional
(compact gauge group) Yang-Mills fields given, respectively, in References [5]
and [2] use a combination of light cone estimates and energy arguments that
exploit, on the one hand, an integral equation satisfied by the curvature of
the Yang-Mills connection and, on the other, the properties of the associated,
canonical stress-energy tensor mentioned above. For the case of curved,
globally hyperbolic, background spacetimes the proof guarantees only that
the Yang-Mills connection, expressed in a suitable gauge, cannot blow up
until the background spacetime itself blows up, for example by evolving to
form a black hole or cosmological singularity or by developing a Cauchy
horizon. But even linear Maxwell fields typically blow up at such singular
boundaries or Cauchy horizons, so one could hardly expect better regularity
in the nonlinear case.

Of course in general relativity there is no given, ‘background’ geometry
at all and global existence is much too strong a conjecture for the gravita-
tional field as the aforementioned examples and arguments show. Spacetime
curvature does indeed blow up in many otherwise reasonable instances of
Einsteinian evolution and this blowup is anticipated to be a stable feature
of such solutions and not merely the artifact of, say, some special symmetry
or other ‘accidental’ property of the spacetime under study. Cosmological
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solutions may only persist for a finite (proper) time in one or both temporal
directions whereas timelike geodesics falling into a black hole may encounter
divergent curvature, representing unbounded tidal ‘forces’, in a finite proper
time.

But if Penrose’s conjecture is true then global hyperbolicity is at least a
generic feature of maximally extended Einstein spacetimes that evolve from
non-singular Cauchy data and general relativity is thereby effectively rescued
from an otherwise seemingly fatal breakdown of classical determinism. If,
on the other hand, cosmic censorship is false then the implied breakdown of
determinism may well render Einstein’s equations inadequate as a classical
theory of the gravitational field.

There is currently no clear-cut strategy for trying to prove the cosmic
censorship conjecture but it nevertheless seems evident that a better under-
standing of how spacetime curvature propagates, focuses and (in some cir-
cumstances) blows up in the course of Einsteinian evolution will be essential
for progress on this fundamental problem. For that reason one might hope
that a further development of the “Yang-Mills analogy”, wherein the parallel
issues of curvature propagation, focusing and blowup for ‘pure’ Yang-Mills
fields have already been somewhat successfully analyzed, could yield signif-
icant insights for understanding the still-wide-open gravitational problem.

One of the key steps in the ‘pure’ Yang-Mills analysis was the derivation
of an integral equation satisfied by the curvature of an arbitrary solution
to the field equations. This integral equation resulted from combining the
Yang-Mills equations and their Bianchi identities in a well-known way to
derive a wave equation satisfied by curvature and by then applying the
fundamental solution of the associated wave operator to derive an integral
expression for the curvature at an arbitrary point (within the domain of local
existence for the solution in question) in terms of integrals over the past light
cone of that point to the initial, Cauchy hypersurface. An additional key
step was the transformation of this integral formula through the use of the
parallel propagation, or Cronstrom, gauge condition [5, 2, 1] to eliminate
the connection one-form explicitly in favor of the curvature itself. Certain
resulting integrals over the light cone, from its vertex back to the initial data
surface, could be bounded in terms of the Yang-Mills energy flux, defined
via the aforementioned, canonical stress-energy tensor, and thence in terms
of the actual energy on the initial hypersurface.

In the simplest, flat space setting of Ref. [5] a Gronwall lemma argu-
ment was employed to prove that the natural (gauge-invariantly-defined)
L®° -norm of curvature is always bounded in terms of the (equally gauge-
invariant) conserved total energy, with all reference to the artifice of the
Cronstrom or parallel propagation gauge, used in the intermediate steps,
effectively eliminated. Thus equipped with an a priori pointwise bound on
curvature one completed the proof of global existence by showing that an
appropriate Sobolev norm of the connection one-form, when evolved in the
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so-called ‘temporal gauge’, cannot blow up in finite time by a straightfor-
ward, higher order energy argument. A more elaborate argument was needed
for the case of the curved backgrounds treated in Ref. [2] but the essential
role played by the corresponding integral equation for curvature remained
unaltered.

In the flat space argument one avoided certain complications, resulting
from the breakdown of Huygens’ principle for the complete gauge-covariant
wave operator appearing in the curvature propagation equation, by splitting
that operator into a pure flat-space wave operator (which does of course obey
Huygens’ principle in four-dimensional Minkowski space) and a collection of
lower order, Huygens-violating, connection terms which were moved over
and included with the ‘source’ terms in the full, inhomogeneous wave equa-
tion for curvature. One then derived the integral formula for curvature by
applying the well-known fundamental solution for the flat space wave opera-
tor to the redefined source terms and then eliminating the connection terms
in the redefined source, in favor of curvature, through an application of the
Cronstrom gauge argument mentioned above.

This same operator splitting technique was also employed for curved
backgrounds in Ref. [2] but there, since the ordinary tensor wave operator
itself violates Huygens’ principle (in a generic background), new terms in the
resulting ‘representation formula’ for Yang-Mills curvature arose which had
no direct analogue in the operator-split, flat space argument. These new,
so-called tail terms appeared as integrals over the interior of the past light
cone from an arbitrary point to the initial hypersurface and over the interior
of the three ball in the initial hypersurface bounded by the intersection of
the past light cone with this initial surface. Fortunately, however, these tail
terms produced only a slight complication in the argument for the curved-
space ‘pure’ Yang-Mills problem because all of the Huygen’s-violating, tail
contributions to the fundamental solution for the residual tensor wave opera-
tor (remaining after the aforementioned operator splitting is carried out) are
functionals only of the given, background metric and thus are independent of
the Yang-Mills field under study. Their contributions can therefore always
be bounded by constants dependent only upon the background geometry
but independent of the solution in question.

In this article we derive an integral equation satisfied by the curvature
tensor of a vacuum solution to Einstein’s equations by applying the funda-
mental solution of the associated, curved-space tensor wave operator to the
source terms in the curvature propagation equation defined after an anal-
ogous operator splitting, within the Cartan formulation for the field equa-
tions, has been carried out. For this purpose we exploit the general theory
of such wave operators developed over the years by Hadamard, Sobolev,
Reisz, Choquet-Bruhat, Friedlander and others [8]. We then transform
the resulting expression, by an application of Stokes’ theorem and some
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integration-by-parts arguments, to rewrite the Huygen’s-violating tail con-
tribution integrals in terms of other integrals over the past light cone itself.
A generalization of Cronstrom’s argument is given which shows that not only
the connection but also the frame field can be explicitly expressed in terms
of curvature by exploiting a natural parallel propagation gauge condition in
conjunction with the standard Hadamard/Friedlander constructions.

While the aforementioned calculations exploit an operator split version
of the curvature propagation equation (written as an evolution equation
for a matrix of two-forms), we also show how the same result can be de-
rived, without using the Cartan formalism or associated operator splitting,
by applying the Hadamard/Friedlander fundamental solution for the wave
operator acting on a fourth rank tensor to the purely (fourth rank) tensorial
form of the curvature propagation equation. At the other extreme one could
presumably arrive at the same result in still another way by converting all
the indices on the curvature tensor to frame indices, carrying out a maximal
operator splitting to include the connection terms with the source and then
applying the fundamental solution for the purely scalar wave operator to
the wave equation for each component. We have not performed this latter
derivation but strongly suspect that it leads to the same, ‘canonical’ result
obtained in the other two ways.

In view of the foregoing remarks it may seem that we have gained little
in emphasizing the use of the Cartan formalism and its associated ‘Yang-
Mills analogy’ in analyzing the field equations but one should keep in mind
that the derivation of this integral equation for curvature is only the first
step in a proposed sequence of arguments wherein one hopes to exploit
the Cronstrém-type formulas to re-express all the fundamental variables in
terms of the curvature (written in Cartan fashion as a matrix of two-forms)
and derive estimates for curvature by analogy with those obtained in Refs.
[5] and [2]. Until such arguments are carried out it will not be evident
whether the Cartan formulation is actually essential for the analysis or only
a convenience for those familiar with the ‘pure’ Yang-Mills derivations.

Of course one cannot simply expect to copy the pattern of the ‘pure’
Yang-Mills arguments and thereby derive a global existence result for the
Einstein equations. First of all we know that any such conclusion must be
false but it is worth recalling here that the Yang-Mills arguments did not
imply unqualified regularity of the Yang-Mills field but only implied that
the field could not blow up until the background spacetime itself blew up.
In general relativity though there is of course no background spacetime and
the vanishing torsion condition, which links the metric to the connection,
has no analogue in pure Yang-Mills theory.

One rather explicit obstruction to simply copying the ‘pure’, curved-
space Yang-Mills argument is that one cannot simply bound the Bel-Rob-
inson energy fluxes (which fortunately do bound certain relevant light cone
integrals) in terms of the Bel-Robinson energy defined on the initial data
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hypersurface. While the Bel-Robinson tensor does in fact obey the van-
ishing divergence condition whose analogue, in the case of the canonical
stress energy tensor, permitted the derivation of such a bound in the pure
Yang-Mills problem, the Christoffel symbols occurring as coefficients in this
equation are no longer background quantities and thus no longer a priori
under control as they were in the arguments of Ref. [2].

However the full definition of a Bel-Robinson energy expression (and its
associated fluxes) depends upon the additional choice of a timelike vector
field on spacetime. If one had the luxury of choosing a timelike Killing
or even conformal Killing field in defining these quantities then the corre-
sponding Bel-Robinson energy would be a strictly conserved quantity and
a significant portion of the needed arguments would revert to the simple
form available in the flat space (or conformally stationary curved space)
‘pure’ Yang-Mills problem wherein the canonical (positive definite, gauge
invariant) energy is strictly conserved. But such an assumption is absurdly
restrictive in the case of Einstein’s equations for which the small set of vac-
uum solutions admitting a globally defined timelike conformal Killing field
is essentially known explicitly [6].

But whereas the presence of a conformal Killing field is out of the ques-
tion for generic Einstein spacetimes there is nevertheless a potential utility in
identifying what we might call quasi-local, approximate Killing and confor-
mal Killing fields and trying to exploit these in a ‘quasi-local, approximate’
variant of the arguments that assume a strict Killing or conformal Killing
field. The idea we have in mind is spelled out more explicitly in the con-
cluding technical section of this article wherein we show that the parallel
propagated frame fields (determined by parallel propagation of a frame cho-
sen at the vertex of each light cone) satisfy Killing’s equations approximately
with an error term that is explicitly computable in terms of curvature and
that tends to zero at a well-defined rate as one approaches the vertex of
the given cone. The flux of the corresponding quasi-local energy (built from
the chosen vector field and the Bel-Robinson tensor) will of course not be
strictly equal (as it would for a truly conserved energy) to the energy con-
tained on an initial data slice but the error will be estimable in terms of
an integral involving the (undifferentiated) curvature tensor. The question
of how best to use this observation to obtain optimal estimates from the
integral equation for curvature is one we hope to address in future work.

The idea of exploiting the ‘Yang-Mills analogy’ to analyze Einstein’s
equations is certainly nothing new and has been proposed previously by
Eardley and van Putten, for example, with a view towards numerical ap-
plications [14]. Furthermore the global existence of Yang-Mills fields prop-
agating in Minkowski space has been proven by a completely independent
argument, which avoids light cone estimates, in a paper by Klainerman and
Machedon [10]. During a visit to the Erwin Schrodinger Institute in the sum-
mer of 2004 the author described the preliminary results for this paper with
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Sergiu Klainerman who then, together with Igor Rodnianski, independently
succeeded to derive an integral equation for curvature using a significantly
different approach from that described herein [11]. Since the two formula-
tions are quite dissimilar (in that, for example they do not use the frame
formalism, the Hadamard/Friedlander analysis or the parallel propagation
gauge condition) it is not yet clear whether the resultant integral equations
are ultimately equivalent or perhaps genuinely different. Klainerman and
Rodnianski trace the origins of their approach back through some funda-
mental papers by Choquet-Bruhat [7] and Sobolev [13] whereas the sources
for our approach, as we have indicated, trace more directly back through
the work of Friedlander [8] and Hadamard [9]

2. Propagation Equations for Spacetime Curvature

In this section we rederive the familiar wave equation satisfied by the
curvature tensor of a vacuum spacetime and then reexpress that equation
in a form which parallels the one satisfied by the Yang-Mills curvature in
a vacuum background. One could generalize both forms by allowing the
spacetime to be non-vacuum but since we shall not deal with sources for
Einstein’s equations in this paper, we simplify the presentation by setting

(2.1) R* av == Ry = 0.
The Bianchi identities give
(2.2) R gysyu + R gopsy + R puryss = 0

so that, upon contracting and exploiting the algebraic symmetries of the
curvature tensor, one gets

(2.3) Rospa ™" = Rpys — Rpsy-
Imposing the vacuum field equations this yields
(2.4) DoRysg® := Ryspa ™ =0

where we have introduced D, as an alternative to ; « to symbolize covariant
differentiation.
Taking a divergence of the Bianchi identity (2.2) yields

(2.5) R gy ™ = RY gyus ™ — R gopy ™

Commuting covariant derivatives on the right hand side and exploiting the
field equations (2.1) together with Eq. (2.4), which follows from them, and
using the algebraic Bianchi identity

(2.6) R 13,59 =10

to simplify the resulting expression finally gives
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(2.7) DFD,R® gys 1 = RY gysip "
=Ry R gpo
+2RY p5o B3 " 17 = 2R pyo Rp P 57
This is the fundamental wave equation satisfied by the curvature tensor of

a vacuum spacetime.
Now, following the notation of the appendix we set

a a7,0 pPA
(28) R :eAhBR oY

B;w;a
and expand out the right hand side of this expression to get

(29) DOtRa I;;uj F= Ra lA);UJ;Ol

a A
= 0307 R e

= VQR& buv + w? @aRé buv
—w i)aRa ey
where we have defined
(2.10) VaRY,, = (R",)a

§ a é a
o FﬂaRa bov FVaRa Eué'
The operator V, captures only that part of the full spacetime covariant
derivative operator D, that acts on the coordinate basis indices p and v of

R by and ignores the contributions arising from the frame indices @ and

b. These latter contributions are explicitly added back in Eq. (2.9) for the
full spacetime covariant derivative of R* by where they appear as the terms

containing the Lorentz connection w?® i, We extend the definitions of D,
and V, to operators on tensors of arbitrary type in the obvious way; D,
is the full spacetime covariant derivative operator while V, ignores frame
indices and acts only on spacetime coordinate indices.

This splitting of the full covariant derivative into a spacetime coordinate
contribution and a frame or “internal space” contribution is parallel to what
one has in Yang-Mills theory wherein the Yang-Mills connection A% i, Plays
the role of the Lorentz connection w? j,, but in which the internal space Lie
algebra indices refer to the chosen gauge group and not to the Lorentz group.
In Yang-Mills theory of course the spacetime metric and its Christoffel con-
nection are prescribed a priori and have no relation to the internal space
connection A% b

Rewriting the Bianchi identity (2.2) in this notation one gets

+DsR*; =0

(2.11) DyuR"; s+ DR b =

bép



118 V. MONCRIEF

or more explicitly, using the aforementioned splitting of D,
(2.12) V“R“ byo + w® @MRC bys R @,Y(;wc by
+ VWRa bou + w? @’YRC bop R &;ch by

+ V(;R& AL @5Ré 3

a é
buy R ey s
=0

wy

wherein one sees the internal space (frame) contributions arising as a set
of matrix commutators of the Lorentz connection and curvature. This has
exactly the structure of the corresponding Bianchi identity for Yang-Mills
theory and reproduces that formula if one makes the substitutions of F'¢;

buv
for R*; ,
playing the same role in each equation. The full spacetime/gauge covari-
ant derivative bears the same relation to the pure “spacetime” covariant
derivative as D, does to V, in Eq. (2.9) when the same substitutions are
made.
On the other hand, a Yang-Mills curvature does not have the full alge-
braic symmetries of the Riemann curvature and, for closely related reasons,

one cannot form the analogue of the Ricci tensor from F@ by Thus equa-

and A% by for w by with the “spacetime” covariant derivative V,

tion (2.1) has no analogue in Yang-Mills theory. If Eq. (2.4) however is first
reexpressed as

(2.13) D°R%; . = ¢*"D,R%

BB - 0

lA),@a =
then it corresponds precisely to the (source-free) Yang-Mills equation which,
by definition, is
(2.14) DOF® o =g Dy FY
P2 GV g+ AT g,
— F% 50 A%}
=0.

In addition, F' dg is defined in terms of A% ;, Py the precise analogue of
v 0

the equation (A.17) which expresses R® by in terms of w by namely

(2.15) Fo = 0,A% — 0,A";

a d a d
+ A® j“A by A JVA by
Note that this formula does not involve the spacetime metric or its Christoffel
symbols. In fact, the Christoffel symbols entering into the definition of V,,
also cancel in Eq. (2.12) which entails only the exterior derivatives of the
two-forms F'¢ dex“ A dz¥ when the aforementioned substitutions are made

there. On the other hand, Eq. (2.14) involves the metric and its Christoffel
symbols explicitly and these quantities enter thereby into the wave equation
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for Yang-Mills curvature which played a central role in the Chrusciel-Shatah

analysis [2] of Yang-Mills fields on a curved background spacetime.
Returning to the wave equation for space time curvature (2.7), we now

write it in the Cartan formalism which is, for us, motivated by the rather

close analogy with Yang-Mills theory. Setting

(2.16) Ry =08 B R iag g7

and expanding out the right hand side using the notation introduced above

one now gets

(2.17) 9" {VsVaRY;,, + 0 Ry,

a ¢
- R G Ea]

+w 5[V R b T W’ g R b
:d
=R ,,w% ]

~ [VaR? e + W dAaRdA o — R ngw‘z calw® 35}
= —Ru *7 RO bpo
+2R 4o Ry, 7 — 2R 00 RSy 7
Rearranging this slightly, one can write it in the form
(218)  VOVaR',  +Ru"RY;
= 2R o Ry, 7 — 2R 4 RYy

_ gaﬁ{vﬂ [wd éaRé by — R é;wwé Ba]

A : :
+w'es[VaR , + 0, B,

é d
- R d/u/w ba]

— [VaR® gy + 0" g R e — R* w0 0l 5}

where we have put V% = ga5Vg. The operator acting on R% by O11 the
left hand side of this equation ignores the frame indices and has exactly the
same form as the wave operator that acts on the Faraday tensor F),, of a
solution to Maxwell’s equation on a vacuum background spacetime.

3. Normal Charts and Parallel Propagated Frames

In any Riemannian or pseudo-Riemannian (e.g., Lorentzian) manifold
(V,g) one can construct, using the exponential map, a normal coordinate
chart on some neighborhood of an arbitrary point in that manifold. Within
our framework let geV be an arbitrary point of V' and choose an ortho-
normal frame {€,} at the point ¢q. Tangent vectors eT,V can then be
expressed as v = z#€, and, for each such 0, one can construct the affinely
parameterized geodesic of (V,g) which begins (with parameter value zero)
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at the point ¢ with initial tangent vector 0. If the components {z#} are
constrained to a sufficiently small neighborhood of the origin in the relevant
real number space each such geodesic will extend (at parameter value unity)
to a uniquely defined point p e V' in some (normal) neighborhood of the point
q. More precisely one proves that this (exponential) mapping determines a
diffeomorphism between a neighborhood of the origin in the relevant real
number space and a corresponding neighborhood of the point ¢ in the man-
ifold V. As usual, such neighborhoods are called normal neighborhoods and
the corresponding coordinates {z*} normal coordinates. This construction
breaks down only when distinct geodesics emerging from g begin to intersect
away from q.

Note that by construction one has €, = %

¢ though of course away

from ¢ the (normal) coordinate basis fields {&%} will no longer be ortho-
normal. It is not difficult to show that when the metric and Christoffel
connection are expressed in normal coordinates about ¢ (with z*(q) = 0)
they obey

(3.1) 9 (0) = Ny I’ij(O) =0

at the point q. More remarkable are the formulas

(3.2) G (@)x” = g, (0)2” = nya”
and
(3.3) I (z)zfz” =0

satisfied throughout an arbitrary normal coordinate chart [17]. We shall
give an alternative proof of these equations later in this section.

An important feature of normal coordinates based at ¢ is that the geo-
desics through ¢ are expressed simply as straight lines in such coordinates.
In other words the curves defined by

(3.4) at(A) =t - X, Nel0,1]

are all geodesics beginning at ¢ for any {z#(p)} lying in the range of the
chosen chart.

The geodesic with z# = x*(p) connects ¢ (at A = 0) to p (at A = 1)
and is the unique geodesic, lying entirely within the chart domain, to have
this property. Note that the tangent vector to this geodesic at the point p is
given by 7, = x“(p)% p- Thus the vector field o = x“&% is, away from g,
everywhere tangent to the geodesic from ¢ which determines that arbitrary
point p via the exponential map.

On any such normal coordinate chart domain we now introduce a pre-
ferred orthonormal frame field {h;} as follows. Choose h; |q= 04€, at the
point ¢ and extend each such frame field to a normal neighborhood of ¢ by
parallel propagation along the geodesics emerging from ¢ in the construc-
tion of the normal chart. Such parallel propagation automatically preserves
orthonormality and thus yields an orthonormal frame field {h;} defined
throughout the chart domain. The dual, co-frame field {#%} can either be
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obtained algebraically by computing HZ = n&bgwhg in the normal coordi-
nate system or, equivalently, from parallel propagation of the co-frame field
{69} |, defined at g along the geodesics emerging from g. This works natu-
rally since parallel propagation of both {#%} and {h;} along these geodesics
automatically preserves the duality relations

(3.5) (07, ) = O3R! = 6.

Here and below we let (,) signify the natural pairing of a one-form and a
vector.
From the foregoing construction it follows that Vzh; = 0 where v =

:C“a% is the geodesic tangent field previously defined and Vj is the direc-
tional covariant derivative operator. More explicitly this yields
(3-6> (vﬁhd)ﬂ = Uy(hg,u + FfYLVhZ) = xy(hg,u + F#th) =0.
Contracting with 92 one gets the equivalent equation
(3.7) 05 (Visha)* = v" (05 RE , + 051]TH,)

= x”(ﬁflhgy + thgl“zy)

=z"w%, =0.

In other words parallel propagation of the orthonormal frame {h;} along ©
corresponds to the equation

(3.8) (We4,0) =wlapa’ =0

holding throughout the normal coordinates chart where, as before w®,; =

w4, dx” is the connection one-form defined by this choice of chart and frame.
Equation (3.8) is completely analogous to the Cronstrém gauge condition

for a Yang-Mills connection A%; = A%; dz” introduced in [1] and exploited

in [5] and [2] to establish global existence for solutions to the Yang-Mills

equation in flat and curved spacetimes respectively. In Yang-Mills theory
the gauge condition,

(3.9) A%y 2" =0
(again imposed throughout a normal coordinate chart on spacetime) results
from parallel propagation in the internal space whereas here it results from
parallel propagation in the space of orthonormal frames tangent to space-
time. As in Yang-Mills theory one can exploit this choice of gauge to com-
pute the connection one-forms w®; directly from the curvature two-forms
R?,, reversing the order of the usual calculation. In the chosen gauge Eq.
(A17) gives immediately

0

(3.10) ¥ R¢ g = —x”@wc ap — W ap
or, equivalently, along the geodesic curve z#(\) = z# - A, that
d

(3.11) D (V)] = AR gy (2(V))
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Integrating this from A =0 to A =1 gives
1
(3.12) Wl (z) = —/ A\ Az" R 4 (- \)
0

in exact parallel to Cronstrom’s formula for A° ap in terms of F ¢ -

In general relativity however, one can go further and compute the (co-)
frame field {#*} (which has no analogue in Yang-Mills theory) directly in
terms of the connection and hence in terms of curvature. To see this first
note that the tangent vector to any of the (normal) geodesics through ¢ is
given by
det(X) d

d\x d)\(
and thus is independent of A. Since this tangent vector is (by the definition
of geodesics) parallel propagated along the geodesic its natural pairing with
a parallel propagated one-form such as 6% is necesarily independent of the
curve parameter A\. Equating these pairings at A = 0 and A = 1 gives

(3.14) 02(0)z” = 6%(x)a”

V{x"} within the normal neighborhood. Squaring this formula gives imme-
diately

(3.15) N,302(0)8% (0)2" & = g, (0)ata”

(3.13) aHA) =zt

= négﬁﬁ(x)eﬁ(x)x”x# = g ()2t 2"

which is related to, but weaker than, Equation (3.2). We shall reproduce
the strong form momentarily.
The zero torsion condition is given by

(3.16) 0,05, () — 0,05(x)
+ w5, (@)85(2) — 4 (2)85(2)
=0.
Contracting this with =¥ and using Eq. (3.8) one obtains
(3.17) 2"y (0, (x)) — Oula”6;(2)]
+ 05 (x) — w o (2) (2 05())
=0.

But making use of the result in Eq. (3.14) we can reexpress this as
(3.18) 270, (6;,(x)) — Dl 6;,(0)]

+0(2) = (@) [+ 05(0)]

= 2"0,(65,(x)) + 65 (x) — 65(0)

— W’ () [2765(0)]

=0
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which can be written as
(3.19) a:"c?,,[@ (z) — HZ(O)]
+10,(z) — 6;,(0)]
=’ 4u(2)[0(0)2"],
)

a transport equation for the quantity 02(:1: —HZ(O). Along a geodesic z#(\) =

z# - X through ¢ one thus has

(320) ddAweC( () = 65(0)]

= wau(z(N)[2” - A 65(0)].
Integrating this form A = 0 to A = 1 one gets
(3.21) 0% (x) = 65,(0)
1
+ [t 0,080
0

which is the desired expression for Hz(:z:)

Combined with Eq. (3.12) this allows us to express both the connection
and the frame one-forms directly in terms of curvature by explicit integral
formulas. Given the (co-) frame {#%} one can of course compute the frame
fields {hs} and the metric algebraically.

To show how Eq. (3.21) implies Eq. (3.2) we use the former to evaluate

(3.22) g (@)a” = 65 ()02 ()"

= 1. <9f;(0) + /0 1 d\[w® w(m)(xﬂ@i(o))])
. (af(ow + /O 1 do|w? By(o—g;)ﬁ(aﬁeg(o»])
( n,405(0) + /0 ld)\[w J&H(Ax)(mwg(ono 0%(0)a

1,402 (0)0%(0)z” + / 1 dA[wg,, (A2)A2702(0) - 2703(0)]
0

Ned K
= guw(0)z”
where we have used the parallel propagation condition, w? iw(:v)x” = 0,
and the metric compatibility condition, w;; (z) = —w;, (), to simplify the

intermediate expressions.

Equation (3.3) is normally proven directly from the geodesic equation
specialized to normal coordinates. Using the duality relations 6y hg =4§%;
and OZ h% = 6, however, we can reexpress Eq. (A.13) in the equivalent
form

3.23 Iy, =h) 605w, +h) 02
v a Vo a Yo,v
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Thus since w? 4, (x)x” = 0 we get

(3.24) I3, (x)as” = h)(2)05,(z)z 2"
But using Eq. (3.14), one gets
(3.25) 2’2’03, (x)) = 2"{0,[03 (x)a°] — 65(x)}

— 2" {62(0) — 63 (x)} =

where the last step follows from Eq. (3.21) and the parallel propagation
condition w4, (v)z” = 0. Thus T'}, (z)2°z” = 0 in normal coordinates.

4. An Integral Equation for the Curvature Tensor

In Section 2 we rederived the fundamental wave equation satisfied by
the curvature tensor of a vacuum spacetime and expressed this, via the
Cartan formalism, as a curved space Yang-Mills equation coupled to the
vanishing torsion condition. The latter equation, which relates the frame
field determining the spacetime metric to the connection, has no analogue
in a “pure” Yang-Mills problem but here of course provides the fundamental
link between the metric and its curvature.

In the Cartan formalism wherein one regards the curvature tensor as a
matrix of two-forms, R% I;Wd:z“ A dx¥, or equivalently as a two-form with
values in the matrix Lie algebra for the Lorentz group SO(3,1), the wave
operator (defined by the left-hand side of Eq. (2.18)) takes the form (for each
separate matrix element) of the same wave operator that acts on the Faraday
tensor F),, dz" A dx” of a solution to Maxwell’s equations. In particular, the
frame indices play completely inert roles on the left-hand side of Eq. (2.18)
which leaves the different matrix elements uncoupled.

We want to derive an integral equation satisfied by curvature by apply-
ing the fundamental solution for this wave operator to the “source” term
defined by the right hand side of Eq. (2.18), using Eqgs. (3.12) and (3.21) to
eliminate the connection and frame in favor of curvature in much the same
way that one previously used Cronstréom’s formula to eliminate the Yang-
Mills connection in favor of its curvature in studies of the flat and curved
space pure Yang-Mills fields. The theory developed in Friedlander’s book
[8] (which builds on the fundamental work of Hadamard, Riesz, Sobolev,
Choquet-Bruhat and others) applies to this wave operator (as well as to
others we shall consider later) and allows one to write an integral formula
for the solution of the corresponding Cauchy problem on so-called causal
domains of the spacetime (i.e., on geodesically convex domains which are
also globally hyperbolic in a suitable sense [18]). For Friedlander, who treats
only linear problems, the integral formula in question is a genuine represen-
tation formula for the solution of the associated wave equation whereas for
us it only yields an integral equation satisfied by the relevant solution to the
Cauchy problem.
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Of course not every solution to Eq. (2.18) corresponds to a solution
of Einstein’s field equations. It is necessary, in order to avoid introducing
spurious solutions, to restrict the Cauchy data appearing in the Friedlander
formula by imposing those first order equations upon the curvature which
results from the Bianchi identities when the Ricci tensor vanishes (the vac-
uum condition). The Friedlander formalism applies to all solutions of the
relevant wave equation and hence in particular to the solutions of physical
interest.

To simplify the notation, let us write F),,, for any particular matrix
element R% by of curvature (surpressing the inert frame indices a,b) and
fuv for the corresponding source term so that Eq. (2.18) now takes the form

(4.1) Fuvry 7+ Ry “PFop = .

With reference to Fig. 5.3.1 of Friedlander’s book, let p be a point in some
causal domain of ((4)V, g) and S be a spacelike hypersurface within this do-
main such that every past-directed causal geodesic from p meets S. Further,
let C), be the mantle of the (truncated) past light cone from p to S, o, be
the (two-dimensional) intersection of C), with S and let D,, be the interior of
this truncated cone and designate by S, the (three-dimensional) intersection
of D, with S. Finally, let T}, designate the expanding lightlike hypersurface
which intersects S in o).

Friedlander’s representation formula for the field at point p is given in
local coordinates by [19]:

1 1yt
(42)  Faple) = o / Uls (z,2") fus (2" ) pr (2)
Cp
1 '
o [ .0 s (@
Dy
1 1ot /
WV / /
+ o (V) (@ 2) VT Fup(a)
Sp

- Fu’u’(l‘/)vy/(VJr)Z,ﬁyl(L 7)]
* %/{Uﬁf,ﬁy/(%fC’)[Q(Vyt(x’))(va“,y,(g;’))
+ FM/V/(ZC,) O t(x/)]

— (Vt(2'), VT (2, 2")) (V)5 (2, &) Frwr(2) bpae,p (2).

Here U, 5;6”/(:1:, 7') = k(x, 2’ )Tglﬁyl(:z:, 2') where k is the transport biscalar de-
fined by Eq. (4.2.17) of Ref. [8] and given in local coordinates by Eq.
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(4.2.18) or (4.2.19) of that reference and ng/ (x,2’) is the transport biten-
sor (or propagator) defined in Section (5.5) of Friedlander. The latter is
expressible explicitly in terms of an orthonormal frame parallel propagated
from p along the geodesic issuing from that point.

The measure p(z') is the standard spacetime volume measure given in
local coordinates by \/—det g, (2")d*s’ whereas the measure on the light
cone ur(z') is a Leray form defined such that

(4.3) dpT(z,2") A pr(2') = (')

where T'(z,2) is the optical function (squared geodesic distance within a
causal domain) introduced in Sect. (1.2) of Friedlander (c.f., Theorem 1.2.3).
Leray forms are introduced in Sect. (2.9) and developed further in Sect.
(4.5) of this same reference and the coordinate expression for the dual *v
of a vector v is given there by Eq. (2.9.3). This is needed in the boundary
integral over S, whereas ur arises in that over C,. The two-dimensional
Leray form yu; (") needed for the integral over oy, is defined such that (c.f.,
Lemma 5.3.3. of Ref. [8])

(4.4) dt(z") NdpT(z,2") A per (') = p(a')

where t(z') is the null field defined by Lemma 5.3.2 of Friedlander. Note
also in this reference the needed expressions for (O ¢)u r and (Vt, VI') given
respectively by Egs. (5.3.20) and (5.3.19) of this same section.

The tail field (V)" :6”, (x,2") is the solution of a characteristic initial value
problem for the homogeneous wave equation. By virtue of the self-adjoincy
of our Eq. (4.1) and the reciprocity relations derived by Friedlander in Sect.
(5.2) (which apply as well to the tensor case as discussed in Sect. (5.5)) the
tail bitensor V' satisfies the wave equation

(4.5) I (00l 4 R (@) (00
! l// ! I/l /5/
+ RY () (VS (w,2)) — By () (VLS (2,2)
=0

wherein the indices a3 and coordinates z# play inert roles. In the foregoing
formulas, as well as below, the notations V., and ;v are used interchangeably.
The initial data for V't is computable on the light cone C,, where it reduces to
the bitensor field that Friedlander expresses as V. The transport equation
determining Vj is provided by Friedlander’s Eq. (5.5.23) and its explicit
solution is given in his Eq. (5.5.25).



AN INTEGRAL EQUATION FOR SPACETIME CURVATURE 127

5. Transformations of the Tail Field Integrals
Define the tail field contributions to F,g(z) by

(5.1)
Fl @) i= o [ @) ol
Dy
+% S[(VERY (2,2 )V F (a)
Sp

_ Fu/,j/(x’)VW'(VﬂZ;;/(x, z')]
1
s

Ip

(Vt(a'), VT (@, 2 ) (V)Y (@, 2" Fyor (2 r ().

This consists of all the terms that would vanish if Huygen’s principle were
valid since in that case V' = 0 but, in a curved spacetime, these terms are
generally non-zero.

Let us reexpress the source f through the use of the wave equation for
F as

(5'2) fu’l/’(x) (PF)u 1/’( )

where P is the second order linear, self-adjoint operator defined by the left
hand side of Eq. (4.1). Recalling Eq. (4.5) which can be written as

(5.3) (PVH)EY (2,2") =0

where P acts at x and the indices «, # and x are inert, one finds that the
integrand (V*)“ v (z,2") fu (2) can be expressed as

(54) (VDY (@.2) fuw (@)
= (VLY (0,0 (PF)u(a') — (PV )Y (2,0) Fyoy (2')
= Vo { (VDY (2,2") (V7 o (2))
— (VY (VDY (2, 2) Fyr ()}

where the curvature terms have canceled from the final expression by virtue
of the self-adjoint structure of the wave operator P. Thus the integrand in
the volume integral over D), can be reexpressed as a total divergence. It is
worth noting that the scalar field analogue to the above observation is given
at the end of p.187 in Friedlander’s book.

Using Eq. (5.4) to reexpress the integral over D, in the equation for
F ;%11(56) and using Stokes’ theorem to rewrite this volume integral as a
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boundary integral over dD,, = C},, U S}, one arrives at the result that

ai 1 7 !
(5.5) Fil(z) = %/*[(W)gﬁ (z,2" )V Fyp(2))
Cp
— F () VY (VD)LY (2,27)]
1

27
9p

(Vt(a'), VT (@, 2 ) (V)Y (@, 2" Fyor (2 r (2)

where the orientation chosen for the integral over the null cone C), corre-
sponds to a normal field directed towards the vertex p. The cancelation of
the two boundary integrals over S, parallels that shown by Friedlander for
the scalar case in his Eq. (5.3.14) (wherein however it was assumed that the
support of the scalar field did not meet Cp). One can also think of deriving
Eq. (5.5) from Eq. (5.1) by pushing the surface S, forward, holding its
boundary o), fixed, until it merges in the limit with C),. Friedlander remarks
in his Section (5.4) that the representation formula for the characteristic
initial value problem can be derived in a similar manner wherein, however,
one pushes Sptowards the past rather than towards the future.

Though we have succeeded to reexpress the tail contributions in terms
of integrals only over C,, and o, the resulting formula is still not in a satis-
factory state from the point of view of the ultimate applications we have in
mind. This is so, in large measure, because Eq. (5.5) contains derivatives of
the unknown curvature and it would be hopeless to try to derive estimates
for the undifferentiated curvature from an integral equation involving the
derivatives of this same quantity.

Fortunately, however, in the integral over C, in Eq. (5.5) for F, é%‘l(x) only

derivatives of (Vﬂg:@'/(x, z') and Fy,/(2') tangential to the null generators
of the light cone are involved. The point is that since C), is a null surface
its normal (VY'T'(z,2’) in Friedlander’s notation) is in fact tangential to
the cone and hence the dual operator (x in Eq. (5.5)) produces only these
tangential derivatives in the integrand. Thus one is at liberty to integrate by
parts and throw the directional derivative onto V' for example and thereby
remove it from F'. In effect, Friedlander exploited this freedom (though in
the opposite way) in recasting the integral over C}, in his representation
formula for the characteristic initial value problem into a form in which
only tangential derivatives of F' were involved. For our purposes, though it
is essential to avoid the necessity of computing tangential derivatives to F'
and to recall that the tangential derivative of VT is given rather explicitly by
Friedlander’s Eq. (5.5.23) for this latter quantity (which coincides with V;
on Cp). On the other hand, this integration by parts produces an additional
contribution to the integral over C,, (since V7' T'(z,2’) gets differentiated)
and a boundary contribution which modifies the integral over o,. We shall
carry out these further reductions in the following section and thereby arrive
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at our final integral equation for curvature within the framework of the
Cartan formalism.

The reader may be wondering though why it should be possible, as
we have argued, to transform the tail contributions, which result from the
failure of Huygens’ principle to hold in a general spacetime, into a form
(involving only integrals over C), and o0,,) which seems to have miraculously
restored Huygens’ principle. The resolution of this seeming paradox results
from noting that even for a truly linear problem (where the meaning of
Huygens’ principle is clearly defined) the transformed “representation” for-
mula requires knowledge of the unknown field F},,, on the light cone C}, and
not merely on oy, the intersection of the cone with the initial hypersurface.
Thus the transformed equation is not really a representation formula at all,
even in the linear case, whereas initially (in Eq. (4.2)) it was. For the non-
linear problems that we are interested in however, a genuine representation
formula (for the solution of the Cauchy problem) is out of the question and
it is far more convenient to have the tail contributions transformed, as we
have done, to integrals over C, and o, alone.

6. Reduction of the Tail Contributions

To simplify the notation slightly let us write Eq. (5.5) in the form

(6.1) Fa) = TE @) + TR @)

where 'F!4l(x) is the integral over C, and "' F!4(z) that over o,. Reex-
pressing the dua)l *v to a vector v via Eq. (2.9.3) of Ref. [8] (see also p. 194
of this reference

(6.2) xv(z') = (v(2), grad'T(z, ")) ur (z')
one gets the more explicit formula for Fé%l(x)

1

(63) (@) = / pr (2 (VT (2, 2 (VHEY (2, 2"V gy Fyr ()
Cyp

AR )

The key point here is that only derivatives tangential to the null generators
of the cone C), appear in the integrand. This allows one to integrate by
parts to eliminate derivatives of Fs, in favor of (tangential) derivatives
of (V*)Zﬁy which, in turn, may be evaluated from the transport equation
(cf. Eq. (5.5.23) of Ref. [8]) which determines this quantity along C,.

Carrying out these operations and writing (%)Z,ﬁ”,(z‘, x') for the restriction
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of (V*)Zg/(x,x’) to C), one arrives at

0:4) "F@) = 5 [ i@ UT D )T (Vo) (225 (@)
Gy

+ By () [PULY (2, 2) + (O (') — 4)(Vo)ley (w,2)]}

where P is the wave operator defined in Eq. (5.2) above and where, as
mentioned above, we can write

1.0 !,

(6.5) ULy (x,2") = k(z, ")) (2,2)

with the parallel transport “propagator” T(%/ expressible in terms of our
orthonormal frame as

(6.6) Thy (x.2') = W ()05 () (2')0)(x).
One can evaluate the first integral in the above expression for F&%‘l(az)

by first transforming from normal coordinates {z* } to spherical null coor-
dinates defined by

(6.7) 2" =1'sin 0 cosg
2% =7 sin fsin
% =1" cosb
ruU+v v—u
t =20 = 5 r = 5
r=1/S(z")?
so that
(6.8) u=t —r o=t +1
with I' = —uv everywhere and v = 0 on C),. In terms of these coordinates
it is straightforward to show that
(6.9) po 9 9,9 40,0

Ox™ ov ou
and that the Leray form

—dot (g
(6.10) = Y29 i

satisfies

(6.11) p=dI' A pr =/ —det (g )du A dv A df A dyp

as required by its definition (where det (g,,) is the determinant of g in the
spherical null coordinates). Substituting these expressions into the integral
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in question one easily arrives at

©12) 5 [ i)V T V() ) @)
o

_ i / du A df A de [%[2« [—det (g,5)(Vo)lts (w,a") s (x')]}

+ 5o / pr(2)[(4 = Vy VT (z,2') (Vo)s (,2") Fyr ()]
_ L / a0 dy { et o)V o F)

. / e (@) [(4 — VT (, @) (Vo) (@,2) By ()]

Evaluating the metric form restricted to C), one gets
(6.13)
s |, = —dudv + PVpdvdd + PV, dvdy

1 1
+ @Dy, pdetda® + (—Z @guu 4 2

- (g, OVA (2)VB) do?

where {z4;A = 1,2} = {0,¢} and where Pgapdztdz? and PVydzA
= @gup @VBdzA are (at each fixed u on the hypersurface C, defined

by v = 0) a 2-dimensional Riemannian metric and one-form respectively.
Thus, on C),

(6.14) 2/ —det g s |Cp: \/det @ gap ‘Cp

so that

©15) 5o [un) (VT )V (R (o) 0]}
Cp
- / Vet @gapdd A dg{(Vo)s (@,2/) Fyr (2]
tor / (@) [(4 = DD 2 ) (V)Y (w,2') Fr ().

It is easy to see from the metric form (6.13) that /det D gapdd A dyp is
just the invariant 2-surface area element induced on o, (defined in coordi-
nates by v = 0, u = u(f, ¢)) by the spacetime metric. Writing this as do,,
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and combining Egs. (6.4) and (6.15) we get

1
©16)  TEH@) = o / doyl(Vo)lsy' (2,2') Fyur (2]
1 w'v' /
o [ el B 0)(PULY (2,01)
CP

where the terms involving (('T'(z,2") —4) have cancelled. Adding this result
to the expression for I/ F OE%”(J:) and recalling Friedlander’s formula for the
measure ji; r(2’) given by his Eq. (5.3.19),

(6.17) (Vt,VI') . r = —doy,
one finds that the two remaining integrals in Fot[%ﬂ(x) involving the non-local
quantity (%)Z:é/(a:, 2’) also cancel leaving

! /#F(xl)(Fu’l/(x,)PUsg/(x’ZC,))

(6.18) Fil(x) = o
7T
Cyp

so that our expression for Fjg(x) (c.f. Eq. (5.1)) now becomes

©19)  Fasle) = 5 [ U @0 o)
Cp
o [ 1L @ 2T ) (Ve

+ By (@)t ) o (')

b [ B PUES (0.,

The integral over o, in the above formula involves first derivatives of the
unknown field F,,g but only on the initial, Cauchy hypersurface where these
quantities must be given.

Upon substituting the explicit form for the source terms f,/,/(z’) into
Eq. (6.19) we shall encounter integrals of the type

1 /
T
= [ wr@)(V79y)
Cp

(6.20)

where )./ is a one-form which (thanks to its explicit dependence upon w? b
Y

which satisfies the Cronstrom gauge condition) obeys FWIQM = 0 everywhere
throughout the causal domain containing C),. This special fact allows us to
successfully integrate the 4-divergence over the 3-manifold C), and obtain a
boundary integral over o,. In deriving this result, we must compute deriv-

atives of the equation FW/QVI = 0 in directions transversal to the cone C),
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so it is essential that this equation hold not just on C, but (at least to first
order) off the cone as well. B
By introducing coordinates {xz*} = {u, 0,6, } of the form

(6.21) u=1u(u,b,0),v=0v,0=0,0=¢

adapted to the domain of integration so that o, coincides with a surface 4 =
constant lying in ), one can carry out the integration explicitly to find that

(6.22) [= L / doy(E')

27
9p

where, as before, do), is the invariant surface area element induced upon o,
by the spacetime metric and in which £#9,, is a future pointing null vector,
orthogonal to o, and normalized such that

(6.23) &, = 1.

In Friedlander’s terminology, this vector is tangent to the null generators of
the null surface 7T}, which contains o,. As we shall see, the boundary term
arising in this way will combine naturally with the integral over o, in Eq.
(6.19).

We now reinstate the heretofore inert indices on the curvature and its
source by letting F},, — R® by and f,, — fe by SO that Eq. (6.19) becomes

(6.24) R 5(x) = —o— [ (UL (2.2)f%,,,(«")pr(2)

Upon inserting the explicit formula for f@ byt from Eq. (2.18) and rewriting
it slightly one finds that it contains the divergence integral

a 1 o'19, ,d v é
(6.25) D I;aﬁ(l‘) = %/,ur(a:/){v [2w éar(a:/)Uéfﬂ (a:,x/)R EM/V/(JJ/)

1,0 ~

— 2w° bo! Usﬁ'j (x,2)R® @u/,,/(a:')]}

which includes the only terms in the integrals over ), which contain deriva-
tives of curvature. Exploiting the argument above to reduce this expression
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to an integral over o, one finds that

a L o oy, W ¢
(626) D i)a,@(x) = %/dap{g [Qw éo"(x,)Ugﬁ (ZC,ZC,)R BH,V,(.T/)

Ip

— 2% (UL (@, 2 )R e (2)]}

The remaining integral over o, in Eq. (6.24) can be reexpressed, thanks to
Eq. (6.17) as

(627) 8% (@) = %/{U%”(%x/)ﬂ(wlt( DV B0 (2)
+ R, (@)Dt (@")] e (a)
1 W' 4
=5 dap{2U (2,2) (€7 Vo R b (21)

() <(<v/?é(’1“/>)( ))> }

Defining (via Friedlander’s Eqgs. (5.3.7) and (5.3.20)) the dilation 6 of doy,
along the bicharacteristics of T, by

O't(z)

(6.28) 0(z') = A

and combining the integrals D% b (z) and 8%;_ ﬁ(a:) one gets

(6.29) D% s(®) + 8% 1 5(2)

:—/dap{QU (@,2) (€ Dy R, (2"))

Op

+ UL (x, 2"\ R, ()0(2)}

where now D, is the total spacetime covariant derivative defined in Section
2. The addition of D¢ bap tO S bos has contributed precisely the terms
needed to convert V, to D, in the formula above.
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Writing out the factor PU 5;6”/(:6, 2') more explicitly as
(6.30) PULS (x,2")
=V VV/U(%’ (z,2)
1., 6/ !
+ RHY oY% (xl)Uaﬁ’y (ZC, iL’,)
B (V“’/Vyﬁ(az,x’)

k(z,x")

) ULy (0,0) + R s (UL (2, 0))

«

1,0

+2(V7 k(a, /))(Vv’Tﬁgy (z,2"))
+ /i(x,:c')(V“’ Vo (h (a: 7)),

where TS[;V, (x,2') is defined via Eq. (6.6), one can evaluate the derivatives

of 7' (z,a') using Eqs. (A.10) - (A.13) which yield

(631) h7 ayv — h? éwé av
so that
(6.32) Vot (z,2)) = w w,h“ ()05, ()P ()0 ()

W B (a6 () ()0 ()

with a similar expanded formula for V“/(Vﬂ/v'“ ﬂy (x,2")). The latter will

clearly entail factors of the type (V'Y,wcz &y) as well as factors quadratic in

the connection coefficients w? &y~ Written out explicitly it becomes:

(6.33) AR VA2 (:c, '

+ hg’w)w@ fa,<x/>hz <x/>w§<x>0£<x>

+ wd f'y/g,ylgl (.1'/) [h;g (x/)wé a0 (x/)hg/ (.1'/)

(@) 4,0 ()R ()06, ()85 ().
Assembling the various pieces of the formula for R% bor ﬁ(:c) we thus get:
(6.34) Ra

/

T o /HF {U ’Y x €z )[_QR& éé’a’(x/)Ré 137’ 7 (J:/)
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+2R% o0 (') R 4, 7 (2) + RY,,, (2) Ry 7 (2]}
1 ’ % ’
+ o [ UL .
CP

X [g)\/gl (.T/){W& a0l [wé (f)\/Rd [}ul,/(x/) _ Ré (fu/y/wd i,)\/(fﬁ/)]
~ W B () = B2 g o (@) 3 ()}
— (V7w s )R (2) = B s (V7 w3 )1}

1 / o 'V ny, ,a I e !
o [ ) 2T U (o)) i 0 R )

+ 2(V”,U“/Vl(:c z'))R% . (2')w® i (2')}

—|-—/d0p{2U (3: ') (&7 "Dy RY bw/( )

Ip

LU (0B, ()00}

1 4 ’ 1%
4o [ @RS (77 (o)) (o)

+2(VY Kz, x'))(vwﬂg’(x,x’))
+ H(ZC, xl)(v7 V'Y/Taﬁ (.1', x/))]}
where, of course, the factors involving
(6.35) VU/U(%/(J:,x/) = (VU//{(J:,x/))Tg/ﬂyl(a:,x/) + lﬁ(di,x/)va/Tg/V/(di,x/)

can be expanded out as in the foregoing paragraph.
In this explicit form the result seems quite complicated but it is straight-
forward to reexpress it as

(6.36) R g5(2)
1 ’ vp'o! !
- / e (@) (VY Vo (USE (2,2 ) R o ()

+ U%”ﬂ’;’;‘” (2, 2")[RNE o (') Ry ' 1 (2)
_ QRH‘ A’U/E’(x/)RV’ N o f/(l‘,)
+ 2R ype (@) Ry Y o€ (2]}

o / Ao AU 2,2 ) 26 (Va B ()

+ R vip'o! (x/)a(x/)]}
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where
(6.37) Us'sls (x,2")
= ki(z,2')0% (')hg (x)hY’ ()05 (x)he ()05 ()T (a')05 ()

the parallel propagator for tensors of type <1> Equation (6.36) can be

3
derived much more directly by simply applying the Friedlander formalism to
the wave equation (2.7) for curvature treated as a 4-th rank tensor and then
proceeding as above to recast the tail terms in the representation formula in
terms of integrals over ()}, which can in turn be simplified by the methods
of the present section.

However, we have already emphasized the potential usefulness of the
Cartan formulation in carrying out the sought-after light cone estimates for
curvature because of its close resemblance to the integral equation for curva-
ture arising in Yang-Mills theory. In references [5] and [2] it was necessary to
express the integral equation for (Yang-Mills) curvature in the form analo-
gous to Eq. (6.34) above in order to exploit the Cronstrom gauge conditions
and derive bounds on the curvature tensor. Thus we anticipate that the
expanded form of the integral expression for gravitational curvature, given
by Eq. (6.34), will play an important role in subsequent work to derive
estimates for the spacetime curvature of a solution to Einstein’s equations.

7. Approximate Quasi-Local Killing and Conformal Killing Fields

As is well-known the Bel-Robinson tensor for a vacuum spacetime can be
used to construct a conserved positive definite “energy” (essentially an L2-
norm of spacetime curvature) for any timelike Killing or conformal Killing
field admitted by the metric. This follows from exploiting its total symme-
try as a 4-th rank tensor and the vanishing of its divergence and trace in
much the same way that one can use the (trace-free) stress energy tensor
of a matter field to construct the conserved energy associated to a Killing
or conformal Killing field of the “background”. Except for “test” matter
fields propagating on a stationary or self-similar background however this
observation is of little value in practice since the imposition of a Killing or
conformal Killing symmetry is far too restrictive a condition to enforce on
physically interesting gravitational fields.

On the other hand it may not be necessary to have a strictly conserved
energy in order to get adequate analytical control of some mathematically
relevant energy norm. For example, in their treatment of Yang-Mills fields
propagating in a background spacetime, Chrusciel and Shatah exploited the
observation that the (gauge invariant, positive definite) L?-norm of Yang-
Mills curvature cannot blow up until the spacetime itself blows up (through
becoming singular or developing a Cauchy horizon at its boundary) [2].
This fact, which follows from the vanishing of the divergence of the Yang-
Mills stress energy tensor and the fact that its components are pointwise
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bounded by the energy density, was essentially as useful in practice as a
fully conserved energy would have been had it existed. When the spacetime
itself though is the object of dynamical study this argument (applied to the
Bel-Robinson tensor) is of less interest since it requires pointwise control of
the connection to yield a mere L? bound on the curvature and there is no a
priori reason for the Christoffel components to be so bounded.

For this reason it seems potentially useful, especially in the gravitational
case, to look for approximate Killing or conformal Killing fields, in a general
spacetime, that could in turn be employed to construct corresponding ap-
proximately conserved energies. With this in mind we show below that the
orthonormal frame fields {h} %} defined, as in Section 3, by parallel prop-
agation of a fixed frame at a point p along the radial geodesics issuing from
that point, satisfy Killing’s equations in an approximate sense that becomes
more and more exact (at a well-defined rate) as one approaches the point p
along an arbitrary radial geodesic. The error term, or so-called deformation
tensor, which measures precisely the failure of Killing’s equations to be sat-
isfied, will be shown to be explicitly expressible in terms of radial integrals of
spacetime curvature which vanish linearly (in normal coordinates centered
at point p) as one approaches this vertex radially.

In a similar way we shall show that the gradient, VI', of the “opti-
cal function” T' (representing squared geodesic distance from the vertex p)
satisfies an approximate form of the conformal (in fact homothetic) Killing
equations with an error term that vanishes quadratically (in terms of normal
coordinates) as one approaches p radially. Both VI" and any timelike linear
combination of the {hf &%} provide timelike vector fields inside the past
lightcone from point p (and restricted to a causal domain of p) and thus
allow the definition of corresponding positive definite and approximately
conserved energy expressions for curvature inside this past lightcone. The
timelike character of a frame field such as {hg %} is of course not confined
to the interior of the cone and its associated energy is therefore positive
definite throughout the causal domain in which it remains well-defined.

These approximate Killing and conformal Killing fields should perhaps
(for lack of a better term) be called quasi-local since they only approach sat-
isfaction of the relevant Killing equations as one approaches the preferred
vertex that was used in their construction. The potential (quasi-local) ap-
plication that we have in mind for such objects can be described loosely as
follows. Suppose that some future directed timelike geodesic v approaches
a singular boundary point for the spacetime under study and that we wish
to derive bounds on the rate at which curvature can blow up as v nears its
(singular) endpoint. For each point p lying on v we can construct the past
lightcone from p and parallel propagate the (unit, timelike) tangent to  at p
throughout a causal domain for p to get a timelike, approximate Killing field
of the type described above (which will however vary with the choice of the
“moving” point p). By exploiting the associated approximately conserved
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energy we might reasonably hope to estimate (with some controllable error)
the energy flux through the past light cone from p, back to some “initial”
hypersurface, in terms on the energy defined (by an integral over the ball
bounded by the intersection of the light cone with this surface) on this initial
“slice”. Since control of these (Bel-Robinson) energy fluxes is sure to play a
vital role in carrying out the light cone estimates we propose to derive later,
the possibility of bounding them in terms of initial data is sure to provide a
key step in the hoped-for argument to bound curvature pointwise in terms
of its L?-norms.

If, as in Section 3, {hg 62,,} is an orthonormal frame field constructed by

parallel propagation of a fixed frame at p along the radial geodesics spraying
out from p to fill out a causal domain of this point, then the corresponding
co-frame field {sza:“} is given bbf 092 = n&bguyhg . Using the defining formula
for the connection coefficients w® ; ,

a A pa Q @ pb
(7.1) 05, — by =05, = —w;, 0,

one computes the Killing form of {9/‘3} to find

a a & pb a b
(7.2) O + 00 = —w 3,0, — w° bl
with the right hand side representing the error for Killing’s equation. The
frame fields approach a fixed orthonormal (co-) frame at the vertex point
p but the connection components satisfy the “Cronstrom” formula given

(taking z*(p) = 0) by

1
(7.3) weap(z) = — /O d\ AR 4, (\x)

and thus vanish to order 0(x), for any metric with pointwise bounded cur-
vature, as one approaches the vertex along a radial geodesic. A key observa-
tion, from our point of view, is that only undifferentiated curvature enters
into this equation for the error. By contrast one can show that the coor-
dinate basis fields {%} (of a normal coordinate system based at p, with
x#(p) = 0) also satisfy Killing’s equations approximately, with an error that
vanishes linearly with the {z#}, but, in this case, we do not have a formula
for the error that depends only upon undifferentiated curvature (though it
is conceivable that one exists). Thus we are inclined to strongly prefer the
parallel propagated frame fields as natural candidates for our quasi-local
approximate Killing fields. Though not commuting in general (as the co-
ordinate basis fields would of course do) these fields nevertheless satisfy an
approximate Lie algebra relation, with linearly vanishing error terms, since
their commutator is given by

(7.4) hghy = hihe, = Tha, bgl” = hi[hG w
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Now, consider the “optical” function I', introduced in Section 4, and its
gradient VI' which, in normal coordinates, satisfies

(7.5) (V)P = T30 = g*fT , = 2¢°F(2) gew, () 2¥ = 22°.

One expects that VI = 228 % should generalize the well-known, corre-
sponding homothetic Killing field of Minkowski space and indeed, by con-
struction, this vector field is timelike inside the lightcone from p, null on the
cone itself and spacelike outside since, in general we have

(7.6) (VI, VD), = g*°T oI 5 = 4T

and I' represents the squared geodesic distance from the cone vertex p.
Computing the Killing and conformal Killing forms for VI one gets

(77) F;aﬁ + F;ﬁa = 4901[3 + 255”901[3,1/)

1 v
Liap +Thap — 590&39” Lo

1
= 21:1/90(,8,11 - 590(,6’9’\{6(*%”9'\/5,1/)

where the error term on the right hand side of the last equation is simply the
trace free part of 22”g,s, (evaluated in normal coordinates). This latter
quantity can be calculated using the same transport formula (derived from
the zero torsion equation) that we used in Section 3 to express the frame
field in terms of the connection. The result is

(7'8) xﬁguu,ﬁ(x)

. X . 1 ) R
= 1] 050) [ 7,000 = [ ariet 5, ) 0] 0))]

. . 1 . .

+ 0, () [wb fy(a:)(a:'yﬁ,];(O)) —/0 dA[w? fV(Aa:)()\x'YH,];(O))]} }
wherein 0% () and w® Iy () are given explicitly in terms of integrals of cur-
vature by Eqgs. (3.21) and (3.12). Thus in this case the error term vanishes
quadratically with the normal coordinates as one approaches the vertex at
z*(p) = 0 though here of course the vector field itself, VI' = 2z % van-
ishes linearly. The divergence of this approximate conformal Killing field is
given, through the trace of the first of Egs. (7.7), by

(7.9) . =84+ 2" (9" gap.)
(V—det g)»
v —det g
which coincides with a well-known equation for the d’Alembertian of I" given
by Friedlander [20]. Thus the divergence is constant up to a quadratically

vanishing error which suggests that we regard VI' as approximately homo-
thetic.

=8+ 227
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In Minkowski space, the vector fields {h% 6 = ’“%} form a Lie sub-
algebra of the algebra of generators of the conformal group. Here of course
this algebra can at most be approximate but, for completeness we compute
the remaining commutators of VI' with the frame fields {h} 52 91, The Lie
brackets are given initially by

(7.10) [ha, VIV = RET™ ., — #he.,
but we can simplify this by noting that the equations
(7.11) hop =w auh”

8 = 940

together with the parallel propagation gauge condition, R ap = 0, imply
that,

(7.12) T#hg,, =0

and thus (using Eq. (7.9)) that

(7.13) [ha, V)" = W g™ T,
= hZQA”(QgAu + xﬂgAu,ﬁ)
= 2h% + R g™ (2P gap ).

Hence we recover the flat space result up to a quadratically vanishing “er-
ror” in the would-be Lie algebra. Though we did not need it to derive the
foregoing results, it is useful to note that

v 1 14
(7.14) T ng = §go‘ﬁ(x Gpaw)

which follows from the normal coordinate identity g, (x)z" = g, (0)z” by
differentiating to get

(7.15) x”gwj,a(az) = gua(o) - gua(x)
and then antisymmetrizing in 1 and « to arrive at
(7.16) 2 (Guv,a(®) = gawpu()) = 0.

Without this result, the direct calculation of I'.,3, beginning with I',, =
2gaw (x)x”, would not yield a symmetric formula in o and [ as it must.
While one could continue along the above lines and define approximate
Killing and conformal Killing analogues for Lorentz rotation, boost and in-
version generators with formulas like x Y 6?,, —thll’ a‘z,, , Ohl{ 6?,, lhg a‘z,, ,
etc., these would not be timelike throughout the regions (interiors of past
light cones from vertices with z#(p) = 0) of interest and so would not yield
positive energy expressions. While their approximate conformal Lie algebra
relations might be of interest to develop, we shall not pursue that issue here.
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Appendix A. Notation, conventions and basic definitions

Much of our analysis will be carried out in rather specially chosen charts
and associated frames. For the moment however, to introduce the notation
that we shall use throughout, we consider an arbitrary chart and an arbitrary
(orthonormal) frame. In coordinates {x*} defined on some domain of our
spacetime manifold V' we write the Lorentzian metric g in the standard form

(A.1) 9 = gudr" @ dz”
n_9

a Ozt

{62} = {sz:z”} for this (locally expressed) metric. The orthonormality and
duality relations satisfied by these fields are summarized as follows:

0

H_—
@k’

and introduce an orthonormal frame {h;} = {h } and dual, coframe

he =h 0“ = 0,dx" coordinate basis expression

GuwhGhy =04 g’”’HzHE = n‘ii’ orthonormality relations
(A.2) Oihi' =67, 6;hi = 6, duality relations

uv = 77&2,92‘937 g’”’ = W&bhghg metric formulas

B 0%hs, dx’ = hZ#® coordinate basis vectors and forms
x

05 = ndbgu,,hg, i =mn,;g"6" component relations.

Here (7,;) is the standard Minkowski metric

-1 0
1
(A.3) n= () = ]
0 1
and n~ ! = (ndi’) is its inverse. Many of the formulas we shall derive in this

section hold true for arbitrary spacetime dimensions and also for Riemannian
metrics instead of Lorentzian ones if 7 is replaced by a Euclidean metric.
Tensors are expressed in coordinate and orthonormal bases as

0 0
Vo Dah Q¥
— Gab-.. éfmha®hi,®~'®9é®9f®“'

(A.4) S =S ®..0d"®d’®...

with components related by

ab... _ Q... apb s
(A.5) S = SH 75,“«9“9,,...hzhf....

In particular, the metric g and its inverse ¢! take the forms

(A.6) g=n0" @0, g7 =nh, @ h;
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For all differentiable tensor fields, we have the conventional (coordinates
basis) expressions for the covariant derivatives of scalar, vector and one-form
(or co-vector) fields respectively given by

%
(A7) Pia = Pa = D scalar
vh, =vh, +TH 07 vector
A = Ay — I‘ZV)\.Y co-vector

where {T Zﬂ} are the Christoffel symbols of g given by

1 v
(A'S) Fgﬁ = 5 g” (gau,ﬁ + 98v,0 — gaﬁ,y)'
The frame components of these formulas take the form

¢
(Ag) (,0;[1 = hg@;u = hg@
o = gttt — ot 4T — e (0 | pa e
b T T VR T a T\ gav éb
~ 8Ad A
)‘a;iy = hgh;;l/)‘u;u = )‘a,iy — FZE)\@ = hi]” (830”) — I‘ZE)\@
where
(A.10) T% = hY 0% {hITY, + h% ).
We shall also write
a _ pv, 4

(A.11) I'% =hiw® e
and express the connection one-forms, w®; as
(A.12) W= wl e, dr” = Wb él,hgﬁb = ng)ﬁb
which is equivalent to setting
(A.13) w o = GthFg‘y + GZ(h‘g’V).
Defining
(A.14) Wi, = n&l;w& e = n&i)w& apdx”

one easily verifies that

(A15) Whey = TWehy

which captures the metric compatibility of the chosen connection (i.e., the
fact that g,..o = 0). The vanishing of torsion for the Christoffel connection
(i.e., the fact that T ; = I';,) takes the form

(A.16) D, — 0,05+ 4,00 — 5,00 = 0

which can also be regarded as an equation determining the connection one
forms, w® 4, dz in terms of the (co-) frame fields 0° = 0] dx*.
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In this same notation the Riemann curvature tensor takes the form

(A.17) R4 = 0ShAR s

¢ ¢ ¢ d ¢ d
= OyWw &l,—c?,,w [w-l-w ciuw av — W W oau

which, since

(A.18) R® 4 = —R° 4,
and

(A.19) RE&W = —R&I;W
where

(A.20) Ry = ngéRé auw

may be regarded as a two-form which takes values in the space of anti-
symmetric Lorentz matrices. In view of Eq. (A.15 ) the connection one-
form can be thought of as taking values in this same space which in turn
represents the Lie algebra of (local) Lorentz transformations that can act
on the frame fields while leaving the spacetime metric invariant.

Regarding connection and curvature as one and two-forms which take
their values in the Lie algebra of some “internal” gauge group (in this case
the Lorentz group of frame transformations) is parallel to what one does in
Yang-Mills theory. There the principle bundle connection one-form A, dz*
and its curvature two-form F),, dz" A dx” take their values in a matrix rep-
resentation of the Lie algebra g of some gauge “internal” Lie group G. By
attaching (in a slightly unconventional way) row and column indices to la-
bel the matrix elements of these geometric objects, one could express their
components as A% b and F@ by respectively, in parallel to the notation we

have used above. The expression for F¢ by in terms of A% by is identical

in form to that for R? by 1 terms of w? 5, given in Eq. (A.17) above.
There are numerous other precise correspondences between Yang-Mills the-
ory and Cartan’s formulation of general relativity but there are also signif-
icant differences. For example in Yang-Mills theory, even if formulated on
a curved background spacetime, there is no relationship between the con-
nection one-form A, dz* and the spacetime connection as expressed through
the Christoffel symbols {I'/ 5} since the former does not derive from a met-
ric or frame field whereas the latter does. Furthermore, the gauge groups
for physically interesting Yang-Mills theories are normally required to be
compact whereas the corresponding “gauge” group for general relativity is
the non-compact (local) Lorentz group of orthonormal frame transforma-
tions. The compactness normally assumed for a gauge group G allows one
to define an energy momentum tensor, quadratic in the Yang-Mills curva-
ture, which has positive definite energy density. The corresponding second
rank symmetric tensor, quadratic in the spacetime curvature, vanishes iden-
tically in Einstein’s theory. Fortunately, the fourth-rank, totally symmetric
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Bel-Robinson tensor and its associated positive definite “energy” density
supply the needed replacements for these important objects.
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