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Abstract. In this paper we briefly discuss some of our recent results in
the study of moduli space of Riemann surfaces. It is naturally divided
into two parts, one about the differential geometric aspect, another on
the topological aspect of the moduli spaces. To understand the geome-
try of the moduli spaces we introduced new metrics, studied in detail all
of the known classical complete metrics, especially the Kähler-Einstein
metric. As a corollary we proved that the logarithmic cotangent bundle
of the moduli space is strictly stable in the sense of Mumford. The topo-
logical results we obtained were motivated by conjectures from string
theory. We will describe in this part our proofs by localization method
of the Mariño-Vafa formula, its two partition analogue as well as the the-
ory of topological vertex and the simple localization proofs of the ELSV
formula and the Witten conjecture. The applications of these formulas
in Gromov-Witten theory and string duality will also be mentioned.

1. Introduction

The study of moduli space and Teichmüller space has a long history.
These two spaces lie in the intersections of researches in many areas of
mathematics and physics. Many deep results have been obtained in history
by many famous mathematicians. Moduli spaces and Teichmüller spaces of
Riemann surfaces have been studied for many many years since Riemann,
by Ahlfors, Bers, Royden, Deligne, Mumford, Yau, Siu, Thurston, Faltings,
Witten, Kontsevich, McMullen, Gieseker, Mazur, Harris, Wolpert, Bismut,
Sullivan, Madsen and many others including a young generation of mathe-
maticians. Many aspects of the moduli spaces have been understood, but
there are still many unsolved problems. Riemann was the first who consid-
ered the space M of all complex structures on an orientable surface modulo
the action of orientation preserving diffeomorphisms. He derived the di-
mension of this space dimR M = 6g − 6, where g ≥ 2 is the genus of the
topological surface.
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The moduli space appears in many subjects of mathematics, from geom-
etry, topology, algebraic geometry to number theory. For example, Faltings’
proof of the Mordell conjecture depends heavily on the moduli space which
can be defined over the integer ring. Moduli space also appears in many
areas of theoretical physics. In string theory, many computations of path
integrals are reduced to integrals of Chern classes on the moduli space.
Based on conjectural physical theories, physicists have made several amaz-
ing conjectures about generating series of Hodge integrals for all genera and
all marked points on the moduli spaces. The mathematical proofs of these
conjectures supply strong evidences to their theories.

This article surveys two types of results; the first is on the geometric
aspect of moduli spaces, and the second is on the topological aspect, in
particular the computations of Hodge integrals. The first part is based on
our joint work with X. Sun and S.-T. Yau. The main results are in [34],
[35] and [36]. The second part is based on our joint work with C.-C. Liu,
J. Zhou, J. Li and Y.-S. Kim. The main results are contained in [27], [28],
[21] and [14]. Now we briefly describe some background and statements of
the main results.

Our goal of the geometric project with Sun and Yau is to understand
the geometry of the moduli spaces. More precisely, we want to understand
the relationships among all of the known canonical complete metrics intro-
duced in history on the moduli and the Teichmüller spaces, and by using
them to derive geometric consequences about the moduli spaces. More im-
portantly, we introduce and study certain new complete Kähler metrics:
the Ricci metric and the perturbed Ricci metric. Through a detailed study
we proved that these new metrics have very good curvature properties and
Poincaré-type growth near the compactification divisor [34], [35]. In partic-
ular we proved that the perturbed Ricci metric has bounded negative Ricci
and holomorphic sectional curvature and has bounded geometry. To the
knowledge of the authors this is the first known such metric on the moduli
space and the Teichmüller space with such good properties. We know that
the Weil-Petersson metric has negative Ricci and holomorphic sectional cur-
vature, but it is incomplete and its curvatures are not bounded from below.
Also note that one has no control on the signs of the curvatures of the other
complete Kähler metrics mentioned above.

We have obtained a series of results in this direction. In [34] and [35] we
have proved that all of these known complete metrics are actually equivalent,
and as a consequence we proved two old conjectures of Yau about the equiv-
alence between the Kähler-Einstein metric and the Teichmüller metric and
also its equivalence with the Bergman metric. In [57] and [46], which were
both written in early 1980s, Yau raised various questions about the Kähler-
Einstein metric on the Teichmüller space. By using the curvature properties
of these new metrics, we obtained good understanding of the Kähler-Einstein
metric such as its boundary behavior and the strongly bounded geometry.
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As one consequence we proved the stability of the logarithmic extension of
the cotangent bundle of the moduli space [35]. Note that the major parts
of our papers were to understand the Kähler-Einstein metrics and the two
new metrics. One of our goals is to find a good metric with the best pos-
sible curvature property. The perturbed Ricci metric is close to being such
a metric. The most difficult part of our results is the study of the curva-
ture properties and the asymptotic behavior of the new metrics near the
boundary, only from which we can derive geometric applications such as
the stability of the logarithmic cotangent bundle. The comparisons of those
classical metrics as well as the two new metrics are quite easy and actually
simple corollaries of the study and the basic definitions of those metrics. In
particular the argument we used to prove the equivalences of the Bergman
metric, the Kobayashi metric and the Carathéodory metric is rather simple
from basic definitions and Yau’s Schwarz lemma, and is independent of the
other parts of our works.

Our results on the topological aspect of the moduli spaces are all moti-
vated by string theory. This project on the topological aspect of the moduli
spaces was jointly carried out with C.-C. Liu, J. Zhou, J. Li and Y.-S. Kim.
According to string theorists, string theory, as the most promising candi-
date for the grand unification of all fundamental forces in nature, should be
the final theory of the world, and should be unique. But now there are five
different-looking string theories. As argued by the physicists, these theories
should be equivalent, in a way dual to each other. On the other hand, all
previous theories like the Yang-Mills and the Chern-Simons theory should
be parts of string theory. In particular their partition functions should be
equal or equivalent to each other in the sense that they are equal after certain
transformations. To compute partition functions, physicists use localization
technique, a modern version of residue theorem, on infinite dimensional
spaces. More precisely they apply localization formally to path integrals,
which is not well-defined yet in mathematics. In many cases such computa-
tions reduce the path integrals to certain integrals of various Chern classes
on various finite dimensional moduli spaces, such as the moduli spaces of
stable maps and the moduli spaces of vector bundles. The identifications
of these partition functions among different theories have produced many
surprisingly beautiful mathematical formulas like the famous mirror formula
[24], as well as the Mariño-Vafa formula [39].

The mathematical proofs of these conjectural formulas from string dual-
ity also depend on localization techniques on these various finite dimensional
moduli spaces. In this part I will briefly discuss the proof of the Mariño-Vafa
formula, its generalizations and the related topological vertex theory [1].
More precisely we will use localization formulas in various forms to compute
the integrals of Chern classes on moduli spaces, and to prove those conjec-
tures from string duality. For the proof of the Mariño-Vafa formula and
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the theory of topological vertex, we note that many aspects of mathemat-
ics are involved, such as the Chern-Simons knot invariants, combinatorics
of symmetric groups, representations of Kac-Moody algebras, Calabi-Yau
manifolds, geometry and topology of moduli space of stable maps, etc.

We remark that localization technique has been very successful in prov-
ing many conjectures from physics, see my ICM 2002 lecture [31] for more
examples. One of our major tools in the proofs of these conjectures is the
functorial localization formula which is a variation of the classical local-
ization formula: it transfers computations on complicated spaces to simple
spaces, and connects computations of mathematicians and physicists.

Starting from the proof of the Mariño-Vafa formula [28], we have proved
a series of results about Hodge integrals on the moduli spaces of stable
curves. Complete closed formulas for the Gromov-Witten invariants of open
toric Calabi-Yau manifolds are given, and their relationships with equivari-
ant indices of elliptic operators on the moduli spaces of framed stable bundles
on the projective plane are found and proved. Simple localization proofs of
the ELSV formula and the Witten conjecture are discovered through this
project. Here we can only give a brief overview of the results and the main
ideas of their proofs. For the details see [27], [22], [28], [29], [30], [21].
While the Marinõ-Vafa formula gives a close formula for the generating se-
ries of triple Hodge integrals on the moduli spaces of all genera and any
number marked points, the mathematical theory of topological vertex [21]
gives the most effective ways to compute the Gromov-Witten invariants of
any open toric Calabi-Yau manifolds. Recently Pan Peng was able to use our
results on topological vertex to give a complete proof of the Gopakumar-
Vafa integrality conjecture for any open toric Calabi-Yau manifolds [45].
Kim also used our technique to derive new effective recursion formulas for
Hodge integrals on the moduli spaces of stable curves [13]. Together we
were able to give a very simple direct proof of the Witten conjecture by
using localization [14].

The spirit of our topological results is the duality between gauge theory,
Chern-Simons theory and the Calabi-Yau geometry in string theory. One
of our observations about the geometric structure of the moduli spaces is
the convolution formula which is encoded in the moduli spaces of relative
stable maps [17], [18], and also in the combinatorics of symmetric groups,
[28], [21]. This convolution structure implies the differential equation which
we called the cut-and-join equation. The cut-and-join equation arises from
both representation theory and geometry. The verification of the cut-and-
join equation in combinatorics is a direct computation through character
formulas, while its proof in geometry is quite subtle and involves careful
analysis of the fixed points on the moduli spaces of relative stable maps,
see [27]-[30] and [21] for more details. The coincidence of such a kind of
equation in both geometry and combinatorics is quite remarkable.
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The mathematical theory of topological vertex was motivated by the
physical theory as first developed by the Vafa group [1], who has been work-
ing on string duality for the past several years. Topological vertex theory is
a high point of their work starting from their geometric engineering theory
and Witten’s conjecture that Chern-Simons theory is a string theory [51].

The Gopakumar-Vafa integrality conjecture is a very interesting conjec-
ture in the subject of Gromov-Witten invariants. It is rather surprising that
for some cases such invariants can be interpreted as the indices of elliptic
operators in gauge theory in [27]. A direct proof of the conjecture for open
toric Calabi-Yau manifolds was given recently by Peng [45], by using the
combinatorial formulas for the generating series of all genera and all degree
Gromov-Witten invariants of open toric Calabi-Yau. These closed formulas
are derived from the theory of topological vertex through the gluing prop-
erty.

This note is based on my lecture in May 2005, at the Journal of Differen-
tial Geometry Conference in memory of the late great geometer Prof. S.-S.
Chern. It is essentially a combination of a survey article by Xiaofeng Sun,
Shing-Tung Yau and myself on the geometric aspect of the modulis spaces
[37] with another survey by myself on localization and string duality [33].
Through my research career I have been working in geometry and topology
on problems related to Chern classes. Twenty years ago, at his Nankai In-
stitute of Mathematics, a lecture of S.-S. Chern on the Atiyah-Singer index
formula introduced me to the beautiful subject of geometry and topology.
He described Chern classes and the Atiyah-Singer index formula and its
three proofs. That is the first seminar on modern mathematics I had ever
attended. It changed my life. I would like to dedicate this note to Prof.
Chern for his great influence in my life and in my career.
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Part I: The Geometric Aspect

2. Basics on Moduli and the Techmüller Spaces

In this section, we recall some basic facts in Teichmüller theory and
introduce various notations for the following discussions.

Let Σ be an orientable surface with genus g ≥ 2. A complex structure
on Σ is a covering of Σ by charts such that the transition functions are
holomorphic. By the uniformization theorem, if we put a complex structure
on Σ, then it can be viewed as a quotient of the hyperbolic plane H2 by
a Fuchsian group. Thus there is a unique Kähler-Einstein metric, or the
hyperbolic metric on Σ.

Let C be the set of all complex structures on Σ. Let Diff +(Σ) be the
group of orientation preserving diffeomorphisms and let Diff +

0 (Σ) be the
subgroup of Diff +(Σ) consisting of those elements which are isotopic to
identity.

The groups Diff +(Σ) and Diff +
0 (Σ) act naturally on the space C by

pull-back. The Teichmüller space is a quotient of the space C
Tg = C/Diff +

0 (Σ).

From the famous Bers embedding theorem, now we know that Tg can be
embedded into C3g−3 as a pseudoconvex domain and is contractible. Let

Modg = Diff +(Σ)/Diff +
0 (Σ)

be the group of isotopic classes of diffeomorphisms. This group is called the
(Teichmüller) moduli group or the mapping class group. Its representations
are of great interest in topology and in quantum field theory.

The moduli space Mg is the space of distinct complex structures on Σ
and is defined to be

Mg = C/Diff +(Σ) = Tg/Modg.

The moduli space is a complex orbifold.
For any point s ∈ Mg, let X = Xs be a representative of the corre-

sponding class of Riemann surfaces. By the Kodaira-Spencer deformation
theory and the Hodge theory, we have

TXMg
∼= H1(X,TX) = HB(X)

where HB(X) is the space of harmonic Beltrami differentials on X.

T ∗
XMg

∼= Q(X)

where Q(X) is the space of holomorphic quadratic differentials on X.
Pick μ ∈ HB(X) and ϕ ∈ Q(X). If we fix a holomorphic local coordinate

z on X, we can write μ = μ(z) ∂
∂z ⊗ dz and ϕ = ϕ(z)dz2. Thus the duality

between TXMg and T ∗
XMg is

[μ : ϕ] =
∫

X
μ(z)ϕ(z)dzdz.
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By the Riemann-Roch theorem, we have

dimC HB(X) = dimC Q(X) = 3g − 3,

which implies
dimC Tg = dimC Mg = 3g − 3.

3. Classical Metrics on the Moduli Spaces

In 1940s, Teichmüller considered a cover of M by taking the quotient of
all complex structures by those orientation preserving diffeomorphims which
are isotopic to the identity map. The Teichmüller space Tg is a contractible
set in C3g−3. Furthermore, it is a pseudoconvex domain. Teichmüller also
introduced the Teichmüller metric by first taking the L1 norm on the cotan-
gent space of Tg and then taking the dual norm on the tangent space. This is
a Finsler metric. Two other interesting Finsler metrics are the Carathéodory
metric and the Kobayashi metric. These Finsler metrics have been powerful
tools in the study of the hyperbolic property of the moduli and the Te-
ichmüller spaces and the mapping class groups. For example, in the 1970s
Royden proved that the Teichmüller metric and the Kobayashi metric are
the same, and as a corollary he proved the famous result that the holomor-
phic automorphism group of the Teichmüller space is exactly the mapping
class group.

Based on the Petersson pairing on the spaces of automorphic forms, Weil
introduced the first Hermitian metric on the Teichmüller space, the Weil-
Petersson metric. It was shown by Ahlfors that the Weil-Petersson metric
is Kähler and its holomorphic sectional curvature is negative. The work of
Ahlfors and Bers on the solutions of Beltrami equation put a solid foundation
of the theory of Teichmüller space and moduli space [3]. Wolpert studied
in detail the Weil-Petersson metric including the precise upper bound of
its Ricci and holomorphic sectional curvature. From these one can derive
interesting applications in algebraic geometry. For example, see [32].

Moduli spaces of Riemann surfaces have also been studied in detail in
algebraic geometry since 1960. The major tool is the geometric invariant
theory developed by Mumford. In the 1970s, Deligne and Mumford studied
the projective property of the moduli space and showed that the moduli
space is quasi-projective and can be compactified naturally by adding in the
stable nodal surfaces [6]. Fundamental work has been done by Gieseker,
Harris and many other algebraic geometers. Note that the compactification
in algebraic geometry is the same as the differential geometric compactifi-
cation by using the Weil-Petersson metric.

The work of Cheng-Yau [5] in the early 1980s showed that there is a
unique complete Kähler-Einstein metric on the Teichmüller space and is
invariant under the moduli group action. Thus it descends to the moduli
space. As it is well-known, the existence of the Kähler-Einstein metric gives
deep algebraic geometric results, so it is natural to understand its properties
like the curvature and the behaviors near the compactification divisor. In the
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early 1980s, Yau conjectured that the Kähler-Einstein metric is equivalent
to the Teichmüller metric and the Bergman metric [4], [57], [46].

In 2000, McMullen introduced a new metric, the McMullen metric, by
perturbing the Weil-Petersson metric to get a complete Kähler metric which
is complete and Kähler hyperbolic. Thus the lowest eigenvalue of the Laplace
operator is positive and the L2-cohomology is trivial except for the middle
dimension [41].

So there are many very famous classical metrics on the Teichmüller and
the moduli spaces, and they have been studied independently by many fa-
mous mathematicians. Each metric has played an important role in the
study of the geometry and topology of the moduli and Teichmüller spaces.
There are three Finsler metrics: the Teichmüller metric ‖·‖T , the Kobayashi
metric ‖ · ‖K and the Carathéodory metric ‖ · ‖C . They are all complete
metrics on the Teichmüller space and are invariant under the moduli group
action. Thus they descend down to the moduli space as complete Finsler
metrics.

There are seven Kähler metrics: the Weil-Petersson metric ω
WP

which
is incomplete, the Cheng-Yau’s Kähler-Einstein metric ω

KE
, the McMullen

metric ω
C
, the Bergman metric ω

B
, the asymptotic Poincaré metric on the

moduli space ω
P
, the Ricci metric ωτ and the perturbed Ricci metric ωτ .

The last six metrics are complete. The last two metrics are new metrics
studied in details in [34] and [35].

Now let us give the precise definitions of these metrics and state their
basic properties.

The Teichmüller metric was first introduced by Teichmüller as the L1

norm in the cotangent space. For each ϕ = ϕ(z)dz2 ∈ Q(X) ∼= T ∗
XMg, the

Teichmüller norm of ϕ is

‖ϕ‖T =
∫

X
|ϕ(z)| dzdz.

By using the duality, for each μ ∈ HB(X) ∼= TXMg,

‖μ‖T = sup{Re[μ;ϕ] | ‖ϕ‖T = 1}.

It is known that Teichmüller metric has constant holomorphic sectional cur-
vature −1.

The Kobayashi and the Carathéodory metrics can be defined for any
complex space in the following way: Let Y be a complex manifold of di-
mension n. Let ΔR be the disk in C with radius R. Let Δ = Δ1 and let ρ
be the Poincaré metric on Δ. Let p ∈ Y be a point and let v ∈ TpY be a
holomorphic tangent vector. Let Hol(Y,ΔR) and Hol(ΔR, Y ) be the spaces
of holomorphic maps from Y to ΔR and from ΔR to Y respectively. The
Carathéodory norm of the vector v is defined to be

‖v‖C = sup
f∈Hol(Y,Δ)

‖f∗v‖Δ,ρ
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and the Kobayashi norm of v is defined to be

‖v‖K = inf
f∈Hol(ΔR,Y ), f(0)=p, f ′(0)=v

2
R

.

The Bergman (pseudo) metric can also be defined for any complex space
Y provided the Bergman kernel is positive. Let KY be the canonical bundle
of Y and let W be the space of L2 holomorphic sections of KY in the sense
that if σ ∈ W , then

‖σ‖2
L2 =

∫
Y

(
√
−1)n

2
σ ∧ σ < ∞.

The inner product on W is defined to be

(σ, ρ) =
∫

Y
(
√
−1)n

2
σ ∧ ρ

for all σ, ρ ∈ W . Let σ1, σ2, . . . be an orthonormal basis of W . The Bergman
kernel form is the non-negative (n, n)-form

BY =
∞∑

j=1

(
√
−1)n

2
σj ∧ σj.

With a choice of local coordinates zi, . . . , zn, we have

BY = BEY (z, z)(
√
−1)n

2
dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn

where BEY (z, z) is called the Bergman kernel function. If the Bergman
kernel BY is positive, one can define the Bergman metric

Bij =
∂2 log BEY (z, z)

∂zi∂zj
.

The Bergman metric is well-defined and is nondegenerate if the elements in
W separate points and the first jet of Y . In this case, the Bergman metric
is a Kähler metric.

Remark 3.1. Both the Teichmüller space and the moduli space are
equipped with the Bergman metrics. However, the Bergman metric on the
moduli space is different from the metric induced from the Bergman metric
of the Teichmüller space. The Bergman metric defined on the moduli space
is incomplete due to the fact that the moduli space is quasi-projective and
any L2 holomorphic section of the canonical bundle can be extended over.
However, the induced one is complete as we shall see later.

The basic properties of the Kobayashi, Carathéodory and Bergman met-
rics are stated in the following proposition. Please see [15] for the details.

Proposition 3.1. Let X be a complex space. Then
(1) ‖ · ‖C,X ≤ ‖ · ‖K,X ;
(2) Let Y be another complex space and f : X → Y be a holomorphic

map. Let p ∈ X and v ∈ TpX. Then ‖f∗(v)‖C,Y,f(p) ≤ ‖v‖C,X,p

and ‖f∗(v)‖K,Y,f(p) ≤ ‖v‖K,X,p;
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(3) If X ⊂ Y is a connected open subset and z ∈ X is a point, then
with any local coordinates we have BEY (z) ≤ BEX(z);

(4) If the Bergman kernel is positive, then at each point z ∈ X, a
peak section σ at z exists. Such a peak section is unique up to a
constant factor c with norm 1. Furthermore, with any choice of
local coordinates, we have BEX(z) = |σ(z)|2;

(5) If the Bergman kernel of X is positive, then ‖ · ‖C,X ≤ 2‖ · ‖B,X ;
(6) If X is a bounded convex domain in Cn, then ‖ · ‖C,X = ‖ · ‖K,X ;
(7) Let |·| be the Euclidean norm and let Br be the open ball with center

0 and radius r in Cn. Then for any holomorphic tangent vector v
at 0,

‖v‖C,Br ,0 = ‖v‖K,Br ,0 =
2
r
|v|,

where |v| is the Euclidean norm of v.

The three Finsler metrics have been very powerful tools in understanding
the hyperbolic geometry of the moduli spaces, and the mapping class group.
It has also been known since the 1970s that the Bergman metric on the
Teichmüller space is complete.

The Weil-Petersson metric is the first Kähler metric defined on the Te-
ichmüller and the moduli space. It is defined by using the L2 inner product
on the tangent space in the following way:
Let μ, ν ∈ TXMg be two tangent vectors and let λ be the unique Kähler-
Einstein metric on X. Then the Weil-Petersson metric is

h(μ, ν) =
∫

X
μν dv

where dv =
√−1

2 λdz ∧ dz is the volume form. Details can be found in [34],
[40] and [54].

The curvatures of the Weil-Petersson metric have been well-understood
due to the works of Ahlfors, Royden and Wolpert. Its Ricci and holomorphic
sectional curvature are all negative with negative upper bound, but with no
lower bound. Its boundary behavior is understood, from which it is not hard
to see that it is an incomplete metric.

The existence of the Kähler-Einstein metric was given by the work of
Cheng-Yau [4]. Its Ricci curvature is −1. Namely,

∂∂ log ωn
KE

= ω
KE

,

where n = 3g − 3. They actually proved that a bounded domain in Cn

admits a complete Kähler-Einstein metric if and only if it is pseudoconvex.
The McMullen 1/l metric defined in [41] is a perturbation of the Weil-

Petersson metric by adding a Kähler form whose potential involves the short
geodesic length functions on the Riemann surfaces. For each simple closed
curve γ in X, let lγ(X) be the length of the unique geodesic in the homotopy
class of γ with respect to the unique Kähler-Einstein metric. Then the
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McMullen metric is defined as

ω1/l = ω
WP

− iδ
∑

lγ(X)<ε

∂∂Log
ε

lγ

where ε and δ are small positive constants and Log(x) is a smooth function
defined as

Log(x) =

{
log x, x ≥ 2,
0, x ≤ 1.

This metric is Kähler hyperbolic, which means it satisfies the following con-
ditions:

(1) (Mg, ω1/l) has finite volume;
(2) The sectional curvature of (Mg, ω1/l) is bounded above and below;
(3) The injectivity radius of (Tg, ω1/l) is bounded below;
(4) On Tg, the Kähler form ω1/l can be written as ω1/l = dα where α

is a bounded 1-form.

An immediate consequence of the Kähler hyperbolicity is that the L2-co-
homology is trivial except for the middle dimension.

The asymptotic Poincaré metric can be defined as a complete Kähler
metric on a complex manifold M which is obtained by removing a divisor
Y with only normal crossings from a compact Kähler manifold (M,ω).

Let M be a compact Kähler manifold of dimension m. Let Y ⊂ M be
a divisor of normal crossings and let M = M \ Y . Cover M by coordinate
charts U1, . . . , Up, . . . , Uq such that (Up+1 ∪ · · · ∪ U q) ∩ Y = Φ. We also
assume that for each 1 ≤ α ≤ p, there is a constant nα such that Uα \ Y =
(Δ∗)nα ×Δm−nα and on Uα, Y is given by zα

1 · · · zα
nα

= 0. Here Δ is the disk
of radius 1

2 and Δ∗ is the punctured disk of radius 1
2 . Let {ηi}1≤i≤q be the

partition of unity subordinate to the cover {Ui}1≤i≤q. Let ω be a Kähler
metric on M and let C be a positive constant. Then for C large, the Kähler
form

ωp = Cω +
p∑

i=1

√
−1∂∂

(
ηi log log

1
zi
1 · · · zi

ni

)
defines a complete metric on M with finite volume since on each Ui with
1 ≤ i ≤ p, ωp is bounded from above and below by the local Poincaré metric
on Ui. We call this metric the asymptotic Poincaré metric.

The signs of the curvatures of the above metrics are all unknown. We
actually only know that the Kähler-Einstein metric has constant negative
Ricci curvature and that the McMullen metric has bounded geometry. Also,
except the asymptotic Poincaré metric, the boundary behaviors of the other
metrics are unknown before our works [34], [35]. It is interesting that to
understand them we need to introduce new metrics.
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Now we define the Ricci metric and the perturbed Ricci metric. The
curvature properties and asymptotics of these two new metrics are under-
stood by us and will be stated in the following sections. Please also see [34]
and [35] for details.

With the works of Ahlfors, Royden and Wolpert we know that the Ricci
curvature of the Weil-Petersson metric has a negative upper bound. Thus we
can use the negative Ricci form of the Weil-Petersson metric as the Kähler
form of a new metric. We call this metric the Ricci metric and denote it by
τ . That is

ωτ = ∂∂ log ωn
WP

.

Through the careful analysis, we now understand that the Ricci metric is a
natural canonical complete Kähler metric with many good properties. How-
ever, its holomorphic sectional curvature is only asymptotically negative. To
get a metric with good sign on its curvatures, we introduced the perturbed
Ricci metric ωτ as a combination of the Ricci metric and the Weil-Petersson
metric:

ωτ = ωτ + Cω
WP

where C is a large positive constant. As we shall see later, the perturbed
Ricci metric has desired curvature properties so that we can put it either on
the target or on the domain manifold in Yau’s Schwarz lemma, from which
we can compare the above metrics.

4. The Curvature Formulas

In this section we describe the harmonic lift of a vector field on the
moduli space to the universal curve due to Royden, Siu [48] and Schumacher
[47]. Details can also be found in [34]. We then use this method to derive
the curvature formula for the Weil-Petersson metric, the Ricci metric and
the perturbed Ricci metric.

To compute the curvature of a metric on the moduli space, we need to
take derivatives of the metric in the direction of the moduli space. However,
it is quite difficult to estimate the curvature by using a formula obtained in
such a way. The central idea is to obtain a formula where the derivatives
are taken in the fiber direction. We can view the deformation of complex
structures on a topological surface as the deformation of the Kähler-Einstein
metrics.

Let Mg be the moduli space of Riemann surfaces of genus g, where
g ≥ 2. Let n = 3g − 3 be the complex dimension of Mg. Let X be the total
space and let π : X → Mg be the projection map.

Let s1, . . . , sn be holomorphic local coordinates near a regular point s ∈
Mg and assume that z is a holomorphic local coordinate on the fiber Xs =
π−1(s). For holomorphic vector fields ∂

∂s1
, . . . , ∂

∂sn
, there are vector fields

v1, . . . , vn on X such that
(1) π∗(vi) = ∂

∂si
for i = 1, . . . , n;

(2) ∂vi are harmonic TXs-valued (0, 1) forms for i = 1, . . . , n.
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The vector fields v1, . . . , vn are called the harmonic lift of the vectors ∂
∂s1

,

. . . , ∂
∂sn

. The existence of such harmonic vector fields was pointed out by
Siu. Schumacher in his work gave an explicit construction of such lift. We
now describe it.

Since g ≥ 2, we can assume that each fiber is equipped with the Kähler-
Einstein metric λ =

√−1
2 λ(z, s)dz ∧dz. The Kähler-Einstein condition gives

the following equation:

∂z∂z log λ = λ.(4.1)

For the rest of this paper we denote ∂
∂si

by ∂i and ∂
∂z by ∂z. Let

ai = −λ−1∂i∂z log λ

and let

Ai = ∂zai.

Then the harmonic horizontal lift of ∂i is

vi = ∂i + ai∂z.

In particular
Bi = Ai∂z ⊗ dz ∈ H1(Xs, TXs)

is harmonic. Furthermore, the lift ∂i �→ Bi gives the Kodaira-Spencer map
TsMg → H1(Xs, TXs). Thus the Weil-Petersson metric on Mg is

hij(s) =
∫

Xs

Bi · Bj dv =
∫

Xs

AiAj dv,

where dv =
√−1

2 λdz ∧ dz is the volume form on the fiber Xs.
Let Rijkl be the curvature tensor of the Weil-Petersson metric. Here we

adopt the following notation for the curvature of a Kähler metric:
For a Kähler metric (M,g), the curvature tensor is given by

Rijkl =
∂2gij

∂zk∂zl
− gpq ∂giq

∂zk

∂gpj

∂zl
.

In this case, the Ricci curvature is given by

Rij = −gklRijkl.

By using the curvature of the Weil-Petersson metric, we can define the
Ricci metric:

τij = hklRijkl

and the perturbed Ricci metric:

τ̃ij = τij + Chij,

where C is a positive constant.
Before we present the curvature formulas for the above metrics, we need

to introduce the Maass operators and norms on a Riemann surface [54].
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Let X be a Riemann surface and let κ be its canonical bundle. For any
integer p, let S(p) be the space of smooth sections of (κ ⊗ κ−1)

p
2 . Fix a

conformal metric ds2 = ρ2(z)|dz|2. In the following, we will take ds2 to be
the Kähler-Einstein metric although the following definitions work for all
metrics.

The Maass operators Kp and Lp are defined to be the metric derivatives
Kp : S(p) → S(p + 1) and Lp : S(p) → S(p − 1) given by

Kp(σ) = ρp−1∂z(ρ−pσ)

and
Lp(σ) = ρ−p−1∂z(ρpσ)

where σ ∈ S(p).
The operators P = K1K0 and � = −L1K0 will play important roles in

the curvature formulas. Here the operator � is just the Laplace operator.
We also let T = (� + 1)−1 be the Green operator.

Each element σ ∈ S(p) has a well-defined absolute value |σ| which is
independent of the choice of local coordinate. We define the Ck norm of σ:
Let Q be an operator which is a composition of operators K∗ and L∗. Denote
by |Q| the number of factors. For any σ ∈ S(p), define

‖σ‖0 = sup
X

|σ|

and
‖σ‖k =

∑
|Q|≤k

‖Qσ‖0.

We can also localize the norm on a subset of X. Let Ω ⊂ X be a domain.
We can define

‖σ‖0,Ω = sup
Ω

|σ|

and
‖σ‖k,Ω =

∑
|Q|≤k

‖Qσ‖0,Ω.

We let fij = AiAj and eij = T (fij). These functions will be the building
blocks for the curvature formulas.

The trick of converting derivatives from the moduli directions to the
fiber directions is the following lemma due to Siu and Schumacher:

Lemma 4.1. Let η be a relative (1, 1)-form on the total space X. Then

∂

∂si

∫
Xs

η =
∫

Xs

Lviη.

The curvature formula of the Weil-Petersson metric was first established
by Wolpert by using a different method [52] and later was generalized by
Siu [48] and Schumacher [47] by using the above lemma:
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Theorem 4.2. The curvature of the Weil-Petersson metric is given by

Rijkl =
∫

Xs

(eijfkl + eilfkj) dv.(4.2)

For the proof, please see [34]. From this formula it is rather easy to
show that the Ricci and the holomorphic sectional curvature have explicit
negative upper bound.

To establish the curvature formula of the Ricci metric, we need to intro-
duce more operators. Firstly, the commutator of the operator vk and (�+1)
will play an important role. Here we view the vector field vk as a operator
acting on functions. We define

ξk = [� + 1, vk].

A direct computation shows that

ξk = −AkP.

Also we can define the commutator of vl and ξk. Let

Qkl = [vl, ξk].

We have

Qkl(f) = P (ekl)P (f) − 2fkl�f + λ−1∂zfkl∂zf

for any smooth function f .

To simplify the notation, we introduce the symmetrization operator of
the indices. Let U be any quantity which depends on indices i, k, α, j, l, β.
The symmetrization operator σ1 is defined by taking summation of all orders
of the triple (i, k, α). That is

σ1(U(i, k, α, j, l, β)) = U(i, k, α, j, l, β) + U(i, α, k, j, l, β)

+ U(k, i, α, j, l, β) + U(k, α, i, j, l, β)

+ U(α, i, k, j, l, β) + U(α, k, i, j, l, β).

Similarly, σ2 is the symmetrization operator of j and β and σ̃1 is the sym-
metrization operator of j, l and β.

In [34] the following curvature formulas for the Ricci and perturbed
Ricci metric were proved:
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Theorem 4.3. Let s1, . . . , sn be local holomorphic coordinates at s ∈ Mg.
Then at s, we have

R̃ijkl = hαβ

{
σ1σ2

∫
Xs

{
(� + 1)−1(ξk(eij))ξl(eαβ)(4.3)

+ (� + 1)−1(ξk(eij))ξβ(eαl)
}

dv

}
+ hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
− τpqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl

and

Pijkl = hαβ

{
σ1σ2

∫
Xs

{
(� + 1)−1(ξk(eij))ξl(eαβ)(4.4)

+ (� + 1)−1(ξk(eij))ξβ(eαl)
}

dv

}
+ hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
− τ̃pqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl + CRijkl

where Rijkl, R̃ijkl, and Pijkl are the curvature of the Weil-Petersson metric,
the Ricci metric and the perturbed Ricci metric, respectively.

Unlike the curvature formula of the Weil-Petersson metric, from which
we can see the sign of the curvature directly, the above formulas are too
complicated and we cannot see the sign. So we need to study the asymptotic
behaviors of these curvatures, and first the metrics themselves.

5. The Asymptotics

To compute the asymptotics of these metrics and their curvatures, we
first need to find a canonical way to construct local coordinates near the
boundary of the moduli space. We first describe the Deligne-Mumford com-
pactification of the moduli space and introduce the pinching coordinate and
the plumbing construction according to Earle and Marden. Please see [40],
[54], [49] and [34] for details.

A point p in a Riemann surface X is a node if there is a neighborhood
of p which is isometric to the germ {(u, v) | uv = 0, |u|, |v| < 1} ⊂ C2. Let
p1, . . . , pk be the nodes on X. X is called stable if each connected component
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of X\{p1, . . . , pk} has negative Euler characteristic. Namely, each connected
component has a unique complete hyperbolic metric.

Let Mg be the moduli space of Riemann surfaces of genus g ≥ 2. The
Deligne-Mumford compactification Mg is the union of Mg and correspond-
ing stable nodal surfaces [6]. Each point y ∈ Mg \ Mg corresponds to a
stable noded surface Xy.

We recall the rs-coordinate on a Riemann surface defined by Wolpert in
[54]. There are two cases: the puncture case and the short geodesic case.
For the puncture case, we have a noded surface X and a node p ∈ X. Let
a, b be two punctures which are paired to form p.

Definition 5.1. The local coordinate chart (U, u) near a is called rs-
coordinate if u(a) = 0, u maps U to the punctured disc 0 < |u| < c with
c > 0 and the restriction to U of the Kähler-Einstein metric on X can be
written as 1

2|u|2(log |u|)2 |du|2. The rs-coordinate (V, v) near b is defined in a
similar way.

For the short geodesic case, we have a closed surface X, a closed geodesic
γ ⊂ X with length l < c∗, where c∗ is the collar constant.

Definition 5.2. The local coordinate chart (U, z) is called rs-coordinate
at γ if γ ⊂ U , z maps U to the annulus c−1|t| 12 < |z| < c|t| 12 and the Kähler-
Einstein metric on X can be written as

1
2

(
π

log |t|
1
|z| csc

π log |z|
log |t|

)2

|dz|2.

Remark 5.1. We put the factor 1
2 in the above two definitions to nor-

malize such that (4.1) holds.

By Keen’s collar theorem, we have the following lemma:

Lemma 5.3. Let X be a closed surface and let γ be a closed geodesic on
X such that the length l of γ satisfies l < c∗. Then there is a collar Ω on X
with holomorphic coordinate z defined on Ω such that

(1) z maps Ω to the annulus 1
c e−

2π2

l < |z| < c for c > 0;
(2) the Kähler-Einstein metric on X restricted to Ω is given by

(
1
2
u2r−2 csc2 τ)|dz|2,(5.1)

where u = l
2π , r = |z| and τ = u log r;

(3) the geodesic γ is given by |z| = e−
π2

l .
We call such a collar Ω a genuine collar.

We notice that the constant c in the above lemma has a lower bound
such that the area of Ω is bounded from below. Also, the coordinate z in the
above lemma is rs-coordinate. In the following, we will keep the notation u,
r and τ .
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Now we describe the local manifold cover of Mg near the boundary.
We take the construction of Wolpert [54]. Let X0,0 be a noded surface
corresponding to a codimension m boundary point. X0,0 have m nodes
p1, . . . , pm. X0 = X0,0 \ {p1, . . . , pm} is a union of punctured Riemann
surfaces. Fix rs-coordinate charts (Ui, ηi) and (Vi, ζi) at pi for i = 1, . . . ,m
such that all the Ui and Vi are mutually disjoint. Now pick an open set U0 ⊂
X0 such that the intersection of each connected component of X0 and U0 is a
nonempty relatively compact set and the intersection U0∩ (Ui∪Vi) is empty
for all i. Now pick Beltrami differentials νm+1, . . . , νn which are supported
in U0 and span the tangent space at X0 of the deformation space of X0.
For s = (sm+1, . . . , sn), let ν(s) =

∑n
i=m+1 siνi. We assume |s| = (

∑
|si|2)

1
2

is small enough such that |ν(s)| < 1. The noded surface X0,s is obtained
by solving the Beltrami equation ∂w = ν(s)∂w. Since ν(s) is supported in
U0, (Ui, ηi) and (Vi, ζi) are still holomorphic coordinates on X0,s. Note that
they are no longer rs-coordinates. By the theory of Alhfors and Bers [3]
and Wolpert [54] we can assume that there are constants δ, c > 0 such that
when |s| < δ, ηi and ζi are holomorphic coordinates on X0,s with 0 < |ηi| < c
and 0 < |ζi| < c. Now we assume t = (t1, . . . , tm) has small norm. We do
the plumbing construction on X0,s to obtain Xt,s. Remove from X0,s the
discs 0 < |ηi| ≤ |ti|

c and 0 < |ζi| ≤ |ti|
c for each i = 1, . . . ,m. Now identify

|ti|
c < |ηi| < c with |ti|

c < |ζi| < c by the rule ηiζi = ti. This defines
the surface Xt,s. The tuple (t1, . . . , tm, sm+1, . . . , sn) are the local pinching
coordinates for the manifold cover of Mg. We call the coordinates ηi (or ζi)
the plumbing coordinates on Xt,s and the collar defined by |ti|

c < |ηi| < c
the plumbing collar.

Remark 5.2. By the estimate of Wolpert [53], [54] on the length of
short geodesic, the quantity ui = li

2π ∼ − π
log |ti| .

Now we describe the estimates of the asymptotics of these metrics and
their curvatures. The principle is that, when we work on a nearly degener-
ated surface, the geometry focuses on the collars. Our curvature formulas
depend on the Kähler-Einstein metrics of the family of Riemann surfaces
near a boundary points. One can obtain an approximate Kähler-Einstein
metric on these collars by the graft construction of Wolpert [54] which is
done by gluing the hyperbolic metric on the nodal surface with the model
metric described above.

To use the curvature formulas (4.2), (4.3) and (4.4) to estimate the as-
ymptotic behavior, one also needs to analyze the transition from the plumb-
ing coordinates on the collars to the rs-coordinates. The harmonic Beltrami
differentials were constructed by Masur [40] by using the plumbing coordi-
nates, and it is easier to compute the integration by using rs-coordinates.
Such computation was done in [49] by using the graft metric of Wolpert and
the maximum principle. A clear description can be found in [34]. We have
the following theorem:
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Theorem 5.4. Let (t, s) be the pinching coordinates on Mg near X0,0

which corresponds to a codimension m boundary point of Mg. Then there
exist constants M, δ > 0 and 0 < c < 1 such that if |(t, s)| < δ, then the
j-th plumbing collar on Xt,s contains the genuine collar Ωj

c. Furthermore,
one can choose rs-coordinate zj on the collar Ωj

c properly such that the holo-
morphic quadratic differentials ψ1, . . . , ψn corresponding to the cotangent
vectors dt1, . . . , dsn have form ψi = ϕi(zj)dz2

j on the genuine collar Ωj
c for

1 ≤ j ≤ m where
(1) ϕi(zj) = 1

z2
j
(qj

i (zj) + βj
i ) if i ≥ m + 1;

(2) ϕi(zj) = (− tj
π ) 1

z2
j
(qj(zj) + βj) if i = j;

(3) ϕi(zj) = (− ti
π ) 1

z2
j
(qj

i (zj) + βj
i ) if 1 ≤ i ≤ m and i �= j.

Here βj
i and βj are functions of (t, s), qj

i and qj are functions of (t, s, zj)
given by

qj
i (zj) =

∑
k<0

αj
ik(t, s)t

−k
j zk

j +
∑
k>0

αj
ik(t, s)z

k
j

and
qj(zj) =

∑
k<0

αjk(t, s)t−k
j zk

j +
∑
k>0

αjk(t, s)zk
j

such that
(1)
∑

k<0 |α
j
ik|c−k ≤ M and

∑
k>0 |α

j
ik|ck ≤ M if i �= j;

(2)
∑

k<0 |αjk|c−k ≤ M and
∑

k>0 |αjk|ck ≤ M ;
(3) |βj

i | = O(|tj|
1
2
−ε) with ε < 1

2 if i �= j;
(4) |βj | = (1 + O(u0))

where u0 =
∑m

i=1 ui +
∑n

j=m+1 |sj|.
By definition, the metric on the cotangent bundle induced by the Weil-

Petersson metric is given by

hij =
∫

Xt,s

λ−2ϕiϕj dv.

We then have the following series of estimates, see [34]. First by using this
formula and taking inverse, we can estimate the Weil-Petersson metric.

Theorem 5.5. Let (t, s) be the pinching coordinates. Then

(1) hii = 2u−3
i |ti|2(1+O(u0)) and hii = 1

2
u3

i
|ti|2 (1+O(u0)) for 1 ≤ i ≤ m;

(2) hij = O(|titj|) and hij = O(
u3

i u3
j

|titj |) if 1 ≤ i, j ≤ m and i �= j;

(3) hij = O(1) and hij = O(1) if m + 1 ≤ i, j ≤ n;

(4) hij = O(|ti|) and hij = O( u3
i

|ti|) if i ≤ m < j or j ≤ m < i .

Then we use the duality to construct the harmonic Beltrami differentials.
We have
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Lemma 5.6. On the genuine collar Ωj
c for c small, the coefficient func-

tions Ai of the harmonic Beltrami differentials have the form:

(1) Ai = zj

zj
sin2 τj

(
pj

i (zj) + bj
i

)
if i �= j;

(2) Aj = zj

zj
sin2 τj(pj(zj) + bj)

where

(1) pj
i (zj) =

∑
k≤−1 aj

ikρ
−k
j zk

j +
∑

k≥1 aj
ikz

k
j if i �= j;

(2) pj(zj) =
∑

k≤−1 ajkρ
−k
j zk

j +
∑

k≥1 ajkz
k
j .

In the above expressions, ρj = e
− 2π2

lj and the coefficients satisfy the following
conditions:

(1)
∑

k≤−1 |a
j
ik|c−k = O(u−2

j ) and
∑

k≥1 |a
j
ik|ck = O(u−2

j ) if i ≥ m+1;

(2)
∑

k ≤ −1 |aj
i k| c−k = O (u−2

j ) O
( u3

i
| ti |
)

and
∑

k≥1 |a
j
ik|ck =

O(u−2
j )O

( u3
i

|ti|
)

if i ≤ m and i �= j;
(3)
∑

k≤−1 |ajk|c−k = O( uj

|tj |) and
∑

k≥1 |ajk|ck = O( uj

|tj |);

(4) |bj
i | = O(uj) if i ≥ m + 1;

(5) |bj
i | = O(uj)O

( u3
i

|ti|
)

if i ≤ m and i �= j;
(6) bj = − uj

πtj
(1 + O(u0)).

To use the curvature formulas to estimate the Ricci metric and the
perturbed Ricci metric, one needs to find accurate estimate of the oper-
ator T = (� + 1)−1. More precisely, one needs to estimate the functions
eij = T (fij). To avoid writing down the Green function of T , we construct
approximate solutions and localize on the collars in [34]. Pick a positive
constant c1 < c and define the cut-off function η ∈ C∞(R, [0, 1]) by⎧⎪⎨⎪⎩

η(x) = 1, x ≤ log c1,

η(x) = 0, x ≥ log c,

0 < η(x) < 1, log c1 < x < log c.

(5.2)

It is clear that the derivatives of η are bounded by constants which only
depend on c and c1. Let ẽij(z) be the function on X defined in the following
way, where z is taken to be zi on the collar Ωi

c:

(1) if i ≤ m and j ≥ m + 1, then

ẽij(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 sin2 τibib

i
j, z ∈ Ωi

c1,

(1
2 sin2 τibib

i
j)η(log ri), z ∈ Ωi

c and c1 < ri < c,

(1
2 sin2 τibib

i
j)η(log ρi − log ri), z ∈ Ωi

c and
c−1ρi < ri < c−1

1 ρi,

0, z ∈ X \ Ωi
c.
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(2) if i, j ≤ m and i �= j, then

ẽij(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 sin2 τibib

i
j , z ∈ Ωi

c1,

(1
2 sin2 τibib

i
j)η(log ri), z ∈ Ωi

c and c1 < ri < c,

(1
2 sin2 τibib

i
j)η(log ρi − log ri), z ∈ Ωi

c and
c−1ρi < ri < c−1

1 ρi,
1
2 sin2 τjb

j
i bj, z ∈ Ωj

c1,

(1
2 sin2 τib

j
i bj)η(log rj), z ∈ Ωj

c and c1 < rj < c,

(1
2 sin2 τib

j
i bj)η(log ρj − log rj), z ∈ Ωj

c and
c−1ρj < rj < c−1

1 ρj ,

0, z ∈ X \ (Ωi
c ∪ Ωj

c).

(3) if i ≤ m, then

ẽii(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 sin2 τi|bi|2, z ∈ Ωi

c1,

(1
2 sin2 τi|bi|2)η(log ri), z ∈ Ωi

c and c1 < ri < c,

(1
2 sin2 τi|bi|2)η(log ρi − log ri), z ∈ Ωi

c and
c−1ρi < ri < c−1

1 ρi,

0, z ∈ X \ Ωi
c.

Also, let f̃ij = (�+1)ẽij . It is clear that the supports of these approximation
functions are contained in the corresponding collars. We have the following
estimates:

Lemma 5.7. Let ẽij be the functions constructed above. Then

(1) eii = ẽii + O
( u4

i
|ti|2
)

if i ≤ m;

(2) eij = ẽij + O
(u3

i u3
j

|titj |
)

if i, j ≤ m and i �= j;

(3) eij = ẽij + O
( u3

i
|ti|
)

if i ≤ m and j ≥ m + 1;
(4) ‖eij‖0 = O(1) if i, j ≥ m + 1.

Now we use the approximation functions ẽij in the formulas (4.2), (4.3)
and (4.4). The following theorems were proved in [34] and [35]. We first
have the asymptotic estimate of the Ricci metric:

Theorem 5.8. Let (t, s) be the pinching coordinates. Then we have

(1) τii = 3
4π2

u2
i

|ti|2 (1 + O(u0)) and τ ii = 4π2

3
|ti|2
u2

i
(1 + O(u0)) if i ≤ m;

(2) τij = O

(
u2

i u2
j

|titj |(ui + uj)
)

and τ ij = O(|titj |) if i, j ≤ m and i �= j;

(3) τij = O
( u2

i
|ti|
)

and τ ij = O(|ti|) if i ≤ m and j ≥ m + 1;
(4) τij = O(1) if i, j ≥ m + 1.

By the asymptotics of the Ricci metric in the above theorem, we have
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Corollary 5.1. There is a constant C > 0 such that

C−1ωP ≤ ωτ ≤ ωP .

Next we estimate the holomorphic sectional curvature of the Ricci met-
ric:

Theorem 5.9. Let X0 ∈ Mg \ Mg be a codimension m point and let
(t1, . . . , tm, sm+1, . . . , sn) be the pinching coordinates at X0 where t1, . . . , tm
correspond to the degeneration directions. Then the holomorphic sectional
curvature is negative in the degeneration directions and is bounded in the
non-degeneration directions. Precisely, there is a δ > 0 such that if |(t, s)| <
δ, then

R̃iiii =
3u4

i

8π4|ti|4
(1 + O(u0)) > 0(5.3)

if i ≤ m and

R̃iiii = O(1)(5.4)

if i ≥ m + 1.
Furthermore, on Mg, the holomorphic sectional curvature, the bisec-

tional curvature and the Ricci curvature of the Ricci metric are bounded
from above and below.

This theorem was proved in [34] by using the formula (4.3) and esti-
mating error terms. However, the holomorphic sectional curvature of the
Ricci metric is not always negative. We need to introduce and study the
perturbed Ricci metric. We have

Theorem 5.10. For a suitable choice of positive constant C, the per-
turbed Ricci metric τ̃ij = τij + Chij is complete and comparable with the
asymptotic Poincaré metric. Its bisectional curvature is bounded. Further-
more, its holomorphic sectional curvature and Ricci curvature are bounded
from above and below by negative constants.

Remark 5.3. The perturbed Ricci metric is the first complete Kähler
metric on the moduli space with bounded curvature and negatively pinched
holomorphic sectional curvature and Ricci curvature.

By using the minimal surface theory and Bers’ embedding theorem, we
have also proved the following theorem in [35]:

Theorem 5.11. The moduli space equipped with either the Ricci met-
ric or the perturbed Ricci metric has finite volume. The Teichmüller space
equipped with either of these metrics has bounded geometry.

6. The Equivalence of the Complete Metrics

In this section we describe our arguments that all of the complete metrics
on the Teichmüller space and moduli space discussed above are equivalent.
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With the good understanding of the Ricci and the perturbed Ricci metrics,
the results of this section are quite easy consequences of Yau’s Schwarz
lemma and the basic properties of these metrics. We first give the definition
of equivalence of metrics:

Definition 6.1. Two Kähler metrics g1 and g2 on a manifold X are
equivalent or two norms ‖ · ‖1 and ‖ · ‖2 on the tangent bundle of X are
equivalent if there is a constant C > 0 such that

C−1g1 ≤ g2 ≤ Cg1

or
C−1‖ · ‖1 ≤ ‖ · ‖2 ≤ C‖ · ‖1.

We denote this by g1 ∼ g2 or ‖ · ‖1 ∼ ‖ · ‖2.

The main result of this section that we want to discuss is the following
theorem proved in [34] and [35]:

Theorem 6.2. On the moduli space Mg (g ≥ 2), the Teichmüller metric
‖ · ‖T , the Carathéodory metric ‖ · ‖C , the Kobayashi metric ‖ · ‖K , the
Kähler-Einstein metric ω

KE
, the induced Bergman metric ω

B
, the McMullen

metric ω
M

, the asymptotic Poincaré metric ω
P
, the Ricci metric ωτ , and the

perturbed Ricci metric ωτ̃ are equivalent. Namely

ω
KE

∼ ωτ̃ ∼ ωτ ∼ ω
P
∼ ω

B
∼ ω

M

and
‖ · ‖K = ‖ · ‖T ∼ ‖ · ‖C ∼ ‖ · ‖

M
.

As a corollary we proved the following conjecture of Yau made in the
early 1980s [57], [46]:

Theorem 6.3. The Kähler-Einstein metric is equivalent to the Teich-
müller metric on the moduli space: ‖ · ‖KE ∼ ‖ · ‖T .

Another corollary was also conjectured by Yau as one of his 120 famous
problems [57], [46]:

Theorem 6.4. The Kähler-Einstein metric is equivalent to the Bergman
metric on the Teichmüller space: ω

KE
∼ ω

B
.

Now we briefly describe the idea of proving the comparison theorem. To
compare two complete metrics on a noncompact manifold, we need to write
down their asymptotic behavior and compare near infinity. However, if one
cannot find the asymptotics of these metrics, the only tool we have is the
following Yau’s Schwarz lemma [55]:

Theorem 6.5. Let f : (Mm, g) → (Nn, h) be a holomorphic map between
Kähler manifolds, where M is complete and Ric(g) ≥ −c g with c ≥ 0.

(1) If the holomorphic sectional curvature of N is bounded above by a
negative constant, then f∗h ≤ c̃ g for some constant c̃.
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(2) If m = n and the Ricci curvature of N is bounded above by a
negative constant, then f∗ωn

h ≤ c̃ ωn
g for some constant c̃.

We briefly describe the proof of the comparison theorem by using Yau’s
Schwarz lemma and the curvature computations and estimates.

Sketch of proof. To use this result, we take M = N = Mg and let
f be the identity map. We know the perturbed Ricci metric is obtained
by adding a positive Kähler metric to the Ricci metric. Thus it is bounded
from below by the Ricci metric.

Consider the identity map

id : (Mg, ωτ ) → (Mg, ωWP
).

Yau’s Schwarz Lemma implies ωWP ≤ C0ωτ . So

ωτ ≤ ωτ̃ = ωτ + Cω
WP

≤ (CC0 + 1)ωτ .

Thus ωτ ∼ ωτ .
To control the Kähler-Einstein metric, we consider

id : (Mg, ωKE
) → (Mg, ωτ̃ )

and
id : (Mg, ωτ̃ ) → (Mg, ωKE

).
Yau’s Schwarz Lemma implies

ωτ̃ ≤ C0ωKE

and
ωn

KE
≤ C0ω

n
τ̃ .

The equivalence follows from linear algebra.
Thus by Corollary 5.1 we have

ω
KE

∼ ωτ̃ ∼ ωτ ∼ ω
P
.

By using a similar method we have ωτ ≤ Cω
M

. To show the other side
of the inequality, we have to analyze the asymptotic behavior of the geodesic
length functions. We showed in [34] that

ωτ ∼ ω
M

.

Thus by the work of McMullen [41] we have

ωτ ∼ ωM ∼ ‖ · ‖T .

The work of Royden showed that the Teichmüller metric coincides with
the Kobayashi metric. Thus we need to show that the Carathéodory metric
and the Bergman metric are comparable with the Kobayashi metric. This
was done in [35] by using Bers’ Embedding Theorem. The idea is as follows:

By the Bers’ Embedding Theorem, for each point p ∈ Tg, there is a map
fp : Tg → Cn such that fp(p) = 0 and

B2 ⊂ fp(Tg) ⊂ B6



RECENT RESULTS ON THE MODULI SPACE 67

where Br is the open ball in Cn centered at 0 with radius r. Since both
Carathéodory metric and Kobayashi metric have the restriction property
and can be computed explicitly on balls, we can use these metrics defined
on B2 and B6 to pinch these metrics on the Teichmüller space. We can also
use this method to estimate peak sections of the Teichmüller space at point
p. A careful analysis shows

‖ · ‖C ∼ ‖ · ‖K ∼ ω
B
.

The argument is quite easy. Please see [35] for details. �

7. Bounded Geometry of the Kähler-Einstein Metric

The comparison theorem gives us some control on the Kähler-Einstein
Metric. Especially we know that it has Poincaré growth near the boundary
of the moduli space and is equivalent to the Ricci metric which has bounded
geometry. In this section we sketch our proof that the Kähler-Einstein metric
also has bounded geometry. Precisely we have

Theorem 7.1. The curvature of the Kähler-Einstein metric and all of
its covariant derivatives are uniformly bounded on the Teichmüller spaces,
and its injectivity radius has lower bound.

Now we briefly describe the proof. Please see [35] for details.

Sketch of proof. We follow Yau’s argument in [56]. The first step is
to perturb the Ricci metric using Kähler-Ricci flow{

∂gij

∂t = −(Rij + gij),
g(0) = τ

to avoid complicated computations of the covariant derivatives of the cur-
vature of the Ricci metric.

For t > 0 small, let h = g(t) and let g be the Kähler-Einstein metric.
We have

(1) h is equivalent to the initial metric τ and thus is equivalent to the
Kähler-Einstein metric,

(2) the curvature and its covariant derivatives of h are bounded.
Then we consider the Monge-Amperé equation

log det(hij + uij) − log det(hij) = u + F

where ∂∂u = ωg − ωh and ∂∂F = Ric(h) + ωh.
The curvature of Pijkl of the Kähler-Einstein metric is given by

Pijkl = Rijkl + upjh
pqRiqkl + u;ijkl − gpqu;iqku;jpl.

The comparison theorem implies ∂∂u has C0-bound and the strong
bounded geometry of h implies ∂∂F has Ck-bound for k ≥ 0. Also, the
equivalence of h and g implies u + F is bounded.
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So we need the Ck-bound of ∂∂u for k ≥ 1. Let

S = gijgklgpqu;iqku;jpl

and

V =gijgklgpqgmn
(
u;iqknu;jplm + u;inkpu;jmlq

)
,

where the covariant derivatives of u were taken with respect to the metric
h.

Yau’s C3 estimate in [56] implies S is bounded. Let f = (S +κ)V where
κ is a large constant. The inequality

Δ
′
f ≥ Cf2 + ( lower order terms )

implies f is bounded and thus V is bounded. So the curvature of the Kähler-
Einstein metric is bounded. The same method can be used to derive bound-
edness of higher derivatives of the curvature. �

Actually we have also proved that all of these complete Kähler met-
rics have bounded geometry, which should be useful in understanding the
geometry of the moduli and the Teichmüller spaces.

8. Application to Algebraic Geometry

The existence of the Kähler-Einstein metric is closely related to the
stability of the tangent and cotangent bundle. In this section we review our
results that the logarithmic extension of the cotangent bundle of the moduli
space is stable in the sense of Mumford. We first recall the definition.

Definition 8.1. Let E be a holomorphic vector bundle over a complex
manifold X and let Φ be a Kähler class of X. The (Φ-)degree of E is given
by

deg(E) =
∫

X
c1(E)Φn−1

where n is the dimension of X. The slope of E is given by the quotient

μ(E) =
deg(E)
rank(E)

.

The bundle E is Mumford (Φ-)stable if for any proper coherent subsheaf
F ⊂ E, we have

μ(F) < μ(E).

Now we describe the logarithmic cotangent bundle. Let U be any local
chart of Mg near the boundary with pinching coordinates (t1, . . . , tm, sm+1,
. . . , sn) such that (t1, . . . , tm) represent the degeneration directions. Let

ei =

{
dti
ti

i ≤ m;
dsi i ≥ m + 1.

The logarithmic cotangent bundle E is the extension of T ∗Mg to Mg such
that on U , e1, . . . , en is a local holomorphic frame of E. One can write down
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the transition functions and check that there is a unique bundle over Mg

satisfying the above condition.
To prove the stability of E, we need to specify a Kähler class. It is

natural to use the polarization of E. The main theorem of this section is
the following:

Theorem 8.2. The first Chern class c1(E) is positive and E is stable
with respect to c1(E).

We briefly describe here the proof of this theorem. Please see [35] for
details.

Sketch of the proof. Since we only deal with the first Chern class, we
can assume the coherent subsheaf F is actually a subbundle F .

Since the Kähler-Einstein metric induces a singular metric g∗
KE

on the
logarithmic extension bundle E, our main job is to show that the degree and
slope of E and any proper subbundle F defined by the singular metric are
finite and are equal to the genuine ones. This depends on our estimates of
the Kähler-Einstein metric which are used to show the convergence of the
integrals defining the degrees.

More precisely we need to show the following:
(1) As a current, ω

KE
is closed and represents the first Chern class of

E, that is
[ω

KE
] = c1(E).

(2) The singular metric g∗
KE

on E induced by the Kähler-Einstein met-
ric defines the degree of E

deg(E) =
∫
Mg

ωn
KE

.

(3) The degree of any proper holomorphic sub-bundle F of E can be
defined by using g∗

KE
|F :

deg(F ) =
∫
Mg

−∂∂ log det
(
g∗

KE
|F
)
∧ ωn−1

KE
.

These three steps were proved in [35] by using the Poincaré growth prop-
erty of the Kähler-Einstein metric together with a special cut-off function.
This shows that the bundle E is semi-stable.

To get the strict stability, we proceeded by contradiction. If E is not sta-
ble, then E, thus E |Mg , split holomorphically. This implies a finite smooth
cover of the moduli space splits, which implies a finite index subgroup of
the mapping class group splits as a direct product of two subgroups. This
is impossible by a topological fact. Again, the detailed proof can be found
in [35].
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Part II: The Topological Aspect

9. The Physics of the Mariño-Vafa Conjecture

Our original motivation to study Hodge integrals was to find a general
mirror formula for counting higher genus curves in Calabi-Yau manifolds. To
generalize the mirror principle to count the number of higher genus curves,
we need to first compute Hodge integrals, i.e., the intersection numbers of
the λ classes and ψ classes on the Deligne-Mumford moduli space of stable
curves Mg,h. This moduli space is possibly the most famous and most in-
teresting orbifold. It has been studied since Riemann, and by many Fields
medalists for the past 50 years, from many different points of view. Still
many interesting and challenging problems about the geometry and topol-
ogy of these moduli spaces remain unsolved. String theory has motivated
many fantastic conjectures about these moduli spaces, including the famous
Witten conjecture which is about the generating series of the integrals of
the ψ-classes. We start with the introduction of some notations.

Recall that a point in Mg,h consists of (C, x1, . . . , xh), a (nodal) curve
C of genus g, and n distinguished smooth points on C. The Hodge bundle
E is a rank g vector bundle over Mg,h whose fiber over [(C, x1, . . . , xh)] is
H0(C,ωC), the complex vector space of holomorphic one forms on C. The
λ classes are the Chern Classes of E,

λi = ci(E) ∈ H2i(Mg,h; Q).

On the other hand, the cotangent line T ∗
xi

C of C at the i-th marked
point xi induces a line bundle Li over Mg,h. The ψ classes are the Chern
classes:

ψi = c1(Li) ∈ H2(Mg,h; Q).
Introduce the total Chern class

Λ∨
g (u) = ug − λ1u

g−1 + · · · + (−1)gλg.

The Mariño-Vafa formula is about the generating series of the triple
Hodge integrals ∫

Mg,h

Λ∨
g (1)Λ∨

g (τ)Λ∨
g (−τ − 1)∏h

i=1(1 − μiψi)
,

where τ is considered as a parameter here. Later we will see that it actually
comes from the weight of the group action, and also from the framing of the
knot. Taking Taylor expansions in τ or in μi one can obtain information
on the integrals of the Hodge classes and the ψ-classes. The Marinõ-Vafa
conjecture asserts that the generating series of such triple Hodge integrals
for all genera and any numbers of marked points can be expressed by a close
formula which is a finite expression in terms of representations of symmetric
groups, or Chern-Simons knot invariants.

We remark that the moduli spaces of stable curves have been the source
of many interests from mathematics to physics. Mumford has computed
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some low genus numbers. The Witten conjecture, proved by Kontsevich, is
about the integrals of the ψ-classes.

Let us briefly recall the background of the conjecture. Mariño and Vafa
[39] made this conjecture based on the large N duality between Chern-
Simons and string theory. It starts from the conifold transition. We consider
the resolution of singularity of the conifold X defined by{(

x y
z w

)
∈ C4 : xw − yz = 0

}
in two different ways:
(1) Deformed conifold T ∗S3{(

x y
z w

)
∈ C4 : xw − yz = ε

}
where ε a real positive number. This is a symplectic resolution of the sin-
gularity.
(2) Resolved conifold by blowing up the singularity, which gives the total
space

X̃ = O(−1) ⊕O(−1) → P1

which is explicitly given by{(
[Z0, Z1],

(
x y
z w

))
∈ P1 ×C4 : (x, y) ∈ [Z0, Z1]

(z,w) ∈ [Z0, Z1]

}
X̃ ⊂ P1 × C4

↓ ↓
X ⊂ C4

The brief history of the development of the conjecture is as follows. In
1992 Witten first conjectured that the open topological string theory on the
deformed conifold T ∗S3 is equivalent to the Chern-Simons gauge theory on
S3. This idea was pursued further by Gopakumar and Vafa in 1998, and
then by Ooguri and Vafa in 2000. Based on the above conifold transition,
they conjectured that the open topological string theory on the deformed
conifold T ∗S3 is equivalent to the closed topological string theory on the
resolved conifold X̃. Ooguri-Vafa only considered the zero framing case.
Later Marinõ-Vafa generalized the idea to the non-zero framing case and
discovered the beautiful formula for the generating series of the triple Hodge
integrals. Recently Vafa and his collaborators systematically developed the
theory, and for the past several years, they developed these duality ideas
into the most effective tool to compute Gromov-Witten invariants on toric
Calabi-Yau manifolds. The high point of their work is the theory of topo-
logical vertex. We refer to [39] and [1] for the details of the physical theory
and the history of the development.

Starting with the proof of the Marinõ-Vafa conjecture [28], [29], we have
developed a rather complete mathematical theory of topological vertex [21].
Many interesting consequences have been derived during the past year. Now
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let us see how the string theorists derived mathematical consequence from
the above naive idea of string duality. First the Chern-Simons partition
function has the form

〈Z(U, V )〉 = exp(−F (λ, t, V )),

where U is the holonomy of the U(N) Chern-Simons gauge field around
the knot K ⊂ S3, and V is an extra U(M) matrix. The partition function
〈Z(U, V )〉 gives the Chern-Simons knot invariants of K.

String duality asserts that the function F (λ, t, V ) should give the gener-
ating series of the open Gromov-Witten invariants of (X̃, LK), where LK is
a Lagrangian submanifold of the resolved conifold X̃ canonically associated
to the knot K. More precisely, by applying the t’Hooft large N expansion,
and the “canonical” identifications of parameters similar to mirror formula,
which at level k are given by

λ =
2π

k + N
, t =

2πiN

k + N
,

we get the partition function of the topological string theory on conifold X̃,
and then on P1, which is just the generating series of the Gromov-Witten
invariants. This change of variables is very striking from the point of view
of mathematics.

The special case when K is the unknot is already very interesting. In
non-zero framing it gives the Mariño-Vafa conjectural formula. In this case
〈Z(U, V )〉 was first computed in the zero framing by Ooguri-Vafa and in any
framing τ ∈ Z by Mariño-Vafa [39]. Comparing with Katz-Liu’s computa-
tions of F (λ, t, V ), Mariño-Vafa conjectured the striking formula about the
generating series of the triple Hodge integrals for all genera and any number
of marked points in terms of the Chern-Simons invariants, or equivalently in
terms of the representations and combinatorics of symmetric groups. It is
interesting to note that the framing in the Mariño-Vafa’s computations cor-
responds to the choice of lifting of the circle action on the pair (X̃, Lunknot)
in Katz-Liu’s localization computations. Both choices are parametrized by
an integer τ which will be considered as a parameter in the triple Hodge
integrals. Later we will take derivatives with respect to this parameter to
get the cut-and-join equation.

It is natural to ask what mathematical consequence we can have for
general duality, that is for general knots in general three manifolds; a first
naive question is what kind of general Calabi-Yau manifolds will appear in
the duality, in place of the conifold. Some special cases corresponding to
the Seifert manifolds are known by gluing several copies of conifolds.

10. The Proof of the Mariño-Vafa Formula

Now we give the precise statement of the Mariño-Vafa conjecture, which
is an identity between the geometry of the moduli spaces of stable curves and
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Chern-Simons knot invariants, or the combinatorics of the representation
theory of symmetric groups.

Let us first introduce the geometric side. For every partition μ = (μ1 ≥
· · ·μl(μ) ≥ 0), we define the triple Hodge integral to be

Gg,μ(τ) = A(τ) ·
∫
Mg,l(μ)

Λ∨
g (1)Λ∨

g (−τ − 1)Λ∨
g (τ)∏l(μ)

i=1(1 − μiψi)
,

where the coefficient

A(τ) = −
√
−1|μ|+l(μ)

|Aut(μ)| [τ(τ + 1)]l(μ)−1

l(μ)∏
i=1

∏μi−1
a=1 (μiτ + a)
(μi − 1)!

.

The expressions, although very complicated, arise naturally from localiza-
tion computations on the moduli spaces of relative stable maps into P1 with
ramification type μ at ∞.

We now introduce the generating series

Gμ(λ; τ) =
∑
g≥0

λ2g−2+l(μ)Gg,μ(τ).

The special case when g = 0 is given by∫
M0,l(μ)

Λ∨
0 (1)Λ∨

0 (−τ − 1)Λ∨
0 (τ)∏l(μ)

i=1(1 − μiψi)
=
∫
M0,l(μ)

1∏l(μ)
i=1(1 − μiψi)

,

which is known to be equal to |μ|l(μ)−3 for l(μ) ≥ 3, and we use this expres-
sion to extend the definition to the case l(μ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .), and define

pμ = pμ1 · · · pμl(μ)

for any partition μ. These pμj correspond to Tr V μj in the notations of
string theorists. The generating series for all genera and all possible marked
points are defined to be

G(λ; τ ; p) =
∑
|μ|≥1

Gμ(λ; τ)pμ,

which encode complete information of the triple Hodge integrals we are
interested in.

Next we introduce the representation theoretical side. Let χμ denote
the character of the irreducible representation of the symmetric group S|μ|,
indexed by μ with |μ| =

∑
j μj . Let C(μ) denote the conjugacy class of S|μ|

indexed by μ. Introduce

Wμ(λ) =
1≤a<b≤l(μ)

sin [(μa − μb + b − a)λ/2]

sin [(b − a)λ/2]
· 1

l(ν)
i=1

μi
v=1 2 sin [(v − i + l(μ))λ/2]

.

This has an interpretation in terms of quantum dimension in Chern-Simons
knot theory.
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We define the following generating series

R(λ; τ ; p) =
∑
n≥1

(−1)n−1

n

·
∑

μ

⎡⎣ ∑
∪n

i=1μi=μ

n∏
i=1

∑
|νi|=|μi|

χνi(C(μi))
zμi

e
√−1(τ+ 1

2 )κνiλ/2Wνi(λ)

⎤⎦ pμ

where μi are sub-partitions of μ, zμ =
∏

j μj !jμj and

κμ = |μ| +
∑

i

(μ2
i − 2iμi)

for a partition μ which is also standard for representation theory of sym-
metric groups. There is the relation zμ = |Aut(μ)|μ1 · · ·μl(μ).

Finally we can give the precise statement of the Mariño-Vafa formula:
Conjecture: We have the identity

G(λ; τ ; p) = R(λ; τ ; p).

Before discussing the proof of this conjecture, we first give several re-
marks. This conjecture is a formula: G : Geometry = R : Representations,
and the representations of symmetric groups are essentially combinatorics.
We note that each Gμ(λ, τ) is given by a finite and closed expression in
terms of the representations of symmetric groups:

Gμ(λ, τ) =
∑
n≥1

(−1)n−1

n

·
∑

∪n
i=1μi=μ

n∏
i=1

∑
|νi|=|μi|

χνi(C(μi))
zμi

e
√−1(τ+ 1

2
)κνiλ/2Wνi(λ).

The generating series Gμ(λ, τ) gives the values of the triple Hodge integrals
for moduli spaces of curves of all genera with l(μ) marked points. Finally we
remark that an equivalent expression of this formula is the following non-
connected generating series. In this situation we have a relatively simpler
combinatorial expression:

G(λ; τ ; p)• = exp [G(λ; τ ; p)]

=
∑
|μ|≥0

⎡⎣ ∑
|ν|=|μ|

χν(C(μ))
zμ

e
√−1(τ+ 1

2
)κνλ/2Wν(λ)

⎤⎦ pμ.

According to Mariño and Vafa, this formula gives values for all Hodge inte-
grals up to three Hodge classes. Lu proved that this is right if we combine
with some previously known simple formulas about Hodge integrals.

By taking Taylor expansion in τ on both sides of the Mariño-Vafa for-
mula, we have derived various Hodge integral identities in [30].
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For examples, as easy consequences of the Mariño-Vafa formula and the
cut-and-join equation as satisfied by the above generating series, we have
unified simple proofs of the λg conjecture by comparing the coefficients in τ
in the Taylor expansions of the two expressions,∫

Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n − 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,

for k1+ · · ·+kn = 2g−3+n, and the following identities for Hodge integrals:∫
Mg

λ3
g−1 =

∫
Mg

λg−2λg−1λg =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

,

where B2g are Bernoulli numbers. And∫
Mg,1

λg−1

1 − ψ1
= bg

2g−1∑
i=1

1
i
− 1

2

∑
g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2,

where

bg =

{
1, g = 0,
22g−1−1
22g−1

|B2g |
(2g)! , g > 0.

Now let us look at how we proved this conjecture. This is joint work
with Chiu-Chu Liu, Jian Zhou. See [27] and [28] for details.

The first proof of this formula is based on the Cut-and-Join equation
which is a beautiful match of combinatorics and geometry. The details of
the proof is given in [27] and [28]. First we look at the combinatorial side.
Denote by [s1, . . . , sk] a k-cycle in the permutation group. We have the
following two obvious operations:

Cut: a k-cycle is cut into an i-cycle and a j-cycle:

[s, t] · [s, s2, . . . , si, t, t2, . . . , tj] = [s, s2, . . . , si][t, t2, . . . , tj].

Join: an i-cycle and a j-cycle are joined to an (i + j)-cycle:

[s, t] · [s, s2, . . . , si][t, t2, . . . tj] = [s, s2, . . . , si, t, t2, . . . , tj ].

Such operations can be organized into differential equations which we call
the cut-and-join equation.

Now we look at the geometry side. In the moduli spaces of stable maps,
cut and join have the following geometric meaning: Cut: one curve splits
into two lower degree or lower genus curves. Join: two curves are joined
together to give a higher genus or higher degree curve.

The combinatorics and geometry of cut-and-join are reflected in the
following two differential equations, which look like a heat equation. It
is easy to show that such an equation is equivalent to a series of systems
of linear ordinary differential equations by comparing the coefficients on
pμ. These equations are proved either by easy and direct computations in
combinatorics or by localizations on moduli spaces of relative stable maps
in geometry. In combinatorics, the proof is given by direct computations
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and was explored in combinatorics in the mid ’80s and by Zhou [27] for this
case. The differential operator on the right hand side corresponds to the
cut-and-join operations which we also simply denote by (CJ).

Lemma 10.1.

∂R

∂τ
=

1
2
√
−1λ

∞∑
i,j=1

(
(i + j)pipj

∂R

∂pi+j
+ ijpi+j

(
∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj

))
.

On the geometry side the proof of such equation is given by localization
on the moduli spaces of relative stable maps into the the projective line P1

with fixed ramifications at ∞:

Lemma 10.2.

∂G

∂τ
=

1
2
√
−1λ

∞∑
i,j=1

(
(i + j)pipj

∂G

∂pi+j
+ ijpi+j

(
∂G

∂pi

∂G

∂pj
+

∂2G

∂pi∂pj

))
.

The proof of the above equation is given in [27]. Together with the
following

Initial Value: τ = 0,

G(λ, 0, p) =
∞∑

d=1

pd

2d sin
(

λd
2

) = R(λ, 0, p)

which is precisely the Ooguri-Vafa formula and which has been proved pre-
viously for example in [58], we therefore obtain the equality which is the
Mariño-Vafa conjecture by the uniqueness of the solution:

Theorem 10.3. We have the identity

G(λ; τ ; p) = R(λ; τ ; p).

During the proof we note that the cut-and-join equation is encoded in
the geometry of the moduli spaces of stable maps. In fact we later find
the convolution formula of the following form, which is a relation for the
disconnected version G• = exp G,

G•
μ(λ, τ) =

∑
|ν|=|μ|

Φ•
μ,ν(−

√
−1τλ)zνK•

ν (λ)

where Φ•
μ,ν is the generating series of double Hurwitz numbers, and zν is the

combinatorial constant that appeared in the previous formulas. Equivalently
this gives the explicit solution of the cut-and-join differential equation with
initial value K•(λ), which is the generating series of the integrals of certain
Euler classes on the moduli spaces of relative stable maps to P1. See [26] for
the derivation of this formula, and see [29] for the two partition analogue.

The Witten conjecture as proved by Kontsevich states that the gener-
ating series of the ψ-class integrals satisfy an infinite number of differential
equations. The remarkable feature of Mariño-Vafa formula is that it gives
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a finite close formula. In fact, by taking limits in τ and μi’s one can ob-
tain the Witten conjecture as argued by Okounkov-Pandhrapande. But the
combinatorics involved is non-trivial. A much simpler direct proof of the
Witten conjecture was obtained recently by Kim and myself. We directly
derived the recursion formula which implies both the Virasoro relations and
the KdV equations. We will discuss this proof later.

The same argument as our proof of the conjecture gives a simple and
geometric proof of the ELSV formula for Hurwitz numbers. It reduces to
the fact that the push-forward of 1 is a constant in equivariant cohomology
for a generically finite-to-one map. This will also be discussed in a later
section. See [28] for more details.

We would like to briefly explain the technical details of the proof of the
Mariño-Vafa formula. The proof of the combinatorial cut-and-join formula
is based on the Burnside formula and various simple results in symmetric
functions. See [58], [22] and [28].

The proof of the geometric cut-and-join formula used the functorial lo-
calization formula in [24] and [25]. Here we only state its simple form for
manifolds as used in [24]; the virtual version of this formula is proved and
used in [25].

Given X and Y two compact manifolds with torus action. Let f :
X → Y be an equivariant map. Let F ⊂ Y be a fixed component, and let
E ⊂ f−1(F ) denote the fixed components lying inside f−1(F ). Let f0 = f |E;
then we have

Functorial Localization Formula: For ω ∈ H∗
T (X) an equivariant

cohomology class, we have the identity on F :

f0∗

[
i∗Eω

eT (E/X)

]
=

i∗F (f∗ω)
eT (F/Y )

.

This formula, which is a generalization of the Atiyah-Bott localization
formula to relative setting, has been applied to various settings to prove
many interesting conjectures from physics. It was discovered and effectively
used in [24]. A virtual version which was first applied to the virtual fun-
damental cycles in the computations of Gromov-Witten invariants was first
proved and used in [25].

This formula is very effective and useful because we can use it to push
computations on complicated moduli space to simpler moduli space. The
moduli spaces used by mathematicians are usually the correct but compli-
cated moduli spaces like the moduli spaces of stable maps, while the moduli
spaces used by physicists are usually the simple but wrong ones like the pro-
jective spaces. This functorial localization formula has been used success-
fully in the proof of the mirror formula [24], [25], the proof of the Hori-Vafa
formula [23], and the easy proof of the ELSV formula [28]. Our first proof
of the Mariño-Vafa formula also used this formula in a crucial way.

More precisely, let Mg(P1, μ) denote the moduli space of relative stable
maps from a genus g curve to P1 with fixed ramification type μ at ∞,
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where μ is a fixed partition. We apply the functorial localization formula
to the divisor morphism from the relative stable map moduli space to the
projective space,

Br : Mg(P1, μ) → Pr,

where r denotes the dimension of Mg(P1, μ). This is similar to the set-up of
mirror principle, only with a different linearized moduli space, but in both
cases the target spaces are projective spaces.

We found that the fixed points of the target Pr precisely label the cut-
and-join operations of the triple Hodge integrals. Functorial localization re-
duces the problem to the study of polynomials in the equivariant cohomology
group of Pr. We were able to squeeze out a system of linear equations which
implies the cut-and-join equation. Actually we derived a stronger relation
than the cut-and-join equation, while the cut-and-join equation we need for
the Mariño-Vafa formula is only the very first of such kind of relations. See
[28] for higher order cut-and-join equations.

As was known in infinite Lie algebra theory, the cut-and-join operator is
closely related to and more fundamental than the Virasoro algebras in some
sense.

Recently there have appeared two different approaches to the Mariño-
Vafa formula. The first one is a direct derivation of the convolution formula
which was discovered during our proof of the two partition analogue of the
formula [29]. See [26] for the details of the derivation in this case. The
second is by Okounkov-Pandhripande [44]; they gave a different approach
by using the ELSV formula as initial value, as well as the λg conjecture and
other recursion relations from localization on the moduli spaces of stable
maps to P1.

11. Two Partition Generalization

The two partition analogue of the Mariño-Vafa formula naturally arises
from the localization computations of the Gromov-Witten invariants of the
open toric Calabi-Yau manifolds, as explained in [59].

To state the formula we let μ+, μ− be any two partitions. Introduce the
Hodge integrals involving these two partitions:

Gμ+,μ−(λ; τ) = B(τ ;μ+, μ−) ·
∑
g≥0

λ2g−2Ag(τ ;μ+, μ−)

where

Ag(τ ;μ+, μ−)

=
∫
Mg,l(μ+)+l(μ−)

Λ∨
g (1)Λ∨

g (τ)Λ∨
g (−τ − 1)∏l(μ+)

i=1

(
1 − μ+

i ψi

)∏l(μ−)
j=1 τ

(
τ − μ−

i ψj+l(μ+)

)
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and

B(τ ;μ+, μ−)

= − (
√
−1λ)l(μ

+)+l(μ−)

|Aut(μ+)||Aut(μ−)| [τ(τ + 1)]l(μ
+)+l(μ−)−1

·
l(μ+)∏
i=1

∏μ+
i −1

a=1

(
μ+

i τ + a
)

(μ+
i − 1)!

·
l(μ−)∏
i=1

∏μ−
i −1

a=1

(
μ−

i
1
τ + a

)
(μ−

i − 1)!
.

These complicated expressions naturally arise in open string theory, as well
as in the localization computations of the Gromov-Witten invariants on open
toric Calabi-Yau manifolds.

We introduce two generating series, first on the geometry side,

G•(λ; p+, p−; τ) = exp

⎛⎝ ∑
(μ+,μ−)∈P2

Gμ+,μ−(λ, τ)p+
μ+p−

μ−

⎞⎠ ,

where P2 denotes the set of pairs of partitions and p±
μ± are two sets of formal

variables associated to the two partitions as in the last section.
On the representation side, we introduce

R•(λ; p+, p−; τ)

=
∑

|ν±|=|μ±|≥0

χν+(C(μ+))
zμ+

χν−(C(μ−))
zμ−

· e
√−1(κν+τ+κν−τ−1)λ/2Wν+,ν−p+

μ+p−
μ− .

Here

Wμ,ν = ql(ν)/2Wμ · sν(Eμ(t))

= (−1)|μ|+|ν|q
κμ+κν+|μ|+|ν|

2

∑
ρ

q−|ρ|sμ/ρ(1, q, . . . )sν/ρ(1, q, . . . )

in terms of the skew Schur functions sμ [38]. They appear naturally in the
Chern-Simons invariant of the Hopf link.

Theorem 11.1. We have the identity:

G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ).

The idea of the proof is similar to that of the proof of the Mariño-Vafa
formula. We prove that both sides of the above identity satisfy the same
cut-and-join equation of the following type:

∂

∂τ
H• =

1
2
(CJ)+H• − 1

2τ2
(CJ)−H•,

where (CJ)± denote the cut-and-join operator, the differential operator with
respect to the two set of variables p±. We then prove that they have the
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same initial value at τ = −1:

G•(λ; p+, p−;−1) = R•(λ; p+, p−;−1),

which is again given by the Ooguri-Vafa formula [29], [59].
The cut-and-join equation can be written in a linear matrix form, and

such equation follows from the convolution formula of the form

K•
μ+,μ−(λ)

=
∑

|ν±|=μ±
G•

μ+,μ−(λ; τ)zν+Φ•
ν+,μ+(−

√
−1λτ)zν−Φ•

ν−,μ−

(−
√
−1

τ
λ

)
where Φ• denotes the generating series of double Hurwitz numbers, and
Kμ+,μ− is the generating series of certain integrals on the moduli spaces of
relative stable maps. For more details see [29].

This convolution formula arises naturally from localization computations
on the moduli spaces of relative stable maps to P1 × P1 with the point
(∞,∞) blown up. So it reflects the geometric structure of the moduli spaces.
Such a convolution type formula was actually discovered during our search
for a proof of this formula, both on the geometric and the combinatorial
side; see [29] for the detailed derivations of the convolution formulas in
both geometry and combinatorics.

The proof of the combinatorial side of the convolution formula is again
a direct computation. The proof of the geometric side for the convolution
equation is to reorganize the generating series from localization contributions
on the moduli spaces of relative stable maps into P1 × P1 with the point
(∞,∞) blown up, in terms of the double Hurwitz numbers. It involves
careful analysis and computations.

12. Theory of Topological Vertex

When we worked on the Mariño-Vafa formula and its generalizations, we
were simply trying to generalize the method and the formula to involve more
partitions, but it turned out that in the three partition case, we naturally
met the theory of topological vertex. Topological vertex was first introduced
in string theory by Vafa et al in [1]; it can be deduced from a three partition
analogue of the Mariño-Vafa formula in a highly nontrivial way. From this
we were able to give a rigorous mathematical foundation for the physical
theory. Topological vertex is a high point of the theory of string duality as
developed by Vafa and his group for the past several years, starting from
Witten’s conjectural duality between Chern-Simons and open string theory.
It gives the most powerful and effective way to compute the Gromov-Witten
invariants for all open toric Calabi-Yau manifolds. In physics it is rare to
have two theories agree up to all orders, and topological vertex theory gives
a very significant example. In mathematics the theory of topological vertex
already has many interesting applications. Here we only briefly sketch the
rough idea for the three partition analogue of the Mariño-Vafa formula. For
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its relation to the theory of topological vertex, we refer the reader to [21]
for the details.

Given any three partitions −→μ = {μ1, μ2, μ3}, the cut-and-join equation
in this case, for both the geometry and representation sides, has the form:

∂

∂τ
F •(λ; τ ;p) = (CJ)1F •(λ; τ ;p) +

1
τ2

(CJ)2F •(λ; τ ;p)

+
1

(τ + 1)2
(CJ)3F •(λ; τ ;p).

The cut-and-join operators (CJ)1, (CJ)2 and (CJ)3 are with respect to
the three partitions. More precisely they correspond to the differential op-
erators with respect to the three groups of infinite numbers of variables
p = {p1, p2, p3}.

The initial value for this differential equation is taken at τ = 1, which is
then reduced to the formulas of the two partition case. The combinatorial,
or the Chern-Simons invariant side is given by W−→μ = Wμ1,μ2,μ3 which is a
combination of the Wμ,ν as in the two partition case. See [21] for its explicit
expression.

On the geometry side,

G•(λ; τ ;p) = exp(G(λ; τ ;p))

is the non-connected version of the generating series of the triple Hodge
integral. More precisely,

G(λ; τ ;p) =
∑
−→μ

⎡⎣ ∞∑
g=0

λ2g−2+l(−→μ )Gg,−→μ (τ)

⎤⎦ p1
μ1p

2
μ2p

3
μ3

where l(−→μ ) = l(μ1)+ l(μ2)+ l(μ3) and Gg,−→μ (τ) denotes the Hodge integrals
of the following form,

A(τ)
∫
Mg,l1+l2+l3

Λ∨
g (1)Λ∨

g (τ)Λ∨
g (−τ − 1)∏l1

j=1(1 − μ1
jψj)

∏l2
j=1 τ(τ − μ2

jψl1+j)

· (τ(τ + 1))l1+l2+l3−1∏l3
j=1(τ + 1)(τ + 1 + μ3

jψl1+l2+j)
,

where

A(τ) =
−(

√
−1λ)l1+l2+l3

|Aut(μ1)||Aut(μ2)||Aut(μ3)|

l1∏
j=1

∏μ1
j−1

a=1 (τμ1
j + a)

(μ1
j − 1)!

·
l2∏

j=1

∏μ1
j−1

a=1 ((−1 − 1/τ)μ2
j + a)

(μ2
j − 1)!

l3∏
j=1

∏μ1
j−1

a=1 (−μ3
j/(τ + 1) + a)

(μ3
j − 1)!

.

In the above expression, li = l(μi), i = 1, 2, 3. Despite its complicated
coefficients, these triple integrals naturally arise from localizations on the
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moduli spaces of relative stable maps into the blow-up of P1 × P1 × P1

along certain divisors. It also naturally appears in open string theory com-
putations [1]. See [21] for more details.

One of our results in [21] states that G•(λ; τ ;p) has a combinatorial
expression R•(λ; τ ;p) in terms of the Chern-Simons knot invariants W−→μ ,
and it is a closed combinatorial expression. More precisely it is given by

R•(λ; τ ;p)

=
∑
−→μ

⎡⎣ ∑
|νi|=|μi|

3∏
i=1

χνi(μi)
zμi

q
1
2
( 3

i=1 κνi
wi+1

wi
)
W−→ν (q)

⎤⎦ p1
μ1p

2
μ2p

3
μ3 .

Here w4 = w1 and w3 = −w1 − w2 and τ = w2
w1

. Due to the complicated
combinatorics in the initial values, the combinatorial expression W−→μ we ob-
tained is different from the expression W−→μ obtained by Vafa et al. Actually
our expression is even simpler than theirs in some sense. The expression we
obtained is more convenient for mathematical applications such as the proof
of the Gopakumar-Vafa conjecture for open toric Calabi-Yau manifolds. It
should be possible to identify the two combinatorial expressions by using the
classical theory of symmetric functions, as pointed out to us by R. Stanley.

Theorem 12.1. We have the equality:

G•(λ; τ ;p) = R•(λ; τ ;p).

The key point to prove that the above theorem is still the proof of con-
volution formulas for both sides which imply the cut-and-join equation. The
proof of the convolution formula for G•(λ; τ ;p) is much more complicated
than the one and two partition cases. See [21] for details.

The above theorem is crucial for us to establish the theory of topological
vertex in [21], which gives the most powerful way to compute the generating
series of all genera and all degree Gromov-Witten invariants for open formal
Calabi-Yau manifolds. The most useful property of topological vertex is its
gluing property induced by the orthogonal relations of the characters of the
symmetric group. This is very close to the situation of two dimensional gauge
theory. In fact string theorists consider topological vertex as a kind of lattice
theory on Calabi-Yau manifolds. By using the gluing formula we can easily
obtain closed formulas for generating series of Gromov-Witten invariants
of all genera and all degrees, open or closed, for all open toric Calabi-Yau
manifolds, in terms of the Chern-Simons knot invariants. Such formulas are
always given by finite sum of products of those Chern-Simons type invariants
Wμ,ν ’s. The magic of topological vertex is that, by simply looking at the
moment map graph of the toric surfaces in the open toric Calabi-Yau, we
can immediately write down the closed formula for the generating series for
all genera and all degree Gromov-Witten invariants, or more precisely the
Euler numbers of certain bundles on the moduli space of stable maps.

Here we only give one example to describe the topological vertex formula
for the generating series of the all degree and all genera Gromov-Witten
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invariants for the open toric Calabi-Yau 3-folds. We write down the explicit
close formula of the generating series of the Gromov-Witten invariants for
O(−3) −→ P2 in terms of the Chern-Simons invariants.

Example: The complete generating series of Gromov-Witten invariants
of all degree and all genera for O(−3) −→ P2 s given by

exp

⎛⎝ ∞∑
g=0

λ2g−2Fg(t)

⎞⎠
=
∑

ν1,ν2,ν3

Wν1,ν2Wν2,ν3Wν3,ν1(−1)
3
j=1 |νj |q

1
2

3
i=1 κνi et( 3

j=1 |νj|)

where q = e
√−1λ. The precise definition of Fg(t) will be given in the next

section.

For general open toric Calabi-Yau manifolds, the expressions are just
similar. They are all given by finite and closed formulas, which are easily
read out from the moment map graphs associated to the toric surfaces, with
the topological vertex associated to each vertex of the graph.

In [1] Vafa and his group first developed the theory of topological vertex
by using string duality between Chern-Simons and Calabi-Yau, which is
a physical theory. In [21] we established the mathematical theory of the
topological vertex, and derived various mathematical corollaries, including
the relation of the Gromov-Witten invariants to the equivariant index theory
as motivated by the Nekrasov conjecture in string duality [27].

13. Gopakumar-Vafa Conjecture and Indices of Elliptic
Operators

Let Ng,d denote the so-called Gromov-Witten invariant of genus g and
degree d of an open toric Calabi-Yau 3-fold. Ng,d is defined to be the Euler
number of the obstruction bundle on the moduli space of stable maps of
degree d ∈ H2(S, Z) from genus g curve into the surface base S. The open
toric Calabi-Yau manifold associated to the toric surface S is the total space
of the canonical line bundle KS on S. More precisely

Ng,d =
∫

[Mg(S,d)]v
e(Vg,d)

with Vg,d = R1π∗u∗KS a vector bundle on the moduli space induced by the
canonical bundle KS . Here π : U → Mg(S, d) denotes the universal curve
and u can be considered as the evaluation or universal map. Let us write

Fg(t) =
∑
d≥0

Ng,d e−d·t.

The Gopakumar-Vafa conjecture is stated as follows:
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Gopakumar-Vafa Conjecture: There exists an expression:
∞∑

g=0

λ2g−2Fg(t) =
∞∑

k=1

∑
g,d≥0

ng
d

1
d

(2sin
dλ

2
)2g−2e−kd·t,

such that ng
d are integers, called instanton numbers.

Motivated by the Nekrasov duality conjecture between the four dimen-
sional gauge theory and string theory, we are able to interpret the above
integers ng

d as equivariant indices of certain elliptic operators on the moduli
spaces of anti-self-dual connections [27]:

Theorem 13.1. For certain interesting cases, these ng
d’s can be written

as equivariant indices on the moduli spaces of anti-self-dual connections on
C2.

For more precise statement, we refer the reader to [27]. The interesting
cases include open toric Calabi-Yau manifolds when S is Hirzebruch surface.
The proof of this theorem is to compare fixed point formula expressions for
equivariant indices of certain elliptic operators on the moduli spaces of anti-
self-dual connections with the combinatorial expressions of the generating
series of the Gromov-Witten invariants on the moduli spaces of stable maps.
They both can be expressed in terms of Young diagrams of partitions. We
find that they agree up to certain highly non-trivial “mirror transforma-
tion”, a complicated variable change. This result is not only interesting
for the index formula interpretation of the instanton numbers, but also for
the fact that it gives the first complete examples that the Gopakumar-Vafa
conjecture holds for all genera and all degrees.

Recently P. Peng [45] has given the proof of the Gopakumar-Vafa con-
jecture for all open toric Calabi-Yau 3-folds by using the Chern-Simons ex-
pressions from the topological vertex. His method is to explore the property
of the Chern-Simons expression in great detail with some clever observation
about the form of the combinatorial expressions. On the other hand, Kim
in [13] has derived some remarkable recursion formulas for Hodge integrals
of all genera and any number of marked points, involving one λ-classes. His
method is to add marked points in the moduli spaces and then follow the
localization argument we used to prove the Mariño-Vafa formula.

14. Simple Localization Proofs of the ELSV Formula

Given a partition μ of length l(μ), denote by Hg,μ the Hurwitz numbers
of almost simple Hurwitz covers of P1 of ramification type μ by connected
genus g Riemann surfaces. The ELSV formula [8, 10] states:

Hg,μ = (2g − 2 + |μ| + l(μ))!Ig,μ

where

Ig,μ =
1

|Aut(μ)|

l(μ)∏
i=1

μμi
i

μi!

∫
Mg,l(μ)

Λ∨
g (1)∏l(μ)

i=1(1 − μiψi)
.



RECENT RESULTS ON THE MODULI SPACE 85

Define generating functions

Φμ(λ) =
∑
g≥0

Hg,μ
λ2g−2+|μ|+l(μ)

(2g − 2 + |μ| + l(μ))!
,

Φ(λ; p) =
∑
|μ|≥1

Φμ(λ)pμ,

Ψμ(λ) =
∑
g≥0

Ig,μλ2g−2+|μ|+l(μ),

Ψ(λ; p) =
∑
|μ|≥1

Ψμ(λ)pμ.

In terms of generating functions, the ELSV formula reads

Ψ(λ; p) = Φ(λ; p).

It was known that Φ(λ; p) satisfies the following cut-and-join equation:

∂Θ
∂λ

=
1
2

∑
i,j≥1

(
ijpi+j

∂2Θ
∂pi∂pj

+ ijpi+j
∂Θ
∂pi

∂Θ
∂pj

+ (i + j)pipj
∂Θ

∂pi+j

)
.

This formula was first proved in [7]. Later this equation was reproved by
sum formula of symplectic Gromov-Witten invariants [20].

The calculations in Section 7 and Appendix A of [27] show that

H̃g,μ = (2g − 2 + |μ| + l(μ))!Ig,μ

H̃g,μ = (2g − 3 + |μ| + l(μ))!

⎛⎝ ∑
ν∈J(μ)

Ig,ν +
∑

ν∈C(μ)

I2(ν)Ig−1,ν

+
∑

g1+g2=g

∑
ν1∪ν2∈C(μ)

I3(ν1, ν2)Ig1,ν1Ig2,ν2

⎞⎠
where

H̃g,μ =
∫

[Mg,0(P1,μ)]vir

Br∗Hr

is some relative Gromov-Witten invariant of (P1,∞), and C(μ), J(μ), I1,
I2, I3 are defined as in [20]. In fact, as proved in [27], this is double Hurwitz
numbers. So we have

(2g − 2 + |μ| + l(μ))Ig,μ =
∑

ν∈J(μ)

Ig,ν +
∑

ν∈C(μ)

I2(ν)Ig−1,ν

+
∑

g1+g2=g

∑
ν1∪ν2∈C(μ)

I3(ν1, ν2)Ig1,ν1Ig2,ν2,

which is equivalent to the statement that the generating function Ψ(λ; p) of
Ig,μ also satisfies the cut-and-join equation.
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Any solution Θ(λ; p) to the cut-and-join equation (14) is uniquely de-
termined by its initial value Θ(0; p), so it remains to show that Ψ(0; p)
= Φ(0; p). Note that 2g− 2+ |μ|+ l(μ) = 0 if and only if g = 0 and μ = (1),
so

Ψ(0; p) = H0,(1)p1, Φ(0; p) = I0,(1)p1.

It is easy to see that H0,(1) = I0,(1) = 1, so

Ψ(0; p) = Φ(0; p).

One can see geometrically that the relative Gromov-Witten invariant
H̃g,μ is equal to the Hurwitz number Hg,μ. This together with (14) gives a
proof of the ELSV formula presented in [27, Section 7] in the spirit of [10].
Note that H̃g,μ = Hg,μ is not used in the proof described above.

On the other hand we can deduce the ELSV formula as the limit of the
Mariño-Vafa formula. By the Burnside formula, one easily gets the following
expression (see e.g., [29]):

Φ(λ; p) = log

⎛⎝∑
μ

⎛⎝ ∑
|ν|=|μ|

χν(μ)
zμ

eκνλ/2 dimRν

|ν|!

⎞⎠ pμ.

⎞⎠
=
∑
n≥1

(−1)n−1

n

∑
μ

∑
∪n

i=1μi=μ

n∏
i=1

∑
|νi|=|μi|

χνi(μi)
zμi

eκνiλ/2 dimRνi

|νi|!
pμ.

The ELSV formula reads

Ψ(λ; p) = Φ(λ; p)

where the left hand side is a generating function of Hodge integrals Ig,μ, and
the right hand side is a generating function of representations of symmetric
groups. So the ELSV formula and the MV formula are of the same type.

Actually, the ELSV formula can be obtained by taking a particular limit
of the MV formula G(λ; τ ; p) = R(λ; τ ; p). More precisely, it is straightfor-
ward to check that

lim
τ→0

G(λτ ;
1
τ
; (λτ)p1, (λτ)2p2, . . .)

=
∑
|μ|�=0

∞∑
g=0

√
−1

2g−2+|μ|+l(μ)
Ig,μλ2g−2+|μ|+l(μ)pμ

= Ψ(
√
−1λ; p)
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and

lim
τ→0

R(λτ ;
1
τ
; (λτ)p1, (λτ)2p2, . . .)

= log

⎛⎝∑
μ

⎛⎝ ∑
|ν|=|μ|

χν(C(μ))
zμ

e
√−1κνλ/2 lim

t→0
(t|ν|Vν(t))

⎞⎠ pμ

⎞⎠
= log

⎛⎝∑
μ

⎛⎝ ∑
|ν|=|μ|

χν(C(μ))
zμ

e
√−1κνλ/2 1∏

x∈ν h(x)

⎞⎠ pμ

⎞⎠
= Φ(

√
−1λ; p)

where we have used

1∏
x∈ν h(x)

=
dimRν

|ν|! .

See [30] for more details. In this limit, the cut-and-join equation of
G(λ; τ ; p) and R(λ; τ ; p) reduces to the cut-and-join equation of Ψ(λ; p) and
Φ(λ; p), respectively.

15. A Localization Proof of the Witten Conjecture

The Witten conjecture for moduli spaces states that the generating series
F of the integrals of the ψ classes for all genera and any number of marked
points satisfies the KdV equations and the Virasoro constraint. For example,
the Virasoro constraint states that F satisfies

Ln · F = 0, n ≥ −1

where Ln denote certain Virasoro operators as given below.
Witten conjecture was first proved by Kontsevich [16] using a combina-

torial model of the moduli space and matrix model, with later approaches
by Okounkov-Pandhripande [43] using ELSV formula and combinatorics,
and by Mirzakhani [42] using Weil-Petersson volumes on moduli spaces of
bordered Riemann surfaces.

I will present a much simpler proof by using functorial localization and
asymptotics. This was done [14] jointly with Y.-S. Kim. This is also moti-
vated by methods in proving conjectures from string duality. It should have
more applications.

The basic idea of our proof is to directly prove the following recursion
formula which, as derived in physics by Dijkgraaf, Verlinde and Verlinde by
using quantum field theory, implies the Virasoro and the KdV equation for
the generating series F of the integrals of the ψ classes:
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Theorem 15.1. We have identity

〈
σ̃n

∏
k∈S

σ̃k

〉
g

=
∑
k∈S

(2k + 1)

〈
σ̃n+k−1

∏
l �=k

σ̃l

〉
g

+
1
2

∑
a+b=n−2

〈
σ̃aσ̃b

∏
l �=a,b

σ̃l

〉
g−1

+
1
2

∑
S=X∪Y,

a+b=n−2,
g1+g2=g

〈
σ̃a

∏
k∈X

σ̃k

〉
g1

〈
σ̃b

∏
l∈Y

σ̃l

〉
g2

.

Here σ̃n = (2n + 1)!!ψn and

〈
n∏

j=1

σ̃kj

〉
g

=
∫
Mg,n

n∏
j=1

σ̃kj
.

The notation S = {k1, . . . , kn} = X ∪ Y .

To prove the above recursion relation, we first apply the functorial lo-
calization to the natural branch map from moduli space of relative stable
maps Mg(P1, μ) to projective space Pr where r = 2g − 2 + |μ|+ l(μ) is the
dimension of the moduli. Since the push-forward of 1 is a constant in this
case, we easily get the cut-and-join equation for one Hodge integral

Ig,μ =
1

|Aut μ|

n∏
i=1

μμi
i

μi!

∫
Mg,n

Λ∨
g (1)∏

(1 − μiψi)
.

As given in the previous section, we have

(2g − 2 + |μ| + l(μ))Ig,μ

=
∑

ν∈J(μ)

Ig,ν +
∑

ν∈C(μ)

I2(ν)Ig−1,ν

+
∑

g1+g2=g

∑
ν1∪ν2∈C(μ)

I3(ν1, ν2)Ig1,ν1Ig2,ν2.
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Write μi = Nxi. Let N goes to infinity and expand in xi, and we get:

n∑
i=1

[(2ki + 1)!!
2ki+1ki!

xki
i

∏
j �=i

x
kj− 1

2
j√
2π

∫
Mg,n

∏
ψ

kj

j

−
∑
j �=i

(xi + xj)ki+kj− 1
2

√
2π

∏
l �=i,j

x
kl− 1

2
l√
2π

∫
Mg,n−1

ψki+kj−1
∏

ψkl
l

− 1
2

∑
k+l=ki−2

(2k + 1)!!(2l + 1)!!
2ki ki!

xki
i

∏
j �=i

x
kj− 1

2
j√
2π

[ ∫
Mg−1,n+1

ψk
1ψl

2

∏
ψ

kj

j

+
∑

g1+g2=g,
ν1∪ν2=ν

∫
Mg1,n1

ψk
1

∏
ψ

kj

j

∫
Mg2,n2

ψl
1

∏
ψ

kj

j

]]
= 0.

Performing Laplace transforms on the xi’s, we get the recursion formula
which implies both the KdV equations and the Virasoro constraints. For
example, the Virasoro constraints state that the generating series

τ(t̃) = exp
∞∑

g=0

〈
exp
∑
n

t̃nσ̃n

〉
g

satisfies the equations:

Ln · τ = 0, (n ≥ −1)

where Ln denote the Virasoro differential operators

L−1 = −1
2

∂

∂t̃0
+

∞∑
k=1

(
k +

1
2

)
t̃k

∂

∂t̃k−1
+

1
4
t̃20

L0 = −1
2

∂

∂t̃1
+

∞∑
k=0

(
k +

1
2

)
t̃k

∂

∂t̃k
+

1
16

Ln = −1
2

∂

∂t̃n−1
+

∞∑
k=0

(
k +

1
2

)
t̃k

∂

∂t̃k+n
+

1
4

n∑
i=1

∂2

∂t̃i−1∂t̃n−i
.

We remark that the same method can be used to derive very general re-
cursion formulas in Hodge integrals and general Gromov-Witten invariants.
We hope to report these results on a later occasion.

16. Final Remarks

We have briefly reviewed our recent results on both the geometric and
the topological aspect of the moduli spaces of Riemann surfaces. Although
significant progress has been made in understanding the geometry and topol-
ogy of the moduli spaces of Riemann surfaces, there are still many problems
that remain to be solved in both aspects.
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For the geometric aspect, it will be interesting to understand the conver-
gence of the Ricci flow starting from the Ricci metric to the Kähler-Einstein
metric, the representations of the mapping class group on the middle di-
mensional L2-cohomology of these metrics, and the index theory associated
to these complete Kähler metrics. Recently, we showed that the metrics
on the logarithm cotangent bundle induced by the Weil-Petersson metric,
the Ricci metric and the perturbed Ricci metric are good in the sense of
Mumford [36]. Also the perturbed Ricci metric is the first complete Kähler
metric on the moduli spaces with bounded negative Ricci and holomorphic
sectional curvature and bounded geometry, and we believe this metric must
have more interesting applications. Another question is which of these met-
rics are actually identical. We hope to report on the progress of the study
of these problems on a later occasion.

For the topological aspect it will be interesting to have closed formulas
to compute Hodge integrals involving more Hodge classes, and to use our
complete understanding of the Gromov-Witten theory in the open formal
toric Calabi-Yau manifolds to understand the compact Calabi-Yau case. We
strongly believe that there is a more interesting and grand duality picture
between Chern-Simons invariants for three dimensional manifolds and the
Gromov-Witten invariants for open toric Calabi-Yau manifolds. Our proofs
of the Mariño-Vafa formula, and the setup of the mathematical foundation
for topological vertex theory and the results of Peng and Kim all together
have just opened a small window for a more splendid picture.

Finally, although we have worked on two quite different aspects of the
moduli spaces, we strongly believe that the methods and results we have
developed and obtained in these seemingly unrelated aspects will eventually
merge together to give us a completely clear understanding of the moduli
spaces of Riemann surfaces.
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