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Functoriality and Small Eigenvalues of Laplacian on
Riemann Surfaces

Freydoon Shahidi

Abstract. The purpose of this article is to survey the recent progress made on

estimating positive eigenvalues of Laplacian on hyperbolic Riemann surfaces

in the case of congruence subgroups in connection with the Selberg conjecture,
as well as certain related ones. The results are obtained as consequences of
establishing certain important cases of Langlands’ functoriality conjecture.
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1. Introduction

Hyperbolic Riemann surfaces are one dimensional complex connected manifolds
whose universal coverings are the upper half planeH (conformally equivalent to the
open disc Δ of radius 1). They comprise most Riemann surfaces and are uniformized
asM = Γ\H , where Γ is a freely acting Fuchsian group, i.e., a discrete subgroup of
PSL2(R), the group of conformal automorphisms of H , acting without fixed points
on H through fractional linear transformations

(1.1) z −→ γ · z = (az + b)/(cz + d) (γ =
(
a b
c d

)
∈ Γ).

Then Γ = π1(M), the fundamental group of M .
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Throughout this paper we are interested only in thoseM which are parametrized
by Fuchsian groups of the first kind. These are simply Fuchsian groups for which
Vol(Γ\H) < ∞ and they are usually called “finite volume type groups.” Here the
volume is calculated with respect to the hyperbolic measure dxdy/y2 on H .

Let us recall that a congruence subgroup is a subgroup of SL2(Z) containing
a principal congruence subgroup Γ(N), the subgroup of all γ ∈ SL2(Z) satisfying
γ ≡ I(mod N) for some positive integer N . In view of the fact that the congruence
subgroup problem (cf. [60]) is not valid for SL2(R), not every arithmetic subgroup
(i.e., finite index) of SL2(Z) is a congruence subgroup. This was first observed in
1887 by Fricke[16] and Pick [52]. We refer to [44], page 251, for a discussion of
this and examples of non–congruence arithmetic subgroups of SL2(Z).

The Laplace operator on M = Γ\H is simply

(1.2) Δ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

This is a symmetric and non–negative operator which has a self–adjoint extension
to all of L2(Γ\H). Spectral decomposition of Δ on L2(Γ\H) decomposes L2(Γ\H)
to the direct sum of its discrete and continuous spectrum.

It is traditional to write λ = s(1 − s), s ∈ C, to denote an eigenvalue for Δ.
We note that the continuous part s = 1

2 + it, t ∈ R, giving λ = 1
4 + t2. For the

discrete spectrum, we denote the distinct eigenvalues as 0 = λ0 < λ1 < λ2 < . . ..
If 0 < λi < 1/4, we call λi exceptional; meaning in particular, that they are of a
different nature than those greater than or equal to 1/4 (cf. Selberg’s conjecture
below). They are finite in number.

One of the central problems in the theory of Riemann surfaces is how small λ1

can get. When Γ is cocompact, there are many examples in which λ1 < 1
4 . In fact,

if Γ\H is of “signature (g, 0, 0)”, then Schoen, Wolpert and Yau [58] have shown
that λ2g−3 can be made as small as one wishes, allowing exceptional eigenvalues
below 1/4, while Buser (cf. [3]) has proved

λ4g−2 ≥ 1/4,
i.e., λ4g−2 is never exceptional, but λ2g−3 can be exceptional for arbitrary g ≥ 2.
Remarkably enough λ1 has a universal upper bound due to Yang and Yau [72]:

λ1 ≤ 2
g + 1
g − 1 ≤ 6.

As for non–compact Riemann surfaces, one can find examples where λ1(Γ\H) <
1/4 ([59, 73]). But they are not congruence subgroups. In fact, for a congruence
subgroup Selberg made the following remarkable conjecture.

Conjecture 1.1 (Selberg [59], 1965). There are no exceptional eigenvalues
for congruence subgroups, i.e., one has

λ1 ≥ 1/4.
In fact, in [59], Selberg proved:

Theorem 1.2. For any congruence subgroup Γ

λ1 = λ1(Γ\H) ≥ 3/16.
With all the examples discussed earlier, it is clear that the conjecture is very

much of arithmetic nature and quite deep. In fact, most of the progress in improving
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these lower bounds have come from the theory of automorphic forms. The purpose
of this article is to report on recent progress on this important conjecture and other
related ones such as that of Ramanujan. We refer to [1, 4, 5, 6, 20, 25, 27,
55, 56, 69, 70] for some recent excellent expository articles on different aspects of
these conjectures and more.

I would like to thank the editors of “Surveys in Differential Geometry” and in
particular Professor S.T. Yau for their invitation that I prepare such a report for
inclusion in the volume. I would also like to thank the referees for their comments
towards the improvement of this exposition.

2. Ramanujan Conjecture

To study the eigenvalues of Δ one needs to concentrate on eigenfunctions.
These are now functions on Γ\H and those for eigenvalue λ = s(1 − s) can be
written as

(2.1) f(x+ iy) = f0(y) +
∑
n�=0

an(|n|y)1/2Ks− 1
2
(2π|n|y)e2πinx,

where Kν(z) is the Whittaker–Bessel function bounded at infinity, i.e., the solution
to the differential equation

(2.2) t2K ′′
ν + tK ′

ν − (t2 + ν2)Kν = 0

satisfying

(2.3) Kν(t) ∼
√

π

2t
e−t

as t goes to +∞.
The complex numbers an are the corresponding Fourier coefficients. Moreover,

when Γ is a congruence subgroup the eigenfunctions for exceptional eigenvalues, if
any, will all be cuspidal, i.e., f0(y) ≡ 0.

When f0(y) = 0, the functions defined by (2.1) are the so called Maass cusp
forms and although they exist in plenty (Weyl’s Law), no explicit examples are
known, unless one resorts to congruence subgroups in which case there are explicit
constructions of these forms using Galois–Weil representations [47, 54].

There is an analogue of the Selberg conjecture for the Fourier coefficients an
when f is an eigenfunction for all the Hecke operators (cf. [17, 47, 71]). Let us
further normalize f by assuming a1 = 1. Then

Conjecture 2.1 (Ramanujan-Petersson). For every Maass cusp form f
which is an eigenfunction for all the Hecke operators with a1 = 1, and every prime
number p,

|ap| ≤ 2p−1/2.

Henceforth, following the traditional terminology, we shall call this the Ra-
manujan conjecture.

Both Ramanujan and Selberg conjectures are quite hard and are still out of
reach. But remarkable progress has been recently made in finding better bounds
[32, 34, 35, 36, 37] which we shall now begin to explain. Before taking on this
task, let us explain a problem of interest to both number theorists and geometers
whose solution requires only partial improvements of existing bounds towards these
conjectures, and which has now been completely resolved as a consequence of this
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progress [37]. These new bounds are consequences of the recent progress in estab-
lishing new cases of Langlands’ functoriality conjecture all of which were considered
out of reach even a few years ago.

Remark 2.2. There is an analogue of the Ramanujan–Petersson conjecture for
normalized holomorphic cuspidal eigenforms of weight k, stating |ap| ≤ 2p(k−1)/2.
This was proved by Deligne in 1973, as a consequence of his proof of Weil’s conjec-
ture [14]. The holomorphic structure of these forms play a central role in his proof,
something that Maass forms lack.

3. The Hyperbolic Circle Problem

The hyperbolic distance function ρ(z, w) on H is simply given by

(3.1) ρ(z, w) = log
|z − w|+ |z − w|
|z − w| − |z − w| (z, w ∈ H)

from which one can deduce a function u(z, w)

(3.2) u(z, w) =
|z − w|2
4ImzImw

through

(3.3) coshρ(z, w) = 1 + 2u(z, w)

which is easier to work with. Given a positive real number X , the hyperbolic circle
problem demands an estimate or asymptotic for the number of lattice points inside
a hyperbolic circle of radius X centered at a point w ∈ H and generated by the
Γ–orbit of another point z ∈ H (Γ–lattice points). More precisely, one wants to
estimate

(3.4) P (X) = # {γ ∈ Γ|4u(γ · z, w) + 2 ≤ X}.
Since Γ\H has a negative constant curvature (κ = −1), the euclidean circle

packing arguments cannot be used. In fact, as the area and the length are of the
same order of magnitude, Gauss’s circle problem estimate which appeals to an area
calculation for the circle to estimate the lattice points inside it, fails. Instead one
uses spectral theory of Δ on L2(Γ\H) by cleverly choosing a kernel function for
counting these points, and then estimating it by using spectral theory [26]. We
refer to [43] for the first published version of these results. They have been known
to Selberg in our setting, i.e., with comparable error estimates, but were never
published (cf. [13]). We refer to [51] for an earlier result on this problem. The
error estimates in [51] are not as good as those in [13, 43]. We should finally
mention [3] for a detailed discussion of the problem and its history in the compact
case.

To explain the result, let {uj(z)} be a complete set of orthonormal eigen–cusp
forms for Δ attached to complex parameters 1/2 < sj ≤ 1, i.e., 0 ≤ λj < 1/4, then
one can show [26]:

Let Γ be a congruence subgroup. Then for X ≥ 2, we have:

(3.5) P (X) =
∑

1/2<sj≤1

cπ1/2 Γ(sj − 1
2 )

Γ(sj + 1)
uj(z)uj(w)Xsj +O(X2/3),

where c = 2 or 1 according as −1 is in Γ or not.
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We refer to [26] for a detailed discussion of this problem and many other issues
in the theory of Maass forms.

Remark 3.1. This is in fact true for any finite volume group Γ, if we include
also the residual eigenfunctions of Δ, i.e., the non–cuspidal discrete eigenfunctions.
They can be constructed as residues of Eisenstein series.

One can then quickly show that if F = Vol(Γ\H), then

P (X) =
∑

2
3<sj<1

cπ1/2 Γ(sj − 1
2 )

Γ(sj + 1)
uj(z)uj(w)Xsj(3.6)

+ cπF−1X +O(X2/3) (c = 1 or 2)

and conclude:

Proposition 3.2. Suppose there are no exceptional eigenvalues in the range
2
3 < sj < 1, i.e., λ1 ≥ 2/9 = 0.222 . . . Then

(3.7) P (X) =
cπ

F
X +O(X2/3) (c = 1 or 2).

It is amusing to see that when this is applied to Γ = SL2(Z) and z = w =
√
−1

for which c = 2 and F = π/3 one gets

Card{(a, b, c, d) ∈ Z4|ad− bc = 1 and a2 + b2 + c2 + d2 ≤ X} =(3.8)

6X +O(X2/3).

The fact that there are no exceptional eigenvalues for SL2(Z) is well known and
old (cf. Section 11.3 of [26]).

Many other arithmetic approximations can be deduced from this for which we
refer to Section 12 of [26]. For example, if r(m) is the number of integral points
inside a Euclidean circle of radius

√
m, m ∈ N, then by applying the proposition

to an appropriate conjugate of Γ0(2), one can show

(3.9)
∑
m≤X

r(m)r(m + 1) = 8X +O(X2/3).

While for such large congruence subgroups Selberg’s conjecture has been known
for sometime (in fact for subgroups of level ≤ 7), the general case remains unavail-
able and it is for this reason and for the complete resolution of certain problems
such as the hyperbolic circle problem (cf. [26, 37] for other examples), that partial
improvements are quite desirable and highly appreciated by experts.

As for the Selberg conjecture the best result established so far is:

Theorem 3.3. (Kim–Sarnak [34]).

(3.10) λ1 ≥
1
4
− ( 7

64
)2 =

975
4096

# 0.2380371.

While this is more than enough to remove the assumption on λ1 in Proposition
3.2, i.e., λ1 ≥ 0.222 . . ., the unconditional resolution of the hyperbolic circle problem
was first proved in [37] as:

Proposition 3.4. (Kim–Shahidi [37]). Suppose X ≥ 2. Then
(3.11) P (X) =

cπ

F
X +O(X2/3),

where c = 2 or 1 according as −1 ∈ Γ or not.



390 FREYDOON SHAHIDI

The proposition is a consequence of the following estimate proved in [37].

Theorem 3.5 [37]. λ1 ≥
1
4
− ( 5

34
)2 =

66
289

= 0.2283737 . . ..

As for the Ramanujan conjecture the best estimate at present is [34]:

(3.12) p−
1
2 (p7/64 − p−7/64) ≤ |ap| ≤ p−1/2(p7/64 + p−7/64)

4. Functoriality and Maass Forms

The recent striking improvements towards the Ramanujan and the Selberg
conjectures are consequences of certain special cases of Langlands’ functoriality
conjecture [1, 42] proved recently [32, 35, 37].

The functoriality conjecture is one of the central components of a vast program
(the Langlands program) which deals with automorphic forms on general reductive
groups and considering our limitation it is better to only discuss it in the present
context. We refer to [18] for an elementary introduction to the Langlands program.

A Maass (cusp) form f is simply a real analytic eigenfunction of Δ in L2(Γ\H)
orthogonal to all the Eisenstein series and their residues. We will further assume
that f is an eigenfunction for all the Hecke operators (cf. [17, 26, 47, 71]) and
normalize it so that a1 = 1.

To explain functoriality it is best to introduce the adeles. This is simply a ring
defined as the restricted product of all the completions of the field Q of rational
numbers, with respect to their ring of integers. In fact, if Qp and Zp are respectively
the field of p–adic numbers and its ring of integers, i.e., those whose p–adic absolute
values are less than or equal to 1, then

x = (xp) ∈
∏
p≤∞

Qp

is an adele if and only if xp ∈ Zp for almost all finite primes p. Here by convention
Q∞ = R, the field of real numbers for which Z∞ is not a ring! The ring of adeles
of Q is denoted by AQ. It is a locally compact ring under the direct limit topology.
The group A∗Q = IQ is called the group of ideles. It is a locally compact group if
one takes the topology induced by

IQ # {(x, x−1)|x ∈ IQ} ⊂ AQ × AQ.

This whole notion can be extended to any number field F , i.e., a finite field
extension of Q; and one defines its ring of adeles AF and group of ideles IF = A∗F
in the same manner. One notes that F (resp. F ∗) is a discrete subgroup of AF

(resp. IF ).
It is quite standard [17] to attach to an eigen–cusp Maass form f an irreducible

subrepresentation π of
L2(GL2(Q)\GL2(AQ), χ),

the space of square integrable functions on A∗QGL2(Q)\GL2(AQ) transforming un-
der A∗Q according to a grössencharacter χ, i.e., a complex (unitary) character of
Q∗\A∗Q. There is a non–unique way of factorizing π to π = ⊗′pπp, where each πp
is an irreducible preunitary representation of GL2(Qp)(GL2(R) if p =∞). But the
class of each πp is unique. Moreover, almost all of them are unramified or spherical,
i.e., each have a vector fixed by GL2(Zp). One can then realize such πp as the full
space of all the locally constant complex functions

ϕ : GL2(Qp)→ C
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satisfying

(4.1) ϕ(
(
a x
0 b

)
g) = μp(a)νp(b)|a/b|1/2

p ϕ(g),

a, b ∈ Q∗p, x ∈ Qp, where μp and νp are a pair of unramified characters of Q∗p.
The class of the representation πp is then determined by the conjugacy class of

the diagonal element

(4.2) tp =
(
μp(p) 0
0 νp(p)

)
in GL2(C). Let αp = μp(p) and βp = νp(p). Then the Ramanujan conjecture
demands

(4.3) |αp| = |βp| = 1.

For a Maass form, π∞ is also fully induced from a pair of characters (μ∞, ν∞)
of R∗ with

(4.4) μ∞/ν∞ = | |s∞ (s∞ ∈ C),
and the corresponding eigenvalue λ, defined by Δf = λf , is given by

(4.5) λ =
1− s2

∞
4

,

in which s∞ ∈ (−1, 1) ∪ iR, i =
√
−1.

The Selberg conjecture is then equivalent to

(4.6) s∞ ∈ iR.

Remark 4.1. Representations of these forms satisfying (4.3) and (4.6) are
among a class of representations which are called “tempered”, and the generalized
Ramanujan conjecture [57] requires that for a cuspidal representation π = ⊗′pπp,
every πp be tempered (not necessarily only of the above forms). Therefore the Selberg
conjecture is a special case of the generalized Ramanujan conjecture at p =∞, while
the Ramanujan is one at p <∞.

The partial estimates in [34] are that

(4.7) p−7/64 ≤ |αp|, |βp| ≤ p7/64

and

(4.8) s∞ ∈ [−7/32, 7/32]∪ iR
or

(4.9) λ ≥ λ1 ≥
1
4
− ( 7

64
)2 =

975
4096

# 0.2380371.

Langlands’ functoriality conjecture can be formulated for any pair of arbitrary
connected reductive groups. But for our purposes we will restrict ourselves to the
case of general linear groups.

Given m ∈ N, a natural number, we define a homomorphism
(4.10) Symm : GL2(C) −→ GLm+1(C)

as follows. For a form P (x, y) (homogeneous polynomial) of degree m in variables
x and y, and a g ∈ GL2(C), we let Symmg ∈ GLm+1(C) be the matrix which
expresses the coefficients of P ((x, y)g) in terms of those of P (x, y). Then Symm

defines a homomorphism from GL2(C) into GLm+1(C).
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For π = ⊗′pπp a cuspidal representation of GL2(AQ), we let, as before,

(4.11) tp =
(
αp 0
0 βp

)
∈ GL2(C)

parametrize πp for almost all p <∞. Observe that

(4.12) Symmtp = diag(αm
p , αm−1

p βp, . . . , β
m
p ) ∈ GLm+1(C)

can be used to define a semisimple conjugacy class in GLm+1(C).
It is well–known that each Symmtp determines an irreducible admissible rep-

resentation of GLm+1(Qp), denoted by Symmπp, which has a vector fixed by
GLm+1(Zp).

Langlands’ functoriality conjecture in this case then demands the existence of
representations Symmπp at all other places p such that

(4.13) Symmπ = ⊗′p≤∞ Symmπp

is an automorphic representation of GLm+1(AQ), i.e., it appears in

(4.14) L2(GLm+1(Q)\GLm+1(AQ), ωm(m+1)/2
π ),

where ωπ is the central character of π, i.e., π|A∗Q.
The appearance of Symmπ does not need to be as a discrete subspace. It could

appear through an Eisenstein series as part of the continuous spectrum (by means
of incomplete Eisenstein series [26, 41, 48]). But the fact that it appears is very
deep as it is evident from the consequences of the validity of the conjecture even
for m = 3 and 4 (c.f. [32, 34, 36, 37, 53, 54, 67]).

Theorem 4.2 ([32, 37]). Let π be a cuspidal representation of GL2(AQ). Then
Symmπ is automorphic for not only m = 1 and 2 but also for m = 3 and 4. (The
case m = 1 is trivial and the case m = 2 is due to Gelbart–Jacquet [19].)

Remark 4.3. The theorem is valid for cuspidal representations of GL2(AF )
for any number field F .

There are many consequences of these results in automorphic forms and number
theory. But let us only point out how (4.7), (4.8) and (4.9) are obtained from
Theorem 4.2 here.

It follows from a result of Luo–Rudnick–Sarnak [46] that one can bound αm
p

and βmp by

(4.15) p
−( 12− 1

(m+1)2+1
) ≤ |αp|m, |βp|m ≤ p

1
2− 1

(m+1)2+1 ,

or

(4.16) p
− 1

m ( 12− 1
(m+1)2+1

) ≤ |αp|, |βp| ≤ p
1
m ( 12− 1

(m+1)2+1
)
,

As for the Selberg conjecture, using [46] one gets

(4.17) s∞ ∈ [−�, �] ∪ iR,
where

(4.18) � =
2
m

(
1
2
− 1
(m+ 1)2 + 1

)
.



FUNCTORIALITY AND SMALL EIGENVALUES OF LAPLACIAN 393

Remark 4.4. The result in [46] is quite foundational and must be considered
as a breakthrough. It provides us with the first non–local estimates for Hecke–
eigenvalues of cuspidal representations of GLm(AF ). Most of the improvements on
the Selberg and Ramanujan Conjectures are consequences of combining functorial
transfers of forms on GL2(AF ) to appropriate GLm(AF ), which we will discuss in
the next section, with these estimates.

Using case m = 3 of Theorem 4.2 we have

Corollary 4.5. s∞ ∈ [−5/17, 5/17]∪ iR or equivalently

(4.19) λ1 ≥
1
4
− ( 5

34
)2 =

66
289
# 0.2283737 > 2/9.

Consequently, if Γ is a congruence subgroup

(4.20) P (X) =
cπ

F
X +O(X2/3),

where c = 2 or 1 according as −1 ∈ Γ or not, i.e., the hyperbolic circle estimates
are valid.

A direct appeal to (4.15) and (4.16) form = 4 will provide us with the estimates
(cf. [32])

(4.21) p−3/26 ≤ |αp|, |βp| ≤ p3/26

and

(4.22) s∞ ∈ [−3/13, 3/13]∪ iR
or

(4.23) λ1 ≥
1
4
− ( 3

26
)2 =

40
169
# 0.2366839,

which although still quite striking, are even weaker than

(4.24) p−1/9 < |αp|, |βp| < p1/9

and

(4.25) s∞ ∈ (−2/9, 2/9)∪ iR
or equivalently

(4.26) λ1 >
1
4
− 1
81
=

77
324
# 0.23765432

obtained in[36] (cf. [33] for the archimedean estimate), a result which although
slightly weaker than (3.10) and (3.12), is valid over every number field.

The estimates (3.10) and (3.12) proved in [34] require further appeal to the
theory of automorphic L–functions (that of L(s,Sym4π, Sym2), to be precise, which
is now available using the same machinery [32, 34, 63, 64, 66] since Sym4π is
automorphic) and methods of analytic number theory [2, 15]. We refer to [34] for
details.

Remark 4.6. It is important to put the recent progress in perspective. The
earlier estimates on both conjectures were in the range of exponent 1/5 (over arbi-
trary number fields) and the slightly better exponent 5

28 + ε for all ε > 0, over Q.
They were obtained in [65] (cf. [68] for an exposition) and [2], respectively. For
the Selberg conjecture 1

5 + ε, all ε > 0, was the best one proved in [45]. It gave the
lower bound λ1 ≥ 0.21. They were all consequences of the automorphy of Sym2π
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proved in [19] and techniques and estimates such as those in [15, 46] (cf. Remark
4.4).

For quite a long time experts struggled to obtain an estimate in the range of 1/6
as that would already simplify and improve a number of results in number theory
and automorphic forms. It was therefore quite surprising when the estimate 5

34 + ε
over any number field, which was only slightly weaker than 1/7, was announced
by the author and Kim. The striking estimates (3.10), (3.12), (4.24) and (4.25)
were obtained a few months after that [33, 34, 36] as soon as the automorphy of
Sym4π was also ready at hand [32]. The techniques in establishing (3.10), (3.12),
(4.24) and (4.25) using the automorphy of Sym3π and Sym4π are similar to those
for 5/28 + ε and 1/5.

5. The Method

It is now clear that these estimates are consequences of the existence of Sym3π
and Sym4π as automorphic forms on GL4(AQ) and GL5(AQ), respectively. In this
section we will try to briefly explain the machinery behind it.

The automorphy of Sym3π and Sym4π are consequences of applying converse
theorems of Cogdell and Piatetski–Shapiro [10, 11] to analytic properties of certain
L–functions proved by the Langlands–Shahidi method [21, 31, 40, 41, 62, 63,
64, 65, 66]. At present, they cannot be obtained from other methods which have
been developed to prove functoriality.

To start off, let us note that in our approach, and more generally in the Lang-
lands program, the choice of the number field is of no concern and one may assume
π is a cuspidal representation of GL2(AF ), where AF is the ring of adeles of an arbi-
trary number field. Beside the fact that functoriality needs to be proved for groups
over all global fields (as well as local ones), many applications, even those in alge-
braic number theory [6, 12], require estimates and results over arbitrary number
fields. The reader should now appreciate that in this approach and context there
will no longer be any need to study Hilbert modular forms as a different entity, at
least when these questions arise, than those over Q or any other number field. We
may and will therefore assume π is an infinite dimensional irreducible admissible
subrepresentation of L2(GL2(F )\GL2(AF ), χ) for some grössencharacter χ. It will
automatically be cuspidal.

We can again write π = ⊗′vπv, where each πv is an irreducible unitary rep-
resentation of GL2(Fv), where Fv is the completion of F in a place v. There are
obvious generalizations of all the notions visited in the previous section such as the
fact that almost all πv are spherical, i.e., have a vector fixed by GL2(Ov), and that
they are given by a pair of unramified characters of F ∗v . (Here Ov is the ring of
integers of Fv.) In particular, for almost all v, πv, or more specifically its class, is
given by the conjugacy class of a diagonal element tv = diag(αv, βv) ∈ GL2(C).

As explained earlier, the automorphy of Sym2π = ⊗′v Sym2πv was established
more than 25 years ago [19]. When πv is spherical, it is attached to the diagonal
element Sym2tv ∈ GL3(C) whose entries define the unramified characters which
determine the class of Sym2πv. The diagonal element tv⊗ Sym2tv ∈ GL6(C) will
then determine a spherical representation πv� Sym2πv of GL6(Fv). The operation
� mirrors that of tensor products when one parametrizes these representations
by means of two and three dimensional representations of W ′

Fv
, the correspond-

ing Deligne–Weil group. The parameterization problem for irreducible admissible
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representations of GLn(Fv) by means of n–dimensional complex representations of
W ′

Fv
has now been completely resolved by Harris–Taylor [23] and Henniart [24].

This is a particularly deep and important result and of particular interest to us.
In fact, it allows us to extend the operation to any pair of representations and not
only spherical ones (cf. [42] for archimedean places). In particular, one can define
πv � Sym2πv for all v. One of the special cases of the main result of [37] is

Theorem 5.1. a) π � Sym2π = ⊗′v(πv � Sym2πv) is an automorphic repre-
sentation of GL6(AF ).

b) π � Sym2π appears in the continuous spectrum (cf. [30]) of GL6(AF ) and
is defined by an “Eisenstein series of type (2, 4)” attached to (π ⊗ ωπ, Sym3π),
where ωπ is the central character of π. In particular, Sym3π is an automorphic
representation of GL4(AF ).

The main result of [37] (Theorem 5.1) proves the automorphy of π1 � π2 =
⊗′v(π1v � π2v) for any pair of automorphic cuspidal representations π1 and π2 of
GL2(AF ) and GL3(AF ), respectively.

This is a very fine result, incorporating both local and global functoriality, and
consequently its proof is quite complicated. Using the Langlands–Shahidi method,
one attaches a triple product L–function L(s, π1 × π2 × (τ ⊗ η)) to π1, π2 and
τ cuspidal representations of GL2(AF ), GL3(AF ) and GLn(AF ), 1 ≤ n ≤ 4,
respectively. Here σ is assumed to be unramified at every place where v <∞ and
either π1vor π2v is ramified. Moreover, η is a grössencharacter of A∗F , i.e., one of
F ∗\A∗F , which we shall assume to be highly ramified at least at one place where
one of πiv’s, i = 1, 2, are ramified. Observe that now all the archimedean places at
which the Selberg conjecture is rooted, are put outside the bad primes, enabling us
to conclude deep results on them.

To utilize the method one notes that these L–functions appear in constant terms
of certain Eisenstein series [22, 40, 41, 48, 50, 65, 66] defined on exceptional
groups Spin(10), E6 and E7, granting the case n = 1 as a special case of Rankin–
Selberg product L–functions on GL2(AF ) × GL3(AF ). The Langlands–Shahidi
method then proves the necessary analytic properties of these L–functions. The
twist by the highly ramified grössencharacter destroys all the possible symmetries
that could lead to the existence of poles, proving they are entire (cf. [31]). One
can also conclude that these entire functions are bounded in vertical strips of finite
width [21]. Moreover, the technology developed in [63, 64, 65, 66] allows us to
define root numbers ε(s, π1 × π2 × (σ ⊗ η)) by means of which one establishes the
functional equation

(5.1) L(s, π1×π2× (σ⊗ η)) = ε(s, π1×π2× (σ⊗ η))L(1− s, π̃1× π̃2× (σ̃⊗ η−1)),

where ∼ signifies appropriately defined duals.
Finally, we have

(5.2) LS(s, π1 × π2 × (σ ⊗ η)) = LS(s, (π1 � π2)× (σ ⊗ η)),

where the L–function on the right is that of Rankin–Selberg studied in [28, 29,
30, 49, 62, 63, 64] defined by an infinite product of local factors in which for all
v �∈ S, S a finite set of places of F , either πv is unramified or v =∞.

It is to the L–functions on the right hand side of (5.2) that one can apply
converse theorems of Cogdell and Piatetski–Shapiro [10, 11] which states that
if they are entire, bounded in vertical strips of finite width and satisfying (5.1),
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then there exists an automorphic representation Π = ⊗′vΠv of GL6(AF ) for which
Πv # π1v � π2v whenever both πiv are unramified or v is archimedean.

While we know nothing about the analytic properties of LS(s, (π1�π2)×(σ⊗η))
(as they are defined only by means of an infinite product of local L–functions), their
equality with LS(s, π1 × π2 × (σ ⊗ η)) provides us with the knowledge needed for
applying the converse theorem as explained earlier.

Quite a bit more technical work is needed to show that in fact Πv # π1v � π2v

for all v and therefore π1 � π2 is automorphic. We refer to [37] for details and
appropriate references to both local and global difficulties.

The converse theorem [11] of Cogdell and Piatetski–Shapiro that we have used
is non–standard and fairly recent (1999). It is designed precisely to handle L–
functions for which holomorphy is obtained only up to a twist, something that one
can provide from our method as it was observed by Kim in [31].

The automorphy of Sym4π is proved again inductively. One applies the same
machinery to certain Eisenstein series on groups of type Spin(2n), 4 ≤ n ≤ 7, to
transfer Sym3π to an automorphic form [30] on GL6(AF ) of type (1, 5) attached to
(ω3

π, Sym
4π ⊗ ωπ) from which automorphy of Sym4π follows. We refer the reader

to [32] for details.
Having established the automorphy of Sym3π and Sym4π, one can then apply

techniques of [65] (Section 5 and in particular Lemma 5.8 of [65]) to prove:

Theorem 5.2. [36] Let π = ⊗′vπv be a cuspidal representation of GL2(AF ).
For each unramified πv let tv = diag(αv, βv) ∈ GL2(C) represent the corresponding
semisimple conjugacy class. Then

(5.3) q−1/9
v < |αv|, |βv| < q1/9

v .

The archimedean analogue of this result is also valid. It can be formulated as
in (4.25) for the corresponding s∞ defined by (4.4) at each archimedean place of
F . We observe that unless F = Q, this is the best bound available for |αv| and |βv|
at present (cf. (3.10) and (3.12) for F = Q). We refer to [7, 12] for an application
of this result to number theory.

There are many other applications of the existence of Sym3π and Sym4π. But
covering them all will become a bulky task and outside the scope and purpose
of this paper. We refer the reader to [27, 32, 36, 37, 53, 54] for some of these
applications. As has been the case with Sym2π for the past 25 years we expect many
consequences of the automorphy of Sym3π and Sym4π in several important subjects,
ranging from number theory to automorphic forms and arithmetic geometry. At
present the automorphy of Sym5π remains out of reach!

Remark 5.3. As explained in Remark 4.1 the Ramanujan and Selberg conjec-
tures are equivalent to each πv being a tempered representation, i.e., one appearing
in L2(F ∗v \GL2(Fv)), either discretely or continuously, the latter case implying that
μv and νv are unitary for every v, finite or infinite.

A generalization of these conjectures to the effect that all the local components
of a cuspidal representation of a general reductive group are tempered is one of
the central problems in the theory of automorphic forms. Although this is false in
general, one expects its validity for general linear groups.

There are instances of functoriality through which the study of automorphic
forms on (split) classical groups SO(2n), SO(2n + 1) and Sp(2n) is reduced to
that of GL(N) with N = 2n, except in the symplectic case Sp(2n) for which N =
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2n+ 1. For the generic spectrum of these classical groups, i.e., those with a non–
zero Fourier coefficient of highest rank, the functoriality has now been established
in [8, 9] and consequently the Ramanujan conjecture for these groups is reduced to
that for GL(m), for all m ≤ N . We refer to [8, 9] where the same techniques as
those used to establish existence of symmetric powers are used to prove these new
results.

When our method is fully developed (converse theorems already are developed
for any global field) and these transfers are established for the generic spectrum of
cuspidal representstions of classical groups over function fields, this should lead to
a proof of the Ramanujan conjecture for generic cuspidal representations of these
groups. This can be done using the validity of the conjecture for GL(N) which has
been proved by Lafforgue [38] for general linear groups over function fields. The
case of number fields even for GL(2) is still out of reach.
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