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ABSTRACT. This is a survey of recent developments in the classical theory of
minimal surfaces in R? with an emphasis on the conformal properties of these
surfaces such as recurrence and parabolicity. We cover the maximum principle
at infinity for properly immersed minimal surfaces in R? and some new results
on harmonic functions as they relate to the classical theory. We define and
demonstrate the usefulness of universal superharmonic functions. We present
the compactness and regularity theory of Colding and Minicozzi for limits of
sequences of simply connected minimal surfaces and its application by Meeks
and Rosenberg in their proof of the uniqueness of the helicoid. Finally, we dis-
cuss some recent deep results on the topology and on the index of the stability
operator of properly embedded minimal surfaces and give an application of
the classical Shiffman Jacobi function to the classification of minimal surfaces
of genus zero.
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1. Introduction.

In this report on recent developments in the classical theory of minimal surfaces,
we will focus on some of the spectacular progress that the subject has experienced
in the past decade. The theme here is to explore relationships between the func-
tion theory and the conformal structure of complete embedded minimal surfaces.
Embeddedness influences both local and global properties of these surfaces. This
is because embeddedness allows one to use the minimal surface as a barrier against
itself to construct stable minimal surfaces in its two complements in R?, see Sub-
section 4.2. These stable minimal surfaces act as guide posts for deciphering the
structure and geometry of the surfaces and their complements.

The recent ground breaking work by Colding and Minicozzi in [24, 18, 17, 19,
23, 14] has been especially influential. Their theorems have been essential for recent
progress made in understanding the local and global structure of embedded minimal
surfaces which are simply connected or which have finite genus. Their results on
the compactness and (partial) regularity of limits of sequences of uniformly locally
simply connected minimal surfaces in Riemannian three-manifolds is a major story
which we will only briefly touch on here; we refer the reader to our forthcoming
survey [73] for a more complete discussion on the Colding-Minicozzi theory and its
applications.

We now briefly outline the material of the survey. In Section 2 we cover most
of the basic results in minimal surface theory. This Section offers a quick introduc-
tion to the main definitions, examples and classical results, and should provide the
needed background to beginners in the subject. In Section 3 we go into some of
the recent advances on the conformal structure of minimal surfaces with boundary.
Section 4 is devoted to the important classical results on stable minimal surfaces.
We include here a proof of the beautiful estimate of Colding-Minicozzi on the area
of a stable minimal disk, a result on which we base the proofs of the other main
theorems of the Section. In Section 5 we study properly embedded minimal surfaces
with more than one end and discuss the basic ordering theorem of the ends of such
surfaces. In Section 6 we explain how universal superharmonic functions (a concept
developed in Section 3) can be used to obtain quadratic area growth estimates for
the middle ends of properly embedded minimal surfaces, a result which implies that
such surfaces can have at most two limit ends; this is a theorem of Collin, Kusner,
Meeks and Rosenberg [26]. Another important application of universal superhar-
monic functions in this Section shows that when the minimal surface has exactly
two limit ends, then it is recurrent for Brownian motion. In Section 7 we outline
the recent proof of the general maximum principle at infinity for properly immersed
minimal surfaces by Meeks and Rosenberg. Previous maximum principles at infin-
ity have had a unifying effect on the theory and this final version will likely play
a similar important role. A deep application of this principle appears in the proof
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that a properly embedded minimal surface in R with absolute Gaussian curvature
at most 1 has an open regular neighborhood of radius 1 and so the surface has cu-
bical area growth, which we explain as well in this Section. In Section 8 we discuss
several Theorems and Conjectures related to flux, including for a properly embed-
ded minimal surface the Flux Conjecture of Meeks and Rosenberg and a related
flux conjecture for harmonic functions on parabolic Riemannian manifolds. In Sec-
tion 9 we cover the aforementioned results of Colding-Minicozzi and the application
of their theory to give a sketch of their alternative proof of Collin’s Theorem that
states that a properly embedded minimal surface of finite topology and at least two
ends has finite total curvature. We also explain the important technique of blowing-
up a sequence of embedded minimal surfaces on the scale of topology, and how this
procedure yields a local-global parking garage picture for any embedded genus zero
minimal surface in a neighborhood of a point of concentrated topology and more
concentrated curvature (this technique was first developed as a tool in [74]). The
existence and theory of minimal surfaces with a periodic parking garage structure
with a finite number of columns appears in [124]. An important uniqueness for
certain parking garage structures was recently given by Weber and Wolf [126], who
proved that the columns of these parking garages project to the zeros of Hermite
polynomials on the real line; this uniqueness result plays a crucial role in their
proposed existence proof of an embedded genus ¢ helicoid for every positive integer
g. In Section 10 we cover some topological aspects of properly embedded minimal
surfaces. These results include a discussion of the recent Topological Classifica-
tion Theorem for Minimal Surfaces by Frohman and Meeks [38] and the recent
topological obstructions of Meeks, Pérez and Ros [75, 76] for properly embedded
minimal surfaces of finite genus. A particular consequence of these new topological
obstructions is that every properly embedded minimal surface of finite genus in R3
is recurrent for Brownian motion. Another important theoretical consequence of
these topological obstructions is that a properly embedded minimal surface in R3 of
finite topology, at least two ends and with a given bound on its genus, has a related
bound on its index of stability. We also sketch the proof of the recent Theorem by
Meeks and Rosenberg [80] of the uniqueness of the plane and helicoid as the only
properly embedded simply connected minimal surfaces in R3, including their gen-
eral classification Theorem for minimal laminations of R? that plays an important
theoretical role in many recent advances in the theory. In the final Section 11, we
give some partial results on the Genus Zero Conjecture. This Conjecture asserts
that a properly embedded minimal surface of genus zero is a plane, a helicoid, a
catenoid or an example in the 1-parameter family of minimal surfaces called the
Riemann minimal examples (see Subsection 2.5), which are foliated by circles and
straight lines in horizontal planes. The solution of this Conjecture reduces to a
study of bounded Jacobi functions on properly embedded minimal surfaces M of
genus zero with two limit ends. In this Section we define and study the classical
Shiffman Jacobi function which is defined on such an M in order to obtain some
partial results on the Genus Zero Conjecture.
The authors would like to thank the referee for helpful comments.
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2. Basic results in classical minimal surface theory.

We will devote this Section to give a fast tour through the foundations of
the theory, enough to understand and apply the results to be explained in future
Sections.

2.1. Definitions and Theorems on equivalent properties. One can de-
fine a minimal surface from different points of view. The equivalences between
these starting points give insight into the richness of the classical theory of minimal
surfaces and its connections with other branches of Mathematics.

DEFINITION 1. Let X: M — R? be an isometric immersion of a Riemannian
surface into space. X is said to be minimal if the coordinate functions 1,2, 3
are harmonic functions on M.

Very often, it is useful to identify a Riemannian surface M with its image
under an isometric embedding. Since harmonicity is a local concept, the notion
of minimality can be applied to a surface M C R? (with the underlying induced
Riemannian structure by the inclusion). Let H be the mean curvature function of
X and N: M — S? C R? its Gauss map'. The well-known formula AX = 2HN,
valid for an isometric immersion X : M — R3, leads us to the following equivalent
definition of minimality.

DEFINITION 2. A surface M C R? is minimal if and only if its mean curvature
vanishes identically.

Recall that any (regular) surface can be locally expressed as the graph of a
function v = u(x,y). The condition on the mean curvature to vanish identically
can be expressed as a quasilinear elliptic second order partial differential equation,

(1) (1+ w2ty — 2upUytiay + (1 + Ul )uge = 0.

DEFINITION 3. A surface M C R3 is minimal if and only if it can be locally
expressed as the graph of a solution of the equation (1).

Let Q be a relatively compact subdomain in a surface M C R3. If we perturb
normally the inclusion map on 2 by a compactly supported smooth function u €
C§°(92), then X + tulN is again an immersion for any |t| < e with ¢ sufficiently
small. The mean curvature function of M is closely related to the infinitesimal
variation of the area for compactly supported normal variations by means of the
first variation of area (see for instance [97)):

d
(2) A(0)= — Area((X + tuN)(Q2)) = —2/ uH dA,

dt|,_, Q
where dA stands for the area element of M. This variational formula lets us state
a third equivalent definition of minimality.

DEFINITION 4. A surface M C R3 is minimal if and only if it is a critical point
of the area functional for all compactly supported variations.

In fact, a consequence of the second variation of area (Subsection 2.8) is that
any point in a minimal surface has a neighborhood with least area relative to its
boundary. This property justifies the word “minimal” for this kind of surfaces. It

I Throughout the paper, all surfaces will be assumed to be orientable.
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should be noted that the global minimization of area on any compact subdomain
is a strong condition for a complete orientable minimal surface to satisfy; in fact,
it forces the surface to be a plane (Theorem 8).

DEFINITION 5. A surface M C R3 is minimal if and only if every point p € M
has a neighborhood with least area relative to its boundary.

Definitions 4 and 5 establish minimal surfaces as the 2-dimensional analogy to
geodesics in Riemannian Geometry, and connect the theory of minimal surfaces with
one of the classical important branches of Mathematics: the Calculus of Variations.
Besides the area functional A, another well-known functional in the Calculus of
Variations is the Dirichlet energy,

E= / |VX|?dA,
Q

where again X: M — R? is an isometric immersion and Q C M is a subdomain
with compact closure. These functionals are related by the inequality £ > 2A,
with equality if and only if the immersion X: M — R3 is conformal. The classical
formula K — e?*K = Au that relates the Gaussian curvature functions K, K for
two conformally related metrics g,g on a 2-dimensional manifold (A stands for
the Laplacian with respect to g) together with the existence of solutions of the
Laplace equation Au = K for a relatively compact subdomain in a Riemannian
manifold, guarantee the existence of local isothermal or conformal coordinates for
any 2-dimensional Riemannian manifold, modeled on domains of C. The relation
between area and energy together with the existence of isothermal coordinates,
allow us to give two further characterizations of minimality.

DEFINITION 6. A conformal immersion X : M — R? is minimal if and only if
it is a critical point of the Dirichlet energy for compactly supported variations, or
equivalently if any point p € M has a neighborhood with least energy relative to
its boundary.

From a physical point of view, the mean curvature function of a homogeneous
membrane separating two media is equal, up to a nonzero multiplicative constant,
to the difference between the pressures on the two sides of the surface. When this
pressure difference is zero, then the membrane has zero mean curvature. Therefore,
soap films in space are physical realizations of the ideal concept of a minimal surface.

DEFINITION 7. A surface M C R? is minimal if and only if every point p €
M has a neighborhood D, which is equal to the unique idealized soap film with
boundary 0D,

If N: M — S? is the Gauss map of M, then the tangent space T,M of M at
p € M identifies as subspace of R? under parallel translation with the tangent space
TN(p)S2 to the sphere at N(p), from where one can view the differential A, = —dN,
as an endomorphism of T, M, called the shape operator. A, is a symmetric linear
transformation whose orthogonal eigenvectors are the principal directions of M at
p, and the corresponding eigenvalues are the principal curvatures of M at p. Since
the mean curvature function H of M equals the arithmetic mean of such principal
curvatures, we deduce that minimality reduces to the expression

a b
by (300)
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in an orthonormal tangent basis. After identification of N with its stereographic
projection, the Cauchy-Riemann equations give the next last characterization of
minimality.

DEFINITION 8. A surface M C R? is minimal if and only if its stereographically
projected Gauss map g: M — C U {oo} is a meromorphic function.

Definition 1 and the maximum principle for harmonic functions imply that no
compact minimal surfaces in R? exist. Although the study of compact minimal
surfaces with boundary has been intensively developed and dates back to famous
problems as the well-known Plateau Problem, in this survey we will focus on the
study of complete minimal surfaces (possibly with boundary), in the sense that
all geodesics can be indefinitely extended up to the boundary of the surface. A
stronger global hypothesis, whose relationship with completeness is an active field
of research in minimal surface theory, is presented in the following definition.

DEFINITION 9. A map f: X — Y between topological spaces is proper if
f7Y(0) is compact in X for any compact set C C Y. A minimal surface M C R3
is proper when the inclusion map is proper.

The Gaussian curvature function K of a surface M C R? is the product of its
principal curvatures. If M is minimal, then its principal curvatures are oppositely
signed and thus, K is nonpositive. Another interpretation of K is the determinant
of the shape operator A,, or equivalently |K| is the absolute value of the Jacobian
for the Gauss map N. Adding up the curvature at all points of M (note that this
integral may be —oo or a nonpositive number) we will obtain the same quantity as
when computing the negative of the spherical area of M through its Gauss map,
counting multiplicities. This quantity is called the total curvature of the minimal
surface:

(3) C(M) = /M KdA = —Area(N: M — S?).

2.2. Weierstrass Representation. Recall that the Gauss map of a minimal
surface M can be viewed as a meromorphic function on the underlying Riemann
surface. Furthermore, the harmonicity of the third coordinate function z3 lets us
define (at least locally) its harmonic conjugate function x%; hence, the so called
height differential® dh = dxs + idx} is a holomorphic differential on M. The pair
(g,dh) is usually referred to as the Weierstrass data of the minimal surface, and
the minimal immersion X : M — R? can be expressed up to translations solely in
terms of these data as

(W x =2 [ (5(5-0).5 (G +9) 1) in

where R stands for real part [58, 99]. The pair (g, dh) satisfies certain compatibility
conditions, stated in assertions i), ii) below. The key point is that the procedure
has the following converse, which gives a cook-book type recipe for analytically
defining a minimal surface.

THEOREM 1 (Osserman [98]). Let M be a Riemann surface, g: M — CU{o0}
a meromorphic function and dh a holomorphic one-form on M. Assume that:

2Note that the height differential might not be exact since z3 needs not to be globally well-
defined on M. Nevertheless, the notation dh is commonly accepted and we will also make use of
it here.
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1) The zeros of dh coincide with the poles and zeros of g, with the same order.
it) For any closed curve v C M,

(5) /gdhz/@, afa/dh:o.
v v 9 2

Then, the map X: M — R? given by (4) is a conformal minimal immersion with
Weierstrass data (g, dh).

Condition i) above expresses the non degeneracy of the induced metric by X
on M, so by replacing it with the condition that the zeros and poles of g coincide
with the zeros of dh with at most the same order, we allow the conformal X to
be a branched minimal surface. Condition i) deals with the independence of (4)
on the integration path, and it is usually called the period problem. By Cauchy’s
Theorem, it suffices to consider the period problem on homology classes in M.

All geometric invariants of a minimal surface M can be expressed in terms
of its Weierstrass data. For instance, the first and second fundamental forms are
respectively (see [44, 99]):

2
1 _ dg
© = (5o +la i) 1) =% (2w o).
where v is a tangent vector to M, and the Gaussian curvature is

_ 41dg/g| ?
@) K= (<|g|+|g|1>2|dh|)'

If (g,dh) is the Weierstrass pair of a minimal surface X : M — R3, then for
each A > 0 the pair (Ag,dh) satisfies condition i) of Theorem 1 and the second
equation in (5). The first equation in (5) holds for these new Weierstrass data if
and only if fv gdh = f7 % = 0 for all homology classes v in M, which in turn
is equivalent to the fact that the flur of M along ~y is vertical for all such . In
general, the flux vector is defined as

(8) F(’y)z[y(le,ng,Vmg) :s[y (; (; —g> : <;+g> ,1) dh,

where & stands for imaginary part. Thus, for a minimal surface X with vertical flux,
the Weierstrass data (\g, dh) produce a well-defined minimal surface X : M — R3.
The family {X}» is a smooth deformation of X; = X, called the Ldpez-Ros defor-
mation. Clearly, the conformal structure, height differential and the set of points
in M with vertical normal vector are preserved throughout this deformation. An-
other important property of this deformation is that if a component of a horizontal
section of X is convex, then the same holds for the related component at the same
height for any X, A > 0.

2.3. Minimal surfaces with finite total curvature. Among the family of
complete minimal surfaces in space, those with finite total curvature have been
extensively studied. The principal reason for this is that they can be thought of as
compact algebraic objects in a natural sense, which opens tremendously the number
and depth of tools that can be applied to these kinds of surfaces.

THEOREM 2 (Huber [52], Osserman [99]). Let M C R3 be a complete oriented
immersed minimal surface with finite total curvature. Then,
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i) M is conformally a compact Riemann surface M with a finite number of
points removed (called the ends of M ).

ii) The Weierstrass data (g,dh) estend meromorphically to M. In particular,
the total curvature of M is a multiple of —4.

In this setting, the Gauss map g has a well-defined finite degree on M. A direct
consequence of (3) is that the total curvature of an M as in Theorem 2 is —47 times
the degree of its Gauss map g. It turns out that this degree can be computed in
terms of the genus of the compactification M and the number of ends by means of
the Jorge-Meeks formula [53]. Rather that stating here this general formula for an
immersed surface M as in Theorem 2, we will emphasize the particular case when
all the ends of M are embedded:

deg(g) = genus(M) + #(ends) — 1.

The asymptotic behavior of a complete embedded minimal surface with finite
total curvature is well understood. Schoen [118] demonstrated that each embedded
end of a complete minimal surface with finite total curvature can be parametrized
as a graph over the exterior of a disk in the (x1,x2)-plane with height function

C1T1 + C2x2
(9) $3($1,$2):a10g7“+b+1lT

+0(r%),
where r = /2% + 22, a,b € R and O(r~2) denotes a function such that r20(r=2)
is bounded as r — oo. The coefficient a in (9) is called the logarithmic growth
of the end. When a # 0, the end is called a catenoidal end; if a = 0, we have
a planar end. We use this language since a catenoidal end is asymptotic to one
of the ends of a catenoid and a planar end is asymptotic to the end of a plane.
In particular, complete embedded minimal surfaces with finite total curvature are
always proper; in fact, an elementary analysis of the asymptotic behavior shows
that the equivalence between completeness and properness still holds for immersed
minimal surfaces with finite total curvature.

A key result, proved by Collin in 1997, reduces the study of properly embedded
minimal surfaces with finite topology and at least two ends (see Subsection 2.7 for
the general definition of end) to the family of surfaces with finite total curvature.

THEOREM 3 (Collin [25]). If M C R3 is a properly embedded minimal surface
with and more than one end, then each annular end of M is asymptotic to the end
of a plane or a catenoid. In particular, if M has finite topology and more than one
end, then M has finite total curvature.

The understanding of generic properties of minimal surfaces with finite total
curvature leads to existence and uniqueness results, as well as to study the mod-
uli spaces of such surfaces with a fixed topology. Along these lines, Schoen [118]
proved in 1983 that the catenoid is the unique complete immersed minimal surface
with finite total curvature and two embedded ends. Eight years later, Lopez and
Ros [63] characterized the plane and the catenoid as the only complete embed-
ded minimal surfaces in R? with genus zero and finite total curvature. The most
celebrated complete minimal surface with finite total curvature since the classical
examples from the nineteenth century was discovered in 1982 by Costa [27, 28|.
This is a thrice punctured torus with two catenoidal ends and one planar middle
end. Costa demonstrated existence of this surface but only its embeddedness out-
side a ball in R3. Hoffman and Meeks [48] proved global embeddedness for the
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Costa torus and generalized this example to any genus g > 2 and three ends [49].
Also Hoffman and Meeks found a 1-parameter deformation of the Costa surface and
of all of the higher genus Hoffman-Meeks minimal surfaces, where the middle pla-
nar end becomes catenoidal (unpublished). In [44], Hoffman and Karcher showed
that the Hoffman-Meeks deformation families of the Costa-Hoffman-Meeks surfaces
exist for all parameter values and that for genus g > 1, the deformed surfaces are
embedded (see Subsection 2.5 for explicit formulas). This embeddedness is equiva-
lent to showing that the logarithmic growth rate of the middle end never catches up
with that of the other ends. They also mention that the situation in the case g =1
(for the deformation of the Costa torus) is slightly more delicate (and still true),
because the aforementioned growth rate of the middle end achieves the growth rate
of the extreme ends in the limit. They do not provide this last computation in [44].
Costa [29, 30] showed that any complete embedded minimal surface in R? with
genus one and three ends has to be either the Costa surface or lies in the Hoffman-
Meeks deformation, with the moduli space of complete embedded minimal thrice
punctured tori being diffeomorphic to a real interval. Concerning moduli spaces
of minimal surfaces with finite total curvature and prescribed topology, Pérez and
Ros [106] gave general conditions on the space M(g,r) whose elements are the
complete embedded minimal surfaces with finite total curvature, genus g and r
ends, to have a structure of real analytic manifold of dimension r — 2 around a
given minimal surface M € M(g,r). Such conditions are expressed in terms of
the bounded Jacobi functions on M (see Subsection 2.8 for the definition of Jacobi
function). They also identified the tangent space of M(g,r) at a minimal surface
M € M(g,r) with the set of Jacobi functions on M with at most logarithmic
singularities at the ends. Other compactness results for moduli spaces of complete
embedded minimal surfaces with finite total curvature have been given in Ros [112]
and Traizet [122]. We will explain in Section 10.2 some further recent advances in
this area, see specifically Theorem 29.

2.4. Periodic minimal surfaces. A properly embedded minimal surface M
in R? is called singly, doubly or triply periodic when it is invariant by a discrete
infinite group G of isometries of R? of rank 1,2, 3 (respectively) that acts properly
and discontinuously. Very often, it is useful to study such an M as a minimal
surface in the complete flat three manifold R?/G. Up to finite coverings, these
3-manifolds reduce to R?/T, R3/Sy, T? x R and T3, where T’ denotes a nontrivial
translation, Sy is the screw motion symmetry resulting from the composition of a
rotation of angle # around the zz-axis with a translation in the direction of this
axis, and T2, T? are flat tori of dimensions 2 and 3 obtained as quotients of R?, R?
by 2 or 3 linearly independent translations.

All known periodic minimal surfaces turn out to have finite total curvature
(hence finite topology) when seen as surfaces in the corresponding R3/G. Meeks and
Rosenberg [81, 84| developed the theory of periodic minimal surfaces. For instance,
they obtained in this setting similar conclusions as the ones in Theorem 2, except
that the Gauss map g of a minimal surface in R?/G is not necessarily well-defined
(the Gauss map does not descend to the quotient for surfaces in R3/Sy, 6 € (0, 27),
and in this case the role of the Gauss map g is played by the well-defined differential
form dg/g). An important fact, due to Meeks and Rosenberg [81, 84], is that for
properly embedded minimal surfaces in R®/G, G # {identity}, the conditions of
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finite total curvature and finite topology are equivalent®. Later Meeks [72] proved
that every properly embedded minimal surface in T2 x R has a finite number of
ends, hence in this setting finite genus implies finite total curvature. Analogous
to the Jorge-Meeks formula, Meeks and Rosenberg [81, 84] proved an explicit
relation between the total curvature and the topology of such a surface. They
also studied the asymptotic behavior of complete embedded minimal surfaces with
finite total curvature in R3/G. In this setting, there are three possibilities: all
ends must be simultaneously asymptotic to planes (as in the Riemann minimal
examples, see Subsection 2.5), to halfplanes (as in the singly or doubly periodic
Scherk minimal surfaces; for this reason, such ends are called Scherk-type ends)
or to ends of helicoids (helicoidal type ends). Recently Meeks [66] proved that a
properly embedded minimal surface in R®/Sg, § # 0,7, has a finite number of ends
and if it has at least two ends, then the surface has at most quadratic area growth.

Concerning classification theorems for periodic minimal surfaces, Meeks, Pérez
and Ros [78] proved that the classical Riemann minimal examples are the unique
periodic nonsimply connected genus zero properly embedded minimal surfaces in
R3. Lazard-Holly and Meeks [59] characterized the doubly periodic Scherk surfaces
as the unique properly embedded examples of genus zero in T? x R.

2.5. Examples of minimal surfaces. We will use the Weierstrass represen-
tation for introducing some of the most celebrated complete minimal surfaces.
THE PLANE. M =C, g(2) =1, dh = dz. It is the only flat minimal surface.

THE CATENOID. M = C — {0}, g(z) = z, dh = d—;. It has genus zero, two
ends and total curvature —4w. Together with the plane, the catenoid is the only
minimal surface of revolution (Bonnet [4]) and the unique complete embedded
minimal surface with genus zero and finite total curvature (Lépez and Ros [63]).
Schoen [118] also characterized the catenoid as the unique complete immersed
minimal surface with finite total curvature and two embedded ends.

THE HELICOID. M = C, g(z) = €*, dh = idz. It has genus zero, one end and
infinite total curvature. Together with the plane, the helicoid is the only ruled
minimal surface (Catalan [8]) and the unique properly embedded simply connected
minimal surface (Meeks and Rosenberg [80], see also Theorem 30 below). The
vertical helicoid can be also seen as a genus zero surface with two ends in a quotient
of R3 by a vertical translation or by a screw motion. The catenoid and the helicoid
are conjugate minimal surfaces, in the sense that the coordinate functions of one
of these surfaces are the harmonic conjugates of the coordinate functions of the
other one; in this case, we consider the catenoid to be defined on its universal cover
e?: C — C — {0} in order for the harmonic conjugate of z3 to be well-defined.
Equivalently, both surfaces share the Gauss map e® and their height differentials
differ in multiplication by i = v/—1.

THE ENNEPER SURFACE. M = C, ¢g(z) = z, dh = zdz. It is nonembedded,
has genus zero, one end and total curvature —4nw. The catenoid and the Enneper
surface are the unique complete minimal surfaces in R® with finite total curvature
—4m (see [99]).

Given k € N, k£ > 1 and a € R — {0,—1}, we define the compact genus k sur-
face My, = {(z,w) € (CU {o0})? | wht! = CHUCEZOy qet Ny, = My, —

3This equivalence does not hold for properly embedded minimal surfaces in R3, as demon-
strates the helicoid.
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{(-1,0), (c0,0), (a,0)} and
Zw 7 Ao = mz+ 1 d.
mz+ 1 " (z+1)(z—a)

where A € R — {0}. Given k € N and a € (0,0), there exist m = m(a) € R and
A = A(a) € R—{0} such that the pair (gx,a,m(a),A(a)s @Pk,a,m(a)) is the Weierstrass
data of a well-defined minimal surface X : My, — R? with genus k and three ends
(Hoffman, Karcher [44]). Moreover, m(1) = 0 for any k € N. With this notation,
we have the following examples.

THE COSTA TORUS. M = My 1, g = g1,1,0,401), dh = dhy 1. Costa [28] proved
existence of this surface, while its embeddedness is due to Hoffman and Meeks [48].
THE CosTA-HOFFMAN-MEEKS SURFACES. For any k > 2, take M = My 1, g =
91,1,0,A(1), dh = dh1 1 0. Both existence and embeddedness were given by Hoffman
and Meeks [49].

THE DEFORMATION OF THE COSTA TORUS. For any a € (0,00), take M = M ,,
9= 91,a,m(a),A(a)s @0 = dhy o m(a) (When a = 1 we find the Costa torus). Hoffman
and Karcher [44] proved existence of these surfaces. A complete proof of their em-
beddedness has not been published yet, see also the last paragraph of Subsection 2.3
and [45]. Costa [29, 30] showed that any complete embedded minimal torus with
three ends must lie in this family.

THE DEFORMATION OF THE COSTA-HOFFMAN-MEEKS SURFACES. For any k > 2
and a € (0,00), take M = My 4, 9§ = Gk,a,m(a),A(a)> A1 = dhj g m(a)- When a =1
we find the Costa-Hoffman-Meeks surface of genus k and three ends. A complete
proof of existence and embeddedness for these surfaces is given in [44] by Hoffman
and Karcher.

THE SINGLY PERIODIC SCHERK SURFACES. M = (C U {oo}) — {£e*?}, g(2) = z,
dh = H(ziif‘izi@), for fixed 0 € (0,7/4]. Discovered (at least, the case § = 7/4) by
Scherk [116] in 1835, they form a l-parameter family of genus zero surfaces in a
quotient of R® by a translation, with four ends. Each surface can be thought of
geometrically as a desingularization of two vertical planes forming an angle of 26.

THE DOUBLY PERIODIC SCHERK SURFACES. M = (CU {oo}) — {£eT}, g(2) = z,
dh = H(ZZT%, where 6 € (0,7/4]. These are the conjugate surfaces to the singly
periodic Scherk surfaces, and can be thought of geometrically as the desingular-
ization of two families of equally spaced vertical parallel halfplanes in opposite
halfspaces, with the halfplanes in the upper family making an angle of 20 with the
halfplanes in the lower family. These surfaces are doubly periodic with genus zero
in their corresponding quotient T? x R, and were characterized by Lazard-Holly
and Meeks [59] as the unique properly embedded minimal surfaces in T? x R with
genus zero.

THE RIEMANN MINIMAL EXAMPLES. M = {(z,w) € (CU {o0})? | w? = 2(z —
MN(Az + 1)} = {(0,0), (00, 00)}, g(z,w) = z, dh = A%, for each A > 0, where
A, is a nonzero complex number satisfying A%\ € R. Discovered by Riemann (and
posthumously published, Hattendorf and Riemann [110, 111]), these surfaces are
invariant by a translation Ty, and in the quotient space R? /T have genus one and
two planar ends. The conjugate surface of the Riemann minimal example for a
given A > 0 is the Riemann minimal example for the parameter value 1/ (the
case A = 1 gives the only self-conjugate surface in the family). Riemann minimal
examples were characterized by Meeks, Pérez and Ros [78] as the unique periodic
nonsimply connected genus zero properly embedded minimal surfaces in R?.

Ik,a,m,A(z,w) = A
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2.6. Monotonicity formula and classical maximum principles. As we
will see in Section 6, the conformal type of a minimal surface is strongly related with
its area growth in balls. The first result along these lines comes from the coarea
formula applied to the distance function to a given point p € R3. The following
statement of the coarea formula appears in [9], see [33] for a more general version.

PROPOSITION 1. Let Q be a domain with compact closure in a Riemannian
manifold M and f : Q — R a function in C°(2) N C*(Q) with f|aq = 0. For any
reqular value t of |f|, we let T'(t) = |f|~(t) and A(t) = Area(T'(t)). Then for any
function ¢ € LY (Q) we have

/¢|Vf|dV=/oo< ¢dAt> dt,
Q 0 T'(t)

where V f is the gradient of f in M and dV,dA; are respectively the volume elements
in M and T'(t).

THEOREM 4 (Monotonicity formula [20, 55]). Let X: M — R? be a properly
immersed connected minimal surface. Given p € R3, let A(R) be the area of the
portion of X (M) inside a ball of radius R > 0 centered at p. Then, A(R)R™2 is
nondecreasing. In particular, imgr_... A(R)R™2 > 7 with equality if and only if M
is a plane.

One of the consequences of the fact that minimal surfaces can be viewed locally
as solutions of the partial differential equation (1) is the validity of certain maximum
principles for minimal surfaces. We will state them for minimal surfaces in R?, but
they also hold when the ambient space is a complete flat three-manifold.

THEOREM 5 (Interior maximum principle [118]). Let M, My be connected
minimal surfaces in R® and p a point interior to both surfaces, such that T,M; =
T, My = {x3 = 0}. If My, My are locally expressed as the graphs of functions ui,us
around p and uy < ug in a neighborhood of p, then My = Ms in a neighborhood
of p.

THEOREM 6 (Maximum principle at infinity [82, 56]). Let My, My C N* be dis-
joint connected properly immersed minimal surfaces with compact (possibly empty)
boundary in a complete flat 3-manifold N3.

i) If OMy # @ or OMsy # O, then after possibly reindexing, there exist points

p € OM1, q € My such that dist(p, q) =dist(M7, Mas).
it) If OMy = OMs = @, then My and Ms are flat.

The maximum principle at infinity can be generalized to the case of noncompact
boundaries, see Theorem 21 below. A beautiful application of Theorem 5 is the
following result by Hoffman and Meeks.

THEOREM 7 (Halfspace Theorem [50]). A proper, connected, possibly branched,
nonplanar minimal surface M C R® cannot be contained in a halfspace.

For later reference in the survey, we next provide a sketch of the original direct
proof of Theorem 7. Arguing by contradiction, suppose that M C H = {x3 > 0} C
R3 is a connected, properly immersed, nonflat minimal surface. By the interior
maximum principle, M C Int(H). After a suitable vertical translation, we can
assume that dist(M,0H) = 0. Let C = {(z1,x2, x3) | 23 + 23 = cosh® z3, x5 < 0}
be the lower half of a vertical catenoid. Since M is proper and disjoint from the
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(21, x2)-plane, there exists € > 0 such that (M —ece3)NC = @ and (M —ees) N (D x
[-1,0]) = @, where e3 = (0,0,1) and D is the unit disk in 0H. Now consider the
homothetically shrunk halfcatenoids Cy = tC, 0 < t < 1. As t — 0, C} converges
smoothly to OH — {0} away from the origin. It follows that for ¢ > 0 sufficiently
small, (M — ece3) N Cy # . From here it is not difficult to prove that there
exists a largest to € (0,1] such that (M — eeg) N Cy, # O. Since the intersection
(M —eeg) N Cy, occurs outside the cylinder D x [—1,0], we find p € (M —ee3) N Cy,
which is interior to both surfaces. Since the translated surface M — ee3 is above
Cy, around p, the interior maximum principle insures that M — ces = C},, which
is a contradiction.

2.7. Ends of properly embedded minimal surfaces. One of the funda-
mental problems in classical minimal surface theory is to describe the behavior of a
properly embedded minimal surface M C R? outside a large compact set in space.
This problem is well understood if M has finite total curvature (see Theorem 2),
because each of its ends is asymptotic to an end of a plane or a catenoid. A recent
Theorem by Meeks and Rosenberg [80] proves that if M has finite topology but
infinite total curvature, then M is asymptotic to a helicoid (Theorem 30). More
complicated asymptotic behaviors can be found in periodic minimal surfaces in R3,
although this asymptotic behavior is completely understood when the periodic min-
imal surface has finite topology (hence finite total curvature) in the corresponding
quotient ambient space; in this setting, only planar, helicoidal or Scherk-type ends
can occur (Meeks and Rosenberg [81, 84]).

A crucial notion in the understanding of the asymptotic geometry of a generic
properly embedded minimal surface is the notion of topological end, which we now
explain. Let M be a noncompact connected manifold. We define an equivalence
relation in the set A = {« : [0,00) — M | « is a proper arc} by setting ay ~ as
if for every compact set C C M, a1, oy lie eventually* in the same component of
M —-C.

DEFINITION 10. Each equivalence class in E(M) = A/ is called an end of M.
Ife e E(M), a € e is a representative proper arc and ) C M is a proper subdomain
containing « with compact boundary, then we say that the domain 2 represents
the end e.

E(M) has the following natural Hausdorff topology. For each proper domain
Q C M with compact boundary, we define the basis open set B(Q) C £(M) to
be those equivalence classes in £(M) which have representatives contained in Q.
With this topology, £(M) is a totally disconnected compact space which embeds
topologically as a subspace of [0,1] C R. Since this result is not known, or at least
its proof does not seem to appear in the literature, we give a short proof of it at
the end of this Subsection.

DEFINITION 11. Any isolated point e € £(M) is called a simple end of M. If
e € E(M) is not a simple end (equivalently, if it is a limit point of £(M) C [0, 1]),
we will call it a limit end of M.

When M has dimension 2, then an end e € £(M) is simple if and only if it can
be represented by a proper subdomain 2 C M with compact boundary which is

4Throughout the paper, eventually for proper arcs means outside a compact subset of the
parameter domain [0, c0).
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homeomorphic to S! x [0, 00) (this case is called an annular end) or to S* x [0, c0)
connected sum with an infinite number of tori where the n-th connected sum occurs
at the point (1,n) € St x [0,00), n € N (this is a simple end of infinite genus). For
limit ends there are similar notions: a limit end e € £(M) is said to have genus zero
if it can be represented by a proper subdomain 2 C M with compact boundary and
genus zero. If a limit end e does not have genus zero, then we say that it has infinite
genus; in this case every proper subdomain with compact boundary representing e
has infinite genus.

We will devote Section 5 to the Ordering Theorem for ends of properly embed-
ded minimal surfaces; this Theorem is the starting point for the theory of properly
embedded minimal surfaces with more than one end. Concerning one-ended mini-
mal surfaces, the classical example in this family is the helicoid. In 1993, Hoffman,
Karcher and Wei [46, 47] found a surprising example with genus one and one he-
licoidal end. Recently, Hoffman, Weber and Wolf [51] have given a proof of the
embeddedness of a genus one helicoid, and there are computational indications that
point to the existence of a unique embedded example with one helicoidal end for
any positive genus (the first computer graphics images of a higher genus helicoid are
due to Traizet —unpublished—, see also Bobenko [2], Bobenko and Schmies [3]).
From the theoretical point of view, a recent result by Meeks and Rosenberg [80)]
insures that any properly embedded one-ended minimal surface with finite topology
must be necessarily asymptotic to a helicoid with finitely many handles and it can
be described analytically by meromorphic data (dg/g,dh) on a compact Riemann
surface by means of the classical Weierstrass representation, see Theorem 30. Re-
garding one-ended surfaces with infinite topology, Callahan, Hoffman and Meeks [6]
showed that any nonflat doubly or triply periodic minimal surface in R? must have
infinite genus and only one end.

We finish this Subsection by proving that the space £(M) of ends of a noncom-
pact connected manifold M is a totally disconnected compact space that embeds
in the unit interval [0,1]. Our proof generalizes to many other spaces including
finite dimensional simplicial complexes. If £(M) is a finite set, then the embedding
property is obvious. Assume now that M has an infinite number of ends. Let
QO C...C Q, C...bea compact exhaustion of M. It is not difficult to induc-
tively modify this exhaustion to produce a new exhaustion (denoted in the same
way) which satisfies the following properties:

1. Q, is a manifold with boundary.

2. Qp C Int(Qpy1)-

3. For n > 2, every boundary component of €2,, separates M into two closed
noncompact regions.

4. The number of boundary components of §2,, is n.

5. Each end e € £(M) has a representative a which begins in € and intersects
transversely each boundary component of €2, at most once point.

Consider the closure in M of the two components of €23 — Q5. One of these
components, which we label M>, has exactly 2 boundary components, while the
other component M3 has 3 boundary components. This process can be inductively
continued to label the closure in M of the n closed components of 2,41 — Q,
as follows. Assume that {M,, .. ,} is the collection of the components of the
previous stage. We label a closed component of 2,41 — , by Mg, . 4, , With
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an—1 € {3,4,5,6,7} so that My, . 4, , attaches to My, . 4, , and one of the
following possibilities holds:

1. an—1 =3 1if Mg, . 4, , has three boundary components.

2. ap—1 =4 if Mg, 4, , has two boundary components and M, . 4, , has
also two boundary components.

3. an—1 =5if My, .. q4,_, has two boundary components, Mg, .. 4, _, has three
boundary components and the other component attaching to M, ... 4, _, has
three boundary components.

4. ap_1 =6,7if Mg, . 4, , has two boundary components and it is not in the
previous cases.

We now explain how to embed the totally disconnected compact Hausdorff
space £(M) into [0,1] where we consider every point in [0,1] to be expressed
as decimal point followed by an infinite sequence of digits. Let e € (M) and
take a representative o € e satisfying property 5 above. Then « eventually lies
in Mg, UMg 0, U... UMy, . 4, U...for a unique infinite sequence S(a) =
(a1,a2,...,an,...) € [0,1]. Note that S(«) is independent of the choice of the
proper arc « € e satisfying property 5, so we can denote this decimal number as
S(e). It is straightforward to prove that the map e — S(e) is a topological em-
bedding. In the case that M is a properly embedded minimal surface in R with
more than one end, there is a more natural topological embedding of £(M) into
[0,1] that uses the relative heights of the ends of M, see the Ordering Theorem 18
in Section 5.

2.8. Second variation of area and Jacobi functions. Let M C R? be a
minimal surface and 2 C M a subdomain with compact closure. Any compactly
supported, smooth, normal deformation of the inclusion X: M — R3 on Q can be
written as X +tulN, where N is the Gauss map of M and u € C§°(M). By (2), the
area functional A = A(t) for this deformation has A’(0) = 0. The second variation
of area can be easily shown to be (see [97])

(10) A"(0) = — /Q w(Au — 2Ku) dA,

where K is the Gaussian curvature function of M and A its Laplace operator.
Formula (10) can be seen as the classical bilinear form associated to the linear
elliptic L?-selfadjoint operator L = A — 2K = A + |V N|?, which is usually called
the Jacobi operator.

DEFINITION 12. A C2%-function v: M — R satisfying Au — 2Ku = 0 on M is
called a Jacobi function. We will let (M) denote the space of Jacobi functions on
the minimal surface M.

Classical elliptic theory implies that for a given subdomain 2 C M with com-
pact closure, the Dirichlet problem for the Jacobi operator in €2 has an infinite
discrete sequence {A}renugoy of eigenvalues with A " +o0o as k goes to infin-
ity, and each eigenspace is a finite dimensional linear subspace of C*(Q) N H}(Q),
where HE(Q) denotes the usual Sobolev space of L? functions with L? weak partial
derivatives and trace zero. Since any normal variation through minimal surfaces has
vanishing second derivative of the area functional, it follows that the normal parts
of variational fields coming from Killing or dilatation vector fields of R? produce
elements in J(M). For instance, translations give rise to the so called linear Jacobi
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functions (N,v) with v € R3, rotations produce the Jacobi functions det(p, N,v)
(where p denotes the position vector) and homotheties give the support function
(p,N) € J(M). A particularly interesting Jacobi function, which is defined when
the minimal surface is transverse to a family of horizontal planes, is the Shiffman
function, which will be studied in Section 11.

DEFINITION 13. Let Q C M be a subdomain with compact closure. The indez
of stability of € is the number of bounded states of L in such domain, i.e. the
number of negative eigenvalues of the Dirichlet problem associated to L in 2. The
nullity of € is the dimension of J(Q) N HJ (). Q is called stable if its index is zero,
and strictly stable if both its index and nullity are zero.

Elliptic theory also implies that 2 is strictly stable provided that it is sufficiently
small, which justifies the Definition 5 of minimal surface as a local minimum of area.
Another consequence of elliptic theory is that €2 is stable if and only if it carries a
positive Jacobi function. Since the Gauss map N of a graph defined on a domain
in a plane II has image set contained in an open halfsphere, the inner product of
N with the unit normal to II provides a positive Jacobi function, from where we
conclude that any minimal graph is stable. Stability makes sense in the large, as
we next explain.

DEFINITION 14. A minimal surface M C R? is called stable if any relatively
compact subdomain ) C M is stable. For orientable minimal surfaces, stability is
equivalent to the existence of a positive Jacobi function (Proposition 1 in [34]). M
is said to have finite indez if outside of a compact subset it is stable. The index of
stability of M is the supremum of the indices of relatively compact subdomains in
M.

By definition, stable surfaces have index zero. The following Theorem explains
how restrictive is the property of stability for complete minimal surfaces. It was
proved independently by Fischer-Colbrie and Schoen [35], do Carmo and Peng [31],
and Pogorelov [109].

THEOREM 8. If M C R3 is a complete (orientable) immersed stable minimal
surface, then M is a plane.

We will provide a short elementary proof of Theorem 8 in Section 4.1. If we
weaken the stability hypothesis to finite index, then completeness also leads to a
well-known family of minimal surfaces.

THEOREM 9 (Fischer-Colbrie [34]). If M C R3 is a complete (orientable) min-
imal surface with possibly empty compact boundary, then M has finite index if and
only if it has finite total curvature. In this case, the index and nullity of M coin-
cides with the index and nullity of the meromorphic extension of its Gauss map to
the compactification M obtained from M after attaching its ends, see Theorem 2.

By the conformal invariance of the Dirichlet integral, both the index and nullity
of the Jacobi operator L = A + |V N|? remain constant under a conformal change
of metric. On the other hand, Osserman’s Theorem implies that every complete
immersed minimal surface M C R3 with finite total curvature is conformally equiv-
alent to a finitely punctured compact Riemann surface M. It can be shown (Pérez
and Ros [106]) that there exists a smooth metric ds* on the compactification M
such that the metric ds? on M induced by the inner product of R? can be expressed
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as ds?> = pds?, where p is a positive smooth function that blows up at the ends
of M. In this setting, both the index and nullity of L can be computed as the
index and nullity of the operator L = A + |[VN|? on M minus the ends, where a
bar means that the corresponding object is computed with respect to ds?. Also by
Osserman’s Theorem, N extends as a meromorphic function to M, thus L is noth-
ing more than the classical Schrédinger operator associated to such a meromorphic
extension. The subspace K(M) of bounded Jacobi functions on M can be identified
with the eigenspace associated to the eigenvalue 0 of the operator L. Inside k(M)
we have the subspace of linear functions £(M) = {(N,v) | v € R3}. If additionally
all the ends of M are horizontal, then det(p, N, e3) € K(M), where e3 = (0,0,1).
In particular, (M) has dimension at least 4 for any complete embedded minimal
surface of finite total curvature in R except for the catenoid where det(p, N, e3)
vanishes.

Montiel and Ros [91] stated a beautiful relationship between bounded Jacobi
functions and branched minimal immersions. For a complete minimal surface M C
R? with finite total curvature, let B(N) C M be the set of branch points of the
extended Gauss map and M (V) the linear space of all complete branched minimal
immersions (including the constant maps) of M — B(N) into R® with the same
Gauss map N as M.

THEOREM 10 (Montiel, Ros [91]). Let M C R3 be a complete immersed min-
imal surface with finite total curvature®. Then, there exists a linear map u €
K(M) — X, € M(N) such that the support function of X, is u, and u € L(M) if
and only if X,, is constant. Furthermore, this linear map gives rise to an isomor-
phism between the quotient spaces KC(M)/L(M) and M(N)/{constants}.

Among the admissible conformal metrics which can be used to express ques-
tions related with the Jacobi operator, a particularly interesting choice comes from
consideration of the pullback metric ds%; through the Gauss map from the standard
spherical metric on S?. The metric ds3; has singularities at the branch points of N
and the Jacobi operator transforms into Ly = Ay + 2, where Ay is the Laplacian
of ds%. Eigenvalues and eigenfunctions of Ly are well-defined by a variational
approach (Tysk [125]). In particular, the index of stability of a relatively compact
subdomain ©Q C M is equal to the number of eigenvalues of Ay which are strictly
less than 2, and the nullity of €2 is the multiplicity of 2 as an eigenvalue of Ap. Us-
ing these ideas, Montiel and Ros [91] gave some estimates for the index and nullity
under different geometrical assumptions, of which we emphasize the following one.

THEOREM 11. Let M C R? be a complete immersed minimal surface with finite
total curvature®. If all the branch values of the Gauss map of M lie on a equator
of S?, then the dimension of KK(M) is 3.

3. Conformal questions on minimal surfaces.

3.1. Recurrence and parabolicity for manifolds. The conformal struc-
ture of a complete minimal surface has a strong influence on its global properties.
In particular, an important question is to decide the so called type problem for a
minimal surface M, in the sense of classical Riemann surfaces: i.e. whether M

5Theorems 10 and 11 remain valid for complete minimal surfaces in any quotient of R® where
the Gauss map makes sense, and which have finite total curvature in the quotient.
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is hyperbolic or parabolic® (as we have already noticed, the elliptic or compact
case is impossible for a minimal surface). It turns out that the parabolicity for
Riemann surfaces without boundary is equivalent to the recurrence of Brownian
motion of such surfaces. This field lies in the borderline between several branches
of Mathematics such as Riemannian Geometry, Stochastic Analysis, Partial Differ-
ential Equations and Potential Theory. A particularly interesting source where the
reader can find an excellent introduction to these questions is the survey of recur-
rence and Brownian motion on Riemannian manifolds by Grigor’yan [41]. The goal
of this Subsection is to introduce some key concepts that are useful in dealing with
these conformal questions. In order to avoid concepts closely related with prob-
ability (such as random walks or Brownian motion), in this paper we will follow
an alternative way to define recurrence and parabolicity that is slightly different
from Grigor’yan’s approach; this approach is well-known and is explained in greater
detail in the notes by the second author [101]. However, we will briefly explain the
connection between these two approaches. We will not provide proofs for most of
the results stated in this Subsection, but the proofs can be found in [41] or [101].

DEFINITION 15. Let (M™, g) be a n-dimensional Riemannian manifold with
nonempty boundary. M is parabolic if every bounded harmonic function on M is
determined by its boundary values.

DEFINITION 16. Let (M™, g) be a n-dimensional Riemannian manifold without
boundary. M is recurrent if for any nonempty open set O ; M with smooth
boundary, M — O is parabolic.

Given a Riemannian manifold (M,g) with boundary OM # () and a point
p € Int(M), the harmonic measure p, with respect to p can be defined as follows.
Let I C M be a nonempty open set with smooth boundary. Consider a compact
exhaustion I C OM; C My C My C ... of M. Given k € N, let hy: M — [0,1] be
the (bounded) harmonic function on My with boundary values 1 on Int(I) and 0
on OMj — I. After extending hy by zero to M, we can see {hy}r as an increasing
sequence of harmonic functions, bounded from above by 1. Hence hj limits to
a unique bounded harmonic function h: M — [0,1]. In this situation, we define
wp(I) = h(p). It turns out that u, extends to a Borel measure p, on M.

Another interpretation of p,, developed in [41], is that p,(I) is the probability
of a Brownian path beginning at p, of hitting OM the first time somewhere on the
interval I, and for this reason the harmonic measure of M is also called the hitting
measure with respect to p. We now explain how to computationally calculate the
hitting measure p,, at an interval I contained in the boundary of a smooth domain
Q C R?, where p € Int(Q2). For n € N and ¢ > 0, define the set I'(p,n,e) to
be the n-step orthogonal random e-walks starting at p, i.e. continuous mappings
o: [0,ne] — R? which begin at ¢(0) = p and for any integer k =0,...,n — 1,

(@ltke, k1)) () = o (ke) £ tes,

6Classically, a Riemann surface without boundary is called hyperbolic if it carries a non-
constant positive superharmonic function, and parabolic if it is neither elliptic (i.e. compact) nor
hyperbolic. The reader should be aware that we will use the concept of parabolicity for Riemannian
manifolds with boundary (see Definition 15) and reserve the word recurrent for manifolds without
boundary (Definition 16). For Riemannian manifolds, the relationship between parabolicity and
recurrence will become clear soon.
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where e; is one of the unit vectors (1,0),(0,1). We define pp,(n,e)(I) to be the
probability that some o € I'(p,n,€) crosses 9§ a first time in I. As n — oo,
pp(n,e)(I) converges quickly to a number pu,(e)(I) € [0,1]. Similarly, as ¢ — 0,
the p,(e) converge to a measure p, on OM, which is equal to the hitting measure
obtained from Brownian motion starting at p.

For an interval I C 09, consider the function P;(n,e) : Int(2) — [0, 1] defined
as Pr(n,e)(p) = pp(n,e)(I) for p € Int(2). Note that for any p € Int(€2) and for €
smaller that the distance from p to 01, the following formula holds

2 2
Pi(n.2)(p) = § (Zmn Lot e) + ) Piln = Le)(p - >> ,
=1 i=1

and so, the limiting function Pj(e) satisfies an infinitesimal 4 point mean value
property. As e — 0, Pr(e) converges to a function P; on Int(€) which satisfies
the usual mean value property. Therefore, the function p +— Pj(p), which is the
probability of a Brownian path starting at p of exiting Q a first time on I, is a
harmonic function which takes its values in [0, 1]. Note that P; has limiting values
1 on the interior of I and 0 on the interior of 92— I and so, it is the unique bounded
harmonic function on Int(2) whose boundary values correspond almost everywhere
to the characteristic function of I C 9f2. By definition of P;, the hitting measure is
tp(I) = Pr(p), which gives the desired equivalence between hitting and harmonic
measure for planar domains.

The above discussion generalizes easily to a Riemannian manifold M with
boundary. We will briefly explain this generalization in the case of dimension 2
and when M lies in the interior of a bigger complete manifold M. Let M be a
Riemannian surface with boundary and p € Int(M). Given a unit tangent vector
vp, n € N and € > 0, we let I'(vp, n, ) denote the set of n-step orthogonal random
e-walks o: [0,ne] — M such that l[0,¢] is the unit speed geodesic beginning at p
in one of the directions +v,,+Jv,, where J is a local almost complex structure in
a neighborhood of p, and o|[ke,(k+1)¢) is the unit speed geodesic in M beginning
at o(ke) in one of the directions o’ (ke), £Jo'(ke), 0 < k < n — 1. These sets of
random walks produce, as in the planar domain case, a limiting hitting measure on
OM , which is independent of the initial choice of vy, and by the previous arguments,
is equal to the harmonic measure f,,.

From the above discussion, it easily follows that a Riemannian manifold without
boundary is recurrent (see Definition 16) precisely when almost all Brownian paths
are dense in the manifold. Also, parabolicity and harmonic measure are closely
related, as states the following result.

PROPOSITION 2. Let (M, g) be a Riemannian manifold with OM # @. Then,
the following statements are equivalent:
1. M 1is parabolic.
2. There exists a point p € Int(M) such that the harmonic measure i, is full,
1.€. faM p = 1.
3. Given any p € Int(M) and any bounded harmonic function f: M — R, then
flp) = faM fip.

4. There exists a proper nonnegative superharmonic function on M.

R™ is recurrent for Brownian motion if and only if n < 2. The parabolicity of a
Riemannian manifold with boundary is not affected by adding compact sets or by
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removing interiors of compact sets, and if a manifold M can be decomposed as the
union of two parabolic domains with compact intersection, then M is parabolic (or
recurrent, depending on if M is empty or not).

Note that if h: M — R is a nonconstant positive harmonic function on a
recurrent Riemannian manifold, then for any positive regular value ¢t € R of &, the
closed subset M; = h™1((0,¢]) is parabolic and k|, is a bounded harmonic function
with constant boundary value ¢t. By Proposition 2, k|, is the constant function ¢,
which contradicts that ¢ is a regular value of h. This contradiction completes the
proof of the following well-known result.

ProrosITION 3 (Liouville Theorem). Ewvery positive harmonic function on a
recurrent Riemannian manifold is constant.

3.2. Recent results on parabolicity for minimal surfaces. As we have
said before in this survey, a knowledge of the conformal type of a minimal surface M
is crucial when tackling uniqueness questions. Sometimes it is useful to decompose
M in pieces and study the conformal structure of each piece as a Riemann surface
with boundary. For instance, the proof by Meeks and Rosenberg of the uniqueness of
the helicoid [80] uses the fact that a simply connected properly embedded minimal
surface M C R® must admit a plane which intersects M transversely in a single
proper arc . Each of the two closed complements of «v in M is contained in a
closed halfspace, hence both are parabolic as follows from Theorem 12 below and
ones then proves that M is conformally C. This argument introduces one of the
main open questions concerning minimal surfaces with boundary, which we now
state after a definition.

DEFINITION 17. Let W C R? be a connected region of space which is either
open or the closure of an open set. We say that W is a universal region for surfaces
if every complete, connected, properly immersed minimal surface M C W is either
recurrent (when OM = @) or a parabolic surface with boundary. W is called a
universal region for graphs if every proper minimal graph M C W is a parabolic
surface with boundary.

QUESTION 1. Which regions W C R? are universal for surfaces or for graphs?

Obviously, any universal region for surfaces is also universal for graphs. By an
ingenious application of the classical Runge’s Theorem, Rosenberg and Toubiana [115]
gave an example of a nonflat minimal annulus without boundary which is properly
immersed in an open slab. By Liouville’s Theorem (Proposition 3), this example
proves that an open slab is not universal for surfaces. A smart refinement of the
ideas used by Nadirashvili [94] in his proof of the existence of a complete immersed
minimal surface in a ball in R?, allows one to construct a minimal immersion of
the open unit disk that is proper in R? (Morales [92]), which shows that R3 is not
universal for surfaces. This result demonstrates the necessity of the embeddedness
assumption in Meeks and Rosenberg’s proof that if a simply connected, proper
minimal surface is embedded, then it will be conformally C. Recently, Martin
and Morales [65] have constructed a complete conformal minimal immersion of the
open unit disk that is proper in an open ball, which implies that open balls are
not universal regions for surfaces. More recently [64], they have generalized their
result to prove that the interior of any convex region of R? (including noncompact
and nonsmooth ones) admits a proper complete minimal immersion of the unit
disk, which implies that such regions are not universal for surfaces. Theorem 12
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and Corollary 1 below imply respectively that any closed halfspace is universal for
surfaces, and the region above a negative halfcatenoid is universal for graphs.

Part 5 in Proposition 2 gives a method for showing that a given region W C R3
is universal for surfaces, which consists of finding a proper nonnegative universal
superharmonic function on W, a concept that we now define.

DEFINITION 18. Given a region W C R3, a function h: W — R is said to be
a universal superharmonic function on W if its restriction to any minimal surface
M C W is superharmonic.

Examples of universal superharmonic functions on all of R? include coordinate
functions such as x; or the function —z%. Collin, Kusner, Meeks and Rosenberg
proved the useful inequality (Lemma 2.2 in [26]) valid for any immersed minimal
surface in R3:

|V{E3|2
(11) |Ah’l7"| S ’[“—2’
where 7 = /2% + 23 and V, A denote the intrinsic gradient and laplacian on M.
Using the estimate (11), it is straightforward to check the following statement.

LEMMA 1.

i) The function Inr — x3 is a universal superharmonic function in the region
{r*>1}.

ii) The function Inr — x3 arctanzs + 1 In(z3 + 1) is a universal superharmonic
function in the region {r* > 23 + 1}.

With the above Lemma, we now prove that any closed halfspace is a universal
region for surfaces. If M is a properly immersed minimal surface in a closed half-
space and OM = @, then M is planar by the Halfspace Theorem (Theorem 7); in
particular, any closed halfspace is a universal region for surfaces without boundary.
The desired property of being planar also follows directly from the following general
Theorem and the fact that on recurrent surfaces positive harmonic functions are
constant (Proposition 3).

THEOREM 12 (Collin, Kusner, Meeks, Rosenberg [26]). Let M be a connected
properly immersed minimal surface in R3, possibly with boundary. Then, every
component of the intersection of M with a closed halfspace is a parabolic surface
with boundary. In particular, if M has empty boundary and intersects some plane
in a compact set, then M is recurrent.

PRrOOF. Up to a rotation, it suffices to check that any component C of M (+) =
M N {x3 > 0} is parabolic. For fixed n € N, let C,, = C N x5 '([0,n]). By part i) of
Lemma 1, the function h = In7 — 3 is superharmonic and proper when restricted
to C,, N {r? > %} Furthermore, h is positive outside a compact domain on C,,
which by part 4 of Proposition 2 implies that C,, N {r? > 1} is parabolic. Since M
is proper and {r? < 1} N {0 < z3 < n} is compact, we deduce that C,, — {r? > 1}
is a compact subset of C,. Since parabolicity is not affected by adding compact
subsets, it follows that C,, is parabolic.

We now check that C' is parabolic. Fix a point p € C with x3(p) > 0 and let ,ug
be the harmonic measure of C' with respect to p. For n large enough, p lies in the
interior of C,,. Since z3 is a bounded harmonic function on the parabolic surface
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C.,, part & of Proposition 2 insures that

z3(p) = / T3 fy = n/ oy s
aC,, dCnNzy " (n)

where pi;; is the harmonic measure of C;, with respect to p. Since yy is full on 9C,,
it follows that

/ u;?:l—/ M;;21—L3(p) (=)
8Cn—$;1(n) 8Cnﬁm;1(n) n

Suppose that M and N are Riemannian manifolds with M C N, d a component
of OM NON,p € Int(M) and /124 and uév are the respective harmonic measures.
Then it follows immediately from the definition of harmonic measure that f 5 u;‘)/[ <
faué\/ < 1. By letting M = C,, N = C and 0 = 9C,, — x;l(n), the above
displayed inequality implies lim,, |, 0C,—2=1(n) Mg > 1, from where we conclude that

n—Tg

fac ug =1 and the proof is complete. 1

An open subset €2 of a Riemann surface without boundary is called hyperbolic
if Q carries a nonconstant positive superharmonic function, or equivalently if for
any point g € €2, the Green’s function with singularity at ¢ exists (this function is
the smallest positive harmonic function in Q — {¢} with a logarithmic singularity
at g, see [32] for details about Green’s functions and hyperbolicity). Suppose now
that X: M — R3 is a proper minimal immersion whose Gauss map ¢ has image
set contained in a hyperbolic open subset Q C S?. Since such an ) does not have
logarithmic capacity zero, a result by Osserman [99] implies that if M has no
boundary, then the immersion is flat. Assume that X is not flat. A careful analysis
of the role that z3 plays in the last proof lets us exchange this coordinate function
by the composition G o g, where G is the Green’s function in 2 with singularity at a
given point ¢ € €. After a suitable choice of a universal superharmonic function h
which constrains the region where X (M) is contained, arguments not too different
from the ones in the proof of Theorem 12 lead to the following statement.

THEOREM 13 (Lépez, Pérez [62]). Given a € (0,1), let W, = {x3 > —(2? +
23)°/?} and X: M — R® a proper nonflat minimal immersion with X (M) C W,.
If, up to removing a compact set of M, the Gauss map of X has image contained in
a hyperbolic open subset of the sphere, then M is a parabolic surface with nonempty
boundary.

The region above a vertical negative halfcatenoid and outside a certain compact
set is contained in W, for any « € (0,1). Since the Gauss map image of a graph is
contained in a closed halfsphere, it is also contained in an hyperbolic open subset
of S2. Thus the following result is a direct consequence of Theorem 13.

COROLLARY 1. Any proper minimal graph lying in the closed region above a
vertical negative halfcatenoid is parabolic.

We would like to finish this Section by mentioning an unpublished example by
Collin of a complete stable minimal submersion of a disk minus a Cantor set of
positive measure in its boundary into a plane, which we can view as a degenerate
multigraph.

Let W =R%2—{0,1} and let h: D — W be the universal cover by the open unit
disk D C C. Note that D is incomplete in the pulled-back flat metric through h.
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Consider the simply connected subdomain W(+) = {(x1,22) € W | 2 > 0} and
one of its lifts Dy to D. Let p1, ¢1 denote points in D corresponding to the end
points of D1, which under completion would map to 0 and 1 in R2, respectively.
Consider small disjoint arcs ay,3; in 0D centered at p1, g1 respectively and each
of length (1) < %. Consider the open “equilateral” triangles A(1,1),A(1,2) in D
with circle bases a1, 81, and sides being straight line segments of length [(1). Let
D1,Ds,...,D,, ... denote an ordering of the set of lifts of W(+) to D. For each
Dy, we find similar points py, g and arcs ay, O with lengths at most (k) < #.
After removing from D all of the similarly defined open “equilateral” triangles
A(k,1),A(k,2), one obtains a flat surface M and an induced map h: M — R2
Since the boundary of the closure M of M in the closed unit disk D is a Lipschitz
curve parametrized by the argument 6, the Riemann mapping Theorem preserves
sets of positive Lebesgue measure on M. By construction, the set 9M — OM has
positive measure and so M does not have full harmonic measure. On the other
hand, it can be checked that the flat metric on M induced by the submersion is
complete, which finishes our construction of the example of Collin.

4. Stable minimal surfaces.

Very often, stable minimal surfaces play the role of planes separating disjoint
pieces of minimal surfaces. How to produce such separating stable surfaces will be
the goal of Subsection 4.2. Before explaining this, we will show how to give bounds
on the area and curvature for stable surfaces, results which in turn have important
consequences to the global theory.

4.1. Area and curvature estimates for stable minimal surfaces. Let
D C M be an embedded geodesic disk of radius rp > 0 contained in a minimal
surface M C R3. Since the Gaussian curvature of D is nonpositive, classical com-
parison with the Euclidean disk of the same radius gives 773 < Area(D). Colding
and Minicozzi (Theorem 1.2 in [22]) gave the following useful upper estimate for
Area(D) by assuming stability.

THEOREM 14. Let D C M be a geodesic disk of radius ro inside a minimal
surface M C R3. If D is stable, then

4
Area(D) < gm*g .

PrOOF. The argument of Colding-Minicozzi uses a beautiful application of the
stability inequality with a particular choice of a radial test function f(r,8) = n(0)
(here (r, 0) are polar geodesic coordinates on D), where n € C1([0,79]) with n(ro) =
0. By stability, Green’s formula and the coarea formula, we obtain:

(12)

OS/D(|Vf| +2Kf )dA:/O (' (1)) l(r)dr—l—Q/O </8D(T)de,«>n (r)dr,

where K is the Gaussian curvature function on M, D(r) is the disk of geodesic ra-
dius r € [0, 7] concentric with D and ds,,[(r) are respectively the length element
and the total length of 0D(r). Let K(r) = [}, K dA. As K'(r) = [, K dsr

and K(0) = n(rg) = 0, integration by parts gives [;° (fé)D(r) deT) n*(r)dr =

— J;° K(r)(n*(r))' dr. By the Gauss-Bonnet formula and the first variation of
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length (see e.g. [10]), K(r) = 27 — f(‘BD kg ds, = 2m — U'(r), where K, denotes
geodesic curvature. Subbtltutlng this formula for K(r) into (12), we obtain:

0< / (o ())21(r) dr — 2 / (27 — () (P (1)) dr.

Now taking 7(r) = 1 — ;= in the last expression, we have

1 [m 4 [7o 8t [T
13 ——/ (r)dr + — U (1——)d < — (1——)dr—47r
(13) 2, (r) A (r) - o ) -

Finally, integration by parts gives % Joov(r) (1 - —) dr = fro I(r) dr. Plugging
this into (13) and using that [ I(r) dr = Area(D), we ﬁnlsh the proof. 0

To see the usefulness of the above area estimate, we now give a short proof of
Theorem 8.

PRrROOF OF THEOREM 8. Let M C R? be a complete orientable immersed min-
imal surface which is stable. Recall that for orientable minimal surfaces, stability
is equivalent to the existence of a positive Jacobi function (Proposition 1 in [34]).
After lifting such a function on M to a Jacobi function on the universal cover of
M, we can assume that M is simply-connected. Since the Gaussian curvature of
M is nonpositive, Hadamard’s Theorem implies that the intrinsic distance function
to a given point py € M is smooth outside pg without critical points and that the
geodesic disk D(r) centered at py with radius r > 0 is embedded. Let A(r) be the
area of D(r) (which is a smooth function of r) and I(r) the length of its boundary.
Then, A'(r) = I(r ) and thus, the first variation of length and the Gauss-Bonnet
formula give A”(r faD( ) Ko ds; = 2m — fD(T) K dA, where k4 is the geodesic
curvature of 0D(r ) ds, is its length element and K is the Gaussian curvature of
M. The last equality implies that A”(r) is monotonically increasing in r. This
property together with A(r) < g7r? (Theorem 14) imply that A”(r) < 87, which
shows that — fD(r) KdA < %T(. Since r is arbitrary, we conclude that M has finite

total absolute Gaussian curvature at most %T(. By Theorem 2, the total curvature
of a complete orientable nonplanar minimal surface is infinite or a positive integer
multiple of —47, and so we deduce that M must be a plane. This finishes the proof
of Theorem 8. ]

A crucial fact in minimal surface theory is that orientable minimally immersed
stable surfaces with boundary in R? have curvature estimates up to their boundary.
These curvature estimates were firstly obtained by Schoen [117] and later proved
in another way by Ros [113]. Here we give a different approach, using Theorem 8
and a blow-up argument. As a consequence, these curvature estimates are in fact
easily derived from the area estimate in Theorem 14.

THEOREM 15. There exists a universal constant ¢ > 0 such that for any stable
orientable minimally immersed surface M in R3, its absolute curvature function
times the squared distance function to the boundary of M is bounded above by c.

PROOF. Suppose on the contrary that there exist stable orientable minimally
immersed surfaces M,, in R? and points p,, € M,, in the interior of such surfaces such
that |K s, |(pn)da, (Pn, OM,,)? > n for all n, where Ky, ,dps, are respectively the
Gaussian curvature and the intrinsic distance in M,,. By passing to the universal
covering, we may assume that M, is simply connected for each n. Let D, be
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the embedded geodesic disk centered at p,, with radius das, (pn,O0M,,) and g, €
D,, a point where the function dyy, (-,0D,,)?|Kar,|: D, — [0,00) has a maximum
value. We denote by ﬁn the minimal disk in R3 obtained by first translating by
—q,, the intrinsic disk in M,, with center ¢, and radius %dMn (gn,0Dy,) and then
homothetically expanding this translated disk by the scaling factor /| K, (¢n)]-
Thus we have a sequence {lN)n}n of orientable stable minimal disks in R?, all passing
through the origin with dg; (0, 8l~)n)2 > n and with Gaussian curvature function

Kp satistying Kp (0) = —1 and Kp > —4 on D,. A standard compactness

result (see for example [80] or [107]) shows that a subsequence of the D,, converges
uniformly on compact sets of R3 to an orientable, complete, simply-connected,
immersed minimal surface ﬁoo passing through the origin, with bounded Gaussian
curvature Kp_, Kp (0) = —1 and empty boundary. Since Do is stable (because

the smooth limit of stable minimal surfaces is stable), Theorem 8 implies that Do
is a plane, which is a contradiction. This finishes our proof of Theorem 15. 1

REMARK 1. Another blow-up argument implies that Theorem 15 also holds
for stable minimal surfaces in a Riemannian three-manifold N3 with injectivity
radius bounded from below and which is uniformly locally quasi-isometric to balls
in Buclidean space (in particular, it holds on any compact N3).

4.2. Barrier constructions. Barrier constructions allow one to construct
compact and noncompact stable minimal surfaces in R3 that are constrained to lie
in subdomains of R? whose boundaries have nonnegative mean curvature. For ex-
ample, consider two connected properly embedded disjoint minimal surfaces M7, M>
in R? and the closed connected region W of R? with OW = M; U M. We now
show how to produce compact stable embedded minimal surfaces in W. First note
that W is a complete flat manifold with boundary having zero mean curvature.
Meeks and Yau [89] proved that W embeds isometrically in a complete homoge-
neously regular” Riemannian manifold w diffeomorphic to the interior of W and
with metric g. Morrey [93] proved that in a homogeneously regular three-manifold
one can solve the classical Plateau problem or other area minimizing problems. In
particular, if I' is an embedded 1-cycle in W which bounds an orientable chain | in
W, then T" is the boundary of a compact least area embedded surface ¥p(g) C W.
Meeks and Yau prove that their metric g on W can be approximated by a family
of homogeneously regular metrics {gn }neny which converge smoothly on compact
subdomains to g and each g, satisfies a convexity condition outside of W C W,
which forces the least area surface Y (gy,) to lie in W if T lies in WW. A subsequence
of the ¥r(g,) converges to a smooth minimal surface X of least area in W with
respect to the original flat metric. We now use this barrier construction to prove
the Strong Halfspace Theorem (also see Theorem 7).

THEOREM 16. [50, 85] If My and My are two disjoint properly immersed min-
imal surfaces in R3, then My and M, are parallel planes.

7A complete Riemannian manifold (W, g) is homogeneously regular if there exists an € > 0
such that the injectivity radius of W is at least € and e-balls in W are uniformally quasi-isometric
to e-balls in R3. For example, every compact Riemannian three-manifold satisfies this rather weak
property.
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PROOF. Let W be the closed complement of M; U My in R3 that has portions
of both M; and M5 on its boundary. The surface W is a good barrier for solving
Plateau-type problems in W. Let M;(1) C ... C Mi(n) C ... be a compact
exhaustion of M; and let X1 (n) be a least area surface in W with boundary dM; (n).
Let o be a compact arc in W which joins a point in M;(1) to a point in OW N Mo.
By elementary intersection theory, « intersects every least area surface ¥1(n). By
compactness of least area surfaces, a subsequence of the surfaces X1 (n) converges to
a properly embedded area minimizing surface ¥ in W with a component >y which
intersects .. Since Xy separates R3, X is orientable and so by Theorem 8, ¥ is a
plane. Hence, M; and M, lie in closed halfspaces of R? and so, by Theorem 12, M;
and M are recurrent. But, then the height of M7, My over their separating plane
is a positive harmonic function which must be constant (Proposition 3). Hence, M;
and Ms must be planes (instead of using Theorem 12, one could apply the Halfspace
Theorem (Theorem 7) to conclude that M; and My are parallel planes.) O

Another useful application of the barrier construction is the following. Suppose
I is an extremal simple closed curve in R3, i.e. T lies on the boundary of its convex
hull B. We first assume that 0B is smooth. By the Jordan curve Theorem, I' is
the boundary of two disks Dy, Dy C OB. Assume I' bounds two different branched
minimal immersions and let 3 denote their union. Let Wi, W5 be the geodesic
completions of the two components of B — ¥ which contain the disks Dy, Dy. In
this case W7 and OWs consist of smooth pieces with zero mean curvature and
convex corners. Meeks and Yau [89] proved that such boundaries are good barriers
for solving least area problems. In fact, in this case they prove that I' bounds
a least area embedded disk D; C W; and a different least area embedded disk
Dy C Ws. Similarly, if T' bounds a unique branched minimal surface which is not
an embedded stable minimal disk, then with this barrier argument we produce two
different embedded minimal disks with boundary I', which is a contradiction. If
0B is not assumed to be smooth, then one can use an approximation argument by
convex smooth boundaries (see e.g. [88]) to have the same conclusion.

On the other hand, Nitsche [96] proved that a regular analytic Jordan curve
in R?® whose total curvature is at most 47 bounds a unique minimal disk. The
hypothesis of analyticity for the boundary curve in Nitsche’s Theorem comes from
consideration of boundary branch points. When I" is C? and extremal, there are
never boundary branch points as shown in [89].

THEOREM 17. [89] If T is a C%-extremal curve with total curvature at most
47, then T' is the boundary of a unique compact branched minimal surface and this
surface is a smooth embedded minimal disk of least area.

5. The Ordering Theorem for the ends of properly embedded minimal
surfaces.

The study of the ends of a properly embedded minimal surface M C R3
with more than one end has been extensively developed. Callahan, Hoffman and
Meeks [7] showed that in one of the closed complements of M in R? there exists a
noncompact properly embedded minimal surface ¥ C R® — M with compact bound-
ary and finite total curvature. By the discussion following Theorem 2, the ends of
3 are of catenoidal or planar type, and the embeddedness of ¥ forces its ends to
have parallel normal vectors at infinity.
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DEFINITION 19. In the above situation, the limit tangent plane at infinity of
M is the plane in R3 passing through the origin whose normal vector equals (up
to sign) the limiting normal vector at the ends of X. Such a plane is unique [7],
in the sense that it does not depend on the finite total curvature minimal surface
Y CR3 - M.

The limit tangent plane at infinity is a key notion for studying the way in which
a minimal surface with more than one end embeds properly in space.

THEOREM 18 (Ordering Theorem [39]). Let M C R3 be a properly embedded
minimal surface with more than one end and horizontal limit tangent plane at in-
finity. Then, the space E(M) of ends of M is linearly ordered geometrically by the
relative heights of the ends over the (x1, x2)-plane, and embeds topologically in [0, 1]
in an ordering preserving way. Furthermore, this ordering has a topological nature
in the following sense: If M is properly isotopic to a properly embedded minimal
surface M' with horizontal limit tangent plane at infinity, then the associated or-
dering of the ends of M’ either agrees with or is opposite to the ordering coming
from M.

The linear ordering on the set of ends £(M) given by Theorem 18 lets us define
the top end er of M as the unique maximal element in £(M) in the ordering (recall
that £(M) C [0, 1] is compact, hence er exists). Analogously, the bottom end ep of
M is the unique minimal element in £(M). If e € E(M) is neither the top nor the
bottom end of M, then it is called a middle end of M.

Rather than sketching the proof of the Ordering Theorem, we will be content
to explain how one obtains the linear ordering. Suppose M C R? is a minimal
surface in the hypotheses of Theorem 18 and let A C (M) be the set of annular
ends of M. By Theorem 1.1 in [83], each end e € A is either planar or its third
coordinate function is proper (since we are assuming that the limit tangent plane at
infinity of M is horizontal). In this setting, Collin’s Theorem (Theorem 3) insures
that e has finite total curvature and thus, it is asymptotic to a horizontal plane or
to a halfcatenoid. Since the ends in A are all graphs over complements of compact
subdomains in the (x1,x2)-plane, we see that A has a natural linear ordering by
relative heights of its ends over the (1, z2)-plane. Hence the Ordering Theorem is
proved when A = £(M).

By Theorem 9, any end of M which can be represented by a proper stable
subdomain can be also represented by a surface of finite total curvature and so, it
can be represented by an annulus. Let e; = [a1] € E(M) be an end which is not
annular. Such an end can always be represented by a proper subdomain E; which is
unstable and where OF is connected and M — E; is also unstable and noncompact
(we are assuming M has at least 2 ends). Let W7, Wa be the two closed complements
of M in R3. Note that we can consider E; to lie on the boundary of both of
these complete flat 3-manifolds W7, W5, and that their boundaries W, 0Ws are
good barriers for solving Plateau-type problems. Since E; and M — E; are both
noncompact, elementary separation properties for surfaces in R? imply that dF;
is not homologous to zero in one of the domains Wi, Ws; suppose that F; is
not homologous to zero in Wi. Since dF; bounds the locally finite 2-chain F; in
OW1y, the barrier argument in Subsection 4.2 shows that 0F; is the boundary of
a properly embedded orientable least area surface 3; in Wi, which is noncompact
since OF; is not homologous to zero in Wj. Similarly, 0F; is the boundary of a
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least area (possibly compact) surface X9 in Wa. Since E; and M — E4 are unstable,
the maximum principle implies that (31 UXo) N M = 0E;.

Let R; be the closed complement of 1 UY5 in R? which contains E; and let Ry
be the other closed complement. Since 3; and M — E; are both noncompact and
M is properly embedded in R?, R; and Ry are both noncompact. It follows that
outside a large ball containing 0F;, the boundary of Ry, which equals 31 UX, =
ORo, consists of a finite positive number of graphical ends which are asymptotic to
the ends of horizontal planes and vertical catenoids. Let ex = [ag] € E(M) be an
end with a representative Eo which is disjoint from F; (note that any two distinct
ends can be chosen to have disjoint representatives). The proper arc oy eventually
lies in Ry and so, it eventually lies between two successive graphical ends of dR;
or « eventually lies in the region above the top graphical end of OR; or below the
bottom graphical end of OR;. A similar statement holds for the proper arc ay C Rs.
In particular there is a topological graphical plane P over the (x1, x2)-plane whose
end is one of the ends of OR; and eventually a; and as lie on opposite sides of P.
If o eventually lies below P and as eventually lies above P, then [a1] < [a2] in
the linear ordering given by the Ordering Theorem; otherwise, [as] < [@1]. The
ordering we have just described can be proven to be a well-defined linear ordering,
see [39] for more details.

6. Quadratic area growth and recurrence.

In this section we will sketch the proof of a Theorem that constrains both the
geometry and the topology of properly embedded minimal surfaces in R? with more
than one end. This Theorem has been used in an essential way by Meeks, Perez
and Ros in the proofs of their classification results in Theorem 29, Theorem 31
and Theorem 32 below, as well as by Frohman and Meeks in their proof of the
Topological Classification of Minimal Surfaces (Theorem 28); all of these Theorems
are discussed in Section 10 of this survey.

The Ordering Theorem in the previous Section represents the first step in trying
to understand the geometry of properly embedded minimal surfaces with more
than one end. By the proof of the Ordering Theorem, a middle end of a properly
embedded minimal surface M with horizontal limit tangent plane at infinity can
be represented by a proper subdomain £ C M with compact boundary such that
FE “lies between two catenoids.” This means that F is contained in a neighborhood
S of the (x1,x2)-plane, S being topologically a slab, whose width grows at most
logarithmically with the distance from the origin.

Suppose for the moment that F is in fact contained in the region W = {(x1, z2, z3)
| r>1, 0 < a3 <1}, where r = /2% + 22. In Section 3 we defined the universal
superharmonic function In7 — 23 in W. In particular, the restriction f: F — R is
superharmonic and proper. Suppose f(OF) C [—1,¢] for some ¢ > 0. Replace E
by f~lc,00) and let E(t) = f~![c,t] for t > c. Assuming that both c,t are regular
values of f, the Divergence Theorem gives

AfdAz—/ |Vf|ds+/ IV f|ds,
E(t) f=1(c) f=1(t)

where V, A are the intrinsic gradient and laplacian on M, and dA, ds denote the
corresponding area and length elements.
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Since f is superharmonic, the function ¢ — [’ B(t) Af dA is monotonically de-
creasing and bounded from below by — ff*l(c) |V flds. In particular, Af lies in
LY(E). Furthermore, |Af| = |Alnr —2|Vz3|?| > —|Alnr| +2|Vzs|?. By estimate

2
(11) in Section 3, |Alnr| < ‘VTL;’l, hence [Af| > (2 — %) [Vas)?. Since 2 > 1 in
W, it follows |Af| > |Vz3|? and thus, both |Vz3|? and Alnr are in L'(E). This
implies that outside of a subdomain of F of finite area, F can be assumed to be as
close to being horizontal as one desires and in particular for the radial function r
on this horizontal part of E, |Vr| is almost equal to 1.

Let ro = maxr|pg. With a slight abuse of notation, redefine E(t) to be the sub-
domain of E that lies inside the region {r¢ < 2% + 23 < ¢?}. Since fE(t) AlnrdA =

- WT—Tlds—i—fT:t @ds = const. + ¢ [ _,|Vr|ds and Alnr € L'(E), then the

T=To
following limit exists:

1
(14) lim — |Vr|ds =C
t—oo t r=t

for some positive constant C. Thus, t — fT:t |Vr|ds grows at most linearly as
t — oo. By the coarea formula, for ¢; fixed and large

¢
(15) / |Vr|2dA = (/ V| ds) dr;
Eﬁ{tlﬁTSt} t1 r=T1

hence, t — fEﬂ{hSrSt} |Vr|2 dA grows at most quadratically as t — oo. Finally,
since outside of a domain of finite area E is arbitrarily close to horizontal and |Vr|
is almost equal to one, we conclude that the area of E N {r < t} grows at most
quadratically as ¢ — oco. In fact, from (14) and (15) it follows that

/ dA = 9t2+o(t),
En{r<t} 2

where t=20(t) — 0 as t — oco. We now check that the constant C' must be an
integer multiple of 27. The locally finite minimal integral varifolds associated to
the homothetically shrunk surfaces %E converge as n. — oo to a locally finite
minimal integral varifold with empty boundary which is contained in the (1, z2)-
plane. Since this limit varifold must is an integer multiple of the (1, z2)-plane, C
must be an integer multiple of 27.

In the case that the end E “lies between catenoids”, a similar analysis (see [26]
for details) using the universal superharmonic function Inr — c¢(zsarctan(zs) —
+1In(z3 + 1)), for some ¢ > 0, shows that E N {r < t} has area growth nmt* for
some n € N. This in turn implies that E has area growth nmR? where R =

V2% + 23 + 23, in the sense that lim; o w =
By the monotonicity formula for area (Theorem 4), every end representative

of a minimal surface must have area growth at least equal to the area growth of a
plane which is 7R2. Since we just checked that middle ends of a properly embedded
minimal surface have quadratic area growth, then we can find representatives for
middle ends which have exactly one end, which means they are never limit ends.
This discussion gives the next Theorem and we refer the reader to [26] for further
details.

THEOREM 19 (Collin, Kusner, Meeks, Rosenberg [26]). Let M C R3? be a
properly embedded minimal surface with more than one end and horizontal tangent
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plane at infinity. Then, any limit end of M must be a top or bottom end of M.
In particular, M can have at most two limit ends, each middle end is simple and
the number of ends of M 1is countable. Furthermore, each middle end E of M
has limiting quadratic area growth m(E)7R? as R — oo, where m(E) is a positive
integer. The parity of m(E) is called the parity of the middle end E.

Collin, Kusner, Meeks and Collin [26] were also able to use universal superhar-
monic functions to control the geometry of properly embedded minimal surfaces
with exactly two limit ends. Their proof of the following Theorem is motivated by
the proof of a similar theorem by Callahan, Hoffman and Meeks [7] in the classical
1-periodic setting.

THEOREM 20. Let M C R? be a properly embedded minimal surface with two
limit ends and horizontal limit tangent plane at infinity. Then there exists a proper
collection { P, | n € Z} of horizontal planes in R® such that every plane intersects M
transversely in a finite number of simple closed curves. Furthermore, the closed slab
Sy bounded by P, U P,11 intersects M in a noncompact domain which represents
the n-th end of M. In particular, by Theorem 12, M is recurrent.

7. Maximum principle at infinity for properly immersed minimal
surfaces.

In this Section we will present a sketch of the proof of a general maximum
principle at infinity. As an important application of it, we will also show the
existence of tubular neighborhoods for any properly embedded minimal surface
with bounded Gaussian curvature, which in turn implies that the area growth of
such a surface in balls is not more than cubical in the radial function R. The next
statement generalizes the maximum principle at infinity described in Theorem 6 to
the case of noncompact boundaries.

THEOREM 21 (Maximum principle at infinity [79, 121]). Let My, My C N? be
disjoint connected properly immersed minimal surfaces with possibly empty bound-
aries in a complete flat 3-manifold N°>.

i) If OMy # @ or My # D, then
dist(M7, Ms) = min{dist(0M;, Mz), dist(0Ms, M1)}.
it) If OMy = OMs = @, then My and My are flat.

SKETCH OF THE PROOF. The only real difference between the statements of
Theorem 6 and of the above Theorem is that the boundaries of the surfaces in The-
orem 21 are allowed to be noncompact. This noncompactness property presents
some serious technical difficulties that are not easy to overcome. The most dif-
ficult of these problems arises from the unknown conformal structure of a stable
orientable complete minimal surface ¥ with boundary, which we now explain. By
Theorem 9, when ¥ has compact boundary, then it has finite total curvature and
so it is conformally a finitely punctured compact Riemann surface with compact
boundary. In particular, when ¥ has compact boundary, then it is parabolic. On
the other hand, at the end of Section 3 we discussed an example of a complete
orientable stable minimal surface with noncompact boundary which was not para-
bolic. The fact that a stable minimal surface need not be parabolic makes the proof
of the general maximum principle at infinity quite delicate. We now give the sketch
of the proof and will eventually indicate how one circumvents this problem with
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the conformal structure. Note that by lifting the surfaces to the universal cover R?
of N3, we may assume N3 = R3.

Assume that Theorem 21 fails for some properly immersed minimal surfaces
My, Ms. The first step in the proof of Theorem 21 is to reduce to the case where
My, M5 are properly embedded and stable. To do this one uses M; U My to-
gether with small e-neighborhoods of their boundary curves as barriers to obtain
stable disjoint minimal surfaces M], M}, where OM] lies in the boundary of the e-
neighborhood of dM; for i = 1,2. This barrier argument is similar to one described
in Subsection 4.2. Furthermore, the new stable surfaces are also constructed to be
at least as close to each other as the previous ones and so by choosing e-sufficiently
small, M/, M} are new counterexamples to the Theorem. So assume from now on
that My, Ms are properly embedded and stable.

Next we show how to complete the proof in the case that OM; and OMs are
both compact (therefore proving Theorem 6). In this case, Theorem 9 implies
that M, M, are two properly embedded connected minimal surfaces in R® which
have compact boundary and finite total curvature. Since the Theorem fails for
My, M, then, after a fixed translation of M;, we may assume that the distance
from M, to Ms is zero but the distances from dM; to My and from OMs to M,
are both positive. The only way that this can happen is that an end E; of M,
has distance zero to some end E5 of Ms. Since the ends of embedded finite total
curvature surfaces can be taken to be graphs which are planar (zero logarithmic
growth) or of catenoid-type (bounded logarithmic growth), we may assume after a
rigid motion of R that F; and E, are nonnegative graphs over an annular domain
A= {(x1,22) | 23 + 23 > RZ} with some fixed nonnegative logarithmic growth. In
this case the estimate in formula (9) implies F; and E2 are both asymptotic to the
end of a common plane or to the end of a fixed catenoid. In particular, F; and Es
are asymptotic to each other.

Suppose that the E; lies below Fy. After a small upward translation of Eq, we
obtain a surface Fj whose end lies above the end of Es and whose boundary lies
below the boundary of E5. An application of the usual maximum principle implies
that I' = E] N Ej5 is a simple closed homotopically nontrivial curve on both surfaces.
Let F1(T') C Ef and E»(T") C F2 be the annular ends of these surfaces with common
boundary I'. Note that the third component of the conormal to F{(I") along I is
pointwise greater in norm than the corresponding third component of the conormal
to Eq(T") along T', since E}(T") lies above E5(T") along I'. It follows that the vertical
component of the flux of E] is greater in norm than the vertical component of the
flux of E>. But these vertical fluxes of Ff and Es depend only on their logarithmic
growths, which are equal. This contradiction completes the proof of the case where
OM; and OM; are both compact.

We now continue with our proof in the case OM; or OM; is not compact. By
our previous arguments, M; and Ms can be supposed stable and properly em-
bedded and, after a possible translation, have dist(M;, M3) = 0 but with both
dist(OM7, M) and dist(0Ms, M;) being positive. By curvature estimates for stable
minimal surfaces (Theorem 15), after removing small regular neighborhoods of their
boundaries, the Gaussian curvature of each of the surfaces is bounded. Since M;
has bounded Gaussian curvature, there exists € > 0 such that the natural exponen-
tial map from the normal bundle N (M) of M; into R3 restricts as a submersion to
the subbundle N (M;) = {{ € N(My) | ||€]| < €}. Note that M; can be seen as the
zero section of N (M7). Since some points of the interior of My approach points of
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the interior of Mj, then after pulling-back portions of My to N.(M7) we can find
proper domains € C M7, Q2 C Mo N N(Mj) such that Qs is a normal graph over
Q; with boundary values € and dist(21,Q2) = 0.

If ©; is parabolic, then using the minimal surface equation for such a normal
graph for € small, one can produce a positive proper superharmonic function on
Q1 which does not have its minimum on the boundary of €1, which contradicts
the maximum principle. Hence, £2; is not parabolic. In fact, after removing any
sufficiently small fixed size regular neighborhood of 92y from €y, this argument
shows that we still obtain a surface which cannot be parabolic. This problem
motivates the following definition.

DEFINITION 20. A Riemannian surface M with boundary is e-parabolic if for
any € > 0, M(e) = {p € M | dist(p,0M) > €} is a parabolic surface.

Hence, to complete the proof of Theorem 21 it is sufficient to prove that € is
e-parabolic. While it must certainly be the case that €y is e-parabolic, the proof
of this property is not what is shown. Rather one proves that between the zero
section 27 and the graph g, there are normal minimal graphs A(¢) over € for
every 0 < t < e. One of these graphs A(tg) is a limit of the other graphs and
such that the limit induces a positive Jacobi function u on A(¢g) which is bounded
away from zero in a fixed sized neighborhood of its boundary. The arguments of
Fischer-Colbrie in [34] in her proof of Theorem 9 now imply that if g is the metric
for A(tp), then u-g is a new metric which is complete and has nonpositive Gaussian
curvature. One then proves that such surfaces are e-parabolic, which easily implies
that A(tp) is e-parabolic in the original metric. Once one obtains such a A(tp),
then using the previous arguments one rather easily arrives at a contradiction. This
completes our sketch of the proof to Theorem 21. O

We now come to a beautiful and deep application of the general maximum
principle at infinity. The next Corollary appears in [79] and a slightly weaker
variant of it in [121].

COROLLARY 2. Suppose M C R? is a properly embedded minimal surface with
absolute bounded Gaussian curvature at most 1. Let N1(M) be the subbundle of
the normal bundle of M given by the vectors of length strictly less that 1, and let
exp: Ni(M) — R3 be the corresponding exponential map. Then exp is a smooth
embedding. In particular, M has a open embedded tubular neighborhood of radius 1.

Instead of giving a proof of Corollary 2, we will only check that a minimal
surface M under the hypotheses in Corollary 2 has some tubular neighborhood.
Consider X = exp }(M) C Ni(M) and note that X contains the zero section M
of N1(M). Suppose X contains a component A which is different from the zero
section. In this case, the distance from OA to M is equal to 1, but the distance
from A to M is strictly less that 1. Since exp: Nj(M) — R3 is a submersion,
under the pulled-back metric we can view Ni(M) as a flat three-manifold. Inside
this flat three-manifold, A and M contradict the maximum principle at infinity,
or rather the proof of Theorem 21 holds in this setting and so gives the desired
contradiction. We conclude that X = M. But then a simple application of the
triangle inequality implies the restricted map exp |y, (as) is injective and so M has

2

a tubular neighborhood of radius % A special barrier argument is used to obtain

the optimal maximal radius 1 tubular neighborhood given in the statement of the
Corollary.
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8. Flux conjectures and some properties of harmonic functions in
parabolic Riemannian manifolds.

Algebraic-analytic invariants associated to a properly embedded minimal sur-
face M C R? are a way of not only distinguishing M from other such examples but
also can be used as theoretical tools for acquiring deeper information on the surface.
One of the most natural of these invariants is the flux of M associated to a Killing
vector field V of R3. Given such a V' and its restriction Vys to M, let VI, denote the
tangent vector field on M which is the tangential part of Vj; note that the normal
projection Vi = Vi — VI is a Jacobi vector field (i.e. the inner product of Vyy
with the Gauss map N of M is a Jacobi function). Given two oriented homologous
cycles 1,72 C M, the Divergence Theorem implies that the flux f% (Vi m)ds of

Vi across 1 is equal to its flux across 7o (here 7 stands for the unit conormal
vector to M along the integration curve). When the Killing vector field V' is one
of the parallel vector fields eq, eo, e induced by the standard coordinate functions
in R3, then for V = ¢; is Vﬂ = Vx; where Vz; is the intrinsic gradient of the
coordinate function z; on M. Thus, for each homology class v € H1(M,Z), one
obtains the flux vector F () defined in equation (8).

There is a well-known conjecture of Meeks concerning precisely when the so
called flur map F: H,(M,Z) — R? is the zero map, or equivalently, it describes
precisely which surfaces M have zero flux.

CoNJECTURE 1 (Flux Conjecture (I)). If M C R? is a properly embedded
minimal surface with zero flux, then M is a plane or a helicoid.

Because of the characterization by Meeks and Rosenberg (Theorem 30 below)
of the plane and the helicoid as the unique properly embedded simply connected
minimal surfaces in R?, Conjecture 1 can be equivalently stated as follows.

CoNJECTURE 2 (Flux Conjecture (I1)). If M C R? is a properly embedded
nonsimply connected minimal surface, then M has nonzero fluzx.

An isometric minimal immersion X : (M, ds?) — R3 is rigid if given another iso-
metric minimal immersion Y': (M, ds?) — R3, there exists a rigid motion R: R? —
R? such that Ro X =Y. On the other hand, if X has Weierstrass data (g, dh), then
for each @ € [0,27) the pair (g, e?dh) defines via Theorem 1 a possibly multivalued®
minimal surface Xy, which is called an associate surface of X. The associate sur-
face for § = 7/2 is the conjugate surface. Equation (6) implies that two associate
minimal surfaces are locally isometric. The converse is true by Calabi’s Rigidity
Theorem [5], which asserts that if X,Y: M — R? are isometric minimal immer-
sions and they are locally isometric, then Y is congruent to an associate surface of
X.

LEMMA 2. Let X: M — R3 be a isometric minimal immersion. Then, the
following statements are equivalent:

1. X is rigid.

2. All associate surfaces to X are multivalued, except X and X, .

3. There exists a cycle v € Hi(M,Z) such that the flur F(v) is not zero.

ProOOF. If X is rigid and 6 € [0,27), then the pulled-back metrics by X, Xy
coincide, hence if Xy is univalent then Ro Xy = X for certain rigid motion R. Since

8In the sense that Xy may have real periods although X solves the period problem.
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X, Xy share the Gauss map, the linear part of R must be the identity I or —I and
s0, 8§ = 0 or m, which proves 1 = 2. The implication 2 =& follows easily from the
fact that the flux vector of X on a given cycle [y] € Hy1(M,Z) is a period for its
conjugate surface. To see 3 = 1, take an isometric minimal immersion Y : M — R3.
By Calabi’s Rigidity Theorem, there exists a rigid motion R: R?> — R? and an
associate surface Xy such that Ro Xy = Y. In particular, Xy is well-defined on
M. By hypothesis, there exists v € Hq(M,Z) such that the F(v) # 0. Since the
period of X along v equals sin @ - F'(y), it follows that § = 0 or 7, thus X and Y
are congruent. (Il

Lemma 2 insures that the helicoid is not minimally rigid. Meeks and Rosen-
berg [81] proved that every nonflat doubly periodic minimal surface M C R? with
finite topology in the quotient has a cycle with nonzero flux. Meeks [71] extended
this property to all triply periodic minimal surfaces and to singly periodic mini-
mal surfaces with finite topology in the quotient and planar or Scherk-type ends.
By Lemma 2 all these surfaces are rigid, and the helicoid shows that we cannot
expect to extend these results to singly periodic minimal surfaces with helicoidal
type ends. Pérez [104] showed that no other nonrigid example can exist in this last
family of surfaces. All these results together imply that if a M is a nonflat properly
embedded periodic minimal surface in R3 with finite topology in the quotient, then
M is rigid or it is the helicoid.

An easy consequence of the definition of rigidity is that in a rigid minimal sur-
face, every intrinsic isometry extends to an ambient isometry of R3 (this property is
sometimes referred to as weak rigidity). Since intrinsic isometries of the helicoid and
the plane extend to ambient isometries, the validity of the equivalent Conjectures 1
or 2 would imply the following conjecture by Meeks:

CONJECTURE 3 (Isometry Conjecture). If M C R? is a properly embedded min-
imal surface, then every intrinsic isometry of M extends to an ambient isometry.

By the above arguments, Conjecture 3 holds when M is periodic and has finite
topology in the quotient. In 1990, Choi, Meeks and White [12] proved that the
stronger Conjecture 2 holds when M has more than one end and very recently,
Meeks and Rosenberg (Theorem 30) extended the validity of Conjecture 2 to the
case of M having one end and finite genus. In summary, Conjectures 1, 2 and 3
can only fail if the surface M has exactly one end and infinite genus. By Lemma 2,
one way to prove Conjecture 1, 2 and 3 would be to show that when M has one
end and infinite genus, then there exists a plane in R? that intersects M in a set
that contains a simple closed curve.

Another important conjecture related to flux, which is also closely related to
classification questions, is the following one due to Meeks, Pérez and Ros.

CONJECTURE 4 (Flux Conjecture (IIT)). If M C R? is a properly embedded
minimal surface and the rank of the flux map is 1, then M is the catenoid, one
of the Riemann minimal examples or one of the Scherk doubly-periodic examples
defined in Subsection 2.5.

For a minimal surface M C R?® whose flux map has rank 1 we have at our
disposal a powerful tool: the Lépez-Ros deformation introduced in Subsection 2.2.
This tool together with the maximum principle for minimal surfaces were crucial
when proving certain uniqueness and nonexistence results, see for instance [63,
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104, 105]. The interested reader can find an exposition of both this tool and some
of its applications in Pérez and Ros [107].

By Collin’s Theorem 3 and the Lépez-Ros [63] characterization of the catenoid,
Conjecture 4 holds when M has finite topology and more than on end (the only
possible surface in this case is the catenoid). On the other hand, Theorems 31
and 32 below imply that any nonsimply connected properly embedded minimal
surface M C R? of genus zero has flux map of rank 1, and so a positive solution
to Conjecture 4 would complete the classification of genus zero minimal surfaces
in R3.

We now describe a recently discovered flux invariant associated to each coordi-
nate function of a properly immersed minimal surface M in R®. Suppose z: M — R
is a coordinate function and ¢ € R. Consider the scalar flux (possibly infinite)
fm—l(t) |[Vz|ds of the intrinsic gradient Va across the level set x~!(¢), which is
oriented almost everywhere by the normal vector (Vz)|,-1¢4). If t1 < £o are real
numbers, then Theorem 12 implies that M[t1,t5] = 27 1[t1, 2] is a parabolic man-
ifold. Thus, by the following Lemma, the scalar flux of Vx across a level set is
independent of the level set; we will call this number the fluz of V.

LEMMA 3 (Flux Lemma, Meeks [67]). Suppose M is a parabolic Riemann-

ian manifold, h: M — [0,1] is a nonconstant harmonic function and OM =
h=1({0,1}). Then, the flur of Vh across h=1(0) equals the flux of Vh across h=1(1).

The above Lemma is a consequence of Green’s Theorem and the definition of
a parabolic manifold. Meeks has made the following related Conjecture.

CONJECTURE 5 (Finite Geometric Flux Conjecture). Let M be a parabolic
Riemannian manifold and h: M — [0,1] a nonconstant harmonic function with
OM = h=1({0,1}). If Vh has finite flur across h=1(0), then almost all integral
curves of Vh begin at h=1(0) and end at h=1(1).

Meeks and Wolf [87] have been able to prove Conjecture 5 in the case of di-
mension two. We finish this Section with a related problem to Conjecture 5. This
problem constitutes one of the deepest conjectures in classical minimal surface the-
ory and it is due to Meeks and Rosenberg.

CONJECTURE 6 (Geometric Flux Conjecture). Suppose M C R3 is a properly
embedded minimal surface. Then, except for a countable subset, the integral curves
of a given coordinate function begin at —oco and end at +o0.

By the results contained in Theorem 3, Theorem 30, Theorem 31 and Theo-
rem 32, the Geometric Flux Conjecture holds when M has finite genus.

9. The Colding-Minicozzi curvature estimates, compactness and
regularity of limit laminations and applications.

The famous open spherical space-form problem asks if any free action of a finite
group I of diffeomorphisms of the sphere S? is conjugate to an action by isometries
in O(4). According to Pitts and Rubinstein [108], the failure of this question
to be solved in the affirmative would create by minimax methods a sequence of
embedded minimal unknotted tori M,, in some I'-invariant metric on S® with the
index of stability of M,, at least n. This approach motivated the following open
question by Pitts and Rubenstein.
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QUESTION 2. Does there exist a bound for the stability index of all closed em-
bedded minimal surfaces with fixed genus in a given closed 3-manifold N with respect
to some large class of Riemannian metrics?

Arguments in Choi and Schoen [11] imply that if N is a closed Riemannian
3-manifold with a generic metric, then there exists a bound for the stability index of
all closed embedded minimal surfaces in NV with fixed genus and a fixed area bound.
Thus, the above question by Pitts and Rubinstein leads to the study of sequences of
closed embedded minimal surfaces with fixed genus in such a N3 but without area
(or density) bounds. Viewing a sequence of embedded minimal surfaces in N as a
sequence of Radon measures on N, compactness results from Geometric Measure
Theory imply that a subsequence of the measures (renormalized to have fixed mass)
converges weakly to another Radon measure. The problem of understanding the
geometric structure of this limit starts with the analysis of the local structure in a
fixed ball, which motivates the central problem tackled by Colding and Minicozzi
in a recent series of papers: the local structure of a limit of compact embedded
minimal surfaces M,, with fixed genus and no area bound in a ball B C R?, with
boundaries OM,, C 0B. The most important case of their structure Theorem is
when the M, are disks and their Gaussian curvature blows up near the origin.

The basic example in this setting is a sequence of rescaled helicoids M,, = a,H
where H is a fixed vertical helicoid with axis the zs-axis and a,, € R, a,, — 0. The
curvature of the sequence {M,,},, blows up along the x3-axis and the M,, converge
away from the axis to a foliation £ of R3 by horizontal planes. The x3-axis is the
singular set of convergence S(L) of M, to L, but each leaf of £ extends smoothly
across its intersection with S(L£) (i.e. S(L) consists of removable singularities of
L£). With this model in mind, the statement of the so called Limit Lamination
Theorem (Theorem 0.1 of [18]) can be easily understood. Given p € R and R > 0,
we denote by B(p,R) = {z € R* | ||z — p|| < R}, B(R) = B(0,R) and K the
Gaussian curvature function of a surface M.

THEOREM 22 (Colding, Minicozzi [18]). Let M,, C B(R,,) be a sequence of
embedded minimal disks with OM,, C O0B(R,) and R, — oo. If sup|Ky;, )| —
oo, then there exists a subsequence of the M, (denoted in the same way) and a
Lipschitz curve S: R — R3 such that up to a rotation of R3,
1. z5(S(t)) =t for allt € R.
2. For each compact domain C C R® — S and n large enough, M, NC consists
of two multivalued graphs over a subdomain of {xs = 0} with {M,, N C},
converging to CN L as n — oo in the C*-topology for any o € (0,1), where
L = {x3 = t}icr is the foliation of R3 by horizontal planes.

3. sup | Ky, nB(s),r)| — 00 as n — oo, for any t € R and r > 0.

Theorem 22 has two main ingredients in its proof, which we explain very
roughly. The first ingredient is that the embedded minimal disk M, with large
curvature at some interior point can be divided into building blocks, each one be-
ing a multivalued graph u, (p, #) defined on an annulus?, and that these basic pieces
fit together properly. In particular, they prove that the number of sheets of w,(p, 0)

9n polar coordinates (p,6) with p > 0 and § € R, a N-valued graph on an annulus of
inner radius r and outer radius R, is a single valued graph of a function u(p,6) defined over
{(p,0) | r < p <R, |0 <Nz}, N being a positive integer. The separation between consecutive
sheets is w(p, 0) = u(p, 6 + 27) — u(p,0) € R.
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rapidly grows as the curvature blows up and at the same time the sheets do not
accumulate in a halfspace. This is obtained by means of sublinear and logarithmic
bounds for the separation® wy,(p,0) as a function of p — oco. Another consequence
of these bounds is that by allowing the inner radius’® of the annulus where the
multigraph is defined to go to zero, the sheets of this multigraph collapse (i.e.
|wn(p, 0)] — 0 as n — oo for p, 0 fixed), thus a subsequence of the u, converges to
a smooth minimal graph through p = 0. The fact that the R,, go to co then implies
this limit graph is entire and, by Bernstein Theorem [1], it is a plane.

The second main ingredient in the proof of Theorem 22 is the so called one-
sided curvature estimate, a scale invariant bound for the Gaussian curvature of
embedded minimal disks in a halfspace.

THEOREM 23 (Colding, Minicozzi [18]). There exists ¢ > 0 such that the fol-
lowing holds. Given r > 0 and an embedded minimal disk M C B(2r) N {x3 > 0}
with OM C 0B(2r), then for any component M' of M N B(r) which intersects
B(er),

sup | K| < r2.
MI

The hypothesis on M to be simply-connected in Theorem 23 is necessary, as the
catenoid demonstrates. Theorem 23 basically says that if an embedded minimal disk
is close enough to (and lies at one side of) a plane, then reasonably large components
of it are graphs over this plane. This result is needed in the proof of Theorem 22
in the following manner: once it has been proven that an embedded minimal disk
M contains a 2-valued graph M, then M plays the role of the plane in the one-
sided curvature estimate which implies that reasonably large pieces of M consist of
multivalued graphs away from a cone with axis “orthogonal” to the 2-valued graph.
The proofs of Theorems 22 and 23 are long and delicate. References [24, 13, 14] by
Colding and Minicozzi are reading guides for the complete proofs of these results,
which go through various papers [15, 16, 18]; see also the forthcoming survey by
the authors in [73].

Theorems 22 and 23 have been applied to obtain a number of results. For
instance, with these results in hand Meeks and Rosenberg [80] proved that the
helicoid and the plane are the unique simply connected properly embedded min-
imal surfaces in R® (see Theorem 30) and Meeks, Pérez and Ros showed that no
properly embedded minimal surfaces with finite genus and one limit end can exist
(Theorem 31). We will discuss other applications of Colding-Minicozzi results in
Theorems 29 and 32.

DEFINITION 21. A lamination of an open subset O C R3 is the union of a
collection of pairwise disjoint connected complete injectively immersed surfaces.
More precisely, it is a pair (£,.A) satisfying

1. L is a closed subset of O;

2. A= {pa: D x(0,1) = U,}, is a collection of coordinate charts of R? (here

D is the open unit disk, (0, 1) the open unit interval and U, an open subset
of 0);
3. For each a, there exists a closed subset C,, of (0,1) such that ¢, (U, NL) =
D x C,.
We will simply denote laminations as £, omitting the charts ¢, in A. A lamination
L is said to be a foliation of O if L = O. Every lamination £ naturally decomposes
into a union of disjoint surfaces, called the leaves of L. As usual, the regularity
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of L requires the corresponding regularity on the change of coordinate charts. A
lamination is minimal if all its leaves are minimal surfaces.

Each leaf L of a minimal lamination £ is smooth, and if C' C L is a compact
subset of a limit leaf L € £, then the leaves of £ converge smoothly to L over C
(i.e. they converge uniformly in the C*-topology on C for any k).

Theorem 22 does not hold if we exchange the hypothesis that the radii R,, of
the balls go to co by R,, equals a constant, as demonstrated by a counterexample
in [13]. Colding and Minicozzi construct a sequence of embedded minimal disks
M, C B(1) with OM,, C 0B(1) all passing through the origin, and with Gaussian
curvature blowing up only at the origin. This sequence produces a limit lamination
of B(1) —{(0,0,0)} with an isolated singularity at the origin. The limit lamination
consists of three leaves, one of them being the flat horizontal punctured disk (which
extends through the origin) and the other two being nonproper multigraphs with
this disk as limit set. In particular, both smoothness and properness of leaves of
the limit lamination fail for this local example.

Theorem 22 deals with limits of sequences of disks and it is also useful when
studying more general situations, as for instance, uniformly locally simply con-
nected sequences of minimal surfaces, a notion which we now define.

DEFINITION 22. Suppose { M, }, is a sequence of properly embedded nonsimply
connected minimal surfaces in R?. Given p € R3 and n € N, we let 7,(p) > 0 be
the largest radius of an open ball B centered at p such that B intersects M, in
simply connected components. If for any p € R? the sequence {7,(p)}, is bounded
away from zero, we say that {M,}, is locally simply connected. If for all p € R3,
the radius 7, (p) is bounded from below by a positive constant for all n large, we
will say that {My}, is uniformly locally simply connected (ULSC).

We have exploited the technique of blowing-up a sequence of immersed minimal
surfaces on the scale curvature (see for instance the proof of Theorem 15 where we
carry this out explicitly). When the surfaces in the sequence are properly embedded
in R3, this blowing-up process produces a limit which is a properly embedded,
nonflat minimal surface with bounded Gaussian curvature, whose genus and rank
of homology groups are bounded by the ones for the M,,. For example, if each M,
is a planar domain, then the same holds for the limit.

For useful applications of the concept of ULSC sequence, it is essential to
consider sequences of properly embedded minimal surfaces which a priori may not
satisfy the ULSC condition, and the modify them to produce a new sequence which
satisfies that condition. We accomplish this by considering a blow-up argument
on a geometric scale which, in general, is different from blowing-up on the scale of
curvature. We call this procedure blowing-up by the scale of topology. This scale
was defined and used in [74, 75] to prove that any properly embedded minimal
surface of finite genus has bounded curvature and is recurrent for Brownian motion.
We now explain the elements of this new scale.

Suppose { M, }, is a sequence of nonsimply connected, properly embedded min-
imal surfaces which is not ULSC. Note that the Gaussian curvature of the collection
M, is not uniformly bounded, and so, one could blow-up these surfaces on the scale
of curvature to obtain a properly embedded nonflat minimal surface which may or
may not be simply connected. Also note that, after choosing a subsequence, there
exists points p, € R3 such that r,(p,) — 0 as n — oo, where r,, is the func-
tion appearing in Definition 22. Let p, be a point in B(p,,1) where the function
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x — d(x,0B(pn,rn(pn))) - rn(x) attains its maximum. Then the translated and

rescaled surfaces M, = T%R)(Mn — pn) intersect for all n the closed ball cen-
tered at the origin with radius 1 in at least one component which is not simply
connected, and for n large they intersect any ball of radius less that 1 in simply
connected components, see [74] for details.

For the sake of clarity, we now illustrate this blow-up procedure on certain
sequences of Riemann minimal examples, defined in Subsection 2.5. Each of these
surfaces is foliated by circles and straight lines in horizontal planes, with a ver-
tical plane of symmetry that can be assumed to be the (z1,x3)-plane. After a
translation and a homothety, we assume that these surfaces are normalized so that
the corresponding function r defined above attains its minimum value of 1 at the
origin. Under this normalization, any sequence of Riemann minimal examples is
ULSC. The flux of each Riemann minimal example along a compact horizontal
section has horizontal and vertical components which are not zero, and the ratio
V' of the norm of its horizontal component over the vertical one parametrizes the
1-parameter family of these surfaces, with V' € (0,00). When V' — 0, the Riemann
minimal examples converge smoothly to the vertical catenoid centered at the origin
with waist circle of radius 1. When V' — oo, the Riemann minimal examples con-
verge smoothly to a foliation of R? by horizontal planes away from the two vertical
lines passing through (0, —1,0),(0,1,0). In a neighborhood of any compact arc on
these lines, the limiting Riemann examples are arbitrarily closed to a high sheeted
vertical helicoid with axis along the line. Since the (z1, z3)-plane is a plane of sym-
metry of the approximated surfaces, these limit helicoids are oppositely handed.
Outside the vertical cylinders containing the highly sheeted helicoids, the Riemann
minimal examples consist of two multivalued almost flat graphs, which outside of a
bigger cylinder containing both helicoids, are univalent graphs representing each of
the ends of the Riemann minimal examples. This picture describes one particular
case of what we call a parking garage structure for a surface. Roughly speaking, a
parking garage structure with n columns is a smooth embedded surface in a hori-
zontal slab S C R3 that can be decomposed into 2 disjoint almost flat horizontal
multigraphs over the exterior of n disjoint disks in the (z1,z2)-plane, together n
topological strips each one contained in one of the solid cylinders (these are the
columns), such that each strip lies in a small regular neighborhood of the inter-
section of a vertical helicoid with S. One can associate to each column a + or
— sign depending on the handedness of the corresponding helicoid. Note that a
vertical helicoid is the basic example of a parking garage with 1 column, and the
Riemann surfaces with V' — oo have the structure of a parking garage with two
columns oppositely handed in any fixed size horizontal slab. Other parking garage
structures with varying numbers of columns and associated signs can be found for
other minimal surfaces, see Traizet and Weber [124].

There are interesting cases where ULSC guarantees the convergence of a se-
quence of minimal surfaces in R3 to a parking garage structure. Typically one
proves that the sequence converges (up to a subsequence and a rotation) to a fo-
liation of R? by horizontal planes with singular set of convergence consisting of a
locally finite set of Lipschitz curves parametrized by heights. In fact, these Lipschitz
curves are vertical lines and locally around the lines the surfaces in the sequence
approximate by highly sheeted vertical helicoids. To obtain this additional infor-
mation, one applies in a neighborhood of each Lipschitz singular curve a blow-up
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argument on the scale of curvature and the uniqueness of the helicoid to prove that
the Lipschitz curves are vertical lines. Using the fact that the unit normal field to
a codimension-one minimal foliation in a 3-manifold is Lipschitz (Solomon [120]),
another blow-up argument has the following consequence.

THEOREM 24 (Regularity of S(£), Meeks [68]). Suppose {M,}, is a ULSC
sequence of properly embedded minimal surfaces in a 3-manifold that converges
smoothly to a minimal lamination L outside a locally finite collection of Lipschitz
curves S(L) transverse to L. Then S(L) consists of Ct1-curves orthogonal to the
leaves of L.

Recently, Meeks and Weber [86] have shown that the above C'''!-regularity of
S(L) is the best possible. They do this by showing that any C':!-curve I' properly
embedded in an open set in R? is the singular set of convergence for some Colding-
Minicozzi limit foliation of some neighborhood of itself. In the special case that I"
is the unit circle in the (z1, z2)-plane, Meeks and Weber have defined for any n € N
a complete minimal annulus H,, of finite total curvature which contains the circle
T'; like in the helicoid, the Gauss map of H,, turns at a constant rate 27n along its
“circle axis” I". Meeks and Weber call the surfaces H,, bent helicoids, which have
the Weierstrass data: g(z) = Zi:fz, dh = Zj:—flldz defined on C — {0}. They prove
that there are compact annuli H,, C H,, which are embedded and which converge
to the foliation £ of R — (z3-axis) by vertical halfplanes containing the r3-axis and
with singular set of convergence S(£) =T (for n = %, Hy 5 is the double cover of
the Meeks’s minimal Mobius strip [69] with total curvature —6).

The regularity Theorem 24 allows one to replace the Lipschitz curves in the next
Theorem by vertical lines, which on large balls, yields a parking garage structure
with two columns. A little analysis shows that this asymptotic parking garage
structure is (+, —)-handed, just like in the Riemann minimal case.

THEOREM 25 (Colding, Minicozzi [19]). Let M,, C B(R,,) be a ULSC sequence
of embedded minimal planar domains with OM,, C 0B(R,,), R, — oo and M, NB(2)
contains a component which is not a disk for any n. If sup Ky, gy — oo, then
there exists a subsequence of the M, (denoted in the same way) and two Lipschitz
curves S1,S2: R — R3 such that after a rotation of R3:

1. 25(Sk(t)) =t for allt € R.

2. FEach M, is horizontally locally graphical away from S U Ss.

3. For each a € (0,1), M,, — (51 U S2) converges in the C*-topology to the

foliation L of R3 by horizontal planes.

4. sup | K g, aB(S,(t),r)| — 00 as n — oo, for allt € R and r > 0.

To finish this Section, we next indicate how the one-sided curvature estimate
of Colding and Minicozzi can be used to solve the Generalized Nitsche Conjecture.
In 1962, Nitsche [95] conjectured that if a minimal surface meets every horizontal
plane in a Jordan curve, then it must be a catenoid (he also proved this conjecture
with the additional assumption that every horizontal section of the surface is a
star shaped curve). In 1993, Meeks and Rosenberg [83] showed that if a properly
embedded minimal surface M C R? has at least two ends, then any annular end
E C M either has finite total curvature or it satisfies the hypotheses of the following
conjecture.

CONJECTURE 7 (Generalized Nitsche Conjecture, Collin’s Theorem [25]). Let
E C {x5 > 0} be a properly embedded minimal annulus with OE C {xs = 0}, such
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that E intersects each plane {xs = t}, t > 0, in a simple closed curve. Then, E
has finite total curvature.

This problem was originally solved by Collin [25] before the Colding-Minicozzi
results, with a beautiful and long proof. The argument we present here is a short
application of Theorem 23 which can be found in detail in Colding-Minicozzi [21]
and in a recent survey by Rosenberg [114]. Given € € R, we denote by C. the conical
region {z3 > /2% + x3}. Conjecture 7 follows directly from the next result.

THEOREM 26. [21] There exists 6 > 0 such that any complete properly embedded
manimal annular end E C C_s5 has finite total curvature.

OUTLINE OF PROOF. The argument starts by showing, for each § > 0, the
existence of a sequence {y;}; C E—Cs with |y;| — oo (this is done by contradiction:
if for a given 6 > 0 this property fails, then one use E together with the boundary
of Cs as barriers to construct an end of finite total curvature contained in Cs, which
is clearly impossible). The next step consists of choosing suitable radii ; > 0 such
that the connected component M; of ENB(y;,2r;) which contains y; is a disk. Now
if > 0 is sufficiently small in terms of the € appearing in the one-sided curvature
estimate, one can apply Theorem 23 and conclude a bound for the supremum of
the absolute Gaussian curvature of the component M} of M; N B(y;,r;) which
contains y;. A Harnack type inequality together with this curvature bound gives a
bound for the length of the intrinsic gradient of x3 in the intrinsic ball B; in M jl
centered at y; with radius 5r;/8, which in turn implies (by choosing ¢ sufficiently
small) that B; is a graph with small gradient over 3 = 0, and one can control
a bound by below of the diameter of this graph. This allows to repeat the above
argument exchanging y; by a point yj1 in le» at certain distance from y;, and the
estimates are carefully done so that the procedure can be iterated to go entirely
around a curve v; C E whose projection to the (21, z2) plane links once around the
x3-axis. The graphical property of v; implies that either ; can be continued inside
E to spiral indefinitely or it closes up with linking number one with the x3-axis.
The first possibility contradicts that E is properly embedded, and in the second
case the topology of E implies that 0F U y; bounds an annulus £;. The above
gradient estimate gives a linear growth estimate for the length of ~; in terms of
ly;], from where the isoperimetric inequality for doubly connected minimal surfaces
by Osserman and Schiffer [100] gives a quadratic growth estimate for the area of
E;. Finally, this quadratic area growth implies the finite total curvature property
of F, finishing the outline of proof. O

10. Topological aspects of the theory of minimal surfaces.

Two of the main challenges in the classical theory of minimal surfaces are to
decide which noncompact topological types are admissible as properly embedded
minimal surfaces in space (Subsection 10.2), and given an admissible topological
type in the previous sense, to show that there exists a unique way (up to ambient
isotopy) of properly embedding this topological type as a minimal surface in R?
(Subsection 10.1). In the last decade amazing advances have been achieved in both
problems, including a final solution to the second problem.

10.1. Topological classification of properly embedded minimal sur-
faces.
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DEFINITION 23. Two properly embedded surfaces in a 3-manifold N3 are called
ambiently isotopic if one can be deformed to the other by a 1-parameter family of
diffeomorphisms of N3.

The problem of the topological uniqueness (up to ambient isotopy) of properly
embedded minimal surfaces in 3-manifolds has been classically tackled by different
authors. In 1970, Lawson [57] showed that two embedded closed diffeomorphic
minimal surfaces in S are ambiently isotopic. Meeks [70] generalized a key result of
Lawson to the case of orientable closed minimal surfaces in a closed 3-manifold with
nonnegative Ricci curvature and also proved that any two compact diffeomorphic
minimal surfaces embedded in a convex body B in R?, each with boundary a
simple closed curve on the boundary of B, are ambiently isotopic in B (this result
fails for more than one boundary curve, as demonstrated by a counterexample by
Hall [42]). Later Meeks, Simon and Yau [85] generalized Lawson’s Theorem to
the ambient case of S* with a metric of nonnegative scalar curvature. Returning
to R, Frohman [37] proved in 1990 that two triply periodic minimal surfaces are
always ambiently isotopic. Although published two years later, Meeks and Yau [90]
a decade earlier had shown that if M7, M5 are properly embedded minimal surfaces
in R? with the same finite topological type, then they are ambiently isotopic.

The essential first point in the proofs of these topological uniqueness results
is to obtain a good understanding of the closed complements of the surfaces in
the ambient space. This problem of the topological classification of the closed
complements and the related uniqueness of the surfaces up to isotopy are closely
related to the concept of a Heegaard surface in a 3-manifold, although here we will
only deal with the case of the ambient space being R3.

DEFINITION 24. A 3-manifold with boundary is a handlebody if it is homeo-
morphic to a closed regular neighborhood of a properly embedded one-dimensional
CW-complex in R3. A properly embedded surface M C R? is called a Heegaard
surface if each of the closed complements of M in R? are handlebodies.

In 1997, Frohman and Meeks [40] proved that every properly embedded one-
ended minimal surface in R? is a Heegaard surface. Additionally, they obtained a
topological uniqueness result for Heegaard surfaces in R3: two Heegaard surfaces
of the same genus (possibly infinite) are properly ambiently isotopic. Joining these
two results they obtained the following statement.

THEOREM 27 (Frohman, Meeks [40]). Two properly embedded one-ended min-
imal surfaces in R with the same genus are ambiently isotopic.

Furthermore, the topological model for any minimal surface M given in the
hypotheses of Theorem 27, as well as for each of its complements in R3, is easy to
describe. Attach g trivial one-handles to the closed lower halfspace H~ in R3, where
g is the genus of M. If g = oo, this attaching is performed on neighborhoods of the
integer points on the xj-axis in H ™, to obtain a one-periodic Heegaard surface X in
R3. Let W be the handlebody of R? with boundary ¥ such that H~ C W. Then,
there exists a diffeomorphism h: R?® — R? such that h(M) is the Heegaard surface
¥ and a prescribed closed complement of M in R maps to the handlebody W.

To appreciate the power of Theorem 27, we can consider the singly and doubly
periodic Scherk minimal surfaces defined in Subsection 2.5. By Theorem 27, there
exists a diffeomorphism of R? that takes one surface to the other, although they
look very different in space. We should also mention here a result by Callahan,
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Hoffman and Meeks [7] that insures that every connected doubly periodic minimal
surface has infinite genus and one end. Joining this result with Theorem 27 it
follows that any two doubly periodic minimal surfaces in R? are ambiently isotopic
(for example, this applies to the classical P-Schwarz minimal surface and the doubly
periodic Scherk surface!).

All these topological uniqueness results are special cases of a recent Theorem
by Frohman and Meeks, which represents the final solution to the topological classi-
fication problem. It is also based on a deep topological analysis of the complements
of a properly embedded minimal surface in space, based on previous work by Freed-
man [36], and shows what are the topological roles of the ordering on the set of
ends given by Theorem 18 and the parity of each middle end defined in Theorem 19.

THEOREM 28 (Topological Classification Theorem, Frohman, Meeks [38]). Two
properly embedded minimal surfaces in R? are ambiently isotopic if and only if there
exists a homeomorphism between the surfaces that preserves both the ordering of
their ends and the parity of their middle ends.

10.2. Admissible topological types. We will start by discussing noncom-
pact finite topologies, i.e. surfaces with finite genus and finitely many ends. Until
the early eighties, no properly embedded minimal surfaces of finite topology other
than the plane, the helicoid (both with genus zero, one end) and the catenoid (genus
zero, two ends) were known. For a long time, some geometers supported the conjec-
ture that no other examples of finite topology would exist. The discovery in 1982
of a new genus one three-ended example (Costa [28], Hoffman and Meeks [48])
not only disproved this conjecture, but also revitalized enormously the interest of
geometers in classical minimal surface theory. Since then, a number of different
new examples have appeared, sometimes even coming in multiparameter families
[43, 44, 45, 49, 54, 123, 127].

For properly embedded minimal surfaces with finite topology, there is an in-
teresting dichotomy between the one-end case and those surfaces with more that
one end: surfaces in this last case always have finite total curvature (Collin’s The-
orem 3). Only the simplest finite topologies with more than one end have been
characterized: Lépez and Ros [63] proved that the unique examples with genus
zero and finite topology are the plane and the catenoid, Schoen [118] demon-
strated that the catenoid is the unique example with finite genus and two ends,
and Costa [29] showed that the examples with genus one and three ends lie inside
the one-parameter family of surfaces {M7, | 0 < a < oo} that appear in Sub-
section 2.5. Today we know many more examples of higher finite topologies and
more than one end, and up to this date all known examples support the following
conjecture by Hoffman and Meeks.

CONJECTURE 8 (Finite Topology Conjecture). A connected noncompact (ori-
entable) surface of finite topology, genus g and r ends, r # 2, can be properly
minimally embedded in R if and only if r < g + 2.

Recently, Meeks, Pérez and Ros [76] have given the following partial result on
the above conjecture.

THEOREM 29. [76] For every nonnegative integer g, there exists an integer e(g)
such that if M C R? is a properly embedded minimal surface of finite topology and
with genus g, then the number of ends of M is at most e(g).
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SKETCH OF THE PROOF. The argument is by contradiction. The failure of the
Theorem to hold would produce an infinite sequence { M, }, of properly embedded
minimal surfaces with fixed finite genus g and a strictly increasing number of ends.
Then one analyzes the nonsimply connected limits of subsequences of {M,,},,. The
key idea used to achieve these limits is to normalize M, by a translation and then
a homothety on the scale of topology. What this means is that we assume each
surface intersects the closed unit ball centered at the origin in some nonsimply
connected component, but that every open ball of radius 1 intersects the surface
in simply connected components. Using the uniformly locally simply connected
property of {M,},, we prove that its limits are properly embedded nonsimply
connected minimal surfaces with genus at most ¢ and possibly infinitely many ends.
The infinite topology limits are discarded by an application of either a descriptive
Theorem of the geometry of properly embedded minimal surfaces in R3 with finite
genus and two limit ends (Meeks, Pérez and Ros [74], see also Theorem 32 below),
or a nonexistence Theorem for properly embedded minimal surfaces in R3 with
finite genus and one limit end (Meeks, Pérez and Ros [75] or Theorem 31 below).
Hence, any possible limit M of a subsequence of {M,}, must be a finite total
curvature surface or a helicoid with positive genus at most g. A surgery argument
allows one to modify the surfaces M,, by replacing compact pieces of M, close to the
limit M by a finite number of disks, obtaining a new surface M, with strictly less
topology than M,, and which is not minimal in the replaced part. A careful study
of the replaced parts during the sequence allows one to iterate the process of finding
nonsimply connected minimal limits of the modified surfaces. The fact that all the
M, have the same genus, allows one to arrive to a stage in the process of producing
limits from which all subsequent limits are catenoids. From this point in the proof
it is not difficult to find a large integer n such that M, contains a noncompact
planar domain Q C M, whose boundary consists of two convex planar curves
I"1, T2 in parallel planes that each separate M, and whose fluxes are orthogonal to
the planes that contain I'y,I's. In this setting, the Lépez-Ros deformation defined
in Subsection 2.2 (see [63, 107]) applies to Q giving the desired contradiction. O

Since the finite index of a complete minimal surface of finite total curvature can
be estimated from above by a function of the degree of its Gauss map (Tysk [125]),
Theorem 29 has the following important theoretical consequence.

COROLLARY 3. For every nonnegative integer g, there exists an integer i(g)
such that if M C R? is a properly embedded minimal surface with genus g and a
finite number of ends greater than 1, then the index of stability of M is at most

i(g)-

Theorem 29, as well as the related Theorems 31 and 32 below, rely on results
by Colding and Minicozzi (see Section 9) to describe the basic local geometry of
limits of sequences of properly embedded minimal surfaces with bounded genus and
unbounded area.

Concerning one-ended minimal surfaces with finite topology, the model in this
class is the helicoid. Recently, Meeks and Rosenberg [80] have proven the following
result.

THEOREM 30 (Meeks, Rosenberg [80]). Every properly embedded minimal sur-
face with finite topology and one end has the conformal structure of a compact genus
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g Riemann surface Mg minus one point, can be analytically represented by mero-
morphic data on My and is asymptotic to a helicoid. Furthermore, for g = 0 the
only possible examples are the plane and the helicoid.

SKETCH OF THE PROOF. We will just consider the case where M is simply
connected. Let M be a properly embedded simply connected minimal surface in
R3 which is not a plane. Consider any sequence of positive numbers {\,}, which
decays to zero and let M (n) = A, M be the surface scaled by \,,. By Theorem 22,
a subsequence of these surfaces converges on compact subsets of R3 to a minimal
foliation £ of R?® by parallel planes with singular set of convergence S(£). Part
of the proof of Theorem 22 depends on a unique extension result for the forming
multigraphs, which in our case implies that for n large the almost flat multigraph
which starts to form on M (n) near the origin extends all the way to infinity. From
here one can deduce that limit foliation £ is independent of the sequence {Ay },.
After a rotation of M and replacement of the M(n) by a subsequence, we can
suppose that the M (n) converge to the foliation £ of R? by horizontal planes, with
singular set of convergence S(L£). The property that all surfaces M(n) are simply
connected is now crucial in showing that S(L£) consists of a single Lipschitz curve
I" which intersects each horizontal plane exactly once.

Since the origin is a singular point of convergence, the Lipschitz curve I' passes
through the origin and is contained in the solid cone C. = {23 > £2(2? + 23)},
where € > 0 only depends on the curvature estimate in Theorem 23. Let A be
the solid cylinder {z% + 23 < 1, |z3| < e}. The two flat horizontal multigraphs
M;i(n), M2(n) referred to in Theorem 22 intersect the cylindrical sides of A almost
orthogonally in two long spiraling arcs which are multigraphs over the unit circle
St in the (z1,z2)-plane, possibly together with open arcs starting and finishing at
the top (resp. bottom) planar disks of A which are graphs over their projections
in S'. Both spirals lie on the main compact component D(n) of M(n)NA. After a
small perturbation A(n) of A near the top and bottom boundary disks of A and
replacing A by A(n), it can be shown that the boundary of D(n) consists of the
two spiraling arcs on the boundary of the cylinder together with two arcs which
connect them, one on each of the boundary disks in dA(n); in this replacement the
new top and bottom disks in A(n) are minimal. Without much difficulty, one can
extend the top and bottom disks of A(n) to an almost horizontal minimal foliation
of A(n) by graphical minimal disks such that each boundary circle of these disks
intersects each spiral curve in 0D(n) at a single point. Morse theory implies that
each leaf of the minimal disk foliation of A(n) intersects D(n) transversely in a
simple arc. When n — oo, these foliations converge to the restricted foliation LNA
by flat horizontal disks. An important consequence of this last statement and of the
openness of the Gauss map of the original surface M is that M is transverse to L.
This means that the stereographical projection of the Gauss map g: M — CU{oo}
can be expressed as g(z) = e/(®) for some holomorphic function f: M — C.

The next part of the proof is longer and more delicate, and depends in part
on a finiteness result for the number of components of minimal graphs over proper
domains in R? with zero boundary values. Through a series of geometric and
analytic arguments using the double multigraph convergence of the M(n) to £
outside the cone C., one eventually proves that every horizontal plane in £ intersects
M transversely in a single proper arc. Then a straightforward argument using
Theorem 12 implies M is recurrent, and thus M is conformally C. The nonexistence
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of points in M with vertical normal vector and the connectedness of its horizontal
sections force the height differential to be dh = dx3 + idzi = dz in a conformal
parametrization of M. In particular, the third coordinate z3: C — R is the linear
function real part of z.

Recall that we have already shown that g(z) = ef(*). If the holomorphic
function f(z) is a linear function of the form az 4 b, then the Weierstrass data
(ef(*) dz) for M shows that M is an associate surface to the helicoid (see Section 8
for the definition of associate surface). Since none of the nontrivial associate surfaces
to the helicoid are injective as mappings, M is a helicoid. Thus, it remains to
show that f(z) is linear. The formula (7) for the Gaussian curvature K and a
straightforward application of Picard’s Theorem imply f(z) is linear if and only
if M has bounded curvature. This fact completes the proof of the Theorem in
the special case that K is bounded. However, Theorem 22 and a clever blow-up
argument on the scale of curvature reduces the proof that f(z) is linear in the
general case to the case where K is bounded, and so M is a helicoid. For further
details, see [80]. O

Theorem 30 solves a long standing conjecture about the uniqueness of the heli-
coid among properly embedded simply connected minimal surfaces in R3. In 1993,
Hoffman, Karcher and Wei [46, 47] found a torus with one helicoidal end, called
since then the genus one helicoid, which has been proved recently to be embedded
by Hoffman, Weber and Wolf [51]. Very little is known about genus g helicoids
with g > 2. Computer graphics seem to indicate that higher genus examples prob-
ably exist (Traizet —unpublished—, Bobenko [2], Bobenko and Schmies [3]) and
Traizet and Weber [124] have given an approach based on the Implicit Function
Theorem that could be useful for rigorously proving the existence of an embedded
genus ¢ helicoid for every g. The Conjecture in this direction, due to Meeks and
Rosenberg, is the following one.

CONJECTURE 9 (One-ended Conjecture). For every nonnegative integer g,
there exists a unique nonplanar properly embedded minimal surface in R? with genus
g and one end.

Next we deal with properly embedded minimal surfaces with finite genus and
infinite topology. Since the number of ends of such a surface M C R? is infinite and
the set of ends £(M) of M is compact (Subsection 2.7), M must have at least one
limit end. Up to a rotation, we can assume that the limit tangent plane at infinity
of M (see Section 5) is horizontal. A crucial result by Collin, Kusner, Meeks and
Rosenberg [26] (Theorem 19) insures that M has no middle limit ends, hence either
it has one limit end (this one being the top or the bottom limit end) or both top
and bottom ends are the limit ends of M, like in a Riemann minimal example. Very
recently, Meeks, Pérez and Ros [75] have discarded the one limit end case through
the following result.

THEOREM 31. [75] If M C R? is a properly embedded minimal surface with
finite genus, then M cannot have exactly one limit end. Furthermore, M is recur-
rent.

SKETCH OF THE PROOF. Assume M is a properly embedded minimal surface
with finite genus and exactly one limit end. After a rotation, we can suppose that
M has horizontal tangent plane at infinity and its set of ends, linearly ordered
by increasing heights (see the Ordering Theorem 18), is E(M) = {e1,ea,..., 0}
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with the limit end of M being its top end ey. One first shows that M has a nice
asymptotic behavior: each nonlimit end e, € £(M) is asymptotic to a graphical
annular end FE,, of a vertical catenoid with negative logarithmic growth a,, satisfying
a1 < ... < ap <...<0. This is the statement of Theorem 2 in [74]. The next
step consists of a detailed analysis of the limits (after passing to a subsequence)
of homothetic shrinkings {\,, M },, where {\,}, C R* is any sequence of numbers
decaying to zero; we first show that {\, M, }, is locally simply connected in H (x) =
{zg > 0} — {0} C R3. This is a difficult technical part of the proof where the
results of Colding-Minicozzi again play a crucial role. We next prove the limits of
subsequences of {\, M)}, consist of (possibly singular) minimal laminations £ of
H(x) = {z3 > 0} — {0} C R3 containing OH (*) as a leaf. Then we check that
the limit lamination £ is always smooth and that the singular set of convergence
S(L) of \pM to L is empty. In particular, taking A, = ||pn||~! where p,, is any
divergent sequence on M, the fact that S(L) = @ for the corresponding limit
minimal lamination £ insures that the Gaussian curvature of M decays at least
quadratically in terms of the distance function to the origin. Since the Gaussian
curvature function times the squared distance to the origin is scale invariant, any
leaf L of a limit lamination of A\, M for arbitrary A, \, 0 must also have quadratic
decay of its Gaussian curvature function K. Finally, a suitable choice of the
sequence A\, \, 0 produces a limit lamination with a nonflat minimal leaf L properly
embedded in H(x) of infinite total curvature and such that the scalar flux of the
gradient Vzg along a certain horizontal section of L is finite. The quadratic decay
property for K, together with the existence of a sequence of horizontal planes {IIj }«
with heights diverging to 400 such that LNIIj; contains a point with vertical tangent
plane (this comes from the fact that L has infinite total curvature) implies that the
flux of V3 is unbounded on horizontal sections of L. This leads to a contradiction
with the invariance of the flux of the divergence free vector field Va3 on L. This
finishes the outline of the proof of the first statement of Theorem 31.

In order to finish the proof, it only remains to check that M is recurrent. If M
has exactly one end, then M is conformally a compact Riemann surface minus one
point (Theorem 30) and so, M is recurrent. If M has a finite number of ends greater
than one, then M has finite total curvature (Theorem 3). By Huber-Osserman’s
Theorem, M is conformally a compact Riemann surface minus a finite number of
points thus it is again recurrent. Finally, if M has infinitely many ends, then M has
exactly two limit ends, see the paragraph just before the statement of Theorem 31.
In this situation, Theorem 20 asserts that M is recurrent. This completes our
sketch of the proof of Theorem 31. O

In the above sketch of the proof of Theorem 31 we mentioned that any limit lam-
ination £ of H(x) obtained as a limit of (a subsequence of) homothetic shrinkings
{An M}, with A, N\, 0, has no singularities and empty singular set of convergence
S(L). To understand why this last property is true, we show that if £ had singu-
larities (in which case S(L£) # O) or if S(L) were nonempty for a given sequence of
shrinkings of M, then some smooth leaf of the limit lamination £ that intersects
S(L) would be a limit leaf, and hence stable. Our difficulty in discarding this possi-
bility lies in the fact that the stable leaves of £, while perhaps proper in H (x), may
not be complete and so, we do not know they must be planes. It is not difficult to
prove that the smooth stable leaves in £ in fact satisfy the hypotheses of the next
Proposition, and so are in fact planes. Once one has that the smooth stable leaves



322 WILLIAM H. MEEKS III AND JOAQUIN PEREZ

in £ are planes, then the proof of Theorem 22 leads to a contradiction, therefore
showing that S(£) is in fact empty. We include the proof of the next Proposition
mostly to demonstrate how one can obtain information on the conformal structure
of possibly incomplete minimal surfaces by studying conformally related metrics
and then how to apply such information to constrain their geometry. Also, the
proof of Proposition 4 below gives some new techniques and insights for possibly
solving the following famous Conjecture, due to Gulliver and Lawson.

CONJECTURE 10 (Isolated Singularities Conjecture). There does not exist a
properly embedded minimal surface in a punctured ball B—{(0,0,0)} whose closure
is mot a surface at the origin.

Given p > 0 small, we define the upper half cones C = {(z1,22,23) | 3 =
p/z? + 22} and C = C + (0,0, —1). Finally, let W be the component of R? — C
which lies below C.

PROPOSITION 4. Let L be a stable orientable minimal surface embedded in
H(x), not equal to 0H (%) and such that L N W consists of a nonempty collection
of horizontal planar ends. If any proper arc a: [0,00) — L of finite length satisfies
lim; o a(t) = (0,0,0), then L is a horizontal plane.

PRrROOF. Assume L is not a horizontal plane. By the maximum principle, L C
{z3 > 0} C R3. As L is stable, orientable and is not a plane, Theorem 8 implies
that L is not complete. Thus the set A of proper arcs «: [0,00) — L with finite
length is nonempty. Proposition 4 will be proven if we show that there exists « € A
such that lim; o a(t) € H(x) — {(0,0,0)}. Reasoning by contradiction, suppose
that any « € A satisfies lim;_ a(t) = (0,0,0).

Consider the complete conformally related metric g = (tzs) +x3)

=g on L, where g

is the induced metric on L by the inner product of R® and R = /a2 + 2% +2d
The Laplace operators and Gaussian curvature functions of (L, g), (L, g) are related
by the equations

. 2 . 2 1
_ A R (g oAmif®),
(14 z3)2 (1+ z3)2 R

where as usual, the notation ® means that the corresponding object e is computed

2
with respect to g (otherwise it refers to g). As Aln(R) = % > 0 and
Aln(l+4z3) = lef;;)‘j <0, it follows that K = %K—FP where P is a nonneg-
ative function. As (L, g) is stable, the operator —A+2K is positive semideﬁnite on
(L,g). Since —A+ K > —A+2K and (1+ Tz > U, it follows that (1+ ( A—i—K)

is also positive semidefinite on (L,g). Since —A + K > (1-5—963)2(_A + K), w

conclude that —A + K is positive semidefinite on (L, g).

Let E be the collection of points in the completion of (L,g) corresponding to
the annular planar ends of L. We claim that the metric completion L of (L,q) is
exactly L U E. To see this, let a: [0,00) — L be a proper arc of finite length on

(L,g). If we consider a to lie on (L,g) C (R3,<,>), then the factor (1;—?)2 in
the metric ¢ shows that o eventually lies in the component W of R? — C' below
C defined just before the Proposition. Since « is proper, it must lie in one of the
annular planar ends of L and so, « diverges to one point in E. This proves our
claim.
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Note also that the metric g on L extends to a smooth Riemannian metric g on
L (because the annular ends of L in E are asymptotic to horizontal planes). Since
—~A+Kis positive semidefinite on (L,§) and E C L is a discrete set, we conclude
that the extended operator —A + K is positive semidefinite on L (here ® refers to
the metric §). As a consequence, the universal covering of L is conformally C [35].
Finally, since z3|, is a nonconstant positive harmonic function on (L, g) (because it
is harmonic on (L, g)) and z3|;, extends smoothly through the points in E, we can
lift such an extension to the universal covering of L as a positive harmonic function
on C, hence constant by Liouville’s Theorem. In particular, zs|y is also constant,
which is the desired contradiction. 1

If a properly embedded minimal surface M C R3 has finite genus and infinite
topology, then Theorems 19 and 31 imply M has two limit ends which are its top
and bottom ends (after a rotation so that the limit tangent plane at infinity of
M is horizontal). The classical model in this setting is any of the surfaces in the
1-parameter family of Riemann minimal examples (see Subsection 2.5). In 1998,
Meeks, Pérez and Ros [78] proved that these are the unique properly embedded
minimal surfaces in R3 with genus zero, infinite topology and infinitely many sym-
metries. The extension of this characterization by eliminating the hypothesis on
the symmetry group constitutes the following conjecture by the same authors.

CONJECTURE 11 (Genus zero Conjecture). If M C R? is a properly embedded
minimal surface with genus zero and infinitely many ends, then M is a Riemann
minimal example.

This conjecture is an active field of research in the last years by Meeks, Pérez
and Ros, and in part it has motivated further developments as explained in The-
orems 29 and 31 above. Strong partial results have been achieved, such as the
following statement.

THEOREM 32. [74] Let M C R3 be a properly embedded minimal surface with
finite genus, two limit ends and horizontal limit tangent plane at infinity. Then:

1. The middle ends {e, | n € Z} of M are planar, have heights H =
{z3(en) | n € Z} with x3(en) < x3(ent1) for alln € Z and lim z3(e,) = oo,

n—oo
lim z3(e,) = —o0.
n——oo

2. Every horizontal plane sufficiently high or low intersects M in a simple
closed curve when its height is not in H and in a single properly embedded
arc when its height is in H.

3. The fluz vector of M along any compact (not necessarily connected) horizon-
tal section does not depend on the height of the section. Both the horizontal
and the vertical components of this flux vector are not zero. In what follows,
we will rescale M so that this vertical component of the flux of M equals 1.

4. M has bounded Gaussian curvature. Furthermore, the mazimum asymptotic
curvature outside balls 1im sup |Ky;_p(n| is bounded from above in terms

T—00

only of the horizontal component of its flux'®. In the case M has genus zero,

10This means that if { My, }n, is a sequence of properly embedded minimal surfaces with fixed
finite genus, horizontal limit tangent plane at infinity, the vertical components of the fluxes of the
M, along compact horizontal sections are all 1 and the horizontal components of such fluxes are
bounded by above, then there are compact balls By, centered at the origin so that {M, — Bn}n
has uniformly bounded Gaussian curvature.
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the bound on the Gaussian curvature of M depends only on a bound of its
horizontal fluz.

5. The spacings S(n) = x3(en+1)—x3(e,) between consecutive ends are bounded
from above and below (by Corollary 2 in Section 7, the lower bound 2|
depends only on the curvature estimate A for M given in the last point 4).

6. M is quasiperiodic in the following sense. There exists a divergent sequence
V(n) € R® such that the translated surfaces M +V (n) converge to a properly
embedded minimal surface of genus zero, two limit ends and horizontal limit
tangent plane at infinity.

7. If M has genus zero, then M has no points with vertical normal vector and
the conclusions in point 2 above hold for every horizontal plane in R3.

Using the Shiffman Jacobi function, Meeks, Pérez and Ros have proven the
uniqueness of the Riemann minimal examples among properly embedded genus
zero minimal surfaces under the hypotheses of Theorem 32, assuming additionally
that the horizontal component of the flux along a compact horizontal section is
sufficiently small. We will devote Section 11 to a more detailed discussion of this
result and to further analysis on the Shiffman Jacobi function.

We finish this Subsection with a brief comment about properly embedded min-
imal surfaces of infinite genus. The collection of such surfaces with one end is
extremely rich. One reason for this is that there are many doubly periodic exam-
ples (note that any triply periodic example can be viewed as a doubly periodic
one), and as mentioned in Subsection 10.1, every doubly periodic properly embed-
ded minimal surface in R? has one end (Callahan, Hoffman and Meeks [7]). Besides
Theorem 19 on the nonexistence of middle limit ends, very little is known about
properly embedded minimal surfaces with infinite genus and infinitely many ends.
The first known examples arise from singly periodic surfaces with planar ends and
positive genus (Callahan, Hoffman and Meeks [6]), but these examples are better
studied as finite total curvature minimal surfaces in the corresponding quotient
space. A tentative example of (truly) infinite genus and one limit end might be
constructed as follows. Weber and Wolf [127] proved the existence of a sequence
M,, C R3 of properly immersed minimal surfaces of odd genus and n + 2 horizontal
planar ends. Computer graphics pictures indicate that all these surfaces are em-
bedded. Assuming this embeddedness property holds, a suitable normalization of
these surfaces should give as a limit a properly embedded minimal surface with a
bottom catenoid end, infinitely many middle planar ends and a top limit end. By
Theorem 31, this limit surface could not have finite genus.

10.3. Completeness versus properness and minimal laminations. In
his beautiful recent survey on minimal surfaces, Harold Rosenberg [114] introduces
the subject of his paper through a question asked to him by Andre Haefliger about
twenty years ago: “Is there a foliation of R® by minimal surfaces, other than a
foliation by parallel planes?”

Any leaf L of a minimal foliation of R? is a complete limit leaf and it can be
proved to be stable. Now Theorem 8 implies L is a plane (provided L is orientable;
but this technical assumption can be supposed after passing to the universal cov-
ering, which also turns out to be stable, see the proof of Lemma 1.1 in [80]). Thus
the answer to Haefliger’s question is no. Immediately one is tempted to extend this
question to minimal laminations.
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QUESTION 3. What are the minimal laminations of R3?

There are only two known types of minimal laminations of R3: a lamination
with exactly one leaf which is a properly embedded minimal surface, or a lamination
consisting of a closed set of parallel planes. Meeks and Rosenberg [80] have con-
jectured that these are the unique possible examples. Since every leaf of a minimal
lamination of R3 is complete, the above question is closely related to the following
one.

QUESTION 4. When is a complete embedded minimal surface M C R3 proper?

Given a minimal lamination £ of R?, the function that assigns to each point p
in £ the Gaussian curvature of the leaf L € £ passing through p is continuous in
the subspace topology. Since the intersection of £ with any closed ball is compact,
we conclude that the intersection of any leaf L € £ with any ball has Gaussian
curvature bounded from below by a constant that only depends on the ball (in other
words, L has locally bounded Gaussian curvature). Reciprocally, if M is a complete
embedded minimal surface in R? with locally bounded Gaussian curvature, then
the closure M of M is a minimal lamination of R? (Lemma 1.1 in [80]). With this
perspective, it is natural to study complete embedded minimal surfaces M C R?
with locally bounded Gaussian curvature, as a first stage for possible answers to
Questions 3 and 4. If M is such a minimal surface and it is not proper, then M — M
may or may not be nonempty; but since M has locally bounded curvature, £ = M
is a nontrivial minimal lamination of R3 and some leaf L € £ must be a limit leaf,
hence stable. Now an argument similar to the one we used to answer Haefliger’s
question at the beginning of this Subsection insures that L is a plane; so in this
case, M — M is always nonempty. This can be stated as follows.

LEMMA 4 (Meeks, Rosenberg [80]). Let M C R® be a connected complete
embedded minimal surface with locally bounded Gaussian curvature. Then exactly
one of the following holds:

1. M is properly embedded in R3.

2. M is properly embedded in an open halfspace, with limit set the boundary
plane of this halfspace.

3. M s properly embedded in an open slab, with limit set consisting of the
boundary planes of the slab.

It should be mentioned that in a previous work, Xavier [128] proved that a
complete, immersed, nonflat minimal surface of bounded curvature in R3 cannot
be contained in a halfspace. This result together with Lemma 4 gives a partial
answer to Question 4.

COROLLARY 4. [80] If M C R? is a connected nonflat complete embedded
minimal surface with bounded Gaussian curvature, then M is proper.

The next step in the study of complete embedded nonproper minimal sur-
faces consists of understanding how they accumulate to the limit set described in
Lemma 4.

LEMMA 5. [80] Let M C R? be a connected complete embedded minimal surface
with locally bounded Gaussian curvature. Suppose that M is not proper and let I1 be
a limit plane of M. Then, for any e > 0, the closed e-neighborhood of 11 intersects
M in a path connected set.
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OUTLINE OF THE PROOF. The argument is by contradiction. Assuming its
failure, one can produce a stable minimal surface ¥ between two components of
the intersection of M with the slab {0 < z3 < e} (we do not loss generality by
assuming that II = {3 = 0} and that M limits to II from above) by the usual
barrier construction argument. Since X satisfies curvature estimates away from
its boundary (Theorem 15), we conclude that for sufficiently small 6 > 0, the
orthogonal projection 7 to II restricted to £(§) = E N {0 < z3 < d§} is a local
diffeomorphism. A topological argument shows that 7|xs) is in fact bijective,
so it is a diffeomorphism. This implies ¥(0) is properly embedded in the slab
{0 < 25 < §}. Now the argument in the sketch of the proof of Theorem 7 applies
to give a contradiction and proves Lemma 5. O

A refinement of the argument in the previous paragraph shows that if M C R3
is a connected complete nonproper embedded minimal surface with locally bounded
Gaussian curvature that limits to the plane II = {3 = 0} from above, then for
any € > 0 the Gaussian curvature of M N {0 < z3 < €} cannot be bounded from
below. In other words, there exists a sequence {p,}, C M with z3(p,) \, 0 and
| K (pn)| — o0 as n goes to infinity. Such a sequence must diverge in space because
Ky is locally bounded. If we additionally assume M has finite topology, then an
application of the Colding-Minicozzi one-sided curvature estimate (Theorem 23)
contradicts that | Kas(pr)| — oo. This is a rough sketch of the proof of the following
statement.

THEOREM 33. [80] If M C R? is a connected complete embedded minimal
surface in R3 with finite topology and locally bounded Gaussian curvature, then M
s proper.

Meeks, Pérez and Ros (Theorem 5 in [74]) have combined the last statement
with deeper arguments using the results of Colding and Minicozzi, which let us
exchange the finite topology assumption by the weaker hypothesis of finite genus.

THEOREM 34. [74] If M C R? is a connected complete embedded minimal
surface in R3 with finite genus and locally bounded Gaussian curvature, then M is
proper.

In conclusion, we can state the following descriptive result for minimal lamina-
tions of R3.

THEOREM 35 (Meeks and Rosenberg [80], Meeks, Pérez and Ros [74]). For a
given manimal lamination £ of R3, one of the following possibilities hold.

i) L has one leaf which consists of a properly embedded minimal surface in R3.

it) L has more that one leaf and consists of the disjoint union of a nonempty
closed set of parallel planes P C L together with a collection of complete
minimal surfaces of unbounded Gaussian curvature and infinite genus that
are properly embedded in the open slabs and halfspaces of R® — P. Further-
more, each of the open slabs and halfspaces in R® — P contains at most one
leaf of L, every plane parallel to but different from the planes in P intersects
at most one of the leaves of L and separates such an intersecting leaf into
ezactly two components.

To conclude this Subsection, we would like to mention that all the above results
depend heavily on the embeddedness and properness assumptions. One sees this in
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part because of the existence of complete immersed minimal surfaces in a ball of R3.
The first such an example was a minimal disk constructed by Nadirashvili [94] by
a smart application of Runge’s Theorem together with the Lopez-Ros deformation.
Later on, Martin and Morales [65] gave a bounded complete minimal annulus in
R3, and using these techniques together with the Implicit Function Theorem,

Lépez, Martin and Morales [61, 60] generalized these complete bounded min-
imal surfaces to similar examples with any finite topology. As we mentioned in
Subsection 3.2, Martin and Morales [64] have recently generalized these results to
prove that the interior of any convex, possibly noncompact or nonsmooth, region
of R? admits a proper complete minimal immersion of the unit disk. An interesting
question is whether or not such a minimal disk can be embedded.

11. The Shiffman Jacobi function on properly embedded planar
domains.

Next we explain how an interesting Jacobi function, called the Shiffman func-
tion, can help in our attempt to solve Conjecture 11. Let M C R? be a properly
embedded minimal surface with genus zero and infinitely many ends. By Theo-
rems 19 and 31, M has two limit ends. After a rotation, we will assume M has
horizontal tangent plane at infinity. By Theorem 32, the Gauss map g of M (stere-
ographically projected from the sphere) is a holomorphic function without zeros
or poles on M. In particular, M intersects each horizontal plane transversally.
For minimal surfaces with this last property, Shiffman [119] introduced in 1956 a
function that incorporates the curvature variation of the horizontal sections of the
surface.

The Shiffman function can be defined locally. Assume that (g(z),dh = dz) is
the Weierstrass pair of a minimal surface M C R3, where z is a local conformal
coordinate in M (in particular, g has no zeros or poles and any minimal surface
admits such a local representation around a point with nonvertical normal vector).
By (6), the induced metric ds? by the inner product of R3 is ds? = A?|dz|?, where
A = %(lg| + |g|™*). The horizontal level curves x5 = ¢ correspond to z.(y) = c + iy
in the z-plane (here z = 2 +iy with z,y € R and i> = —1) and the planar curvature
of this level curve can be computed as

(16) rely) = [1J|rg||gl2%<ggl)] =2 (y)

where the prime stands for derivative with respect to z.

DEFINITION 25. We define the Shiffman function of M as

N\ 2 " N\ 2
-8 ()]
oy 2\y g 1+]gl* \g

where & stands for imaginary part.

Since A is a positive function, the zeros of u coincide with the critical points
of k.(y). Thus, u = 0 vanishes identically if and only if M is foliated by pieces
of circles and straight lines in horizontal planes. In a posthumously published
paper, B. Riemann [110, 111] classified all minimal surfaces with such a foliation
property: they reduce to the plane, catenoid, helicoid and the 1-parameter family
of surfaces which, since then, have been known as Riemann minimal examples (see
Subsection 2.5).
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Coming back to our properly embedded minimal surface M C R? with genus
zero, infinitely many ends and horizontal tangent plane at infinity, we now see
that a way to solve Conjecture 11 consists of proving that the Shiffman function
of M vanishes identically. A crucial property of the Shiffman function is that it
satisfies Au — 2Ku = 0 on M (here K is the Gaussian curvature of M), i.e. u is a
Jacobi function. This observation allows one to weaken the condition u = 0 that
characterizes the Riemann minimal examples to the following condition. Recall
from Subsection 2.8 that a linear Jacobi function is any function of the type (N, v)
with fixed v € R, where N is the Gauss map of M.

LEMMA 6. [102, 103] Let M C R3 be a properly embedded planar domain with
infinitely many ends and transverse to horizontal planes. If the Shiffman function
of M is linear, then M is a Riemann minimal example.

SKETCH OF PROOF. The argument uses the Montiel-Ros correspondence be-
tween Jacobi functions on M and branched minimal immersions with Gauss map IV
(Theorem 10) to conclude that if the Shiffman function v = (f) of M is lin-

ear, then its Jacobi-conjugate function'! u* = R(f) is also linear, where f =
’ 2 1 7 2

3 (g g 1 g L f : 3 PRI .

5 (?) — ? — W (?) . Thus f = <Z\77 Z()> for a certain 20 € C 5 which in turns

implies that g satisfies a differential equation of the type (¢’)? = g(ag? + Bg + 6)
with «, 8,8 € C. From here it is not difficult to deduce that M is an unbranched
covering of a properly embedded minimal torus with two planar ends in a certain
quotient of R3 by a translation. Now the classification Theorem by Meeks, Pérez,
Ros [78] in the periodic setting applies to finish the proof of the Lemma. O

We devote the remainder of this Section to proving that the Shiffman func-
tion vanishes on a properly embedded planar domain M with two limit ends and
horizontal tangent plane at infinity, provided that the ratio between the horizon-
tal and vertical components of its flux is small enough. To prove this result, we
first need to understand the global behavior of the Shiffman function u on such a
surface M. Using that the Weierstrass pair of M around any of its middle ends
is (g(2) = 2%t(z),dh = dz) where t is a holomorphic function of z with #(0) # 0
and t'(0) = 0 (here z = 0 corresponds to the puncture, we have assumed that the
limit normal vector at the end points to the South Pole of S? and #/(0) = 0 comes
from the fact that the end has no period), a straightforward calculation shows that

u(0) = =S (%), which implies that u extends smoothly through z = 0. A
similar result holds at the ends where g has a pole. Thus u can be viewed as a con-

tinuous function on the conformal cylinder M obtained after attaching the middle
ends to M. By elliptic regularity, u is smooth on M.

LEMMA 7. Let § € (0,1) and let Q C R3 be a complete noncompact minimal
surface with nonempty compact boundary and finite total curvature, such that its
Gauss map N satisfies N3 = (N,e3) > 1—0 in Q. Then, for every bounded Jacobi
function v on Q,

(1 =6)sup|v| < sup|v|.
Q o9

HTwo Jacobi functions v,v* on M are called Jacobi-conjugate if there exists a globally
defined complex solution f of the Jacobi equation Af — 2K f = 0 on M such that v = R(f) and

vt = S(f).
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PRrROOF. Since 2 has finite total curvature, 2 compactifies after attaching its
ends to a compact Riemann surface Q with boundary. Since v is bounded on €,
v extends smoothly across the punctures to a Jacobi function on Q. We will let
a = supyq |v|. Since N3 >1—¢6 > 0 in © and N3 is Jacobi, we conclude that € is
strictly stable and so, a > 0. Now, v + ;%5N3 > 0 in 9Q and v + ;%5 N3 is Jacobi
on , thus by stability v + ;%5 N3 > 0 in Q. Analogously, v — %5 N3 < 0 in 91,
hence v — ;%5 N3 < 0 in Q. These inequalities together with N3 <1 give lv| < 25
in , as desired. 1

Theorem 32 implies that each properly embedded minimal planar domain M with
infinite topology and horizontal tangent plane at infinity has a well-defined flux
vector, which is the flux of M along any compact horizontal section, and this
vector is neither vertical nor horizontal. In the sequel, we will normalize M by a
homothety so that its flux vector has the form (F(M),1) € C x R = R3. Let S be
the space of all properly embedded minimal planar domains with infinitely many
ends, horizontal tangent plane at infinity and vertical component of the flux equal
to one.

THEOREM 36 (Meeks, Pérez, Ros [102]). There exists e > 0 such that if M € S
has |[F(M)| < e, then M is a Riemann minimal example.

PrROOF. We will present here a different proof from the one in [102]. By
contradiction, assume we have a sequence {M,}, C § with F(M,) — 0, and none
of the M,, is a Riemann minimal example. Point 4 in Theorem 32 insures that
{M,}, has uniformly bounded Gaussian curvature. A suitable modification of the
arguments in the proof of Lemma 3 in [78] can be used to show that as n — oo,
the surfaces M,, become arbitrarily close to an infinite discrete collection of larger
and larger translated pieces of a vertical catenoid with flux e = (0,0, 1) joined by
flatter and flatter graphs containing the ends of M,,. For each n, let M, be the
conformal cylinder obtained by attaching the middle ends to M,,, and let u,, be the
Shiffman function of M,,.

ASSERTION 1. Forn € N large enough, w, is bounded on M,,.

PROOF OF ASSERTION 1. Suppose that the Assertion fails. To simplify the
notation, we will denote the surface M, only by M, and think of M as being
arbitrarily close to pieces of translated catenoids and flat graphs as above. The
failure of the Assertion allows us to find a subsequence of points pi, € M such that
lu(pr)| — oo as k goes to oo (here w is the Shiffman function of M). Note that
{pr}r must be a divergent sequence in height (otherwise we contradict that u stays
bounded at any middle end of M). By Theorem 32, {M — p;} is a sequence of
properly embedded minimal surfaces in R? with uniform bounds for the Gaussian
curvature and area. After passing to a subsequence, M — p; converges to a properly
embedded minimal surface My, € R3 with 0 € M.

First suppose that the value of the Gauss map N of M at py does not converge
to vertical as k — oo. Then, a suitable modification of the arguments in the proof
of Lemma 2 in [78] insures that M., cannot be flat. This implies the sequence
{M —pi }r, converges smoothly to M., with multiplicity one, and a lifting argument
shows that M., has genus zero. Since M, has no points with vertical normal vector
(which comes from the open mapping Theorem applied to the Gauss map of M),
M, must have a well-defined Shiffman function u,, which is nothing but the limit
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of uk(q) = u(qg+pr), ¢ € M — pi. In particular u(py) converges to us(0), which is
a contradiction.

Now assume that, after extracting a subsequence, N(px) converges to ez as
k — oo. By taking k sufficiently large, we conclude that py lies in one of the
almost flat graphs Q@ C M = M, that joins two consecutive catenoids forming.
This contradicts Lemma 7, since |u| is arbitrarily small in 9Q but |u(px)| — oo.
Now Assertion 1 is proved.

In the sequel, we will work with n large so that Assertion 1 holds. Note that
for fixed n, the function |u,| needs not attain its maximum on M,, but in that
case we can exchange each M,, by a limit of suitable translations of M,, so that the
Shiffman function in absolute value reaches its maximum on this limit. Since the
flux of a surface in S does not change under translations, we do not loss generality
by assuming that for all n large, |u,| attains its maximum at a point p,, € M,,. We
now define v,, = mun

Take a sequence {6(n)}, C (0,1) converging to 1. For n large, let C,, C M, be
one of the connected components of (N, e3)~1[—d(n), §(n)] which contains p,, or is
adjacent to a horizontal graphical region containing p,,. By our previous arguments,
C,, is arbitrarily close to a translated image of the intersection of a vertical catenoid
Cw of vertical flux eg centered at the origin with a ball of arbitrarily large radius
also centered at the origin.

ASSERTION 2. {supg, |vn|}n tends to zero as n — oo.

PROOF OF ASSERTION 2. Since {vn|c, }n is a bounded sequence of Jacobi
functions on the C,, and suitable translations of the C),, converge to the catenoid
Coo, it is not difficult to check that a subsequence of {v,|c, }» (denoted in the
same way) converges to a bounded Jacobi function on Cu,. Since bounded Jacobi
functions on a catenoid are linear, we conclude that {v,|c, }» converges to a linear
Jacobi function v on C, (or by identifying C, with the sphere S? through its Gauss
map, we can see v as a linear function on S?). We now check that v is identically
zero on S2.

By contradiction, suppose v is not identically zero on S?. Recall that the
Shiffman function u,|c, measures the derivative of the curvature of each planar
section of C,, with respect to a certain parameter times a positive function. By the
Four Vertex Theorem, each horizontal section of C,, contains at least four zeros of
u, and so, also at least four zeros of v,,. Since horizontal sections of the C,, (suitably
translated) converge to horizontal sections of C», and any nontrivial linear function
on S? has at most two zeros on each horizontal section (with a possible exceptional
horizontal section if the linear function is the vertical coordinate, but this does not
affect to our argument by taking a different horizontal section), we conclude that
at least two zeros of v, in a certain horizontal section must collapse into a zero of
v, hence the gradient of v will vanish at such a collapsing zero. But the gradient
of a nontrivial linear function on S? never vanishes at a zero of the function. This
contradiction proves Assertion 2.

Recall that |v,(p,)| = 1 for all n. By Assertion 2, N, (p,) must converge to
the vertical or equivalently, p, must lie in one of the graphical components of the
complement of all the catenoidal pieces in M,,, a noncompact minimal graph which
we will denote by €2,,. Note that 2, is a graph over an unbounded domain in the
plane {3 = 0}, 9Q,, consists of two almost-circular almost-horizontal curves with
(Np,e3)]oq, = £d(n) and Q,, contains exactly one end of M,,. Hence we can apply
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Lemma 7 to the minimal surface €2,, and to the bounded Jacobi function v,|q,,,
contradicting that v,|gn, converges to zero (Assertion 2) but |v(p,)| = 1. This
contradiction finishes the proof of the Theorem. O

The proof of Theorem 36 that appears in [102] is based on the relationship
between the Shiffman function and the index form Q(v,v) = [,,(|Vv[* + 2Kv?) on
any connected complement 2 of {|g| = 1} in a planar domain M € S. A similar
technique with the nodal domains of a linear function can be applied to conclude
the following description of all bounded Jacobi functions on any Riemann minimal
example.

THEOREM 37 (Meeks, Pérez, Ros [77]). Let M C R3 be a Riemann minimal
example. Then any bounded Jacobi function on M is linear.

The above Theorem plays a central role in our program to prove that any finite
genus limit end of a properly embedded minimal surface converges exponentially
quickly to a limit end of one of the Riemann minimal examples. The Theorem
should also be useful in proving that the moduli space of genus 1 properly embedded
minimal surfaces with horizontal limit tangent plane at infinity and two limit ends is
an open interval parametrized by the ratio of the horizontal and vertical components
of the flux, in the same way that the Riemann examples are parametrized, and for
finite g > 2, the moduli space of the genus g examples with two limit ends has an
infinite number of path components.
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