
Surveys in Differential Geometry
IX, International Press

Eigenvalues of elliptic operators and geometric applications

Alexander Grigor’yan, Yuri Netrusov, and Shing-Tung Yau

Contents

1. Introduction 147
2. Energy forms on measure spaces 155
3. Decomposition of a pseudometric space by annuli 169
4. Estimating the counting function of an energy form 180
5. Eigenvalues on Riemannian manifolds 190
6. Eigenvalues of the Jacobi operator 200
References 214

1. Introduction

Eigenvalues and capacitors. Let X be a Riemannian manifold and Δ be the
Laplace operator on X . It is well-known that if X is compact then the spectrum
of −Δ is discrete and consists of an increasing sequence {λk}∞k=1 of the eigenvalues
(counted with the multiplicities) where λ1 = 0 and λk →∞ as k →∞. Moreover,
if n = dimX then Weyl’s asymptotic formula says that

(1.1) λk ∼ cn

(
k

μ (X)

)2/n

, k →∞,

where μ is the Riemannian measure on X and cn > 0 is a constant depending only
on n.

In this paper we develop a method of obtaining upper bounds for eigenvalues
via capacities. A capacitor on X is a couple (F,G) of Borel sets in X such that
F ⊂ G. The capacity of the capacitor (F,G) is defined by

(1.2) cap(F,G) = inf
ϕ∈T

∫
X

|∇ϕ|2 dμ

where T = T (F,G) is the class of test function, which consists of all functions
ϕ ∈ C∞0 (X) such that suppϕ ⊂

o

G and ϕ ≡ 1 in a neighborhood of F .
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Assume that there exist k disjoint capacitors (Fi, Gi) in X (that is, the sets Gi

are disjoint) satisfying the following properties, for all i = 1, 2, ..., k, and for some
positive constants υ and κ:
(a) μ (Fi) ≥ υ;
(b) cap(Fi, Gi) ≤ κ.

Then, for any ε > 0, there exists a test function ϕi of the capacitor (Fi, Gi) such
that ∫

X

|∇ϕi|2 dμ ≤ κ + ε.

The condition (a) implies ∫
X

ϕ2
i dμ ≥ μ (Fi) ≥ υ,

whence ∫
X

|∇ϕi|2 dμ ≤ Λ
∫
X

ϕ2
i dμ,

where Λ = κ+ε
υ . Since the supports of the functions ϕi are disjoint, it follows that

(1.3)
∫
X

|∇ϕ|2 dμ ≤ Λ
∫
X

ϕ2dμ

for any ϕ ∈ V := span (ϕ1, ..., ϕk). Note that V is a k-dimensional subspace of
C∞0 (X). The fact that any function ϕ ∈ V satisfies (1.3) implies that λk ≤ Λ.
Since this is true for any ε > 0, we obtain that the hypotheses (a) and (b) imply
that

λk ≤
κ
υ
.

Clearly, (a) implies υ ≤ μ(X)
k . Under certain conditions, one can hope to get k

disjoint capacitors satisfying (a) and (b) with υ = cμ(X)
k , where c is a small enough

positive constant. In this case one obtains the following upper bound for λk:

(1.4) λk ≤
κ
c

k

μ (X)
.

Comparison with (1.1) shows that if κ is independent of k and the dimension n is
equal to 2 then the estimate (1.4) is sharp up to a constant factor.

This approach was successfully used by Korevaar [37] in the proof of the fol-
lowing result. Let X = (Σγ , g) where Σγ is the oriented compact Riemann surface
of genus γ and g is an arbitrary Riemannian metric on Σγ . Then the eigenvalues
of the Laplace operator on X admit for all k ≥ 1 the estimate1

(1.5) λk ≤ C (γ + 1)
k

μ (X)
,

where C is an absolute constant. Note that the metric g is involved in the estimate
(1.5) only through the total volume μ (X).

1Since λ1 = 0, by changing the constant C in (1.5) one obtains

λk ≤ C (γ + 1)
k − 1

μ (X)
.

The same applies to estimates (1.14 and (1.16) below. However, the distinction between k and
k − 1 is marginal for our purpose.
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For λ2, Yang and the third author [56] proved earlier a sharper estimate2

(1.6) λ2 ≤
8π (γ + 1)
μ (X)

.

The estimate (1.5) was stated in [57] as a conjecture, which was eventually settled
by Korevaar.

Both works [37] and [56] have used the fact that there is a conformal mapping
T : X → S2 of degree at most γ + 1. Let μ∗ be the measure on S2, which is the
T -pullback of the measure μ on X , and let cap∗ be the capacity on S2 associated
with the standard Riemannian metric of S2. Assume that there exist k disjoint
capacitors (F ∗i , G

∗
i ) on S

2 satisfying the following conditions, for all i = 1, 2, ..., k:

(a′) μ∗ (F ∗i ) ≥ υ := c
μ∗(S2)

k ;
(b′) cap∗(F ∗i , G

∗
i ) ≤ C,

where c and C are positive absolute constants. Taking then Fi = T−1 (F ∗i ) and
Gi = T−1 (G∗i ), we obtain k disjoint capacitors (Fi, Gi) on X satisfying (a) with
υ = cμ(X)

k . In fact, they also satisfy (b) with κ = C (γ + 1) , which follows from
the fact that the Dirichlet integral is locally preserved by the mapping T , and the
degree of T is at most γ + 1. Substituting these values of υ and κ into (1.4), we
obtain (1.5).

Since the measure μ∗ on S2 is a pull-back of a measure on X , one may not have
enough control over how μ∗ is distributed on S2, contrary to the capacity cap∗,
which is related to the standard metric on S2. Nevertheless, suppose for a moment,
that one can find k geodesic balls Bi on S2 such that

(1.7) μ∗ (Bi) ≥ υ,

and the balls 2Bi are disjoint (here 2B denotes the ball with the same center as
B and with the radius equal to twice the radius of B). It is easy to show that
the capacity cap∗(B, 2B) admits an upper bound by an absolute constant C (see
inequality (5.7) in the proof of Theorem 5.3). Hence, in this case, both conditions
(a′) and (b′) are satisfied for the capacitors (Bi, 2Bi).

However, in general one may not find k disjoint balls on S2 with the property
(1.7). Korevaar introduced a very ingenious and extremely elaborate method for
choosing more complicated sets to be used for the capacitors in questions. His
argument was designed to spot the places of concentration of measure μ∗ on S2,
while still having control over the corresponding capacities. This method was fur-
ther developed by two of the authors [27] in the setting of abstract measure metric
spaces.3

Decomposition of a metric measure space by annuli. In this paper we
present a new, significantly simpler method of constructing the capacitors satisfying
the above properties (a) and (b). Let (X, d) be a metric space. By an annulus in
X we mean any set A ⊂ X of the following form

(1.8) A = {x ∈ X : r ≤ d (x, a) < R} ,
2The constant 8π in (1.6) is sharp for the case γ = 0, that is for a sphere , but not in general.

The sharp value for a torus was obtained by Nadirashvili [46]. For non-oriented surfaces, the
sharp estimate for λ2 of a projective plane was obtained by Li and Yau [40], and for a Klein

bottle – by Jakobson, Nadirashvili, and Polterovich [34].
3For another general method of obtaining upper bounds for higher eigenvalues see [8], [9].

For lower bounds of eigenvalues via capacities see [23], [42, Theorem 2.3.2/1].
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where a ∈ X and 0 ≤ r < R < ∞ (in particular, if r = 0 then A is the ball
B (x,R)). Also, denote by 2A the following annulus:

2A = {x ∈ X :
1
2
r ≤ d (x, a) < 2R}.

The following theorem is a key result that underpins the above approach for con-
structing disjoint capacitors and estimating of the eigenvalues.

Theorem 1.1. (=Corollary 3.12) Let (X, d) be a metric space satisfying the
following covering property: there exists a constant N such that any metric ball of
radius r in X can be covered by at most N balls of radii r/2. Let all metric balls in
X be precompact sets, and let ν be a non-atomic Radon measure on X. Then, for
any positive integer k, there exists a sequence {Ai}ki=1 of k annuli in X such that,
for any i = 1, 2, ..., k,

ν (Ai) ≥ c
ν (X)
k

,

and the annuli 2Ai are disjoint. Here c is a positive constant depending only on N .

If in addition one has a properly defined capacity cap onX such that cap(B, 2B) ≤
Q for any ball B in X then one can show that cap(A, 2A) ≤ 4Q for any annulus A
in X . Thus, applying Theorem 1.1 to X = S2 with the measure ν = μ∗ we obtain k
capacitors (Ai, 2Ai) satisfying (a′) and (b′), thus giving a new proof of the theorem
of Korevaar (see Corollary 4.11 and Theorem 5.4 for more details).

A modification of the above method can be used to estimate the eigenvalues of
a Schrödinger type operator. Let X be as above a Riemannian manifold, and fix a
function q ∈ L1

loc (X,μ). Consider the operator

L = −Δ− q

and the associated energy form

Eq [f ] :=
∫
X

f Lf dμ =
∫
X

(
|∇f |2 − qf2

)
dμ,

defined for all f ∈ F := C∞0 (X). For any real λ, define the counting function
Nλ (L) as the supremum of the dimensions of all vector spaces V ⊂ F such that

Eq [f ] < λ‖f‖2L2(X,μ) for all f ∈ V , f �≡ 0.
If the operator L with the domain F admits the Friedrichs extension to a self-adjoint
operator in L2 (X,μ) (also denoted by L), then

Nλ (L) = dim Im1(−∞,λ) (L) .

In particular, if the spectrum of L below λ is discrete then Nλ (L) is just the number
of the eigenvalues of L, which are smaller than λ, counted with the multiplicity. In
the case λ = 0 we will also use the notation

Neg (L) = N0 (L) .

Denote by B (x, r) the geodesic ball on X of radius r centered at x ∈ X . The
following result is a particular case of Theorem 5.3.

Theorem 1.2. Let X be a complete Riemannian manifold. Assume that, for
some constants N and M , the following is true:

(i) any ball B (x, r) in X can be covered by at most N balls of radii r/2;
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(ii) for all x ∈ X and r > 0,

(1.9) μ (B (x, r)) ≤Mr2.

Then, for any function q ∈ L1
loc (X,μ),

(1.10) Neg (−Δ− q) ≥ c

∫
X

qδdμ,

where
qδ := δq+ − q−,

the constant δ ∈ (0, 1) depends only on N , and the constant c > 0 depends on N
and M .

The right hand side of (1.10) is undefined if
∫
X
q+dμ =

∫
X
q−dμ =∞. In this

case, let us set it to be −∞ so that the statement is still trivially valid.
The constant δ comes from the proof for technical reasons. We conjecture that

in fact one can take δ = 1 so that qδ = q and

(1.11) Neg (−Δ− q) ≥ c

∫
X

qdμ.

If q ≥ 0 then certainly (1.11) follows from (1.10) just by renaming cδ by c. It would
be interesting to obtain (1.11) also for a signed function q.

Note also that the hypothesis (1.9) is essential for the result: without it the
estimate (1.11) may fail even for positive q (see Example 4.20).

Let us mention for comparison a theorem of Cwickel–Lieb–Rozenblum saying
that, for any non-negative function q in Rn, n > 2,

(1.12) Neg (−Δ− q) ≤ C

∫
Rn

qn/2dμ,

where C depends only on n (see, for example, [28], [38], [51]). It is known that
(1.12) is not true in R2 whereas, by Theorem 1.2, the opposite inequality (1.11)
holds in R2.

Applying Theorem 1.2 to the potential q+λ instead of q and using elementary
estimates for (q + λ)δ we obtain that, for any λ ∈ R,

(1.13) Nλ (L) ≥ c

∫
X

qδ2dμ+ c′λμ (X) ,

where c′ = cδ. If the spectrum of L is discrete and hence consists of an increasing
sequence {λk (L)}∞k=1 of eigenvalues counted with the multiplicities, then (1.13)
implies

(1.14) λk(L) ≤
Ck −

∫
X

(
δq+ − δ−1q−

)
dμ

μ(X)
,

where C depends on N and M . Again, in would be interesting to prove (1.14) with
δ = 1, that is

λk(L) ≤
Ck −

∫
X
qdμ

μ(X)
.

In the case when the operator L is positive definite, we have proved that

λk(L) ≤
Ck −

∫
X
qdμ

εμ(X)
,
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where ε ∈ (0, 1) depends on N (see Theorem 5.15). Note that the function q here
may be signed, and the positivity of L implies

∫
X qdμ ≤ 0.

We deduce Theorem 5.3 (and hence Theorem 1.2) from more general Theorems
4.1, 4.17, which estimate the counting function of an abstract energy form on a
(pseudo)metric space. The idea of the proof is as follows. Assume for simplicity
that q ≥ 0. In order to estimate from below Neg (−Δ− q) we will construct k
disjoint capacitors (Fi, Gi) on X such that cap(Fi, Gi) is controlled from above
while ν (Fi) is controlled from below, where the measure ν is defined by dν = qdμ.
Indeed, applying Theorem 1.1 to the space X with this measure ν, we obtain k
annuli Ai such that

ν (Ai) ≥ c
ν (X)
k

and 2Ai are disjoint. The hypothesis (1.9) implies that

cap(Ai, 2Ai) ≤ CM.

Assuming that k is taken so that

(1.15) CM < c
ν (X)
k

,

we choose nearly optimal test functions for the capacitors (Ai, 2Ai) and consider
the linear space V spanned by them. Then V is a k-dimensional subspace of C∞0 (X)
such that for any f ∈ V \ {0}∫

X

|∇f |2 dμ <

∫
X

f2dν,

that is Eq [f ] < 0, whence it follows that Neg (−Δ− q) ≥ k. Taking the largest k
satisfying (1.15), we obtain

Neg (−Δ− q) ≥ � c

CM
ν (X)� = �c′

∫
X

qdμ�.

An additional argument allows to get rid of the floor function here and to obtain
(1.11).

If as above X = (Σγ , g) then, using the conformal mapping T between X and
S2, one obtains from Theorem 1.2 the following extension of the Korevaar estimate
(1.5): for any function q ∈ L1

loc(X) and for all k ≥ 1,

(1.16) λk(−Δ− q) ≤ C (γ + 1) k −
∫
X

(
δq+ − δ−1q−

)
dμ

μ(X)
,

where C > 0 and δ > 0 are absolute constants (see Theorem 5.4).

Stability index of minimal surfaces. Another application of Theorem 1.2
occurs for minimal surfaces4 in R3. Let X be a complete oriented immersed min-
imal surface in R3. The Jacobi operator (or the stability operator) of X is the
operator L = −Δ− 2K, where Δ is the Laplace operator on X associated with the
induced Riemannian metric, and K is the Gauss curvature of X . By definition, the
stability index ind (X) of the minimal surface X is Neg (L). It is well known that
if ind (X) <∞ then the total curvature

Ktotal (X) :=
∫
X

|K|dμ

4For a detailed account of minimal surfaces see the surveys [13] and [43] in the same volume.
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is finite, and X has a finite number of ends and a finite genus. Theorem 1.2 allows
to prove the following result (see also Theorem 6.6).

Theorem 1.3. Let X be a connected complete oriented minimal surface im-
mersed in R3 and let ind (X) <∞. If X has k ends and all the ends are embedded
then

(1.17) ind(X) ≥ c

k
Ktotal (X) ,

where c is an absolute positive constant.

The factor 1
k in (1.17) comes from an estimate of the constant M in (1.9). We

conjecture that in fact

(1.18) ind(X) ≥ cKtotal (X) .

Note that the inequality in the opposite direction is true for any minimal surface
(not necessarily complete) – see [28] and the discussion in Section 6.2 below. As a
step towards (1.18) we prove the following result.

Theorem 1.4. (=Corollary 6.8) Let X be a connected complete oriented min-
imal surface embedded in R3. Then

(1.19) ind(X) ≥ c
√
Ktotal (X),

where c is an absolute positive constant.

The inequality (1.19) is obtained from (1.17) and the following estimate:

ind (X) ≥ k − 1,

where k is the number of ends of X (it suffices to assume that ind (X) <∞). The
latter estimate is proved in Theorem 6.7 using the techniques specific to minimal
surfaces.

Manifolds of higher dimension. Let (X, g) be a compact Riemannian man-
ifold of dimension n ≥ 2, μ be its Riemannian measure, and q ≥ 0 be a L1

loc-function
on X . We claim that

(1.20) Neg (−Δ− q) ≥ c

μ (X)n/2−1

(∫
X

qdμ

)n/2

,

where c is a positive constant depending only on the conformal class of the Rie-
mannian metric g (see Theorem 5.9 and Example 5.12).

Assuming for simplicity that q is positive and continuous, we obtain from (1.20)
that, for all k = 1, 2, ...,

λk

(−Δ
q

)
≤ C

μ (X)∫
X
qdμ

(
k

μ (X)

)2/n

,

where C = c−2/n. In the case q ≡ 1 this estimate was proved by Korevaar [37].
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Eigenvalues of a boundary surface. Let us mention another amusing appli-
cation of the estimate (1.5). LetM be a 3-dimensional Cartan-Hadamard manifold,
and let Ω ⊂M be a bounded open set with a smooth boundary Γ that is diffeomor-
phic to Σγ . Let λk (Ω) denote the k-th smallest eigenvalue of the Laplace operator
in Ω with the Dirichlet boundary condition, and λk (Γ) be the k-th smallest eigen-
value of the Laplace operator on Γ (in both cases, k starts with 1). Then, for any
k = 1, 2, ..., we have

λk (Ω) ≥
c

γ + 1
λk+1 (Γ)
k1/3

,

where c is an absolute positive constant (see Theorem 5.14).

Higher order operators. Let m be a positive integer, and consider in Rn

the operator
L = (−Δ)m − q

where q ∈ L1
loc. One defines the counting functions Nλ (L) and Neg (L) in the same

way as above using the associated energy form. We claim that if n = 2m and q ≥ 0
then

Neg ((−Δ)m − q) ≥ c

∫
Rn

qdμ,

where c = c (n) > 0 (see Example 4.19).

Fractals sets. As we have already mentioned, the main estimates of counting
functions in Theorems 4.1, 4.17 are obtained in the general setting of energy forms
on metric spaces. This makes it possible to apply the present results to fractal
sets. Without going into details of the theory of fractals5, let us just say that a
fractal set can typically be regarded as a metric space (X, d) endowed with a Radon
measure μ and an energy functional E . The properties of these spaces resemble
many properties of Rn but with fractional dimensions.

Let B (x, r) denote a ball of the metric d. Then, normally, there exists a positive
exponent α such that

μ (B (x, r)) # rα,

for all x ∈ X and r > 0 (or for a bounded range of r if X is bounded). With the
energy functional E one associates the capacity capE defined similarly to (1.2) (see
Section 2.2 for details), which normally admits the following estimate:

capE(B (x, r) , B (x, 2r)) # rα−β,

where β > 0. The next result (which is a particular case of Corollary 4.14) is
obtained using the techniques based on Theorem 1.1.

Theorem 1.5. Let (X, d) be a metric space, μ be a non-atomic Radon measure
on X such that 0 < μ (X) <∞, and E be a local, positive definite, closable energy
form on (X,μ), whose generator H has a discrete spectrum. Assume that, for some
positive constants N,C1, C2,

(i) any ball B (x, r) in X can be covered by at most N balls of radii r/2;
(ii) for some α > 0 and β ≥ α and for any ball B (x, r) in X, the following

estimates hold:

μ (B (x, r)) ≤ C1r
α and capE(B (x, r) , B (x, 2r)) ≤ C2r

α−β .

5For a detailed account of fractals, we refer the reader to lecture notes [2] by Barlow as well

as to his article [4] in this volume. See also [25] for function theory on fractal spaces.
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Then, for all k = 1, 2, ...,

λk (H) ≤ C

(
k

μ (X)

)β/a

,

where the constant C depends on N,C1, C2, α, β.

The structure of the paper. In Section 2 we introduce the abstract notion
of an energy form and the associated capacity, prove their general properties, and
give examples.

In Section 3 we present the proof of Theorem 1.1.
In Section 4 we prove general estimates for the counting function of an abstract

energy form, using decomposition of a metric space by capacitors.
In Section 5 we estimate the counting function and the eigenvalues of Schrödinger

type operators on Riemannian manifolds and Riemann surfaces (most of these re-
sults were surveyed above).

In Section 6 we apply these estimates to the Jacobi operator and deduce lower
bounds of the stability index of minimal surfaces in R3.

Acknowledgment. The first author is thankful to David Hoffman for the
useful discussions about minimal surfaces.

2. Energy forms on measure spaces

2.1. Energy form. Let X be a topological space and let C0 (X) be the space
of all continuous functions on X with compact supports, endowed with the sup-
norm.

Definition 2.1. A C0-energy form (E ,F) on a topological space X is a sym-
metric bilinear form E (f, g), defined on a dense subspace F ⊂ C0 (X).

Below, we will introduce also L2-energy forms. By default, by an energy form
we will mean a C0-energy form.

An energy form (E ,F) is called positive definite if E [f ] ≥ 0 for all f ∈ F . An
energy form (E ,F) is called local if E (f, g) = 0 whenever function f, g ∈ F have
disjoint supports. The form (E ,F) is called strongly local if, for all f, g ∈ F ,

f ≡ const in a neighborhood of supp g =⇒ E (f, g) = 0.
Clearly, a strongly local energy form is local.

A measure μ on X is called a Radon measure if μ is defined on all Borel sets
of X and μ is finite on all compact sets. A couple (X,μ) is called a measure space
if X is a topological space and μ is a Radon measure on X . In the presence of
measure, we can consider more general energy forms.

Definition 2.2. An L2-energy form (E ,F) in a measure space (X,μ) is a sym-
metric bilinear form E (f, g), defined on a dense subspace F ⊂ L2 (X,μ).

Clearly, any C0-energy form is also an L2-energy form. Note also that any
signed Radon measure σ can be considered as an energy form with domain C0 (X),
as follows:

(2.1) σ(f, g) :=
∫
X

fg dσ.

Moreover, (2.1) is defined for all f, g ∈ L2 (X, |σ|) (where |σ| is the total variation
of σ) so that (2.1) defines an L2-energy form in L2 (X, |σ|).
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An L2-energy form (E ,F) is called semi-bounded below if there exists a constant
K ≥ 0 such that for all f ∈ F
(2.2) E [f ] := E (f, f) ≥ −K‖f‖2,
where ‖f‖2 is the L2 (X,μ)-norm of f . In particular, a positive definite form is
semi-bounded below with the constant K = 0.

An L2-energy form (E ,F) is called closed if it is semi-bounded below and the
domain F is a Hilbert space with respect to the inner product

(2.3) (f, g)E := E(f, g) + (K + 1)μ (f, g) ,

where K is the constant from (2.2).
An L2-energy form (E ,F) is called closable if it is semi-bounded below and, for

any sequence {fn} ⊂ F ,
‖fn‖2 → 0 and E [fn − fm]→ 0 =⇒ E [fn]→ 0.

It is well-known that a closable L2-form (E ,F) has a unique extension to a
subspace F̃ of L2 (X,μ) so that (E , F̃) is closed and F is dense in F̃ with respect
to the inner product (2.3). The extension of E to F̃ is also denoted by E , and the
form (E , F̃) is called the closure of (E ,F).

2.2. Capacity. LetX be a topological space. For any Borel setG ⊂ X denote
by C0 (G) the set of all continuous functions f on X such that supp f is compact
and is contained in the interior of G. Any couple (F,G) of Borel subsets of X such
that F ⊂ G, will be referred to as a capacitor.

Let (E ,F) be a positive definite energy form on X . For any capacitor (F,G),
define the class T (F,G) of test functions as follows:
(2.4) T (F,G) :=

{
f ∈ F ∩ C0 (G) : 0 ≤ f ≤ 1, f = 1 in a neighborhood of F

}
,

and define the capacity capE(F,G) by

(2.5) capE(F,G) := inf
f∈T (F,G)

E [f ] .

If T (F,G) is empty then capE(F,G) = +∞.
For a general theory of capacities see [20] or [42]. Here we will need only two

elementary facts.

Lemma 2.3. Let (E ,F) be a positive definite energy form. If F ⊂ G ⊂ F ′ ⊂ G′

are Borel sets then

(2.6) capE(F
′ \G,G′ \ F )1/2 ≤ capE(F,G)1/2 + capE(F

′, G′)1/2

Proof. If T (F,G) or T (F ′, G′) is empty then (2.7) trivially holds. Otherwise,
observe that if f ∈ T (F,G) and g ∈ T (F ′, G′) then the function g − f is in
T (F ′ \G,G′ \ F ) (see Fig. 1).

Since the form E is positive definite, it satisfies the Cauchy-Schwarz inequality
inequality. Hence, we obtain

capE(F
′ \G,G′ \ F ) ≤ E [g − f ]

= E [f ] + E [g]− 2E (f, g)
≤ E [f ] + E [g] + 2

√
E [f ]E [g]

=
(√
E [f ] +

√
E [g]

)2

.
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g
f

F

G \F
F \G

G

G

F

Figure 1. Capacitor (F ′ \G,G′ \ F )

Taking infimum over f and g, we obtain (2.6).

Remark 2.4. If the form (E ,F) is in addition strongly local then (2.6) improves
as follows:

(2.7) capE(F
′ \G,G′ \ F ) ≤ capE(F,G) + capE(F ′, G′).

Indeed, in the above notation, f ∈ C0 (G) and g|F ′ ≡ 1 imply that g ≡ 1 in a
neighborhood of supp f , whence E (f, g) = 0. Hence, we obtain

capE(F
′ \G,G′ \ F ) ≤ E [g − f ] = E [f ] + E [g] ,

whence (2.7) follows.

Lemma 2.5. Let (E ,F) be a strongly local positive definite energy form. If
E ⊂ F ⊂ G are Borel sets then

(2.8) capE(E,F )−1 + capE(F,G)
−1 ≤ capE(E,G)−1.

Proof. Note that by the monotonicity property of the capacity,

(2.9) capE(E,F ) ≥ capE(E,G) and capE(F,G) ≥ capE(E,G).

Therefore, if one of the capacities capE(E,F ), capE(F,G) is equal to ∞ then (2.8)
follows from (2.9). Otherwise the classes T (E,F ) and T (F,G) are non-empty.
Observe that, for any test functions f ∈ T (E,F ) and g ∈ T (F,G), the function
h = tf + (1− t) g belongs to T (E,G), for any t ∈ [0, 1] (see Fig. 2).

F
G

g
f

E

Figure 2. Capacitors (E,F ) and (F,G)

By the strong locality, f ∈ C0 (F ) and g|F ≡ 1 imply E (f, g) = 0, whence
(2.10) capE(E,G) ≤ E [h] = t2E [f ] + (1− t)2 E [g] .
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If E [f ] = E [g] = 0 then (2.10) yields capE(E,G) = 0, and (2.8) is trivially satisfied.
Otherwise, taking in (2.10) t = E[g]

E[f ]+E[g] , we obtain

capE(E,G) ≤ E [f ]E [g]
E [f ] + E [g] ,

whence (2.8) follows.

2.3. Generator. Let (X,μ) be a measure space and (E ,F) be a L2-energy
form on X .

Definition 2.6. A densely defined linear operator H in L2 (X,μ) is called a
generator of the form (E ,F) if dom(H) ⊂ F and

(2.11) E(f, g) = μ(Hf, g) for all f ∈ dom(H) and g ∈ F .
It follows from (2.11) that a generator is a symmetric operator, in the sense

that
μ (Hf, g) = μ (f,Hg) for all f, g ∈ dom(H).

Conversely, any densely defined symmetric operator H in L2 (X,μ) determines the
L2-energy form (EH , dom(H)) by

(2.12) EH(f, g) := μ (Hf, g) .

Clearly, H is a generator of EH .
If the form (E ,F) is closable then its closure (E , F̃) has a unique generator

H , which is a self-adjoint operator on L2(X,μ) (see for example [16, Theorem
4.4.2]). We will refer to H as the self-adjoint generator of (E , F̃), and also of (E ,F)
(although H may be not a generator of (E ,F)). If in addition the operator H is
non-negative definite then H1/2 is defined. In it known that dom(H1/2) = F̃ and

(2.13) E (f, g) = μ
(
H1/2f,H1/2g

)
for all f, g ∈ F̃

(see [15]). If H is a self-adjoint, semi-bounded below operator in L2 (X,μ) then
the form EH defined by (2.12) is closable, and its self-adjoint generator is H .

2.4. Counting function. Let (E ,F) be an L2-energy form on a measure
space (X,μ). Define the counting function Nλ (E , μ) as the supremum of the di-
mensions of all linear spaces V ⊂ F such that

(2.14) E [f ] < λμ [f ] for any f ∈ V \ {0} ,
where λ is a real parameter; that is,

(2.15) Nλ(E , μ) := sup {dimV : V ≺ F and E [f ] < λμ [f ] ∀f ∈ V \ {0}} ,
where the relation V ≺ F means that V is a linear subspace of F . If the family of
spaces V in (2.15) is empty then we assign to the sup the value 0.

If (E ,F) is a C0-energy form on X then N0 (E , μ) does not depend on μ so we
will use in this case notation Neg (E); that is
(2.16) Neg (E) := sup {dimV : V ≺ F and E [f ] < 0 ∀f ∈ V \ {0}} .
For a closable L2-energy form (E ,F), consider also the modified counting function

(2.17) N ∗λ (E , μ) = sup
{
dimV : V ≺ F̃ and E [f ] ≤ λμ [f ] ∀f ∈ V

}
,
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where F̃ is the domain of the closure of (E ,F). Note that there are two differences
between N ∗λ (E , μ) and Nλ (E , μ): using F̃ instead of F and using a non-strict
inequality.

Lemma 2.7. Let (E ,F) be a closable L2-energy form on a measure space (X,μ)
and let H be its self-adjoint generator. Then, for any real λ, we have

(2.18) Nλ (E , μ) = dim Im1(−∞,λ) (H)

and

(2.19) N ∗λ (E , μ) = dim Im1(−∞,λ] (H) .

Here 1A is the indicator function of the setA ⊂ R, and the operators 1(−∞,λ) (H)
are 1(−∞,λ] (H) are understood in the sense of spectral theory. In particular, if the
spectrum of H is discrete then dim Im1(−∞,λ) (H) is the number of the eigenvalues
ofH below λ, counted with the multiplicities, and dim Im1(−∞,λ] (H) is the number
of the eigenvalues of H , which are at most λ, also counted with the multiplicities.

The two quantities dim Im1(−∞,λ) (H) and dim Im1(−∞,λ] (H) are normally
referred to as the counting functions of the operator H . Here we prefer to give a
more general definition of the counting functions as follows. For any densely defined
symmetric operator H in L2 (X,μ) let us define the counting function Nλ (H) by

Nλ (H) := Nλ (EH , μ) ,

where the form EH is defined by (2.12). Also, set Neg (H) = N0 (H).
If the operator H is self-adjoint and semi-bounded below then the form EH is

closable and its self-adjoint generator is H . Therefore, by (2.18) we obtain that

(2.20) Nλ (H) = dim Im1(−∞,λ) (H) .

For such an operator H , define also the modified counting function by

(2.21) N ∗λ (H) := N ∗λ (EH , μ) .

Then by (2.19) we obtain that

(2.22) N ∗λ (H) = dim Im1(−∞,λ] (H) .

Hence, the identities (2.20) and (2.22) justify the above definitions of Nλ (H) and
N ∗λ (H).

Proof of Lemma 2.7. Without loss of generality, we can assume that E is
positive definite, and hence, the generatorH is also positive definite. For any λ < 0
all terms in (2.18) and (2.19) vanish, so we can assume in the sequel λ ≥ 0.

Let {Et}t∈R be the spectral resolution of the operator H in L2 = L2 (X,μ),
that is

Et = 1(−∞,t) (H) = 1[0,t) (H) .

By spectral theory, for any f ∈ L2 (X,μ),

(2.23) ‖f‖2 =
∫

[0,+∞)

d‖Etf‖2

(where ‖ · ‖ is the norm in L2), and, for any f ∈ F̃ = dom(H1/2),

(2.24) E [f ] = ‖H1/2f‖2 =
∫

[0,+∞)

td‖Etf‖2.
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Let us first prove (2.19). To prove the inequality

(2.25) N ∗λ (E , μ) ≤ dim Im1[0,λ] (H) ,

it suffices to show that, for any finitely dimensional subspace V ⊂ F̃ satisfying
(2.17), we have

dimV ≤ dim Im1[0,λ] (H) .

Assuming the contrary, we find a function v ∈ V \ {0} such that v is orthogonal
to Im1[0,λ](H). In particular, Etv = 0 for all t ≤ λ so that from (2.23) and (2.24)
imply

(2.26) ‖v‖2 =
∫

[λ,+∞)

d‖Etv‖2 and E [v] =
∫

[λ,+∞)

td‖Etv‖2

whence E [v] ≥ λ‖v‖2. By v ∈ V the opposite inequality also holds, that is E [v] =
λ‖v‖2. In the view of (2.26) it is only possible when, for any ε > 0,∫

[λ+ε,+∞)

d‖Etv‖2 = 0,

which implies that v ∈ Im1{λ}(H), while v is orthogonal to this space.
To prove the opposite inequality, that is

(2.27) N ∗λ (E , μ) ≥ dim Im1[0,λ] (H) ,

let us observe that, for any w ∈ Im1[0,λ] (H),

(2.28) ‖w‖2 =
∫

[0,λ]

d‖Etv‖2 and E [v] =
∫

[0,λ]

td‖Etv‖2,

whence E [w] ≤ λ‖w‖2. Therefore, the space V := Im1(−∞,λ] (H) ⊂ F̃ satisfies
(2.17), which implies (2.27).

Let us now prove (2.18), that is

Nλ (E , μ) = dim ImEλ.

The inequality

(2.29) Nλ(E , μ) ≤ dim ImEλ

is proved similarly to (2.25). Assume from the contrary that there exists a finitely
dimensional subspace V ⊂ F satisfying (2.14) and such that dimV > dim ImEλ.
Then there exists a vector v ∈ V \ {0} such that v is orthogonal to ImEλ. There-
fore, Etv = 0 for all t ≤ λ, which implies (2.26) and hence E [v] ≥ λ‖v‖2, which
contradicts v ∈ V .

Before we prove the opposite inequality, that is

(2.30) dim ImEλ ≤ Nλ(E , μ),
let us verify that

(2.31) E [w] < λ‖w‖2 for any w ∈ ImEλ \ {0} .
Indeed, for all w ∈ ImEλ we have (2.28), whence E [w] ≤ λ‖w‖2. In the view of
(2.28) the equality is possible only if w ∈ Im1{λ}(H) which is impossible because
the spaces Im1{λ}(H) and ImEλ are orthogonal.

Let us now prove (2.30). If ImEλ ⊂ F then taking V = ImEλ we conclude the
proof. However, in general we can only ensure that ImEλ ⊂ F̃ . In order to prove
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(2.30) in full generality, we will show that, for any positive integer n ≤ dim ImEλ,
there exists a subspace V ⊂ F of the dimension n satisfying (2.14).

Consider the following inner product in F̃

(f, g)E := (f, g)L2 + E (f, g) .

Since ImEλ ⊂ F̃ , there exists a sequence {wk}nk=1 in ImEλ, which is orthonormal
with respect to the inner product (·, ·)E . Consider the following subspace of F̃

W := span {w1, w2, ...wn}

and show that there exists β < λ such that

(2.32) E [w] ≤ β‖w‖2 for any w ∈ W .

Indeed, set

S := {f ∈ W : ‖f‖ = 1} and β := sup
f∈S
E [f ] ,

so that (2.32) holds by linearity. Let us verify that β < λ. The sphere S is a compact
subset of the finite dimensional space W , and E [f ] is a continuous functional on
W . Hence, there is a point f ∈ S such that E [f ] = β. On the other hand, by (2.31)
we have E [f ] < λ for any f ∈ S, whence β < λ.

Since F is dense in F̃ in the norm

(2.33) ‖f‖E := (f, f)1/2
E =

(
‖f‖2 + E [f ]

)1/2
,

for any ε > 0 there exists a sequence {vk}nk=1 in F such that

‖vk − wk‖E < ε for all k = 1, 2, ..., n.

Set

V = span (v1, v2, ..., vn)

and observe that V ⊂ F and dimV = n provided ε is small enough. Furthermore,
let us show that ε can be chosen so small that

(2.34) E [v] < λ‖v‖2 for any v ∈ V \ {0} ,

which would finish the proof of (2.30). For any v ∈ V \ {0} there exists a vector
ξ = (ξ1, ξ2, ..., ξn) ∈ Rn \ {0} such that

v =
∑
k

ξkvk .

Set

w =
∑
k

ξkwk

and observe that w ∈ W and

‖w‖E =
(∑

k

ξ2
k

)1/2

= |ξ| .
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Then we have

‖v − w‖E = ‖
∑
k

ξk (vk − wk) ‖E

≤
∑
k

|ξk| ‖vk − wk‖E

≤
(∑

k

|ξk|2
)1/2(∑

k

‖vk − wk‖2E

)1/2

≤ |ξ|
√
nε,

whence

(2.35) ‖v − w‖E ≤
√
nε‖w‖E .

In particular, we obtain from (2.35)

(2.36) ‖v‖ ≥ ‖w‖ −
√
nε‖w‖E

and

(2.37) E [v]1/2 ≤ E [w]1/2 +
√
nε‖w‖E .

Setting

R [w] :=
E [w]1/2

‖w‖ ≤
√
β

and using

‖w‖E ≤ ‖w‖+ E [w]1/2 = (1 +R [w]) ‖w‖ ≤ (1 +
√
β)‖w‖ =: c‖w‖,

we obtain

E [v]1/2

‖v‖ ≤ E [w]
1/2 +

√
nεc‖w‖

‖w‖ − √nεc‖w‖ =
R [w] +

√
nεc

1−√nεc ≤
√
β +
√
nεc

1−√nεc .

Since β < λ, the right hand side here is smaller than
√
λ provided ε is small enough,

whence (2.34) follows.

For the rest of this section we fix an L2-energy form (E ,F) on (X,μ) and use
the short notation Nλ = Nλ (E , μ). The function λ �→ Nλ is monotone increasing
and takes only values 0, 1, 2, ...,+∞. It is useful to observe that this function is left
continuous, that is

(2.38) Nλ = lim
t→λ−

Nt.

Indeed, let V be a finite dimensional space satisfying (2.14). As it follows from the
compactness argument (see the above proof), there exists t < λ such that

E [v] < t‖v‖2 for any v ∈ V \ {0} ,
which implies Nt ≥ dimV and hence (2.38).

It is natural to interpret the jumps of the function Nλ as the eigenvalues of the
form E . Namely, for any positive integer k = 1, 2, 3, ..., set

(2.39) λk = λk (E , μ) := inf {λ ∈ R : Nλ ≥ k} .
Here we allow λk to take also values ±∞. It is straightforward to see that, for any
real λ,

(2.40) Nλ = sup {k : λk < λ} ,
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where the supremum is taken over all positive integers k (see Fig. 3).

λ

k

0

1

2

3

4

λ1 λ2 λ3=λ4

5

λ5 λ6

Function k = λ

Function λ = λk

Figure 3. Sample graphs of functions λ �→ Nλ (horizontal) and
k �→ λk (vertical)

The following statement will allow us to switch between the estimates of Nλ

and those of λk.

Lemma 2.8. Let a, b be reals, and a > 0.
(a) If, for all λ > b,

Nλ ≥ �
λ− b

a
�,

then, for all k = 1, 2, ...
λk ≤ ak + b.

(b) If, for all λ > b,

Nλ ≥ �
λ− b

a
�,

then for all k = 1, 2, ...
λk ≤ a (k − 1) + b.

Here �·� is the floor function, that is �x� is the maximal integer, which is at
most x, and �·� is the ceiling function, that is �x� is the minimal integer, which is
at least x.

Proof. (a) Set λ = ak+ b and observe that for this λ, we have Nλ ≥ �k� = k.
Therefore, by (2.39) we obtain λk ≤ λ, which was to be proved.

(b) Choose λ = a (k − 1) + b+ ε for some ε > 0. Then by the hypothesis

Nλ ≥ �k − 1 +
ε

a
� = k,

whence by (2.39) λk ≤ λ. The claim follows by letting ε→ 0.
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Remark 2.9. Assume that the form (E ,F) is closable and H is its self-adjoint
generator. The spectrum spec (H) is bounded below, and let λess be the bottom
of the essential spectrum of H . In particular, the spectrum of H below λess is
discrete.

By (2.18), for any λ < λess, Nλ is the sum of the multiplicities of all the
eigenvalues of H below λ, and, for any λ > λess, Nλ = +∞. If n := Nλess <∞ then
there are exactly n eigenvalues ofH below λess, and they coincide with λ1, λ2, ..., λn,
while for all k > n we have λk = λess. If n =∞ then all the eigenvalues of H below
λess are given by the sequence {λk}∞k=1.

2.5. Perturbation of an energy form. As already was mentioned above,
any signed Radon measure σ on a topological space X defines an energy form on
C0 (X) by

σ(f, g) :=
∫
X

fg dσ.

For any C0-energy form (E ,F) on X , consider a new energy form (E − σ,F) defined
by

(E − σ)(f, g) := E(f, g)− σ(f, g),

which is called the perturbation of the form (E ,F) by the signed measure σ. If σ is
a measure then we obviously have the following identity:

(2.41) Nλ (E , σ) = Neg (E − λσ) .

Lemma 2.10. Let an L2-energy form (E ,F) be non-negative definite and clos-
able in L2 (X,μ), and let σ be a signed Radon measure on X, absolutely continuous
with respect to μ. If there exist constants 0 < c < 1 and C > 0 such that, for all
f ∈ F ,
(2.42) σ+ [f ] ≤ cE [f ] + Cμ [f ] ,

then the form (E − σ,F) is closable.
Proof. Consider first the case when σ+ = 0. Then the form E − σ = E + σ−

is non-negative definite, and if {fn}∞n=1 is a sequence in F such that

(2.43) μ [fn]→ 0 and (E + σ−) [fn − fm]→ 0 as n,m→∞,

then also E [fn − fm] → 0. By the closability of the form (E ,F) we conclude that
E [fn] → 0. By (2.43) we have also σ− [fn − fm] → 0 whence it follows that the
sequence {fn} converges in L2 (X,σ−). Since {fn} converges to 0 in L2 (X,μ) and
σ− is absolutely continuous with respect to μ then the limit of {fn} in L2 (X,σ−)
is also 0. Therefore, (E + σ−) [fn] → 0, which means that the form (E + σ−,F) is
closable.

In general, note that E −σ = (E + σ−)−σ+. By the above argument, the form
(E + σ−,F) is closable, so rename it to E and rename σ+ to σ. Hence, we are left
to consider the particular case when σ ≥ 0.

Rewrite (2.42) in the form

(2.44) (1− c) E [f ] ≤ Cμ [f ] + (E − σ) [f ] .

In particular, it implies that E − σ is semi-bounded below. Let {fn}∞n=1 be a
sequence in F such that

(2.45) μ [fn]→ 0 and (E − σ) [fn − fm]→ 0 as n,m→∞.
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Then (2.44) and (2.45) imply that E [fn − fm] → 0, and the closability of (E ,F)
yields that E [fn] → 0. Using again (2.45) we obtain σ [fn − fm] → 0, and as in
part (a) we conclude that (E − σ) [fn]→ 0, which was to be proved.

Consider two topological spaces X and X ′. A continuous mapping T : X → X ′

is said to be proper if, for any compact set K ⊂ X ′, the preimage T−1 (K) is also
compact in X . If T is a proper mapping then any signed Radon measure σ on X
can be lifted to a signed Radon measure σ′ on X ′ by

σ′(·) = σ(T−1(·)).
Obviously, we have then

f ∈ C0 (X ′) =⇒ f ◦ T ∈ C0 (X) and σ [f ◦ T ] = σ′ [f ] .

Definition 2.11. Let (E ,F) and (E ′,F ′) be positive definite C0-energy forms
on topological spaces X and X ′, respectively. We say that a proper mapping
T : X → X ′ has the energy degree at most D, where 0 < D < ∞, if the form E is
dominated by E ′ in the following sense:
(2.46) f ∈ F ′ =⇒ f ◦ T ∈ F and E [f ◦ T ] ≤ DE ′ [f ] .

Lemma 2.12. If a proper mapping T : X → X ′ has the energy degree at most
D then

(2.47) Neg (E − σ) ≥ Neg (DE ′ − σ′) .

Proof. Let V ′ be a linear subspace of F ′ such that
DE ′ [f ]− σ′ [f ] < 0 for any f ∈ V ′ \ {0} .

Consider the space
V = {f ◦ T : f ∈ V ′} .

By (2.46), V is a linear subspace of F and, for any ϕ = f ◦ T ∈ V \ {0}, we have
E [ϕ]− σ [ϕ] ≤ DE ′ [f ]− σ′ [f ] < 0.

Finally, (2.47) follows from dimV ≥ dimV ′.

2.6. Weighted Riemannian manifolds. Let X be a Riemannian manifold
and μ0 be the Riemannian measure on X . For any Radon measure μ on X (which
may be equal to μ0 or not), the couple (X,μ) is called a weighted manifold. On any
weighted manifold (X,μ), there is a natural energy form Eμ defined on C1

0 (X) by

(2.48) Eμ(f, g) =
∫
X

∇f · ∇g dμ,

where ∇ is the Riemannian gradient. Clearly, Eμ is a strongly local positive definite
energy form on X .

Frequently it is more convenient to define the domain of Eμ by F = Lip0 (X)
where Lip0 (X) is the space all locally Lipschitz functions on X with compact
support (note that for any locally Lipschitz function f on X , the gradient ∇f
exists μ0-almost everywhere). This will be our default choice of the domain of Eμ.

Let μ be absolutely continuous with respect to μ0, and the density ψ = dμ/dμ0

be a smooth positive function. Then the form (Eμ,F) is closable in L2 (X,μ), and
its generator is −Δμ, where Δμ is the Laplace operator of (X,μ), defined by

Δμf = ψ−1div (ψ∇f) ,
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where div is the Riemannian divergence. If μ = μ0 is the Riemannian measure then
Eμ is the Riemannian energy form and Δμ = Δ = div ◦ ∇ is the Laplace-Beltrami
operator of X .

For any positive integer m, consider also the energy form of the order m:

(2.49) E(m)
μ (f, g) =

∫
X

∇mf · ∇mg dμ ,

where m is a positive integer and

∇m =

{
Δ

m
2
μ , m even,

∇Δ
m−1
2

μ , m odd

(in the case of even m, the dot “·” in (2.49) denotes the product of scalars, whereas
for odd m it is the inner product of vectors). The form E(m)

μ with the domain
C∞0 (X) is closable, and its generator is (−Δμ)

m.
Given a signed Radon measure σ on a weighted manifold (X,μ), consider a

perturbed form Eμ − σ with the domain F . Its generator is a Schrödinger type
operator −Δμ − σ. In Section 5.2 we will need the following fact.

Lemma 2.13. Let (X,μ) be a weighted manifold, E = Eμ be the energy form
of (X,μ), and σ be a signed Radon measure on X. Let K be a compact subset of
X with empty interior, such that |σ| (K) = 0 and capE(K,U) = 0 for any open set
U ⊂ X containing K. Set X ′ = X \ K, μ′ = μ|X′ , σ′ = σ|X′ , and let E ′ be the
energy form of (X ′, μ′). Then

(2.50) Neg (E ′ − σ′) = Neg (E − σ) .

If in addition μ (K) = 0 then, for all real λ,

(2.51) Nλ (E ′ − σ′, μ′) = Nλ (E − σ, μ) .

Proof. We have F = Lip0 (X) and F ′ = Lip0 (X ′). From F ′ ⊂ F it follows

Nλ (E ′ − σ′, μ) ≤ Nλ (E − σ, μ) ,

so that we need to prove the opposite inequality. To that end, it suffices to show
that, for any finite dimensional subspace V of F such that

(2.52) E [f ] < σ [f ] + λμ [f ] for all f ∈ V \ {0} ,
there exists a subspace V ′ of F ′ of the same dimension as V and such that
(2.53) E [f ] < σ [f ] + λμ [f ] for all f ∈ V ′ \ {0} .

Set ν := σ+λμ and observe that by (2.52) the bilinear form ν (f, g) is an inner
product in V . We will regard V as a finite dimensional Euclidean space with this
inner product. It follows from (2.52) by a compactness argument that there exists
c < 1 such that

(2.54) E [f ] ≤ cν [f ] for any f ∈ V .
Let U be a precompact open neighborhood of K in X to be specified below.

Since supU |f | is a semi-norm in V and any semi-norm in a finite dimensional space
is dominated by any norm, there exists a constant C = CU such that

(2.55) sup
x∈U
|f(x)| ≤ C

√
ν [f ] for any f ∈ V .
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Set ψ = 1− ϕ where ϕ ∈ T (K,U), and define V ′ by
V ′ = {ψf : f ∈ V} .

Clearly, V ′ ⊂ F ′ and dimV ′ ≤ dimV . Let us show that if U is small enough then
dimV ′ = dimV . Indeed, let {Un}∞n=1 be a shrinking sequence of precompact open
neighborhoods of K such that the intersection of all Un is K. The expression

Sn (f) := sup
X\Un

|f |

defines an increasing sequence {Sn} of semi-norms in V . Since K has no interior,
we obtain

lim
n→∞

Sn (f) = sup
X\K
|f | = sup

X
|f | ,

that is limn→∞ Sn is a norm in V . By a compactness argument, we conclude that
Sn is a norm in V for some finite n. So, choose U = Un for this n. Since ψ = 1 on
X \ U we obtain, for any f ∈ V ,

sup
X
|ψf | ≥ sup

X\U
|f | = Sn (f) ,

which implies that ψf ≡ 0 if and only if f ≡ 0, and hence dimV ′ = dimV .
We are left to prove (2.53), which is equivalent to

(2.56) E [ψf ] < ν [ψf ] for any f ∈ V \ {0} .
Indeed, using ∇ψ = −∇ϕ, (2.55), and (2.54), we obtain

E [ψf ] =
∫
X

|∇ (ψf)|2 dμ

=
∫
X

|∇f |2 ψ2dμ+
∫
U

(
−2fψ∇f · ∇ϕ+ f2 |∇ϕ|2

)
dμ

≤ E [f ] + 2C
√
ν [f ]E [f ] E [ϕ] + C2ν [f ] E [ϕ]

=
(√
E [f ] + C

√
ν [f ]E [ϕ]

)2

≤
(√

c+ C
√
E [ϕ]

)2

ν [f ]

and

ν [ψf ] =
∫
X

f2ψ2dν

=
∫
X

f2dν +
∫
U

f2
(
ψ2 − 1

)
dν

≥ ν [f ]− sup
U
|f |2 |ν| (U)

≥
(
1− C2 |ν| (U)

)
ν [f ] ,

whence

(2.57)
E [ψf ]
ν [ψf ]

≤

(√
c+ C

√
E [ϕ]

)2

1− C2 |ν| (U) .

Note that the best constant C = CU in (2.55) is decreasing when U is shrinking.
Since |ν| (U) ≤ |σ| (U) + λμ (U), |σ| (K) = 0, and μ (K) = 0 (the latter is needed
only in the case λ �= 0), by choosing U small enough we can make C2

U |ν| (U)
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arbitrarily close to 0. Since capE(K,U) = 0 we can choose ϕ to make E [ϕ] also
arbitrarily close to 0. Finally, using c < 1, we see that the right hand side of (2.57)
can be made smaller than 1, whence (2.56) follows.

2.7. Fractal spaces. By fractal spaces we mean the fractal sets6 in Rn, ob-
tained by certain self-similar constructions, like the celebrated Sierpinski gasket.
Recall that the Sierpinski gasket SG is constructed from a unit equilateral triangle
T in R2 by, firstly, removing the triangle with the vertices in the middles of the sides
of T , then removing similar middle triangles from the three remaining equilateral
triangles with the sides 1

2 , and so on (see Fig. 4).

Figure 4. Construction of the Sierpinski gasket: after 5 steps.

One can define a distance function d on SG as the induced Euclidean distance
from R2, and a measure μ on SG as the Hausdorff measure Hα where α is the
Hausdorff dimension of SG (in fact, α = log2 3). Furthermore, approximating SG
by a sequence of graphs and considering a scaling limit of discrete energy forms on
the approximating graphs, one defines a positive definite local energy form (E ,F)
on SG, which is closable in L2 (SG, μ). Moreover, its closure (E , F̃) is a regular
Dirichlet form (see for example [2]).

Similar structures can be introduced on most other fractals sets. Let (X, d) be
a metric space, μ be a Radon measure on X , and (E ,F) be a positive definite energy
form on X . If X is obtained by a self-similar construction like above then normally
the metric, measure, and the energy structures on X exhibit certain homogeneity.
Denote by B (x, r) the metric ball of the radius r centered x ∈ X . Typically the
following estimates hold on fractal spaces, for some positive parameters α and β:

(2.58) μ (B (x, r)) # rα

and

(2.59) capE(B (x, r) , B (x, 2r)) # rα−β.

Here the sign # means that the ratio of the left hand side and the right hand side is
bounded from above and below by positive constants, for the specified range of the
arguments. The relations (2.58) and (2.59) are supposed to be true for all x ∈ X
and for some range 0 < r < R of the radius.

6For detailed account of fractals we refer the reader to [2], [3], [4], [36].
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The parameter α from (2.58) is equal to the Hausdorff dimension of (X, d). The
nature of the parameter β, which is called the walk dimension, is more complicated
(see [26] or [25]). For example, for SG we have β = log2 5. The Euclidean space R

n

with the Lebesgue measure μ satisfies (2.58) with α = n, and the standard energy
form Eμ in Rn satisfies (2.59) with β = 2. Moreover, the capacity of the form E(m)

μ

in Rn (defined by (2.49)) satisfies

(2.60) capE(m)
μ
(B (x, r) , B (x, 2r)) = cn,m rn−2m,

where cn,m > 0, that is (2.59) with β = 2m (see [42]). Hence, in this case β is
equal to the order of the generator (−Δ)m.

Also in the general case β can be regarded as the order of the generator of
the energy form. For most fractal spaces one has β > 2 although the generator
is always a Markov operator (that is, satisfies the maximum principle) unlike the
operators of order > 2 in Rn.

We will come back to fractal spaces in Section 4.3.

3. Decomposition of a pseudometric space by annuli

In this section we prove Theorem 3.5, which is the main technical tool of this
paper.

Definition 3.1. Given a set X , we say that a function d : X×X → [0,+∞) is
a pseudometric (or a pseudodistance function) if d is symmetric, that is d (x, y) =
d (y, x), and if d satisfies the triangle inequality, that is

d (x, y) ≤ d (x, z) + d (z, y)

for all x, y, z ∈ X .

So, unlike the notion of a metric, we allow d (x, y) = 0 for distinct x, y. For any
x ∈ X and r ≥ 0, define a ball B (x, r) associated with a pseudometric d as follows:

B (x, r) = {y ∈ X : d (x, y) < r} .
Definition 3.2. A couple (X, d) is called a pseudometric space if X is a topo-

logical space, d is a pseudometric on X , and the function y �→ d (x, y) is continuous
for any x ∈ X (consequently, all balls in a pseudometric space are open sets).

In particular, any metric space is a pseudometric space. Given any set X and a
pseudometric d on it, one can define a topology on X using the balls of d as a base
(although this topology is not necessarily Hausdorff). With this topology, (X, d) is
a pseudometric space. However, in applications the set X may be a priori endowed
with a different topology, for example, if X is a manifold, in which case we require
that this topology is richer that the one induced by d.

Typically, a pseudometric space arises as follows. Let (X ′, d′) be a metric space
and let T : X → X ′ be a continuous mapping from a topological space X to X ′.
Then the identity

d (x, y) = d′ (T (x) , T (y))
defines a continuous pseudometric on X so that (X, d) is a pseudometric space.

Definition 3.3. Given κ > 1 and a positive integer N , we say that a pseudo-
metric space (X, d) satisfies (κ,N)-covering property if, for any ball B (x, r) in X ,
there exists a family of at most N balls of radii r/κ, which cover B (x, r).
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Lemma 3.4. If a pseudometric space (X, d) satisfies (κ,N)-covering property
then it satisfies (λ,M)-covering property for any λ > 1 and some M =M(λ, κ,N).

Proof. Indeed, let n be a positive integer such that κn−1 < λ ≤ κn. Since the
(λ,M)-covering property is monotone in λ, it suffices to assume that λ = κn. If
n = 1 then the the claim is trivial. Let us make the inductive step from n to n+1.
Indeed, by the inductive hypothesis, any ball B (x, r) can be covered by at most
Mn balls B (xi, r/κn). By the assumption, each ball B (xi, r/κn) can be covered by
at most N balls of radius r/κn+1 each. Hence, B (x, r) can be covered by at most
Mn+1 := NMn balls of radius r/κn+1 each, which settles the claim.

It is useful to note that if (X, d) admits a doubling measure μ, that is, a Borel
measure μ such that, for all x ∈ X and r > 0 and for some constant C,

0 < μ (B (x, 2r)) ≤ Cμ (B (x, r)) <∞,
then (X, d) satisfies (2, N) covering property with N ≤ C3.

In a pseudometric space (X, d), for any x ∈ X and 0 ≤ r ≤ R define the annulus

A (x, r, R) := B (x,R)−B (x, r) = {y ∈ X : r ≤ d (x, y) < R} .
Note that A (x, 0, R) = B (x,R) .

For any annulus A = A (x, r, R) and λ ≥ 1 denote by λA the following annulus:

λA = A
(
x, λ−1r, λR

)
.

Similarly, for B = B (x, r) and λ > 0, set λB = B (x, λr) .

Theorem 3.5. Let a pseudometric space (X, d) satisfy (2, N)-covering prop-
erty. Let ν be a Borel measure on X, and assume that there exist positive reals υ
and ρ such that

(3.1) ∀x ∈ X ν (B(x, ρ/2)) ≤ υ and ∃x0 ∈ X ν (B(x0, ρ)) > υ.

Then, for any λ > 1, there exists a family A of �cν(X)
υ � annuli in X satisfying the

following properties:
(a) ν (A) ≥ υ for any A ∈ A;
(b) the annuli {λA}A∈A are disjoint.
Here c is a positive constant depending only on λ and N (for example, one can

define it by c−1 = 2 + 4M
(
200λ3, 2, N

)
).

Remark 3.6. If ν (X) = ∞ then we interpret �c ν(X)
υ � as ∞. In this case we

claim the existence of an infinite (countable) family A of annuli with the properties
(a) and (b).

If ν (X) < ∞ then one cannot have more than ν(X)
υ disjoint sets each with

measure at least υ. Hence, the number �cν(X)
υ � of disjoint annuli guarantied by

Theorem 3.5 is optimal up to a constant factor.
The hypothesis (3.1) excludes, in particular, a situation when measure ν is

concentrated in a few atoms, in which case the conclusion of Theorem 3.5 is no
longer true. Lemma 3.10 will provide a simple sufficient condition for (3.1).

Remark 3.7. For some applications it is useful to know that each annulus in
the family A, which is constructed in the proof, either has the internal radius at
least ρ/2 or is a ball of the radius at least ρ/2.

We precede the proof of Theorem 3.5 by an elementary lemma.
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Lemma 3.8. Let B (x, r) and B (y, s) be two balls in (X, d) and λ > 1 be a real
such that

(3.2) λB (x, r) ∩ 1
2
B (y, s) �= ∅ and B (x, r) \B (y, s) �= ∅ .

Then the following inclusions take place:

B (x, r) ⊂ B (y, (2λ+ 2) r) ,(3.3)
B (y, s) ⊂ B (x, (4λ+ 3) r) ,(3.4)

B (y, ηr) ⊂ B (x, (η + 2λ+ 1) r) for any η > 0.(3.5)

Proof. The hypotheses (3.2) imply that

d (x, y) ≤ λr +
s

2
s ≤ d (x, y) + r .

(see Fig. 5).

yx
B(y,s/2) B(y,s)B(x,r)B(x, r) B(y,s)

Figure 5. Illustration to Lemma 3.8

It follows that

d (x, y) ≤ λr +
d (x, y) + r

2
,

and
d (x, y) ≤ (2λ+ 1) r,

whence

(3.6) s ≤ (2λ+ 1) r + r = (2λ+ 2) r.

Using the above two inequalities, we obtain

B (x, r) ⊂ B (y, r + d (x, y)) ⊂ B (y, (2λ+ 2) r) .

B (y, s) ⊂ B (x, s+ d (x, y)) ⊂ B (x, (4λ+ 3) r) ,
B (y, ηr) ⊂ B (x, ηr + d (x, y)) ⊂ B (x, (η + 2λ+ 1) r) ,

which was to be proved.
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Proof of Theorem 3.5. Set for simplicity

m (κ) =M (κ, 2, N) ,

whereM (κ, 2, N) is the constant from Lemma 3.4. Hence, any ball of radius r can
be covered by at most m (κ) balls of radii r/κ.

Let n be a positive integer such that

(3.7) n ≤ �cν(X)
υ
�.

We will construct two sequences {Ai} and {Bi} where i = 1, 2, ..., 2n, Ai is a family
of annuli in X , and Bi is a family of balls in X . These families will satisfy the
following properties, for all i = 1, 2, ..., 2n:

(i) for any a ∈ Ai,
ν (a) ≥ υ ;

(ii) the annuli {λa}a∈Ai
are disjoint;

(iii) the following inclusion takes place:

(3.8)
⋃

a∈Ai

λa ⊂
⋃
b∈Bi

1
2λ

b ;

(iv) the following inequality takes place:

(3.9) ν

( ⋃
b∈Bi

b

)
≤ Cυi ,

where C = m
(
200λ3

)
;

(v) |A1| = |B1| = 1, and if i > 1 then
– either |Ai| = |Ai−1|+ 1 and |Bi| ≤ |Bi−1|+ 1,
– or |Ai| = |Ai−1| and |Bi| ≤ |Bi−1| − 1 ;

(vi) if i > 1 then Ai ⊃ Ai−1;
(vii) each annulus in Ai either has the internal radius at least ρ/2 or is a ball of

the radius at least ρ/2, and each ball in Bi has the radius at least ρ.
Before we actually construct these sequences, let us show how the existence of

them proves the theorem. Indeed, each family Ai obviously satisfies (a) and (b).
Let us show that one of the families Ai contains at least n annuli. If n = 1 then
we have already |A1| = 1. For an arbitrary n, let us verify that |A2n| ≥ n. To
that end, observe that by (v) the numerical sequence {2 |Ai| − |Bi|}2ni=1 is strictly
increasing whereas 2 |A1| − |B1| = 1. This implies

2 |A2n| − |B2n| ≥ 2n
and hence |A2n| ≥ n. If ν (X) < ∞ then this finishes the proof because we can
take n = �c ν(X)

υ �. If ν (X) = ∞ then we can do the above construction for any
n. The union A =

⋃∞
i=1Ai is infinite and, since the sequence {Ai} is increasing,

A satisfies the conditions (a) and (b), which finishes the proof in this case. The
condition (vii) is not needed for the proof of Theorem 3.5 but settles the claim of
Remark 3.7.

Now we construct the families Ai and Bi by induction in i. For the inductive
basis i = 1, fix x0 ∈ X and ρ > 0 satisfying (3.1). Define the set A1 to consist of
a single annulus A (x0, 0, ρ), and the set B1 to consist of a single ball B

(
x0, 2λ2ρ

)
.

Then the properties (i), (ii), (iii), (v), (vi), (vii) are trivially satisfied. To prove
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(iv), let us observe that B
(
x0, 2λ2ρ

)
is covered by at most m

(
4λ2
)
≤ C balls of

radii ρ/2, and by (3.1) the measure of each ball of radius ρ/2 is at most υ. Hence,

ν
(
B
(
x0, 2λ2ρ

))
≤ Cυ,

which is exactly (3.9). If n = 1 then the construction of A1 finishes the proof.
Hence, in the sequel we assume n > 1.

Assuming that i ≤ 2n − 1 and that Ai and Bi are already defined, let us
construct Ai+1 and Bi+1. Set

(3.10) r := sup

{
r : ν

(
B (x, r) \

⋃
b∈Bi

b

)
≤ υ for all x ∈ X

}
and observe that r ≥ ρ/2 and hence r > 0. It follows from (3.7) and n > 1 that

(3.11) n < c
ν(X)
υ

+ 1 < 2c
ν(X)
υ

.

Hence, we obtain from (3.9), (3.11), and i < 2n that

ν

(
X \

⋃
b∈Bi

b

)
> ν (X)− 2nCυ >

(
1
2c
− 2C

)
nυ > υ

because c−1 = 2+ 4C by the definitions of c and C. We conclude that there exists
a ball B (x, r) such that

(3.12) ν

(
B (x, r) \

⋃
b∈Bi

b

)
> υ,

and, furthermore, we can assume that r ≤ r < 2r (see Fig. 6). In particular, we
have r ≥ ρ/2.

B(x,r)

Balls from i

Figure 6. Choosing ball B (x, r): the measure of the shaded re-
gion is larger than α.

Set

(3.13) k := card
{
b ∈ Bi : B

(
x, λ′r

)
∩ 1
2
b �= ∅

}
where

λ′ := 7λ2 ,

and consider the following three cases.
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Case k = 0. Since 1 < λ < λ′, in this case we have

(3.14) B (x, λr) ∩ 1
2λ

b = ∅ for any b ∈ Bi.

Define Ai+1 and Bi+1 by

Ai+1 = Ai ∪ {A (x, 0, r)} and Bi+1 = Bi ∪
{
B
(
x, 2λ2r

)}
.

Then condition (i) holds by (3.12), and conditions (iii), (v), (vi) are trivially sat-
isfied. Condition (vii) is satisfied because r ≥ ρ/2.

Let us prove (ii). By the inductive hypothesis, we have⋃
a∈Ai

λa ⊂
⋃
b∈Bi

1
2λ

b

(see Fig. 7)

B(x,r)

Balls (2 )-1b, b i

Annuli a, a i

B(x, r)

B(x,2 2r)

Figure 7. Ball B(x, λr) does not intersect 1
2λb, whereas the union

of all λa is covered by the union of all 1
2λb.

Together with (3.14), this implies that λA (x, 0, r) = B (x, λr) does not intersect
any annulus λa, a ∈ Ai, whence (ii) follows.

Let us prove (iv). Since r/2 < r, it follows from (3.10) that, for any z ∈ X ,

(3.15) ν

(
B (z, r/2) \

⋃
b∈Bi

b

)
≤ υ.

The ball B
(
x, 2λ2r

)
can be covered by at most m

(
4λ2
)
≤ C balls of radii r/2

whence it follows that

ν

(
B
(
x, 2λ2r

)
\
⋃
b∈Bi

b

)
≤ Cυ.

By the inductive hypothesis, we have

ν

( ⋃
b∈Bi

b

)
≤ Cυi ,
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whence it follows that

ν

⎛⎝ ⋃
b∈Bi+1

b

⎞⎠ ≤ Cυ (i+ 1) .

Case k ≥ 2. Let us say that a ball b ∈ Bi is selected if

B
(
x, λ′r

)
∩ 1
2
b �= ∅,

so that the number of selected balls is exactly k. In this case, let us set

Ai+1 = Ai

and
Bi+1 = Bi \ {all selected balls} ∪

{
B
(
x, λ′′r

)}
where

λ′′ := 14λλ′ = 98λ3.

Conditions (i), (ii), (vi), (vii) are trivially satisfied. Condition (v) is satisfied
because the number k of the selected balls removed from Bi is at least 2, whereas
only a single ball B

(
x, λ′′r

)
is added.

Let us prove (iii). Let b ∈ Bi be a selected ball. By definition, B
(
x, λ′r

)
∩ 1

2b is
non-empty and, by (3.12), B (x, r)\b is non-empty, too. Then Lemma 3.8 (inclusion
(3.4)) yields

b ⊂ B
(
x,
(
4λ′ + 3

)
r
)
⊂ B

(
x, 7λ′r

)
=

1
2λ

B
(
x, λ′′r

)
(see Fig. 8).

Balls b from i

B(x,7 r)Selected balls b from i

B(x, r)

Figure 8. The selected balls (shaded) are inside B
(
x, 7λ′r

)
.

In particular, the union of all balls 1
2λb, where b is selected, is covered by a

single ball 1
2λB

(
x, λ′′r

)
, whence we obtain⋃

b∈Bi

1
2λ

b ⊂
⋃

b∈Bi+1

1
2λ

b
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The claim of (iii) follows then by the inductive hypothesis.
Let us prove (iv). The ball B

(
x, λ′′r

)
can be covered by at most m

(
2λ′′
)
≤ C

balls of radii r/2 whence it follows from (3.15) that

ν

(
B
(
x, λ′′r

)
\
⋃
b∈Bi

b

)
≤ Cυ.

By definition of Bi+1 and by the inductive hypothesis, we obtain⋃
b∈Bi+1

b ⊂
( ⋃

b∈Bi

b

)
∪
(
B
(
x, λ′′r

)
\
⋃
b∈Bi

b

)
and

ν

⎛⎝ ⋃
b∈Bi+1

b

⎞⎠ ≤ Cυi+ Cυ = Cυ (i+ 1) .

Case k = 1. Set

(3.16) k0 := card
{
b ∈ Bi : B (x, λr) ∩

1
2
b �= ∅

}
and observe that k0 ≤ k. Hence, either k0 = 0 or k0 = 1. If k0 = 0 then the
condition (3.14) is satisfied, and we can argue exactly as in the case k = 0.

Let us consider the main case k0 = 1. Let B (y, s) ∈ Bi be the unique ball such
that

(3.17) B (x, λr) ∩ 1
2
B (y, s) �= ∅.

Set

ã = A(y,
1
2
s, 4λr)

b̃ = B
(
x, 2λλ′r

)
(see Fig. 9) and define the families Ai+1, Bi+1 by

Ai+1 = Ai ∩ {ã} and Bi+1 = Bi ∪ {b̃} .
By (3.12) the difference B (x, r) \B (y, s) is non-empty, which together with (3.17)
shows that the hypotheses of Lemma 3.8 are satisfied. By inequality (3.6) obtained
in the proof of this lemma, we see that s/2 < 4λr so that the annulus ã is well-
defined.

Conditions (v), (vi) are obviously true. Condition (vii) is satisfied because by
the inductive hypothesis the ball B (y, s) (being an element of Bi) has the radius
s ≥ ρ and hence the annulus ã has the internal radius at least ρ/2.

Let us verify (i)− (iv). By Lemma 3.8 we have
B (x, r) ⊂ B (y, (2λ+ 2) r) ⊂ B (y, 4λr) .

Therefore,

ã = B (y, 4λr) \B(y, 1
2
s) ⊃ B (x, r) \B (y, s) ,

which together with (3.12) implies

ν (ã) ≥ ν

(
B (x, r) \

⋃
b∈Bi

b

)
≥ υ,
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B(x, r)

xy

B(y,4 2r)

B(x,r)

B(y,4 r)
B(y,s) B(x, r)

B(y,s/2)

Balls from i\{B(y,s)}

Figure 9. The annulus ã = A
(
y, 1

2s, 4λr
)
is shaded.

whence (i) follows.
To verify (ii) we need to prove that

λã ∩ λa = ∅ for all a ∈ Ai .

It it suffices to prove that

(3.18) λã ∩
⋃
b∈Bi

1
2λ

b = ∅,

because by the inductive hypothesis,

λa ⊂
⋃
b∈Bi

1
2λ

b for all a ∈ Ai .

To prove (3.18), observe that

λã = A(y,
1
2λ

s, 4λ2r) = B
(
y, 4λ2r

)
\ 1
2λ

B (y, s) .

Applying again Lemma 3.8 to the balls B (x, r) and B (y, s), we obtain by (3.5)

B
(
y, 4λ2r

)
⊂ B

(
x, (4λ2 + 2λ+ 1)r

)
⊂ B

(
x, λ′r

)
,

whence

(3.19) λã ⊂ B
(
x, λ′r

)
\ 1
2λ

B (y, s) .

In particular, we immediately see that

(3.20) λã ∩ 1
2λ

B (y, s) = ∅.



178 ALEXANDER GRIGOR’YAN, YURI NETRUSOV, AND SHING-TUNG YAU

By the hypothesis k = 1, there is a unique ball b ∈ Bi such that 1
2b intersects

B
(
x, λ′r

)
, and this ball must be B (y, s). Hence,

B
(
x, λ′r

)
∩ 1
2
b = ∅ for any b ∈ Bi \ {B (y, s)} ,

whence it follows that

(3.21) λã ∩ 1
2λ

b = ∅ for any b ∈ Bi \ {B (y, s)} .

Clearly, (3.18) follows from (3.20) and (3.21).
Let us verify (iii). Indeed, by (3.19) we have

λã ⊂ B
(
x, λ′r

)
=

1
2λ

b̃,

which together with the inductive hypothesis settles the claim.
Finally, let us verify (iv). To that end, it suffices to show that

ν

(
b̃ \
⋃
b∈Bi

b

)
≤ Cυ.

The ball b̃ = B
(
x, 2λλ′r

)
can be covered by at most m

(
4λλ′

)
≤ C balls of radii

r/2, whence the claim follows from (3.15).

Definition 3.9. A measure ν on a pseudometric space (X, d) is called d-non-
atomic if, for any x ∈ X ,

lim
r→0

ν (B (x, r)) = 0.

In other words, this means that

ν (B (x, 0+)) = 0

where
B (x, 0+) :=

⋂
r>0

B (x, r) = {y ∈ X : d (x, y) = 0} .

If d is a metric then B (x, 0+) = {x} and, hence, ν is d-non-atomic if and only if ν
is non-atomic in the usual sense, that is ν ({x}) = 0 for any point x.

The following lemma provides a sufficient condition for hypothesis (3.1).

Lemma 3.10. Let (X, d) be a pseudometric space and ν be a Borel measure on
X. Assume that

(i) all balls in X are precompact;
(ii) measure ν is d-non-atomic and 0 < ν (X) <∞.
Then, for any 0 < υ < ν(X), there exists ρ > 0 satisfying (3.1), that is

(3.22) ∀x ∈ X ν (B(x, ρ/2)) ≤ υ and ∃x0 ∈ X ν (B(x0, ρ)) > υ.

Proof. Define on the interval (0,∞) a function
(3.23) V (r) := sup

x∈X
ν (B (x, r)) .

It is obvious that V (r) → ν (X) as r → ∞. Let us verify that V (r) → 0 as
r → 0. Assuming the contrary, we obtain that there exists a number ε > 0 and
sequences {xk}∞k=1 ⊂ X and {rk}∞k=1 → 0 such that ν (B(xk, rk)) ≥ ε for all k.
If there is a convergent subsequence {xki} → x then this implies ν(B (x, r)) ≥ ε
for any r > 0, which contradicts the hypothesis that ν is d-non-atomic. If there
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is no convergent subsequence of {xk} then the compactness of balls implies that
the sequence {xk} eventually leaves every ball. Therefore, for any fixed r > 0,
there exists a subsequence {xki} such that the balls B (xki , r) are disjoint. By
the finiteness of ν (X) we obtain that ν (B (xki , r)) → 0, whence it follows that
ν (B(xki , rki))→ 0.

Fix r > 0 and set rk = r/2k, k = 0, 1, 2, .... Then V (rk) → 0 as k → ∞ and
hence the union of the intervals [V (rk+1) , V (rk)) is (0, V (r)). Therefore, for any
υ ∈ (0, V (r)), there exists an index k such that

V (rk+1) ≤ υ < V (rk) .

Letting r →∞, we obtain that for any υ ∈ (0, ν (X)) there exists ρ > 0 such that

V (ρ/2) ≤ υ < V (ρ) ,

whence (3.22) follows.
Let us mention for the record that the radius ρ from (3.22) satisfies

(3.24) ρ ≥ V −1 (υ) ,

where V −1 is the generalized inverse to V (r).

Corollary 3.11. Let (X, d) be a pseudometric space and ν be a Radon measure
on X. Assume that

(i) X satisfies (2, N)-covering property:
(ii) all balls in X are precompact;
(iii) measure ν is d-non-atomic.

Then, for any 0 < υ < ν (X) and any positive integer n ≤ �c ν(X)
υ � there exists

a family A of n annuli in X satisfying the following properties:
(a) ν (A) ≥ υ for any A ∈ A;
(b) the annuli {2A}A∈A are disjoint.
Here c is a positive constant depending only on N (for example, one can define

it by c−1 = 2 + 4M (1600, 2, N)).

Proof. If ν (X) = 0 then the statement is void. If 0 < ν (X) < ∞ then, by
Lemma 3.10, the hypothesis (3.1) of Theorem 3.5 is satisfied, whence the claim
follows.

If ν (X) =∞ then, for given υ and n, choose a ball B ⊂ X so big that

υ < ν (B) and n ≤ �cν (B)
υ
�.

Note that ν (B) <∞ because ν is a Radon measure and B is precompact. Applying
the previous case to the measure ν′ = 1Bν, we obtain a family A of

�cν
′ (X)
υ
� = �cν (B)

υ
� ≥ n

annuli satisfying (a) and (b), which was to be proved.

Corollary 3.12. Under the hypotheses of Corollary 3.11, if in addition 0 <
ν (X) < ∞ then, for any positive integer n, there exists a family A of n annuli in
X such that
(a) ν (A) ≥ c ν(X)

n for any A ∈ A;
(b) the annuli {2A}A∈A are disjoint.

Here c is the same as in Corollary 3.11.
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Proof. Indeed, setting υ = c ν(X)
n we immediately obtain the claim from

Corollary 3.11.

Remark 3.13. In the case 0 < ν (X) < ∞ the radius ρ from (3.1) satisfies
(3.24). Hence, by Remark 3.7, each annulus A ∈ A either has the internal radius
≥ 1

2V
−1 (υ) or is a ball of the radius ≥ 1

2V
−1 (υ).

4. Estimating the counting function of an energy form

In this section we will prove the main estimates of the counting function of an
energy form on a pseudometric measure space.

4.1. Main estimate of the counting function. Let σ be a signed measure
on a topological space X , and let σ+ and σ− be the positive and negative parts
of σ, respectively, so that σ = σ+ − σ−. The latter means that for any Borel set
A ⊂ X we have σ (A) = σ+ (A) − σ− (A) , so that σ (A) makes sense and takes
value in [−∞,+∞] provided at least one of the values σ+ (A) and σ− (A) is finite
(note that both σ+ (A) and σ− (A) are finite if σ is Radon and A is compact). If
σ+ (A) = σ− (A) = +∞ then, strictly speaking, σ (A) is not defined, but for the
sake of simplification of the statements we use here the convention that σ (A) = −∞.
The same convention we will use for the difference of any two measures.

For any signed measure and for a constant 0 ≤ δ ≤ 1, denote by σδ the following
signed measure:

(4.1) σδ := δσ+ − σ− .

Clearly, we have (σδ)+ = δσ+ and (σδ)− = σ−.
Now we can state the main result of this paper.

Theorem 4.1. Let (X, d) be a pseudometric space and (E ,F) be an energy form
on X. Assume that, for some positive constants N,Q, the following conditions hold:

(i) (X, d) satisfies (2, N)-covering property;
(ii) the energy form (E ,F) is local and positive definite, and for any ball B in

X, we have

(4.2) capE(B, 2B) ≤ Q.

Then, for any signed Radon measure σ on X such that σ+ is d-non-atomic, we
have

(4.3) Neg (E − σ) ≥ �σδ(X)
5Q

�,

where δ ∈ (0, 1) depends only on N .

We do not claim that the constants 5 and δ in (4.3) are sharp.

Example 4.2. Let X be the Euclidean space Rn and E = E(m)
μ be the m-th

order energy form defined by (2.49) (where μ is the Lebesgue measure on Rn). By
(2.60), the hypothesis (4.2) holds provided n = 2m. Hence, for any non-atomic
Radon measure σ on Rn, we obtain by Theorem 4.1

Neg (E − σ) ≥ �c σ (Rn)�
where c > 0 is a constant depending on n and m. In fact, one has here a better
inequality

Neg (E − σ) ≥ c σ (Rn) ,
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as will follow from Theorem 4.17. Since the generator of the form E−σ is the opera-
tor (−Δ)m−σ, the above inequalities give also lower bounds for Neg ((−Δ)m − σ).

The proof of Theorem 4.1 will be given in Section 4.4 after a preparatory result
in Section 4.2. Here we show what consequences can be deduced from (4.3).

Lemma 4.3. Let σ and ν be two signed measures and 0 < δ ≤ 1. Then the
following is true.
(a) (σ + ν)δ ≥ σδ + νσ;
(b) δσδ ≥ σδ2 ;
(c) If a measurable set A is such that either ν+ (A) = 0 or ν− (A) = 0 then

(4.4) (σ + ν)δ (A) ≥ (σδ2 + δν) (A) ,

provided the right hand side of (4.4) is non-negative.

Proof. (a) Let us first show that if μ1 and μ2 are two measures then

(4.5) (μ1 − μ2)δ ≥ δμ1 − μ2.

Indeed, set μ := μ1 − μ2 and observe that there exists a measure α such that

μ1 = μ+ + α and μ2 = μ− + α.

Then
δμ1 − μ2 = δ

(
μ+ + α

)
−
(
μ− + α

)
= μδ + (δ − 1)α ≤ μδ,

that is (4.5).
Applying (4.5) to μ1 = σ+ + ν+ and μ2 = σ− + ν−, we obtain

(σ + ν)δ ≥ δ (σ+ + ν+)− (σ− + ν−) = σδ + νδ,

which was to be proved.
(b) We have

δσδ = δ2σ+ − δσ− ≥ δ2σ+ − σ− = σδ2 .

(c) By part (a) we have

(σ + ν)δ (A) ≥ σδ (A) + δν+ (A)− ν− (A) .

If ν− (A) = 0 then

(σ + ν)δ (A) ≥ σδ (A) + δν (A) ≥ (σδ2 + δν) (A) .

If ν+ (A) = 0 then

(4.6) (σ + ν)δ (A) ≥ σδ (A)− ν− (A) = σδ (A) + ν (A) .

By hypothesis, we have
σδ2 (A) + δν (A) ≥ 0,

which implies by part (b) than

δσδ (A) + δν (A) ≥ 0.
Hence, σδ (A) + ν (A) ≥ 0 whence, by δ ≤ 1,

σδ (A) + ν (A) ≥ δσδ (A) + δν (A) ≥ σδ2 (A) + δν (A) .

Substituting into (4.6) we finish the proof.
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Lemma 4.4. Let (E ,F) be an energy form on a pseudometric space (X, d), and
assume that, for any signed Radon measure σ on X such that σ+ is d-non-atomic,

(4.7) Neg (E − σ) ≥ �σδ(X)
C
�,

where 0 < δ ≤ 1 and C > 0 are some constant. If μ is a d-non-atomic measure on
X then, for all real λ,

(4.8) Nλ (E − σ, μ) ≥ �σδ2 (X) + δλμ(X)
C

�.

If 0 < μ (X) <∞ then, for any k = 1, 2, ...,

(4.9) λk(E − σ, μ) ≤ Ck − σδ2(X)
δμ(X)

.

Proof. Set σ̃ = σ + λμ. Then σ̃ is a signed Radon measure on X , and σ̃+ is
d-non-atomic. By (2.41) we have

Nλ (E − σ, μ) = Neg (E − σ̃) .

Applying (4.3) to σ̃ instead of σ, we obtain

(4.10) Nλ (E − σ, μ) ≥ � (σ + λμ)δ (X)
C

�.

If σδ2 (X) + δλμ(X) ≤ 0 then (4.8) holds trivially. Otherwise, we have by Lemma
4.3,

(σ + λμ)δ ≥ σδ2 (X) + δλμ(X),

whence (4.8) follows. Finally, (4.9) follows from (4.8) by Lemma 2.8.

Remark 4.5. Hence, the estimates (4.8) and (4.9) are true in the setting of
Theorem 4.1 with C = 5Q. It is not known yet whether the constant δ in Theorem
4.1 can be taken δ = 1. If so then σδ (X) and σδ2 (X) could be replaced by σ (X),
which would be most convenient for applications. If σ ≥ 0 or σ ≤ 0 then this can
be achieved by changing the other constants. For example, if σ ≥ 0 then σδ2 = δ2σ
and (4.8) becomes

(4.11) Nλ (E − σ, μ) ≥ �δσ (X) + λμ(X)
C′

�,

where C′ = C/δ. Similarly, (4.9) becomes

(4.12) λk(E − σ, μ) ≤ C′k − δσ(X)
μ(X)

.

It would be very useful to prove (4.11) and/or (4.12) also for a signed measure σ.
In Section 5.5 we prove (4.12) for a signed measure σ assuming in addition that E
is a Riemannian energy form and the perturbed form E −σ is positive definite. We
conjecture that (4.11) and (4.12) are true in general, without these assumptions.

Remark 4.6. If the floor function in (4.7) is replaced by the ceiling function
(as will be in Theorem 4.17 below) then the floor function in (4.8) is also replaced
by the ceiling function, and the term Ck in the right hand side of (4.9) is replaced
by C (k − 1).
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4.2. Decomposition of a pseudometric space by capacitors. We say
that a sequence {(Fi, Gi)}ni=1 of capacitors is disjoint if the sequence of sets {Gi}ni=1

is disjoint. The following result plays the crucial role in the proof of Theorem 4.1.

Theorem 4.7. Let (X, d) be a pseudometric space, ν be a Radon measure on
X, and (E ,F) be an energy form on X. Assume that the following hypotheses are
satisfied, for some positive constants N,Q:

(i) (X, d) satisfies (2, N)-covering property;
(ii) measure ν is d-non-atomic;
(iii) the energy form (E ,F) is positive definite and, for any ball B in X,

(4.13) capE(B, 2B) ≤ Q.

Then, for any 0 < υ < ν (X) and any positive integer n such that

(4.14) n ≤ �cν(X)
υ
�,

there exist n disjoint capacitors (Fi, Gi) in X such that, for all i = 1, 2, ..., n,

(4.15) ν(Fi) ≥ υ

and

(4.16) capE(Fi, Gi) ≤ 4Q.

Here c is a positive constant depending only on N .

A version of this Theorem was proved in [27, Theorem 1] using an abstract ver-
sion of Korevaar’s argument [37]. The present Theorem 4.7 needs fewer assump-
tions about the energy form, unlike [27, Theorem 1], which required the energy
form to satisfy the Markov property.

Proof. The finiteness of capE(B, 2B) implies that the ball B is precompact.
Indeed, the class T (B, 2B) is non-empty, let f ∈ T (B, 2B). Since supp f is com-
pact and f |B = 1, it follows that B ⊂ supp f and B is precompact.

Hence, all the hypotheses of Corollary 3.11 are satisfied. By Corollary 3.11,
there exists a sequence {Fi}ni=1 of n annuli such that ν (Fi) ≥ υ and the annuli
Gi := 2Fi are disjoint.

We are left to verify (4.16). Indeed, let Fi = A (x, r, R) and, hence, Gi =
A (x, r/2, 2R). Let us write for simplicity Bs = B (x, s). If r = 0 then by (4.13) we
have

capE(Fi, Gi) = capE(BR, B2R) ≤ Q.

If r > 0 then, by Lemma 2.3 and (4.13), we obtain

capE(Fi, Gi)1/2 = capE(BR \Br, B2R \Br/2)1/2

≤ capE(Br/2, Br)1/2 + capE(BR, B2R)1/2

≤ 2Q1/2,

whence (4.16) follows.

Remark 4.8. Let 0 < ν (X) < ∞. As follows from Remark 3.13, for each
annulus Fi = A (x, r, R) we have either r ≥ 1

2V
−1 (υ) or r = 0 and R ≥ 1

2V
−1 (υ),

where V −1 is the generalized inverse to the function V (r) defined by (3.23). There-
fore, as we see from the above proof, the hypothesis (4.13) can be restricted to the
balls of radii ≥ 1

4V
−1 (υ).
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Corollary 4.9. Under the hypotheses of Theorem 4.7, if 0 < ν (X) <∞ then,
for any positive integer n, there exist n disjoint capacitors (Fi, Gi) such that, for
all i = 1, 2, ..., n,

(4.17) ν(Fi) ≥ c
ν(X)
n

,

and

(4.18) capE(Fi, Gi) ≤ 4Q,

where c is the same as in Theorem 4.7.

Proof. Indeed, given a positive integer n, define υ by

υ = c
ν(X)
n

,

where c is the constant from Theorem 4.7. Then 0 < υ < ν(X), and the conclusion
follows from Theorem 4.7.

Remark 4.10. As follows from Remark 4.8, the hypothesis (4.13) can be re-
stricted to the balls of radii ≥ 1

4V
−1
(
cν(X)

n

)
, where V (r) defined by (3.23).

To show an example of application of Corollary 4.9, let us give a direct proof of
the estimate (4.9) in the case σ = 0 (without using Theorem 4.1), which contains
the main idea of the proof of Theorem 4.1.

Corollary 4.11. Let (X, d) be a pseudometric space, ν be a Radon measure on
X, and (E ,F) be an energy form on X. Assume that, for some positive constants
N,Q, the following conditions hold:

(i) (X, d) satisfies (2, N)-covering property;
(ii) measure ν is a d-non-atomic and 0 < ν (X) <∞;
(iii) the energy form (E ,F) is local and positive definite, and for any ball B in

X, we have

(4.19) capE(B, 2B) ≤ Q ;

Then, for any k = 1, 2, ...,

(4.20) λk (E , ν) ≤ CQ
k

ν (X)
,

where the positive constant C depends only on N .

Proof. By Corollary 4.9, there exists k disjoint capacitors (Fi, Gi) satisfying
(4.17) and (4.18). For any ε > 0 there exists a test function fi ∈ T (Fi, Gi) such
that

E [fi] < capE(Fi, Gi) + ε ≤ 4Q+ ε.

Take ε = Q and fix such a function fi. Since fi|Fi = 1, we have

ν [fi] ≥ ν (Fi) ≥ c
ν (X)
k

,

whence
E [fi]
ν [fi]

<
5Q

c ν(X)
k

= CQ
k

ν (X)
=: λ,

where C := 5/c.
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Hence, for any f = fi we have

(4.21) E [f ] < λν [f ] .

Since the supports of the functions fi are disjoint and the form E is local, we
conclude that (4.21) holds for any function f ∈ span (f1, ..., fn) except for f = 0.
By the definition of the counting function, we obtain Nλ (E , ν) ≥ k, whereas

Nλk
(E , ν) = sup {n : λn < λk} ≤ k − 1.

Therefore, λk ≤ λ which was to be proved.

Remark 4.12. As follows from Remark 4.10, in order to obtain (4.20) for a
fixed index k, it suffices to assume the hypothesis (4.19) only for the balls of radii
at least 1

4V
−1
(
cν(X)

k

)
.

Example 4.13. Let X be the Euclidean space Rn, μ be the Lebesgue measure
on Rn, and E = E(m)

μ be the m-th order energy form on Rn defined by (2.49).
If n = 2m then the capacity of the form E satisfies (4.19) as follows from (2.60).
Let q be a smooth positive function on Rn, and consider the measure ν defined by
dν = qdμ. A generator of the form E is the operator 1

q (−Δ)
m. We obtain from

Corollary 4.11 that if 2m = n and

ν (Rn) =
∫

Rn

qdμ <∞

then

λk

(
1
q
(−Δ)m

)
≤ C

k

ν (Rn)
.

4.3. Eigenvalues on fractal spaces. Let us show how Corollary 4.11 can
be used in conjunction with Remark 4.12 to handle the case when the capacity
uniform bound (4.19) is not available but, instead, one has (2.58) and (2.59). The
next statement applies to most fractal spaces.

Corollary 4.14. Let (X, d) be a pseudometric space, ν be a Radon measure on
X, and (E ,F) be an energy form on X. Assume that, for some positive constants
C1, C2, N the following conditions hold:

(i) (X, d) satisfies (2, N)-covering property;
(ii) measure ν is a d-non-atomic, 0 < ν (X) < ∞, and, for any ball B (x, r) in

X,

(4.22) ν (B (x, r)) ≤ C1r
α,

where α > 0;
(iii) the energy form (E ,F) is local and positive definite, and, for any ball B (x, r)

in X, we have

(4.23) capE(B (x, r) , B (x, 2r)) ≤ C2r
α−β ,

where β ≥ α;
Then, for all k = 1, 2, ...,

(4.24) λk (E , ν) ≤ C

(
k

ν (X)

)β/a

,

where the constant C depends on N,C1, C2, α, β.
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Remark 4.15. In the case α = β the hypothesis (4.23) becomes (4.19) and
hence, by Corollary 4.11, the hypothesis (4.22) can be omitted. In the case α �= β
the hypothesis (4.22) is essential because the value of α − β from (4.23) does not
allow to recover the value of β/α necessary for (4.24). It is not clear whether the
condition β ≥ α can be dropped here.

Proof. By (4.22) and by definition (3.23) of V (r), we have V (r) ≤ C1r
α

whence
V −1 (υ) ≥ (υ/C1)

1/α
.

Fix an index k. If r ≥ 1
4V

−1
(
cν(X)

k

)
(where c > 0 is the constant from Corollary

4.11) then

r ≥ 1
4

(
cν (X)
C1k

)1/α

.

Therefore, using α−β ≤ 0 and (4.23), we obtain, for any ball B of such a radius r,

capE(B, 2B) ≤ C2r
α−β ≤ C2

(
1
4

(
cν (X)
C1k

)1/α
)α−β

= C′
(

k

ν (X)

)β/α−1

=: Q.

By Remark 4.12, we can apply Corollary 4.11 and, hence, obtain by (4.20)

λk (E , ν) ≤ CQ
k

ν (X)
= CC′

(
k

ν (X)

)β/α

,

which was to be proved.

4.4. Proof of the main estimate. Here we prove Theorem 4.1, that is the
following estimate

(4.25) Neg (E − σ) ≥ �σδ(X)
5Q

� =: k.

If k ≤ 0 then there is nothing to do, so we assume in the sequel that k > 0. In
particular, this implies σδ (X) > 0 and hence σ− (X) <∞.

Without loss of generality we can assume that also σ+ (X) < ∞. Indeed, if
σ+ (X) =∞ then consider a signed measure

σ(r) := 1B(x,r)σ+ − σ− ,

where x ∈ X is fixed and r > 0. Hypothesis (4.2) implies that the ball B (x, r) is
precompact (see the proof of Theorem 4.7). Since the measure σ+ is Radon, we see
that

|σ(r)| (X) = σ+ (B (x, r)) + σ− (X) <∞.

If we can prove that

Neg
(
E − σ(r)

)
≥ �σ

(r)
δ (X)
5Q

�

then passing to the limit as r →∞ and using

Neg (E − σ) ≥ Neg
(
E − σ(r)

)
,

we will obtain (4.25). Hence, we can assume in the sequel that |σ| (X) <∞.
In order to prove (4.25) it suffices to construct k linearly independent functions

f1, f2, ..., fk in F such that

(4.26) E [f ]− σ [f ] < 0
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for any f ∈ span {fi} \ {0}. The functions fi in our construction will have disjoint
supports. Hence, by the locality of E − σ, we have (E − σ) (fi, fj) = 0 for all i �= j,
so it suffices to establish (4.26) for f = fi, i = 1, 2, ..., k.

Suppose that we have k disjoint capacitors (Fi, Gi) in X of finite capacity.
Then we choose fi ∈ T (Fi, Gi) to be a nearly optimal test function in the sense
that

E [fi] < capE(Fi, Gi) + ε,

where ε > 0 will be specified later on (see Fig. 10).

Fi
Gi

fi

Figure 10. Capacitors (Fi, Gi) and their test functions.

By the definition of T (Fi, Gi), we have fi ∈ F ∩ C0 (Gi), fi = 1 on Fi, and
0 ≤ fi ≤ 1. Therefore,

σ− [fi] ≤ σ−(Gi) and σ+ [fi] ≥ σ+(Fi).

Then (4.26) will follow if we know that

(4.27) capE(Fi, Gi) + ε+ σ−(Gi) ≤ σ+(Fi).

The assumption σδ (X) > 0 implies σ+ (X) > 0. Hence, the metric-measure
space (X, d, σ+) with the form (E ,F) satisfies all the hypotheses of Corollary 4.9.
By Corollary 4.9, for any k = 1, 2, ..., there exists n = 2k disjoint capacitors (Fi, Gi)
on X such that

(4.28) σ+(Fi) ≥ c
σ+(X)
2k

and capE(Fi, Gi) ≤ 4Q.

Since
2k∑
i=1

σ−(Gi) ≤ σ−(X),

there are at most k sets Gi for which

σ−(Gi) >
σ−(X)

k
,

and, hence, there are at least n− k = k sets Gi, for which

(4.29) σ−(Gi) ≤
σ−(X)

k
.
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We can assume that these sets are Gi, i = 1, 2, ..., k. Substituting (4.28) and (4.29)
into (4.27) and choosing ε = Q, we see that (4.27) will be satisfied for capacitors
(Fi, Gi), i = 1, 2, ..., k, provided

(4.30) 5Q +
σ− (X)

k
≤ c

σ+(X)
2k

.

Set δ := c/2 and observe that (4.30) is equivalent to

k ≤ δσ+ (X)− σ− (X)
5Q

=
σδ (X)
5Q

,

which is true by the choice of k.

Remark 4.16. In the case |σ| (X) <∞, by Remark 4.10, the hypothesis (4.2)
of Theorem 4.1 can be assumed only for the balls of radii ≥ 1

4V
−1
(
cσ+(X)

2k

)
where

k = �σδ(X)
5Q � and V −1 is the generalized inverse to the function

(4.31) V (r) = sup
x∈X

σ+ (B (x, r)) .

4.5. Strongly local energy forms. In this section, we slightly improve the
estimate of Theorem 4.1 for strongly local energy forms.

Theorem 4.17. Suppose that, under the hypotheses of Theorem 4.1 the energy
form (E ,F) is strongly local. Then the estimate (4.3) in the conclusion of Theorem
4.1 can be replaced by

(4.32) Neg (E − σ) ≥ �σδ(X)
10Q

� .

The point of this theorem is that the floor function in the estimate (4.3) can
replaced by the ceiling function as in (4.32) This improvement is only noticeable
when, for example, 0 < σδ(X)

10Q < 1. In this case, the estimate (4.3) becomes
trivial whereas (4.32) still gives Neg (E − σ) ≥ 1. The strong locality hypothesis is
essential for that, as it will be shown in the example at the end of this section.

Similarly to Lemma 4.4 (cf. Remark 4.6), the estimate (4.32) implies the fol-
lowing. If μ is a d-non-atomic Radon measure on X then, for all real λ,

(4.33) Nλ (E − σ, μ) ≥ �σδ2 (X) + δλμ(X)
10Q

�.

If in addition 0 < μ (X) <∞ then, for any k = 1, 2, ...,

(4.34) λk(E − σ, μ) ≤ 10Q (k − 1)− σδ2(X)
δμ(X)

.

The next lemma will be used in the proof of Theorem 4.17.

Lemma 4.18. Let (E ,F) be a strongly local, positive definite energy form on a
pseudometric space (X, d). Assume that, for any ball B in X,

(4.35) capE(B, 2B) ≤ Q,

where Q is a positive constant. Then, for any signed Radon measure σ on X such
that σ (X) > 0, we have

(4.36) Neg (E − σ) ≥ 1.



EIGENVALUES OF ELLIPTIC OPERATORS AND GEOMETRIC APPLICATIONS 189

Proof. The hypothesis σ (X) > 0 implies, in particular, that σ− (X) < ∞.
By the same argument as in the proof of Theorem 4.1, we can assume that also
σ+ (X) <∞.

Consider a sequence of balls Bn = B (x, 2n) where x is a fixed reference point
in X . By hypothesis (4.35), we have

capE(Bn, Bn+1) ≤ Q.

By Lemma 2.5, for all indices n < m,

capE(Bn, Bm)−1 ≥
m−1∑
i=n

capE(Bi, Bi+1)−1 ≥ (m− n)Q−1,

whence

(4.37) capE(Bn, Bm) ≤
Q

m− n
.

Let f ∈ T (Bn, Bm) be such that

E [f ] < 2Q
m− n

.

Using the fact that 0 ≤ f ≤ 1 and f = 1 on Bn, we obtain

E [f ]− σ [f ] <
2Q

m− n
− σ (Bn)−

∫
X\Bn

f2dσ

≤ 2Q
m− n

− σ (Bn) + |σ| (X \Bn) .

Since |σ| (X) <∞, for large enough n and m we obtain

(4.38) (E − σ) [f ] < −σ (X) + ε,

where ε > 0 is prescribed. Choosing ε < σ (X) /2, we conclude (E − σ) [f ] < 0
whence (4.36) follows.

Proof of Theorem 4.17. We need to prove (4.32), that is

(4.39) Neg (E − σ) ≥ �1
2
κ�,

where κ = σδ(X)
5Q . If κ ≤ 0 then there is nothing to do, so assume κ > 0. In this

case σ (X) > 0 and hence, by Lemma 4.18,

Neg (E − σ) ≥ 1.

On the other hand, by Theorem 4.1,

Neg (E − σ) ≥ �κ�.

Then (4.39) follows by the elementary inequality

max (�κ�, 1) ≥ �1
2
κ�.
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Example 4.19. As in Example 4.13, let X = Rn, μ be the Lebesgue measure
on Rn, and E = E(m)

μ be the m-th order energy form on Rn defined by (2.49).
Assume that n = 2m so that the form E satisfies (4.35). Let q be a non-negative
L1
loc-function in R

n. Considering the measure σ defined by dσ = qdμ, we obtain by
(4.32) that

Neg ((−Δ)m − q) ≥ c

∫
Rn

qdμ

where c = c (n) > 0.

Example 4.20. Let us show that if the form E is local but not strongly local it
can happen that σ ≥ 0, σ (X) > 0 but Neg (E − σ) = 0. Indeed, take X = R2 with
the Euclidean distance d, and consider the form E = Eμ+ ν with domain Lip0(R2),
that is

E (f, g) =
∫

R2
∇f · ∇gdμ+

∫
R2

fg dν

where μ is the Lebesgue measure on R2 and ν is a measure on R2 such that

0 < ν(R2) <∞.

It is easy to see that, for any capacitor (F,G) in R2,

capE(F,G) ≤ capEμ
(F,G) + ν (G)

whence it follows that, for any ball B,

capE(B, 2B) ≤ capEμ
(B, 2B) + ν(R2) = const.

Therefore, all the hypotheses of Theorem 4.1 are satisfied for the form E . However,
the claim of Lemma 4.18 (and that of Theorem 4.17) is not true in this case. Indeed,
just take σ = ν so that E −σ = Eμ. Then σ(R2) > 0 but Neg (E − σ) = Neg (Eμ) =
0.

Let us show that the hypothesis (4.35) is also essential for Lemma 4.18. For
that, consider X = R3 with the standard form Eμ, for which (4.35) does not hold.
The form Eμ is strongly local, but nevertheless there exists a positive measure σ in
R3 such that Neg (Eμ − σ) = 0. For example, this is the case whenever σ satisfies
the estimate

dσ

dμ
(x) ≤ 1

4 |x|2
,

because of the Hardy inequality∫
R3

1

4 |x|2
f2 (x) dμ (x) ≤

∫
R3
|∇f |2 dμ,

which is true for any f ∈ C∞0 (R
3) (see, for example, [50, Section X.2]).

5. Eigenvalues on Riemannian manifolds

Let X be a Riemannian manifold and d0 be the geodesic distance on X (note
that d0 may take value ∞ if X is disconnected).

Definition 5.1. A pseudometric d on X is called Riemannian if d is dominated
by d0, that is

(5.1) d (x, y) ≤ d0 (x, y) for all x, y ∈ X.

The condition (5.1) and the triangle inequality imply that, for any x ∈ X , the
function y �→ d (x, y) is locally Lipschitz and |∇d (x, ·)| ≤ 1.
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Definition 5.2. A pseudometric space (X, d) is called Riemannian if X is a
Riemannian manifold and d is a Riemannian pseudometric on X .

For example, if X is a connected Riemannian manifold then (X, d0) is a Rie-
mannian (pseudo)metric space. Let T : X → X ′ be an isometric immersion of a
Riemannian manifold X into a connected Riemannian manifold X ′, and let d′ be
the geodesic distance on X ′. Then the identity

(5.2) d (x, y) = d′ (T (x) , T (y))

defines the extrinsic metric on X , which obviously is a Riemannian pseudometric.
Hence, (X, d) is a Riemannian pseudometric space.

In this section, we adapt the results of the previous sections to a Riemannian
pseudometric space (X, d). As before, we denote by B(x, r) the balls of the pseudo-
metric d. Set F = Lip0 (X) and recall that any Radon measure μ on X induces a
strongly local positive definite energy form (Eμ,F) on the weighted manifold (X,μ)
as follows:

(5.3) Eμ(f, g) =
∫
X

∇f · ∇g dμ.

5.1. Quadratic volume growth.

Theorem 5.3. Let (X, d) be a Riemannian pseudometric space, μ be a Radon
measure on X, and E = Eμ. Assume that the following properties are satisfied, for
some positive constants M,N :

(a) space (X, d) satisfies (2, N)-covering property;
(b) all balls in (X, d) are precompact;
(c) for all x ∈ X and r > 0

(5.4) μ(B(x, r)) ≤Mr2.

Then, for any signed Radon measure σ on X such that σ+ is d-non-atomic,

(5.5) Neg (E − σ) ≥ σδ (X)
100M

,

where δ ∈ (0, 1) depends only on N .

The estimate (5.5) implies, by Lemma 4.4, that for any d-non-atomic Radon
measure ν on X and for any real λ,

(5.6) Nλ (E − σ, ν) ≥ σδ2 (X) + δλν (X)
100M

.

If 0 < ν (X) <∞ then for all k = 1, 2, ...,

λk (E − σ, ν) ≤ C (k − 1)− σδ2 (X)
ν (X)

where C = C (N) . In particular, these estimate hold for ν = μ because μ is d-non-
atomic by (5.4).

Proof. Let us show that (5.4) implies

(5.7) capE(B, 2B) ≤ 11M.
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Fix a point x ∈ X and denote for simplicity Br = B (x, r) and Vr = μ (B (x, r)).
For all 0 < r < R, the following inequality is always true:

(5.8) capE(Br, BR) ≤ 2
(∫ R

r

(s− r)ds
Vs − Vr

)−1

(see [54] or [24, Theorem 7.1] – note that the proof of (5.8) uses the fact that
|∇d| ≤ 1, which is the case by (5.1)). By (5.8) and (5.4), we obtain

(5.9) capE(Br, B2r) ≤ 2
(∫ 2r

r

(s− r)ds
Ms2

)−1

= 2M
(
log 2− 1

2

)−1

< 11M,

which was claimed.
Given (5.7), we see that all hypotheses of Theorem 4.17 are satisfied, so that

(5.5) follows from (4.32). We need only to mention that (4.32) and (5.7) yield
the coefficient 110 in (5.5), while we prefer 100, for the obvious esthetic reason.
However, as one can see from the proof of Theorems 4.1 and 4.17, the constant
factor 10 in (4.32) can be replaced by any number > 8, for example, by 9, which is
enough to achieve the factor 100 in (5.5).

5.2. Riemann surfaces. Denote by Σγ a closed orientable Riemann surface
of genus γ.

Theorem 5.4. Let g be a Riemannian metric on Σγ . Let μ be the Riemannian
measure on the Riemannian manifold X = (Σγ , g), and E = Eμ be the Riemannian
energy form on X. Then, for any signed Radon measure σ on X such that σ+ is
non-atomic,

(5.10) Neg (E − σ) ≥ σδ (X)
C (γ + 1)

,

where C > 0 and 0 < δ < 1 are absolute constants.

Consequently, we obtain from (5.10) by Lemma 4.4 that for any non-atomic
Radon measure ν on X such that 0 < ν (X) <∞, and for any real λ, we have

(5.11) Nλ (E − σ, ν) ≥ σδ2 (X) + δλν (X)
C (γ + 1)

,

and, for any k = 1, 2, ...,

(5.12) λk(E − σ, ν) ≤ C (γ + 1) (k − 1)− σδ2(X)
δν(X)

.

Remark 5.5. Already the case σ = 0, ν = μ of (5.12) is highly non-trivial. In
this case (5.12) becomes

(5.13) λk (−Δ) ≤ C′ (γ + 1)
k − 1
μ (X)

,

where Δ is the Laplace-Beltrami operator of X (which is a generator of E) and
C′ = C/δ. It is not difficult to prove that ifX is a connected compact n-dimensional
Riemannian manifold then

(5.14) λk (−Δ) ≤ CX

(
k − 1
μ (X)

)2/n

.

However, the constant CX in (5.14), as it is suggested by the notation, depends on
various geometric properties of X (cf. Theorem 5.9 below) whereas the constant
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C′ in (5.13) is universal, and only the genus γ reflects the geometry (or rather the
topology) of X in (5.13). The estimate (5.13) for k = 2 was first proved by Hersch
[29] in the case γ = 0 and by Yang and Yau [56] for any γ. For k > 2 it was
conjectured by Yau [57] and was eventually proved by Korevaar [37]. It was shown
by Colbois and Dodziuk [11] that in the case n > 2 one cannot have (5.14) with a
universal constant C instead of CX .

Proof. The Riemannian metric g determines a conformal class of Σγ . A well-
known consequence of the Riemann-Roch theorem says that the Riemann surface
Σγ (with a fixed conformal class) admits a non-constant meromorphic function of
the topological degree at most D := γ+1. Hence, there exists a conformal mapping
T : X → S2 of the topological degree ≤ D (see for example [56]).

Here we consider S2 as a Riemannian manifold with the canonical Riemannian
metric. Let d′ be the geodesic distance on S2, μ′ the Riemannian measure on S2,
and E ′ = Eμ′ be the Riemannian energy form on S2. Since the conformal mapping
of two-dimensional Riemannian manifolds locally preserves the Riemannian energy
form and the mapping T has topological degree ≤ D, we see that T has the energy
degree at most D, in the sense of Definition 2.11. Hence, by Lemma 2.12, we have

(5.15) Neg (E − σ) ≥ Neg (DE ′ − σ′) = Neg
(
E ′ −D−1σ′

)
,

where σ′ (·) := σ(T−1(·)).
Obviously, (S2, d′) admits (2, N)-covering property with an absolute constant

N , all balls on S2 are precompact, and, for any ball B (x, r) on S2,

μ′ (B (x, r)) ≤ πr2.

Applying Theorem 5.3 to the Riemannian metric space (S2, d′) and a signed measure
D−1σ′ (clearly, σ′+ is non-atomic) we conclude

Neg(E ′ −D−1σ′) ≥ D−1σ′δ(S
2)

100π
=

σδ (X)
CD

,

where C = 100π and δ ∈ (0, 1) is an absolute constant. Combining with (5.15) we
obtain (5.10).

The estimate (5.10) admits the following extension.

Corollary 5.6. Let g be a Riemannian metric on Σγ and let X be a Riemann-
ian manifold conformal to (Σγ \ P, g) where P is a finite subset of Σγ. Let E be the
Riemannian energy form on X. Then, for any signed Radon measure σ on X such
that σ+ is non-atomic, we have

(5.16) Neg (E − σ) ≥ σδ (X)
C (γ + 1)

,

where δ and C are the same as in Theorem 5.4.

Proof. Consider the manifold X ′ = (Σγ , g) and let E ′ be the Riemannian
energy form on X ′ with the domain F ′ = Lip0 (X ′). The conformal mapping
identifies X with X ′ \ P . Set F = Lip0 (X) and observe that F ⊂ F ′ and E [f ] =
E ′ [f ] for any f ∈ F , because the Riemannian metric of X and the metric g are
conformal.

Let σ′ be the extension of the measure σ to X ′ by setting σ′|P = 0. Then σ′ is
a signed Radon measure on X ′ such that σ′+ is non-atomic. Since |σ′| (P ) = 0 and
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capE′(P,U) = 0 for any open set U ⊂ X ′ containing P , Lemma 2.13 and Theorem
5.4 yield

Neg (E − σ) = Neg (E ′ − σ′) ≥ σδ (X ′)
C (γ + 1)

=
σδ (X)

C (γ + 1)
.

Example 5.7. Let X = (Σγ , g) and let K = K (x) be the Gauss curvature
of the metric g on X . Fix a real constant α and define a signed measure σ on X
by dσ = −αKdμ where μ is the the Riemannian measure on X . The energy form
(E − σ,F) (where F = Lip0 (X)) is closable in L2 (X,μ) and its generator

H = −Δ+ αK

has a discrete spectrum that can be estimated by (5.12) as follows. Observe that,
by the Gauss-Bonnet formula,

(5.17) σ (X) = −α
∫
X

Kdμ = −2πχα,

where χ = 2 − 2γ. Hence, Theorem 5.4 yields the following estimates, for all
k = 1, 2, ...:

If αK (x) ≥ 0 for all x ∈ X (and hence σ ≤ 0 and σδ2 = σ) then

λk (H) ≤
C (γ + 1) (k − 1) + 2πχα

δμ (X)
.

If αK (x) ≤ 0 all x ∈ X (and hence σ ≥ 0 and σδ2 = δ2σ) then

λk (H) ≤
C (γ + 1) (k − 1) + 2δ2πχα

δμ (X)
.

Example 5.8. Let X = (Σγ \ P, g) where cardP = κ, and H be as above a
generator of the energy form (E − σ,F) in L2 (X,μ). In this case (5.17) still holds
but with the Euler characteristic χ = 2− 2γ − κ. Let K (x) ≤ 0 on X , and K �≡ 0.
Then, for any α > 0, we have σ ≥ 0, and Corollary 5.6 yields

(5.18) Neg (H) ≥ δσ (X)
C (γ + 1)

=
2δπ (κ+ 2γ − 2)α

C (γ + 1)
.

By hypotheses we have χ < 0 and hence κ+ 2γ ≥ 3, which implies

(5.19) κ+ 2γ − 2 ≥ 1
2
(γ + 1) .

Indeed, if (5.19) fails then 2κ+ 3γ ≤ 4, which is not compatible with κ + 2γ ≥ 3.
Substituting (5.19) into (5.18) we obtain that

(5.20) Neg (H) ≥ δπ

C
α = c α,

where c is an absolute positive constant.

5.3. Manifolds of higher dimension.

Theorem 5.9. Let (X, g0) be a Riemannian manifold of dimension n ≥ 2, μ0

be its Riemannian measure, and d be a Riemannian pseudometric on X. Assume
that that the following properties are satisfied, for some positive constants M,N :
(a) space (X, d) satisfies (2, N)-covering property;
(b) all balls in (X, d) are precompact;
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(c) for any r > 0 and for any d-ball Br of radius r on X,

(5.21) μ0 (Br) ≤Mrn.

Let g be another metric on X, which is conformal to g0, μ be the Riemannian
measure of g, and E = Eμ be the Riemannian energy form of g. If μ (X) <∞ then,
for any non-atomic Radon measure σ on X,

(5.22) Neg (E − σ) ≥ �c σ (X)n/2

μ (X)n/2−1
�,

where c = c (n,N,M) > 0.

Remark 5.10. Applying (5.22) to λσ instead of σ, we obtain, for any λ ≥ 0,

(5.23) Nλ (E , σ) = Neg (E − λσ) ≥ �c σ (X)n/2

μ (X)n/2−1
λn/2�.

Similarly to Lemma 2.8, one obtains from (5.23) that, for all k = 1, 2, ...,

(5.24) λk (E , σ) ≤ C
μ (X)1−2/n

σ (X)
k2/n,

where C = C (n,N,M).

Remark 5.11. Theorem 5.9 is to some extent a higher order generalization
of Theorem 5.3. Indeed, assuming that in Theorem 5.9 n = 2 and g = g0, and
that in Theorem 5.3 μ is the Riemannian measure, we obtain the same statements.
However, in general Theorem 5.3 is not reduced to Theorem 5.9 because in the
former the measure μ does not have to be Riemannian, and the measure σ can be
signed.

Example 5.12. Let (X, g0) be a compact connected n-manifold and d be the
geodesic distance on X . Then the hypotheses (a), (b), (c) are automatically satis-
fied with the constants N,M depending on the metric g0. The estimate (5.22) of
Neg (Eμ − σ) depends on the measures μ and σ only via their total mass, provided
μ is the Riemannian measure of a metric g that is conformal to g0. The constant c
in (5.22) depends on the metric g only via its conformal class.

In the compact case the floor function in (5.22) can be dropped, that is the
following is true:

(5.25) Neg (E − σ) ≥ c
σ (X)n/2

μ (X)n/2−1
.

Indeed, if σ (X) > 0 then the function ϕ ≡ 1 ∈ Lip0 (X) satisfies E [ϕ] < σ [ϕ] so
that Neg (E − σ) ≥ 1. Combining with (5.22) we obtain (5.25).

Note that in the case of a compact manifold and σ = μ, the estimate (5.24)
was first proved by Korevaar [37].

Example 5.13. Let X = Rn, g0 be the standard Euclidean metric, and d be
the Euclidean distance. Then all the hypotheses (a), (b), (c) are satisfied. Let a (x)
be a smooth positive function on Rn, n > 2, and set g = ag0 so that dμ = an/2dμ0.
Let measure σ be defined by dσ = bdμ0, where b (x) is a continuous positive function
on Rn. Then the following operator

L =
1
b
div
(
an/2−1∇

)
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is a generator of the form Eμ in L2 (X,σ) (where ∇ and div are related to g0).
Hence, (5.24) yields

λk (L) ≤ C

(∫
Rn an/2dμ0

)1−2/n∫
Rn bdμ0

k2/n,

provided the both integrals are finite.

Proof of Theorem 5.9. Recall that for any capacitor (F,G) on (X, g), the
capacity associated with the energy form E is defined by

cap(F,G) = inf
T

∫
X

|∇gϕ|2 dμ,

where T = T (F,G) is the class of test functions, and ∇g is the gradient associated
with the metric g. Consider also the n-capacity defined by

cap(n)(F,G) = inf
T

∫
X

|∇gϕ|n dμ.

Since n is the dimension of X , the n-capacity is preserved by a conformal change
of the metric, that is

cap(n)(F,G) = inf
T

∫
X

|∇g0ϕ|n dμ0.

In the metric g0, the n-capacity of the capacitor (Br, RR) (where 0 < r < R and
the balls Br, BR are concentric) admits the following estimate

cap(n)(Br, RR) ≤ C

(∫ R

r

(
s

μ0 (Bs)

) 1
n−1

ds

)1−n

,

(see [14], [32]), whence by (5.21)

(5.26) cap(n)(Br, B2r) ≤ CM

(here C denotes any positive constant depending only on n,N , and the value of C
may be different at different occurrences).

By the Hölder inequality, we obtain, for any ϕ ∈ T (F,G),∫
X

|∇gϕ|2 dμ ≤
(∫

G

|∇gϕ|n dμ
)2/n

μ (G)1−2/n
,

whence it follows that

(5.27) cap(F,G) ≤
(
cap(n)(F,G)

)2/n

μ (G)1−2/n
.

Similarly to the proof of Theorem 4.1, we can assume in the sequel that 0 <
σ (X) < ∞. By Corollary 3.12, for any positive integer k, there exists a family
{Ai}2ki=1 of annuli in (X, d) such that

(5.28) σ (Ai) ≥ c
σ (X)
k

for all i = 1, 2, ..., 2k,

and the annuli {2Ai}2ki=1 are disjoint. It follows from (5.26) that

cap(n)(Ai, 2Ai) ≤ CM

(cf. the proof of Theorem 4.7), whence (5.27) implies

cap(Ai, 2Ai) ≤ CM2/nμ (2Ai)
1−2/n

.
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Since
2k∑
i=1

μ (2Ai) ≤ μ (X) ,

there exists at least k sets 2Ai such that

μ (2Ai) ≤
μ (X)
k

.

Without loss of generality, we can assume that this is the case for i = 1, 2, ..., k,
whence it follows that

(5.29) cap(Ai, 2Ai) ≤ CM2/n

(
μ (X)
k

)1−2/n

for i = 1, 2, ..., k.

Assume for a moment that the following inequality is true:

(5.30) CM2/n

(
μ (X)
k

)1−2/n

≤ c

2
σ (X)
k

,

which implies by (5.29) and (5.28)

cap(Ai, 2Ai) ≤
1
2
σ (Ai) for i = 1, 2, ..., k.

Then choosing nearly optimal test functions for the capacitors (Ai, 2Ai), i =
1, 2, .., k, we obtain a k-dimensional subspace V ⊂ Lip0 (X) such that E [ϕ] < σ [ϕ]
for any ϕ ∈ V \ {0}, whence Neg (E − σ) ≥ k.

Finally, noticing that the inequality (5.30) holds for any k such that

k ≤ c′

M

σ (X)n/2

μ (X)n/2−1
,

we obtain (5.22).

5.4. Boundary surfaces. Let X be a Riemannian manifold. In this section,
we use the notation

λk (X) = λk (Eμ, μ)
where μ is the Riemannian measure on X and Eμ is the energy form given by (5.3)
with the domain F = Lip0 (X).

Recall that a Riemannian M is called a Cartan-Hadamard manifold if M is
complete, non-compact, simply connected manifold of non-positive sectional curva-
ture. In particular, Rn and Hn are Cartan-Hadamard manifolds.

Theorem 5.14. Let Ω be a bounded open set in a 3-dimensional Cartan-
Hadamard manifold M , and let the boundary Γ of Ω be smooth so that Γ is a
compact oriented Riemannian 2-manifold. Let γ be the genus of Γ. Then, for all
positive integers k,m,

(5.31) λk(Ω)3/2 ≥ c

(γ + 1)3/2
λk+1(Γ)

√
λm+1(Γ)

m
,

where c > 0 is an absolute constant.
In particular, for all k = 1, 2, ...,

(5.32) λk (Ω) ≥
c

γ + 1
λk+1 (Γ)
k1/3

.
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Proof. By a theorem of Hoffman and Spruck [31], a Cartan-Hadamard 3-
manifold admits the following isoperimetric inequality:

(5.33) V (Ω) ≤ CA(Γ)3/2,

where V stands for the volume in M , A is the area on Γ, and C is an absolute
constant. It follows from (5.33) that λk (Ω) admits the lower bound

(5.34) λk(Ω) ≥ c

(
k

V (Ω)

)2/3

,

(see for example [10], [41], [22]), where c > 0 is an absolute constant.
On the other hand, by (5.13) we have the following upper bound for λk+1(Γ):

(5.35) λk+1(Γ) ≤ C (γ + 1)
k

A(Γ)
,

with an absolute constant C. Combining (5.35) and (5.33) we obtain

λk+1(Γ)

√
λm+1(Γ)

m
≤
(
C (γ + 1)
A(Γ)

)3/2

k ≤ C5/2 (γ + 1)3/2
k

V (Ω)
,

which together with (5.34) implies (5.31). Clearly, (5.31) implies (5.32) form = k.

5.5. Positive definite perturbations. The purpose of this section is to
present a partial result towards the conjecture that the constant δ in Theorem
4.1 can be taken to be 1.

Theorem 5.15. Let X be a Riemannian manifold, d be a pseudometric on X,
μ be a Radon measure on X, and E = Eμ. Assume that the following conditions
hold, for some positive constants N,Q:

(i) (X, d) satisfies (2, N)-covering property;
(ii) measure μ is d-non-atomic and 0 < μ (X) <∞;
(iii) for any d-ball B in X,

capE(B, 2B) ≤ Q.

Let σ be a finite signed Radon measure on X such that the form (E − σ,F) is
positive definite (where F = Lip0 (X)). Then, for any λ ≥ 0,

(5.36) Nλ (E − σ, μ) ≥ σ (X) + ελμ (X)
10Q

,

where 0 < ε < 1 is a constant depending only on N . Also, for any k = 1, 2, ...,

(5.37) λk (E − σ, μ) ≤ 10Q(k − 1)− σ(X)
εμ(X)

.

Proof. By Lemma 4.18, if σ (X) > 0 then Neg (E − σ) ≥ 1 which contradicts
the hypothesis that E −σ is positive definite. Therefore, σ (X) ≤ 0. Assuming that
ε−1σ (X)+λμ (X) > 0 (otherwise, (5.36) is trivial), we obtain σ (X)+λμ (X) > 0,
whence by Lemma 4.18,

(5.38) Nλ (E − σ, μ) = Neg (E − (σ + λμ)) ≥ 1.
We will show that there exist k functions fi ∈ F with disjoint supports such

that

(5.39) (E − σ) [fi] < λμ [fi] ,
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where

(5.40) k := �σ (X) + ελμ (X)
5Q

�

This will imply
Nλ (E − σ, μ) ≥ k

which together with (5.38) yields

Nλ (E − σ, μ) ≥ max (1, k) ≥ σ (X) + ελμ (X)
10Q

,

thus finishing the proof of (5.36). Clearly, the estimate (5.37) follows from (5.36)
by Lemma 2.8.

To prove the above claim observe that, by Corollary 4.9, there exist 2k disjoint
capacitors (Fi, Gi) on X such that

μ(Fi) ≥ c
μ(X)
2k

and capE(Fi, Gi) ≤ 4Q ,

where c ∈ (0, 1) depends only on N . Choose a test function 2fi ∈ T (Fi, Gi) such
that E [2fi] < 5Q. Recall that 2fi ∈ T (Fi, Gi) implies

f ∈ C0 (Gi) , f |Fi =
1
2
, 0 ≤ fi ≤

1
2
.

Hence, we have, for ε := c/8,

(5.41) μ [fi] ≥ ε
μ(X)
k

and E [fi] <
5
4
Q,

which, in particular, implies

(5.42)
2k∑
i=1

E [fi] <
5
2
Qk.

Let us prove that

(5.43) σ (X)−
2k∑
i=1

σ [fi] ≤
2k∑
i=1

E [fi] .

Assume for the moment that (5.43) has been proved. Then (5.42) and (5.43) imply

σ (X) +
2k∑
i=1

(E − σ) [fi] <
5
2
Qk +

2k∑
i=1

E [fi] ≤ 5Qk

and, hence,
2k∑
i=1

(E − σ) [fi] ≤ 5Qk − σ (X) .

Since (E − σ) [fi] ≥ 0, there exists at least k functions fi such that

(5.44) (E − σ) [fi] <
5Qk − σ(X)

k

By (5.40) we have
5Qk ≤ σ (X) + ελμ (X) ,

whence by (5.41)
5Qk − σ (X)

k
≤ λμ [fi] .
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Together with (5.44), this yields (5.39).
We are left to prove (5.43). Define a function h ≥ 0 on X by the identity

(5.45) h2 +
∑
i

f2
i = 1.

Since the supports of fi are disjoint and 0 ≤ fi ≤ 1/2, we obtain h > 1/2. Inte-
grating (5.45) against σ, we obtain

(5.46) σ (X)−
∑
i

σ [fi] = σ [h] .

Since the form E − σ is positive definite and h > 1/2, we obtain

(5.47) σ [h] ≤ E [h] ≤ 2 inf |h| E [h] ≤ E
[
h2
]
.

Next, it follows from (5.45) that

∇
(
h2
)
= −

∑
i

∇
(
f2
i

)
whence

(5.48) E
[
h2
]
=
∑
i

E [f2
i ].

Using
E [f2

i ] ≤ 2 sup |fi| E [fi] ≤ E [fi]
we obtain

(5.49)
∑
i

E [f2
i ] ≤

∑
i

E [fi] .

Combining (5.46), (5.47), (5.48), and (5.49) we obtain (5.43).

6. Eigenvalues of the Jacobi operator

Throughout this section, except for Subsection 6.3, X will be an oriented two-
dimensional manifold immersed into a three dimensional Riemannian manifold M .
For simplicity of notation, we will not distinguish between the points ofX and their
images in M (although some points in X may merge in M). We assume that X
is endowed with the induced Riemannian metric, and denote by μ the Riemannian
measure on X . Let K be the Gauss curvature of X , RM be the scalar curvature of
M , and RicM be the Ricci curvature of M . Let n be an orthonormal vector field
on X in M .

Let A be the operator of the second fundamental form of X , that is, at any
point x ∈ X , A = A (x) is a linear operator in TxX acting by Aξ = −∇ξn. Denote
‖A‖2 := trace(AA∗), set
(6.1) q := RicM (n,n) + ‖A‖2,
and consider the energy form

A [f ] :=
∫
X

(
|∇f |2 − qf2

)
dμ

with the domain F = Lip0 (X). In other words, A = E − σ where E is the Rie-
mannian energy form on X and σ is a signed measure defined by dσ = qdμ.

It is known that the energy formA determines the second variation of the
area functional under the normal deformation of X (see for example [12], [39,
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Section 6], [47]), while the first variation is determined by the mean curvature. We
will be concerned with estimates of the counting function of the energy form A,
in particular, Neg (A). If in addition X is a minimal surface (that is, the mean
curvature ofX vanishes everywhere) then the number Neg (A) is called the stability
index of X and is denoted by ind(X). The minimal surface X is called stable if
ind (X) = 0.

A generator of the form (A,F) in L2 (X,μ) is the following operator

L := −Δ− q = −Δ− (RicM (n,n) + ‖A‖2),
which is called the stability operator or the Jacobi operator.

6.1. Riemann surfaces. Let X and M be as above.

Theorem 6.1. Assume that RicM ≥ 0 and let X be conformally equivalent to
(Σγ \ P, g), where g is a Riemannian metric on Σγ and P is a finite subset of Σγ .
Then

(6.2) Neg(A) ≥ c0

γ + 1

(∫
X

RMdμ−
∫
X

Kdμ

)
,

where c0 is an absolute positive constant.
If, in addition, μ (X) <∞ then, for any k = 1, 2, ...,

(6.3) λk (A, μ) ≤
C (γ + 1)k

μ (X)
− c

μ (X)

∫
X

RMdμ,

where C and c are absolute positive constants.

Remark 6.2. Recall that by the Gauss-Bonnet formula

(6.4)
∫
X

Kdμ = 2πχ,

where χ is the Euler characteristic of X . In the present setting we have

χ = 2− 2γ − κ,

where κ := cardP .

Remark 6.3. In the case when X is compact we have by Theorem 5.4 that

λk (E , μ) ≤
C (γ + 1) k

μ (X)
.

The additional non-negative term
∫
X
RMdμ in (6.3) reflects the distinction between

the Jacobi operator and the Laplace operator.

Proof. We use the following identity on X :

RM −RicM (n,n) = K +
‖A‖2
2
− |H |

2

2
,

where H is the mean curvature vector of X . It implies

(6.5) q = RicM (n,n) + ‖A‖2 = RM −K +
‖A‖2
2

+
|H |2
2
≥ RM −K,

whence

(6.6) σ (X) =
∫
X

qdμ ≥
∫
X

RMdμ−
∫
X

Kdμ =
∫
X

RMdμ− 2πχ.
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By RicM ≥ 0 and (6.1) we have q ≥ 0 and hence σ ≥ 0. In particular, σδ = δσ,
and by Corollary 5.6 we conclude

Neg (A) = Neg (E − σ) ≥ δσ (X)
C (γ + 1)

,

whence (6.2) follows with c0 = δ/C.
The second claim follows from (5.12) and (6.6) using also χ ≤ 2− 2γ:

λk(A, μ) ≤
C(γ + 1) (k − 1)− δ2σ (X)

δμ(X)

≤ C(γ + 1)k − δ2
∫
X RMdμ−

[
C (γ + 1) + δ22π (2γ − 2)

]
δμ(X)

≤ C

δ

(γ + 1) k
μ (X)

− δ

μ (X)

∫
X

RMdμ,

provided C ≥ 4πδ2, which can be assumed to be true. Renaming the constants we
obtain (6.3).

Remark 6.4. The hypothesis RicM ≥ 0 is only needed to conclude that q ≥ 0.
One can also obtain q ≥ 0 using different assumptions. For example, it is true
provided RM ≥ 0 and K ≤ 0, as one can see from (6.5).

Theorem 6.1 may have many applications. For example, (6.2) and (6.4) imply
the following statement.

Corollary 6.5. Under the hypotheses of Theorem 6.1, if in addition Rmin :=
infX RM > 0 and X is immersed in M as a minimal surface then

μ (X) ≤ C0 (γ + 1) ind (X) + 2πχ
Rmin

,

where C0 is an absolute positive constant.

6.2. Minimal surfaces in R3 with finite total curvature. In this section,
we assume by default that X is an oriented immersed minimal surface in R3. Then
we have ‖A‖2 = −2K and, hence, the second variation form A is given by A = E−σ
where σ is defined by

dσ = −2Kdμ.

In particular, we have σ ≥ 0 and
σ (X) = 2Ktotal (X)

where

Ktotal (X) :=
∫
X

|K| dμ.

The first result related ind (X) to the total curvature is due to Barbosa and do
Carmo [1] who proved that

Ktotal (X) < 2π =⇒ ind (X) = 0.

A number of authors [5], [18], [49] independently proved the following extension of
Bernstein’s theorem: the only complete stable minimal surface is a plane. In other
words, if X is complete then

Ktotal (X) ≡ 0 ⇐⇒ ind (X) = 0.
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Fischer-Colbrie [17] proved that if X is complete then

Ktotal (X) <∞ ⇐⇒ ind (X) <∞.

These results suggests that there may exist inequalities relating ind(X) andKtotal (X).
Indeed, it was proved by Tysk [55] that if X is compete then

(6.7) ind(X) ≤ c0Ktotal (X)

where c0 ≈ 0.6133. Two of the authors proved in [28] that (6.7) holds for any (not
necessarily complete) minimal surface X , although with a very large constant c0.

For a complete X the estimate (6.7) was improved by Micallef [44]: if X is
complete and not a plane then

ind(X) ≤ 1
π
Ktotal (X) + 2γ − 3,

where γ is the genus of X . If in addition Ktotal < ∞ and all branching values of
the extended Gauss map of X lie on an equator of S2, then by a theorem of Montiel
and Ros [45],

ind (X) =
1
2π

Ktotal (X)− 1.
It was conjectured in [7] and [30] that if X is complete and non-planar then

ind (X) ≤ 1
2π

Ktotal (X)− 1.

The known examples of complete oriented minimal surfaces suggest that ind (X)
may admit also a lower bound via Ktotal (X) .We prove here some weak versions of
this conjecture. Before we do so, let us briefly recall some results about the struc-
ture of minimal surfaces in R3. We refer a reader to the surveys by Hoffman and
Karcher [30] and by Meeks and Perez [43] for more details.

LetX be a complete minimal surface. Since we are interested in lower estimates
of ind (X), we can assume that ind (X) <∞ and hence Ktotal (X) <∞. Then, by
a theorem of Huber [33] (see also [48]) X is conformally equivalent to Σγ \P where
P = {p1, ..., pk} is a finite subset of Σγ . Moreover, a punctured neighborhood in
Σγ of each point pi corresponds to an end Ei of X .

Let n (x) be a normal unit vector field on X in R3. When a point x ∈ Ei

escapes to ∞ along Ei then n (x) has a limit, say ni. Denote by Ci the large circle
on the unit sphere S2 such that the plane through Ci has the normal ni.

For any r > 0, consider the set

C (r) := S2 ∩ 1
r
X,

where 1
rX is the scaling transformation of X in R3. By a theorem of Jorge and

Meeks [35], for large enough r, the set C (r) consists of k immersed closed curves
on S2, say C1 (r) , ..., Ck (r) (assuming that the ordering of γir matches that of Ei),
and when r → ∞, the curve Ci (r) converges in C∞-sense to the circle Ci, with a
multiplicity mi, where mi is a positive integer (see Fig. 11).

In particular, the length of the circle Ci is 2πmi. We say that the end Ei has
multiplicity mi. It is known that mi = 1 if and only if the end Ei is embedded.

Theorem 6.6. Let X be a complete oriented minimal surface immersed in R3.
If ind (X) <∞ then

(6.8) ind(X) ≥ c

m
Ktotal (X) ,
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|x|=r

n(x)

nj

2

Cj

Ci
o

n(x)

rCi(r)

rCj(r)
ni

Figure 11. Circle Ci with multiplicity 2 and circle Cj with mul-
tiplicity 1.

where m = m1 + ... + mk is the total multiplicity of the ends of X, and c is an
absolute positive constant.

If in addition the ends of X are embedded then

(6.9) ind(X) ≥ c

k
Ktotal (X) ,

where k is the number of ends of X.

Proof. Let d0 be the geodesic distance on X with respect to the induced
metric. Denote by d the extrinsic distance on X , that is the restriction to X of
the Euclidean distance in R3. Then (X, d) is a Riemannian pseudometric space
(see Section 5). Let μ be the Riemannian measure on X and E be the Riemannian
energy form on X . Let us show that the hypotheses (a)-(c) of Theorem 5.3 are
satisfied.

Let B (x, r) be a d-ball on X , that is B (x, r) is the intersection of the Eu-
clidean ball B̃ (x, r) in R3 with X . The ball B̃ (x, r) can be covered by at most N
euclidean balls in R3 of radii r/4, where N is an absolute constant. Select out of
them those balls that have non-empty intersection with X , and let their centers be
y1, y2, ..., yk, where k ≤ N . Let xi be a point in the intersection of B̃ (yi, r/4) with
X . Then B̃ (xi, r/2) covers B̃ (yi, r/4) whence it follows that all balls B (xi, r/2)
cover B (x, r). Hence, (X, d) satisfies (2, N)-covering property, that is the hypoth-
esis (a) holds.

Since X is complete and Ktotal (X) <∞, the immersion of X into R3 is proper,
that is the intersection of any compact set in R3 with X is compact in the topol-
ogy of X (see [43, Section 2.3]). This immediately implies that d-balls in X are
precompact, that is the hypothesis (b).
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Let us prove that, for any d-ball B (x, r) in X ,

(6.10) μ (B (x, r)) ≤ πmr2,

which will settle the hypothesis (c). It is a consequence of the minimality of X that
the function

r �→ μ (B(x, r))
r2

is increasing (see [53, p.84]). Therefore, it suffices to prove (6.10) asymptotically,
that is

(6.11) μ (B (x, r)) ∼ πmr2 as r →∞,

for any fixed x ∈ X . Without loss of generality, we will prove this for x = o, where
o is the origin of R3.

Set S (r) = ∂B (o, r), ρ (x) = |x| (where x ∈ R3) and observe that by the coarea
formula,

(6.12) μ (B (o,R)) =
∫ R

0

(∫
S(r)

|∇ρ|−1
dl

)
dr,

where ∇ is the Riemannian gradient on X and dl is the length element on S (r).
Let ∇̃ be the Euclidean gradient in R3. Then ∇ρ (x) is the projection of ∇̃ρ (x)
onto TxX (see Fig. (12)) and since n (x) is a normal to TxX , we obtain

|∇ρ|2 = |∇̃ρ|2 − (∇̃ρ · n)2 = 1− (x
ρ
· n)2.

x

n(x)

o

TxX
X

=x/~

3

= n)n~~

Figure 12. Gradients ∇ρ and ∇̃ρ

If x → ∞ along the end Ei, then x/ρ ∈ Ci (ρ) and hence x/ρ tends on S2 to
the circle Ci whereas n (x) tends to ni. Since ni is orthogonal to Ci, we obtain

x

ρ
· n −→ 0
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and hence |∇ρ| → 1. For large enough r, S (r) is the union of the curves rCi (r).
Therefore, we obtain that, for r→∞,∫

S(r)

|∇ρ|−1 dl ∼ l (S (r)) =
k∑

i=1

l (rCi (r)) ∼
k∑

i=1

l (Ci) r = 2πmr,

whence by (6.12)

μ (B (o,R)) ∼
∫ R

0

2πmr dr = πmR2.

This finishes the proof of (6.11) and hence (6.10).
Finally, we claim that measure σ on X (given by dσ = −2K dμ) is d-non-

atomic. Let I be the immersion in question of the manifold X into R3. It follows
from the definition of the extrinsic distance d that, for any x ∈ X ,

{y ∈ X : d (x, y) = 0} = I−1 (x) .

By the definition of an immersion, for any point y ∈ X there is an open neigh-
bourhood U of y in X such that I|U is an injection. Therefore, I−1 (x) consists of
isolated points and hence σ(I−1 (x)) = 0, that is σ is d-non-atomic.

Applying Theorem 5.3 we obtain

ind (X) = Neg (E − σ) ≥ δσ (X)
100πm

=
c

m
Ktotal (X) ,

where c = δ
50π is an absolute positive constant. In the case when the ends of X are

embedded, we have m = k, whence (6.9) follows.

Note that by Corollary 5.6 we have also in the above setting that

(6.13) ind (X) = Neg (E − σ) ≥ σδ (X)
C (γ + 1)

=
c′

γ + 1
Ktotal (X) ,

where c′ = 2σ/C. However, in most applications (6.9) gives a better lower bound
for ind (X) than (6.13).

Theorem 6.7. Let X be a connected complete oriented minimal surface em-
bedded in R3. If ind (X) <∞ then

(6.14) ind(X) ≥ k − 1,
where k is the number of ends of X.

This theorem will be proved Section 6.4 after introducing the necessary tech-
niques.

Corollary 6.8. For any connected complete oriented minimal surface X em-
bedded in R3, we have

(6.15) ind(X) ≥ c′
√
Ktotal (X)

and

(6.16) ind (X) ≥ c′′
√
genus (X),

where c′, c′′ are absolute positive constants.
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Proof. If ind (X) =∞ then there is nothing to prove, so assume ind (X) <∞
and hence Ktotal (X) <∞. Let k be the number of ends of X . If k = 1 then (6.15)
follows from (6.9) and the fact that ind (X) is an integer. If k ≥ 2 then (6.9) and
(6.14) imply

ind (X) ≥ 1
2

(
c

k
Ktotal +

k

2

)
≥ c′

√
Ktotal

where c′ = 1
2

√
c/2.

To prove (6.16) observe that, by a theorem of Osserman (see also [35]), we have

Ktotal (X) = 4π (γ + k − 1) ≥ 4πγ,
where γ = genus (X). Hence, (6.16) follows from (6.15) with c′′ = c′

√
4π.

Let us mention for comparison the following result of Jorge and Meeks [35]:
there exists a function F : [0,+∞)→ [0,+∞) such that if M is a properly embed-
ded minimal surface in R3then

ind (X) ≤ F (genus (X)) .

Here no assumption is made about finiteness of the total curvature.

6.3. Counting functions of subsets. In this section, we assume that X is
a Riemannian manifold, d is a Riemannian pseudometric on X , and μ is a Radon
measure on X having a continuous positive density with respect to the Riemannian
measure. Let E = Eμ be the associated energy form with the domain F = Lip0 (X).
As was already mentioned, the form (E ,F) is closable in L2 (X,μ), and its generator
is −Δμ.

Let σ be another Radon measure on X defined by

dσ = qdμ ,

where q is a positive continuous function on X . The operator − 1
qΔμ is a generator

of the form (E ,F) in L2 (X,σ) . For any open set Ω ⊂ X , consider the form E with
the domain F (Ω) := F ∩ C0 (Ω) = Lip0 (Ω). The form (E ,F (Ω)) is closable in
L2 (Ω, σ). Let HΩ be its self-adjoint generator, and F̃ (Ω) be the domain of the
closure. Set

N (Ω) = sup {dimV : V ≺ F (Ω) and E [f ] < σ [f ] ∀f ∈ V \ {0}}
and

N∗ (Ω) = sup
{
dimV : V ≺ F̃ (Ω) and E [f ] ≤ σ [f ] ∀f ∈ V

}
.

By Lemma 2.7, we have

N (Ω) = dim Im1(−∞,1) (HΩ) ,

and
N∗ (Ω) = dim Im1(−∞,1] (HΩ) .

Lemma 6.9. Let (X,μ) be a connected weighted manifold, and let Ω0,Ω1, ...,Ωn

be non-empty disjoint open sets in X. Then

(6.17) N(X) ≥ N (Ω0) +
n∑

i=1

N∗ (Ωi) .
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Proof. The proof follows an argument of Montiel and Ros [45]. Set V =
Im1(−∞,1) (H) where H is the self-adjoint generator of the form (E ,F) in L2 (X,σ).
Let also Vi be finite dimensional linear spaces such that

V0 ⊂ Im1(−∞,1) (HΩ0)

and
Vi ⊂ Im1(−∞,1] (HΩi) for i = 1, 2, ..., n.

Since Ωi are disjoint sets, the spaces Vi are all mutually orthogonal in L2 (X,σ).
To prove (6.17), it suffices to show that

dimV ≥ dimV0 +
n∑

i=1

dimVi =:m.

Assume from the contrary that dimV < m. Then there exists a non-zero function
v ∈⊕n

i=0 Vi such that v is orthogonal to V in L2 (X,σ). Therefore,

v =
∫

[1,+∞)

dEt (v) ,

where {Et}t∈R is the spectral resolution of the operator H . Similarly to (2.26) we
have

(6.18) σ [v] =
∫

[1,+∞)

d‖Etv‖2 and E [v] =
∫

[1,+∞)

td‖Etv‖2

whence
E [v] ≥ σ [v] .

On the other hand, for any f ∈ Vi we have E [f ] ≤ σ [f ]. Since v is a linear
combination of functions from Vi ⊂ F (Ωi) and the sets Ωi are disjoint, we obtain

E [v] ≤ σ [v] .

Hence, E [v] = σ [v] which is only possible if the measure d‖Etv‖2 does not charge
(1,+∞), that is

v =
∫
{1}

dEt (v) ,

so that v is an eigenfunction of H with the eigenvalue 1. In particular, v satisfies
on X the elliptic equation

(6.19) Δμv + qv = 0.

On the other hand, since for any f ∈ V0 \ {0} we have
E [f ] < σ [f ] ,

the projection of v onto V0 must vanish (otherwise, we would get E [v] < σ [v]).
This means that v ∈ ⊕n

i=1 Vi and hence v ≡ 0 in Ω0. Since X is connected, the
well-known property of solutions to the elliptic equations yields that v ≡ 0 in X ,
which contradicts the construction of v.

Definition 6.10. A weighted manifold (X,μ) is called parabolic if capE(K,X) =
0 for any compact set K ⊂ X .
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Lemma 6.11. A weighted manifold (X,μ) is parabolic provided anyone of the
following conditions is satisfied:

(a) There exists a constant Q such that for any ball B in X,

(6.20) capE(B, 2B) ≤ Q.

(b) All balls of pseudometric d are precompact and there exists a constant C
such that, for any ball B (x, r),

(6.21) μ (B (x, r)) ≤ Cr2.

Proof. Assume that (a) holds. Any compact set in X is bounded and hence
is covered by a ball. Therefore, it suffices to show that capE(B,X) = 0 for any
ball B. It was shown in the proof of Lemma 4.18 that for balls Bn = B (x, 2n) the
following inequality holds:

capE(Bn, Bm) ≤
Q

m− n
,

wherem > n are positive integers (see (4.37). Lettingm→∞we obtain capE(Bn, X) =
0, which settles the claim.

The fact that (b) implies the parabolicity of X was essentially proved in [6] (see
also [21], [24], [54]). Alternatively, one can use that (b) =⇒ (a), which was shown
in the proof of Theorem 5.3 (cf. inequality (5.9)).

Definition 6.12. A non-empty open set Ω ⊂ X is called q-massive if there
exists a function u ∈ C2 (Ω) ∩C

(
Ω
)
such that

(6.22) 0 ≤ u ≤ 1, (Δμ + q)u ≥ 0 in Ω, u|∂Ω = 0, u �≡ 0.
Lemma 6.13. Let the weighted manifold (X,μ) be geodesically complete and

parabolic. If Ω ⊂ X is a q-massive open set and σ (Ω) <∞ then N∗ (Ω) ≥ 1.

Proof. We shall prove that u ∈ F̃ (Ω) and E [u] ≤ σ [u], which will imply
N∗ (Ω) ≥ 1. Fix a smooth non-negative function η : R → R such that 0 ≤ η′ ≤ 1
and η|(−∞,ε] ≡ 0, for some ε > 0 (see Fig. 13).

ε

η(s)

s

Figure 13. A function η (s)

Set v = η (u) and observe that the function v vanishes in a neighborhood of
∂Ω. For any non-negative function ϕ ∈ C∞0 (X), multiplying the inequality

Δμu+ qu ≥ 0
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by vϕ2 and integrating by parts in Ω, we obtain

(6.23)
∫

Ω

∇u · ∇v ϕ2dμ+ 2
∫

Ω

∇u · ∇ϕvϕdμ ≤
∫

Ω

quvϕ2dμ.

Let us allow the parameter ε in the definition of function η to vary and to tend to 0
so that we have a functional family {ηε}ε>0 and respectively the family vε = ηε (u).
The function vεϕ is clearly in the class F (Ω) = Lip0 (Ω), for any ε > 0. Choose
the family {ηε} so that

η′ε (s)→ 1 as ε→ 0, for all s > 0.

In particular, ηε (s) ≤ s and ηε (s) → s as ε → 0. This implies, by the dominated
convergence theorem, that the following convergences take place, both in L2 (Ω, μ)
and L2 (Ω, σ):

vεϕ→ uϕ, ϕ∇vε → ϕ∇u, ∇ (vεϕ)→ ∇ (uϕ) .
In particular, it follows that uϕ ∈ F̃ (Ω). Setting v = vε in (6.23) and letting ε→ 0
we obtain ∫

Ω

|∇u|2 ϕ2dμ+ 2
∫

Ω

∇u · ∇ϕuϕdμ ≤
∫

Ω

qu2ϕ2dμ.

Adding
∫

Ω u2 |∇ϕ|2 dμ to the both sides, we obtain in the left hand side a complete
square, that is ∫

Ω

|∇ (uϕ)|2 dμ ≤
∫

Ω

qu2ϕ2dμ+
∫

Ω

u2 |∇ϕ|2 dμ.

Finally, using |u| ≤ 1, we obtain

(6.24) E [uϕ] ≤ σ [uϕ] +
∫

Ω

|∇ϕ|2 dμ.

Next, let us construct by induction a sequence of functions {ϕn} ⊂ F such that
(6.25) 0 ≤ ϕn ≤ 1, ϕn ≤ ϕn+1, ϕn �≡ 0, and E [ϕn] < 1/n.

Indeed, fix a point x ∈ X and set Br = B (x, r). Since capE(B1, X) = 0,
we can choose a test function ϕ1 ∈ T (B1, X) so that E [ϕ1] < 1. Assuming
that ϕn is already constructed, find such a large number r that suppϕn ⊂ Br.
Since capE(Br, X) = 0, we can choose a test function ϕn+1 ∈ T (Bn, X) so that
E
[
ϕn+1

]
< 1/ (n+ 1). Finally, the monotonicity condition ϕn ≤ ϕn+1 is satisfied

because ϕn ≤ 1 while ϕn+1 = 1 on suppϕn.
Setting un = uϕn and using (6.24), (6.25), we obtain

(6.26) E [un] ≤ σ [un] +
1
n
.

By construction, the sequence {un} is monotone increasing and converges to u
pointwise. By the dominated convergence theorem, we obtain that un → u in
L2 (Ω, σ). Let us prove that also E [un − u]→ 0. Indeed, by the construction of the
functions ϕn, we have

∇un = ϕn∇u+ u∇ϕn −→ ∇u pointwise as n→∞.

By Fatou’s lemma and (6.26), we obtain

(6.27) E [u] ≤ lim inf
n→∞

E [un] ≤ lim inf
n→∞

σ [un] = σ [u] ≤ σ (Ω) .
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On the other hand, we have

E [u− un] =
∫

Ω

|∇ ((1− ϕn)u)|2 dμ

≤ 2
∫

Ω

|∇ϕn|2 u2dμ+ 2
∫

Ω

(1− ϕn)
2 |∇u|2 dμ(6.28)

≤ 2
n
+ 2
∫

Ω

(1− ϕn)
2 |∇u|2 dμ.(6.29)

Since the sequence {1− ϕn}∞n=1 is bounded and goes to 0 pointwise, while by (6.27)
the measure |∇u|2 dμ is finite, we obtain by the dominated convergence theorem
that E [u− un]→ 0. Since un ∈ F̃ (Ω), we conclude that also u ∈ F̃ (Ω). By (6.27)
we have E [u] ≤ σ [u], which finishes the proof.

Corollary 6.14. Let the weighted manifold (X,μ) be geodesically complete,
connected, and parabolic, and let σ (X) < ∞. Assume that, for some positive
integer n, there exist disjoint non-empty open sets Ω0,Ω1, ...,Ωn in X such that Ωi

are q-massive for all i = 1, 2, ..., n. Then

Neg (E − σ) ≥ n.

Proof. Indeed, by Lemma 6.13, we have, for any i = 1, 2, ..., n,

N∗ (Ωi) ≥ 1,
and, by Lemma 6.9,

Neg (E − σ) = N1 (E , σ) = N (X) ≥
n∑

i=1

N∗ (Ωi) ≥ n.

6.4. Lower bound of the stability index via the number of ends. Here
we prove Theorem 6.7. We assume throughout that X is a connected complete
oriented minimal surface embedded into R3such that ind (X) < ∞ and hence
Ktotal (X) < ∞. As before, let μ be the Riemannian measure on X and E be
the Riemannian energy form on X . Set q := −2K ≥ 0 and define a measure σ on
X by dσ = qdμ. We need to prove (6.14), that is

(6.30) Neg (E − σ) ≥ k − 1,
where k is the number of ends of X .

Let d be the extrinsic distance on X . It was shown in the proof of Theorem
6.6 that, for any d-ball B (x, r) on X ,

μ (B (x, r)) ≤ const r2.

Therefore, by Lemma 6.11, X is parabolic. Hence, all the hypotheses of the first
sentence of Corollary 6.14 are satisfied. Therefore, (6.30) will be proved if we
construct k disjoint non-empty open sets Ω1, ...,Ωk on X such that each Ωi is
q-massive7.

7For application of Corollary 6.14, it suffices to show that k−1 sets out of the family {Ωi}k
i=1

are q-massive. In our construction all k sets Ωi happen to be q-massive. However, this does not

imply ind (X) ≥ k because the closures Ωi may cover all X so that there may be no place for one

more non-empty open set as it is required by Corollary 6.14.
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Fix a normal unit vector field n (x) on X , a unit vector v ∈ R3, and consider
the following function on X

(6.31) u (x) := n (x) · v ,
which is known to satisfy on X the Jacobi equation

Δu + qu = 0.

Consider the open set
Ω := {x ∈ X : u (x) �= 0} ,

and let Ω′ be a connected component of Ω. Then either u or −u satisfies (6.22) in
Ω′ so that Ω′ is q-massive. Hence, it suffices to show that, for an appropriate choice
of the vector v, the set Ω has at least k connected components.

For that we will use the additional information about the structure of the ends
of X , which comes from the fact that X is embedded. By a result of Schoen [52],
after a rigid rotation of X in R3, each end E of X can be represented (far enough
from the origin) as the graph in R3 of the following function

x3 = a+ b log r +
c′x1 + c′′x2

r2
+O

(
r−2
)
,

where r =
√
x2

1 + x2
2 and a, b, c′, c′′ are real constants. If b = 0 then the end E is

asymptotic to the horizontal plane x3 = a, whereas in the case b �= 0 the end E is
asymptotic to the catenoid

r = 2 cosh
(
x3 − a

b

)
.

In the former case, we refer to E as a planar end, and in the latter case - as a
catenoidal end (see Fig. 14).

Figure 14. A catenoidal end.

All ends of X are naturally ordered by the way they intersect a remote vertical
line l. Namely, let h (E) be the x3-coordinate of the point where E meets l (see
Fig. 15).

Definition 6.15. We say that the end E is below the end E′ if h (E) < h (E′).
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l

Figure 15. Ordering the ends of an embedded minimal surface
according to their intersections with a vertical line l.

Clearly, this definition does not depend on the choice of l provided the distance
from l to the origin o is large enough (for a more general result on ordering of the
ends of embedded minimal surfaces see [19]). We say that the ends E and E′ are
neighbors if there is no end E′′ between E and E′ in the sense of the order “below”.

For any end E, the normal vector field n (x) has the limit as x goes to∞ along
E, so let n (E) denote this limit. Clearly, n (E) is vertical, that is n (E) = (0, 0, 1)
or n (E) = (0, 0,−1).

Lemma 6.16. If E and E′ are two ends of X, which are neighbors, then
n (E) = −n (E′).

Proof. Let x and y be the points of intersection of respectively E and E′ with
a remote vertical line l. Choose l far enough so that n (x) and n (y) are “nearly”
vertical and that the segment [x, y] of l does not intersect X except for the points
x, y. Since X is connected, there is a path γ : [0, 1]→ X connecting x and y on X .
Fix ε > 0 and consider the deformed path in R3

γε (t) = γ (t) + εn (γ (t)) , t ∈ [0, 1] .
The path γε connects in R3 the points xε and yε where

xε = x+ εn (x) and yε = y + εn (y) .

If ε is small enough then γε (t) does not intersect X (see Fig. 16). Therefore, any
other path from xε to yε must have even number of intersections with X .

Contrary to what we need to prove, assume that

(6.32) n (E) = n (E′) .

Then there is a path from xε to yε that crosses X exactly once, at the point y:
this path is obtained by slightly modifying the path [xε, x] # [x, y] # [y, yε] near
the point x so that it does not meet X in a neighborhood of x. This contradiction
finishes the proof.
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y

x

x

y

n(x)

n(y)

l

E

E

n(E)

n(E

Figure 16. Paths γ and γε.

Choose the vector v in (6.31) as follows: v = (0, 0, 1). If x→ ∞ along an end
E then u (x)→ n (E) · v = ±1. Let us say that an end E is positive if u (x)→ 1 on
E and E is negative of u (x)→ −1 on E. It follows from Lemma 6.16 that positive
and negative ends alternate relative to the order “below”. Let E1, E2, ..., Ek be all
ends of X and let Ωi be the connected component of the set Ω = {u �= 0} containing
a neighborhood of ∞ in Ei. Clearly, if the end Ei is positive then u > 0 in Ωi,
and if Ei is negative then u < 0 in Ωi. This implies that the components Ωi and
Ωj , which correspond to neighboring ends Ei and Ej , are disjoint. Therefore, all
components Ωi, i = 1, 2, ..., k, are disjoint, which finishes the proof of Theorem 6.7.

Remark 6.17. The main point of the above proof was to show that the function
u = n (x) · v has at least k components of constant sign. Having proved that, we
could have used instead of Corollary 6.14 a result of Choe [7] about a vision number,
which says that if this particular function u has k components of constant sign then
ind (X) ≥ k − 1. We have preferred a more general approach based on q-massive
sets, because this approach does not need a function u to be defined on the entire
manifold X . This approach might work for immersed minimal surfaces where one
can expect to be able to construct a function u satisfying (6.22) separately for each
end.
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