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1. Introduction

One of the earliest problems in geometry is the isoperimetric problem, which
was considered by the ancient Greeks. The problem is to find, among all closed
curves of a given length, the one which encloses the maximum area. Isoperimetric
problems for the discrete domain are in the same spirit but with different com-
plexity. A basic model for communication and computational networks is a graph
G = (V, E) consisting of a set V of vertices and a prescribed set E of unordered
pairs of vertices. For a subset X of vertices, there are two types of boundaries:

e The edge boundary O(X)={{u,v} €FE : ue X,veV\ X}

e The vertexr boundary 6(X)={veV\X : {v,u} € E for some u € X}.
Numerous questions arise in examining the relations between 9(X), §(X) and
the sizes of X. Here the size of a subset of vertices may mean the number of
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vertices, the number of incident edges, or some other appropriate measure defined
on graphs.

In this paper, we will survey spectral techniques for studying discrete isoperi-
metric inequalities and the like. In addition, a number of applications in extremal
graph theory and random walks will be included. This paper is organized as follows:

Section 1: A brief introduction and an outline are given.

Section 2: Definitions and notations of the combinatorial Laplacian and nor-
malized Laplacian are introduced as well as the historical matrix-tree theo-
rem.

Section 3: Enumeration of spanning trees using eigenvalues of the combina-
torial and normalized Laplacians

Section 4: Complimentary to the isoperimetric inequalities is the discrepancy
inequalities. Instead of tracking the number of edges leaving X, discrepancy
inequalities provide estimates of the edges remaining in X. Here we give
several versions of discrepancy inequalities for general graphs.

Section 5: The usual Cheeger inequality is for bounding the edge boundary.
Here we also consider vertex boundaries and their generalizations.

Section 6: Eigenvalues are related to the diameter of a graph, i.e., the max-
imum distance between any two vertices. We will give several eigenvalue
inequalities for bounding the diameter and the distance between two or
more subsets both for graphs and manifolds.

Section 7: We consider discrete Sobolev inequalities which include Cheeger
inequalities as a special case.

Section 8: Harnack inequalities, which provide pointwise estimates for eigen-
functions, can be established for certain convex subgraphs of homogeneous
graphs.

Section 9: The heat kernel of a graph contains all the spectral information
about the graph. For example, the heat kernel can be used to deduce bounds
for eigenvalues of certain induced subgraphs.

Section 10-14: The containment or avoidance of specified subgraphs, such as
paths, cycles and cliques of given sizes are central themes in classical Ramsey
and Turdn theory. Our focus here is to derive such extremal graph prop-
erties as direct consequences of spectral bounds. The applications include
the forcing of long paths and cycles, universal graphs for trees, chromatic
numbers and list chromatic numbers, and the Turdn numbers, as well as
random walks involving the enumeration of contingency tables.

In the applicational sections, there are some overlaps with the study of the so-
called (n,d, \)-graphs (i.e., regular graphs on n vertices having degree d with all
but one eigenvalue of the adjacency matrix bounded above by A). Such graphs are
extensively examined in many papers by Alon [4] and others [46, 60]. There is a
recent comprehensive survey by Krivelevich and Sudakov [46] on (n,d, \)-graphs.
Here we deal with general graphs with no degree constraints.

Throughout the paper, we consider only finite graphs. The reader is referred
to the book by Woess [63], which explores isoperimetric properties and random
walks on infinite graphs. There is a close connection between discrete isoperimet-
ric inequalities and their continuous counterpart, as evidenced in Section 7 to 9.
Isoperimetric inequalities for Riemannian geometry have been long studied and
well developed (see [12, 64]). As a result, one of the earlier approaches on discrete
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isoperimetric inequalities focuses on discretizations of manifolds [35, 42]. Another
approach is to study graphs with group symmetry [58] or random walks on finite
groups [36]. In this paper, we consider general graphs and our approach here is
from a graph-theoretic point of view.

2. Combinatorial and normalized Laplacian

One of the classical results in graph theory is the matrix-tree theorem by Kirch-
hoff [43], which states that the number of spanning trees in a graph is determined
by the determinant of a principle minor of the combinatorial Laplacian. For a graph
G with vertex set V and edge set E, the combinatorial Laplacian L is a matrix with
rows and columns indexed by vertices in V' and can be written as

L=D-A

where D is the diagonal matrix with D(v,v) equal to the degree d, of v and A
is the adjacency matrix of G. If G is a simple graph with no loops or multiple
edges, A(u,v) = 1 if v and v are adjacent or else A(u,v) = 0. In this paper, we
restrict ourselves to simple graphs although most of the statements and results can
be easily carried out to general graphs or weighted graphs.

The combinatorial Laplacian has its root in homological algebra and spectral
geometry. We can write L as

(1) L = BB*

where B is the incidence matrix whose rows are indexed by the vertices and whose
columns are indexed by the edges of G such that each column corresponding to an
edge e = {u,v} has an entry 1 in the row corresponding to u, an entry —1 in the
row corresponding to v, and has zero entries elsewhere. (As it turns out, the choice
of signs can be arbitrary as long as one is positive and the other is negative.) Also,
B* denotes the transpose of B. Here B can be viewed as a “boundary operator”
mapping “l-chains” defined on edges (denoted by C7) of a graph to “0-chains”
defined on vertices (denoted by Cp). Then, B* is the corresponding “coboundary
operator” and we have

B

.

Ch Co

-

B*
This fact can be used to give a short proof of the matrix-tree theorem as follows:
For a fixed vertex v, let L’ denote the submatrix obtained by deleting the vth row
and vth column of L. Since L = BB*, we have L' = ByBj where Bj denotes the
submatrix of B without the vth column. By the Binet-Cauchy Theorem [53] we
have

det ByBj =) det Bx det By
X

where the sum ranges over all possible choices of size n — 1 subsets X of E(G) and
Bx denotes the square submatrix of By whose n — 1 columns correspond to the
edges in X and whose rows are indexed by all the vertices except for v. Standard
graph-theoretical arguments can be used to show that |det Bx| = 1 if edges in X
form a tree and O otherwise. Thus, det BoB; is exactly the number of spanning
trees in G, as asserted by the matrix-tree theorem.
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Geometrically, the combinatorial Laplacian L can be viewed as the discrete ana-
log of of the Laplace-Beltrami operator, especially for graphs that are the Cartesian
products of paths, for example. For a path vg,v1,...,v, and a function f that as-
signs a real value to each v;, the combinatorial Laplacian can be written as :

Lf(v) = Y (fv) = f(u))

uU~v

Lf(vi) = (f(vi) = f(vi1)) = (f(vig1) — f(vi))
= Vf(i,vi-1) = Vf(vit1,vi)
= Af(v)

for 0 < i < n. Here we use the following notation:
For an edge {u,v}, Vf(u,v) = f(u)— f(v).
For a vertex v, Af(v) = Z(f(v) — f(u)).

u~v

(f, Lf).

IVFI* =D (F(u) = f(0))?
u~v
where u ~ v means {u,v} € E(G). Note that V f(u,v) can be viewed as the first
derivative in the direction of the edge {u,v} and Af(v) can be regarded as the sum
of second derivatives over all directions along the edges incident to v. The so-called
Dirichlet sum is just ||V f||? as indicated above.
Since L is self-adjoint as seen in (1), its eigenvalues are non-negative. We denote
the eigenvalues of L of a graph G on n vertices by

0:(70§01§...§an_1.

One of the main approaches in spectral graph theory is to deduce various graph
properties from eigenvalue distributions. In order to so so, it is sometimes appropri-
ate to consider the normalized Laplacian L, especially for diffusion-type problems
such as random walks.

L =D YLD 1/?

Here we preclude isolated vertices in order to guarantee that D is invertible, an
inconsequential constraint in practice. For regular graphs L and £ are basically the
same (up to a scale factor). However, for general graphs, it is often advantageous
to utilize the normalized Laplacian. We denote the eigenvalues of £ of G by

0=X< M <. <ot
To compare £ and L, we note that

2
A = inf (LLf) . ¢ {9:Lg) _ of Vgl
> g(x)d==0 (g, Dg)

= = in
fLdo <f7 f> Zg(x)dmzo <g7Dg>
where ¢y denotes the eigenfunction associated with eigenvalue 0 of £ and g =
D~1'/2f. In contrast,
L VIl?
o1 = _ inf (. Lf) = inf I f! .
. f@=0 (f,f)  T.i@=o0 [|If]
From the above equations, we see that £ is the Laplace operator with the
weight /measure of a vertex taken to be the degree of the vertex while L is the
corresponding operator having all vertices with weights equal. The combinatorial
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Laplacian is simpler, but the normalized Laplacian is sometimes better for capturing
graph properties that are sensitive to degree distributions.

3. Eigenvalues and spanning trees

We consider separately the cases for the combinatorial Laplacian and normal-
ized Laplacian.

3.1. Eigenvalues of the combinatorial Laplacian and spanning trees.
The number of spanning trees, denoted by 7(G), can be related to the eigenvalues
of L in the following folklore theorem: For completeness, we briefly describe the
proof here.

THEOREM 1. For a graph G on n vertices , the number of spanning trees 7(G)

18 :
1
7(G) = . H o
i#0

where o; are eigenvalues of the combinatorial Laplacian L.

ProOF. Consider the characteristic polynomial p(z) of the combinatorial Lapla-
cian L.

p(x) = det(L — zI).
The coefficient of the linear term is exactly
- H ;.
i#£0

On the other hand, the coefficient of the linear term of p(z) is —1 times the sum
of the determinant of n principle submatrices of L obtained by deleting the ith
row and ith column. By the matrix-tree theorem, the product [], £00i 1S exactly n
times the number of spanning trees of G. M

3.2. Eigenvalues of the normalized Laplacian and spanning trees.

THEOREM 2. For a graph G with degree sequences (d, ), the number of spanning
trees T(G) s

— H?)dv

E?) d”

where \; are eigenvalues of the normalized Laplacian L.

7(G)

izoNi

PROOF. We consider the coefficient of the linear term in
P(x) = det(L — zI).

—J[ri=-> detz,

i#0 v
where L, is the submatrix obtained by deleting the row and column corresponding
to v. From the matrix-tree theorem, we have

We have

det L, 7(G)
detL, = —det L, = ———.
Hu;éudu Hu;ﬁvdu
Thus we have Ld
T(G) = v Hi;ﬁo)\z

as desired. O
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4. A discrepancy inequality
For a graph G and a subset X of vertices in G, the volume vol(X) is defined

by
vol(X) =Y " d,
veX
where d,, is the degree of v. We note that for a simple graph G, the degree d,
of v is the number of neighbors of v in G. We will denote the volume of G by

vol(G) =3, dy.

For two subsets X and Y of vertices in G, we write
e(X,Y)={(z,y) :x € X,y €Y, {z,y} € E(G)}.

Eigenvalues can be used to estimate e(X,Y), as summarized in the discrepancy
inequalities in this section.

4.1. A general discrepancy inequality.
THEOREM 3. For a graph G and two subsets of vertices X and Y, we have

vol(X)vol(Y | \/vol )vol(X)vol(Y)vol(Y)
vol(Q) - vol(G)

where the normalized Laplacian has eigenvalues A;, and A= max;-o |1 — A

‘6(X,Y) -

PROOF. We consider the characteristic function of X.

1 ifueX,
Wx(u) = { 0 otherwise.

Then we can write

€(X, Y) = <¢Xa Awy>
= (Ux, D21 = £)D¢y)
= agby + Z (Libi(l
i#0
where DY2¢y =", a;¢;, DY?*py = 3. b;¢;, and the ¢;’s are orthonormal eigen-
functions of £ associated with A;. In particular, ¢o(v) = \/d,/vol(G) and apby =
vol(X)vol(Y)/vol(G). Thus
vol(X)vol(Y)
XY)- ————~ X, Y) — apb
e, y) = SR — e Y) - ot
= Z aibi(l — )\1)
i#0
< 5\2 |a;b;|
i#0
<

A Z a? Z b?
\/ #0  j#0

\/vol )vol(X)vol(Y)vol(Y)
vol(G)
as desired. O
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4.2. Discrepancy inequalities using combinatorial Laplacians. The dis-
crepancy inequalities using eigenvalues of the combinatorial Laplacian are more
complicated. We will give several versions of the discrepancy inequalities depending
on the intersection of subsets X and Y. We will use the fact that an eigenfunction
of L associated with eigenvalue 0 is the all 1’s function (but it is in general not an
eigenfunction for A).

THEOREM 4. Suppose that a graph G with n vertices has average degree d and
the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;] < 0 for i # 0.
Then for any two subsets X and Y of vertices in G, the number e(X,Y) of edges
with one endpoint in X and the other in'Y satisfies

d 0
e(X,Y) - —|X[ Y] +d | XNY [ —vol(X NY)| < gx/IXI (n — [XDIY[(n = [Y])

The proof of Theorem 4 will be given later. We will first state several immediate
consequences of Theorem 4.

THEOREM 5. Suppose that a graph G with n vertices has average degree d and
the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;] < 0 for i # 0.
Then for any two disjoint subsets X and Y of vertices in G, the number e(X,Y)
of (ordered) edges with first endpoint in X and the second endpoint in'Y satisfies

©) e, v) = 21x1 | < & VIRT - XD TG~ 7).

COROLLARY 1. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;| < 6 fori # 0.
For two disjoint subsets X andY each with at least On/d vertices in G, there is at
least one edge joining a verter in X to a vertex in 'Y .

PROOF. If ¢(X,Y) = 0, we have, by substituting into (2),

d 0 = =
VXTIV < /IX1 171

which is impossible for | X|, Y| > 0n/d. O
By setting Y to be the complement of X in (2), we have the following:

COROLLARY 2. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d —o;| < 0 for i # 0.
Then for a subset X of vertices and its complement X, the number e(X,X) of
(ordered) edges with first endpoint in X and the second endpoint in X satisfies

d—0 d+0

— XX <e(X, X) < X[ 1X].

n
By setting Y = {v} in (2), we have the following:
COROLLARY 3. Suppose that a graph G with n vertices has average degree d

and the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;| < 6 fori # 0.
Then for all vertices v, we have

" _(d-6)<d, <—

(d+6) <d+9.

n—1 n—1

Using Theorem 5, we will prove the following;:
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THEOREM 6. Suppose that a graph G with n vertices has average degree d and

the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;] < 0 for i # 0.

Suppose that vertex v has l, loops. Then for a subset X of vertices in G, the

number e(X, X) of ordered pairs corresponding to edges with both endpoints in X
satisfies

2
’e(X,X> - (s ) < Zix) - 1x172).
veX

PROOF. Let x = | X| and X’ denote a subset of X of size 2’ = [x/2]. We apply
Theorem 5 on X’ and X \ X’ and we have

e(X', X\ X') - %L%J (%1 < %\/x’(n —a)(z —2')(n—z + ).
Since
(j,__Ql)(e(X,X)—Zlv): Z e(X', X\ X",
veX X'CX,| X! |=a
we have

e(X,X) - ng + (df - > k)

(277

- S e X\ X') - (“_i) %x(x —1)

T
X'CX, | X! |=a

= | Y exx x) - 43
X'CX,|X'| =2

< (m) O S n =2 — ) (n—z + ).

' )n

Therefore we have

exx)- L2 (® oy < W0 e ee et e
" veX (m’fl) n
26
< = _
< x(n —x/2)
as desired. O

COROLLARY 4. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d —o;| < 0 for i # 0.
Then for a subset X of vertices in G, the number e(X) of edges with both endpoints
i X satisfy
_ XX -1)

n

26
2e(X) < X[ (n = 1X1/2).
COROLLARY 5. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d —o;| < 0 for i # 0.
Then an independent subset in G can have no more than On/d + 1 vertices.
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It remains to prove Theorem 4.

Proof of Theorem 4: Let ;,1=0,...,n — 1, denote orthonormal eigenvectors
of the combinatorial Laplacian. The eigenvalue associated with ¢; is o;. Then for
i =0, ¢o = 1/+/n where 1 is the all 1’s vector. Suppose we write

n—1
Yx = Zai%‘,

o
by = Y b

i=0

Here, let I denote the identity matrix. We consider

e(X,Y)+dIXNY| = (ix,(A+dl)y)
= (¥x,(D— L)Yy) +d(¥x,dy)
= vol(XNY)— Zazazb —l—dZazz

i#0
= VOI(X N Y) - Z(d — Ui)aibi + dagby.
i#£0
We note that
_ X
ap = (Yx,o0) = T’
Y
bo = (Yy,d0) = |—\/;|L
Thus, we have
e(X,Y)+dXNY| = vol(XNY)—)» (d—oy)ab; + é|X| Y.
i#0 n
Hence,
d
|e(X,Y) — E|X| Y|+dXNnY|—=vol(XNY) |
< Z(d —0j)aib;
i#£0
< 0 Z laibs
i#0
< 40 Zaf Zb?
i£0  j#O
< 0\(lx]2 — ad)(lovll? — 83)
< 9 V(X[ = [XDIY(n —[Y])
B n
as claimed. O

In the preceding proof, if we use d’ = (01 + 0,,—1)/2 in place of d, then we have
the following:
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THEOREM 7. Suppose that in a graph G with n vertices, the combinatorial
Laplacian has eigenvalues 0 = 09 < 01... < op—1. Then for any two subsets X
and Y of vertices in G, the number e(X,Y) of edges with one endpoint in X and
the other in'Y satisfies

U

e(X,Y) — %|X| Y|+d | XNY | —-vol(XNY)

(on-1—01)
- 2
where d' = (0,1 +01)/2.

VIX(n — [XDY](n —[Y])

5. Cheeger inequalities

In a graph G = (V, E) and a subset X of vertices, we define several versions of
neighborhoods and boundaries.

e The neighborhood N(X) is defined to be
NX)={v:veXorv~ue X}

where v ~ u means {u, v} is an edge.
e The exact neighborhood T'(X) is just

NX)={v : v~ueX}.

e The vertex boundary §(X) of a subset X of verticesis §(X) ={v &€ X : v~
u € X} In general, for an integer k > 1, the k-neighborhood Ny (X) of X is defined
to be Ni(X) = N(Ni_1(X)) and No(X) = X. The k-boundary d5(X) is just
Ni(X) \ Ng—1(X).

e The edge boundary 9(X) is 9(X) = e(X, X). where X is the complement of X.

5.1. Isoperimetric inequalities for edge boundaries. The edge boundary
is closely related to the discrete Cheeger’s constant, which is defined as follows (see
[15, 13]).

hg = inf — [0(X)] ——.
X min{vol(X), vol(X)}
The eigenvalues of the normalized Laplacian are related to Cheeger’s constant by
the discrete Cheeger inequality:

h2
%GZMZ—f.

Clearly, this implies
10(X)]
vol(X)
if vol(X) < vol(X). For subsets with given cardinality, a slightly stronger lower
bound is as follows:

LEMMA 1. For a graph G and a subset of vertices X with vol(X) < vol(G)/2,
we have

A
zmzé

(X)) _volX) h
vol(X) vol(G)” — 2
where A1 is the least non-trivial eigenvalue of the normalized Laplacian of G.

> (1

The proof follows from the definition of A\; and can be found in [13]. Along the
same line, the following holds for the combinatorial Laplacian.
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LEMMA 2. For a graph G on n vertices and a subset of vertices X with | X| <
n/2, we have
>(1- 2> 2
| X| n 2

where o1 is the least non-trivial eigenvalue of the combinatorial Laplacian of G.

We note that the Cheeger inequality used in Lemma 1 can be slightly improved

(see [13]).
2hg > M\ > 1—4/1—h2.

Another characterization of the Cheeger constant hg of a graph G can be
described as follows (see [13]):
Z f
(3) ha = mf sup =

c€R Z |f(z) — c|d,

zeV

where f ranges over all functions f : V' — R which are not identically zero.
A variation of (3) seems to be particularly useful, e.g., for deriving isoperimetric
relationships between graphs and their Cartesian products [24].

Z f(2) -
hg > mf > 1
7 Z f(a 2

zeV

where f: V(G) — R satisfies Z flx)d, =
zcV

5.2. Isoperimetric inequalities for vertex boundaries. We will prove the
following basic isoperimetric inequality:

THEOREM 8. Suppose that a graph G with n vertices has average degree d and
the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;] < 0 for i # 0.
Then for any nonempty subset X, the boundary 6(X) of X satisfies
B L R
X] Z 0+ @X]/(n— X))
PROOF. We use Theorem 4 and choose Y = V(G)\ X \d(X). Since e(X,Y) = 0,
we have

n— [ XP¥i(n - Y]

X
n n

Thus,
XY < X[+ [6(X)NY]+]6(X))).

This implies

2
9 — I XY < [oOI(X]+ Y] +[6(X)])

16(X)| n.

IN
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Therefore,

2 2
Tl X (= X1 - 180))) < 13(X)

which is equivalent to

d2—92 d2—(92
- - < — .
gz, X (n=1X]) < [8XOIA + =5 = 1X])

Finally, we have

P o (=0 (n - |X])
(X| 7 Pnt (- 07)X]
(d* — 02)(n — |X])
0%2(n — | X|) + d?|X]|

d2—92
02+ &X]/(n— [X])

as claimed. O
As an immediate consequence of Theorem 8, we have the following three corol-
laries:

COROLLARY 6. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;| < 6 fori # 0.
For any subset X with |X| < n#?/d?, the neighborhood N(X) = X US(X) of X
satisfies

|N(X)] d

w2 (o).

COROLLARY 7. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d —o;| < 0 for i # 0.
For any subset X with |X| < n6% /d?', the t-neighborhood Ny(X) = N(N¢—1(X))
of X satisfies

[Nt (X)] d**

N2 0 o)

COROLLARY 8. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d —o;| < 0 for i # 0.
For any vertex v, we have

_ 20—2 _ p2t—2 2 o
@ e > ST o

In particular, for 6 = o(d), we have

th— 1 1 d2

6t(v) > (1+0(1))02t—_2( n(a—g)t_l)~

PRroOOF. For the case of ¢t = 1, inequality (4) follows from Corollary 3. For
t > 1, inequality (4) is proved by using Corollary 6 and 7.

Remark 1: The isoperimetric inequality for regular graphs by Tanner [61] and
Alon [4] is a special case of Theorem 8.
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6. Diameter-eigenvalue inequalities

In a graph G, the distance between two vertices u and v, denoted by d(u,v), is
defined to be the length of a shortest path joining v and v in G. The diameter of G,
denoted by D(G), is the maximum distance over all pairs of vertices in G. Although
the diameter is a combinatorial invariant, it is closely related to eigenvalues. In [14],
the following relation between the diameter and eigenvalues holds for regular graphs
(except for complete graphs).

(5) D(G)s[ log(n — 1) ]

log(1/(1 = 7))
Here, Ais A=A if 1 — Xy > A\,1 — 1.

6.1. Eigenvalues and diameters. Inequality (5) can be generalized to all
graphs by using the combinatorial Laplacian [19].

THEOREM 9. Suppose a graph G on n vertices has eigenvalues 0 < o1 < ... <
on—1. The diameter of G satisfies

log(n — 1
D) < i fpﬂ + )01
log ——
Op—1 — 01
We note that for some graphs the above bound gives a pretty good upper
bound for the diameter. For example, for k-regular Ramanujan graphs, we have
1=X =XM1 —-1=1/(2VEk —1), so we get D <log(n —1)/(2log(k — 1)), which
is within a factor of 2 of the best possible bound.
The bound in (5) can be further improved by using the Chebyshev polynomial
of degree t. We can then replace the logarithmic function by cosh™! (see [19]) :

D(G) < ’V cosh™(n —1) -‘ .

cosh™! Zn=ttoL
On—1—01

6.2. Distances between two subsets. Instead of considering distances be-
tween two vertices, we can relate the eigenvalue \; to distances between two subsets
of vertices. For two subsets X,Y of vertices in G, the distance between X and Y,
denoted by d(X,Y), is the minimum distance between a vertex in X and a vertex
inY;ie, dX,Y) = min{d(z,y) : ¢ € X,y € Y}. In [31], the distance between
two sets can be related to eigenvalues as follows:

THEOREM 10. Suppose G is not a complete graph. For X, Y C V(G),

IOg /‘\//OIX:/]OIY
(6) d(X,Y)< olX volY

- An—1+A1

6.3. Higher order eigenvalues and distances among many subsets.
For any k£ > 1, we can relate the eigenvalue \; to distances among k + 1 distinct
subsets of vertices [31].
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THEOREM 11. Suppose G is not a complete graph. For X; C V(G), i =
0,1,--- ,k, we have

10g VOIX,; VOIX]‘
. \/ volX; vol X ;
mind(X;, X;) <max | ———

i#j i#j log 15
if 1— X > A1 — 1.

We note that the condition 1 — A\ > A,,—1 — 1 can be eliminated by modifying
Ai: For X; C V(G),i=0,1,--- ,k, we have

log /volX; volXj
. volX; vol X ;
min d(X;, X;) < max | ———5————
1£] i#] log /\n;

n—1—Ag

i Mg # Ano.
Another useful generalization is the following: For X; C V(G), i =0,1,--- ,k,

we have
log VOIXi VOIXJ‘
. . \/ volX; vol X ;
mind(X;, X;) < min max | ——————

i#j T 0<i<k i#i | log :\\n_j_1+;\\k,j
n—j—1="A\k—j

where j satisfies A\p—; # An—j—1.

6.4. Eigenvalue upper bounds for manifolds. The above discrete meth-
ods can be used to derive new eigenvalue upper bounds for compact smooth Rie-
mannian manifolds [21, 22]. Let M be a complete Riemannian manifold with finite
volume and let £ be the self-adjoint operator —A, where A is the Laplace operator
associated with the Riemannian metric on M. Or, we could consider a compact
Riemannian manifold M with boundary and let £ be a self-adjoint operator —A
subject to the Neumann or Dirichlet boundary conditions.

The operator £ = —A is self-adjoint and has a discrete spectrum in L2(M, p),
where p denotes the Riemannian measure. Let the eigenvalues be denoted by
0=X <A1 <Ay <---. Let dist(z,y) be a distance function on M x M which is
Lipschitz and satisfies

|Vdist(z,y)| <1
for all z,y € M. For example, dist(z,y) may be taken to be the geodesic distance,
but we don’t necessarily assume this is the case.

Using very similar methods as in the discrete case, it can be shown that (see
21)):

For two arbitrary measurable disjoint sets X and Y on M, we have

1 (uM)*\?
M ———(1+log—= ] .
L= dist(X, Y)2 ( tlos Xy
Moreover, if we have k£ + 1 disjoint subsets Xg, X1, -+, Xi such that the distance

between any pair of them is greater than or equal to D > 0, then we have for any
k>1,

1 (uM)? 2
M < — (1 +suplog ———)°.
¢ < pal +3?; e NXi)
Although differential geometry and spectral graph theory have a great deal
in common, there is no question that significant differences exist. Obviously, a
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graph is not “differentiable”, and many geometrical techniques involving high-order
derivatives could be very difficult, if not impossible, to utilize for graphs. There are
substantial obstacles for deriving the discrete analogs of many of the known results
in the continuous case. Nevertheless, the above result is an example of mutual
fertilization that shed insight to both the continuous and discrete cases.

7. Sobolev constants and Sobolev inequalities

The characterization of the Cheeger constant is basically the Rayleigh quotient
using the Li-norm both in the numerator and denominator. In general, we can
consider the so-called Sobolev constant for all p,q > O:

S Ifw) = FO)P

u~v

Spq = inf

I I w)d,

where f ranges over functions satisfying

Y1) = el®de = > | £(2)]"da

Jir=cr= [is1e

The eigenvalue A1 corresponds to the case of p = ¢ = 2, while the Cheeger constant
is associated with the case of p =¢ = 1.

There are many common concepts that provide connections and interactions
between spectral graph theory and Riemannian geometry. For example, the Sobolev
inequalities for graphs can be proved almost entirely by classical techniques which
can be traced back to Nash [64]. We will describe Sobolev inequalities which hold
for all general graphs. However, such inequalities depend on a graph invariant, the
so-called isoperimetric dimension.

We say that a graph G has isoperimetric dimension § with an isoperimetric
constant c¢; if for all subsets X of V(G), the number of edges between X and the
complement X of X, denoted by e(X, X), satisfies

for any ¢, or, equivalently,

-1
5

(7) e(X, X) > cs(volX)

where vol X < vol X and c; is a constant depending only on 6. Let f denote an
arbitrary function f : V(G) — R. The following Sobolev inequalities hold [25].

(i) For 6> 1, 3" |f(w) = f()] = ermin(}_ |f(v) = m|71d,)

(if) For §>2, (3 [f(u) = f(@0)*)? = comin(}_ |(f(v) = m)*dy)®
1215\/1) v

where a = 5% and ¢y, ¢y are constants depending only on c;.

-2



68 FAN CHUNG

The above two inequalities can be used to derive the following eigenvalue in-
equalities for a graph G (see [25]):

1
Z ot Cvot(éG)

>0

IN

e > )8

vol(G)
for suitable constants ¢ and ¢’ which depend only on § and ¢s. In a way, a graph can
be viewed as a discretization of a Riemannian manifold in R™ where n is roughly
equal to §. The eigenvalue bounds above are analogs of the Polya conjecture for
Dirichlet eigenvalues of a regular domain M.

27 k 2
>

A n
k= wn(volM)

where w,, is the volume of the unit disc in R".
In a later paper [23], the condition in (7) is further relaxed. It was shown that
if in a graph G = (V, E), any subset X C V satisfies

e(X,X) > C(Vol(X))(‘s—l)/é

for vol(X) < c¢1, then the Dirichlet eigenvalue A (S) for the induced subgraph S
satisfies

k
/ _
¢ (VOI(S )

where ¢’ depends on § and ¢, provided |S| > k > %VO](S).
An interesting question is to deduce the isoperimetric dimension or inequalities
such as (7) from an arbitrarily given graph. In [23], we examine certain sufficient

conditions on graph distance functions and their modifications for deriving (7).

A (S) = )0

8. Harnack inequalities

A crucial part of spectral graph theory concerns understanding the behavior
of eigenfunctions. Intuitively, an eigenfunction maps the vertices of a graph to the
real line in such a way that edges serve as “elastic bands” with the effect of pulling
adjacent vertices closer together. To be specific, let f denote an eigenfunction with
eigenvalue A in a graph G (or for an induced subgraph S with nonempty boundary).
Locally, at each vertex, the eigenfunction stretches the incident edges in a balanced
way. That is, for each vertex x, f satisfies

> _(f(@) = f(y) = M (2)da.
Yy

y~x
Globally, we would like to have some notion that adjacent vertices are close to one
another. In spectral geometry, Harnack inequalities are exactly the tools for cap-
turing the essence of eigenfunctions. There are many different versions of Harnack
inequalities (involving constants depending on the dimension of the manifold, for
example). We consider the following inequality for graphs.

A Harnack inequality:
For every vertex x in a graph GG and some absolute constant ¢, any eigenfunction
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f with eigenvalue A satisfies

& () - W) < Amax £2(2).

y~T
However, the above inequality does not hold for all graphs in general. An easy
counterexample is the graph formed by joining two complete graphs of the same
size by a single edge. Nevertheless, we can establish a Harnack inequality for certain
homogeneous graphs and their “strongly convex subgraphs”.

A homogeneous graph is a graph I' together with a group H acting on the
vertices satisfying:

1. For any g € H,u ~ v if and only if gu ~ gv.

2. For any u,v € V(I') there exists g € H such that gu = v.
In other words, I is vertex transitive under the action of H, and the vertices of T'
can be labeled by cosets H/I where I = {g : gv = v} for a fixed v. Also, there is
an edge-generating set K C H such that for all vertices v € V(I') and g € K, we
have {v,gv} € E(T'). A homogeneous graph is said to be invariant if K is invariant
as a set under conjugation by elements of K, i.e., for alla € K, aKa™' = K.

Let f denote an eigenfunction in an invariant homogeneous graph with edge-
generating set K consisting of k generators. Then it can be shown [26] that

3 (@) — Flax)? < 8Asup £()
a€eK Y

An induced subgraph S of a graph I is said to be strongly convez if for all pairs of
vertices v and v in .S, all shortest paths joining v and v in I' are contained in S.
The main theorem in [26] asserts that the following Harnack inequality holds.

Suppose S is a strongly convex subgraph in an abelian homogeneous graph with
edge-generating set K consisting of k generators. Let f denote an eigenfunction
of S associated with the Neumann or Dirichlet eigenvalue A. Then for all x € S,
T~y

|f(x) = f(y)I” < 8kAsup f2(2).

zES

(The detailed definition of Neumann or Dirichlet eigenvalues of an induced subgraph
will be given in the next section.)

A direct consequence of the Harnack inequalities is the following lower bound
for the Neumann or Dirichlet eigenvalue A\ of S:

1
M2 D2

where k is the maximum degree and D is the diameter of S. Such eigenvalue bounds
are particularly useful for deriving polynomial approximation algorithms when enu-
meration problems of combinatorial structures can be represented as random walk
problems on “convex” subgraphs of appropriate homogeneous graphs. However,
the condition of being a strongly convex subgraph poses quite severe constraints,
which will be relaxed in the next section.

9. Heat kernel eigenvalue inequalities

In a graph G, for a subset S of the vertex set V = V(G), the induced subgraph
determined by S has edge set consisting of all edges of G with both endpoints in
S. Although an induced subgraph can also be viewed as a graph in its own right,
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it is natural to consider an induced subgraph S as having a boundary. For an
induced subgraph S with non-empty boundary, there are, in general, two kinds of
eigenvalues — the Neumann eigenvalues and the Dirichlet eigenvalues — subject to
different boundary conditions.

For the Neumann eigenvalues, the Laplacian £ acts on functions f : SUJS — R
with the Neumann boundary condition, i.e., for every z € 65, > 5, .(f(z) —
fy)) =0.

For the Dirichlet eigenvalues, the Laplacian £ acts on functions with the
Dirichlet boundary condition. In other words, we consider the space of functions
{f : V — R} which satisfy the Dirichlet condition f(x) = 0 for any vertex x in the
vertex boundary 45 of S.

The Neumann boundary condition corresponds to the Neumann boundary con-
dition for Riemannian manifolds: 8’;—(55) = 0 for = on the boundary where v is the
normal direction orthogonal to the tangent hyperplane at x. Neumann eigenvalues
are closely associated with random walk problems, whereas the Dirichlet eigenval-
ues are related to many boundary-value problems (Details can be found in [13]).
In the remainder of this section, we will focus on Neumann eigenvalues and the
heat kernel techniques to obtain eigenvalue lower bounds. In the literature, there
are many general formulations for discrete heat kernel in connection with the con-
tinuous heat kernels [34, 40]. Here we define a natural heat kernel for general
graphs.

Let ¢; denote the eigenfunction for the Laplacian corresponding to eigenvalue
X;. We now define the heat kernel of S as a n X n matrix

H = > eM'Pp
— L
t2
= I—tL+ LA

where £ = > A\, P; is the decomposition of the Laplacian £ into projections on its
eigenspaces. In particular, we have Hy = I, and for F(x,t) = Z Hy(z,y)f(y) =

yeSuUsS
(Hef)(x) with F(z,0) = f(z), F satisfies the heat equation
OF
— =—LF.
ot

By using the heat kernel, the following eigenvalue inequality can be derived, for all
t>0:

Vdy
NG

One way to use the above theorem is to bound the heat kernel of a graph by the
(continuous) heat kernel of Riemannian manifolds. We say T is a lattice graph if T" is
embedded into a d-dimensional Riemannian manifold M with a metric o such that
e = p(z,gx) = uly,g'y) for all g,¢' € K and z,y € V(I'). An induced subgraph
on a subset S of a lattice graph I' is said to be convez if there is a submanifold
M C M with a convex boundary M # ) such that S consists of all vertices of T’
in the interior of M. Furthermore, we require that for any vertex x, the Voronoi
region R, = {y: p(y,x) < u(y, z) for all z € ' N M} is contained in M.

1
-,
®) bo2 5 3t )
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One additional condition is needed here. Basically, ¢ has to be “small” enough
so that the count of vertices in S can be used to approximate the volume of the
manifold M. Namely, let us define

US|

©) " vol(M)

where U denotes the maximaum volume of a Voronoi region. Then the main result
in [28] states that the Neumann eigenvalue A1 of S satisfies the following inequality:

C’I"G2

Y= @2D2(M)
for some absolute constant ¢, which depends only on I', and D(M) denotes the
diameter of the manifold M. We note that r in (9) can be bounded below by a

constant if the diameter of M measured in L; norm is at least ed. The applications
on random walks in Section 14 will use the above eigenvalue inequality.

A

10. Paths and cycles
One of the major theorems in studying the paths of a graph is a result of Pésa
[67] (see [54], Problem 10.20, for an elegant solution).
Pésa’s Theorem
In a graph H if every subset X of vertices with | X| < k satisfies
10(X)] = 2[X| -1,

then H contains a path with 3k — 2 vertices.

THEOREM 12. Suppose that a graph G with n vertices has average degree d and
the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;] < 0 for i # 0.
Then G contains a path of at least

262

(1- W)n — 2 vertices.

PRrROOF. To deduce the existence of a path of %n — 2 vertices, it suffices

to show that we have 6(X) > 2|X| — 1 for any subset X with cardinality at most
d? — 36*
X| < et
X< 3(d? — 62)
by using Pésa’s Theorem. From Theorem 8, we know that
b)Y L
| X| = 02+4d?z0/(n— o)

After substituting for xg, we have

n = =g

Theorem 12 is proved. |

THEOREM 13. Suppose that a graph G with n vertices has average degree d and
the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;| < 0 for i # 0. If
d?* > nh?* =1 then G contains a cycle of length 2k + 1, if n is sufficiently large.
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ProOF. We consider §;(v) = {u : d(u,v) =i}. In a paper [38] by Erdds et
al., it was shown that if a graph G contains no cycle of length 2k + 1, then for any
1 < i < k the induced subgraph on d;(v) contains an independent set S of size at
least |0;(v)|/(2k — 1). From Theorem 6, we have

d[S|(|S] = 1) < 26]5|(n — |5]/2)-

This implies that
26n
S| < ——.
s1< 2

(Here we use the fact that § > v/d.) Hence, we have |6;(v)|/(2k — 1) < 26n/d.
Since 6 = o(d), by Corollary 8, we have

d2k—1 1 d2

|0k (V)] > (1 + 0(1))92’“7*2(1 _ ;(ﬁ)t—l).

Thus, we have

—1éon 2k—1 2
PO (1 o1) g (= ().

This implies that

d2k
> (1 D))o
n = (1+of ))2(% 1)1
which is a contradiction to the assumption that n < d?¥/§2k—1. |
In [45] Krivelevich and Sudakov showed that a d-regualar graph on n vertices
is Hamiltonian if the eigenvalues of the combinatorial Laplacian satisfy

d—oi < c (loglogn)?

log n(logloglogn)

for ¢ # 0 and for some constant c¢. The method is a modified version of Posa’s
technique developed by Komlés and Szemerédi [44] for examining Hamiltonian cy-
cles in random graphs. By using the discrepancy inequalities and the isoperimetric
inequalities in previous sections, the above result can be extended to general graphs
as well.

11. Universal graphs for trees of bounded degrees

There is quite a literature on so-called “universal graphs’ that contain all trees
on n vertices or other families of graphs such as trees with bounded degree [5,
8, 16, 20, 39]. One of the main avenues in the study of universal graphs is the
connection with expanding properties of the graph. Friedman and Pippenger [39]
proved the following beautiful result:

Theorem [39] Suppose that H is a graph such that for every subset X of
vertices with | X| < 2n — 2, X has exact neighborhood T(X) = {u : u ~v € X}
satisfying

T = (k4 1)|1X].
Then H contains every tree with n vertices and mazimum degree at most k.

Here we will prove the following slightly stronger result the proof of which will
be given later.
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THEOREM 14. Suppose that H is a graph such that for every subset X of vertices
with | X| < 2n — 2 has boundary 6(X) satisfying
0(X)| = k[X],
then H contains every tree with n vertices and maximum degree at most k.

As an immediate consequence of Theorem 14, we have the following:

THEOREM 15. Suppose that a graph G with n vertices has average degree d and
the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;] < 0 for i # 0.
Then G contains all trees with mazimum degree k and having at least
d? — (k +1)6?
2(k 4+ 1)(d? — 62)
PRrROOF. To deduce the existence of a tree having at least
L d? — (k+1)0*
2(k+1)(d? — 6?)
vertices and degree bounded above by k it suffices to show that we have §(X) > k| X|
for any subset X with size at most
d? — (k +1)6?
(k+1)(d? —62)
by using Theorem 14. From Theorem 8, we know that

n + 1 vertices.

n+1

1X| < n=z <2t—2

10(X)] d* —6?
I X] T 602+4+d%2/(n—z20)
After substituting for zp, we have
[T
X
Theorem 15 is proved. 1

COROLLARY 9. Suppose that a graph G with n vertices has average degree d
and the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;| < 6 fori # 0.
If 0 = o(d), then G contains all trees with mazimum degree k and having at most

n
1 ))—
(L+ol g 1
vertices, if n is sufficiently large.

It remains to prove Theorem 14. The proof is quite similar to that in [39]. For
completeness, we sketch the proof here.

Proof of Theorem 14: Suppose that T is a tree on m vertices with maximum
degree at most k. For an embedding f : V(T) — V(H), we define the excess
C(f,X) for X CV(H) by

O(f7X) = A(f7X)_B(f7X)
where A(f,X) = |XUIX)\f(V(D)) |
and B(f,X) = Z (k — degr f~(z))

rzeX

where degrf~!(z) denotes the degree in T of the vertex u that is mapped to z
under f, or degrf~!(x) is zero if no such u exists. Since the maximum degree in
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the tree is k, B(f, X) > 0. An embedding f is said to be good if for every X C V(H)
with | X| < 2m — 2, we have
(10) C(f, X) > 0.

Instead of proving Theorem 14, We will show a stronger statement:

(*) Suppose that H is a graph such that for every subset X of wvertices with
|X| < 2m — 2 has neighborhood T'(X) satisfying |6(X)| > k|X|.

Suppose that S is a tree on m vertices and mazximum degree at most k. Furthermore,
we assume that S has a good embedding in H. Then a tree T formed by adding any
leaf to T also has a good embedding.

We will prove (*) by induction on m. Clearly, (*) holds for the case of S
consisting of one single vertex. Suppose (*) holds for any tree on m vertices having
maximum degree k. We now consider a tree T obtained from S by adding a leaf
v and the incident edge {v,w}. Suppose f is a good embedding for S. By the
definition of being good, for each g € 6(f(w)) \ f(V(S)), we can extend f to be an
embedding f, for 7' by mapping v to g. We want to show that there is some good
extended embedding f,.

Suppose to the contrary that no extended embedding f, is good. For every
g € 0(f(w))\ f(V(S)), there is a subset X, of V(H) such that C(f,, X,) < 0. We
have

C(fq, Xq) <0< C(f, Xy NV(S)).
Note that
C(fg: Xq) = O(F. Xg) — (g, X USX) +e(f(w), X) + e(q, X),

where €(z,Y") is 1 if € Y and 0 otherwise. Therefore, we have g & X, f(w) € X4,
g € 0(Xy) and C(f,X,) =0.

We say that X is critical under f if C(f, X) = 0. We need the following facts,
some of which have the same proofs as those in [39].

Fact 1: Suppose that X is critical under f and |S| <m — 1. If | X| < 2m — 2,
then | X| <m — 1.

Proof: We have

0 = C(f,X) = [XUsX| - [V(S)| - k|X]
> (k+D|X|—(m—-1)— k| X]
> |X|— (m—1).

Fact 2: The excess C(f,-) is submodular:
C(/LXUY)+C(f,XNY) <C(f, X)+ C(f,Y).

Fact 3 If X,Y C V(H) are critical under f so that |X|,|Y] < m — 1, then
X UY is critical under f and [ X UY| <m —1.

Now we return to the proof of Theorem 14. For every g € §(f(w)) \ f(V(95)),
X, is critical under f and | X | < 2m — 2. By Fact 1, | X,| <m — 1. Furthermore,
we consider X* = Uy X,, which by Fact 3 is critical under f and |[X*| < m — 1.
Now consider X’ = X*U f(w) and C(f, X’). Since f is a good embedding of S and
|X’| <m, we have C(f, X’) > 0.

For every g € d(f(w)) \ f(V(S)), we have g € X* U 6(X™*) which implies
A(f,X') = A(f,X™*). However, B(f,X") = B(f,X*) + B(f, f(w)) since f(w) &
X, for every g. Thus, B(f,X’) < B(f,X"*), and we have C(f,X*) < 0. This
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contradicts the assumption that f is good. We conclude that there is an extended
embedding f, which is good, and the proof of Theorem 14 is complete. |

12. Chromatic numbers and list chromatic numbers

One of the basic topics in graph theory is graph coloring. For a graph G, the
chromatic number x(G) of G is the least integer m so that each vertex can be
assigned one of the k colors such that adjacent vertices have different colors. In
the past ten years, there has been a great deal of work on extensions of chromatic
numbers. In a graph G, suppose each vertex is associated with a list of k£ colors. A
proper coloring assigns to each vertex a color from its list so that no two adjacent
vertices have the same color. The list chromatic number x;(G) is the least integer
k so that there is a proper coloring for any given color lists of length k. Clearly, we
have

X(G) < xi(G).

We will use the following theorem by Vu [62]:

Vu’s Theorem : Suppose a graph G has mazimum degree d. If the neigh-
borhood of each vertex in V(G) contains at most d*/f edges, for some d*> > f > 1,
then J

(6) < Kte

for some constant K.

THEOREM 16. Suppose that a graph G with n vertices has average degree d and
the eigenvalues o; of the combinatorial Laplacian satisfy |d — o;] < 0 for i # 0.
Then the chromatic number x(G) and the list chromatic number x;(G) satisfy

d d
- < x(G) <x(G) L O(—————).
5 <X(G) £ 0(6) £ Ot
PrOOF. From Corollary 3, we know that the maximum degree is at most d+ 6.
Using Corollary 4, any subgraph on d + 6 vertices can have at most

2
@ +20(d+6)

edges. So, we can use Vu’s Theorem by choosing f satisfying
1 d 26

f n + d’
and therefore
d+ 9)
log f
d
= O(———)
log(mln{d, & )

In the other direction, we can establish a lower bound for x(G) as well as x;(G),
by using Corollary 5 again. Namely, an independent set in G can have at most 6n/d
vertices. Therefore

(@) = O

< M) < X(6) = Ol
d’ o

|



76 FAN CHUNG

13. Turén numbers

A celebrated result in extremal graph theory is Turdn’s Theorem which states
that a graph on n vertices containing no K¢;1 can have at most (1—1/t+0(1))(5)
edges. Sudakov, Szabé and Vu [60] consider a generalization of Turdn’s Theorem.
A graph G with e(G) edges is said to be ¢-Turén if any subgraph of G containing
no K11 has at most (1 — 1/t 4 o(1))e(G) edges. In [60], it is shown that a regular
graph on n vertices with degree d is t-Turan if the second largest eigenvalue of its
adjacency matrix A is sufficiently small. Their result can be extended to general

graphs by using the isoperimetric and discrepancy inequalities [17].

THEOREM 17. Suppose a graph G on n vertices has eigenvalues of the normal-
ized Laplacian ~
0=MX <A1 <... < A1 with A = max;zg |1 — As| satisfying
1

(11) A= O(VothH(G)VOl(G)til)

where vol;(S) = g di.
Then, G is t-Turdn for t > 2, i.e., any subgraph of G containing no K11 has

at most (1 + 1/t + o(1))e(G) edges where e(G) is the number of edges in G.

14. Random walks and contingency tables

A walk is a sequence of vertices w = (vg, vy, -+ ,vs) such that {v;_1,v;} is an
edge. A Markov chain can be viewed as a random walk, defined by its transition
probability matrix P, where the probability of moving from w to v is P(u,v).
Clearly, P(u,v) > 0 only if (u,v) is an edge. Also, ), P(u,v) = 1. For a weighted
graph with edge weights w,, , > 0, a typical transition probability matrix P can be
defined as

Wy
v = ——.
§ Wz
z

For any initial distribution f : V — R, the distribution after one step of a random
walk is just

Py

(12) fP @) =30 ).

u

Here we treat f as a row vector. The distribution after k steps is f P*(v).

In the terminology of Markov chains, a random walk is said to be ergodic if
there is a unique stationary distribution 7 satisfying 7P = 7. Necessary conditions
for the ergodicity of a random walk on a graph with n vertices are irreducibility
( i.e., no 0 submatrix of P of size k x (n — k) for any k) and aperiodicity, (i.e.,
g.c.d. {s : P*(u,v) >0} =1). As it turns out, these necessary conditions are also
sufficient. An ergodic Markov chain is said to be reversable if for any two vertices
u and v, we have

m(u)P(u,v) = w(v)P(v,u).

A reversible Markov chain can be studied as a weighted graph as follows [13]:

THEOREM 18. The following three statements are equivalent:

(a): A Markov chain with transition probability matriz P is ergodic and re-
versible.
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(b): The weighted graph defined by edge weight wy, , = m(u)P(u, v) is connected
and non-bipartite.

(c): The weighted graph defined by edge weight w,, = w(u)P(u,v) has one
eigenvalue 0 and all other eigenvalues greater than 0 and strictly less than

2.
It can be easily shown that the stationary distribution 7 satisfies
d/l)
™) = oGy

A natural question of interest is what is the rate of convergence to the station-
ary distribution. The answer to this question again lies in the eigenvalues of the
associated graph.

In the study of rapidly mixing Markov chains, the convergence in the Lo dis-
tance is rather weak since it it does not require convergence to the stationary
distribution at every vertex. A strong notion of convergence that is often used
is measured by the relative pointwise distance (r.p.d). After s steps the relative
pointwise distance of P to the stationary distribution ¢(x) is given by

Another notion of distance for measuring convergence is the so-called it total vari-
ation distance:

Ary(s) = Argggg)yglv%)llg;(p(y,w)—W(x))ll
=  max Z I(P*(y, x) — m(x))]|

It is easy to see that Apy (s) <
implies one for Apy (s).

The rate of convergence of a random walk on a graph on n vertices depends
on the spectral gaps, A\; and 2 — \,_1. However, the gap 2 — \,_1 can often
be circumvented by considering a modified random walk, so- called lazy walk.
For a transition probability matrix P, a C-lazy walk is defined by the transition
probablity matrix Pg, for some C < 1:

C+ 2w p g =y,
PC(uv U) = { P(u,v)1+C
14+C

otherwise.

The value for C' is often chosen to be 1/2. Suppose we choose

c - {O ifAd >2-XA\1

n—1—2 .
% otherwise.

Then we have the following;:

THEOREM 19. Suppose that a graph G on n vertices has Laplacian eigenvalues
0=X <A < ... < Au1. Then G has a lazy random walk with the rate of
convergence of order
vol(G)
ming d, )

where A= A1 if 2> A + A1 and X =201 /(A1 + A\n—1) otherwise.

A og(
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Namely, after at most

_ 1(G)
> A~ (log(—>
= (O(minwdm)+c)
steps, we have
Alt) <e ¢

For random walks on groups or, equivalently, on graphs defined by groups, the
eigenvalues of the Laplacian can often be evaluated exactly using group representa-
tion theory. For example, various applications in card shuffling, are associated with
graphs with vertex set the symmetric group S,, and edge set defined by permuta-
tions corresponding to the allowable shuffling moves. There are extensive surveys
and books [36, 58] on this subject. Here, instead, we consider two applications for
general graphs.

Logarithmic Sobolev inequalities The upper bound for the rate of conver-
gence in Theorem 19 can sometimes be further improved by using the log-Sobolev
constant « defined as follows [37]:

¢ 2oy (@) — Fy)*wa.y

= in
1205, f2(w)d, log L2liel@)

where f ranges over all nontrivial vectors f: V — R.
Then we have the following [18]:

o(G) = «

THEOREM 20. For a weighted graph G with log-Sobolev constant «, there is a
lazy walk satisfying

A(t) < e?™°¢
provided that
1
t> Lloglog YUG) ¢
« ming d, A

where X\ is as defined in Theorem 19.

Enumerating contingency tables As an application of the eigenvalue in-
equalities in Section 9, we consider the classical problem of sampling and enumer-
ating the family S of n x n matrices with nonnegative integral entries and given
row and column sums. Although the problem is presumed to be computationally
intractable (in the so-called # P-complete class), the eigenvalue bounds in the pre-
vious section can be used to obtain a polynomial approximation algorithm. To see
this, we consider the homogeneous graph I' with the vertex set consisting of all
n X n matrices with integral entries (possibly negative) with given row and column
sums. Two vertices u and v are adjacent if u and v differ at just the four entries of
a 2 X 2 submatrix with entries

Uik = Vik + L uje = vjk — L, Uim = Vim — 1, Ujm = vjm + 1.

The family S of matrices with all nonnegative entries is then a convex subgraph of
T.

On the vertices of S, we consider the following random walk. The transition
probability P(u,v) of moving from a vertex u in S to a neighboring vertex v is %

if v isin S, where k is the degree of I'. If a neighbor v of « (in T") is not in .S, then



DISCRETE ISOPERIMETRIC INEQUALITIES 79

we move from u to each neighbor z of v, z in S, with the (additional) probability
= where d, = [{z € S: 2z ~vinT}| for v ¢ S. In other words, for u,v € S,

w Wz
P(u,v) = dzv + Z dqui/ Wzo
z¢S z

UNZVNZ

where w,, denotes the weight of the edge {u,v} (wyu, = 1 or 0 for simple graphs)
and d,, = Z dyy- The stationary distribution for this walk is uniform. Let p denote

u~v

the second largest eigenvalue of P. It can be easily checked that 1 — p > A;(S5),
where A1 (S) denotes the first Neumann eigenvalue of the induced subgraph S of T'.
In particular, if the total row sum (minus the maximum row sum) is > ¢’ n?, it can
be shown (see [27]) that A\1(S) > 15z, where D is the diameter of S. This implies
that a random walk converges to the uniform distribution in O(k*D?(logn)) steps.
(In some cases, the factor logn can be further reduced by using logarithmic Sobolev
inequalities and logarithmic Harnack inequalities (see [37, 13]).)

It is reasonable to expect that the above techniques can be useful for developing
approximation algorithms for many other difficult enumeration problems by consid-
ering random walk problems in appropriate convex subgraphs. Further applications
using the eigenvalue bounds in previous sections can be found in [31].

15. Concluding remarks

1. In this paper, we mainly deal with simple graphs. For a weighted graph G
with edge weight w, ., we define d, = ) wy,, and e(X,Y) = ZueX,vEY Wy, p-
Then the isoperimetric inequalities in Sections 4 and 5 still hold.

2. We consider three families of graphs on n vertices:

F1 = {d — regular graphs that are (n,d, \) — graphs},

Fo = {graphs satisfying |average degree — o;| < 6 for i # 0},

F3 = {graphs satisfying |1 — \;| < A for i # 0},
where the o;’s are eigenvalues of the combinatorial Laplacian and \;’s are eigenval-
ues of the normalized Laplacian.

Clearly, we have

Fi1CF
if A=20. Also

Fo C F3
if 6 is A times the average degree . Hence, the isoperimetric inequalities involving
eigenvalues of the normalized Laplacian have stronger implications than that of the
combinatorial Laplacian. For applications using eigenvalues of the combinatorial
Laplacian, it is natural to ask if the same results hold for the normalized Laplacian.
For example, is it true that graphs in F3 are Hamiltonian provided that X is small
enough?

3. Graph theory has 250 years of history. In the very early days, graphs
were used to study the structure of molecules and in particular, the eigenvalues
of graphs are associated with stability of chemicals [9]. In recent years, many
realistic graphs that arise in Internet and biological networks can be modeled as
graphs with certain “power law” degree distribution [1, 2, 3]. Again, eigenvalues
come into play since random graphs with given expected degrees are shown to have
eigenvalue distribution as predicted [32, 33]. In this paper, we discuss only a few



80

FAN CHUNG

applications of isoperimetric inequalities. It would be of interest to find further
applications especially for power law graphs.
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