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1. Introduction.

Let (M, g) be a complete Riemannian manifold, with metric d(z,y), and let
A = divV be the Laplace-Beltrami operator on M. Let V(z,r) denote the volume
of the ball B(z,r) with centre « and radius r. In this paper we survey the stability
of elliptic and parabolic Harnack inequalities on M.
A function v = wu(z) is harmonic in a domain D C M if it is a solution of the
Laplace equation:
Au(z) =0, xeD.
M satisfies the elliptic Harnack inequality (EHI) if there exists a constant Cg such
that, for any ball B(x, R), whenever u is a non-negative harmonic function on
B(x, R) then
sup v <Cg inf wu.
B(z,R/2) B(z,R/2)
The parabolic Harnack inequality (PHI) is a little more complicated to state.
Let . € M, R>0, T = R2, D(x0,R) = (0,4T) x B(zo,2R), and
Q_ = (T,2T) x B(zo,R), Q4 = (3T,4T) x B(xo, R).

M satisfies the PHI if there exists Cp such that, for any zo and R, if u is a non-
negative solution of

(1.1) %u(x,t) = Au(z,t),  (x,t) € D(zo, R)
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then

supu < Cpinf u.
Q_ Q+

Since any harmonic function solves (1.1), the PHI immediately implies the EHI.

DEFINITION 1.1. (a) M satisfies volume doubling (VD) if there exists a constant
C4 such that

(1.2) V(z,2R) < C1V(z,R) forallz e M, R>0.

(b) M satisfies a Poincaré inequality, denoted PI(2), if there exists a constant Cy
such that, for any B(z, R) and f € C*(B(x, R)),

(1.3) [ ip-TsPduscart [ Vi
B(z,R) B(z,R)

(¢) M satisfies HK(2) if the heat kernel p;(z,y) on M satisfies the two-sided Gauss-
ian bound

(1.4) €1 e*Czd(Ly)z/t < pe(z,y) < 3 6764d(w;y)2/t.

V(x,t1/2) V(x,t1/2)

In [47] Li-Yau proved that if M has non-negative Ricci curvature then M
satisfies HK(2). This result was refined by subsequent work of Grigoryan [22]
and Saloff-Coste [54], who proved that PHI is equivalent to two conditions on M:
volume doubling, and a family of Poincaré inequalities. The relation with HK(2)
comes from [44].

THEOREM 1.2. ([22],[54],[20]). Let M be a complete Riemannian manifold.
The following conditions are equivalent:
(a) The heat kernel pi(x,y) on M satisfies the two-sided Gaussian bound (1.4).
(b) M satisfies the parabolic Harnack inequality.
(¢) M satisfies VD and PI(2).

The arguments used to prove Theorem 1.2 are quite general, and can be trans-
lated into other contexts: see [18] for graphs, and [57] for general metric spaces.
Since the condition (c) is stable under rough isometries (see Section 5), it follows
that HK(2) and the PHI are also stable under rough isometries (with suitable ‘side
conditions’). Theorem 1.2 gave a fairly complete characterization of the PHI, but
left open two significant questions concerning the EHI:

1. Is the EHI equivalent to the PHI?
2. Is the EHI stable under rough isometries?

Of these, (2) is still open, while the (negative) answer to (1) had been for some
time implicit in work on diffusions on fractals, before being made explicit in [6],
following a conversation between the author and A. Grigoryan at MSRI in 1997.

In the early 1980s mathematical physicists became interested in the properties
of random structures, such as percolation clusters, at criticality. Let us recall the
definition of percolation on the Euclidean lattice Z¢: one regards the edges {z,y}
(with |z — y| = 1) as bonds, and each bond is open with probability p € [0, 1],
independently of all other bonds — see [28]. The open clusters are the collections
of points connected by paths consisting of open bonds. For small p all the open
clusters are finite, while for p close to 1 there is a single giant open cluster with
small holes. At a critical value p. = p.(d) € (0,1) there is a phase transition; all
clusters are finite if p < p., while if p > p. there is a unique infinite cluster. (All
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statements of this kind are almost sure, that is, disregarding a set of probability
zero.) At the critical value p = p. it is believed that all clusters are finite (this is
known if d = 2 or d > 19), but nevertheless there are many large clusters — in fact
(see [14]) a cube of side n will contain, with high probability, clusters of diameter
n. In some cases (see [41], [34], [35]) it is possible to define an incipient infinite
cluster C — essentially the cluster containing 0 conditioned to be infinite. The local
structure of C should then be similar to that of large finite critical clusters.
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Figure 1.1. Percolation at criticality; the points in the largest
cluster are marked with bullets.

The physicist’s conjecture (confirmed in some cases by theorems in these pa-
pers) is that C has a fractal structure. Physicists are interested in what are called
transport properties of percolation clusters — that is, to mathematicians, the be-
haviour of solutions to the Laplace, heat and wave equations. In view of the connec-
tions between the heat equation and Markov processes, this motivated the study of
random walks on percolation clusters: the ‘ant in the labyrinth’ of De Gennes [17].
(The wave equation is much harder — one reason being the difficulty in making a
useful probabilistic connection.)

Since it is hard make exact calculations on sets such as C, , physicists therefore
proposed (see [1], [53]) that one should look random walks on regular, deterministic
fractals such as the Sierpinski gasket. This idea has proved fruitful — not only is
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the study of random walks and diffusions on such sets interesting in its own right,
but recent work indicates that random walks on fractals and critical percolation
clusters have similar behaviour.
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Figure 1.2. The first and fourth stages in the construction
of the Sierpinski gasket.

For a brief survey of heat kernels and fractal sets see [4], and for more details
on the various families of regular fractals which have been considered see the book
[42], and lectures [2]. See also the survey [56], and for a review of the physics
literature [31].

The limit of the construction illustrated in Figure 1.2 is a compact subset
Fsg C R2. (We take the origin as the lower left hand corner of Fsg.) One can
define an unbounded set Fgg with a local structure similar to Fgg by setting

_ o0
Fsg = U 2" Fo.

n=0

On certain sets F of this type, including the Sierpinski gasket, (see the references
above for other examples) one can define a Laplacian operator £, and the associated
heat kernel p;(x,y) satisfies

d B _
cltfa/ﬁexp(—CQ( (m,y) )1/(ﬁ 1))

t
(1.5)
B
< et/ exp(_c4(d(w;y) )1/

Here a and § depend on the fractal F'; « is the Hausdorff dimension of F' while
8 > 2 is a number (called the walk dimension of F'), which gives the space-time
scaling of the heat equation on F. One finds that 2 < 8 < 1+ a, and that these
are the only constraints on « and § — see [3], [33], [23]. While fractal sets with
B = 2 are known (see [15], [46]), the main families of regular fractals have 8 > 2:
for example the Sierpinski gasket has agg = log 3/ log2 and Bse = log 5/ log2. Let

X be the diffusion process associated with p;(z,y); then (1.5) leads easily to the
bound

(1.6) E%d(z, X,)? < t*/5  t>0.

< pi(x,y)

, x,yeﬁ,t>0.

The case B # 2 is called by physicists anomalous diffusion. The intuitive expla-
nation for (1.6) for the Sierpinski gasket is that the motion of X is impeded by a
sequence of successively larger obstacles.



ANOMALOUS DIFFUSION AND STABILITY OF HARNACK INEQUALITIES 5

It might be thought that this unusual scaling is due to the local fractal structure
of Fsc. However, Fse is self-similar, and the large time behaviour of p;(x,y) is
governed by the large scale structure of Fsg. In fact the bound (1.5) (for ¢ > 1 and
d(x,y) < t) holds for various ‘classical’ sets with a large scale fractal structure. Thus
Jones [38] proved that the random walk on the graphical Sierpinski gasket Gg¢ (see
Figure 1.3) satisfies this bound, while Bass and I in [7] obtained an analogous result
for graphical Sierpinski carpets. (These graphs are sometimes called ‘pre-fractals’.)

Figure 1.3. The graphical Sierpinski gasket Ggg: the small triangles have side 1.

One can also look at ‘pre-fractal’ domains in R?. These are open domains
D c R? with a large scale structure similar to some unbounded regular fractal
— see [6], [8] for the pre-Sierpinski carpet. (Pre-fractal manifolds have also been
considered in [45], [11].)
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Figure 1.4. The pre-Sierpinski carpet: the small squares have side 1.

These sets satisfy the elliptic Harnack inequality. For the graphical Sierpinski
gasket there is a very easy direct proof — see Theorem 2.6 of [4]. The proof for pre-
Sierpinski carpets in dimensions d > 3 is quite long, and uses probabilistic coupling
—see [6]. If 8 > 2 it is easy to deduce from (1.5) that PHI fails for these sets. The
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underlying reason is that in (1.5) the space-time scaling is given by the ‘anomalous
diffusion’ coefficient (, rather than 2; the EHI contains no information about this
scaling while the PHI does.

Given this, it is clear how the PHI should be generalized. Given 3 > 2 one
replaces 7' = R? in the definition above by T' = R”; denote this condition PHI(3).
It is immediate that PHI(() implies EHI.

The argument in [20] used to prove the equivalence of PHI and (1.4) extends
to the case § > 2: see Section 5 of [32]. Thus it follows that PHI(3) (with the
appropriate 3) holds for the Sierpinski gasket, carpet, and other families of regu-
lar fractals. One can also prove quite easily from (1.5) that these spaces satisfy
a Poincaré inequality with anomalous scaling, denoted PI((), and obtained by re-
placing R? by R® in (1.3).

The proofs of (1.5) in the literature all use very strongly various symmetry
properties of the spaces. In transferring results from one kind of pre-fractal object
to another (for example, from the graphical Sierpinski gasket to a manifold made
from it in the same way the ‘jungle gym’ is from the Euclidean lattice — see [52],
[40]) one would wish for the same kind of stability in the case § > 2 as is given by
Theorem 1.2 if § = 2.

An initial guess that Theorem 1.2 holds if one just replaces 2 by (3 is easily
seen to be false — for example the product graph G = Z x Gg¢ satisfies VD and
PI(Bsc), but fails EHI — see the proof of Theorem 6 of [3]. (The reason is that the
different space-time scaling in the two directions means that a random walk will
with high probability leave a ball in the Z direction before it has moved very far in
the Gg¢ direction.)

In [9] Bass and I, in the graph case, gave an additional condition, denoted
CS(8), which, with VD and PI(f) is equivalent to PHI(3). This condition, which is
unfortunately quite complicated, is described in Section 2 below. Given open sets
U, C Uy C Us, we will say a function f is a cutoff function for Uy C U, if f > 1 on
Uy and f =0 on Us.

In Euclidean space (or a manifold satisfying VD) if we look for the lowest energy
cutoff function f for B(z, R) C B(z,2R) then this has energy £(f, f) = [ [V f|? =
R™2V (x,7). On a pre-fractal domain D, such as the pre-Sierpinski carpet (Figure
1.4), one can do better, and for the optimal f one obtains £(f, f) < RV (x,r).
(One takes |V f] higher on shells where the set D is relatively thin.) The condition
CS(p) is that there exists a large family of well-behaved cutoff functions for balls
B(z, R) C B(x,2R), with energy of order R~°V (x, R). Balls with radius less than
1 in a graph are trivial, but for manifolds we need to be able to treat balls of any
size. Since a manifold is locally Euclidean, one expects the usual R? behaviour for
small R. One therefore needs to introduce the function

2 if r<l1
U(r) = ’
(r) {rﬁ if r>1.

and discuss PI(¥), PHI(¥) and CS(P).

We have the following:

THEOREM 1.3. Let M be a complete smooth Riemannian manifold. The fol-

lowing are equivalent:
(a) M satisfies PHI(W).
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(b) M satisfies VD, PI(¥), and CS(V).
(c) The heat kernel pi(z,y) on M satisfies a two-sided bound denoted HK (V).

A similar theorem for graphs was the main result of [9], and was based on
methods used in [8] to study divergence from operators on the pre-Sierpinski car-
pet. The proof of Theorem 1.3 is very similar, and we will only sketch the main
arguments. Full details will appear in [10], which will treat the general case of a
measure metric space with a Dirichlet form: this covers pre-fractal domains and
manifolds, as well as true fractals.

The conditions VD, PI(¥), and CS(V) are all stable under rough isometries,
given suitable ‘side conditions’ on the families of sets considered. (Since rough
isometries only preserve global properties, it is clear that some conditions of this
kind are necessary.)

While CS(¥) (with VD, PI(¥)) is therefore a necessary and sufficient for
PHI(T)), of course it may not be the simplest such condition. In fact, in the
‘strongly recurrent’ case (o < () a much simpler characterization of PHI(T) is
possible, just using VD and estimates on the electrical resistance: this will appear
n [12]. (See also [43].)

One might hope that these stability results for PHI(¥) would lead to the
stability of EHI. However, this still seems a hard problem. Delmotte [19] has
shown, by joining two different graphs by one edge, that EHI can hold even if VD
fails. Let G; be pre-fractal graphs satisfying EHI with indices a; and (;, such that
B2 —ag = 1 —a; = ¢ > 0. Then (see [3]) joining G; and G5 by one edge gives
a graph G satisfying EHI but with different space-time scaling in different regions.
Thus any heat equation approach to the stability of the EHI would appear to need
to deal with spaces with rather irregular properties. However, in this example the
electrical resistance between points 2 and y decays as d(z,y)~¢, so that, in terms
of electrical resistance, the graph G is quite regular. This suggests that it may be
possible to characterize EHI in terms of electrical resistance — see the open problem
mentioned at the end of [5].

The structure of the remainder of this survey is as follows. In Section 2 we
introduce precisely the main concepts and give our main results. In Section 3 we
sketch the proof that PHI(¥) implies CS(¥); the argument uses Green’s functions
to build a suitable family of cutoff functions. Section 4 deals with the implication
(b) = (a). We begin by showing how Moser’s iteration argument breaks down in
the case 0 > 2 if we try to use standard cutoff functions. We then sketch how
the difficulty can be overcome using a weighted Sobolev inequality derived from
CS(¥). This proves that VD, PI(¥) and CS(¥) imply EHI; PHI(¥) then follows
easily using the scaling information in PI(¥). The stability of CS(¥) under rough
isometries is proved in Section 5.

We write ¢; to denote positive constants which are constant within each argu-
ment, and f < g to mean there exist positive constants ¢; such that ¢; f < g < cof.

2. Stability theorems

Let M be a complete smooth non-compact Riemannian manifold, A = divV
be the Laplace-Beltrami operator on M, d be the Riemannian metric and p be the
volume. We write B(x,r) for open balls in M, and set V(z,r) = u(B(x,r)). We
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define the Dirichlet form E(f, f) on L?(M) with core C§°(M) by taking

S = [ VIR f GO,
(See [21] for more details.) Note (see [54]) that we have
d(z,y) = sup{|f(z) — f(y)l : f € Cg°(M), [V <1}.
We write W = (W, t > 0,P*, 2 € M) for the Brownian motion on M.

We now give a number of conditions M may or may not satisfy. Let g > 2
and define ¥ as in (1.7). Recall from Section 1 the definitions of volume doubling
VD and EHI. It is easy to deduce from VD that there exists a < oo such that if
z,y € M and 0 < r < R then

(2.1) T <a(T5)"

DEFINITION 2.1. M satisfies the Poincaré inequality PI(W), if there exists a
constant ¢; such that for any ball B = B(x, R) C M and f € C*(B)

(2.2) [ (@) = 1sPduto) < cxv(®) [ Vo7

Here fp = u(B)™" [} f(x)dp(x).

DEFINITION 2.2. M satisfies the parabolic Harnack inequality (PHI(¥)), if
there exists a constant cp such that the following holds. Let zop € M, R > 0,
T = U(R) and u = u(t, z) be a non-negative solution of the heat equation dyu = Au
in (0,47) x B(x0,2R). Let Q_ = (T,2T) x B(xo, R) and Q4+ = (3T,4T) x B(xzo, r);
then

(2.3) supu < cpinf u.
Q4

DEerFINITION 2.3. Let A, B be disjoint subsets of M. We define the effective
resistance Reg (A, B) by

Reg(A, B)™! :inf{/ IVf?: f=0onAand f=1o0nB, feC®(M)}.
M

M satisfies the condition RES(¥) if for any x € M, R > 0,
V(R)
V(z,R)

(2.4) Reg(B(z, R), B(z,2R)°) =

We have by the same arguments as in Lemma 5.1 of [9]

LEMMA 2.4. Let M satisfy VD, EHI, and PI(V). Then M satisfies RES(D).

Let pi(x,y) be the fundamental solution of the heat equation on M. Recall that
we have a ‘crossover’ from the classical ¢ = r? scaling when r < 1 to the anomalous
scaling t = 7 for r > 1. For (t,7) € (0,00) x [0,00) we define the regions:

(2.5) A ={{t,r):t<1Vr}, Ao ={(t,r):t>1Vr}.

Let § > 2 and

ho(r, t) = exp(=(r /)7 1).



ANOMALOUS DIFFUSION AND STABILITY OF HARNACK INEQUALITIES 9

DEFINITION 2.5. M satisfies the heat kernel bounds HK(¥), if, writing r =
d(z,y),

(2.6) eV (2, 82 ha(ear t) < pe(a,y) < eV (, t4/2) " ha(car, t)
for z,y € M and t € (0,00) with (¢,7) € Ay, and
)

(2.7) ClV(x,tl/ﬂ)ilhﬁ(CQT,t <pi(z,y) < 03V(x,t1/5)71h5(04r, t)
for x,y € M and t € (0,00) with (¢,7) € As.

REMARKS 2.6.

1. In [6] it was proved that the pre-Sierpinski carpet satisfies HK(¥). We will see
below that this also holds on sufficiently regular pre-fractal manifolds.

2. If r > t then hg(r,t) > ha(r,t).

3. To understand why the crossover in HK(¥) takes the form it does, it is useful
to consider the contribution to p¢(x,y) from various types of path in M. First, if
0 <t<1andd(z,y) <1 then the behaviour is essentially local, and the locally
Euclidean structure of M gives the usual type of bound (2.6).

If r > ¢ then we are in the ‘large deviations’ regime: the the main contribution
to pi(z,y) is from those paths of the Brownian motion W which are within a
distance O(t/r) of a geodesic from x to y. So, once the length of the geodesic is
given, only the local structure of M plays a role. Note that in this case the term
in the exponential is smaller than e~¢, so that the volume term V (z,t'/2)~! could
be absorbed into the exponential with a suitable modification of the constants cy
and c¢y.

Finally, if t > 1 and r < t, then the paths which contribute to p:(z,y) fill
out a much larger part of M: those which lie in B(a:,tl/ﬁ) if r < t*/8 and those
which are within a distance O(t/r®~!) of a geodesic from = to y in the case when
th <r <t

We will also want to discuss local versions of these conditions. We say M
satisfies VD . if (1.2) holds for z € M, 0 < R < 1. Similarly we define PI(¥);,.,
EHI, and PHI(V);,. by requiring the conditions only for 0 < R < 1. For HK).
we require the bounds only for ¢ € (0, 1) — so only (2.6) is involved. Note that these
local conditions are all independent of the the parameter 3. The value 1 here is
just for simplicity: each of the local conditions implies an analogous local condition
for 0 < R < Ry for any (fixed) Ry > 1 — see Section 2 of [32].

The following result of Hebisch and Saloff-Coste localizes Theorem 1.2.

THEOREM 2.7. ([32], Theorem 2.7). The following are equivalent:
(a) M satisfies VDy,. and PI(¥)
(b) M satisfies PHI(Y)j,.-
(c) M satisfies HK(¥);,).-
If any of (a)-(c) hold then M satisfies EHI},,., and ps(x,y) is continuous on (0, 00)x
M x M.

loc

In addition we will need the following:

THEOREM 2.8. (See [32], Theorem 5.8, [26]). The following are equivalent:
(a) M satisfies PHI(V).
(b) M satisfies HK(V).
(¢) M satisfies VD, EHI and RES().
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PROOF. The equivalence of (a) and (b) is given in [32]; and that these are
equivalent to (c) is proved in [26]. (See [25] for the graph case.) O

We now introduce the condition CS(¥).
)

DEFINITION 2.9. M satisfies CS(¥) for 8 > 2 if there exists 6 € (0,1] and
constants c¢1,co such that the following holds. For every xzp € M, R > 0 there
exists a cutoff function ¢(= ¢4, r) with the following properties:

(a) o(x) > 1 for x € B(xo, R/2).

(b) p(x) =0 for = € B(zg, R)°.

() lp(z) — @(y)| < er(d(x,y)/R)” for all ay.

(d) For any ball B(z,s) with 0 < s < Rand f: B(z,2s) —» R

2 2 20 2 —1 2
(2.8) /B L LIS et/ ) ( / IV fPdp + W (s) /B o ).

B(z,2s)
REMARKS 2.10.

1. We call (2.8) a weighted Sobolev inequality. It is clear that to prove (2.8) it is

enough to consider nonnegative f.

2. Suppose CS(¥) holds for M, but with (a) above replaced by

(2.9) w(x) > 1 for z € B(xg,dR),

for some § < 1. Then an easy covering argument (using VD) gives CS(¥) with

2
§=1
3. Let A > 1. Suppose that CS(¥) holds, except that instead of (2.8) we have

@10) [ PIvePauzat/mP( [ O [ ).
B(z,s) B(z,\s) B(x,\s)

Then once again it is easy to obtain CS(¥) with A = 2 by a covering argument.

4. Any operation on ¢ which reduces |V¢| while keeping properties (a), (b) and

(c) of Definition 2.9 will generate a new cutoff function which still satisfies (2.8).

We can therefore assume that any cutoff function ¢ satisfies the following:

() 0<p <1

(b) For each t € (0,1) the set {x : p(x) > t} is connected and contains B(xg, R/2).

(c) Each connected component A of {z : ¢(z) < t} intersects B(zo, R)°.

5. CS(2) always holds since one can take ¢(x) = (2/R)d(x, B(xo, R)®). Then

V| <2/R and (2.8) (with 8 = 1) follows easily.

6. Let 2 < 8 < 3, and write ¥, ¥’ for the functions given by (1.7). Then PI(¥)

implies PI(¥’), while CS(¥’) implies CS(¥). Further (see Lemma 2.14 below) if

PI(¥) holds, then CS(¥’) cannot hold for any ' > f.

7. If M;, i = 1,2, are manifolds satisfying PHI(¥,), respectively, with 8; < fa,

then the product M = M; x M, satisfies PI(V3). However, since M does not

satisfy PHI(W3) it cannot satisfy CS(¥s). Thus the conditions PI(¥) and CS(¥)

are independent.

The following theorem gives a characterization of PHI(¥) in terms of conditions
which have good stability properties.

THEOREM 2.11. The following are equivalent:
(a) M satisfies VD, PI(V) and CS().
(b) M satisfies PHI().
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This was proved in the graph case in [9]. The extension to manifolds is sketched
below in Sections 3 and 4. Full details, and the extension to a general class of
measure metric spaces will be given in [10].

We will see in Section 5 that the conditions VD, PI(¥) and CS(¥) are stable
under rough isometries between manifolds and graphs, provided these have the
appropriate local regularity.

THEOREM 2.12. Let G be a graph with bounded vertex degree. Let M be a
manifold with Ricci curvature bounded below, and positive injectivity radius, which
is roughly isometric to G. The following are equivalent:

(a) G satisfies PHI(V).
(b) M satisfies PHI(V).

See [40] for the definition of injectivity radius.

EXAMPLES 2.13. Given a graph G with bounded vertex degree one can create
a manifold M satisfying the conditions of Theorem 2.12 by replacing the edges of G
by tubes of length 1, (and diameter say 1/10) and gluing these together smoothly
at the vertices.

Using Theorem 2.12 with Theorems 2.8 and 2.11 we see that the pre-Sierpinksi
gasket manifolds defined in [45] satisfy HK(¥) with 8 = log5/log2. We also
deduce that the manifolds based on the family of Vicsek fractals studied in [11]
satisfy HK(V), where ¥(r) = r2Vvr?, and f3 is the ‘walk dimension’ of the associated
graph.

We conclude this section by discussing the relation of PI(¥) and CS(¥) with
the spectral gap of balls. Let B = B(x, R) be an open ball in M. Let M(B) = {f €
C>®(B): [z f =0,[[f1B|]2 # 0}; then the smallest non-zero Neumann eigenvalue
of —A on B is given by

o J5 IVfI?
(2.11) N(B) = inf I

LEMMA 2.14.
(a) If M satisfies PI(V) then

M (B(z,R)) > cW(R)™, z € M,R>0.

(a) If M satisfies VD and CS(¥) then
M (B(z,R)) < cW(R)™, z € M,R>0.

PROOF. (a) is immediate from the definition of PI(¥) and (2.11).
(b) Let v be a geodesic from zg to y € 9B and x; € v with d(zo,x1) = 2R/3. For
i=20,1let B; = B(x;, R/8) and Bf = B(x;, R/4). Using VD we have

c1p(By) < u(Ba) < u(B3) < cop(Br).

By CS(V) there exist cutoff functions ¢; for B; C Bf. Let g = po — ¢1 — ¢3, where
cs3 is chosen so that fB g = 0. It is easy to check that

/ g°du > cp(B).
B
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By (2.8) applied to the constant function 1

/ Verl2dpn < cxW(R/4)"! / .
B B(zs,R/2)
Hence
/ Vl? < cU(R) " u(B) < CU(R)" / 2,
B B
so that A\ (B) < dU(R)™!. O

3. Construction of cutoff functions

Throughout this section we assume that M satisfies HK(¥) (and hence VD and
PHI(V)). We will sketch the proof that M satisfies CS(¥); the argument, which

runs along the same lines as that in [9], uses the Greens functions gy(z,y), given
by

on(2y) = / ¢ Mpy(z, y)dt,
0

to build a cutoff function . The main difference here is that as [9] used g(z,y)
rather than gx(z,y), a strong transience condition (called (FVG)) was needed in
the initial arguments. (This was then removed using a standard trick with product
spaces.)

LEMMA 3.1. Let xg € M, R > 1. Then there exists § > 0 such that if \ = cR™"

1) Do) Sy Blan Y.
RB
(3.2) gx(zo,y) > 2C2m, y € B(xo,20R).
Proor. This follows easily from HK(¥) by integration. O
LEMMA 3.2. Let xy & B(x1,7). Then there exists 0 > 0 such that
(33) 930,2) — a0 ) < (LE2)0 qup gafa, ).

T B(z1,r)

ProoF. The Hélder continuity of p; is given by PHI(¥). Integrating we obtain
(3.3). O

We begin the proof of CS(¥) with the special case when we only require the
weighted Sobolev inequality for I = B.

PRrROPOSITION 3.3. Letxy € M, r > 0. There exists § > 0 and a cutoff function
¢ for B(x1,0r) C B(x1,r) such that, writing B' = B(x1,dr), B = B(x1,7),

(3.4) | £ioekduse [ 1ViPans e [ g

PROOF. If r < ¢ then we can take ¢ to be a local cutoff function for B’ C B,
SO suppose 1 > c¢.

Let D = B(z1,r — ¢) where ¢ < /10, and A > 0. Let G¥ be the resolvent
associated with the process W killed on exiting D, that is,

GR f(x) =E" /OTD e MF(W,)dt,
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for bounded measurable f, where
mp =inf{t: Wy € M — D}.

Let h = 1p/, and let v = G¥h. Using the estimates on the heat kernel of W,
as in Lemma 4.7 of [9], we can take A small enough so that

v(z) > 1 P(r), r € B,

and
v(z) < e (r), z € D.
Let f € C§°(M). Then

/Bf2|Vv|2du < /M f2|Vv|2du:/ (V(f%).Vv)d,u—/M 2fvV f.NVvdpu.

M
By Gauss-Green

/ (V(f?v).Vv)du = —/ fPuAvdp < ¢¥(r) f2du.
M M B

Using Cauchy-Schwarz we obtain
[ 2povevodnl <o [ Vs [ PiePa
M M M

<) [ (vrPaw ([ vk
B M
So, writing I = [, f2|Vo?du, J = [, |Vf|?dp, K = [ f2du, we have
I <cU(r)K 4 cW(r)JY212,

from which it follows that I < c¥(r)K + c¢¥(r)2J. Setting ¢ = 1 A (c¥(r) o),
where ¢ is chosen so that ¢ is a cutoff function for B’ C B, (3.4) follows. g

1/2

Now fix g € M and R > 1. Let A = cR™ 7, §, ¢, be as in Lemma 3.1, and
h = caRP )V (x0, R).
We now define
Q(b) = Q(zo,b) = {y : gr(xo,y) > b}

As in [9] we can approximate Q(b) by balls. Let p be an approximate identity with
support B(zg,d%R), and

wo(z) = Grplx),  w(z)=(2hAw(z)-h)".
Thus h~'w is a cutoff function for B = B(x,dR) C B(xg, R).

PROPOSITION 3.4. Let xg € M, R > 0, w be as above. Let I = B(x1,ds), with
s <R, and I* = B(x1,s). Suppose that either

(3.5) I* © Q(2h)
(3.6) I* A B(xo, 0R) = 0.

Let f € C(M). There exists ¢c1 < oo such that

37 b / PIVeP < e(s/B) / VTP () / 7).
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PROOF. The argument follows the lines of [9], Proposition 4.10. As w is con-
stant on Q(2h) it is enough to consider the case when (3.6) holds. Let v be a cutoff
function for I C I* given by Proposition 3.3. Let wi(x) = wo(x) — c3, where c¢3 is
chosen so that w; > 0 on I* and

wi(x) < ch(s/R)’ = L, x el
this is possible by Lemma 3.2. Let

A= / 2V Pdp,
I

D= [ [VfPdut v / Pdu,
I* I

F:/ f2v2|Vw1|2.
I*
Now

(38) A<F=[ f2*Vwi.Vw= [ V(f*%w;).Vw —/ w1 V(f?v?).Vw.
I8 I

For the first term in (3.8), by Gauss-Green

V(f?v?w;).Vwy = —/ (f2v2w1)Awy
M

*

I*

_ / (F0%0) (Ao — p)
M
2 2 _
< /M(f v wy)p = 0.

Here we used the fact that w; > 0 on I*, that v has support I*, and that v and p
have disjoint supports. The second term in (3.8) is handled exactly as in [8] and
[9]. That is, using Cauchy-Schwarz,

| [ wiV(f*v?). Vgl

I*
1/2 1/2 1/2
< c((/l V2|V f2dp) ? (/I 2 Vo|*du) / )(/I wff2v2|Vw0|2du)
S CLD1/2F1/27
where we used Proposition 3.3 in the final line. Thus we obtain F' < ¢L?D. (I

PROPOSITION 3.5. Let M satisfy PHI(W). Then M satisfies VD, PI(¥) and
CS(v).

PROOF. The arguments that M satisfies VD and PI(¥) are standard. CS(¥)
follows from Proposition 3.4 and an easy covering argument just as in Corollary
4.11 of [9). O

4. Proof of Harnack inequalities

We begin by explaining the necessity of CS(¥) in the anomalous diffusion case.
Let M be a manifold satisfying VD, PI(¥) and having regular volume growth

Ve,r) =<re, xeM,r>1.
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Since M need not satisfy CS(¥), any argument to prove EHI must fail, but it is
still instructive to see where the problem arises. Let us try to follow Moser’s proof
of the EHI in [49]; a similar obstacle would arise if one tried other approaches, such
as that in [20]. The difficulty is with the first (‘easy’) part of Moser’s argument.

Write
][ f = u(B)! / fdu.

From PI(¥) one obtains (see [54], [5 ] Section 5.2) the Sobolev inequality

(4.1) ][ |f|2“ < CRﬁ][BIVfIQ,

for f € C§°(B), where B has radius R > 1 and x > 1.

Let w > 0 be harmonic in B = B(x, R); as M is locally regular we have that
u is continuous. Let § < az < ay < 1, B; = B(z,a;R), p > 2, ¢ € C3°(By) be a
cutoff function for By C By and v = uP. Moser’s argument (see [55], p. 121) gives

(4.2) /B V(o) < el Vel2 /

B1

By (4.1) applied to f = vy = uPe)

(4.3) (]i u25p)1/n < (]i (mp)gﬁ)l/n < R ] |V(U¢)|2-

Since we can find 1 such that ||Vi)||oo < 2R72(a; — az)~! it follows that

1/k
(4.4) (]{3 u2“p) < cRP%(a; — ag)*z]{g u?P.

Now let a = %(1 +27%), pr = por* where pg > 2, and By, = B(z,arR). Then, if
I, = (][ u2pk>1/2pk7
By,
(4.4) implies that

(4.5) Ijp1 < (cRP7222M\1/2pe - | > 0.
If 8 = 2 this leads, by iteration as in [49], to the bound

(4.6) ) < C][ o y € B(z, 3R).

If 8 > 2 one still obtains an L* bound on u in B(z, %R), but the constant C' now
depends on R, so that the final constant in the EHI will also depend on R.

Inspecting the argument above, the crucial loss is in using the bound (4.2) to
go from (4.3) to (4.4); one needs a cutoff function 1 such that the final term in
(4.3) can be controlled by a term of order R,

We shall now see how CS(¥) enables one to do this. As the arguments in
Section 5 of [9] can be repeated in this more general context with minor changes,
we only sketch the main ideas. Full details will be given in [10].

Fix xo € M, let R > 0, and ¢ be a cutoff function for B(zo, R/2) C B(zo, R)
given by CS(¥). We regularize ¢ so that it satisfies conditions (a)—(c) of Remark
2.10.4. We define the measure v by

dy = dp+ RP|V|*dp.
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We do not know if this measure satisfies volume doubling, but using CS(¥) we do
have vy(B(zo, R)) < ¢V (x0, R).

This first step is to use CS(¥) (and PI(¥)) to obtain the following weighted
Sobolev inequality, which will replace (4.1) in the iteration argument. We write
JG) =Lz d(z,J) < s}

PROPOSITION 4.1. (See Theorem 5.4 of [9].) Let s < R and J C B(zg, R) be
a finite union of balls of radius s. There exist kK > 1 and ¢y < co such that

) / )" < e (RO ) / IV f2dp+ (s/R) / fian).

Now let v be harmonic in a domain D C X. By Theorem 2.7 u satisfies a local
Harnack inequality, so is Holder continuous. As in [49] we have

LEMMA 4.2. Let D be a domain in M, let u be positive and harmonic in D,
v=u", where k € R, k # 3, and let n € C§°(D). Then

2%k 2
2 20 < 2 2
/Dn |V dufm(%_l) /Dv [V =dp.

Now let w > 0 be harmonic in B(xg, R), and 7 be as above.

PROPOSITION 4.3. Let v be either u or u~'. There exists c1, § > 0 such that
if 0 < q <2, then

(4.8) sup v < e V(x, R)_l/ (RP|Vv?|? + v*)dpu.
B(z,0R) B(z,R)

Proor. If R < 1 this follows from the local Harnack inequality, so suppose
R > c. Let ¢, v be as above. Let h, =1—-27", 0 < n < oo, so that 0 = hg <
heo = 1. For k > 0 set

er(@) = (p(2) —he)*,  Ap={z:p(x) > M},
and note that B(xz, R/2) C A, C Ay C B(x, R) for every n > 0. We therefore have,
writing V = V(x, R),
2V <p(Ag) <V, k>0
The Holder condition on ¢ given by CS(¥) implies that if € Ay and y € Af,
then d(x,y) > 32 K/9R. Set s, = %(232_’“/91%, and note that ¢ > ¢427% on A,(ff;i
Let {B;} be a cover of Agi1 by balls of radius s;/2, and let Jy41 = UB;. Write

S = J,gs’“m) Ay = A,(i’;l, and note that Agy1 C Jpy1 C Jp ) C Apyy C Ag.

From Proposition 4.1 with f = v? and s replaced by sx/2,

(V’l /Akﬂf%d’y)l/né (Vﬁl /JHl fQ"d’y)l/n

(19) <oV [m [ VP s |

‘]k+1 k+1

<V U [R [ viPder 2t [ pa),
/ Ay

Ak+1

f2dy |
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The first term in (4.9) is controlled by Lemma 4.2:

R’ / VI < R (er2 )2 / AV
;»#»1 A;c+1

gcsz%Rﬁ/ VP2

< e R 2 / P2 IV?

/ f2dy.
Ay
We therefore deduce that

1/K 2p 2
—1 2K < 2ky,—1 2
(4.10) (v /A+ ¥ d’y) < 011(2p_ 1) 92ky, N F2dn.

< C1022k

Given this, the usual iteration argument, with p, = gok"™ for an appropriate qo,
leads to

1/(240)
(4.11) sup v < C(V_l/ v2q°d7) ”
B(z,r/2) B(z,r)
(4.8) now follows using Holder’s inequality and CS(¥) — see [9] for details. O

While the right hand side of (4.8) is a little different from that in (4.6), one
can still use the ideas of [13] and [51] to complete the proof of the EHI — see [9].

THEOREM 4.4. Let M satisfy VD, PI(¥) and CS(¥). Then M satisfies EHI.

It is possible that the same arguments could also be used to prove PHI(¥)
directly. But, in view of Theorem 2.8, and Lemma 2.4 the EHI is enough: VD plus
EHI plus PI(¥) implies RES(¥), and hence M satisfies PHI(¥).

5. Stability under rough isometries.

We will need to consider two types of space: weighted graphs, and manifolds.

DEFINITION 5.1. Let (G, E) be an infinite locally finite connected graph. Define
edge weights (conductances) v,y = vye > 0, 2,y € G, and assume that v is adapted
to the graph structure by requiring that v, > 0 if and only if x ~ y. Let v, =
Zy Vgy, and extend to a measure v on G. We call (G, v) a weighted graph.

We write d(x,y) for the graph distance, and define the balls

B(z,r) ={y: d(z,y) <r}.
Given A C G write A = {y € A° : d(z,y) = 1 for some x € A} for the exterior
boundary of A, and let A = AU 0A.

DEFINITION 5.2. A weighted graph (G, v) has controlled weights if there exists
po > 0 such that for all x € G

(5.1) s e, aey
Ve

This was called the pg-condition in [25].
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The Laplacian is defined on (G, v) by
1
Af(z)= - > vay(Fy) — f(@)).
Ty
We also define a Dirichlet form (£, F) by taking F = L?(G,v), and

E(F.9) = 5 30 S (F@) ~ FW)((w) —9W)ey, frg € F.

If f € F we define the measure T'(f, f) on G by setting
(5.2) T(f, () =Y (f(x) = f(1) Vay.

y~zx

The conditions VD, EHI and PHI(¥) for graphs are defined in exactly the
same way as for manifolds. The definitions of PI(¥) and RES(¥) are also the same
if we replace |V f|?du by dU(f, f) in (2.2) and (2.4). For the bound HK(¥) we
only require (2.7). The condition CS(¥) is also the same; the weighted Sobolev
inequality (2.8) takes the form

Y F@)T(p9) (@)

z€B(x1,s)

<a(p”( X MN@EsT Y wf@?).

r€B(x1,2s) z€B(x1,2s)

(5.3)

DEFINITION 5.3. Let (X;,d;, i), ¢ = 1,2 be complete measure metric spaces;
that is each (X;,d;) is a complete metric space and u; is a measure such that
1i(B) € (0,00) for each ball B in X;. A map ¢ : X1 — X3 is a rough isometry if
there exist constants C; — Cy such that

(5.4) Cy M (di(,y) — Co) < da(p(2), (y) < Ci(di(x,y) + Ca),
(5.5) U Ba(p(),Cs) = X,

rzeXy
(5.6) Cy ' (Bi(w, C2)) < pa(Bay (9(x), C2)) < Capn(Bi(x, Ca)).

If there exists a rough isometry between two spaces they are said to be roughly
isometric. (One can check this is an equivalence relation.)

This concept was introduced (for manifolds) by Kanai in [39]-[40], but without
the condition (5.6). In those papers both manifolds were assumed to have Ricci cur-
vature bounded below and positive injectivity radius; this leads to volume bounds
which imply (5.6) — see p. 394 of [40].

A rough isometry between X; and X5 means that the global structure of the
two spaces is the same. For example, it is easy to prove that VD is stable under
rough isometries. However, to have stability of Harnack inequalities, we also require
some control over the local structure. In the case of graphs it is enough to have
controlled weights, but for general measure metric spaces more regularity is needed.

Our main stability result is the following.
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THEOREM 5.4. For i = 1,2 let X; be either a manifold satisfying VD;,. and
PI;,. or a graph with controlled weights. Suppose there exists a rough isometry
(V2R X1 — XQ.

(a) If X satisfies VD and PI(¥) then Xo satisfies VD and PI(¥).
(b) If Xy satisfies VD and CS(V) then Xo satisfies VD and CS(P).

This result is proved in the graph case in [29]. Since rough isometry is an
equivalence relation, to prove Theorem 5.4 it is enough to prove that if M is a
manifold (satisfying VD},. and PIj,.) and G is a graph constructed by taking an
appropriate net of M, (so that M and G are roughly isometric), then CS(¥) (resp.
PI(¥)) holds for M if and only if it holds for G.

We will only prove (b) here. But note that since balls in the two metrics are
deformations of each other, the initial argument for (a) only gives stability of weak
Poincaré inequalities. An argument such as that in Jerison [37] (see also [30] for a
more general formulation) is then needed to derive the (strong) Poincaré inequality
from VD and the weak PI.

Let M be a manifold satisfying VD). Let G C M be a maximal set such that
d(z,y) > 1for z,y € G,z # y.

Thus B(z, %), x € G are disjoint, and UyeB(z,1) = M. Give G a graph structure
by letting « ~ y if d(x,y) < 3. Let dg be the usual graph distance on G, and write
Bg(z,r) for balls in G. It is straightforward to check that G is connected, and that

(5.7) sd(@,y) <dg(z.y) <d(@,y) +1, z,yeG.
Since M satisfies VD, we have, as in Lemma 2.3 of [39], that the vertex degree
in G is uniformly bounded.

For each  ~ y in G let z,, be the midpoint of a geodesic connecting = and y,
and Agy = B(24y,5/2), so that B(z,1) C Ayy C B(x,4). Let vy = 0if x ¢ y, and
if x ~ y let

Voy = W(Azy).
As usual we set v, = Eywm Viy. Write Ay = UyzAgy. Since M satisfies VD,
we have

(5.8) p(B(z,1)) < vp < cp(Aq) < cu(B(x,4)) < u(B(, 1)),

and using (2.1) it is easy to verify that (G, v) has controlled weights.
Define 2 : G — M by +(z) = . We have

PROPOSITION 5.5. Let M be a manifold satisfying VD;,.. Then the weighted
graph (G,v) has controlled weights and v is a rough isometry.

To prove Theorem 5.4 we will need to transfer functions between C(G,R) and
C(M,Ry). Let f € C(M,Ry). Define

~

(5.9) ﬂmzuu%umr{@(nﬂm,xea.

The transfer in the other direction requires a bit more care. Using the fact that
M satisfies VDy,. we can find a partition of unity (¢,), € G, with the following
properties:

(i) ¥a(2) = 1 for z € B(a, 1),

(i) 1z (2) = 0 for 2z € B(x, 3)°,
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(iii) Yy € C°(M) and |Vip,| < C; for each x € G.
Now if g : G — Ry define g € C*°(M) by
(5.10) 9(2) =Y g@)ta(z), z€M.
z€G
Set also, if f:G— R, k€N,

Vif(x) = sup  |f(z) = f(2), z€G.

zidg(z,2)<k

LEMMA 5.6. Let M satisfy VD,,.. Let f: G — Ry, and x € G.
(a) If ¥, (w) > 0 for some w € B(xg,1) then d(x,2) < 3 and x ~ z.
(b) If Y. (w) > 0 for some w € Ay then dg(z,2) <4, and

[f(@) = fw)] < Vaf(z), we A,
(¢c) Let AC G, and A’ = {y : dg(y,A) < 4}. Then
Z Vaf(2)v. <c Z (f(y) — f(z))2l/yz-

z€A y,z€A’
(d)
F(w)2du(w) < 2I/y.
/| IR SR

yeEGNB(z,r+2)
(e) On B(x,1), |Vf|? < c1Vif(2)?.

PROOF. (a) If w € B(z,1) and 1. (w) > 0 then d(z,2z) <1+ 3 <3,s0 z ~ 2.
(b) Suppose w € Ay and ¥.(w) > 0. Then w € B(a’,1) for some 2’ € G, and
d(z,2') < 5. Then 2’ ~ z and it is easy to check that dg(z,z’) < 3. Since

flw) = f(@)+Y_(f(z) = f(2)v=(w),

and only those z with d(z,xz) < 4 contribute to the sum, the second part is imme-
diate.

(¢) For z € G we can, by (b), find a path y;(z), 0 < i < k(z) < 4, such that
z = yo(x), and Vi f(z) = |f(2) = f(yr(2))(2)|- Then

k(x)
D oVaf(@) e <4 D (fyi(@) = fyio1(2))va,
T€EA z€A i=1

and using the fact that (G, v) has controlled weights, (c¢) now follows.

(d) Since f(w)? < 3, f(=)24: (w),
ry 2 2
/B o Jwra <) /B s (w)dp
<c Z f(2)%v..

2€GNB(z0,7+2)

(e) By (a) we can write, for w € B(z,1),

flw) = f@) + D va(w)(f(2) = f(2)).

zZ~T
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Hence

VA =5 ST () = F@)(F) = F(@) (Vb Vi)

2~ 2/~

<D )? V.|

T

<O Y Vif(2)® < dVif(a)*.

T

O

LEMMA 5.7. Let M satisfy VDj,. and PI},.. Letg: X — Ry, z € G, and
y~x. Then

(6(x) — 5()Pvay < ¢ /A Vo[2dp.
PRrRoOOF. Write

7= u(Agy) " /A g(w)du(w).

zy

Then we have (g(z) — g(y))? < 2(g(x) —9)* + 2(9(y) — 9)°. It is enough to bound
the first term:

(3(0) = 0y = s /B IRCER
<e /B (o)~ dnw)
<c [ (o) ~gPduw) <c [ Vol

where we used Pl . in the final line. O

In the arguments that follow, we will use the fact, given in Remarks 2.10, that
to verify CS(¥) it is enough to do so for any 6 > 0 in (2.9) and A > 0 in (2.10).

PROPOSITION 5.8. Let M satisfy VD,,. and PI},.. Suppose that M satisfies
VD and CS(V). Then (G,v) satisfies VD and CS(¥).

PROOF. Let Bg(xo, R) be a ball in G; we need to construct a cutoff function
@ satisfying (a)—(d) of Definition 2.9. If R < ¢ then it is easy to check that we can
take @(x) be the indicator of Bg(xo, R/2).

So assume R > c¢. We can find a constant c¢; such that

Bea(zo,c1R) C GN B(xg,R/8—6) C GN Bz, R/4+ 6) C Ba(xo, R).

It is enough to construct a cutoff function @ for Bg(zo,c1R) C Ba(zo, R). Let
¢ be a cutoff function for B(zg, R/8) C B(xo, R/4), and let » be given by (5.9).
Properties (a)—(c) of Definition 2.9 are easily checked, and it remains to verify the
weighted Sobolev inequality (5.3).

Let 1 € G, 1 <s < R, and Ag = Bg(z1,s). Choose ¢, ¢z so that

Ag C B(z1,c28 —6) NG C B(x1,2¢28) NG C Bg(x1,c38 — 6).

Write Ay, = B(z1,c¢35), and let f : Ay — R4, We extend f to G by taking f to be
zero outside Ay, and define f by (5.10).
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Let z € G, and y ~ z. Then by Lemma 5.6(b) and Lemma 5.7
F@P(B(@) — 3(y))vay < ¢ /A (@212 dp(w)

<2 / Flw)?|Vpl2dpu(w) + 2 / Vif (@) Ve Pdp(w).
Apy Agy

Therefore
(5.11)
D F@P@@) = By)) vy
T€EAG Yy~
<c22/ Fw)? |V Pdpa(uw +c22/ Vaf (2)% Vo Pdpa(uw)
TEAG Y~ TEAG Y~T
<cf o FwPVeldutw) ve Y S Vaf@) / VP dp(uw)
B(z1,c29) TEAG Yy~ zy
Applying (2.8) to the ball A, gives
(5.12) / \Vol?du < cR™ 11(B(24y,5)) < ¢ R™%%v,,,.

Therefore, using Lemma 5.6(c), the second term in the final line of (5.11) is bounded
by

(5.13) cR7 "N Vaf (@) vay <R T(S,f)(2).

T€AG Y~ zEAL

Using (2.8) again

/ Flw) Vo 2dpu(u)
B(z1,c28)

< ¢(s/R)% (/B

(5.14)
C ’ 2 + \Il 1 ’ 2d/1 .
| | (S) /B(m&czs) )

(x1,2¢c28)

By Lemma 5.6(e)

Vf2 < v 21
/B(:cl,chs)| f| B Z f() ( ( ))

z€GNB(z1,2c25+1)

< D (@) = FW) vey,

z,yEAL

(5.15)

while by Lemma 5.6(d)

ry 2 21/ .
(516) /B(a:l,QCzS) f(w) dM(w) - wEBg%:l,qs) f(x) ’

Combining the estimates (5.11)—(5.16) completes the proof. O

PROPOSITION 5.9. Let M satisfy VD). and Pl .. Suppose that (G,v) satisfies
VD and CS(V). Then M satisfies VD and CS(¥).
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PROOF. Let B = B(xo,R) be a ball in M. If R < ¢; then we can use the
local regularity to construct a cutoff function ¢ for B. So assume R > ¢;. We can
therefore assume that zg € G.

Given A C G write A = U,c4B(z,1). We can find ¢; such that

B(xo,c1R) C Bg(zo,c2R —6)Y € Ba(wo,2c2R+ 6)Y € Bz, R).
Let pg be a cutoff function for Bg(xo,caR) C Bg(o,2¢2R), and let
p(w) = ga(w) =Y fl@)p:(w)
z€G

Properties (a)—(c) of ¢ follow easily from those of ¢, and it remains to verify (2.8).
Let By = B(x1,s) with s € (0, R). If s < c3 then, as Vip(x) < cR™%7,

/ 9*IVplPdu < cR™% g*dp.

B(z1,s) B(z1,s)

Now suppose s > c3. Then we can assume x; € G, and there exist ¢; so that
B(x1,8) C Ba(x1,c48 — 6)(1) C Bg(x1,2¢48 + 6)(1) C B(z1,c58 — 6).

Let g : B(x1,c¢58) — R4. Define g on Bg(x1,2¢4s + 6) by (5.9). Then

/ G2V dp < / w)2|Vol2dp(w)
B wEBg(a:l,&;s) B(z,1)
(5.17) <2 Y / (9(w) — §(2))* Vo 2dn(w)
z€Bg(z1,c48) B(=,1)
+2 [ a@rvePduo)
B(z, 1)

wEBG (z1,c48)
By Lemma 5.6(e) the first term above is bounded by
R | o - gla)2an
wEBG(Il c48) B(z, 1)
and using PIj . this is bounded by
(5.18) cR™% / |Vg|2du < ¢ R_Qa/ |Vg|2dp.
B(z,1) B(x1,c55)

mEBG (z1,c48)

For the final term in (5.17), by Lemma 5.6(e) and (2.8) for g,
S gwr [ [VePdutw)
B(z,1)

z€EBg(x1,c48)

< Y @Vige(@)u(B, 1)

z€Bg(x1,c48)

<c Y §@)°T(ee,va)(@).

zE€Bg(x1,c48)
<cs/BP(Y TEDE) V) (),
z€Bg(x1,2¢48) zE€EBG(x1,2¢48)

Using Lemma 5.7 for the first term, and an easy bound for the second, (2.8) now
follows. 0
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