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1. Introduction

Let R be a Riemann surface of genus g with n punctures, 3¢ — 3 +n > 0,
and T the Teichmiiller space of R. The Weil-Petersson (WP) metric for 7 is a
Kéhler metric with negative sectional curvature [4, 35, 36, 41]. With the WP
metric 7 is a unique geodesic space [42]: for each pair of points there is a unique
distance-realizing joining curve. The augmented Teichmiiller space T, a stratified
non locally compact space, is the space of marked noded Riemann surfaces and
is a bordification of 7 in the style of Baily-Borel, [2, 5]. For (g,n) = (1,1), T
is the bordification H U Q of the upper half-plane with the horoball-neighborhood
topology. The augmented Teichmiiller space is in fact the WP metric completion
of the Teichmiiller space [30]. The strata of 7 are lower-dimensional Teichmiiller
spaces; each stratum with its natural WP metric isometrically embeds into the
completion 7.

Our purpose is to present a view of the current understanding of the geometry
of the WP geodesics on 7. The behavior of geodesics in-the-large has significant
consequences for the action of the mapping class group; see [7, 13, 31, 42, 47]
and Section 7 below. The behavior of geodesics is also an important consideration
for the harmonic map problem, as well as the study of rigidity of homomorphisms
of lattices in Lie groups to the mapping class group [11, 12, 13, 18, 26, 47].
Furthermore, the behavior of geodesics is a consideration for the rank of 7 [9]. We
begin by mentioning a collection of recent results [8, 7, 9, 13, 31, 32, 47]. Recall
that for a hyperbolic surface, the length of the unique geodesic in a prescribed free
homotopy class provides a function, the geodesic-length, on T valued in [0,00). A
general fact is that geodesic-length functions are strictly convex along WP geodesics
[42].

The work of C. McMullen provides a prelude [32]. Recall that a Bers embedding
Bs : T — T%T is a biholomorphic map of the Teichmiiller space to a domain in
a cotangent space; from the Nehari estimate the image is bounded independent
of S in terms of the Teichmiiller and the WP co-metrics. Observe for Sy fixed,
—fB5(So) is a section of the cotangent bundle T*7, a differential 1-form Oy p(S) on
T. McMullen showed [32, Thrm. 1.5] that d(ifwp) = wwp is the WP symplectic
form. An application is a positive lower bound for the WP Rayleigh-Ritz quotient.
He then introduced a smooth modification of the WP metric by including the
complex Hessians of the small-valued geodesic-length functions. He combined the
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above and estimates for geodesic-length derivatives to show that the modification
is a Kadhler hyperbolic metric for the moduli space of Riemann surfaces that is
comparable to the Teichmiiller metric [32, Thrm. 1.1]. As applications McMullen
found: a positive lower bound for the Teichmiiller Rayleigh-Ritz quotient, a complex
submanifold isoperimetric inequality, and the alternating sign of the orbifold Euler
characteristic for the moduli spaces [32].

J. Brock has established important results on the large-scale behavior of WP
distance,[8]. Brock considered the metric space, the pants graph Cp(F'), having
vertices the distinct pants decompositions of F' and joining edges of unit-length for
pants decompositions differing by a single elementary move,[8]. He showed that the
0-skeleton of Cp(F) is quasi-isometric to 7 with the WP metric. In particular by
an observation of L. Bers there is a constant L such that each hyperbolic surface has
a pants decomposition by geodesics of length at most L. For a pants decomposition
P, denote by V(P) C T the subset of surfaces with the designated decomposition.
The union UpV (P) provides an open cover for 7. Brock found that WP distance
records the configuration of the open sets V(P) with the 0-skeleton of Cp(F) as the
metric model. An important consequence of Brock’s result is the correspondence
between gquasi-geodesics (quasi length-minimizing paths) on 7 and quasi-geodesics
on Cp(F). He further showed for p,q € T that the corresponding quasifuchsian
hyperbolic three-manifold has convex-core volume comparable to dwp(p,q). At
large-scale WP distance and convex-core volume are approximately combinatorially
determined. He also showed that the first eigenvalue of the hyperbolic manifold and
corresponding Hausdorff dimension of the limit set are estimated in terms of WP
distance.

J. Brock and B. Farb used the correspondence to study the rank of 7 in the
sense of M. Gromov [9]. A notion for the rank of a metric space is the maximal
dimension of a quasi-flat, a quasi-isometric embedding of a Euclidean space. Brock
and Farb found that Cp(F) contains quasi-flats of dimension g — 1+ [££2]. It
follows from application of Brock’s quasi-isometry that the WP rank is likewise
bounded. Gromov-hyperbolic metric spaces have rank one and thus the bound pro-
vides for dim 7" > 2, that 7 is not Gromov-hyperbolic [9, Thrm. 1.1]. The authors
further found for dim 7" < 2 that Cp(F') and thus 7 are Gromov-hyperbolic [9,
Thrm. 5.1]. Yamada and M. Bestvina had also considered the maximal dimension
of a flat, [46]. Z. Huang has discovered further new asymptotic flatness [19]. Vari-
ation of independent plumbing parameters ¢ prescribes planes with WP curvature
O((=log [t])~).

W. Ballman and P. Eberlein posed a group-theoretic notion of the rank [21].
For discrete cofinite isometry groups of complete simply connected Riemannian
manifolds with non positive curvature bounded from below the Ballman-Eberlein
notion coincides with the geometrically defined rank. N. Ivanov has shown that
mapping class groups have rank one [21]. N. Ivanov and independently B. Farb,
A. Lubotzky and Y. Minsky further proved that any infinite-order element in the
mapping class group has linear growth in the word metric; at least O(n) generators
of the group are required to write the nt* iterate of an element of infinite order
[14, 23]. Rank-1 lattices in simple Lie groups have the O(n) writing-property, while
higher-rank lattices do not have the property.

An important discovery of Sumio Yamada was the non refraction of WP geodesics:
a geodesic on 7 at most changes strata at its endpoints; see [47, Thrm. 2], [13,
Lemma 3.6] and Propositions 11 and 12 below. A second important observation
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was that the strata of 7 are geodesically convex. Yamada refined the original WP
expansion of Masur [30] to present a third-order remainder expansion of the met-
ric in the C'-category. A key ingredient was the use of an improved estimate for
degenerating families of hyperbolic metrics. The considerations were based on the
relatively technical work of Wolf [37] and Wolf-Wolpert [38]. Yamada used the
expansion to study the behavior of geodesics in neighborhoods of the bordification.
He considered the WP Levi-Civita connection and one-dimensional harmonic maps
to investigate the non refraction. Yamada then used the convexity of geodesic-
length functions and the negative WP curvature to find that 7 is a C AT (0) space;
see [13], the attribution to B. Farb in [31] and Theorem 14 below. He further
noted that geodesic convexity of strata is an immediate consequence of the convex-
ity of geodesic-length functions [47, Thrm. 1]. He applied the statements to give
consideration of fixed-points and realizing translation lengths for mapping classes.
Yamada also presented that irreducible elements of the mapping class group have
positive translation length and a unique axis. The work has served as an inspiration
for the work of Daskalopoulos and Wentworth [13], as well as the author.

The geometry of CAT(0) spaces is developed in Bridson-Haefliger [6]. A ge-
odesic triangle is prescribed by a triple of points and a triple of joining length-
minimizing curves. A characterization of curvature for metric spaces is provided
in terms of distance-comparisons for geodesic triangles. In a CAT(0) space the
distance and angle measurements for a triangle are bounded by the correspond-
ing measurements for a Euclidean triangle with the corresponding edge-lengths [6,
Chap. IL.1, Prop. 1.7].

G. Daskalopoulos and R. Wentworth gave an independent treatment of the
WP expansion, the non refraction, the CAT(0) result and a more extensive con-
sideration of actions of mapping classes [13]. The authors obtained a C°-category
expansion by applying the cut-and-paste based estimates for degenerating families
of hyperbolic metrics from [44]. Scaling considerations were used for the energy
of a parameterized curve to establish non refraction. The authors proved that ir-
reducible mapping classes have positive translation length and a unique axis [13,
Thrm. 1.1]. Previously G. Daskalopoulos, L. Katzarkov and R. Wentworth stud-
ied the finite energy equivariant harmonic map problem for the target 7, [12]. In
general a condition on an isometric action is required for the existence of an energy
minimizing equivariant map. In the case of a symmetric space target the action
should be reductive. For T, the authors [12, 13] propose sufficiently large as the
counterpart of the reductive hypothesis. A subgroup of the mapping class group is
sufficiently large provided it contains two irreducible mapping classes acting with
distinct fixed points on the space of projective measured foliations. Daskalopoulos
and Wentworth established [13, Thrm. 6.2] divergence of the axes for two as above
independent irreducible mapping classes. The authors applied their considerations
and studied equivariant maps from universal covers of finite volume complete Rie-
mannian manifolds with finitely generated fundamental groups. They showed that
if there is a finite energy map with sufficiently large image of the fundamental
group, then there is a finite energy equivariant harmonic map [13, Cor. 1.3].

B. Farb and H. Masur established general higher rank superrigidity for the
mapping class group as image. For an irreducible lattice in a semisimple Lie group
of R-rank at least two, a homomorphism to the mapping class group has finite image
[15, Thrm. 1.1]. The authors also considered homomorphisms from SL,(Z) to the
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group of homeomorphism of a surface. They showed that all homomorphisms are
trivial for n greater than an explicit bound in the genus.

H. Masur and M. Wolf established the WP-analogue of H. Royden’s celebrated
result: for 3¢ —3+n > 1 and (g,n) # (1,2), every WP isometry of 7 is induced by
an element of the extended mapping class group. They considered the asymptotic
WP geometry to reduce the matter to considering the restriction of an isometry to
T — 7. In particular an isometry of 7 extends to the completion 7; an isometry
of T preserves the strata structure and following an approach of N. Ivanov agrees
with a mapping class on the maximally noded surfaces. They then established that
the set of maximally noded surfaces forms a uniqueness set for WP isometries [31].

Brock has also studied the family of WP geodesic rays based at a point, the
WP visual sphere, [7]. Rays are considered with the topology of convergence of
initial segments. He established that the action of the mapping class group does
not extend continuously to an action on the WP visual spheres, and that the rays
to noded surfaces are dense in the visual spheres. An additional discovery was that
convergence of initial segments in general does not provide for convergence of entire
rays; see [7] and Section 7 below.

The purpose of this paper is to continue the study in detail of the geometry of
WP geodesics on 7. We provide an independent treatment of the WP expansion
based on the less technical approach of [44]. We then use the opportunity to give a
range of new applications including: a thorough treatment of the strata structure,
a classification of locally Euclidean subspaces of T, for the Masur-Wolf theorem
a new proof based on a convex hull property, and a classification of limits of WP
geodesics.

We find that 7 is a stratified unique geodesic space with the strata intrinsically
characterized by the metric geometry (see Theorem 13), [47]. For a reference surface
F and C(F'), the partially ordered set the complez of curves, consider A the natural
labeling function from T to C(F)U{#}. For a marked noded Riemann surface (R, f)
with f : F — R, the labeling A((R, f)) is the simplex of free homotopy classes on
F mapped to the nodes on R. The level sets of A are the strata of 7. The unique
WP geodesic pg connecting p,q € T is contained in the closure of the stratum with
label A(p) N A(g) (see Theorem 13). The open segment pg — {p,q} is a solution of
the WP geodesic differential equation on the stratum with label A(p) N A(g). For
a point p, the stratum with label A(p) is the union of the open geodesic segments
containing the point (see Theorem 13).

The central consideration is the expansion of the WP metric in a neighborhood
of a point of a positive codimension m stratum S. For s a general multi-index
local coordinate for S and ¢t a plumbing construction multi-index parameter for
the transverse to S, we show for the multi-index parameter r = (—log|t|)~'/2 the
following expansion for the metric symmetric-tensor (see Corollary 4)

dgiyp(s,t) = (dgiyp(s,0) + 7° Y _(4dri + ridarg® t)) (1 + O(||r[|*)).
k=1

In particular along S the WP metric to third-order remainder is a product-metric of
the WP metric of S and metrics (4dr? + r8darg? t), one for each t parameter. The
product-structure with higher-order remainder suggests the isometric embedding
of S into 7. In the transverse direction to S the metric is modeled by the surface
of revolution about the z-axis of y = (x/2)®. The third-order remainder suggests
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higher-order flatness for the normal along S. We combine the above expansion,
the rescaling argument for metric spaces and an elementary quadratic inequality to
establish the non refraction of geodesics (see Propositions 11 and 12).

Beyond C' AT'(0), there are important applications for the above expansion. We
are able to combine the flat triangle lemma of A. D. Alexandrov [6] and Theorem
13 to study the locally Euclidean isometric subspaces (flats) of 7. A classification
is established, and it is found that the maximal dimensional flats are submanifolds
of: a product of Teichmiiller spaces of g once-punctured tori and L’:"Q—”J — 1 four-
punctured spheres (see Proposition 16). The result is consistent with the conjecture
of Brock-Farb regarding the rank (the maximal dimension of a quasi-isometric em-
bedding of a Euclidean space) of the WP metric, [9]. Following a suggestion of
Brock, the considerations also provide that for dim7 > 2 the WP metric is not
Gromov-hyperbolic. Flat geodesic triangles in 7 — 7 are uniformly approximated
by geodesic triangles in T.

We also investigate applications of the Brock result [7] that the geodesic rays
from a point of 7 to the noded Riemann surfaces have initial tangents dense in
the initial tangent space. We generalize the result and show that the geodesics
connecting maximally noded Riemann surfaces have tangents dense in the tangent
bundle of 7 (see Corollary 18). An immediate consequence is that T is the closed
WP convex hull of the subset of maximally noded Riemann surfaces (see Corollary
19). The maximally noded Riemann surfaces play a basic role for the WP C AT'(0)
geometry. In Theorem 20 we combine the convex hull property, the intrinsic nature
of the strata structure and the classification of simplicial automorphisms of Cp (F’)
to study WP isometries. A new proof of the Masur-Wolf result is provided: for
39—3+n > 1land (g,n) # (1,2), every WP isometry of T is induced by an element
of the extended mapping class group.

The WP metric is mapping class group invariant. H. Masur found that the
Deligne-Mumford moduli space of stable curves M is the WP quotient-metric com-
pletion of the moduli space of Riemann surfaces [30]. We note that the WP
metric for M is not locally uniquely geodesic near the compactification divisor
of noded Riemann surfaces (see Proposition 15). A complete, convex subset of
a CAT(0) space is the base for an orthogonal projection, [6, Chap. II.2]. The
closure of a stratum is complete and convex. We show that the distance to a stra-
tum S has an expansion in terms of the defining geodesic-length functions. For
a positive codimension m stratum S, defined by the vanishing of the geodesic-
length sum ¢ = ¢; + --- + £,,,, the distance to the stratum has the simple expan-
sion d(,S) = (2m€)}/2 + O(£?) (see Corollary 21). Furthermore the vector fields
{grad (2m¢;)'/?} are close to orthonormal near S.

Our final application concerns limits of sequences of geodesics. We consider
the classification problem (see Proposition 23). We might expect the compactness
of M to be manifested in the sequential compactness of the space of geodesics.
But Brock already found that convergence of initial segments in general does not
provide for convergence of entire rays. In fact for each sequence of bounded length
geodesics there is a subsequence of mapping class group translates that converges
geometrically (sequences of products of Dehn twists are applied to subsegments of
the geodesics) to a polygonal path, a curve piecewise consisting of geodesics con-
necting different strata (see Proposition 23). Polygonal paths were first considered
by Brock in his investigation of the WP visual sphere and the action of the mapping
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class group, [7, esp. Secs. 4, 5]. We find that the limit polygonal path is unique
length-minimizing amongst paths joining prescribed strata. A simple example of
a polygonal path is presented in the opening of Section 7. We apply the consid-
erations and show that a mapping class acting on 7 either: has a fixed-point, or
positive translation length realized on a closed convex set, possibly contained in
T — T (see Theorem 25). For irreducible mapping classes, the positive translation
length is realized on a unique geodesic within T, [13, 47].

We begin our detailed considerations in the next section with a summary of the
notions associated with lengths of curves in metric spaces, [6]. We also review the
local deformation theory of noded Riemann surfaces, as well as the specification
of Fenchel-Nielsen coordinates and the construction of the augmented Teichmiiller
space. In the third section we provide the WP expansion. We begin considerations
with the exact expansion of the hyperbolic metrics for the model case zw = ¢. Then
we consider in detail families of noded Riemann surfaces and their hyperbolic met-
rics. Beginning with Masur’s description of families of holomorphic 2-differentials,
we give a simple and self-contained development of the tangent-cotangent coordi-
nate frame pairing for the local deformation space and the desired WP expansion.
In the fourth section we develop the length-minimizing properties of the solutions of
the WP geodesic differential equation on 7. The considerations extend the earlier
treatment [42]. In the fifth section we develop the length-minimizing properties
of curves on 7T, including the non refraction results and the main theorems. The
labeling function A serves an important role. WP length-minimizing curves can be
analyzed in terms of their strata-behavior and geodesics within strata. WP con-
vexity of the geodesic-length functions also serves an important role. WP geodesics
are confined by the level sets and sublevel sets of geodesic-length functions. Non
refraction is established by a local rescaling of the metric, and an application of
the strict inequality ((a + b)? + ¢?)'/2 < (a® + ¢?)/2 + b for positive values. In
the sixth section first we examine the circumstance for the WP distance between
corresponding points of a pair of geodesics not strictly convex. Then we consider
the locally Euclidean isometric subspaces of 7. We also consider the distance to a
stratum. In the final section we consider sequences of geodesics and establish the
sequential compactness, as well as a general classification for geodesic limits. The
results are applied to study the existence of axes for mapping classes.

I would like to thank Jeffrey Brock for conversations.

2. Preliminaries

We begin with a summary of the notions associated with lengths of curves
in a metric space. We closely follow the exposition of Bridson-Haefliger [6] and
commend their treatment to the reader. For a metric space (M, d) the length of a
curve v : [a,b] = M is

n—1
L(v) = sup > d(v(t), v(ti41))

a=to<t; <--<tn=b j=0
where the supremum is over all possible partitions with no bound on n. A curve is
rectifiable provided its length is finite. The basic properties of length are provided
in [6, Prop. 1.20]. Length is lower semi continuous for a sequence of rectifiable
curves converging uniformly to a rectifiable curve. A curve v : [a,b] - M is param-
eterized proportional to arc-length provided the length of y restricted to subintervals
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[a,t] C [a,b] is a linear function of ¢, [6, Defn. 1.21]. A space (M,d) is a length
space provided the distance between each pair of points is equal to the infimum
of the length of rectifiable curves joining the points. It is an observation that
the completion of a length space is again a length space [6, Exer. 3.6 (3)]. A
curve v : [a,b] = M is length-minimizing provided for all @ < ¢t < t' < b that
L(Y|g,e7) = d(7(t),¥(t")); we initially reserve the word geodesic for curves which
are solutions of the geodesic differential equation on a Riemannian manifold. A
space with every pair of points having a (unique) length-minimizing joining curve
is a (unique) geodesic space. In a metric space a geodesic triangle is prescribed by a
triple of points and a triple of joining length-minimizing curves. A geodesic triangle
can be compared to a triangle in a constant-curvature space with the correspond-
ing sides having equal lengths [6, Chap. II.1]. A characterization of curvature for
metric spaces is provided in terms of distance-comparisons for comparison triangles
[6, Chap. IL1].

Consider R a Riemann surface with complete hyperbolic metric having finite
area. The homeomorphism type of R is given by its genus and number of punc-
tures. Relative to a reference topological surface F', the surface R is marked by
an orientation-preserving homeomorphism f : F' — R. Marked surfaces (R, f) and
(R', f') are equivalent provided for h : R — R', h a conformal homeomorphism, ho f
is homotopic rel boundary to f'. The set of equivalence classes of the F-marked
Riemann surfaces is the Teichmiiller space 7, [20]. A neighborhood of the marked
surface (R, f) is given by first specifying smooth Beltrami differentials v1, ..., vy,
spanning the Dolbeault group Hg’l (R,E((kp1 -+ pn)~1)) for k the canonical bundle
of the compactification R and p, ..., p, the point line bundles for the punctures,
[25]. For s € C™ set v(s) = >, s;v;; for s small there is a Riemann surface
R*®) and a diffeomorphism ¢*(*) : R — R*(®) satisfying 8¢*(®) = v(s)d¢*(®). The
parameterization of marked surfaces s — (R*(®),¢¥(®) o f) is a holomorphic local
coordinate for the Teichmiiller space 7.

The mapping class group Mod = Homeo™ (F)/Homeoo(F) is the quotient of
the group of orientation-preserving homeomorphisms of F' fixing the punctures by
the subgroup of homeomorphisms isotopic to the identity. The eztended mapping
class group is the quotient Mod* = Homeo(F)/Homeoo(F). A mapping class [h]
acts on equivalence classes of marked surfaces by taking {(R, f)} to {(R, foh™1)}.
The action of Mod on T is by biholomorphic maps; the quotient M is the moduli
space of Riemann surfaces. The holomorphic cotangent space of 7 at the marked
surface (R, f) is Q(R) = H°(R, O(k%p1 - - - pn)), the space of integrable holomorphic
quadratic differentials. A co-metric for the cotangent spaces of Teichmdiiller space
is prescribed by the Petersson Hermitian pairing [, p1(dh?)~! for ¢, € Q(R)
and dh? the R-hyperbolic metric, [4]. The dual metric is the Weil-Petersson (WP)
metric. The (extended) mapping classes act on 7 as WP isometries; the WP metric
projects to M. The WP metric is Kdhler with negative sectional curvature and
holomorphic sectional curvature bounded away from zero, [35, 36, 41]. Masur
estimated the metric near the compactification divisor D of the moduli space, [30].
His preliminary expansion can be used for after-the-fact insights: the metric is not
complete, [39]; there is an almost-product structure at infinity, [47]; and there are
submanifolds of 7 that approximate Euclidean space (see the present Section 6).
The expansion provides that the WP diameter and volume of M are finite. In
[44] an improved analysis was presented for the extension of the WP Kéhler form
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considered in the sense of currents. The %; multiple of the WP Kahler form is
the pushdown of the square of the curvature of the hyperbolic metric considered
on the vertical line bundle for the fibration of the universal curve C over M. The
multiple of the Kéhler form is a nonsmooth characteristic class representative of
the Mumford class k1, [44].

The complex of curves C(F) is defined as follows. The vertices of C(F') are
(free) homotopy classes of homotopically nontrivial, nonperipheral, simple closed
curves on F. An edge of the complex consists of a pair of homotopy classes of
disjoint simple closed curves. A k-simplex consists of k + 1 homotopy classes of
mutually disjoint simple closed curves. A maximal set of mutually disjoint simple
closed curves, a pants decomposition, has 3g — 3 + n elements. Brock has described
the large-scale WP geometry of Teichmiiller space in terms of the pants graph
Cp(F), a complex whose vertices are the distinct pants decompositions, [8]. The
mapping class group Mod acts on curve complexes and in particular on C'(F').

A free homotopy class a of a closed curve on F' determines a geodesic-length
function £, on 7. For a marked surface (R, f), {4 is the length of the R-hyperbolic
metric geodesic homotopic to f(a). Geodesic-length functions provide parameters
for the Teichmiiller space. Suitable collections provide local coordinates, [20]. A
collection of free homotopy classes {a1,...,a,} is filling provided for a set of rep-
resentatives with minimal number of self and mutual intersections that F' — U;a;
is a union of topological discs and punctured discs. A filling geodesic-length sum
L=> j {4, is a proper function on the Teichmiiller space. The differential and
the WP gradient of an ¢, are given by the classical Petersson theta-series for the
geodesic. In [42] we established that the WP Hessian of ¢, is positive-definite:
geodesic-length functions are strictly convex along WP geodesics. The convexity
provides a effective way to bound the WP geometry.

The Fenchel-Nielsen coordinates include geodesic-length functions, as well as
lengths of auxiliary segments, [3, 20, 29, 40]. A pants decomposition P =
{a1,...,a39—34n} decomposes the topological surface F' into 2g —2+n components
(pants), each homeomorphic to a sphere with a combination of three discs or points
removed. A marked Riemann surface (R, f) is likewise decomposed into pants by
the geodesics representing P. Each component pants, relative to its hyperbolic met-
ric, has a combination of three geodesic boundaries and cusps. For each component
pants the shortest geodesic segments connecting boundaries determine designated
points on each boundary. For each geodesic in the pants decomposition of R a
parameter 7 is defined as the displacement along the geodesic between designated
points, one for each side of the geodesic. For Riemann surfaces close to an initial
reference Riemann surface, the displacement 7 is simply the distance between the
designated points; in general the displacement is the analytic continuation (the
lifting) of the distance measurement. For a in P define the Fenchel-Nielsen angle
by 6, = 2774/fy. The Fenchel-Nielsen coordinates for Teichmiiller space for the
decomposition P are (£a,,0a;;-- - €asy_s4n>0asy_s4n)- The coordinates provide a
real analytic equivalence of 7 to (R x R)3973+" [3, 20, 40].

A bordification of Teichmiiller space is introduced by extending the range of
the Fenchel-Nielsen parameters. The interpretation of length vanishing is the key
ingredient. For £, equal to zero, the angle 6, is not defined and in place of the
geodesic for « there appears a pair of cusps; f is now a homeomorphism of F' — «
to the (marked) hyperbolic surface R (curves parallel to @ map to loops encircling
the cusps; see the discussion of nodes in the following Section). The parameter
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space for the pair (£4,0,) is the identification space R>o x R/{(0,y) ~ (0,¥')}. For
the pants decomposition P a frontier set Fp is added to the Teichmiiller space by
extending the Fenchel-Nielsen parameter ranges: for each o € P, extend the range
of £, to include the value 0, with 6, not defined for £, = 0. The points of Fp
parameterize (degenerate) Riemann surfaces with each £, = 0,a € P, specifying
a pair of cusps. In particular for a simplex ¢ C P, the o-null stratum is S{o) =
{R| £4(R) = 0iff @ € o}. The frontier set Fp is the union of the o-null strata
for the subsimplices of P. Neighborhood bases for points of Fp C 7 U Fp are
specified by the condition that for each simplex o C P the projection ((¢3,83),¢s) :
TUS(0) = [1gge (R x R) x [] 4, (R>0) is continuous. For a simplex o contained
in pants decompositions P and P’ the specified neighborhood systems for 7 US(o)
are equivalent. The augmented Teichmiller space T = T Usec(r) S(o) is the
resulting stratified topological space, [2, 5]. T is not locally compact since no point
of the frontier has a relatively compact neighborhood; the neighborhood bases are
unrestricted in the 6, parameters for a a o-null. The action of Mod on T extends to
an action by homeomorphisms on 7 (the action on T is not properly discontinuous)
and the quotient 7 /Mod is (topologically) the compactified moduli space of stable
curves (see the consideration of M in the next Section), [2, see Math. Rev. 56
#679]. Masur noted that the WP metric extends to 7 and is complete on M, [30,
Thrm. 2, Cor. 2]. T is WP complete since the quotient M is compact and each
point of 7 has a neighborhood with complete closure.

3. Expansion of the WP metric about the compactification divisor

Our purpose is to provide a description of local coordinates for the local defor-
mation space of a Riemann surface with nodes. We will present a modification of
the standard coordinates [5, 30] and use the formulation to present an improved
form of Masur’s expansion of the WP metric. The expansion reveals that for the
moduli space of stable curves M, along the compactification divisor D, the WP
metric behaves to third-order in distance as a product formed with the WP metric
of D.

The description begins with the plumbing variety V = {(z,w,t) | zw = t, |2|, |w], [t| <
1}. The defining function zw — ¢ has differential z dw + w dz — dt. Consequences are
that V is a smooth variety, (z,w) are global coordinates, while (z,%) and (w,t) are
not. Consider the projection II : V — D onto the t-unit disc. IT is a submersion,
except at (z,w) = (0,0); we can consider II : ¥V — D as a (degenerate) family
of open Riemann surfaces. The #-fibre, t # 0, is the hyperbola germ zw = ¢ or
equivalently the annulus {|t| < |z| < 1, w =¢/z} = {|t| < |w| < 1, 2 = t/w}. The
0-fibre is the intersection of the unit ball with the union of the coordinate axes in
C?; on removing the origin the union becomes {0 < |z| < 1} U {0 < |w| < 1}. Each
fibre of Vo =V — {0} = D has a complete hyperbolic metric:

for t # 0, on {|t| < |2| < 1} then

9 (T mlog|z| | dz )2,
hy = (log|t| e loglt| | z D ’
fort =0, 0n {0 < |z| <1} U{0 < |w| < 1} then

_(_ld] N2 _
dhg = (m) for C = Z,w.
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The family of hyperbolic metrics (dh?) is a continuous metric, degenerate only at
the origin, for the vertical line bundle of V. In particular we have the elementary
expansion

2 (1l _\? ? _ mloglz|
2 dh; = <|C|10g|C|) (G) csc@) for © = Tog 1]

1 1
=dh} (1+§@2+1—5@4+...).

The parameter ¢ is a boundary point of the annulus {|¢| < |z] < 1}. The boundary
points ¢, 1 will be included in the data for gluings. To describe the variation of
annuli with boundary points, we now specify a quasiconformal map ¢ from the
pointed t-annulus to the pointed t'-annulus ((z) = 2rB(nt) 2 = et with %
compactly supported in the annulus. The boundary conditions are {(1) = 1, and
by specification #[¢|2(t*) = ¢'. On differentiating in ¢’ and evaluating at (|¢[,¢) we
find the boundary condition ¢log |¢| 3(|t], t) = 1. More generally the infinitesimal
variation of the map is the vector field ((z) = zlogr 3(r,t) for (, the first t-
derivatives. The map ( varies from the identity and has Beltrami differential

— z

dz
3) &= mogr(ﬂ(r, 0)logr) ==

For sake of later application we evaluate the pairing with a quadratic differential

(%)

— . 1.2 P o
o () ap = [ 2 _(310gr)am
/{|t|<|z|<1} (Z) {It|<|z|<1} 2zz 310gr

where for a = 0, then

@ = W,Blogr‘lltl =—,

t
and otherwise, then

=0,

for dE the Euclidean area element and where we have applied the boundary con-
dition for B; the evaluation involves fixing a normalization for the Serre duality
pairing and agrees with [30, Prop. 7.1].

We review the description of Riemann surfaces with nodes, [5, 30, 44].
Riemann surface with nodes R is a connected complex space, such that every point
has a neighborhood isomorphic to either the unit disc in C, or the germ at the origin
in C? of the union of the coordinate axes. R is stable provided each component
of R — {nodes} has negative Euler characteristic, i.e. has a hyperbolic metric. A
regular g-differential on R is the assignment of a meromorphic ¢-differential @; for
each component R; of R — {nodes} such that: i) each ©, has poles only at the
punctures of R, with orders at most ¢, and ii) if punctures p, p' are paired to form
a node then Res,0. = (—1)? Resy O, [5].

We review the deformation theory of Riemann surfaces with punctures and then
with nodes. For a Riemann surface R with hyperbolic metric and punctures there is
a natural cusp coordinate (with unique germ modulo rotation) at each puncture: at
the puncture p, the coordinate z with z(p) = 0 and the hyperbolic metric of R given
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as (Iz l‘f)zg' i )2, the germ of the hyperbolic metric for the unit-disc. If the surface
is uniformized by the upper half-plane with p represented by a width-one cusp
at infinity then z = €™ for ¢ the uniformization variable. Now a deformation
neighborhood of the marked surface R is given by specifying smooth Beltrami
differentials vy, . . ., v, spanning the Dolbeault group Hg’l(R, E((kpy -+ pn)~1)) for
& the canonical bundle of R and py, ..., p, the point line bundles for the punctures,
[25]. For s € C™ set v(s) = Y, skvk; for s small there is a Riemann surface R*(*)
and a diffeomorphism ¢ : R — R*(®) satisfying 8¢ = v(s)¢. The family of surfaces
{R”(s)} represents a neighborhood of the marked Riemann surface in its Teichmiiller
space. We showed in [45, Lemma 1.1] that the Beltrami differentials can be modified
a small amount so that in terms of each cusp coordinate the diffeomorphisms ¢?(%)
are simply rotations; (”(¥is a hyperbolic isometry in a neighborhood of the cusps;
¢?() cannot be complex analytic in s, but is real analytic. We further note that for
s small the s-derivatives of v(s) and (s) are close. We say that () preserves cusp
coordinates. The parameterization provides a key ingredient for obtaining simplified
estimates of the degeneration of hyperbolic metrics and an improved expansion for
the WP metric.

We review the plumbing construction for R a Riemann surface with a pair
of punctures p, p'. The data is (U,V, F,G,t) where: U and V are disjoint disc
coordinate neighborhoods of p and p; F : U - C, F(p) = 0and G : V —
C, G(p') = 0, are coordinate mappings and ¢ is a sufficiently small complex number.
Pick a constant 0 < ¢ < 1 such that F(U) and G(V) contain the disc {|¢| < ¢}. For
¢’ < clet R be the open surface obtained by removing from R the discs {|F| <
'} c U and {|G] < '} C V. Now we prescribe the plumbing family {R;} over the
t-disc. Let D, = {|t| < ¢*}, M = R x D, and V. = {(z,w,t) | zw = t, |2, |w| <
cand |t| < c¢*}. M and V. are complex manifolds with holomorphic projections to
D.. Consider the holomorphic maps from M to V.: F : (¢,t) = (F(q),t/F(q),t)
and G : (¢',t) = (t/G(¢'),G(¢'),t) . The maps are consistent with the projections
to D.. The identification space MUV, / {F',G equivalence} is a degenerating family
{R:} with a projection to the disc D.. By construction the 0-fibre has a node with
local model V..

We are ready to describe a local manifold cover of the compactified moduli
space M. For R having nodes, Ry = R — {nodes} is a union of Riemann surfaces
with punctures. The quasiconformal deformation space of Rg, Def(Rp), is the
product of the Teichmiiller spaces of the components of Ry. As already noted
from [45, Lemma 1.1] for m = dim Def(Ry) there is a real analytic family of
Beltrami differentials #(s), s in a neighborhood of the origin in C™, such that
s = R, = R”) is a coordinate parameterization of a neighborhood of Ry in Def(R)
and the prescribed mappings ¢?(®) : Ry — R?(®) preserve the cusp coordinates at
each puncture. Further for R with n nodes we now prescribe the plumbing data
Uk, Vi, 21, wg, tg), k = 1,...,n, for R?®) where z; on Uy and wy on Vj, are cusp
coordinates relative to the R”(*)-hyperbolic metric (the plumbing data varies with
s). The parameter t; parameterizes opening the k th node. For all t; suitably
small, perform the n prescribed plumbings to obtain the family Rs; = Rtyl(f?_7tn.
The tuple (s,t) = (s1,..-,5m,t1,--.,tn) provides real analytic local coordinates,
the hyperbolic metric plumbing coordinates, for the local manifold cover of M at R,
[30, 43] and [44, Secs. 2.3, 2.4]. The coordinates have a special property: for s
fixed the parameterization is holomorphic in ¢. The property is a basic feature of
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the plumbing construction. The family R, : parameterizes the small deformations
of the marked noded surface R.

The roles of the Fenchel-Nielsen coordinates and the hyperbolic metric plumb-
ing coordinates can be interchanged. In particular for the nodes of R given by the
o-null stratum {a;,...,a,} the above local manifold cover has topological coordi-
nates ((£s,05)3¢0» (£ne?=)4eq). The observation can be established by expressing
the Fenchel-Nielsen coordinates solely in terms of geodesic-lengths, and then ap-
plying techniques for theta-series to analyze the differentials of geodesic-lengths.
Upon interchanging the roles of the coordinates, we obtain a local description of
the bordification in terms of the (s, t) tuple, [2, 5, 44]. At the point R of the o-null
stratum in 7 the local parameters are (s, |t|,argt) with the arg valued in R.

We review the geometry of the local manifold covers. For a complex man-
ifold M the complexification TCM of the R-tangent bundle is decomposed into
the subspaces of holomorphic and antiholomorphic tangent vectors. A Hermit-
ian metric g is prescribed on the holomorphic subspace. For a general complex
parameterization s = u + iv the coordinate R-tangents are expressed as ;9% =
% + % and 3% = i% — i%. For the R,; parameterization the s-parameters are
not holomorphic while for s-parameters fixed the t-parameters are holomorphic;
{% + aig,»’ iais,» - ia%j, %, i%} is a basis over R for the tangent space of the
local manifold cover. For a smooth Riemann surface the dual of the space of holo-
morphic tangents is the space of quadratic differentials. The following is now a
modification of Masur’s result [30, Prop. 7.1].

PROPOSITION 1. The hyperbolic metric plumbing coordinates (s,t) are real an-
alytic and for s fized the parameterization is holomorphic in t. Provided the mod-
ification U is small, for a neighborhood of the origin there are families in (s,t) of
regular 2-differentials @;, v;, j=1, ... ,m and ni, k=1, ... ,n such that:

1. For Rs; with ty #0, all k, {¢;,%;, Mk ,ink} forms the dual basis to {ags(:) +

av(s) .ow . 89 8 ;8

35(:)’7/ Bs(j) —4 gg(f),m,z%} over R.

2. For R, with ty =0, all k, the n, k=1, ... ,n, are trivial and the {p;,¥;}
span the dual of the holomorphic subspace T Def(Ry).

Proof. The situation compares to that considered by Masur. The new element:
the variation of the plumbing data is prescribed by a Schiffer variation for a gluing-
function real analytically depending on the parameter s, [43, pg. 410]. As already
noted for s fixed, plumbing produces a holomorphic family. Following Masur the
families of regular 2-differentials {¢;,v;,mx} are obtained by starting with a local
frame F of regular 2-differentials and prescribing the pairings with {g—s"j, g—g"j, % )
[30, Sec. 5 and Prop. 7.1]. At an initial point the basis is simply given by a
linear transformation of the frame F. The prescribed basis will then exist in a
neighborhood provided the pairings are continuous. We first consider the pairings
with %. From (3) we have the Beltrami differential for the pairing with %,
k =1,...,n. In particular for a plumbing collar of R; ; let z (or w) be the coordinate
of the plumbing. A quadratic differential ¢ on R, ; can be factored on the collar into

a product of (%)2 and a function holomorphic in z. We write Ci(¢) for the constant
coefficient of the Laurent expansion of the function factor. From (4) the pairing with

a;fk is the linear functional —%Ck. From Masur’s considerations [30, Sec. 5, esp.

5.4, 5.5] the pairing of % with the local frame F is continuous, and there are regular
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2-differentials {¢;,¢;,n;} with: Ce(p;) = Ce(¥;) =0, 7 = 1,...,m; Ce(nf) = ke,
k., = 1,...,n. The 2-differentials 7, = =tn}, k = 1,...,n have the desired
pairings with a[Z . The final matter is to note that the pairings of {y;,v¥;,n;}
with {33 , as 1 are indeed continuous in (s,t). By construction the differential
(s) is supported in the complement of the plumbing collars, [45, Lemma 1.1]. On
the support of ¥(s) the 2-differentials are real analytic in (s,t). The pairings are
continuous and even real analytic. The proof is complete.

We now note two general matters: the role of the coefficient functional C, and
the approximation of the hyperbolic metric. As above, for z a plumbing collar
coordinate for R, ;, a quadratic differential ¢ can be factored on the collar as the
product of (%)2 and a holomorphic function. C(¢) denotes the constant coeffi-
cient of the Laurent expansion of the function. The surface Rs; is constructed
by plumbing (Rs):2 with the R,-hyperbolic cusp coordinates. R is the disjoint
union of (Rs):, R, with the cuspidal discs |z«|, |ws«| < ¢ removed, and the annulus
{|t|/c < |z| < c¢}. An approximate hyperbolic metric dw? is given by choosing
the Rs-hyperbolic metric on (Rs): and dh? on the annulus (see (1)). The metric
dw? is the model grafting treated in detail in [44, Sec. 3.4.MG]; as noted in [44,
pgs. 445, 446] for dh?; the R, -hyperbolic metric we have that |dw?/dh%, — 1|

O(X,(log [tx])~2). The approximation dw? will now be substituted for the con-
struction of [30, Sec. 6] to obtain an improved form of the original expansion. The
improved approximation of the hyperbolic metric is the new contribution. Yamada
[47] presented a third-order expansion based on the technical work of Wolf [37] and
Wolf-Wolpert [38].

THEOREM 2. For a noded Riemann surface R the hyperbolic metric plumbing
coordinates for R,; provide real analytic coordinates for a local manifold cover
neighborhood for M. The parameterization is holomorphic in t for s fized. On the
local manifold cover the WP metric is formally Hermitian satisfying:

1. Forty, =0, k = 1,...,n, the restriction of the metric is a smooth Kahler
metric, isometric to the WP product metric for a product of Teichmiiller
spaces.

n
2. For the tangents {aisj, 5%, 5%} and the quantity p = Y (log|tx|)~2 then:
7 k=1
gwp(sss 5 )(s,1) = # (1 + O(p));
4P (~Tog? [tx])
gwp(g, 5) is O((|trte|log’ |tx|log [te])™") for k # ¢;

8 8 .4—_0 0.
and for u = 5, 557 0= 55y 0 05, ¢

gwp(zr,u) is O((tel(—log® [tx]))™") and
gwp(,0)(s,t) = gwp(u,0)(s,0) (1 + O(p)).

Proof. We begin with the expansion of the dual metric for the basis provided in
Proposition 1. The behavior of the ¢;, 1;, 7x and their contribution to the Peters-
son pairing [ af(dw?)~! is straightforward. On (R,)’, the quadratic differentials
and the approximating metric are real analytic in (s,¢). The contributions to the
pairing are real analytic and each differential nx, £ = 1,...,n, contributes a factor
of ¢x. On the plumbing collars {|¢|/c < |z| < ¢} = {|t|/c < |w| < ¢} each quadratic
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dw 2

differentials is given as the product of (—dz—z)2 = (92)" and a function factor. We

begin with an elementary calculation

dz 212 _1
2 (=) (an) 7 =
‘/{|t|/0<|z|<c}| ( z ) ’ ( t)

2 [° 1
—/ (log |t| sin 7r OgT)2r2°‘ dlogr
™ Jjt)/e log |¢]

loge
h f =0 - 2 — o~
where for o , 1 Tog 1] and € g [{]’

2 1—e 1
= 2ctog’ ) [ s wud = (~1og® ) + O),
and for a@ =1, since |siny| < |u|, then
- 0(1).

We are ready to consider the contribution to the Petersson pairing from the
collars. Consider the contribution for the £t" collar. By construction 7, is the
unique quadratic differential from the dual basis with a nonzero C; evaluation. In
particular C(n}) = 1 and the contribution to the self pairing for n; is 1 (- log® |¢,])+
O(1). In general we note that a quadratic differential on a plumbing collar can be
factored as (%)2(fz + ¢ + fu) for f, holomorphic in |z| < ¢, f,(0) = 0; ¢ the
C-evaluation value and f,, holomorphic in |w| < ¢, f,(0) = 0. Furthermore f,,
resp. fu, is given as the Cauchy integral of f over |z| = ¢, resp. |w| = c¢. Further
from the Schwarz Lemma |f.| < ¢’|z| max|,—. |f| with a corresponding bound for
|fw|- The bounds are combined with the majorant bound |sinpu| < || to show
that: for ¢;, ¥;, nj on |z| = ¢+ € and |w| = c+ €y depending analytically on (s, t)
their contribution to the Petersson pairing over the collar is also analytic in (s, t).

Combining our considerations and noting the approximation of dw? to the
hyperbolic metric for R,; we find that

* * 1 -
(s M) p = —(=1og” [txl) (1 + O3 _(log [tel)~
=1

<17;7 nZ)WP = O0() for k #¢,
and for a = ¢;,9%;; b= ¢z, e :
(a, i )ywp = O(1) and

n
(a,0), p(s,8) = (a,b)y,,(5,0) (1 Z (log |tx|) 2
k=1
The desired expansion now follows from the following Proposition and the relations

N = —%n;;. The proof is complete.
For A a symmetric m +n X m + n matrix
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)\1 e (77
A : : with Ag, 1 <k <m;
a aje, 1<j<m+n, j#£ 1<£¢<nand
i¢ .
! B B = (bj¢) a symmetric m X m matrix,
we consider the situation that Ay, ..., A, are large compared to the aj; and bj,.

n
PROPOSITION 3. Fordet B #0, and p= Y A\;' then:
k=1

det A = det B [ Ae(1+ O(p))
k=1

and A7' = (aj;) where: for 1 < k < n, ag = )\k‘l(l +O0(p)); for 1 < j <
0<n, ajris O(MA)™); for 1 <j<n<l<m+n, aj is O()\j_l), and for
1< 4, £<m, jinetn = 4(1+0(p)). The constants for the O-terms are bounded
in terms of m + n, det B™! and max{|aj¢|, |bje|}-

Proof. We consider the general formula for the determinant as a sum over the
permutation group and by the cofactor expansion. First observe that there is a
dichotomy for m + n-fold products in the calculation of det A; a product either also
occurs in the expansion of det B[], A, or has at most n — 1 factors Mg, 1 < k < n.
Products with less than n factors are bounded in terms. of the cited product and
O(p). The determinant expansion is a consequence. We continue and apply the
analog of the dichotomy when examining the cofactors of A. For the cofactor for
A¢ we find the expansion det B[], Ax(1 + O(p)). Similarly for the cofactor of
aje we find the A-contribution to be [],.; , Au(1 + O(p)) for j # £ < n and to
be [Tiz; Ak(1 4+ O(p)) for j < n < £. Finally for the cofactor of bje we find the
expansion b7¢ det B [, Ax(1+ O(p)) in terms of the inverse B~! = (8¢). The proof
is complete.

By way of application we present a normal form for the quadratic form dg¥, p;
the result is an immediate consequence of the above Theorem.

COROLLARY 4. For the prescribed hyperbolic metric plumbing coordinates:

n
dgiyp(st) = (dgiyp(s,0) + n° > (4dr +rid63)) (1+ O(|Ir||*))
k=1

for ri = (—log|tx)7}/2, O = argty and 7 = (r1,...,7n).

The result provides a local expansion of the WP metric about the compactifi-
cation divisor D = {t;, = 0}. To the third order of approximation the WP metric is
formally a product. As we will note below, a second-order approximation is already
special. As already noted, the bordification 7 has a local description in terms of
the parameters (s, |t|,argt) or equivalently in terms of (s, (- log|t|)~1/2,argt). The
above result provides the associated WP expansion.

An almost-product Riemannian metric with remainder bounded by the dis-
placement from a submanifold is very special. We note the situation as motiva-
tion for the results of Section 5; the following considerations do not apply since
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4dr? 4+ rd#? is not a Riemannian metric. Consider a product R™ x R with Eu-
clidean coordinates = for R™ and y for R". Consider that in a neighborhood of the
origin a metric has the expansion

dg* = dg; + dgy + Oc:(llyll*)
with dgZ, resp. dg2, a C'-metric for R™, resp. for R”, and the remainder a C*-
symmetric tensor as indicated. The expansion provides that the second fundamental
form of the z-axes, R™ x {0}, vanishes identically [33, pgs. 62, 100]. In this case the
z-axes is a totally geodesic submanifold: a geodesic initially tangent to the z-axes
is contained in the z-axes [33, pg. 104]. The expansion also provides that for the

z-axes the normal connection and the normal curvature vanish identically [33, pgs.
114, 115].

4. Length-minimizing curves on Teichmiiller space

We begin by developing basic facts about the behavior of WP geodesics on
Teichmiiller space. Although Teichmiiller space is topologically a cell, the behavior
of geodesics is not a consequence of general results [24], since the WP metric is
not complete. For instance the Hopf-Rinow theorem cannot be directly applied to
obtain length-minimizing curves [10, 24, 33], and it is necessary to show that dis-
tance is measured along geodesics. We proceed though by applying our paradigm:
a filling geodesic-length sum behaves qualitatively as the distance from a point for
a complete metric. In the following we combine the paradigm and modifications of
the standard arguments to find the basic behavior of geodesics.

THEOREM 5. The WP exponential map from a base point is a diffeomorphism
from its open domain onto the Teichmiller space.

COROLLARY 6. Teichmiiller space is a unique geodesic space. Each WP geo-
desic segment is the unique length-minimizing rectifiable curve connecting its end-
points.

Proof of Corollary. Let v be the WP geodesic connecting a pair of points p and
g in the Teichmiiller space. For a filling geodesic-length function £, choose ¢ > 0,
such that v C S. = {£ < ¢}, [42]. Consider G the set of all rectifiable curves
connecting p and ¢, contained in S., and each with length at most d(p,q) + 1.
Provided G is nonempty and the elements of G are parameterized proportional
to arc-length on the interval [0,1], then G constitutes an equicontinuous family of
maps. In particular for 8 € G and ¢,¢' € [0, 1] by the proportional parameterization
it follows that

L) dB(), AE))

LBy ~ dp,g+1
(From the Arzela-Ascoli Lemma [6, pg. 36] there exists a rectifiable length-minimizing
(amongst elements of G) curve By connecting p and q contained in S..

We consider the behavior of a rectifiable length-minimizing (amongst elements
of G) curve fy passing through an arbitrary point r € S, (r could lie on 85.). Since
S. is compact, there is a positive € such that WP geodesics are uniquely length-
minimizing in an e-neighborhood of each point of S,. Since S, is WP convex it
follows for 7', 7" on the chosen curve, close to v, with ' before r and v after r, that
the segments r'r and 77 are necessarily WP geodesics. It further follows that r'r’

t -t =
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is a WP geodesic, since the segment is locally length-minimizing at r. By convexity
of the geodesic-length function £, its value at 7’ or r"’ is greater than its value at
r. Since r/,7" € S, it follows that r € S,. It now follows that a rectifiable length-
minimizing (amongst elements of G) curve fy is a WP geodesic entirely contained
in S..

In general given ¢, 0 < € < 1, there exists a curve 8’ connecting p and ¢ in
the Teichmiiller space such that L(8') < d(p,q) + €. For ¢ large, 8/ C S~ and
thus the corresponding family of maps G is non empty. The length of 8’ bounds
the length of a S.-length-minimizing curve By connecting p and ¢: in particular
L(B') > L(Bo). iFrom the above paragraph and the Theorem, the unique geodesic
connecting p and ¢ is By = 7. The inequalities now provide that L(y) < d(p,q) + €.
The proof is complete.

Proof of Theorem. First we note that the domain of the exponential map is an
open set. Given a geodesic « connecting a pair of points, select ¢ > 0 such that
v C S¢. Since S, is open the points in neighborhoods of the y-endpoints are also
connected by WP geodesics. In particular the domain of the exponential map is
open.

We next note that the exponential map is a local diffeomorphism [24]. Further
note that a germ of the inverse is determined by its value at a single point. We now
consider the continuation of a given germ ¢, with the exponential map based at p
and the germ given at ¢ € 7. We consider the continuation of ¢ along a, a curve
with initial point q. We argue that the continuation set is closed.

Choose a filling geodesic-length function £ and value ¢ such that p,a C S..
First we observe that each WP geodesic connecting p and a point of « is contained
in S.. This follows since the values of £ at the endpoints are bounded by ¢ and £
is WP convex. Since S, is compact there is an overall length bound for the WP
geodesics contained in S.. As noted in Bridson-Haefliger a length-bounded family
of geodesics is given by an equicontinuous family of maps, [6, pg. 36]. By the
Arzela-Ascoli Lemma it follows that a sequence of WP geodesics contained in S,
has a subsequence converging to a geodesic contained in S..

Consider now that the germ ¢ can be continued to a sequence of points {g,}
along a. In particular WP geodesics pg,, are determined. A subsequence (same

notation) pg, converges to 5(]\’ . The WP geodesic ;;q\’ determines a germ of the
inverse of the exponential map; the germ gives exponential inverses for the WP
geodesics pg,. The germ is the continuation of ¢; the continuation set is closed.
The continuation set is necessarily open; ¢ can be continued along every curve. On
considering homotopies it is established that the continuation to the endpoint of
a is path independent. Finally since the Teichmiiller space is simply connected
the continuations determine a global inverse for the exponential map. The proof is
complete.

We are also interested in understanding the WP join of two sets, and in partic-
ular the distance between points on a pair of geodesics. For the WP inner product
consider the Levi-Civita connection V satisfying for vector fields X, Y and W the
relations,[10, 24, 33],
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X(Y,W) = (VxY,W) + (Y,VxW)
VxY - Vy X = [X,Y].

Further consider the curvature tensor

R(X,Y)Z =VxVyZ -VyVxZ - Vxy]|Z.
A wvariation of geodesics is a smooth map ((t,s) from [tg,¢1] X (—€,€) to T such
that for each s', B(t,s') is a WP geodesic. For the vector fields T = dB(Z) and
V= dﬂ(%), the first variation of the geodesic V satisfies the Jacobi equation

VrVrV = R(T,V)T;
solutions are Jacobi fields, [10]. The Jacobi equation is a linear second-order sys-
tem of ordinary differential equations for vector fields along 3(t,s’). The space
of solutions has dimension 2dim 7; a solution is uniquely prescribed by its initial
value and its initial derivative. Furthermore since 7 has negative curvature there
are no conjugate points along a geodesic and the linear map (V|¢=t,, VrV]i=t,) to
(Vlt=ty, V|t=t,) is an isomorphism [10, pg. 19]. Solutions are uniquely prescribed
by their values at the endpoints. This property is needed for the understanding of
the join of sets. In particular Jacobi fields provide a mechanism for analyzing the
exponential map.
The WP exponential map (p,v) < exp,v has open domain D = {(p, exp,(T))} C

T7T in the tangent bundle. We are ready to consider the behavior of geodesics.

PROPOSITION 7. The WP ezponential map (p,v) = (p, exppv) is a diffeomor-
phism from D C TT to T x T. For a pair of disjoint WP geodesics parameter-
ized proportional to arc-length, the WP distance between corresponding points is a
strictly convez function.

Proof. The map e is smooth with differential de = (id,dexp). As already noted
since the WP metric has negative curvature d exp has maximal rank and thus e is
a local diffeomorphism of D to 7 x 7. A consequence of Corollary 6 is that e is a
global diffeomorphism.

We are ready to consider the distance between corresponding points of a pair of
disjoint WP geodesics. From the above result a one-parameter variation of geodesics
is determined f(t, s), (¢,s) € [to,t1] X [S0, 51]- For a value s’ € [sg, s1] we write T for
the tangent field of 3(t,s’) and V for its variation field; we assume ||T|| = 1. The
second variation in s at s’ of the length of 3(¢,s) is given by the classical formula
(10, (1.14)]

(5) (VvV,T)[" +

t1
/ (V2V, V2V = (VoV, TN V1V, T) - (R(V,T)T, V)dt.
to

Observations are in order. First by hypothesis the curves B(to, s) and B(t1,s) are
geodesics with constant speed parameterization; the acceleration Vy V vanishes at
to and t;. Second the first two terms of the integrand combine to give the length-
squared of the projection V7V onto the normal space of T'. And the third term of



GEOMETRY OF THE WEIL-PETERSSON COMPLETION OF TEICHMULLER SPACE 375

the integrand is strictly positive given strictly negative curvature [10]. In summary
the distance is a strictly convex function. The proof is complete.

We are ready to show that T is a geodesic space. For points p and g of the
completion let {p,} and {g,} be sequences from 7 converging to p, resp. to g.
Note for the distance we have d(p,q) = lim, d(p,,gn). Consider the sequence
of curves v, = pnqn of T parameterized proportional to arc-length by the unit-
interval. Since the sequences {p,} and {g,} are Cauchy it follows from Proposition
7 that for each t € [0,1] the sequence {v,(t)} is also Cauchy (without passing
to a subsequence). The sequence {7,} prescribes a function v with domain the
unit-interval and values in 7. Furthermore since the v, are distance proportional-
parameterized, for ¢,¢' € [0, 1] then

d(n(t), 1 (t'))
d(pn;qn)
It follows that d(vy(t),v(t')) = |t—t'|d(p, q); v is a continuous function, in particular
a geodesic. We summarize the considerations with the following.

=t -t

PROPOSITION 8. The completion T is a geodesic space.

5. Length-minimizing curves on the completion

For the complex of curves C(F') a k-simplex is a set of k + 1 free homotopy
classes of nontrivial, nonperipheral, mutually disjoint simple closed curves for the
reference surface F'. A simplex o precedes a simplex ¢’ provided o C ¢'; preceding
is a partial ordering. With the convention that the —1-simplez is the null set,
there is a natural function A from the completion 7 to the complex C(F) U {0}
determined by the classes of the nodes. For a marked noded Riemann surface (R, f)
with f : F — R, the labeling A((R, f)) is the simplex of free homotopy classes on
F mapped to the nodes on R. The level sets of A are the strata of 7. We write
S(o) for the stratum determined by the simplex o. The stratum for a k-simplex
has complex dimension 3g(F) — 3 — k.

We now consider first properties of length-minimizing curves on 7. We are
able to make the analysis without first establishing that a length-minimizing curve
is a limit of WP geodesics. In this section we build on the following result and
present an alternative approach to the basic observation of S. Yamada [47] that
except possibly for its endpoints, a length-minimizing curve is contained in a single
stratum of 7.

PROPOSITION 9. For a length-minimizing curve v on T the composition A o v
has a left and right limit at each point. The composition is continuous at a point
where the left and right limits agree.

Proof. First observe that only a finite number of simplices precede a given simplex.
There is a continuous analog for strata: in a suitable neighborhood of a point of
T there are only a finite number of strata, and each precedes or coincides with the
stratum of the point. If a left or right limit fails to exist for A o~y at tg, then there
is a monotonic convergent sequence of parameter values {t,}, t, — to with Ao~y
having value o on {¢,,} and a different value 7 on {t2,+1}. We may choose that
o precedes T and further that o, resp. 7, is a maximal, resp. minimal, such value.
Maximal connected segments of v contained in the stratum of o are determined by
the positivity of the geodesic-length functions of the classes in 7 — o. In particular
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each maximal segment is parameterized by an open parameter interval; by Corollary
6 each (closed subsegment of each) maximal segment is length-minimizing.

Consider two points v(t2,) and v(t2n+2) on different maximal segments. By
Corollary 6 there exists a WP geodesic 3 contained in the stratum of ¢ connecting
Y(t2n) and y(t2n+2). We now compare the segments 7|, ¢,,,,] and B. Assume
each segment is parameterized by arc-length; the segments necessarily have the
same length. On the stratum o the curves # and the maximal segment of vy at t2,
are solutions of an ordinary differential equation. If the initial tangents of § and
Vliton, tanse] coOincide, then by the uniqueness of solutions and the maximality, the
segments must coincide for the length of 8. The coinciding contradicts A o+ having
different values at to,, and ta,4+1. The alternative is that the initial (unit) tangents
of 8 and 7|, 3,4 differ. In this case 4 can be modified by first substituting
the segment 3 for the parameter interval [ta,, tan+2] and then smoothing the corner
(inside the stratum) at 7(¢25), to obtain a new curve ¥ of strictly smaller length,
again a contradiction. A sequence {t,} as described cannot exist. In summary
the composition A oy is locally constant to the left and right of each point of its
domain.

Finally if the left and right limits have a common value at ¢ then either Aovy(tg)
also has the common value, or the common value precedes A o y(%o). In the second
instance we can again construct a modification ¥ of strictly smaller length. The
proof is complete.

We are interested in a class of singular metrics that model the WP metric in
a neighborhood of a point on the compactification divisor D C M. Consider now
the product (R?)™*" with Euclidean coordinates (z,y) for = the 2m-tuple with
Euclidean metric dz? and y the 2n-tuple with Euclidean metric dy?. We refer to
R?>™ x {0}, resp. to {0} x R?", as the z-axes, resp. the y-axes. Here the z-axes
represent coordinates on a stratum of dimension 2m and codimension 2n, while the
y-axes represent the parameters which open nodes. We write (r;,6;) for the polar
coordinates for the 2-plane (y2;—1,¥y2;) and (r,6) for the product polar coordinates
for the 2n-tuple of y-coordinates. We consider the singular metric

n
> ddr} + 15 d6?
i=1
for the y-axes which we simply abbreviate as dr? + r8d6?.

DEFINITION 10. A continuous symmetric 2-tensor ds? is a product cuspidal
metric for a neighborhood of the origin in (R*)™*" provided:
1. ds® is a smooth Riemannian metric on ﬂ;;l{rj > 0};
2. the restriction of ds® to the z-azes is a smooth Riemannian metric ds2;
3. ds? = (dp® + dr® + r8d6?)(1 + O(||r||?)) for du® the pullback of ds? to
(R?)™+™ by the projection onto the z-azes ,and ||r|| denoting the Euclidean
norm of the radius vector for the y-azes.

We are ready to continue our consideration of a length-minimizing curve y and
a point of discontinuity t, interior to the domain of the label composition A o 7.
The first circumstance to consider is that A o+ is continuous from one side, say the
right. In particular for A o v discontinuous from the left the simplex o = A o y(¢;)
strictly precedes the simplex ¢’ = Ao~y(t,). Since v is length-minimizing, the curve
is a WP geodesic in the stratum S(¢') for an initial interval to the right of ..
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Observe by analogy that in the circumstance that ds?, du® and dr? + r?d6? were
smooth, then the z-axes would be totally geodesic (the second fundamental form
would be trivial; see the discussion after Corollary 4) and the suggested refracting
behavior of v would not be possible. We will now show by a scaling argument that
the behavior is also not possible for a product cuspidal metric.

We observe that the individual strata of 7 branch cover strata in M and that
certain curves in M have unique lifts determined bx\ their initial point. M is a
V-manifold; consider first the local-manifold cover U for a neighbgrhood of the
point given by 7(t.) (a neighborhood of y(t.) in M is described as U /Aut(y(t.))).
From Section 2 the preimage of UinTis a disjoint union of sets, including a
neighborhood U of v(t.). The local stratum o NU C T is a covering of its 1mage
g C L{ with covermg group the lattice of Dehn twists for the set of loops o —o.
The local stratum o' NU C T coincides with its local projection o' to Y. In the
following paragraphs we will use the simple observation that: a rectifiable curve in
i with first segment in ¢ and second segment in o' has WP isometric lifts to U, each
umquely determined by prescribing an initial point. We can choose coordmates SO
Uns is given by a neighborhood of the origin in (R?)™*+" and Uno' is given by a
neighborhood of the origin in the z-axes R*™ x {0}.

We study the WP length of an oriented curve vy having first segment off the
z-axes and second segment a geodesic in the z-axes. Let o be the first contact
point of the curve with the z-axes. Consider the Euclidean ball of radius § about
o. From Corollary 4 we can choose d small for the metric to have the coordinate
description of a product cuspidal metric in the ball. Along v let a be the first
intersection point of v with the d-sphere at o to the left of 0. Along  let b be the
first intersection point of -y with the d-sphere at o to the right of o. We investigate
the lengths of curves from a to o to b as § varies. We use the coordinates (z,y) for
the following constructions. Let az, resp. ay, be the Euclidean projection of a to
the z, resp. the y, axes. Let 8 be the unit-speed du? geodesic in the z-axes from
ay to b. For the same arc-length parameter let B be the curve from a to b whose
Euclidean projection to the y-axes is a constant speed radial line. On B the tensor
dr? + r8d6? restricts to dr? and in particular

/st?)“? - [(1 + O(lyIP)) (di? + dr*)'/>.
B B

Since the length of B is bounded in terms of 0 and the Euclidean height of B is
bounded by ||a,|| it follows that the length of 5 is given as

/EW +dr)2 1 O(3ay )

for the Euclidean norm of a,. The integral immediately evaluates to (|||3]||* +
llay||?)!/2 for ||| ||| denoting the du? length. In summary the length of 3 is bounded
above by ([[181112 + llay|I)1/2 + O(dlla, |-

We next consider a lower bound for the length of the segment of v from a
to b. The first expansion is provided similar to the above consideration. Select a
subsequence of values §’ tending to zero such that for each ¢’ the maximum of the
y-height ||y|| on the v segment from a to o actually occurs at the initial point a.
For the subsequence the length of v is
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/mﬁ+mﬂ+ﬁwwﬂ+owmmﬂ
.

The metric d¢? = (du® + dr? + r%d#?) is a product and the local behavior of its
geodesics is understood. Let 7 be a comparison curve (a d¢? piecewise geodesic)
with segments from a to o and from o to b. The projection of the first segment
of 7 to the z-axes is the du? geodesic from a, to o. The projection of the first
segment of 7 to the y-axes is the constant speed radial line from a, to o. The
second segment of 7 is the geodesic from o to b. The integral of + is minorized by
the integral of 4 and consequently the length of  is minorized by

(llazlll? + llay|*)*/* + [[B]][* + O(&'llay|1*)
where we have written |||zo||| for the du?-distance from o to the point zo of the
Z-axes.
We are prepared to analyze the length of 7 in a small neighborhood of the point
o.

PROPOSITION 11. A curve having first segment off the z-azes and second seg-
ment a geodesic in the x-azes is not ds® length-minimizing between its endpoints.
There is a shorter curve of the same description.

Proof. We first consider the rescaling limit of a neighborhood of o with the substi-
tution du = z,dv = r and dn? = §2ds®. The curves 3 and 7 considered above have
radial lines as their projections to the y-axes; it suffices for length considerations
to consider the projection of the y-axes to its radial component r. The rescaling
limit of (du? +dr?)(1+ O(||y||?)) is the Euclidean metric and for a subsequence the
points a, b limit to points of the unit sphere (same notation). The curve B limits
to the chordal line connecting a to b; the curve 7 limits to the segmented curve
of line-segments connecting a to o and o to b. If a is not antipodal to b then (on
the subsequence) ﬁ is strictly shorter than 4. On a neighborhood of o, 7 is now
modified by substituting a segment of B to obtain a strictly shorter curve, a desired
conclusion.

It remains to consider that the rescaling limit as § tends to zero of a is the
antipode to b. In this circumstance we have that |||a;||| is comparable to 6, |||5]||
is comparable to 28 and ||ay|| by hypothesis is o(8). Pick € < 1 such that €2|||8||| >
[l|laz||| for all small 6. Now from the preliminary considerations for small § the
length of 3 is bounded above by

1
(N8I + llay )12 + O(llay 1) < 18I + 2—€W6|HII%II2 +0(8llay|I*)

and for a suitable subsequence the length of 7 is bounded below by

(llazlll® + llayl1*)*/* + [|[b]]| + O(8lay[|*) >
€
az|l| + [|1bll] + sm—=llay])® + O(8'||ay)?

for ||ay||(|||az|||)~! sufficiently small, which is ensured for ¢ sufficiently small. As
specified above, ¢’ are the special values for which the maximum of the y-height ||y||
on the v sement from a to o occurs at the initial point a. Since S is a geodesic we
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have that |||8]| < |l|az||| +]||b]||- Observe that the coefficient of the ||a,||*-term for
B is strictly less than that for ~. Since ||a,||? is positive for & positive, it now follows
that B is strictly shorter than v and in particular that -y is not length-minimizing
in a neighborhood of o. The proof is complete.

The second circumstance to consider is that for a length-minimizing curve ~y
there is an interior domain discontinuity point ¢, with the label composition A o7y
not continuous from either side. The curve « connects points in different strata
by passing through a higher codimension stratum. In particular from Proposition
11 it follows that the values of A o~y for t;,t, and ¢] are all distinct; furthermore
the values for ¢t and t] strictly precede the value at t.. We have the coordinate
description of the local strata i N (SoAov(t7) U SoAoxy(t,) U SoAor(t)))
given in a neighborhood of the origin in (R?)™*". For suitable n_ + ny =n
the neighborhood is given as a neighborhood of the origin in (R?)™* 7=+ "+ with
coordinates (z,y_,y+). In a neighborhood of the origin the three strata are given
by germs of the coordinate axes: S o A o y(t.) by the z-axes; S o Aox(t7) by
the y_-axes; and S o A o y(¢]) by the y,-axes. Again a rectifiable curve with the
prescribed behavior for A o has WP isometric lifts to U/, each uniquely determined
now by prescribing an initial and terminal point.

PROPOSITION 12. A curve having endpoints distinct from the origin and in
distinct coordinate proper subspaces of the y-azxes and further having the origin as
an intermediate point is not ds® length-minimizing between its endpoints. There is
a shorter curve avoiding the origin.

Proof. The considerations are simplified since in effect the subspaces corresponding
to R?"~ and R2™+ are orthogonal. Choose € > 0 such that (14¢€) < (1 —€)v/2; from
Definition 10 the restriction of ds? to the y-axes is estimated above, resp. below,
by the (1 +¢€), resp. (1 — ¢), multiple of (dr? + r%d6#?). For a~ in R?"~ — {0} and
at in R2%+ — {0} the (dr? + r®d9?) geodesic in R?" connecting a~ to a™ and the
piecewise geodesic connecting a~ to the origin and then to a* are Euclidean line
segments. The line connecting a~ to a* has ds? length at most (1 + €)(||la”||* +
llat||2)'/2. The line segments connecting a~ to the origin to a* have length at least
1= e)(la™ [l + lla™ ).

For an oriented curve v with the prescribed strata behavior consider a Euclidean
radius & sphere at the origin and let a—, resp. a™, be the first intersection point
along v to the left, resp. right, of the origin. Since the radial component of the
metric is comparable to the Euclidean metric, the maximum value of ||r|| along the
segments of v is comparable to 4. Apply the above estimate for § small to obtain
the desired conclusion. The proof is complete.

We are ready to present our counterpart of S. Yamada’s Theorem 2, [47].

THEOREM 13. T is a unique geodesic space. The length-minimizing curve
connecting points p, ¢ € T is contained in the closure of the stratum with label
A(p)NA(g). The open segment v— {p, q} is a solution of the WP geodesic equation
on the stratum with label A(p) N A(q). For a point p the stratum with label A(p)
is the union of the length-minimizing open segments containing p. The closure of
each stratum is a convez set, complete in the induced metric.

Proof. T is a geodesic space from Proposition 8. For a length-minimizing curve
~ we consider the label behavior of A o y. From Proposition 9 A o« only has a
finite number of discontinuities. From Propositions 11 and 12, as well as the lifting
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property of the indicated curves on the local-manifold covers of M, it follows that
A o v is at most discontinuous at an endpoint. Since each stratum is a relatively
open subset of its closure in T, it further follows that the value of A on the open
segment of - precedes its value at each endpoint (the open segment value is a lower
bound for the partial ordering). It also follows that A(p) C A(g) is a necessary
condition for p to be an interior point of a length-minimizing curve with endpoint
q.

A free homotopy class a of a simple closed curve is represented by a vertex
in A(p) N A(g). For the geodesic-length function ¢, the composition £, oy is a
continuous function. The composition vanishes at its domain endpoints and is
convex on its domain interior. It follows that the composition is identically zero
and consequently that the open segment of + is contained in the stratum with label
A(p) N A(g). A stratum is a product of Teichmiiller spaces. The maximal open
segment of v is a solution of the product WP geodesic equation on the stratum.
Consider WP geodesics v, v’ parameterized proportional to arc-length by the unit-
interval with common endpoints. The distance between corresponding points is a
continuous function, vanishing at 0 and 1, and convex on (0, 1) from Proposition 7.
The distance is identically zero and the geodesics coincide. 7 is a unique geodesic
space.

As note above, A(p) C A(g) is a necessary condition for p to be an interior
point of a length-minimizing curve with endpoint ¢. Since a stratum is a product
of Teichmiiller spaces for which length-minimizing curves are solutions of the ge-
odesic equation and since solutions can be extended, it follows that the condition
is sufficient for extension. The final conclusion follows since 7 is a geodesic space.
The closure of a stratum is convex from the above description of geodesics. The
closure of a stratum is complete in the induced metric from the completeness of 7.
The proof is complete.

We are ready to present the basic result. CAT(0) is a generalized condition
for a non-positively curved, uniquely geodesic space, [6, Chap. IL.1]. With the
above result there is little further need to distinguish between length-minimizing
curves and solutions of the geodesic differential equation. We now also refer to
length-minimizing curves parameterized proportional to arc-length as geodesics.

THEOREM 14. T is a CAT(0) space.

Proof. A length-minimizing curve on 7 is approximated by WP geodesics on 7 by
choosing sequences of points converging to the endpoints, and considering the joins
parameterized on the original interval. From Proposition 7 the joins converge to
the designated geodesics, and for a pair of geodesics the relative distance functions
converge. In particular a limit of geodesic triangles satisfying the C AT (0) inequality
will also satisfy the inequality, [6, Chap. IL.1]. Since the WP metric on 7 has
negative curvature, geodesic triangles satisfy the C AT'(0) inequality [6, Chap. IL.1,
Remark 1A.8]. The proof is complete.

The local geometry of geodesics on M differs from that of 7. A product
cuspidal metric is not uniquely geodesic.

PROPOSITION 15. M is not locally uniquely geodesic at the compactification
divisor and in particular is not locally a CAT(0) space.

Proof. We show that the local manifold cover for a neighborhood of a Riemann
surface having a single node is not uniquely geodesic [6, Chap. II.1, Prop. 1.4].
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Introduce hyperbolic metric plumbing coordinates. For a reference base point
(s",t") = (s,...,80,,t") off the s-axes, we consider the curves based at (s',t'),
disjoint from the s-axes, and linking the s-axes. The base point (s',t') lifts to a
point of the Teichmiiller space 7. From Corollary 6 for each possible value of the
linking number there is a corresponding length-minimizing curve in 7 (minimizing
for curves disjoint from the s-axes). We first bound the lengths of such linking
curves. A general comparison curve is prescribed by the sequence: a radial line
segment in the t-coordinate, followed by an integer number of rotations about a
t-coordinate circle and finally a radial line segment returning to the base point.
From Corollary 4 the comparison curves can be prescribed with length uniformly
bounded by a multiple of |¢'|. It follows for |s'|, [¢t'| small that the length-minimizing
linking curves are all contained in a small neighborhood of the origin.

We consider length bounds involving the linking number. For a curve with
linking number n and the minimal absolute value of the coordinate ¢ on the curve
|to|, then by Corollary 4 the length of the curve is at least a uniform multiple of
[ntd|. Tt follows that |to| is bounded by |t'/n|'/3; it further follows by considering
only the ¢-radial component of the length that the linking curve has length at least
a uniform multiple of || — |t'/n|'/3; the desired bound. A comparison curve with
linking number one is the t-coordinate circle of radius |¢'|; its length is bounded
by a multiple of |¢#/|>. We draw a simple conclusion: there is a length-minimizing
linking curve 7 of minimal length (presumably with linking number £1).

We bisect v. Let p denote (s',¢') and ¢ denote the v-midpoint. The length of
7 is O(|t'|®); from Corollary 4 the length of a curve connecting p to the s-axes is at
least a multiple of |#'|. With the length bounds and the fact that «y is a solution of
the geodesic differential equation it now follows that the segments of v connecting
p to g are length-minimizing for the neighborhood of the origin. The neighborhood
is not uniquely geodesic. The proof is complete.

6. Applications

We are interested in understanding the flat subspaces of 7. Qur purpose is to
understand the flat geodesic simplices and in particular the flat geodesic triangles.
Consider a geodesic triangle with distinct vertices o, p and q. Parameterize propor-
tional to arc-length the sides 6p and 6¢ by geodesics v(t) and ~/(¢), t € [0,1] with
v(0) = 4/(0) = o. The distance function d((¢),7'(¢)) is an important measure of
the triangle. We also require a numerical invariant for noded Riemann surfaces. Let
v(R) be the number of components of R — {nodes} that are not thrice-punctured
spheres. The maximal dimension of a flat subspace of the stratum corresponding
to R is given by v(R). We use the description of flat subspaces to give a different
proof of a Brock-Farb result: the WP metric is in general not Gromov-hyperbolic,
[9]. Recall that a metric space (M, d) is Gromov-hyperbolic provided there exists a
positive number § such that for each geodesic triangle the d-neighborhood of a pair
of sides contains the third side, [16].

PROPOSITION 16. On the augmented Teichmiiller space T of genus g, n punc-
tured surfaces

1. For geodesics vy, ' as above and an interior parameter value, consider that
the values of the distance function d(vy(t),~'(t)) and its supporting linear
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function coincide. The interiors of the geodesics v, ¥' then lie on a subman-
ifold of T — T given as the Cartesian product of geodesics from component
Teichmailler spaces.

2. For a stratum corresponding to a noded Riemann surface R, the mazimal
dimension of a locally Euclidean isometric submanifold is v(R). The maxzi-
mal value of v is g — 1+ |_9+2—"J, which is achieved for an arrangement with
g once-punctured tori and L**%J — 1 four-punctured spheres.

3. For3g—3+n > 3 the Teichmiiller space with the WP metric is not Gromov-
hyperbolic.

Proof. First, a convex function is necessarily linear if it shares a common interior
value with the supporting linear function. From Bridson-Haefliger [6, Chap. I.1,
Defn. 1.10 and Chap. IL.3, Prop. 3.1] provided d(v(t),~'(t)) is linear then the
comparison angles formed by the point triples (v(¢),0,7'(¢)) all coincide. The flat
triangle lemma of A. D. Alexandrov can now be applied [6, Chap. I1.2, Prop. 2.9].
The convex hull of o, p and ¢ in T is consequently isometric to the convex hull of a
Euclidean triangle with the corresponding side lengths. An isometry is prescribed.
There is an associated variation of geodesics ((t, s), parameterized proportional to
arc-length, such that 8(t,0) = ~(t), 8(t,1) = +'(¢), B(0,s) = o and B(1, s) lies on
pg with d(p, B(1,s)) = sd(p,q). By Theorem 13 it follows for interior parameter
values that ((t,s) lies in a single stratum; by Proposition 7 it follows for interior
parameter values that (3(t, s) is smooth. The stratum is a product of Teichmiiller
spaces. We may apply the techniques of Riemannian geometry, [10]. Since the
triangle is flat the contribution to (5) from the term (R(V,T)T,V) is zero. For a
product of negatively-curved metrics (R(V,T)T,V) vanishes only if the variation
fields V and T everywhere have collinear projections to the tangent spaces of the
factors [33, Chap. 3, Lemmas 39, 58]. Since the projections are collinear the
triangle also projects to a geodesic segment in each component Teichmiiller space.
The desired first conclusion.

Second, as already indicated for a Riemannian product of negatively-curved
metrics the maximal dimension of a flat subspace is the number of factors. The
dimension of a maximal flat is given by v(R) since a punctured Riemann surface
has a positive dimensional Teichmiiller space provided the surface is not the thrice-
punctured sphere. Once-punctured tori have Euler characteristic —1 and dim 7 >
0; the general surface with dim 7~ > 0 has Euler characteristic strictly less than —1.
The maximal statement follows. The desired second conclusion.

Third, for the Euclidean plane, a positive number 4, and a non degenerate
triangle, a large-scaling provides a triangle d with a J-neighborhoold of a pair of
sides omitting an open segment on the third side. A stratum corresponding to
a noded surface R with v(R) > 2 contains triangles isometric to A. For such
a triangle a triple of points in 7, one close to each vertex, prescribes a triangle
with measurements close to those of A. Independent of the length of an edge, the
geodesic triangle in 7 is uniformly close to the triangle A with distance estimated
only by the distance separating corresponding vertices. For a suitable triple, a é-
neighborhood of two joining sides omits an open segment on the third joining side.
A stratum with v(R) > 2 exists provided dim 7" > 3. The proof is complete.

The maximal simplices in C(F) serve an important role for the geometry of 7.
Since thrice-punctured spheres are conformally rigid, a 3g — 4-simplex ¢ in C(F)
corresponds by A~! to a unique marked maximally noded Riemann surface R, in
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T. The Mod stabilizer of a maximally noded Riemann surface R, is an extension
of a finite group by a rank 3g — 3 Abelian group, the mapping classes of products of
Dehn twists about the elements of ¢. The maximally noded Riemann surfaces serve
the role of the mazimal rank cusps for the moduli space. Brock studied the finite
length WP geodesics from a point of 7 to the marked noded Riemann surfaces, [7].
The geodesics from a point can be extended to include their endpoints in T. As
a consequence of the C AT (0) geometry the initial unit tangents for the family of
geodesics from a point to a stratum provide for a Lipschitz map from the stratum
to the unit tangent sphere. Accordingly the image of 7 — 7T in each unit tangent
sphere has measure zero and thus the infinite length geodesic rays have tangents
dense in each tangent sphere. Brock’s method for approximating infinite length
rays by finite length rays now provides the following.

THEOREM 17 ([7]). The geodesic rays from a point of T to the mazimally noded
Riemann surfaces have initial tangents dense in the tangent space.

The following is a new consequence of the result.

COROLLARY 18. The geodesics connecting mazimally noded Riemann surfaces
have tangents dense in the tangent bundle of T.

Proof. We consider unit-speed geodesics. Given a unit-tangent v at a point p of
T and a positive number €, we proceed to determine an approximating geodesic.
By the above Theorem let «y_ be a unit-speed geodesic connecting a point g, rep-
resenting a maximally noded Riemann surface to p, with the final tangent w of
~v— within € of v. For a small positive number ¢ similarly let v; be a unit-speed
geodesic connecting p to a point r, representing a maximally noded Riemann sur-
face, with the initial tangent of 4 within § of w. The geodesics y_ and 4 form
a vertex at p with angle in the interval [r — §,7]. The three points p, ¢ and r
determine a geodesic triangle A(p,q,r) in T for which there is a comparison tri-
angle A(p,q,7) in the Euclidean plane. By [6, Chap. I1.4, Lem. 4.11] the vertex
angles for A(p,q,r) are bounded by the corresponding vertex angles for the Eu-
clidean triangle A(p, G, 7). In particular the vertex angle at p is also in the interval
[ — é,7]. It follows for A(p,q,7) that the angle at ¢ is at most §. For § < m/2
it follows that d(q,7) > d(g,p) and there is a point § with d(g, §) = d(q,p), 5§ on
the geodesic segment gr. By trigonometry d(5,p) = 2d(p,q)sind/2 and thus the
comparison point s on the geodesic segment ¢r satisfies d(s,p) < 2d(p, q) sind/2.
Similarly the midpoints spiq of ¢35 and pmiq of p satisfy 2d(smid, Pmiq) < d(s,p).
To summarize the considerations, the geodesic ¢r contains a point s that is within
distance 2d(p, q) sin §/2 of p, and the midpoints s,,;4 of ¢8 and p,iq of ¢p are within
distance d(p, q) sin /2.

(From Proposition 7 the geodesic segments 5,,:45 and DPnp are sufficiently
close in the C'-topology for ¢ sufficiently small. We now choose r' and 7/ to
provide that the tangent at s’ is within € of the final tangent of v_, which in turn
was chosen to be within € of v. The proof is complete.

The following is an immediate consequence of the above result.

COROLLARY 19. T is the closed convex hull of the subset of marked mazimally
noded Riemann surfaces.

We combine the above and follow the outline of the Masur-Wolf approach
to give an immediate proof of the Masur-Wolf theorem, [31, Theorem A]. The
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classification of simplicial automorphisms of the curve complex C(F) by N. Ivanov
[22], M. Korkmaz [27], and F. Luo [28] is an essential consideration.

THEOREM 20. For 3g—3n > 1 and (g,n) # (1,2), every WP isometry of T is
induced by an element of the extended mapping class group.

Proof. An isometry of 7 extends to an isometry of the completion 7. By Theorem
13 an isometry of 7 necessarily preserves the strata structure and the incidence re-
lations. It follows that an isometry induces a simplicial automorphism of C(F).
From the results of Ivanov [22], Korkmaz [27] and Luo [28], every simplicial auto-
morphism coincides with the induced automorphism of an extended mapping class.
In particular for a WP isometry of 7, there is an extended mapping class such that
the two mappings coincide on the subset of maximally noded Riemann surfaces.
The conclusion now follows from Corollary 19. The proof is complete.

A complete, convex subset C of a CAT(0) space is the base for an orthogonal
projection, [6, Chap. II.2, Prop. 2.4]. A fibre of the projection is the unique
geodesic realizing the distance between its points and the base. The projection
is a retraction that does not increase distance. The distance d¢ to C is a convex
function satisfying |d¢(p) — de(q)| < d(p, q), [6, Chap. I1.2, Prop. 2.5]. Examples
of complete, convex sets C are: points, complete geodesics, and fixed-point sets of
isometry groups. Furthermore in the case of 7 with Theorem 13 the closure of
each individual stratum is the base of a projection (local projections are prescribed
on M). On T a tubular neighborhood of an stratum is fibered by the projection-
geodesics. For the local understanding of the distance to the stratum we now
consider a refinement of the prescription for a product cuspidal metric. In particular -
by Corollary 4 the WP metric has an expansion with an order-three approximation
about the z-axes

ds® = (du® + dr® + r5d6?) (1 + O(||r||?).

COROLLARY 21. For a stratum o defined by vanishing of the geodesic-length
sum £ = by + --- + £, the distance to the stratum is given locally as d(p,o) =
(27 )12 + O(£?).

Proof. We begin by considering distances on M. For a prescribed stratum and
point choose a local-manifold cover U with the point corresponding to the origin
and (image) stratum o corresponding to the z-axes for the normal form of ds?.
The distance to the stratum d(p,o) is estimated from above by considering the
radial line from a point p to the origin. The bound is ||py|| + O(||py||*) in terms
of the y-projection of p. We next consider a lower bound for d(p,s). A curve in
] connecting p to o can be isometrically lifted to 7; it suffices to examine curves
that are length-minimizing on 7. From [6, Chap. I1.2, Prop. 2.4] for p close to the
origin there is a geodesic v C u connecting p to ¢ € o and 7 provides the length-
minimizing curve connecting to ¢ for each point of v. For p’' € v, as noted, d(p', o)
is bounded above by the Euclidean norm of pj. Since ds? is likewise bounded
below in terms of dr? it follows that d(p';o) is actually comparable to ||p,|| and

consequently that the maximum Euclidean y-height of the y-segment p'q is likewise
bounded. It now follows overall that

d(p',0) = /A (dps® + dr® + 18 d6%) /2 + O([lp'|1).
¥4

'q
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The explicit integral is minorized by choosing the radial line in the y-coordinate;
the resulting lower bound is ||p; ||. Thus the distance to the stratum on M and on 7
is d(p,o) = ||py|| +O(|lpy]|*). In [44, Example 4.3] a relationship is provided for the
geodesic-length functions and the present hyperbolic metric plumbing coordinates;
it is shown that

272 1 ~ 1
bi=————+0 § .
77 —logltj ((log2 It;]) &= (log® Itkl))
3

We may rearrange terms and substitute the relation ,g? = :é%ltj_l to obtain the

expansion

0f =2rL;(1+0(; ) 6)).
k

The distance expansion now follows from Corollary 4. The proof is complete.

The WP gradients of the geodesic-length functions also have general expansions,
[45, II: Sec. 2.2, Lemmas 2.3 and 2.4]. We have for € positive and geodesic-length
functions ¢, < f3 < € that

(grad {,,gradf,) = %Ka + O()
(grad £y, grad £g) = O(£al3)

with constants independent of the surface, or in particular for A, = (27¢,)/? that

(grad Ao, gradAa) =1 + O(A3)
(grad Aa, grad Ag) = O(AaA).

We consider applications of the gradient bounds. We now consider simplices
o and 7 with free homotopy classes @ in o and § in 7 with (all) representatives
intersecting. The simplice ¢ and 7 do not precede a common simplex. There is
also a positive lower bound for the corresponding geodesic-length sum ¢, + £3. In
particular from the collar result there is a positive constant £y < 2 such that about
a geodesic a with £, < £g, there is an embedded collar of width 2log2/¢,: in
which case £g is at least the width, [34]. Consider a WP length-minimizing curve vy
connecting the strata S(o) and S(7). On the curve v the geodesic-length functions
£, and {3 each vanish (£, on S(o); £g on S(7)) and are each unbounded. The
following is now the consequence of the universal bounds for the gradients.

COROLLARY 22. There is a positive constant § such that null strata S(o) and
S(7) either have intersecting closures or d(S(o),S(7)) > 6.

We also recognize from the relations for a stratum o, defined by the vanishing of
the geodesic-length sum £ = ¢;+- - -+£,, that the vector fields {grad Ay, ..., grad A, }
play the role of normal Fermi fields [17, Sec. 2.3]. Recall in particular for a tubular
neighborhood of a submanifold in a Riemannian manifold, Fermi coordinates are
the relative analog of normal coordinates about a point. First consider a neigh-
borhood N of the 0-section of the normal subbundle of the tangent bundle of the
submanifold. With the restriction of the exponential map N is identified with a
tubular neighborhood of the submanifold. An orthonormal frame for the normal
bundle provides Fermi coordinates for the fibres of A/, and also for a tubular neigh-
borhood of the submanifold upon composition with the inverse of the exponential
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map. The unit-speed geodesics normal to the submanifold are given in terms of the
Fermi coordinates as the unit-speed linear rays from the 0O-section. The tangent
fields of the unit-speed geodesics normal to the submanifold are constant sums of
the Fermi coordinate tangent fields (the normal Fermi fields).

We are ready to present the analogy. For constant sums of the vector fields
grad A, the WP distance between endpoints of integral curves nearly equals the
integral curve length. Consider for a positive vector ¢ = (cy,...,c,) the integral
curves of b = — ) ; cjgrad A;. The time-one integral curve of v with initial point
2m(l1,...,4,) = (c2,...,c2) has terminal point at distance O(]|c||*) to 0. Further
from Corollary 21 the point 27 (¢y,...,£,) = (c2,...,c2) is at WP distance ||c|| +
O(ll¢||*) from o. From the gradient relations above we have that ||v||wp = ||c|| +
O(||c||*) and that the time-one integral curve has the same WP length. For ||c||
small, the time-one integral curves of v have endpoints at distance nearly equal
to the curve length. The integral curves approximate WP geodesics. The integral
curves of n = 3 j Y Z)jgrad \; also have length nearly equal to the distance
between endpoints. The time (27£)!/? integral curve of n connects (£1,...,%,) and
o; for £ small n is approximately the WP unit normal field to o. Also by Corollary
21 n approximates graddwp (-, o).

7. The structure of geodesic limits

We investigate sequences of geodesics. T is a complete metric space with a
compact quotient M. We anticipate that the compactness is manifested in the
structure of the space of geodesics for 7. We find that geometric limits of geodesics
are described by polygonal paths and products of Dehn twists. Specifically for a
sequence of bounded length geodesics there is a subsequence of M od-translates
that converges geometrically (sequences of products of Dehn twists are applied to
subsegments) to a polygonal path, a piecewise geodesic curve connecting strata. We
consider an application of the result and show that each fixed-point free element of
the mapping class group Mod has a geodesic axis in 7; the axis is unique and lies
in 7 when the element is irreducible. Furthermore irreducible elements have either
coinciding or divergent axes. The present results provide a different approach for
the considerations of G. Daskalopoulos and R. Wentworth [13].

Sequences of geodesics can have special behavior for product cuspidal metrics.
We present an example. Consider the half-plane R>o x R with coordinates (r,#)
and the identification space R>o x R/{(0,8) ~ (0,8)} with metric dr® + rbd6?.
Denote the special point {(0,8) ~ (0,6)} by O. For the isometry T : (r,0) —
(r,6 + 1) consider the unit-speed geodesics ~,, connecting (rg,6p) and T"(rq,6;).
For n large the length of v, is nearly ro + r1; we can provide that the 7, are
essentially parameterized on the interval [0, r9+71]. By elementary considerations of
differential equations, on the parameter interval [0, 7] the sequence {v,} converges
to the # = 6, line segment (rmo. On the parameter interval [ro,79 + 71] the
sequence {T~™y,} converges to the § = 6, line segment O@ In effect the
geodesic sequence {7y} is described by the polygonal path (rg,8)O U Oml)

and the sequence of transformations {7"}. Furthermore the curve (rg,6p)0O U

T™0(ry,6,) is continuous and has distance in the sense of parameterized unit-speed
curves to v, that tends to zero as n tends to infinity.
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We consider the local description of the map from 7 to M. Associated to a
k-simplex o is the rank k + 1 Abelian group Mod, of mapping classes of products
of Dehn twists about the elements of . Mod, stabilizes the o-null stratum S(o).
For a point p € S(o) the stabilizer Mod(p) C Mod is a group extension of a finite
group G(p) by Mod,. Furthermore for a point p we can prescribe a suitable basis
{U} of Mod(p) invariant neighborhoods. Neighborhoods of the projection of p to
M are given as U /Mod(p). Furthermore each quotient U /M od,, is a local manifold
cover. We can further prescribe that the quotients ¢/ /Mod, are relatively compact
in a fixed quotient U'/Mod,; the quotients OU /Mod, are accordingly compact.

Since M is compact, given a sequence of points of 7 there exists a subsequence
and associated elements of Mod such that the sequence of image points converges.
Accordingly we consider sequences of unit-speed parameterized geodesics with ini-
tial points converging.

PROPOSITION 23. Consider a sequence of unit-speed geodesics {~y,} with initial
points converging to po, lengths converging to a positive value L' and parameter
intervals converging to [t',¢"'] with L' =t" —t'. There exists an associated partition
=ty <t <--- <ty =t" of the interval; simplices 59 = A(po),01,...,0k; and
points py € S(01),...,pr € S(ok) on the null strata.

The data satisfies L(pjpj11) = tj+1—tj for j =0,...,k—1 and for the stratum
with label 7; = A(pj) N A(pj+1) then: 7o strictly precedes o1 if k > 1; 17—y strictly
precedes ox—1 if k > 1; 7; strictly precedes o; and 6j41 for j =1,...,k —2. The
concatenation of geodesic segments popy U p1pz U - - - U pr_1pk is the unique length-
minimizing curve connecting po to pr and intersecting in order the closures of the
strata S(o1),...,S(0k—1)-

There is a subsequence {y,} of the geodesics and sequences of products of Dehn
twists T(jn)y € Mody; —7;, j = 0,...,k — 1, such that on the parameter interval
[tj,tj+1] the geodesic segments T(;j )0 - -0 T(g n)Yn converge to p?ﬁj\ﬂ in the sense
of parameterized unit-speed curves. Furthermore the distance between the parame-
terized unit-speed curves 7y, and pm), Pk,n) = (T(k-1,n) 0" -oT(O,n))—lpk, tends
to zero for n tending to infinity. The sequence of transformations {T(o n)} is either
trivial or unbounded. The sequences of transformations {T(; )}, 5 =1,...,k—1
are unbounded.

Proof. The main argument is to provide the two steps for determining the individ-
ual geodesic segments p;p;11. The overall argument is then a finite induction. For
the first step choose a neighborhood U of py with U /Mod,, compact. For each
geodesic 7, let g, be the first point of intersection with dU. Either a subsequence
of the points ¢, converges to a point ¢’ or we select elements To,n) € Mod,, such
that the images T(o n)g» lie in a relatively compact fundamental domain for the
action of Mod,, on OU. For the situation of selecting elements T(q ) there is a
subsequence {7\ )¢} convergent to a point ¢’ and the sequence {T(o,n)} is un-
bounded. Now the group Mod,, fixes po and a sequence of points converges to ¢'.
The group Mod,, is a direct product with a factor Mody,—r, for 7o = A(q'); for
{T(0,n)an} converging to ¢’ it is a basic feature of the 7 topology that the T(0,n) can
be replaced with their Mod,, ., factors and the resulting sequence also converges.
Finally since geodesics in a CAT(0) space depend continuously on endpoints [6,
Chap. IL1, Prop. 1.4], the appropriate geodesic segments from py to g, or to
T'(0,n)qn converge to 1;(;' , as claimed.
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The second step is to show for a subsequence of the geodesics that maximal
initial segments converge to segments of the prolongation of 1;(;’ in the stratum 7p.
We now write T(O,n)'y; whether the transformations are trivial or not. We pre-
liminarily note that the subsequence necessarily converges on a ck)ied interval. In
particular for a subsequence converging uniformly to a segment pog"” — {¢"} and €
small, consider the point on p;?’ distance € before ¢"; a corresponding sequence of
points, one on each T(g )7y, is determined. On each T\ )7, consider the point
€ further along than the referenced point; the resulting points are at distance 3e
from ¢" for n large. The interval of convergence is indeed closed. There are now
three possibilities for the interval: i) a subsequence {T(¢ )7, } converges on the

entire parameter interval [t',t"] to a segment of the forward prolongation of p/OE’
(and the overall convergence argument is complete), ii) a subsequence {T(g n)7y,}
converges on [t',t1], t1 < ¢, to pop1 — {p1} and A(p1) properly succeeds 7y, or iii)
a subsequence {T\g )7, } converges on [t',t.], t. <t", to @' , with p@' having a
nontrivial forward prolongation in the stratum 7. We examine case iii). We exam-
ine the behavior of the subsequence {T{o ,)7,} in a neighborhood of ¢". We can
again apply the argument from the beginning of the proof to determine elements
Sn € Mod;, such that a subsequence of {S, o T(g n)7,} converges in a neighbor-
hood of ¢". The limit is length-minimizing. From Proposition 11 the subsequence
{Sn 0 T(0,n)7,} converges to the prolongation of p?(?’; from the above observation
concerning the 7 topology and the Mod., action the subsequence {T\(g )v,} also
converges to the prolongation. We now summarize the convergence considerations:
for a maximal parameter interval of convergence of a subsequence {7 )7, } either:
i) the parameter interval is [t',t"], or ii) the interval is [t', ¢1], t1 < t”, and the limit
is pop1 with A(p;) strictly succeeding A(po) N A(p1).

We now proceed and apply the considerations of the above two paragraphs to
the subsequence {T(g n)7,} considered on the interval [t;,#"]. The initial points
converge to p;. Elements T(; ) € Mod,,—r, are determined such that a further
subsequence {T(1,n) © T(0,n)7y,} converges as in case i) or case ii). A stratum 7
is prescribed. The simplex o; properly succeeds 71 for otherwise (from the obser-
vation concerning the 7 topology and the Mod, action) elements T1,n) are not
required and the subsequence {T(g n)7,} on [t',t; + €) converges to a curve that
is not length-minimizing by Proposition 11. We now note that M od preserves the
strata structure of 7. Since the entire considerations including the initial-point
convergence can be applied to the sequence {7, } starting from an arbitrary value
t"" and proceeding in the negative t-direction, we observe that consequently a fi-
nite partition t' = tp < t; < --- < tx = t" is determined. Points py, ..., pg;
strata oo, ...,0k, 70, - - -, Tk—1; and sequences {Yn}, {T(0,n)}>---»{T(k—1,n)} are de-
termined. The desired properties are provided in the above construction with only
two remaining matters: the sequences {7{; )}, j =1,...,k—1, are unbounded and
the length-minimizing property of the concatenation of the points py, ..., pg.

We consider the length property first. A candidate length-minimizing curve is
given as a concatenation C = pogiUg1gaU- - -Udk_1pk with po € S(0¢) and g; € S(o;)
for j =1,...,k — 1. Since the group Mod,,_, stabilizes S(o;) it follows that the
concatenation Cp = T(B,ln) Pogi U T(B,ln) o T(I} GGpU---U T(E,ln) 0-+-0 T(zl_ Ln)qu

n)

is a continuous curve connecting po t0 p(k,n) = (T(k—l,n) 0---0 T(O’n))_lpk. From
the overall construction d(v,(t"),p(,n)) tends to zero; from [6, Chap. II.1, Prop.
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1.4] the distance between <, and pm) is consequently small for n large, as
claimed. The three curves v,, Cr and pm) each approximately connect pg and
P(k,n)- Since L(C) = L(Cr), it follows that L(C) > lirrln L(v,) = L'. Thus each
suitable concatenation has length at least L' with the minimum achieved for the
arrangement of points {po, p1,...,px}. It remains for £ > 1 to establish uniqueness.
Consider geodesics a;(s), parameterized on the unit-interval, connecting p; to g;,
j=1,...,k—1. The concatenation ppai (s)Ua (s)az(s)U- - ~Uak_/1®pk satisfies the
strata hypothesis and by Theorem 14 has length a convex function of the parameter
s. Now for a CAT(0) space either the distance from a point to a geodesic is a
strictly convex function, or the point lies on the prolongation of the geodesic, [6,
Chap. II.1, Defn. 1.1]. The points {po,p1,¢1} do not lie on a common geodesic
since 19 = A@)QA(IH) strictly precedes o1 and o7 C A(p1)NA(g1). In consequence
either L(poa (s)) is a strictly convex function or a;(s) is constant. It follows that
the length of a non constant family is a strictly convex function. The minimal-
length concatenation is unique.

The final matter is the unboundedness of the sequences {7{; »)}. The elements
T j,n) are selected to provide that the initial curve segments lie in relatively compact
sets. We can prescribe that each sequence {T(; )} is either trivial or unbounded.
In a neighborhood of the parameter value t; the concatenation C; = pj_1p; U
T(;,ln)pﬁ)j\ﬂ is the approximation to T(;_1,n) © -+ © T(o,n)¥n- Since 7, is length-
minimizing, it follows for n large that the concatenation C; is arbitrarily close to
length-minimizing. If {T(; )} were trivial then p;_1p; U p;pjs1 would be length-
minimizing in contradiction of Theorem 13, since p; € S(o;) and o; strictly succeeds
the stratum of one of the connecting geodesic segments. The proof is complete.

We now introduce terminology for the data for a convergent sequence of geodesics.
Consider as above a convergent sequence {,} with data {p;} and {T(; )}

DEFINITION 24. For a convergent sequence of geodesics {vn,} the vertices are
the points pj, j = 0,...,k; the vertez concatenation is popr U pip2 U - - - U Pr—_1Dk
and an approzimating concatenation is T(B’ln)@ UT(B}n) OT(I’ln)]m U--- UT(B}n) o

0 T(zl_lyn)pmk'

We are ready to consider the matter of existence of axes for elements of Mod.
We present a different approach towards certain results of G. Daskalopoulos and R.
Wentworth [13]. They show that each irreducible (pseudo Anosov) mapping class
has a unique invariant axis and that non commuting irreducible mapping classes
have divergent axes. To provide a context we first recall the Thurston-Nielsen
classification of mapping classes [1, Exposés 9, 11]. A mapping class is irreducible
provided no power fixes the free homotopy class of a simple closed curve. A mapping
class is precisely one of: periodic, irreducible or reducible, [1]. Reducible classes are
first analyzed in terms of mappings of proper subsurfaces. For a reducible mapping
class [h] an invariant is of) the maximal simplex fixed by a power. A general
invariant of a transformation S is its translation length: ir;f d(p, Sp).

THEOREM 25. A mapping class S acting on T either has fized-points or positive
translation length realized on a closed, convezr set Ag, isometric to a metric space
product R x Y. In the latter case the isometry S acts on R x Y as the product
of a translation of R and idy. For S irreducible the translation length is positive
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and Ag is a geodesic in T. For S reducible the null stratum S(oyy)) is a product
of Teichmiiller spaces [[T' x [[T" with a power S™ fizing the factors, acting by
a product of: irreducible elements S' on T' with azis vs and the identity on each

T"; As C [Tvs x 17 -

Proof. The first matter is to establish that the translation length is realized. We

consider a sequence of geodesics {7, } parameterized on [a,b] with S connecting

endpoints, S(7,(a)) = v, (b), and lim L(v,,) the translation length. Apply elements
n

of Mod and according to Proposition 23 select a convergent subsequence {v,} with
vertices {po, - - ., Pr }; each v, has endpoints connected by a conjugate of S. For the
special situation of translation length zero then a = b and the vertex concatenation
is the singleton {po}. The main matter is to determine the distance between the
Mod orbit of py and that of py. For an e approximating concatenation to 7, and
a conjugate @ we have Q(vn(a)) = yn(b) with v,(a) within € of py and 7, (b)
within e of the prescribed endpoint p(x,y); it follows that d(Q(po), p(k,n)) < 2€. It
follows that the distance between the Mod orbit of py and that of py is zero. The
distance is also given by considering M od translates of py, in a neighborhood of py.
From the preliminary discussion there is a positive lower bound for the distance
between the points of the py orbit. It now follows that for a suitable ¢ and n'
above, the distance inequality implies that Q(po) = p(k,n/).- For the value n' the
approximating concatenation connects po and p( ,/) and has length hm L(vyp), the

minimal translation length. It follows that there is only one geodesic segment in the

concatenation and that @ realizes its translation length for the segment poQ(po)-
S realizes its translation length for an image of the segment.

By general considerations for positive translation length S realizes its transla-
tion length on axes in 7, [6, Chap. I1.6, Defn 6.3, Thrm. 6.8]. An axis is isometric
to R and may not be unique; we consider specifics. S stabilizes each axis and thus
stabilizes the stratum of an axis. Since in fact an irreducible mapping class only
stabilizes the single stratum 7, it follows that an irreducible class is fixed-point
free with axes in 7. Since axes are parallel and the distance between geodesics in
a Teichmiiller space is a strictly convex function, it follows that an irreducible axis
is unique in 7. Now for a reducible mapping class S a power P fixes a simplex
if and only if the power fixes the corresponding null stratum. For the maximal
simplex o5 the geodesic-length sum L5 = 3" ., £a restricts on each geodesic of T
to either the zero-function or a strictly convex function. Since Lg is P-invariant on
an axis of P the restriction is the zero-function. Thus the axes of P are contained
in the null stratum S(og). On considering a power of P we can further arrange
that P™ stabilizes the components F — Uy, {a} of the reference surface, and by
[1, Exposé 11, Thrm 4.2] that on each component of F' — Uyeo g {} the restriction
of P™ is either the trivial or an irreducible mapping class. For positive translation
length at least one factor is an irreducible mapping class since by [6, Chap. II.6,
Thrm. 6.8(2)] the translation length of the power is also positive. It follows that

P™ realizes its translation length on a product Apm = [[7' x H’/_'“ contained
in the closure of S(os). By [6, Chap. IL.6, Thrm. 6.8(4)] Ap= is isometric to a
product R x Y with S stabilizing the product and acting thereon by the product
of a translation and a periodic element. Apm is itself a complete CAT(0) space.
It follows that Y is a complete C AT (0) space and by [6, Chap. II.2, Cor. 2.8]
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that a periodic element has a non-empty closed convex fixed-point set. The proof
is complete.

We recall notions regarding the behavior of geodesic rays. Unit-speed rays (),
v'(t) are asymptotic provided the limit tllglo d(y(t),~'(t)) is zero and are divergent

provided the limit is infinity. For values ¢, 7 the points v(0), 4'(0), +'(r) and
7(t) determine a quadrilateral; on comparing side lengths we have that |7 —t| <
d(7(0),7'(0)) + d(v(t),7'(7)). Since also d(v(t),7'(t)) < d(v(t),7'(1)) + |7 —¢] it
follows on substituting for |7 —#| that d(y(t),~'(t)) < 2d(v(t),~'(7))+d(v(0),~'(0)).
In particular for divergent rays the distance from a point on one ray to the other
ray tends to infinity with the point.

COROLLARY 26. A geodesic ray in T and the azes of an irreducible mapping
class are either asymptotic or divergent. Two irreducible mapping classes have azes
that coincide or are divergent.

Proof. We first consider a ray v and an irreducible element S with axis vs. By
Proposition 7 for unit-speed parameterizations the distance between corresponding
points of v and ~g is a convex function. In particular the distance has a limit
Ly, = tliglo d(v(¢),~'(t)). We will use that the WP geometry along s is periodic

to show that: either L, is zero or there is a positive lower bound for the convexity
of the distance and thus L is infinite.

We revisit formula (5) for the one-parameter variation ((t,s) (¢ is now the
parameter for the geodesics connecting vs to v.) The integrand of (5) is bounded
below by the contribution of the curvature term —(R(V, T, V), which in turn is
non-negative. The curve §(t,s'), to <t < t1, is a geodesic with initial point on vg
and length at least Lo,. T is the tangent field of 8(t, s') and V is a Jacobi field along
B(t, s") with initial vector having unit length. Now choose t', tg < t' < Lo, such that
the neighborhood of radius ' — to about a point of vg is relatively compact in 7.
For the parameter range o < t < t’ the geodesic segments ((t, s’), the tangent fields
T, and the Jacobi fields V are all modulo the action of S supported on a compact
set: the closure of the neighborhood of a fundamental segment of vg. Since the
WP curvature is strictly negative on the compact set, we obtain a positive lower
bound for the evaluations, the desired convexity bound for the distance function.
It follows that L is either zero or infinite.

Consider next irreducible elements S, resp. @, with translation lengths Lg,
resp. Lo, and axis vg, resp. 7g; assume the axes are asymptotic in the forward
direction. Choose a reference point p' on vs. Given € positive, choose positive
integers n, m such that [nLg —mLg| < e. Further choose a positive integer ky such
that for k > ko the point p = S*p’ on s and the corresponding point ¢ on Yq are
at distance at most e. We have then that d(S"p,Q™q) < 2¢; we thus have that
d(Q~™S™p, p) < 3e. Since there is a positive lower bound for the distance between
distinct points of the Mod orbit of p', it follows for € small that the transformation
Q™8™ fixes the sequence of points S¥p', k > ko. It follows that Q™ stabilizes
vs. Since the axes are asymptotic, for p far along s the displacement d(Q™p, p)
is close to d(@™gq, q); Q™ realizes its translation length on 7s; by the Theorem the
axes coincide. The proof is complete.
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