On global existence of wave maps with critical regularity

Andrea Nahmod

ABSTRACT. We survey recent work on Wave maps from Minkowski space R1t+n
into (compact) Riemannian manifolds. We focus on the results obtained and
some of the methods from harmonic analysis and gauge theory used.

0. Introduction

This article arose from a lecture given by the author at the JDG Conference
held at Harvard University, Cambridge Massachusetts in May 2002 and celebrat-
ing Karen Uhlenbeck’s sixtieth birthday. The article is expository in nature and
surveys recent joint work with A. Stefanov and K.Uhlenbeck on wave maps from
Minkowski space R'*™,n > 4 into compact Riemannian manifolds. We mainly
focus on the results obtained and some of the methods from harmonic analysis
and gauge theory used. The results and techniques presented actually work on
any constant curvature complete Riemannian manifold (e.g. Lie groups and their
symmetric Riemannian spaces). It is also probable that they can be further ex-
tended to bounded geometry complete Riemannian manifolds, for example but we
do not pursue the latter extension here. The paper is organized as follows. We
first describe the wave map problem and some of the literature. We then present
some of the relevant tools from harmonic analysis and their use in the study of
a related nonlinear wave equation. Finally we briefly comment on the difficulties
that arise when passing from 4 to 3 dimensions. The ideas and results on wave
maps presented here by the author are in collaboration with A. Stefanov and K.
Uhlenbeck.

Let RxR"™ = R'*" be Minkowski space with flat metric n = (n45) = diag(—1,1,
...,1) Then 7% = (143)~! = g in our case . By 8,,0%° o =0,1,...,n we
denote the usual derivatives with respect to the Minkowski metric. Then 8% =
n*%ds, O := 8%8, = 87 — A is the D’Lambert operator; and

1

— /Ao _ l 2 _ 2
50, 00u) = 5 (judf* — [Vuf’)

is the ‘Lagrangian density’ of u.
Wave maps are the natural Minkowskian analogue of harmonic maps.
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For amap ® : Rx R® — M, where (M, g) is -for example- a compact Riemann-
ian manifold, the critical points of the Euler-Lagrangian functional

o= [ (0.9,0°0),do = //[‘9—‘1’@ — V. ®[2dzdt
]R'n+l 3t

are the solutions to the Wave Map equation. This equation can be regarded as
given through covariant derivatives and in coordinate free notation is given by:

(1) ® VOE—E—EQ Vigs =0

where ®*V are the covariant derivatives (corresponding to the pullback of the Levi-
Civita connection on M via the map ®). This is a nonlinear wave equation with a
non-polynomial nonlinearity including derivatives.

For example, when M = S™~! < R™, equation (1) looks like

0’® 0%
00 =—— +A® = -8 (|V,8° — |=—?).
T (1.8~ 152 P)
And in general a (classical) wave map is a (smooth) map ® : RxR™ — M satisfying,
(WM) 0% = —9(9,®)To%®

(with, say, ® constant outside the finite union of light cones). One key feature of
wave maps is that of energy conservation:

B@(1) = S1D80O)x(an) = 5ID2Os(an:

The study of well-posedness of the Cauchy problem with initial data in the
Sobolev spaces H® x H*~1(R™; T M), s > 1 seeks answers to the following questions.

Local in time Existence and Uniqueness: for what values of s does the initial
value problem admits a unique local solution ?

Local well posedness:  in addition to the above, does the solution depend
continuously on the initial data ?

Global well-posedness: for what values of s does this solution extend for all
time ?

Global regularity: does the solution corresponding to smooth initial data stays
smooth for all times ?

Wave maps have a natural scale invariance of the form

Tz 1

A )\)'

As a consequence, the Sobolev norms ||®|| ;. become dimensionless when s = n/2.
This number is referred to as the critical -reqularity- exponent or alternatively

[| || grn/2 as the critical or scale invariant norm. One expects well posedness for the

Cauchy problem with data in a Sobolev space with exponent above the critical one

(i.e. subcritical case).

In short, wave maps have a natural scaling from where the critical index for
n

the Cauchy problem with data in the Sobolev spaces is s. = 5

Classical energy estimates for equations of the form Ou = F'(u, Ou) - hence for
wave maps- imply local well-posedness of the Cauchy problem in H®, s > 2+1. The

d(z,t) > B(
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special structure associated to the nonlinearity in the wave map system however,
allows for improvement.
0.1. Some background.

e When n = 1 global existence and regularity of wave maps with smooth data
into complete Riemannian manifolds was established by Gu Chao-Hao [12] and
Ginibre-Velo [10]. The idea was to use characteristic coordinates in R'*1,

n=t+r, E=t—r
to rewrite the wave map system in the form
—upe = A(u)(Oyu, O¢u).

The latter form allowed them to use L™ estimates to obtain g.w.p. of finite energy
solutions.

¢ Keel and Tao [16) studied the one dimensional Cauchy problem with data in
H® x H*! further and in particular established local well-posedness. for s > 1/2
and global well-posedness when the target is a sphere and s > 3/4.

¢ In higher dimensions there are several special existence type results; such as
the global well-posedness for smooth Cauchy data close to a geodesic and more.
(. [4] [5] [31)

e When n > 3 Shatah [27]; Cazenave, Shatah, Tahvildar-Zadeh [3] showed
that solutions to the Cauchy problem for wave maps may blow up in finite time.
Singularities can form from large data even when data is smooth and rotationally
symmetric. Targets could be quite general as well (e.g. in n > 4 could be convex
manifolds).

e When n = 2 (energy critical case) the first results were for equivariant maps.
Equivariant maps give rise to semilinear wave equations in R**3 spatial dimen-
sions with critical growth. The structure of the nonlinearity is determined by the
geometry of the target manifold.

Christodoulou and Shatah [6] obtained regularity of equivariant maps to hy-
perbolic space. Christodoulou and Tahvildar-Zadeh [7] studied the regularity of
spherically symmetric wave maps assuming a convexity condition in the target
manifold. Shatah and Tahvildar-Zadeh [30] studied the regularity of equivariant
wave maps into two-dimensional rotationally symmetric and geodesically convex
Riemannian manifolds. More work in this area has been done by M. Grillakis [11]
and more recently by M. Struwe [34] who relaxed the convexity assumption.

e When n > 2 Klainerman and Machedon [17] [18] and Klainerman and Sel-
berg [22] obtained the ‘almost optimal’ local well posedness results for the Cauchy
problem for wave maps. That is, for data (®,0;®) 1=o= (f,g) € H®* x H*~! with
s > n/2, they showed that the Wave Map system is locally well posed. The so
called ‘null form structure of the nonlinearity played an important role in their
work [19][20].

0.2. Two pivotal breakthroughs at critical level. The first one came from
Tataru when n > 5 [38] and for n = 2,3... afterward [39]. His results established

that for n > 2 and Cauchy data (®,0,®)[,—o = (f,9) € Bg/f X 33’/12_1 sufficiently
small there is global well posedness, regularity and scattering for wave maps.
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An important reason for studying well posedness in Besov spaces instead was
that Bg /12 «— L™ while H™/2 does not embed into L>. The latter is a big problem;
for starters one cannot localize to small coordinate patches, and loses worse as well.

The second one came shortly afterward by T. Tao , once again first for n > 5
[35] and later for n = 2,3, ... [36]. Tao studied the global regularity for small data
problem, asking whether solutions to (WM) corresponding to smooth initial data,
small in || - |5, stay smooth for all time. He proved the following.

For G = S™, n > 2 and Cauchy data (®,0:®)l,—o = (f,9) € H> x H*"!
with s > n/2 and critical norm H™? x H™?~1 suyfficiently small, WM have global
regularity. Furthermore, for s close to n/2 have global bounds

[JEIX Y[ — T A

—-1.
H:xH;

0.3. Recent developments. For spatial dimensions n > 5, similar results to
those of Tao were obtained by Klainerman and Rodnianski [21] for target manifolds
admitting a parallelizable structure (e.g. general Lie groups) . Roughly at the same
time and independently, Shatah and Struwe [28] on the one hand and on the other
Nahmod, Stefanov and Uhlenbeck [25] established the following result.

Let M be a compact Lie group or Riemannian symmetric space (e.g. S™)
Main Theorem Let n > 4, ® : R x R* —» M. Suppose the Cauchy data
(®,0:9),—o = (f,9) has sufficiently small norm in H™? x H"/>~1. Then there
exists a unigque global solution to the WM problem such

1@, BBl a2 grora-ty S NCF 9 g rovnms.

Moreover, there is global regularity; i.e. if in addition (f,g) € H® x H*™! with
s > n/2 then the solution ($,0,®) belongs to H® x H*! for all time and satisfies
global bounds ‘

(2, 8:8) [l o g1z ey S 15, 9)]

—1.
H:xHj

Remarks

e Shatah and Struwe’s result is more general. In their case the target is any
complete Riemannian manifold with bounded geometry.

The restriction in [25] to compact manifolds stemmed from their use of a Nash
embedding into an Euclidean space with bounded geometry.

The authors of [25] learned later from Shatah and Struwe’s work that Matthias
Giinther ([13] and references therein) extended Nash’s embedding theorem to hold
for any complete Riemannian manifold with bounded geometry (bounded second
fundamental form) -not necessarily compact-; showing that it too is isometrically
embedded into an Euclidean space with bounded geometry. Using this embedding,
the results in [25] would extend to any complete Riemannian manifold with constant
curvature.

e On the other hand Fabrice Planchon has pointed out that certain multiplica-
tions theorems for Besov spaces and L are sufficient to include variable curvature
in our proof in [25]. Thus a posteriori our results seem might also hold in the case
of variable bounded curvature R(®)(z) as well.
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e The method in [25] combines both delicate techniques from harmonic analysis
with fairly standard global gauge theoretic geometric methods. Both [25] and [28]
works use the same gauge change : the Hodge or Coulomb gauge. The analytic
approach is significantly different as Shatah-Struwe base their results on Lorentz
spaces and we use Besov spaces. Besov spaces are contained in Lorentz spaces
-for appropriate indexes-. Lorentz spaces seem better behaved under coordinate
transformations.

e One indeed has well posedness for the gauged map but there are no estimates
available on differences for the original wave map itself at the critical level. One
cannot obtain any continuous dependence of the map on the data in the coordinate
setting. The problem stems in that well posedness is not a gauge invariant notion;
it is not even necessarily true that uniqueness in one coordinate system implies
uniqueness in another directly. Hence, in none of the works above is possible to
obtain (strong) well posedness at the critical level for the wave map itself.

We now proceed to explain the ideas behind [21].

1. Wave Maps for n >4

1.1. Beginning of the Proof. Regard the wave map equation as an equation
given through covariant derivatives.

3 :RxR*">M dé:TRxR') > TM

where M is an arbitrary Riemannian manifold and T(RxR"™) = (RxR™) x (R&R").
If we let ®*V be the pullback of the Levi-Civita connection on M to ®*7T M via
the map ® then in coordinate free notation, where we have set t = 2°

ol o
1 ®*Vo— — *V;— =0
@ Vo ]; Vi 53
e The Levi-Civita connection on M is torsion free; i.e. if we set t = 2z,
e 0P e 00 . _
(2) QV,W—Q VkEL'? forj—O,l,,n,k-l,,n
We also have control on the curvature of ®*V via the equation
0P 0P
3 'V, @* = R(®)(x—, =
( ) [ v]’ Vk] R( )(6.'[] ) azk)

The wave map system (1)-(3) is overdetermined. We assume the map & :
R* U {oo} = M is topologically trivial. Hence, *7 M is the trivial bundle (R' x
R™) x R™. By our choice of target M , we have R(®) = R constant.
Next, under smallness assumptions on & € L Wa m/ 2, we obtain a unique choice of
coordinates for ®*7 M. This follows from the existence and uniqueness of a gauge
change g under suitable hypothesis on the space-time curvature Fy = dA + [A, A]
and connection A. The following result is proved following the methods used by K.
Uhlenbeck in [40].

Theorem 1 (Existence of a good gauge) Let d + A be a smooth connection with
compact structure groups G over RxR™ or I xR™. Assume A ~ 0 at spatial infinity
and let Fg = dA + [A, A] be the space-time curvature. Then there exists a positive
constant € = e(n, G) such that if the mized space-time Lebesque norm

”FA”L?OL:/2 < €,
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then, there exits a unique smooth gauge change g, g ~ I at spatial infinity, such
that if A = gAg~! —dgg~! we have,
L ”A”Loowzl»n/? < e(n, G)||Fallpeep,nre

2 Z] 1811 O

Corollary The above remains true if A € L°°W1 ™2 ond Fy € Lf"Lg/ Z,
We now apply this gauge change in the wave map system (1)-(3). If we denote
by b = d® schematically we get :
b; — gbjg™! :=b;

-1 1

gs*Vig~!t — % + %gbjg —dgg™ = 52—] +aj:=D;
In the new gauge, we have that diva = 0 and the same equations (1)-(3) albeit
with D; replacing ®*V; and b;, b;.
More precisely, let b = d®. Then the equations themselves are written

Doi)o - Z Djl;j = O
Jj=1
Dybj = Dby, k=0,1,...,n, j=1,2,...,n
This is a non-linear first order hyperbolic system. Moreover we also have
da + [a,a] + R[b,b] = 0.

All in all we have

(a) -2 33 b + (a - D)space-time = 0
(b) db+anb =0

" (c) da + [a,a] = R[b, b]
(d) Z;‘l:l a_azf a; =0

We refer to this as the Gauged Wave Map system.
This system however, is still not as nice to work with because of the presence
of the 3“ terms. So we go one step further and convert it to a single equation using

Hodge theory From now on we abuse notation and call b just b and let b = do+d*y.
Then we can show [25] that the gauged wave map system can be rewritten as

(a) O¢ + (a,b) =0

(b) OY+anb=0

(c) b=d¢+d*y

(d) da + [a,a] = R[b,b]

(e) Yi—1 27 a; = 0.
The initial data on ¢ and 1 can be taken to be

#(0,z) =0, ¥(0,2) =0
82(0,2) = bo(0, ) %—f 1(0 ,z) = b;(0,2)

2ik(0,2) =0 J, k#0
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Since the gauged wave map system is still overdetermined we consider a subset of
it. Incorporating (e) into (d) we obtain the following.

Theorem 2 Under our assumptions on the target manifold M, a subset of the
gauged wave map equations (a)- -(e) has a structure of a non-linear wave system
of integral differential operators. Namely,

(a) O¢ + (a,b) =0
(b) Oy +aAb=0
(c) b=d¢+d

(d) Aa]--i-Z;l:l %;;[ak,aj]—}-%g[bk,bj]:O,j:O,l,...n
We refer to this system as the Modified Wave Map system - or simply MWM .

The existence and uniqueness of wave maps will follow from the next Theorems
3-5. In section 1.2 we explain how the global well posedness and higher regularity
of the MWM, together with a stronger uniqueness result come together to give the
Main Theorem above.

Theorem 3 (Well posedness of the MWM) There ezists € > 0 such that whenever
the initial data

NCfs D sz frnro-1 <,
the system above has a unique global solution v = (¢,1) which belongs both to
o L*(R; Hy?) N L*(R; B}, )  and
o Whoo (R, HY?1) N WH2(R; B, ).
Moreover, there is stability; i.e.
esssupg|lvy — Uz“Hn/z 5 ”(flagl) - (f2,92)||1'1n/2x1'1n/2—1
provided the r.h.s. is small enough.

Remark The theorem above gives the existence part of our Main Theorem on
wave maps. The uniqueness of solutions to the MWM however is solely in the
Besov spaces which is not enough to claim the solution to the MWM system
came from a wave map. Thus an additional argument is needed. The following is a
stronger uniqueness result which will indeed suffice to return to the wave map (ie.
will give uniqueness of the original wave map).

Theorem 4 (Uniqueness) Suppose (v1, a1) and (va, az) are two solutions to
Ov + B(a,dv) = 0
Aa + divB(a,a) + divB(dv,dv) = 0.

such that dv; = bj, for j = 1,2 are small in L{°LT?. Suppose that dv; = b; € L7L2"
for j =1,2. Assume in addition that a; = a;(v1) € LIL®. Then vy = vs.

The smallness of dv; in L LY is the necessary condition to solve the ‘gauged’
equation. The proof follows a scheme devised by Shatah-Struwe to establish unique-
ness. Essentially follows via energy estimates under minimal assumptions on the
solution. If w = v; — vg, then 3 h € L (R) such that

1
300DuOI; = [ (@wwds S HOIDOIE;.

Gronwall’s Lemma then implies w = 0.
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Finally, by differentiating the MWM system and observing that the resulting
nonlinearity has the same bilinear structure -for which the necessary ‘multiplication
estimates’ hold- the following regularity result follows.

Theorem 5 ( Higher Regularity )Suppose the initial data (f,g) to (MWM) is
in H™?t1 x H™? and has sufficiently small H"/? x H"2~1 norm. Then the
solution v to the Cauchy problem (MWM) with initial data (f,g) can be continued
in H™**+1 x H™? globally in time. Furthermore, we have the global bounds

”U”Lz’(m;i{;‘/“‘) SIS g)“H;/2+le:/2.

1.2. The Return to the Map. The well-posedness results on the modified
wave map apply to a larger class of formal solutions (a, b) to the equation than those
which come from wave maps. Our method of using the results on the modified wave
map equation to show existence of wave maps is similar to the idea we used for
non-linear Schrodinger and not very different from the technique used by Shatah-
Struwe Roughly: regularize the data to the WM system. Then it has a local smooth
solution. If in addition the H™?2 x H™/2~1 norm of the data is sufficiently small the
local smooth solution is global and smooth and satisfies the a priori global estimates
satisfied by the solution to the MWM system. This a priori estimate is now used
to pass to the limit. The translation depends on the compactness of M (or certain
bounds on the isometric Nash embedding of a non-compact M in an Euclidean
space).

2. Basic Littlewood-Paley theory

We now introduce and develop the techniques and tools from harmonic analysis
that enter in the proof of the well posedness result of the MWM system in n > 4.

2.1. Background of the classical theory.

Let f(z) be a function on R* and f(¢) its Fourier transform. Consider m/(€)
to be a non-negative radial bump function supported on the ball |£] < 2 and equal
to 1 on the ball || < 1. Then for each integer k let Py (f) be the Littlewood-Paley
projection operator onto frequencies |¢| < 2*. This is defined by

Pi(£)(&) = m(27"€) £(&)-

e P, »0ask - —ocoand P, — I as k = oo in any reasonable sense (e.g.
L?). The function Py (f)(z) is a (smoothed) average of f localized to physical scales
< 27k, By the uncertainty principle one expects P (f) to be essentially constant at
scales much smaller than 27%. The operator Q}, is the projection onto the frequency
annulus |€| ~ 2% given by the formula,

Qk := Py — Pr_1.
Hence (&) := m(£) — m(2¢) is supported on the annulus 1/2 < |§| < 2, for all
E#0, ZkeZ ¢(2_k§) =1, and

Qr(NE) =2 OF(©)-
The Littlewood-Paley projections are bounded operators in all the Lebesgue spaces.
In fact, Q is given by a convolution kernel whose LP-norm equals 2(kn)(1-1/p)
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1 < p < co. In particular its L'- norm is identically 1 for all k € Z. It is essentially
constant on physical scales << 2% and it has mean zero at scales < 2~(*=10)_ In
fact, on a ball in physical space of radius O(27*) the function Qk( f) is smooth at

physical scales << 27% and all moments of Qx(f) vanish: g (Qk( )(0) =
By telescoping the series we have the Littlewood-Paley decomposition

= Z Qx(f) in the sense of L?
keZ

or for any locally integrable function with decay at infinity. We have thus written
f as a superposition of functions Q(f), each of which has frequency of magnitude
~ 2k, Lower values of k represent low frequency components of f. Higher values
represent high frequency components.

The Haar system on R given by hr(z) = 2¥/2h(2% —=m) as I = [27*m, 2 % (m +
1)), k,m € Z and where h(z) =1for 0 <z < 1/2; h(z) = —1for 1/2 <z <1 and
h(z) = 0 otherwise is a good ‘model’ to bear in mind. This is the Walsh analogue
of the Littlewood-Paley decomposition.

To relate the Littlewood-Paley pieces Q(f) back to the function f itself, sup-
pose f € L?. By construction and Plancherel,

11l ~ chzk )12)2 ~ Zm(f REE

The function S(f)(z (> k 1Qk(N)(= |2) is known as the Littlewood-
Paley Square Function. In general for any 1 < p < oo, on has the Littlewood-Paley
Inequality:

1S £l ~ 11511
The proof relies on standard harmonic analysis and follows in a straightforward
fashion from Calderén-Zygmund theory.

We thus have a nice characterization of the Lebesgue spaces in terms of very
friendly building blocks. From the PDE viewpoint one of the advantages of using
Littlewood-Paley theory lies in the simple equivalence,

IVQe(Nllp ~ 2*1Qk(Hllp, 1<p< oo

Roughly, V is multiplication by 27i¢ and |£] ~ 2% on the support of Qx(f). So
-morally- one can decompose a derivative as a linear combination of its LP pieces,
28 Qr(f). We see the the effect of a derivative on a function f is to accentuate the
high frequencies and diminish the low frequencies. A similar principle applies, of
course, to other differentiation or pseudo-differential operators such as (—A)*/2.

Thus Littlewood-Paley is nicely adapted to dealing with spaces which combine
LP-type norms with derivatives: Sobolev spaces, Besov spaces, Holder spaces, etc.
For example, the Sobolev spaces W*?, consisting of those functions f (distribu-
tions) such that f and the first s derivatives of f are in LP can be very simply
characterized using Littlewood-Paley decompositions. Indeed,

Iflwer ~1Ifllp + NIVPfll,  where  F(VIEF)E) = (2xlg)* F(©).
Then,
I lwer ~ 1l + 1 125 Qu(H) ]l
k

Once again we note that |V|* accentuates the kt* frequency piece of f by a factor
of 25 ie. [VI*Qx(f) ~ 27 Qi (f).
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2.2. Products and Product Estimates.
Let f and g be two nice functions. By splitting them using Littlewood-Paley
decompositions we analyze bzlmear expressions such as the pointwise product

B(f,9)(z) = f(z)g(z). Since fg ff§ n)g(n) dn we have that

—

supp (f g) C supp f + supp §
We write,
fg =304 ; Qr(N)Qi(9) = Xis; Qk( )Qj(9) + Xk<; Qr(£)Q;(9)

= ZkeZ,mZO Qr(f)Qr-m(g) + ZjEZ,m>O Qj—m(f)Qj(g)
Further splitting gives,

fg = >,Qi(f9)
=21k om0 QUAR(NQr-m(9)) + 2215 Xm0 QuU(Q-m (£)Q;(9))-

By inspecting the Fourier supports we find that :
(1) supp (Qe(H)@k—m(9) C {I€] S 2}.

Hence
Qu(Qk(f)Qr—m(g)) =0 unless k > 1
@) supp (Qu(HQrm(9)) N {|€] << 28"} = 0 if m > 5.
Hence,

Qu(Qr(f)Qr—m(9)) = 0 unless :

l=kand m>5 or
I<kand 0<m<5H

All in all we only have three types of sums :

f9 =30 Ty QUQUAQi-m(9) + T ot Xkt Qu(Qu () Qr—m(9))
+ 3 Y s QUQIm(NQuE) + T X1 it Q(Qi-m(£H)Q4(9))

This could be re-written as well as :

f9=220 Pev1(f) Per1(g) — Pe(f)Pel9)
=20 Qe(N)Pe(g) + 22, Pe(£)Qe(g) + 32, Qe(f)Qe(9)

Paraproduct + Paraproduct + Diagonal

In various applications the high-low interactions are ‘easily dealt with’ ( ~
paraproducts). It is the high-high interactions what usually may account for energy
cascade effects; they are subtler to analyze.

We finish this brief introduction to Littlewood-Paley theory with two well
known results that can be derived as applications of the above.

The Div-Curl Lemma
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Convergence of approximating solutions for partial differential equations is not
clear when weak continuity is not available. The notion of compensated com-
pactness was developed to overcome these difficulties for non-linear equations in
elasticity and fluid flow by exploiting cancellation properties of certain nonlinear
quantities, usually bilinear, which arise naturally in studying the existence of global
solutions. In this context, the decomposition above gives a very simple proof of the
div-curl lemma used in compensated compactness.

If f, g are L? functions fg is only in L! which is not enough for weak continuity
arguments since passing to weak limits is a discontinuous operation. If one considers
¢ € C§°, then pe™ = f, — 0 and pe™ ™ = g, = 0. But fog, = ¢? does
not converge weakly to 0. The renormalization of the product however, given by
F9—>,Qc(f)Qe(g)) is smoother than fg , and has more cancellation. Thus it is
in a much ‘regular’ space, namely in the Hardy space #! C L! which allows for
weak continuity arguments to ensure convergence of approximating solutions. The
point is that when div f = 0 and curlg = 0 one can essentially replace fg by its
renormalization; thus the div-curl lemma of Murat and Tartar follows ([8]).

The Leibniz Rule for Fractional Derivatives

+

?

1
Let s € R, s > 0. Then for any 1 < p,q,7 < oo such that o=

Q|

1
p
VI S MV Flpllglle + 111111V Igllq

This estimate has played a fundamental role in many nonlinear estimates such
as those arising in well-posedeness problems below the energy norm. It essentially
follows from the work of R. Coifman and Y. Meyer [9] and it is closely related to
the Kato-Ponce commutator estimate [14].

3. Function Spaces and Multiplication Estimates
3.1. Set up and Function Spaces. For the linear wave equation,
Ou =0  u(0,z) = f(z), Owu(0,z)=g(x)

in higher dimensions it is simple to find an explicit formula by solving the equation
using the Fourier transform:

2) ~ [ e (costileD f(©) + ﬂ‘%g(@)df

These formulas can be rewritten by setting ¢ = ¢+ + ¢~ where

86,00 ~ [ ettt fy (©)ag
where

Fe(©) = f(6) + g|—§—)

In other words,

v 1
¢t = eHIVI (7 F iVIT)
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where we have denoted by |V| the pseudodifferential operator whose symbol is

m(§) = [¢]

In other words this shows that the space- time Fourier transform of ¢ defined

by
= / / et +28) gt x)dzdt
R n

is a distribution supported on the light cone |7| = €| in R x R™. More precisely,

¢* (7, €) ~ 8(1 F [€]) f£(€)
are supported on the positive cone 7 = |£| and negative cone 7 = —|7| respectively.
These formulas say that ¢ may be viewed as the (adjoint to the ) restriction of the
Fourier transform to the light cone. One may then try to perform a similar analysis
than the one carried out by E. Stein and P. Thomas to studied the restriction to
the sphere of the Fourier transform. The cone however is a non-compact manifold
with one degenerate direction along which the curvature vanishes. Still, there are
n — 1 non-zero principal curvatures at each point; and this is actually enough to
obtain good decay estimates for ||¢(t,-)||z~ (i.e. ‘ the dispersive inequality’) by
stationary phase methods. ([33] and references therein).
For the inhomogeneous problem for the wave equation with zero initial data,

D'L/) = Fa 10(0,%) = Oa atd)(oax) =0.
We have by the Duhamel’s principle that

wﬁsnl )|£|)
b(t,z) ~ / / n o Fs, deds

Definition Let 1 < q,7 < 0co. The space-time mized Lebesgue spaces LIL" is the
set of functions ¢ on R x R™® with

(L[ 1t.ards)” ai"" = lolsse; < oo

Strichartz Estimates for the Wave Equation Let n > 2 and let u be a solution
to the problem

Ou(t,z) = F(t,z), t>0, zeR"
with initial data

u(0,z) = f(x), Opu(0, ) = g(x)

Then we have the estimate

lellggzy S W + gl o + 1P g

provided
(1) the norms are dimensionally balanced (ie. they scale properly)
1 +n _n s = 1 + n 9
g r 2 q 7

1 1 1 1
2) —+=-=1 4+ =
(2) q+q' andf+~

T.I
(8) The pairs (q,r) and (§,7) are wave admissible pairs. In other words they
both belong to the set

1 n-1 n
= :2< < - <
A:={(gr) :2<¢,r < oo, q+ 5

) when n = 3}
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1 _
For future reference, we say that (q,r) € A is sharp admissible if — + n2 1 =
q r

n—1
4

Let ¢(t,z) be now a function on R x R"® and dAb(t, &) be its spatial Fourier
transform.

Just as before, for each integer k let Py(¢) be the usual Littlewood-Paley
projection operator onto spatial frequencies |¢| < 2% and let the operator Q
be the projection onto the spatial frequency annulus |¢| ~ 2¥. We denote by

¢k(t7 .’II) = Qk((p)(tax)
Introduce Sy, the localized Strichartz space at frequency 2*, as the set of func-
tions ¢y whose space-time norm is given by:

1,.n —
lgrlls, == sup 2%GT™)(|16kllpary +27*110edkllLors)-
(g,r)€A

where A is, as before, the set of wave admissible Strichartz exponents.
The space S is now defined as an I? based Besov space, i.e.

1/2
S=opsS ={f:|lflls= (Z Ilfll?sk> }
k

We also introduce the space S(—1), which is defined so that
p€S ifandonlyif 8,¢€ SV,
If we denote by b = 9, ¢ then,

||bk||5(-1) ‘= sup 2k(%+%—1)(“bk”L‘,’L;+2_k”atbk”L§L;)'
k (g,r)€A

e The spaces S are H"/2- normalized while the S(-1) are H™/2~! -normalized:

1622Qk (F)llzgerz ~ 2"/2¥(|Qk(f)llngor2
< 1Qk(f)lls

Hence by taking ¢? norms both sides
1/2
(3 24DQu(Nlr2)* S ISl

kEZ

In other words, .
S < LPHM?,

Moreover for n > 4 one has for example the estimates:

1Qk(D)lzzerz < 27 2% (1Qk(9)llss
Q@) zwen < 2XEETFD 1Qu(d)ls,
LL,"%

1Qk (@)l 2z < 27F [|Qk(@)llsi;



320 ANDREA NAHMOD

from where we notice that to control high frequencies one should use L{L” with
small r; while large r is instrumental to control the low frequencies.

The Strichartz estimates in this context now read,
Strichartz Estimates Revisted (T. Tao; Keel-Tao) Let k € Z and let Qr(4)(t, x)
be any function on R x R™ with spatial Fourier support on the annulus |£] ~ 2%.

(SE)
1@k (@)l s S NQu(B)(O0, )l gr/2 + 10:Qu() (0, )l grro-1 + 25 D ||DQe(Y) |3 L2

3.2. Multiplication Estimates. Denote by C, D, £, G the following sets of
pairs.

1 n
C={(gped: —+-—-<1"
{(g,p) Pl }

D=i{gn): 5o+ <)

1 1 1 1 1 1
E={(gp): -~ = —+—; = = —+ — with (¢1,p1) € A and (g2, p2) € C}
q q1 g2 p D1 D2

where A is the set of all wave admissible pairs. Finally, let
AcCG:=DnE.

Definition Let Si_l) be the space of functions on R x R™ whose norm is given by

“(blls_(‘_“l) = Z”Qk(qs)nskg_—l)

kEZ

where

i,n_ —
1@l v == sup 2k (ats 1)(“'1’||L§L§ +27410:®||ar2)
+ (a.p)€G

Let us denote by [V|~! := VA~! the pseudo-differential operator of order —1;
i.e.

VITA (5, €) = l%f(t, ).

The principal technical result in our main theorem is the ‘multiplication esti-
mate’ :

IVITHS - llseo S M llseollgllsen,

The space S&__l) is a similar to S(— but with a larger norm that controls a
larger collection of space-time Lebesgue norms than those in 4. For example when

n > 4 one has the embeddings,
Si_l) — SCUn L;’BIS,,2 where ¢,p>2;s= % +2-1

Sit = {f  XplQe(Pllnie < o0},

which are crucial in closing the estimates. In fact in [25] we show the following.

n
p
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Main Multiplication Estimate
V7L 86D x §ED — s

In other words, for f, g € S~ we have

sup 2X/3H7/P=0 1Qu (V|71 (f - ) o
‘ez (@.9)€G t

S llseoligllsen

Perform Littlewood-Paley decomposition on f, g, and the product f - g as
we discuss earlier. Denote fr := Qr(f). By studying the supports of the L-P
projections and symmetry considerations the result follows from the following two
estimates.
¢ High-High into Low:

sup 274 2{/EE/Bm N 1Q(( ")l pars
1z (1:D)€G k>
S Ifllseollgllsc-n
¢ High-Low into High:
sup 27 2 ERETONQ (N fi- gl
1ez (TP)EY m>10
S I llse-o llgllse-o-
The dimension restriction enters only to control the high-high term.
In order to shed some light into the above we will present an alternative route
which though longer might be more enlightening as to the action of [V|~! on prod-

ucts of ‘solutions’. It also establishes a somewhat stronger multiplication result.
We start with an auxiliary Lemma.

Lemma 6 Let n > 4 and let f be a function on SD. For any q¢ > 2, and p'
defined by % + 2 =1 we have that

. 1/2
(@) (IR )" S S llscn
kEZ
In addition, we also have
.. n/o— 1/2
@) Wlgeimrene S (222D Qu(D)Rera) " S 1 fllsion
. kezZ

The same conclusions hold for 27%||6,Qx(f)|| replacing ||Qx ()|l
Proof. Let fr, = Qi(f). Clearly,

10727 fillgers ~ 22 Dl felligers < IMallge-o-

Then (ii) follows by taking 2> norms both sides.

To prove (i) we proceed as follows. Given ¢ > 2, let p' be defined by %-ﬁ- =1
In particular we have that 4 < n < p’ < 2n. Since n > 4 we can now choose
2 < r < p' such that (g,r) is sharp admissible and
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fell pae S 27| fillozr

by the Sobolev embedding where « is given by and ﬁ = % -1

In particular then 0 <y =2 -5 =3+ % — 1. From where we can conclude
that

“fk”Lng' S., ”fk”sl(c—ll)

since by Sobolev embedding , (c.f. Lemma 2.7 in [25]) we have that

1, n_ 1, n_
sup 2klats l)HQk(f)”LgL; = sup k(e ts 1)“Qk(f)||L§L;-
(g,r)—admissible (g,r)—sharp admissible
The desired conclusion follows by taking ¢2 norms both sides 0.

First Multiplication estimate For 1< ¢ < oo, let £%Bgo,q be the Banach space
of functions on R x R® whose norm is given by

1
1£llzisg, , = (O NQRANL pe) ™.
' keZ
Then
V)7t 8D x &Y — £1BY .

Proof. Let f and g be in S(-V) and let fr = Qx(f) and g; = Q,(g) be their
corresponding Littlewood-Paley projections. We write

VI (F9) = IVITH(YD fegs)
k,jEZ
= VIO XS feeg) +IVITNC YD fuegg)-
k,JEZ:k>] k,jEZ:k<j

By symmetry of the sums, it is enough to consider only one of them. The proof for
the other is identical after exchanging k and j. Hence we need to estimate

SNV D fr-9i))lloize

lez kGEZ k>
= Z lle(IVI"l(Z Z Fi - gk—m)) L1 10
lez. k€Z m>0

Since supp (fkf_—qk\_m) C {¢: |¢] < 2%} we have that Q;(fk - gk—m) = O unless
k>1
Therefore we can make the last sum less than or equal to

> 27N S Qe - gk-m)llzizee-

ez k>l m>0

On the other hand, we have that supp (fr - gr_m)N{€ : |€] << 28"} = Qif m > 5
Hence, Qi(fr - gk—m) =0 unless I =k and m >5orm <5and [ < k.
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We must then have that the above sum is

<Y Sty gemmllnize + D D 27 1Qu(fr - g-m)lip e

0<m<51€Z k>l m>5 IEZ

We consider the first sum first.

Z Z 27! Z 1Qu(fk - gr—m)llLi Lo

0<m<5 I€Z k>l

n=3
S 3 32ty @) Tl e lgk-mll 2z,

0<m<5 l€Z k>l

by Young’s inequality with p = 2=1, %-{— ﬁ =1+
ity.

The endpoint Strichartz estimates (2.1) now yield the bound

é and Cauchy-Schwartz inequal-

(n+1)

_ 2=3 ok o
> 0<m<s 2iez 2 P ks (27712 et =3 )“fk”s’(:l)“gk—m“‘g’(c—l)
Wy
~ ZOSmSS EkGZ ElSk 2 m-127 T ”fk“s,(;” “gk—m”S’(c—l)

where w = (n — 2)? — 3 which is positive provided n > 4. Hence by summing first
in I and then applying Cauchy-Schwartz to the sum in k we get that the above is
< flls-vllgllsc-n as desired.

We proceed next with the second sum.

> > 2 gem)llne

m>5 lEZ

S Tmss ez 2727 (fi - gr-m)llni oy

by Young’s inequality with r = 2n. Now, by Holder’s inequality we can bound the
last sum by

SN2 2 fill e pae llgi-mll 2 e

m>5 IEZ

Since the pair (2,2r) is admissible we have by the Strichartz estimates that the
above sum is up to a constant less than or equal to

Zm>5 ZleZ 9—lonl/r92l(1/2—n/(2r))9—m(1/2—n/(2r)) “fl”S,('l) |lgz—m||5'(—1)
S Xoss 270D T o 1 fill se-0 lgt—mll -
S T 22O (T [l ) (Ticz 91-mll-)
< Ifllsc lollsc-v

since by our choice of 7, 1/2—-n/(2r) =1/4>0 O.

Second Multiplication estimate. Let ¢ > 2 and p < 2 such that l+ L. +1.
qa p

Then

n
2

V|7 8D x sCD — LiBs,
foranyﬁZpands=%+%—1.
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In particular, we have that  |V|™!: S(™D x S(=1 — £2B2 ,; that is

p

(Z 22kSHQk(|vl_l (f . g)Hitng)l/z 5 Hf”S(—l)IIgHS(—l)
k

forany2§ﬁ<2nands:%—

N =

Proof Let f and g be two function on S(=1).
Let ¢ > 2 and let p’ and p be defined by

1 1
—+£:1 and - =
p

; +
qg p

1
17.

N =

Claim:
NVITHS - Dllpavnrze S IFllsenllgllsen-

Assuming the claim we note that since p < 2 and % + % =1+72

LIW™?P < LIBP? s LIBS,
provided s = % + % — 1 and p > p as desired.

To prove the claim we first note that by Lemma 6 we have, in particular, the
following two ‘endpoint estimates’.

(4) 1fllLgevirnra-12 S I Flls-n-

(i4) 1fll e S W llzese, , S Mfllseo-

since p' >4 > 2.
If n = 4, the above two estimates suffice. For then,

1 1
I '9||L§Wn/z—1,p S I flls-ollglls-v where p =3 + =

since p’ > n. In turn, this implies that
V|71 S x SV — Lawn/2p
as desired.

In the case n > 5 however, we need to prove additional estimates. We consider
separately the cases when n is even first and then indicate the necessary modifica-
tions when n is odd. n

More precisely, let n > 5 be even. Given ¢,p' as above and 1 < j < 5~ 2 let

0 < 8; < 1 be defined by 0; = (T/ZL—T) Next, let g;, gn/a—1—; and pj, p’n/2_1_j

be any solutions to the following equations:

1 1
—+ ﬁ, =1 and + — n =1
q; p; dn/2-1—j pn/g_l_j

-6, 6 _1 -6, 6 _1
qj Gnj2-1-j 4’ P} Phjo—1-j P
1 1-6; 1 1-6;, 6;
Next, let — = —2 and — = ——2 + L.
gj gj D; P} 2
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We claim that
(iii) LA F e I P
2

Indeed, the first inequality follows from the embeddings between Sobolev and
Besov spaces since ﬁ;- > 2. For the second one we have that

) wi
”aajcfk”ijLﬁ; ~ 2 J“fk”ijLﬁ;-
E(8;(n/2—1)) o
2°\%i ||fk”L:1ijj
_ ’“(Tz}‘*#—l)
= 275 el gy S el oo
whence the second inequality follows by taking ¢2-norms.

Finally we put together (i), (ii) and (iii) to obtain that

I1f - gllpgsnreie = 107727H(F - 9llLore
n/2—1

J _ n/2—1—j )
]Z:;J 192810, 21027700 oy o

5 ||f||s<—1)||g||s(—1),

N

as desired.

We indicate now the technicalities needed when n > 5 is odd. Given ¢,p’ as
above and 0 < j < [g] —11let 0 < 0; <1 to be defined in a moment. As before,

let gj, qn/2—1-; and pj, p;/2—1—j be any solutions of the equations as above for 6;

1 1-6; 1 1-60; 6
and as before let — = 2 and - = —— + 2. Now,
gj qj D; D; 2
17 - gllganrz-1e = 102271 - 9llnees
[n/2]-1
j+1/2 2-j—3/2
Sf Z (”aijv+ / f”LfJ‘Li;‘”a:/ ad gHLZ—n/Z—l—jLi:t/2—l—j

Jj=0

j /2—j—1
+”61‘Z:f”L;i]Li;”a:? J g|lLf"/2"1_jLi/n/2_1—j)

For the first term inside the big sum we take §; = (i—/—;—l_/—?); note that 6,,/5_;_1 =
1-6; = —n/2n72]—__13/2 Then for 0 < j < [n/2] — 1 we have that

10542 gy 5 S 102 3 5o S s
while ]

—j— 2—j—3/2
1022572 sy tacsey ST iy Slgllson

Ppya—j~12
_J
(n/2-1)

For the second we take §; = as in (iii), and the needed estimates

follow just as in the even case.
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All in all we have that
- 9llLavnre-re S flls-nllglls-n,
as desired .

4. The Modified Wave Map System

The general scheme to find a solution to a nonlinear wave equation

Ou = N (u)
U(',O) =f
atu("o) =9,

relies on Picard iteration. We denote by u_; = 0 and let ug be the solution to the
homogeneous problem

Oug =0 uo(+,0) = f, Owuo(-,0) =g.
Subsequent iterates u,, m > 1 are obtained by solving
Oum = N (um—1) Um(+,0) = f Bum(-,0) =g.
In other words, formally
Um = o + O N (Up_1), m>1

where by O0~! we really mean the Duhamel operator giving the solution to the
inhomogeneous linear problem with zero data as described in section 3.1.

To find a solution then we need to identify two Banach spaces X, the ‘solution
space’ and Y the ‘nonlinearity space’ such that:

oFree solutions C X with norm controlled by that of the initial data
®u,,_1 € X implies that um € X (for u€ X, N(u) € Y and O 1Y C X)
o{u,} is bounded in X
o{u,} is Cauchyin X (estimates on differences).

We will follow the above scheme to study the well-posedness of the MWM
system. Since n > 4 the actual form of the bilinear nonlinearity on the right hand
side of the MWM plays no role: estimates on products are sufficient. Thus for
simplicity we denote by B(a,b) any finite linear combination of functions a € S(+_1)
and b € SV of the form > w.¢ Creaxby where a, € Si—l), by € SV and ¢,y € C.

Thus consider the MWM system of coupled wave equations in R"*1, n > 4.

Ov = B(a,b)~a-b
v(z,0) = f(x)
ve(z,0) =g(x)

where v = (p,%), b = dp + div(sp.t) P and
da = [a,a] + [b,b], i.e a=|V| a,a]+|V|}[b,b]

In our case the space X will be S. The nonlinearity space ) is determined by
the following result:
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Theorem 7 (Main Nonlinear Estimate)Let a € 84(_-1) and b € S(=Y) then

_ 1/2
(> 22D Qula- B)liE12) " S llall s bllscn
kEZ

The proof starts by performing a Littlewood-Paley decomposition of a and b
to obtain

Ykez 2P0 VQx(a - b)lI71 2 S
>kez 2N 5 (@ (@i (@) - Qe—m(B))) 17112 +
Skez 22N T 5 (Qu(Qu-m (@) - Qe(®) 13512 +
Ykez 2220 5 (@r(@i(@) - Qu)) T 12

Now since a and b belong to different spaces we lose the ‘symmetry’ and need
to consider all three cases separately. We show how the most delicate case of low
frequencies in the curvature term a versus high frequencies in b proceeds:

Ykez 2PN s (Qr(@Qr (D) - Qi—m (@) 1175 2
< ez 222 Q 0 o 12 (s 1@k -m (@) | 252)”
S llaliyn TrezlOx®) 3
S Nl 1Bl
invoking the fact that
a eS8V o {3 1Q()llnie < 00}
k

Lemma 8 ( A priori estimate ) Let a € S_(;D and b € SV, Then the solution to
the MWM system with initial data (f,g) € H™? x H"2=1 satisfies

[olls S WA llrnr + gl grn 2=z + llall g0 1Bl s

Proof Let us denote by vy = Qx(v). By the Strichartz’s estimates (SE) at the end
of section 3.1 , we have that

lokllse S N Fellgnre + gkl gasa—s + 252D B(a,b) ||y 12
The nonlinear estimate above then gives that
1/2
lolls = (Cxez lloeli3,) "/
S llnre +llgllggnramr + (Zpez 2252~ DNIB(a, b)l17; )
S A llzznre + 119l + llall o 1llsc-n

1/2

as desired. O

We turn now to the proof of global well posedness of the MWM with small data.
The a priori estimate we just proved together with the multiplication estimates
allow us to control ||a||si_1) by ||b|lsc-1» and close the estimates as follows. We

proceed proceeds by Picard’s iteration relying on the smallness of the data.
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Suppose [|(f, 9)|| grn/2x frns2-1 = 0 and let v be the solution to
Ovo=0;  v(0,)=f 8wo(0,-) =g.
By the Strichartz’s estimates

llvolls < exll(f, 9l grnr2x pnro-1 = €16

Now, vo = (0, tho) produces by = d o+ div(sp.1) 1o With [|bo||s-1) < eallvolls <
(335.
Next, the multiplication estimates allow one to perform a fixed point argument
to produce ag from by by solving
ag = |V|_1[a0,a0] + lV'_l[bo,bo].
MOI‘GOV(-}I‘, ”a(]“‘g_('_—l) < C4|IbOI|?g(—1) < 6562
Let v; be the solution of

D’Ul = B(ao,bo) V1 (0, ) = f Btvl (0, ) =g-
By the a priori estimate,

llvills < o6+ ||a0||si—1>l|b0||s<—l>) < 2¢06

provided ¢ is small enough.
We proceed next by induction to show :
e For any j >0, ||bjlls <2cac,d and ||ajlls < cs562.
Hence if

Ovjp1 = B(aj, b)) vj41(0,-) = f 0w;41(0,-) = g,
by the a priori estimates we have that
lvjsills < 2cod,
provided ¢ > 0 is small enough (indep. of j). Moreover we have estimates for the
differences,
1bj+1 = bjlls-v < eallvitr —vjlls
and
llaj+1 = ajllge-n < €8libjr = bjllsen < edlvjr = vjls-

Whence all in all, by choosing § small enough we have that

1
lvj+2 —vjt1lls < 5llvitr — vjlls-

Hence v; is Cauchy in S, thus establishing existence and uniqueness. For the
stability result one proceeds in the same fashion as in the proof of being Cauchy;
thus concluding the proof of the theorem. Q.

5. Remarks on wave maps in R!*t? with critical regularity

We now turn to the question of extending the results in the previous sections
to spatial dimension n = 3. In [36] T. Tao established global regularity in n = 2,3
when the target is any sphere, S™. His result has recently been extended by J.
Krieger for n = 3 and when the target is the hyperbolic space H? instead [24].
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In this section we describe some ideas and estimates developed jointly with
A. Stefanov and K. Uhlenbeck and contained in [26] to study the problem of es-
tablishing existence and uniqueness of solutions to the wave map equations from
Minkowski space R3*! into -say- a constant curvature complete Riemannian man-
ifold.

The first point is that when n = 3 and unlike the case in higher dimensions the
precise dependence of the curvature term a on b, the derivative of the solution, is
needed. If one uses the Coulomb gauge as we did in higher dimensions the curvature
term looks essentially like |V| =1 (b-b) and the lack of any structure whatsoever makes
it impossible to prove good a priori estimates to control the nonlinearity; even if
the ‘missing’ Strichartz estimate, L? L in dimension 3 were true. If one considers
the very simple ‘model problem’ Ou = |V|~!u - du it is clear that the nonlinearity
is dangerous at low-high interactions. More precisely for m > 0,

(VI )k - (du)i ~ 2™ wp—mun

which in low dimensions this may cause blow up. A similar situation occurs in low
dimensions for the ‘model equation’ Ov = |V|~!(dv - dv) - dv. Dangerous low-high
interactions in the nonlinearity occur for example when m > 0and k—m << 1 << k
in

(V17 ((dv): - (dv)0))k—m - (dv)i ~ 2™ 2% 0.

However, in general it is possible to obtain ‘extra structure’ in which case there
is some hope to rule out blow up. For example if the curvature term in nonlinearity
of the latter model problem has a ‘null form’ Q;;(u,v) := d;ud;v — d;ud;v instead
of just a product, then the curvature term at low frequencies gains a factor of
2(k=m=1). that is now

(V17 (Qi (ut, v1))) k= - (dw)i ~ 282t w004

The principle behind this is very simple. The Fourier transform of a solution to
the free wave equation is a distribution supported on the light cone A. As we have
seen in section 2 the support of the Fourier transform of the product of u; and s,
two such solutions, lies in the algebraic sum of the support of 4; and @z. On the
other hand the sum of two ‘vectors’ on A is close to the light cone if and only if
they are collinear; e.g. if u; and uy are two waves (wave packets) traveling in the
same direction. The ‘null form’ has a symbol that vanishes precisely when the two
arguments are collinear and on A; i.e.

Qv () = / (&, Yiia (€ — m)as () di

In other words the ‘null form’ precisely helps with parallel interactions. This idea
follows from the works of J. Bourgain, Klainerman-Machedon, Klainerman-Tataru,
T. Wolff and T. Tao ([2], [17][23], [41][37]) who realized that a null form structure
or some angular separation between the Fourier transform of the two factors in a
product helps rule out parallel interactions; thus allowing for the range of possible
L]LT bilinear estimates to be enlarged considerably.
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5.1. Gauge fixing and the equations for curvature. Following K. Uhlen-
beck’s ideas we now describe a gauge fixing for n = 3 that yields a better structure
for the curvature term; as described above [26]. The following holds on an appro-
priate band in time-space. However, we ignore this issue in what follows and leave
the localization in time out of the present discussion [26].

Given the (derivative) solution space is in L} L%, we assume that b := du is
sufficiently small in L{L%. Then the curvature F = [b,b] term is small in L?L2.
Thus the ”good gauge theorem” above ([25] [40]) says that for any target we can fix
a gauge ¥ so that the elliptic space-time divergence of a = (ag, a1, as,a3) vanishes.
In other words so that,

Ia aao Oa; _ Oa;
B Z « 0x; Z « Oz
by letting t = z¢. Moreover we have the bound

llaflm ®xwe) S N1BII7

Now, depending on whether the target is abelian ( e.g. S2, H? ) or non-abelian, we
have respectively that

da=[bb] or da=]a,a]+[b,b]
where d is in R*; e.g. d acting on O-forms is the V = (8;,V,). To get ‘a null
form’ structure in the equation for a, we ‘approximate’ b by q as follows. We write
b = (bo, bsp) and do a Hodge decomposition of the spatial part, bsp = dspg + dspr
where now (d,p,d},) are the exterior differentiation and its dual over R3. Then if
let rg := by — 0:q and R = (ro,d*r) we get that
b:= (bo, bsp) ~ (8tq + 1o, dspq + dgpr) ~dg+ R
Revisiting then the equations for a,
d*a =0

da =[bb] or da=la,a]+[b,b]]

we find that the second equation now becomes
da=dgAdg + 2[dg,R] + [R,R] (in the abelian case) or

da =dgAdg + 2[dg,R] + [R,R]+[a,a] (in the non-abelian case)
where now the first term on the r.h.s is elliptic in 341 and is the only term that has
a ‘null form’ structure. The last terms despite not having any special structure, do
possess better regularity properties and hence are overall somewhat better behaved.
For example, the term [R, R] behaves like the nonlinearity in the 4 + 1-dimensions
wave map equation.
If we denote the bilinear forms above by B(a,v) := > ¢;;a,7;,with ¢;; € C and

Qi (u,v) == djudjv — Ojudv,

Note that @;; = 0 and that 4,5 = 0 signify as usual, the time derivatives.
Then we can schematically write the second equations for the curvature term as

(3) da = Qi,j(q;Q) + B(R7 dQ) + B(Ra R) + B(aaa)

Heuristically, at least in the estimates, R ~ |V|~!(a,b) and hence R will satisfy the
same a priori estimates |V|~!(b, b) satisfies.
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Thus from now on we abuse notation and simply write the equations for a as

d*a =0

4) da = Qij(u,u)+ B(du,a)+ B(a,a)

where u is the solution and du = b.

5.2. Null forms and a priori curvature estimates. First, a technical
lemma, establishing the boundedness of products of Riesz transforms in the mixed
Lebesgue spaces L{ L”. This is of course well known in the case of ordinary Lebesgue
spaces (i.e. ¢ =), but seems to be missing from the literature in this general con-
text.

Lemma 9[26]Let 1 < ¢, < 00 and let

1/2
llcory = <Z|l¢’““2L?L;) :
k

Then each of the products of Riesz transforms in T; = 8;V ¢|Aze|™t, 1 = 0,1,2,3
is a bounded mapping from LIL! to itself.

A proof of this lemma can be found in [26]. Recently, Stefanov and Torres
studied Calderén-Zygmund operators in mixed Lebesgue space-time norms [32]
thus extending this boundedness result to a large class of operators.

Remark: In order to include the endpoints ¢ = 0o or 7 = 00, we consider the action
of the operators only on spatially frequency localized pieces. We remark that even
in the diagonal case ¢ = r, one does not have in general R; = 8;|V|™" : L — L.
The so called null form structure is given by the bilinear form
Qij (’LL, ’U) = 6,'u6jv' — ajuaiv,

for i, = 0,...3. The operator can be written as a Fourier multiplier operator as
follows

Qi (u,v)(z) = / (€my — E;m)a(E)d(m)e’ &= dedn,

Note that £ and 7o signify the time components of the corresponding vectors.
The special structure of the symbol is exploited in the following manner.

Lemma 10 For all 1 < q,7,q1,q2,71,72 < 00, with

g +1/g2=1/q, 1/ri+1/ra=1/r
IVael At~ Qij (w, )| Lo
< min(|loullpa prillvll e pre s llull o g 1001 poe pr2) NIV et | Al ™ Qi (w, v) || g
S min(||0ullpa g vl paz gz, llull o g7 100] a2 7).
Proof Write &m; — §mi = (& + mi)n; — (& + nj)mi. Thus

E » _ Vz,tai . v:ctaj
A Qij(u,v) =c A (udjv) — ¢ A

The result follows from Lemma 9 and the Hoélder inequality.

(u@,v) .
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Remark: Note that if the ‘missing’ Strichartz estimate L?L° in dimension 3
were true then the Lemma above would yield the needed E%Bgovl estimate for the
delicate portion of the curvature term. Just as in the higher dimensional case such
an estimate would then be enough to prove existence and uniqueness of wave maps
into constant curvature complete Riemannian manifolds in R'*3.

Because of the failure of such Strichartz estimate; the largest range of a priori
estimates in the mixed-Lebesgue norm that one can establish for the curvature term
are contained in the following two Lemmata. First we need to modify the definition
of the set £ according to the exclusion of the ‘missing’ Strichartz pair in dimension
3. Let k > 0 be small and fixed. Define the set of exponents £ to be the convex
hull of the points,

(0,0), (0,5/6 — k) and {(¢,r):1—k>1/¢g>1/4+k 1/q¢+1/r <1}.
In particular, A C £.

Lemma 11 [26] For every (q,r) € £ we have

D ka0 12, AL Qi (u, v))k Iz < Chellullsvlls-
k

Lemma 12 [26] Suppose that u € S with ||ul|s sufficiently small. Then the solution
a of the problem

d*a=0
da + B(a,a) + B(a,du) = Qi;(u,u),

satisfies the a priori estimate

Z ok(1/g+3/r—1) ”ak“LgL; S ““”?S
k

for every (q,7) € £. In particular, if we denote by

llalls: = S, > 2R lay | g,
q,T k

we have that

DO RS0 G )il gy S lallsllulls,

k 1>k
0> kWt 09 g mdup)lper: S llalls lulls,
m>0 &k
SO kWt DG Y ab)kllper: S llalls lblls,
k 1>k
> 2RI NG| apmbi) | paz: S Nalls bl -
k

The proof of the previous two lemmata can be found in [26].
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The estimates in Lemma 12 however are not sufficient to find good a priori
estimates for the nonlinearity N (u) := a - du, where da = Q; ;(q,q) + B(R,dq) +
B(R,R) + B(a,a) as above. In other words it is not possible any longer to place
the solution of Ou = a - du in the S space and close the estimates in L%H;/ % for
example. The majority of nonlinear terms are indeed controllable mostly in the
mixed-Lebesgue norms. But not all of them. The main obstacle is the contribution
of the low-high interactions term a«yduy in the non-linearity. As it is clear from its
form, the derivative lands on the high frequency part u, which makes the control of
that term problematic in the mixed Lebesgue spaces (mainly due to the “missing”
Strichartz estimate at LZLS°).

If one ignores the quadratic correction term B(a,a) in the second equation for
the curvature term a in Lemma 10, and applies the space-time divergence operator
d},, one gets,

Agia = d*da = d},Qij(u, u).

Thus, for the purposes of estimates in this case, the non-linearity (essentially) looks
like

(IVie| 7' Qij (u, ) <k duig.

At this point roughly what one wishes is to find (local in time) Banach spaces
X and Y replacing S and L}H;/ 2 respectively such that :

1. XcLpH®  LeE*cxcs
2. Free solutions with data in H3/2 x H'/? are in X .
3. For u a solution of Ou = F, u(z,0) = f, us(z,0) = g.

llullze S Dl gsrzxenre + I1Flly

4. [IN@)|ly < |lull%- In particular, the following estimates hold
e (high-high interactions in the null form)

(Ve | ™' Qi (ur, v) <kdwilly S lluallelvrll w2

e (high-low interactions in the null form) Form >0and! <k —m,

Vel ™2 Qi (ut, vi—m)dwilly < 27 F D72 | |vg—mm |l 2 [ we] | 2.

Remarks. (i) It is important to note that the a priori estimates needed to control
the problematic term in the nonlinearity are really trilinear —and not bilinear—.
That is they come from considering truly quatrilinear forms and where also the
precise dependence of the curvature term a on b, the derivative of the solution, is
needed. T. Tao [36] and J. Krieger [24] had to deal with similar type of trilinear
estimates .
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(ii) The scheme outline in this section provides a path to establish global ex-
istence, uniqueness and regularity of wave maps with small data in H3/2(R3) x
HY 2(R3). Once a solution space X and a nonlinearity space ) are found so that
(1)—(4) hold, the theorem giving the existence of a local in time gauge alluded
above and in [26] produces a local in time solution. A global regularity result
then implies this solution turns out to be a global solution, which is the weak limit

in Lg° (Hg/ 2% H;,/ 2) of smooth solutions. Uniqueness holds in the sense that if

i € L§°H3/ 2\ W4 is a ‘small’ solution to the wave map problem, then there
exists a gauge transformation such that & = u where u € X is the local solution
constructed by the special choice of gauge [26].

(iii) Finally we note that a possible approach to this problem is to use for X
and Y the corresponding solution and nonlinear spaces T. Tao introduced in [36].
This approach would of course mean one is assuming most of Tao’s difficult and
delicate paper at this point. It is possible however that in dimensions 3 one could
find alternative spaces X and Y that would allow one to establish (1)—(4) above
more directly. This is part of subject under investigation in [26]. !
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