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0. Introduction

A a riemannian manifold, M™, is called Einstein if for some constant, A, the
metric, g, and Ricci tensor, Ricysn, satisfy

RiCMn = Ag .

In a local coordinate system in which the coordinate functions are harmonic, the
Einstein condition becomes a quasi-linear elliptic equation on the metric; see (1.2).

This paper is not intended as a general survey of the subject of the Einstein
metrics. A number of topics which are of central importance are not even men-
tioned e.g. [Cal], [Yaul], [Yau2]. Rather, we try to give a detailed overview
of one specific line of progress due to Colding, Tian and the author (in various
combinations) which has shed light on the following question:

What sorts of objects arise as limits of sequences of badly behaved Einstein
metrics?

It is natural to make the normalization,

|Ricpn| <n -1, (0.1)

The author was partially supported by NSF Grant DMS 9303999 and the second by NSF
Grant DMS 9504994 .
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or equivalently, |A\| < n — 1, since this can be achieved by rescaling the metric;
n-dimensional spaces with constant sectional curvature, +1, have A = £(n — 1).

For n < 3, Einstein metrics have constant curvature; [Be]. Thus, we will
assume n > 4.

In dimension 4, if collapsing does not take place and the topology remains
bounded, the limiting objects are Einstein manifolds with orbifold singularities;
[An1]-[An3], [Nakl], [Nak2], [Til], [Ti2].

Important features of the 4-dimensional case persist in higher dimensions. In
many instances, the limiting objects are known to have singularities of codimen-
sion > 4. Conjecturally, the codimension 4 piece of the singular set, consists of
singular points of orbifold type. At the infinitesimal level, this is known hold. As
in dimension 4, the Lo-norm of curvature plays a distinguished role. However, in
higher dimensions, the Lo-norm fails to be scale invariant. This, together with the
appearance of nonisolated singularities, causes substantial difficulties.

The approach we describe starts with the development of a structure theory
for limits of sequences of manifolds satisfying the weaker assumption,

Ricam > —(n — 1), (0.2)

where to be more precise, we should write Ricy» > —(n — 1)g. This theory, is
outlined in Sections 1-4 below; for an exposition with proofs see [Ch5].

Later, additional conditions are added: an upper bound on the Ricci tensor,
the assumption that the metric is Einstein, or of special holonomy (e.g. Ké&hler-
Einstein) and finally, an L, bound on the full curvature tensor. The case, p = 2,
is particularly significant. For compact manifolds with special holonomy and Ricci
tensor normalized as in (0.1), the La-norm of the curvature is majorized by a certain
topological invariant C(M™); see (0.10).

Let {M*} denote a sequence of compact riemannian manifolds satisfying (0.2)
for which the diameters are uniformly bounded, diam(M) < d for all i. By a
fundamental observation of Gromov, any such sequence has a subsequence, { M ]"},
which converges in a certain weak sense — the Gromov-Hausdorff sense — to some

compact metric space Y. We write M der, v Gromov’s compactness theorem
is a consequence of relative volume comparison, the control which the lower bound
on Ricci curvature, (0.2), exerts over the volumes of metric balls.

Gromov-Hausdorff convergence of a sequence of metric spaces is the notion of
convegence associated to the Gromov-Hausdorff distance between (isometry classes
of) compact metric spaces.

Let (W1, p1), (W, p2), denote compact metric spaces. The Gromov-Hausdorff
distance, dgg (W1, p1), (Wa, p2)), is the infimum of those € > 0, for which there
exists a metric, p, on the disjoint union, Wj Il Wy, such that:

i) p| Wi =pi, k= 1,2.
ii) Wy is e-dense in Wy I Wy, k =1,2.

Often, one just writes dggy(Ws, W3), supressing the metrics p;, p2.

The Gromov-Hausdorff distance is an intrinsic generalization of the classical
Hausdorff distance, dg (Wi, W2), between compact subsets, Wi, Ws, of a metric
space, (W, p):

dg (W1, Ws) := max ( max p(wy, Wa), Jnax. p(w2, W1)> .

w1
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Intuitively, the Hausdorff distance between two subsets of a metric space, or
Gromov-Hausdorff distance between two metric spaces, is very small if, to the naked
eye, the objects appear to be identical.

There is an extension of Gromov-Hausdorff convergence to sequences of pointed
metric spaces {(W;, yi, p;) }. Namely, pointed Gromov-Hausdorff convergence means
Gromov-Hausdorff convergence of the sequence of balls, {B,(y;)}, for all r < co.
With this understanding, Gromov’s compactness theorem has a natural generaliza-
tion to the case in which the bound on the diameter is dropped. This is used in
defining the concept of “tangent cone”, which plays a key role in the sequel.

By starting with any sequence of manifolds satisfying (0.2), no matter how
badly behaved, and passing to a suitable subsequence, we obtain a limit space, Y,
whose regularity and singularity structure we can examine. Clearly, the properties
of Y will closely reflect those of the manifolds in our sequence.

A length space is a metric space such that every pair of points is joined by a
continuous curve whose length is equal to the distance between them. Here, the
length of a continuous curve is defined using partitions as in elementary calculus.
It is not difficult to see that the Gromov-Hausdorff limit of a sequence of length
spaces is again a length space. This completely general result is one of the few
easily established properties of Gromov-Hausdorff limit spaces satisfying

Ricyp > —(n-1). (0.3)

Since the elliptic equation satisfied by Einstein metrics is nonlinear, it is quite
possible for limit spaces to have singularities. Many such examples of singular
limit spaces are known; see e.g. [Joy3] and the references therein. In actuality,
since there is no fixed background metric, the Einstein equation is more nonlinear
than the partially analogous equations for minimal surfaces, harmonic maps and
Yang-Mills fields. In and of itself, this makes the Einstein case harder to handle.

ExXAMPLE 0.4. (Eguchi-Hansen manifolds) The unit sphere bundle of T'S?, the
tangent bundle of the 2-sphere, is diffeomorphic to the real projective space RP(3).
Thus, the complement of the unit disc bundle of T'S? is diffeomorphic to (1, 00) x
RP(3), and hence to a neighborhood of infinity in R*/Z2, where the action of Z
is generated by the antipodal map.

In fact, 7'S? has a Ricci flat (hyper-Kéhler) metric, g, the Eguchi-Hansen met-
ric, which at infinity, becomes rapidly asymptotic to the space, (1,00) x RP(3) C
R*/Z2, with its canonical flat metric; see [EgHan].

When ¢ — 0, the 1-parameter family, (T'S?,€2g), converges in the pointed
Gromov-Hausdorff sense, to the flat singular cone R*/Zy. The zero section, a
homologically nontrivial 2-sphere, shrinks in the limit to the vertex of the cone.
Since the condition of being Ricci flat is invariant under scaling of the metric, the
space, R*/Z,, is the Gromov-Hausdorff limit of a sequence of Ricci flat manifolds.
The singular set of this limit space has codimension 4.

Rescaling, rigidity and almost rigidity.

Let M} don, y satisfy (0.3). Any individual manifold, M}, looks locally like
R" on a sufficiently small scale. Thus, the formation of singularities in the limit
reflects the absence of uniform control over the scale on which the metric becomes
standard.



32 JEFF CHEEGER

The theory we will describe gives restrictions on the Hausdorff dimension of
the singular set of Y. From this it follows that uniform control of the metric does
exist, except perhaps on a set which is very small in a definite sense. We will also
give restrictions on the structure of the singular set. These imply that there is a
weaker sort of uniform control at all points of all manifolds in the approximating
sequence.

Imagine that a manifold with Ricy» > —(n—1) and diam(M™) = d, is observed
under a powerful microscope, so that all distances appear to have been multiplied
by a large factor 1. A ball of radius € will appear to have radius 1 and the Ricci
curvature will appear to be bounded below by —(n —1)-€2. Thinking more globally,
we can just rescale the distance function on the whole manifold by a factor e~!.
The Ricci curvature of the rescaled metric is bounded below by —(n — 1) - €2. The
rescaled diameter is e~! - d, which for ¢! sufficiently large, is effectively infinite.

The rescaling idea, which is pervasive in science, strongly suggests that after
suitable rescaling, the small scale properties of manifolds whose Ricci curvature
has a definite lower bound should resemble the fixed scale properties of complete
noncompact manifolds whose Ricci curvature is nonnegative.

Since €, while very small, is nonetheless strictly positive, implementation of
this approach requires quantitative versions of theorems on nonnegative Ricci cur-
vature, allowing for small errors in both the hypotheses and conclusions. The rel-
evant theorems are rigidity theorems, for example, the splitting theorem; [Top2],
[ChGI11]. Their corresponding quantitative versions are called almost rigidity the-
orems; [ChCo2].

The implications of rescaling can be expressed directly in terms of limit spaces:

At the infinitesimal level, limit spaces have nonnegative Ricci curvature in a
generalized sense.

The noncollapsed case.

Much, but not all, of our discussion will be restricted to the noncollapsed case,
in which it is assumed apriori, that there exists v > 0, such that for all m; € M",

There are many specific examples of noncollapsed limit spaces with interesting
properties.

The collapsed case is also of great interest, for example in connection with
mirror symmetry; compare [StYauZa], [GsWil], [KonSoi]. Examples show that
the situation in the collapsed case is much less constrained, and by the same token,
much less is understood. To date, the main structure theorem in the collapsed
case, asserting the rectifiability of ¥ with respect to any so-called renormalized
limit measure, has not been significantly strengthened if (0.2) is replaced by the
Einstein condition; see [ChCo5].

Concentration of curvature and formation of singular sets.

Behavior like that in Example 0.4 could not occur for noncollapsed Gromov-
Hausdorff limit spaces with a uniform bound on sectional curvature. Such limit
spaces are actually smooth manifolds and the metric space structure arises from a
riemannian metric which, in harmonic coordinate systems, is C1¢, for any a < 1;
[Ch1], [GVLP], [An2], [JoKar].
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For the family of Eguchi-Hansen metrics described in Example 0.4, the singular
set consists of a single point at which the curvature concentrates in the limit in the
- Ly sense. It does not concentrate in the L, sense for 1 < p < 2. In considerable
generality, for noncollapsed limit spaces with a uniform lower Ricci curvature bound,
the failure of curvature to concentrate sufficiently in the L, sense prevents the
formation of a singular set with positive (n — 2p)-dimensional Hausdorff measure.
The proof of this fact relies on certain previously established constraints on the the
structure of singular sets in dimension n — 2p.

Special holonomy.

Important examples of Einstein manifolds are furnished by manifolds with spe-
cial holonomy.

By definition, the holonomy group, H, of a riemannian manifold, M", at
p € M™, is the group of the orthogonal transformations of the tangent space,
My, obtained by parallel translating around smooth closed loops based at p. The
holonomy group is always a Lie group; [Yam]. A smooth curve from p to g induces
an isomorphism of corresponding holonomy groups. Up to conjugacy in the orthog-
onal group, this isomorphism is independent of the chosen path. ;From now on we
drop the dependence on the base point and just write H for the holonomy group.

The restricted holonomy group, Hy, is the identity component of H. Equiva-
lently, it is the subgroup generated by loops which are contractible. In particular,
H, is a normal subgroup of H.

A riemannian manifold, M™, is said to have special restricted holonomy, if it is
locally irreducible, Hy is a proper subgroup of SO(n) and there exists some (possibly
distinct) riemannian manifold, with restricted holonomy group Hp, which is not a
symmetric space.

The special restricted holonomy groups, Hy, are:

U(

|3

), SUGZ), Se(Sp(1) (n>4),

Sp(%), Ga, Spin(7);

see [Ber]; see also [Si], [Al], [BrGr].

Each of these groups occurs as the holonomy group of a compact simply con-
nected riemannian manifold; see [Joy3]. In all cases, the representation of the
restricted holonomy group is unique up to conjugacy O(n), and the action of the
holonomy group on the unit sphere is transitive; [Si].

We make the following convention:

A manifold (which might not be locally irreducible) has special holonomy if H
s contained in one of the above groups.

If H C U(%), the dimension, n, is even and there is an almost complex struc-
ture, J, which is parallel, and hence, integrable. Equivalently, the Kéhler form,
w=g(J-, ), is closed. The first Chern class is represented by the 2-form,

1.
¢ = %Rchn (J-,-), (0.6)
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which, up to normalization, can also be viewed as the curvature of the anticanonical
line bundle. The Einstein condition is equivalent to
¢ = i/\a). (0.7
27
If Hy = U(%), the underlying manifold is never Ricci flat. If Ho C SU(%), M™ it
is always Ricci flat.

If H C Sp(%)Sp(1) then n is a multiple of 4. In this case, there is a distinguished
canonically oriented 3-dimensional parallel sub-bundle, E, of the endomorphism
bundle of the tangent bundle, such that any oriented orthonormal basis of a fibre
consists of a triple, I, J, K, of anticommuting almost complex structures satisfying
IJ = K. The 4-form, w} + w?% + w¥, the sum of the Kéhler forms associated to
1,J, K, is parallel and is independent of the specific choice of I, J, K.

If Hy C Sp(%), the bundle E is flat. Thus, manifolds of this type carry 3 locally
defined parallel almost complex structures I,J, K. Hence, the individual Ké&hler
forms, wy, wy, wg, are parallel in this case. More generally, an endomorphism of
the form, r1+sJ +tK, with r? 4+ s2+12 = 1, is a parallel almost complex structure.
With respect to any such complex structure, Sp(%) C SU(%). Therefore, this case
is Ricci flat.

If Hy = Sp(%)Sp(1), the bundle, E, does not have parallel local sections and
in general, a manifold with holonomy, Sp(%)Sp(1), need not admit any integrable
almost complex structure

For n > 4, M™ is Einstein, but not Ricci flat. The curvature tensor of E can
be expressed in terms of the Ricci tensor and a triple of almost complex structures,
1,J, K; compare (0.7) and see (10.3), (10.6). The curvature tensor of F is parallel
and its norm is determined by the dimension, n, and Einstein constant.

The unit sphere bundle, S(E), is called the twistor space associated to M™.
The natural metric for which the projection to M™ is a riemannian submersion has
the property that the Ricci tensor and all of its covariant derivatives are bounded.
In addition, there is a canonical integrable almost complex structure on S(FE),
all of whose covariant derivatives are bounded. These facts allow many questions
concerning manifolds with H C Sp(%)Sp(1) to be reduced to the corresponding
questions for a slight generalization of the U(%) case.

For n = 4, we have the canonical isomorphism Sp(1)Sp(1)=SO(4). Hence,
Sp(1)Sp(1) is not a special restricted holonomy group and the metric on the un-
derlying manifold is not constrained. Einstein 4-manifolds with anti-self-dual cur-
vature, are the analogs of higher dimensional manifolds with H = Sp(%)Sp(1). For
such 4-manifolds, the curvature properties of the bundle, E, are as in the higher
dimensional case and the associated twistor space plays an analogous role.

We note the inclusions

Sp(3) CSUGZ) C U(Z),

Sp(7) C Sp(7)Sp(1).

The cases, Hy C SU(%), Ho C Sp(%}), can be viewed as limits of the U(%),
Sp(%)Sp(1) cases, in which the norm of the Ricci tensor tends to zero.

Manifolds with the restricted holonomy groups G, Spin(7), have dimension 7,
8, respectively. There are natural inclusions,

SU(3) C Gy C Spin(7).



EINSTEIN METRICS AND METRICS WITH SPECIAL HOLONOMY 35

Each of the subgroups, SU(3) C G2, G2 C Spin(7), is realized as the isotropy group
of a point on the unit sphere of its representation space.

Together with the twistor construction, the above relations indicate that for
instance of special holonomy, there is a close connection with the U(%) or SU(%)
case. This comes in to play in the proofs of the main results discussed in Sections
5,6,9.

The cases, H C U(%), SU(%), are called Kéhler, respectively, special-Kahler
In the SU(%) case, the canonical bundle is flat. If the flat connection is actually
globally trivial, the manifold is called Calabi-Yau.

The cases, H C Sp(%), Sp(%)Sp(1), are called hyper-Kéhler, respectively
quaternion-Ké&hler.

The cases, Gz, Spin(7), are called exceptional.

Anti-self-duality of curvature.

Let V denote a real inner product space space and let W C A*(V). The
orthogonal projection, 7w : /\2(V) — W, can be viewed as an element of the
symmetric tensor product S2(A%(V)). Let A : S2(A*(V)) = A*(V) denote the
canonical map given by antisymmetrization. With respect to an orthonormal basis,
{w;}, of W, we have

A(rw) = Z’wj ANwj .
J

An oriented manifold, M™, with holonomy group Hp, at p € M™ and Lie
algebra, b, carries a canonical parallel (n — 4)-form whose value at p is A(my,). If
the restricted holonomy group is SO(n), then A(my,) = 0.

If the holonomy group, H, is special, we put

*Q(p) = c(H) - A(my,,) - (0.8)

where ¢(H) is an appropriately chosen of the constant. A calculation shows that
the (suitably defined) trace free part, Ry, of the curvature, R, satisfies the anti-self-
duality relation,

*xRg=—-QARy; (09)

compare [Sal], [Sa2], [BaHiSing1], [Ti3].

If Hy C U(%), the form, *Q, is a multiple of the square of the Kahler form. If
Hy C Sp(%)Sp(1), then *€ is a multiple of the form w? +w? +w%. The groups, G,
Spin(7), can actually be characterized as the subgroups of all linear transformations
which preserve the form *{; see Section 10.

Let p; denote the first Pontrjagin class. Put

C(M™) = —(prU[Q)(M"). (0.10)

A multiple, co(n), of the topological invariant, C(M"), bounds the Ls-norm

of Ry. This is a direct consequence of (0.9) and Chern-Weil theory; see Section
9. Given the normalization of the Ricci curvature in (0.1), it follows that a mul-

tiple, ¢(n), of C(M™), bounds the Ly-norm of the full curvature tensor; compare
Conjecture 0.15 and Theorem 9.4.

Degenerations.

M. Anderson has conjectured that if Y is the Gromov-Hausdorff limit of a
noncollapsing sequence of Einstein manifolds, then Y is a smooth Einstein manifold
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off a closed singular set of Hausdorff dimension < n — 4. At least for limits of
manifolds with special holonomy, this holds.

THEOREM 0.11. ([Ch3], [ChTi2]) Let M 2%, ¥, where the manifolds, M;,
have special holonomy, H, or, in case n = 4, are Einstein with anti-self-dual curva-
ture. Assume

|RiCMin| Sn— 1,
Vol(M*) >v>0.
Then there is a closed set, S, with dim S < n — 4, such that Y \ S is a smooth

n-manifold with holonomy contained in H, respectively an Einstein 4-manifold with
anti-self-dual curvature.

The K&hler case of Theorem 0.11 is due to Cheeger and to Tian. It was first
written up in [Ch3]. Ideas in the proof are similar to ones used in [ChCoTi2].
For the remaining cases, see [ChTi2]. The proof of Theorem 0.11 is described in
Section 5.

REMARK 0.12. In Theorem 0.11, anti-self-duality of curvature does not enter
and no assumption concerning the boundedness of the sequence of characteristic
numbers, {C'(M*)}, is required.

Before stating the following corollary of Theorem 0.11 it is convenient to make
a definition. (For the notion of “tangent cone”, which appears in Corollary 0.13,
see Section 3.)

A metric space, X, is said to have a singularity at z € X of orbifold type if some
neighborhood of z is isometric to U/T", where U is a smooth riemannian manifold
and T is a finite group of isometries of U.

Let P. denote parallel translation along the smooth curve c.

For H a compact Lie group, the singularity will be called of H-orbifold type if
the following additional condition holds. For all p € U, there is a subgroup, Hy,
conjugate in O(n) to H, such that for all k¥ € I" and all curves, ¢, from p to k(p),
the transformation, dk~! o P, lies in H,.

COROLLARY 0.13. ([Ch3], [ChTi2]) Let the assumptions be as Theorem 0.11.
There exists S,_¢ C S, with dim S,_¢ < n — 6, such that for all y € (S '\ Sp—¢),
there exists at least one tangent cone of H-orbifold type, R*™* x R*/T, where
[' C H C SO(n) acts trivially on R"~* and freely on R*\ {0}.

REMARK 0.14. In Theorem 0.11 and Conjecture 0.15 below, if Hy C Sp(%)Sp(1)
then S,_g can be replaced by S,_g (with dim S,,_g < n — 8); see Theorem 6.1.

The following Conjecture 0.15, is suggested by additional facts which are known
to hold in the 4-dimensional case. Its solution is one main goal of the program
described in this paper.

CoNJECTURE 0.15. ([ChTi2]) Let the sequence of manifolds, M Lo, Y,
with special holonomy group, H, satisfy

[RlCMlnl STL—- 1,

Vol(M]*) >v>0.
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Assume in addition that the sequence, {C(M]*)}, is bounded above. Then there
exists Sp,—¢ C S, with dim S,,_¢ < n — 6, such that for all y € (S \ Sn—s), the
singularities are of H-orbifold type.

REMARK 0.16. If Conjecture 0.13 holds, then S,,_4, the codimension 4 piece of
the singular set, is calibrated by the (n — 4)-form Q; see [HarLaw].

For H C U(%), Conjecture 0.15 is due to Cheeger-Colding-Tian, who also gave
somewhat weaker and more technical versions for Einstein manifolds in general;
compare Sections 7, 8.

In addition to the information contained in Theorem 0.11 and Corollary 0.13,
the assertions of the conjecture are known to hold at the infinitesimal level, off a
subset with (n — 4)-dimensional Hausdorff measure 0.

Off such a subset, the tangent cone is unique and is of H-orbifold type, R"** x
R*/T, where the finite group, I' C H C SO(n), acts freely on R*\ {0} and trivially
on R"%; see Theorem 7.14.

Information concerning behavior on the local level is also available: Bounded
subsets of S, have finite (n — 4)-dimensional Hausdorff measure and are actually
(n — 4)-rectifiable; see Theorems 8.1, 9.4.

These matters, including the relevant definitions, will be explained at greater
length in the sequel. Although the above mentioned results represent strong progress,
Conjecture 0.15 still seems quite difficult.

Organization.

In Sections 1-3, we assume only the lower bound on Ricci curvature, Ricpym >
—(n—1).

In Sections 4-6, we assume the 2-sided bound, |Ricpm| < n—1, or in addition,
that M™ is Einstein. In Sections 5, 6, we also assume that M™ has special holonomy.

In Sections 7, 8, we assume Ricy» > —(n — 1), and also, a bound on the
Ly-norm of the full curvature tensor.

In Sections 9, all of our assumptions come into play, the 2-sided bound, |Ricps-| <
n — 1, special holonomy, and a bound on the topological invariant C(M™).

In Section 10, the appendix, we review some standard facts concerning special
holonomy, including the definitions of the special holonomy groups, the computation
of the Ricci tensor and the relations between the cases Sp(%)Sp(1), Gz, Spin(7) and
the Kéahler case.

Apart from Theorem 0.11 and Corollary 0.13, the main results on degenerations
of Einstein metrics and metrics with special holonomy are Theorems 3.4, 4.2, 6.1,
7.11,7.14,94.

1. Preliminaries

We collect here, some basic properties of manifolds whose Ricci curvature is
bounded below, on which the proofs of results described in later sections depend.
Thus, although we will not supply proofs of those results, we will be able to give
an indication of what the proofs involve. An exposition with complete proofs, of
the results of Sections 1-4, is given in [Ch4].
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Bochner’s formula.

Let X* denote the 1-form dual to the vector field X and let 8* denote the
vector field dual to the 1-form 0. Let A = divV = —éd denote the Laplacian on
functions, V, the riemannian covariant derivative and dd + dd, the Hodge Laplacian
on 1-forms.

Bochner’s formula asserts:

%A]XIQ = (AX,X) + (VX,VX)
|VX|? — (X, ((dd + dd) X*)*) + Ric(X, X).

1

Since d(dd + dd) = (dd + dd)d and df* = Vf, it follows that if X = V f is the
gradient of a function, f, then

SAIVS? = Hessy [ + (V£, VAS) + Rie(V1, ),

where Hessp, = V(Vh).
For h harmonic,

1
5A|Vh|2 = |Hessp|? + Ric(Vh, Vh). (1.1)

Note that if Ricpn > 0 (e.g. M™ =R™) and |Vh| = 1, we get V(Vh) =0. By
the de Rham decomposition theorem, every p € M ™, is contained in a neighborhood,
U, which is isometric to a subset of a riemannian product, Rxﬂn_l, by an isometry
with carries VA to the unit tangent vector field to the R factor. We think of such
functions as locally linear in a generalized sense.

Local harmonic coordinates.

In a neighborhood of any point, m € M™, there exist many local coordinate
systems with the property that the coordinate functions are harmonic. It a simple
consequence of Bochner’s formula that in such a local coordinate system, the Ricci
tensor is given by

., 0 0 1 Ogr.c
Ric(=2, 22) = —=A(gi ;) + Qs (g%, 2Tkt 1.
IC(a.’l)i am]) 2 (gl,J) + Q?nJ (g awm ) ( 2)
where @Q; ; is quadratic in both Zi’;’ and ¢*t. In each product, gi’:: . %i’“'—'f', one

of k, £, m, equals i, and one of k', £, m' equals j.
In view of (1.2), in harmonic coordinates, the Einstein condition becomes a
quasi-linear elliptic equation on the metric.

Relative Volume comparison.

Let M7% denote the complete, simply connected, n-dimensional space of con-
stant curvature = H. Let p € My,

THEOREM 1.3. ([Bish], [GVLP]) If Ricpy~ > (n — 1)H, then the following
functions are nondecreasing:

Vol(9B:(p))

Vol(8B,(p)) +
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Vol(B,(p))
Vol(B:(p))

Monotonicity inequalities play a key role in geometric analysis. They are asser-
tions to the effect that behavior of a certain quantity on a fixed scale, controls its
behavior on all smaller scales. The relations in Theorem 1.3 are the only monotonic-
ity inequalities known to hold for manifolds with Ricci curvature bounded below.
In particular:

1.

Volume behavior for a given ball of a fixed size, controls from below, volume
behavior for all smaller concentric balls.

Relative volume comparison is a consequence of the formula for the first varia-
tion of area, together with so-called mean curvature comparison off the set, {p}UC,,
-where C,, denotes the cut locus of p; see below.

Gromov’s compactness theorem.

THEOREM 1.4. ([GVLP]) The collection of (isometry classes of) compact rie-
mannian manifolds satisfying Ricy» > —(n — 1), diam(M™) < d, is precompact
with respect to the Gromov-Hausdorff distance.

By a standard argument based on the doubling property for the riemannian
measure implied by Theorem 1.3, the manifolds in Theorem 1.4 form a uniformly
totally bounded collection i.e. for all € > 0, there exists N (e, d,n), such that every
such M™, contains an e-dense set with at most N (e, d,n) members. (Any maximal
set for which each pair of distinct points has distance at least €, is easily seen to
have this property.)

A pigeon hole argument shows that any uniformly totally bounded collection
of compact metric spaces is totally bounded with respect to the Gromov-Hausdorff
distance.

Finally, from a construction like that which associates to a metric space its com-
pletion, it follows that the ideal points which must be added to complete the above
collection with respect to the Gromov-Hausdorff distance, are actually realized by
compact metric spaces. '

Mean curvature comparison and Laplacian comparison.

Let m(z) denote the mean curvature in the the direction of inward normal of
distance sphere, 0B, (p), at the point € dB,(p). Let m(r) denote the mean cur-
vature of the distance sphere, 0B (p), where p € M7%. Mean curvature comparison
states that Ricpm > (n — 1)H implies

m(z) < m(r).

Initially, mean curvature comparison only makes sense at points at which the
distance function is smooth i.e. off the set {p} UCp. This version of mean curva-
ture comparison is proved by elementary arguments from the theory of ordinary
differential equations.

Let A denote the Laplacian on 8B, (p), with respect to the induced metric.
In view of the formula for the Laplacian in geodesic polar coordinates, at smooth
points of 8B,(p), we have

2
0 + mE +A.

A=zt Mg,
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It follows that mean curvature comparison has an immediate generalization to
Laplacian comparison:

Af(r)<Af(r)  Gff20),
Af(r) = Af(r) G f'<0).

Mean curvature comparison is the special case of Laplacian comparison in which
fr) =r.

It is of crucial importance that Laplacian comparison has a sense and is valid
at all points of M™, including the set {p}UC,. It holds in the distribution sense and
in the sense of barriers, which concept is very closely related to (what subsequently
became known as) wviscosity solutions. Since distance functions have natural bar-
riers and the strong maximum principle extends to the barrier setting, Laplacian
comparison is a powerful tool in the study of Ricci curvature. These fundamental
results were obtained by Calabi in 1957; [Ca2].

Let the metric on M7 be given in geodesic polar coordinates by

n—1
g=dr* +k°¢°"

where

sinvHr/vVH H>0
k=<r H=0
sinhv/—Hr/v/—-H H<O0.

Denote the Laplacian in geodesic polar coordinates on M7 by

2 0
A= 52 + m— +A.
The following functions on the spaces, _M ', are particularly useful for applying
Laplacian comparison.
For n > 3, the function,

1  ien
GO) = e |, B s,

satisfies A G = 0, G(0) = c0 and G' < 0.
The function, G(Z;p), is the Green’s function with singularity at p € M. (For

n = 2, the definition must be slightly modified.)
If H=0, then k =r and
1

— 2-n
€= moovae

The smooth function,

Qz/ E~ (s (/k”l du)ds,
0

satisfies AU =1, U(0) =0, U' > 0 and |VU(r)| = Vol(B,(p))/Vol(dB,(p)).
If H = 0, then

,,,2

o
Given R>0,put Gg =G ~G(R) and Uy = U — U(R).

U=
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Set ¢; = —%:(ﬁg > 0. We have G% > 0, lim, ,0Gxr = —oo, and U" > 0,

U’'(0) = 0. Thus, if we let
LR =C QR + QR )
then we have AL, =1, L, < 0 on (0, R], and Lz(R) = 0.
The function, Ly, plays a role in the Abresch-Gromoll inequality discussed
below.

The segment inequality.

The segment inequality is a sharpened version of the Poincaré inequality. It is
of particular importance in proving almost rigidity theorems in the collapsed case.
Given a nonnegative function, g > 0, put

£
Fo(wr,22) = inf, / 9(v(s))ds

where the inf is taken over all minimal geodesics, v, from z; to x5, and s denotes
arclength.

THEOREM 1.5. ([ChCo3]) Let Ricpy» > —(n — 1) and let Ay, 4> C B.(p),
with r < R. Then

[ A
A1 XA2
< ¢(n, R)r(Vol(A4;) + Vol(4,)) x / g.

B2r(p)

One specific consequence of the segement inequality is a lower bound on the first
eigenvalue of the Laplacian for Dirichlet problem on a metric ball Bg(p); compare
[B], [LiSch], [Li]. To see this, let f : Bgr(p) — R satisfy f|Bgr(p) = 0 and extend
f to vanish identically outside Br(p). Take g = |V f|, A1 = A2 = Br(p).

The proof of the segment inequality employs the techniques which lead to rel-
ative volume comparison.

The Cheng-Yau gradient estimate.

THEOREM 1.6. ([CgYau]) Let
Ricpyn > (n—1)H (on Bg,(p)),
and let u : Bg,(p) — R satisfy
u>0,
Au=K(u).
Then for R; < R, on Bg, (p),

2
|VU,L2I’| S max (2U_1K(U),C(H,R1,R2, H) + 2U—1K(U) — 2K'(u)) .

The Cheng-Yau gradient estimate, which we have not stated in utmost general-
ity, can be further specialized to the particularly important case in which u satisfies
an equation of the form Au = a - u + b. This class of functions includes harmonic
functions and eigenfunctions of A.

Note that by slightly changing the form of the function, K (u), the assumption,
u > 0, can be achieved by adding a suitable constant to the function u. The
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resulting estimate then depends on the size of this constant. In particular, if u is
harmonic, then so is u + ¢, for any constant c.

The Abresch-Gromoll inequality.

Let AR, r,(p) denote the metric annulus, Bg,(p) \ Bg, (p)-
Let Ricpy» > —(n—1) and let f : Bg,(p) — R. The Abresch-Gromoll inequality
provides a bound for f(p) under the assumptions:

i) f|0Bg,(p) 2 0,

ii) Af has a definite upper bound on m,

iii) f(z) has a definite upper bound at some z € Ag, r,,

iv) the Lipschitz constant of f has a definite bound on Bg, (p).

At the heart of Abresch-Gromoll inequality is a beautiful quantitative extension
of the maximum principle.

Let the functions, Ly, G be defined as in the subsection on Laplacian com-
parison.

THEOREM 1.7. ([AbGI]) Let Ricpy» > —(n — 1) and let Bg,(p) C Q. For
6 >0, let f: Bg,(p) & R satisfy f|9Bg,(p) > 0 and

Af < d (on ARI ,R2 (p)) )

Lipf<c  (on Bg,(p))-
If for some x € AR, g,(p) and ¢t > 0,
f(z) < (0Lg, +1GR,)(R)  (R=7T,D),
then
f(p) < (6Lg, +tGR,)(R1) +cR; .

Since we assume Lip f < ¢ on Bpg, (p), to get the bound on f(p), it suffices to
show that somewhere on 8 Bg, (p), we have f < (6Lg, +tGg,)(R1). This in turn, is
a quantitive extension of the maximum principle (on the annulus Ag, g, (p)). It is
proved with the aid of Laplacian comparison. To see the relevance of the maximum
principle, consider the limiting case § = 0.

Abresch and Gromoll used their inequality in proving a weakened quantitative
extension of the splitting theorem. For this, the metric is rescaled so that the
lower bound on Ricci curvature is close to 0. Later, this weakened version played
a significant role in the proof of the full quantitative extension of the splitting
theorem; see Theorem 2.3 of Section 2.

The cutoff function with bounded Laplacian.

The the proof of the following theorem, which gives the existence of a cutoff
function with bounds on the Laplacian, is based on ideas which are related to those
used in proving the Abresch-Gromoll inequality. It is required for the proof of the
almost splitting theorem.

THEOREM 1.8. ([ChCo3]) Let Ricy» > —(n — 1) and let Bg,(p) C M™.
Then for all R; < Ry, there exists ¢ : M™ — [0, 1], such that
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¢|Br,(p) =1,

supp ¢ C Br, (p),
IV¢| < c(n, Ri, Rs),
|A¢| < c(n, R, Ry).

2. Almost rigidity and rescaling

Typically, geometric properties of a riemannian manifold which are excluded
if the curvature satisfies a certain strict inequality, can occur only under very re-
stricted circumstances if the strict inequality is relaxed to a weak one. Theorems
to this effect are known as rigidity theorems.

The splitting theorem.

Nonnegative Ricci curvature tends to oppose noncompactness. In particular,
according to Myers’ theorem, if the Ricci curvature has a positive lower bound,
Ricyn > (n—1)H > 0, then

™
ik

While manifolds with nonnegative Ricci curvature (e.g. 2-dimensional paraboloids)
can certainly be noncompact, the situation becomes highly constrained if the man-
ifold is noncompact in a sufficiently strong sense.

A geodesic, v : (—00,00) = M™, is called a line, if each finite segment of 7 is
minimal.

diam(M™) <

THEOREM 2.1. ([ChGI2]) If M™ is complete, Ricp» > 0, and M™ contains a
line, then M™ splits as an isometric product, M = R x M ", for some M ..

In proving Theorem 2.1, one starts by considering a ray, v : [0,00) = M™.
By definition, each finite segment of « is minimal. Associated to 7 is its Buseman
function, defined by ‘

by(z) = sllfgo z,7v(s) —s.
By using the triangle inequality, it is easily seen that the limit exists. The pointwise
Lipschitz constant of b, is = 1.

In the special case in which 7 : (—00,00) = R™ is the z-axis, b, is the linear
harmonic function —z. In the general case, one shows by means of Laplacian
comparison that b, is superharmonic.

For v a line, let by denote the Buseman functions associated to the rays
v1[0,00), —7v|[0, —00), which form the two halves of v. The functions, by, b_,
are superharmonic and by the triangle inequality b, + b_ > 0. Since 7 is a line, it
also follows that b, + b_ |y = 0.

From the strong maximum principle, we now get b, +b_ = 0. Hence, by = —b_
is both superharmonic and subharmonic. So b, b_, are harmonic functions. In
particular, they are smooth.
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Clearly, |[Vby| = 1 and by Bochner’s formula, Hess,, = 0 i.e. Vb, is parallel.
Now, the existence of an isometric splitting, given by the level surfaces of b, and
the integral curves of Vb, follows from the de Rham decomposition theorem.

REMARK 2.2. For the case in which the sectional curvature is nonnegative,
the splitting theorem is due to Toponogov, whose proof relied on his gomparison
theorem for geodesic triangles; see [Top1], [Top2] and compare [ChGI1]; compare
also [EschHei].

Making the discussion quantitative.

The quantitative generalization of the splitting theorem is most easily stated
as an extension of the splitting theorem to pointed Gromov-Hausdorff limit spaces
whose Ricci curvature is nonnegative in a generalized sense.

THEOREM 2.3. ([ChCo2]) Let the sequence of complete manifolds, M, sat-

(3
deH

iSfy’ (Mznvmz) — (Ya y)’
Ricyp > —(n - 1)4; (where §; — 0). (2.4)

If Y contains a line, then Y splits as an isometric product, ¥ = R x Y, for some
length space Y.

By arguing by contradiction, it is a simple exercise to translate Theorem 2.3 into
an equivalent quantitative statement concerning manifolds whose Ricci curvature
is bounded below by a small negative constant.

Note in this connection, that a line in ¥ need not be the limit of a sequence of
lines in the manifolds, M}, of the approximating sequence. However, a line in ¥
can always be viewed as the limit of a sequence of triangles in the manifolds, M7,
the excesses of which converge to zero. (The excess of a triangle is the minimum of
the three numbers which are expressible as the sum of the lengths two sides minus
the length of a third.)

To prove Theorem 2.3, one establishes the equivalent statement for smooth
manifolds, in which the hypotheses of the splitting theorem are only satisfied up to
small errors. The idea is to make quantitative, each of the steps in the argument
which was outlined above. This turns out to be less straightforward than one might
initially suppose.

Let Ricpnm > —(n — 1)4, for some very small §. Assume that p,q.,q— € M™
determine a triangle with small excess. Specifically let

P,-+p,¢ —7-,qr <9,
paE26".

Put by (z) = T, ¢+ — D, ¢+ Fix a ball, Bg(p), where R can be taken arbitrarily
large if ¢ is sufficiently small. Let b, denote the harmonic function on Bg(p) whose
boundary values coincide with those of b;. In the ideal case, that of Theorem 2.1,
we would have by = by. So we would like to know that b;,by are close in a
suitably strong sense.

With the help of the Abresch-Gromoll inequality, it follows that b, +b_—g gy is
small on Bg(p). By a straightforward argument based on Laplacian comparison and
the maximum principle, we get that by, b, are uniformly close on Bgr(p). From
this, together with the lower bound for the smallest eigenvalue of the Dirichlet
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problem on Bg(p) (see Theorem 1.5) we find that the gradients, Vb, b, are close
in the Lo sense. (Here and below, the riemannian measure on Bg(p) is normalized
so as to make the volume of Bg(p) equal to 1.)

In particular, |Vb4| is close to the constant function, 1 in the L, sense. From
Bochner’s formula, used in concert with the cutoff function with bounded Laplacian
(of Theorem 1.8), and the fact that |Vb,| has small oscillation, it follows that
|Hessp, | is small in the the Ly sense on Br (p); compare (1.1).

Finally, and this is the most significant step, by using the segment inequal-
ity, the gradient estimate and the information established above, one shows by an
argument based on the first variation formula, that B R (p) is close in the Gromov-

Hausdorff sense, to a ball in some product space, R x Y, where b, corresponds to
the R coordinate; see [ChCo3] and compare [Col]-[Co4].

REMARK 2.5. A lower bound on volume is not required in Theorem 2.1, nor is
the noncollapsing assumption is needed in Theorem 2.3.

Volume cones are metric cones.

Next, we consider the equality cases in the relative volume comparison theorem,
Theorem 1.3. As before, let the metric on M be given in geodesic polar coordinates

by dr? + k2gS" .

THEOREM 2.6. Let Ricp» > (n — 1)H on the annulus, 4,, ,,(p), and assume
that
Vol(9B,, (p)) _ Vol(9B:, (p))

ri\P,
Vol(0Br,(p)) ~ Vol(0By,(p)) |
Then the metric on A,, ,,(p) is of the form,

dr? + k%§,

for some smooth riemannian metric, §, on 0B, (p).

In essence, to prove Theorem 2.6, one follows the proof of relative volume com-
parison and notes that in the resulting string of inequalities, equality must hold at
every stage. For instance, the Schwarz inequality applied to the second fundamen-
tal form of a distance sphere enters in the proof of mean curvature comparison.
Since we must be in the equality case, we get the key fact that everywhere on such
a distance sphere, the second fundamental form must be diagonal.

So far, we have only considered the equality case of the first inequality in
Theorem 1.3. In actuality, given Theorem 2.6, it is easily seen that the equality
case of the second inequality in Theorem 1.3 can only occur for annuli in the space
of constant curvature My i.e. § = gsn—l. However, if as in Theorem 2.3, we include
limit spaces, then new examples arise.

We will assume nonnegative Ricci curvature in the extended sense of (2.4),
since this is the condition which figures in the applications. The generalization for
arbitrary lower bounds on Ricci curvature is straightforward.

EXAMPLE 2.7. Let Y2 C R? denote some 2-dimensional cone. By rounding
off the cone tip, one sees that Y2 is the Gromov-Hausdorff limit of a sequence of
2-dimensional surfaces which are convex and hence of nonnegative curvature. Thus,
Y2 has nonnegative Ricci curvature in the sense of (2.4). The volume function of a
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ball, B,(y), centered at the cone tip, y, satisfies

Vol(B,(y)) _ Vol(Bi(y))
Vol(B,(p)) — ™ ’

or equivalently,

Vol(B,(y)) _ Vol(B:(p))
Vol(Bi (y)) ~ Vol(Bi(p))

Here, Vol(B,(y)) is 2-dimensional area, the model space, M3, is R? with its usual
flat metric and Vol(B,(p)) = .

For Z a metric space, denote by C(Z), the metric cone, on Z. By definition,
C(Z) is the completion of metric space, (0,00) x Z, with metric,

(ri,21), (ra,22) =712 + 72 — 2r17ry - COSZT; 23 (if zi;2z <m),
and
(r1,21), (r2,22) =711 + 12 (if z1722 > 7).

To see that the definition is reasonable, think of the case of 3-dimensional cones
with arbitrary cross-section in Euclidean space R3. ,

Let z* denote the vertex of C(Z). Thus, z* is the unique point which is added
when (0, 00) x Z, with the cone metric, is completed to get C(Z).

Note that if there exist z1, 22, with zZ7;25 > =, then (1, 21), (1, 22) lie on a line
which passes through z*. If zZ1;zz > , this line does not split off as an isometric

factor. Thus, by Theorem 2.3, cones for which there exist such pairs of points do
not arise as limits of sequences of spaces satisfying (2.4).

ExAMPLE 2.8. For n > 1, the n-fold ramified covering space of the plane,
R? (ramified at a single point) is a cone with cross-section the circle, So,,, with
intrinsic diameter nw (i.e. the circle of circumference 2nx). These cones does not
arise as limit spaces satisfying (2.4).

The following theorem asserts that for limit spaces with nonnegative Ricci
curvature in the sense of (2.4), volumes cones are metric cones.

THEOREM 2.9. ([ChCo3]) Let M! %% Y satisfy (2.4). For p € R" and all
s € [0, 7], assume
Vol(B;(p)) _ Vol(B;(p))

Vol(Bi(p)) ~ Vol(By(p))
Then for some length space Z, with
diam(Z) <=,
the ball, B,.(p), is isometric to the ball, B,.(z*), in the cone C(Z).

As in the case of the generalized splitting theorem, Theorem 2.3, an argument
by contradiction allows Theorem 2.9 to be reformulated as an almost rigidity the-
orem for smooth manifolds whose Ricci curvature is bounded below by a small
negative constant —(n — 1)d. It is this equivalent formulation which is actually
proved. The proof is similar in spirit to that of Theorem 2.3, but the technical
details are somewhat more complicated.
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Rescaling and almost splitting.

We return to the rescaling idea introduced in Section 0, which suggested a
program for understanding the small scale structure of manifolds with Ricpm >
—(n —1).

Let Ricpyn > ~(n — 1) and diam(M™) > 2. Let v : [-L, L] — be a geodesic
segment of length 2L > 2. If we rescale distance by a factor e 1, where 0 < € << 1,
and 1 << ¢"!L, then the ball, B.(y(0)), in the original metric, now looks to the
naked eye, like a ball of radius 1, with center on in a line in a noncompact manifold
with nonnegative Ricci curvature — or better — in a noncompact limit space,
whose Ricci curvature is nonnegative in the sense of (2.4).

The generalized splitting theorem, Theorem 2.3, implies that this rescaled ball
appears to be a ball in some isometric product space, R x X. Unless the space, X,
is indistinguishable from a point, we can repeat the construction in some direction
tangent to X, etc. In this sense, the geometry has a self-regulating feature:

The more directions, the more small scale approximate splitting.

Rescaling, almost volume cones and almost metric cones.

Theorem 2.9 above, is particularly useful in the noncollapsed case.
Let Ricpym > —(n — 1) and let

- Vol(B1(p)) > w.
The decreasing function, Vol(B;(p))/Vol(B;(p)), satisfies

Lo VOB . v
~ Vol(Bs(p)) ~ Vol(Bi(p))
It follows that for r < 1 and all § > 0, the relation,

Vol(0B3,(p)) < Vol(0B,(p))
1= 95108, @) < Vol@B, ()’

is violated for the end points of at most a definite number, N(§), of disjoint intervals
[6r,7].

When combined with rescaling, this leads to the conclusion that tangent cones
at points of noncollapsed limit spaces are metric cones.

3. The structure of limit spaces

Let
RiCMin >—-(n-1), (3.1)
and let
(MP, ;) 225 (Y, 7).
Tangent cones.

The basic notion for studying the infinitesimal structure of such limit spaces
is that of a tangent cone, Y,, at y € Y. Intuitively, tangent cones are obtained by
blowing up the space at a point and taking a limit, possibly after passing to a sub-
sequence. In case Y happens to be a smooth riemannian manifold, this proceedure
recovers the usual tangent space with its canonical metric.
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Let p denote the distance function (i.e. the metric) of Y. Gromov’s com-
pactness theorem implies that every pointed sequence, {(Y,y,r; ! p)}, has a sub-
sequence which converges in the pointed Gromov-Hausdorff sense, to some space
(Yy, Yoo, Poo)- The limit, Yy, of such a subsequence is called a tangent cone at y.

For a given y € Y, the tangent cone need not be unique.

The regular and singular sets.

The regular set, R, is the set of those points, y € Y, such that there exists
k < n for which every tangent cone is isometric to R*.

As expected, in the noncollapsed case, it turns out that only k = n is possible.
Even if Y is collapsed, almost all points are regular, provided “almost all” is defined
in an appropriate measure theoretic sense.

By definition, the singular set, S, is the complement of the regular set.

The regular set need not be open; equivalently, the singular set need not be
closed. One can easily construct convex 2-dimensional surfaces, Y2, which are
limits of suitable sequences of polyhedral surfaces, for which S(Y2) is a countable
set, with limit points that are regular points. It follows by “rounding the corners”,
that such Y2 are limit spaces with positive curvature in the sense of (2.4); compare
Example 2.7.

Iterated tangent cones have nonnegative Ricci curvature.

Let p denote the distance function of the riemannian manifold, M™. An obvious
diagonal argument gives the key fact that every tangent cone is itself a pointed limit
space,

_ d
(M]?(j) y P(5)» Tk(i')pk(j)) —<8, (Yy: Yo, Poo) ,
where the rescaled manifolds, (M kG rk_é.) Pr(j)), satisfy

liminf Ricpyr > 0;
k(j)—o0 kG

compare (2.4). By a similar argument, it follows that any tangent cone, Yy,, at
y1 € Yy, is a limit space satisfying (2.4). More generally, if we pass to tangent
cones of tangent cones an arbitrary number of times, then such iterated tangent
cones have nonnegative Ricci curvature in the generalized sense.

From the generalized splitting theorem, Theorem 2.3, we get:

THEOREM 3.2. ([ChCo3]) If M? S Y satisfies (3.1), then any iterated
tangent cone which contains a line, splits off this line as an isometric factor.
The noncollapsed case.

From now on we assume the noncollapsing condition
Vol(By(m;)) > v >0. (3.3)

The e-regular set.

The e-regular set, Re O R, consists of those points, y € Y, such that for every
tangent cone, Y, we have

dGH(Bl (y00)7 Bl (0)) <€,
where B;(0) denotes the unit ball in R".
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There exists €(n) > 0, such that for € < €(n), the interior of R is homeomorphic
to a smooth connected topological manifold which contains the regular set R. The
proof depends on a fundamental theorem of Colding to the effect that if Ricpsn >
(n—1)H, then a ball, B,(p) C M™, is Gromov-Hausdorff close to the ball, B,(p) C
M", if and only if Vol(B,(p)) is close to Vol(Br(p)); see [Co2], [Co3].

The proof that the interior of R, is manifold also uses an ntrinsic version of
a classical result of Reifenberg; see [ChCo3]. Reifenberg’s theorem says that if
C C RV is a closed subset with the property that for all p € C and all r < 1, the
ball, B,(p), is sufficiently Hausdorff close (on its own scale) to a ball in some affine
subspace, V!, C RY, then C is a topological n-manifold; see [Reif].

In the Einstein case, we can assume that €(n) has been chosen such that for
€ < ¢(n), we have R, = R. In this case, R is a smooth Einstein manifold; see
Theorem 4.2.

Noncollapsed tangent cones are metric cones.

From Theorem 2.9 and the previous discussion (compare also the discussion at
the end of Section 2) we obtain:

THEOREM 3.4. ([ChCo3]) Let the noncollapsed limit space, M den, yn,
satisfy (3.1), (3.3). Then every (possibly iterated) tangent cone is a metric cone,
C(Z), on some length space, X, with diam(X) < 7.

Blow up arguments.

Theorems 3.2, 3.4, provide two respects in which noncollapsed iterated tangent
cones are better behaved than arbitrary noncollapsed limit spaces satisfying (0.3).
This enables certain statements concerning arbitrary noncollapsed limit spaces with
Ricyr > —(n— 1), to be proved by “blow up” arguments; [Fe]. These are proofs by
contradiction, in which the main step consists of showing that if a desired property
were ever to fail, it would already fail for some tangent cone. After repeating this
step sufficiently many times, with suitably chosen iterated tangent cones, one arrives
at a situation in which the geometry of the iterated tangent cone has improved
to such an extent, that the desired property actually holds. This contradiction
establishes that the property holds in general.

Theorem 3.7 below is proved by a blow up argument.

Volume convergence.

We recall the definition of /-dimensional Hausdorff measure.
Let W denote a metric space. For A C W, consider the collection of countable
coverings, {By; (w;)}, of A, such that sup,; r; <. Here we allow n = 0co. Put
¢ _ ¢
Ha(d) = o InE 2
where wy > 0 is a certain explicit constant, which for £ an integer, is equal to the
volume of the unit ball in R¥.

It is clear that Hf;(A) is a nonincreasing function of 5. Define the ¢-dimensional
spherical Hausdorff measure of A by

HA(A) = lim 75 (4)

%

where the value, H*(A4) = oo, is permitted.
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It follows easily that there is a unique value, dim A, the Hausdorff dimension
of A, with 0 < dim A < oo, such that, H¢(A4) = oo for £ < dim A4, and H¢(A) =0
for dim A < £. ‘

THEOREM 3.5. ([ChCo3]) Let the noncollapsed limit spaces, ¥;", satisfy (3.1),
(3.3), for all i. If (Y7, y;) 2S5 (Y™, ), then for all r < oo,

Jim (B, () = H"(Br(y) -

In follows from Theorem 3.5 that a noncollapsed limit space, Y™, has Hausdorff
dimension, n and (by Theorem 2.1) that n-dimensional Hausdorff measure on Y™
satisfies relative volume comparison.

REMARK 3.6. The special case of Theorem 3.5 in which Y;*, Y™ are smooth rie-
mannian manifolds was conjectured by Anderson-Cheeger and proved by Colding;
[Cod]. This was very significant for the development of the theory.

The natural filtration on the singular set.

For 0 <k <n—1,let Sk C S consist of those points for which no tangent cone
splits off a factor, R*¥*1, isometrically. (As motivation, think of the k-skeleton of a
simplicial complex.)

We have S,,—1 = S. Equivalently, if some tangent cone at y is isometric to R™,
then so is every other tangent cone at y.

By Theorem 3.7 below, dim Sy < k. Hence, dim § < n — 1. From this and
(3.3), it follows in particular that the regular set, R, has full measure with respect
to H™. In fact, Theorem 3.8 below gives S = S,,_2. Together with Theorem 3.7,
this implies that the singular set has Hausdorff codimension 2.

THEOREM 3.7. ([ChCo3]) Let M 2S5, Yy satisfy (3.1), (3.3). Then
dim S < k.

The blow up argument used in proving Theorem 3.7 depends on Theorems 3.2,
3.4. For a closely related result (with a very different proof) for subsets of R", see
[Wh], which also contains additional related references.

THEOREM 3.8. ([ChCo3]) Let Y™ satisfy (3.1), (3.3). Then
S= Sn—? )

and
dimS<n-—2.

If y € Sp—1\ Sn—2, then by definition, some tangent cone, Yy, splits off a factor
R""1. Since y € S, it follows that Y, is not isometric to R". It is easy to see
that the only remaining possibility is that Y}, is closed half space R"~! x R4. So
to prove Theorem 3.8, it suffices to show that this potential tangent cone does not
actually occur. This is done by an argument which is essentially topological. The
idea is that a limit of closed manifolds should not have a nonempty topological
boundary.
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The complex filtration in the Kahler case.

Here and in Sections 7, 8, results on Kéhler manifolds which depend only on
the lower bound Ricpy» > —(n — 1), will be included in our general discussion of
that case. Thus, although U(%) is a special holonomy group, only those theorems
on Kahler manifolds which depend on the 2-sided bound, |Ric Mi"l <n—1, will be
bracketed with results on special holonomy.

By definition, if M™ is Kéhler, there is a parallel almost complex structure J.
Thus, J? = -1, VJ = 0.

Suppose M™ splits off a line isometrically, M™ = R x """, If v denotes the
parallel vector field tangent to the R factor of this splitting, then Vv = 0. Hence,
VJ(v) =0 as well.

By the de Rham decomposition theorem, it follows that the vector fields,
v, J(v), are tangent to the R2-factor of a local isometric splitting of the metric.
In addition, the factor, R?, can be naturally identified with the complex plane C.
However, the local factor, C, need not be global. To see this, consider the case of
a 2-dimensional cylinder R x S! = C?/Z.

If we view the real line, R, as the collapsed Gromov-Hausdorff limit of a se-
quence of cylinders for which the S! factor shrinks to a point, we see that the local
isometric factor corresponding to J(v) (the S! factor) can disappear in the limit.

It turns out that for noncollapsed limit spaces satisfying (2.4) which are metric
cones, the above complications do not occur. Roughly speaking, an almost parallel
vector field on a cone is always almost the gradient of the coordinate function
corresponding to the factor, R, of some (global) almost isometric splitting. The
proof of this fact relies on a technical theorem from the general theory of metric
measure spaces for which the measure satisfies a doubling condition and for which
a (suitably formulated) Poincaré inequality holds; see Theorem 16.32 of [Ch2].

THEOREM 3.9. ([ChCoTi2]) Let M S5, Yy satisfy (3.1), (3.3) and assume
that M is Kéhler for all . Then S;41 = So; for all 4. In particular, all strata
have even codimension. Moreover, every tangent cone, Y, has a parallel almost
complex structure. If Y, = R¥ x C(X) denotes the isometric splitting for which j

is maximal, then R = C%.

In Theorem 3.9, we were intentionally vague about the sense in which there ex-
ists a parallel almost complex structure on the cone C(X). In the Kahler-Einstein,
in which the regular part is a smooth manifold, the exact meaning is clear.

We will give a version of Theorem 3.9 which covers all cases of special holonomy;
see Theorem 6.1.

4. Einstein limit spaces
We now specialize the discussion to the Einstein case,
Ricyp = Agi,
where we make the normalization
|Ricpr| <n—1. (4.1)
THEOREM 4.2. ([ChCo3]) There exists €(n) > 0, such that if the sequence
of Einstein manifolds, M} LN Y™, satisfies (3.3), (4.1), then for € < e(n), the
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e-regular set, R, is a smooth Einstein manifold. In particular, the singular set,
S = 8,2, is a closed set with dim S <n — 2.

Theorem 4.2 is a quite direct consequence of Theorem 3.7 and the following
e-regularity theorem of M. Anderson, which states that balls of almost maximal
volume are standard.

THEOREM 4.3. ([An2]) There exists § = §(n) > 0 and constants, Kj(n) < oo,
such that if M™ is Einstein, with

|Ricpn| <n -1,
and B,(p) C M™, satisfies '
Vol(B;(p)) = (1 - 6)Vol(B,(p)),
then Bz (p) is the domain of a harmonic coordinate system in which
|gijlcx < Kir™,
det(g; ;) > Ko > 0.

Anderson’s theorem is proved by a blow up argument which depends on the fact
that in a local harmonic coordinate system, the Einstein equation is a quasi-linear
elliptic equation on the metric; see (1.2).

REMARK 4.4. Anderson also shows that if the Einstein condition is removed
in Theorem 4.3, then there exists a harmonic coordinate system as above, in which
the metric satisfies corresponding C'*®*-bounds, for all & < 1. Thus, if the Einstein
condition is dropped in Theorem 4.2, the e-regular set, R., is a C1*®-riemannian
manifold for all & < 1. Essentially, this is the only difference between the case in
which both (4.1) and the Einstein condition are assumed, and that in which only
(4.1) is assumed.

From Theorem 4.3 and the behavior of (4.1) under scaling we get:

THEOREM 4.5. ([ChCo3]) Let the sequence, M 2%, Y™ satisfy (3.3), (4.1).
Then the regular part of any iterated tangent cone is a smooth Ricci flat Einstein
manifold.

The elementary fact that in dimension 3, Einstein manifolds have constant
curvature, immediately implies:

COROLLARY 4.6. Let the sequence, M} Ldon, Y, satisfy (3.3), (4.1). If for
k < 3, an interated tangent cone splits isometrically as R"™* x C(X), then the
regular part, R(Y}), is flat.

Consider an iterated tangent cone of the form, R"~2 x C(X), for which. the
cross-section, X, is smooth. From Corollary 4.6, it follows that, R"~% x R3/Zy =
R" 3 x C(RP(2)) is the only nontrivial possibility. However, a slicing argument
(like the one explained in Section 5) shows that if such a tangent cone actually did
exist, then the manifold, RP(2), would bound some (nonorientible) 3-manifold.
Since, the Euler characteristic of RP(2) satisfies x(RP(2)) = 1 and the Euler char-
acteristic of an even dimensional manifold which bounds is even, this is impossible.

Thus, we get:
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COROLLARY 4.7. If M don, v satisfies (3.3), (4.1) and Sp—2(Yy)\Sn—3(Yy) =
0, for all iterated tangent cones, Y,, then Y satisfies S = Sp_4.

Given our previous discussion, it is natural to sharpen the conjecture of An-
derson which was mentioned in Section 0.

CONJECTURE 4.8. If M7 992, Y7 satisfies (3.3), (4.1), then S = Sp_a.
2

Proving Conjecture 4.8 amounts to ruling out the occurance of tangent cones
of the form, R"~2 x C(S},), where S}, denotes the circle of circumference 2d < 2.
At least for the case of special holonomy, this can be done; see Theorem 0.11, whose
proof is discussed in Section 5.

dcu

CONJECTURE 4.9. If M —== Y™ satisfies (3.3), (4.1), then R has finite topo-
logical type.

The conclusion of Conjecture 4.9 fails if the 2-sided bound on Ricci curvature,
(3.3), is replaced by the lower bound (3.1); see [Menl].

5. Special holonomy and codimension 4 singularities

In this section we indicate the proof of Theorem 0.11.

Theorem 0.11 states that for noncollapsed Gromov-Hausdorff limits of sequences
of manifolds with special holonomy (or Einstein 4-manifolds with anti-self-dual cur-
vature) satisfying

|R1CM:t| STL— ].,
Vol(M;*) > v,
we have
S=84.

By Corollary 4.7, to prove Theorem 0.11, it suffices to rule out tangent cones
of the form R"~2 x C(S'), which are not isometric to R™.

Those cases in which H is contained in one of the groups, SU(%), Sp(%), Ga,
Spin(7) are not difficult to handle. It suffices pass to the limit and examine the
situation away from the singular set R"~2 x z* C R""2 x C(S!). In the cases,
H c U(%), H C Sp(%)Sp(1), it is necessary to take into account what is happening
near the singularity which is assumed to be developing as the limit is approached.

The easier cases; S = S, _4.

We will explain the argument for the case H C SU(%). The cases, Gz, Spin(7),
can be treated by essentially the same argument; see [ChTi2] and compare Theo-
rem 6.1.

Suppose Yy, is a tangent cone of the form R"~? x C(S'). Since H C U(%),
it follows easily from Anderson’s e-regularity theorem, Theorem 4.3, that there is
a limiting parallel almost complex structure, J, on the flat open manifold, R(Y,),
the regular part of Y,. The holonomy group, H(R(Yy)), satisfies H(R(Y,)) C
SU(%), where SU(Z) is defined with respect to this J. Given the riemannian
product structure, it now follows that the isometric factor, R*2, is actually a
complex subspace, C3 !, and in addition, that C(S') = C. Otherwise, the complex
determinant of a holonomy transformation would not be equal to 1.



54 JEFF CHEEGER

The remaining cases; S = S,,_4.

By means of the twistor space construction, the case, H C Sp(%)Sp(1), can
be reduced to a slight generalization of the case, H C U(%), discussed below; see
[ChTi2] for details.

In the U(%) case ([Ch3]), Theorem 0.11 comes down to an e-regularity theorem.
The basic idea behind it and our subsequent e-regularity theorems, is illustrated
by the following elementary 2-dimensional example. Since n = 2, technical issues
concerning slicing which are present in higher dimensions do not enter.

A model example.

Consider a conical piece of 2-dimensional surface, Y2, in the shape of a paper
cup (of the sort which is often dispensed at a water cooler). Assume that except
at the cone tip, Y2 is smooth and intrinsically flat. We ask if it is possible to
replace Y2 by a smooth manifold with boundary, which coincides with Y2 except
in a tiny neighborhood, U, of the cone tip, and for which the total amount of
curvature contained in U is very small. Although U might be too small to observe
directly, we can conclude that the proposed smoothing is impossible, by noting that
the resulting metric would not obey the Gauss-Bonnet formula for manifolds with
boundary.

Let M? denote the purported smooth manifold. The interior term in the Gauss-
Bonnet formula is a very small number, ¢, which is the sum contributions from
an “observable region” and a “too small to be directly observable region”. The
boundary term, x, which is equal to the circumference of the bounding circle divided
by 2, satisfies 0 < z < 1, and is a definite amount away from both 0 and 1 (since
we imagine a cone in the shape of cup that could actually hold water). Thus,
we get 0 < €+ x < 1. However, the Euler characteristic of M? is an integer; a
contradiction.

REMARK 5.1. Note that in obtaining the above contradiction, it was not suf-
ficient to assume that the amount of the curvature (measured in the L;-norm) in
a neighborhood of the rounded cone tip was small. In applying the Gauss-Bonnet
formula, we also used the cone structure of the observable region.

Slicing.

For € very small, let the metric on M™ satisfy Ricpym > —(n — 1)e. Assume
that for some £ >> 1, € < < 1, the ball, By(m), is e-close in the Gromov-Hausdorff
sense, to a ball, B;((0,z*)), in R"*~2 x C(S').

We want to “slice” M™ in such a way that the generic slice resembles the mani-
fold M? in the model example. By bringing in the first Chern form, ¢, this slicing
allows the U(%) case of Theorem 0.11 to be treated by an argument which is very
similar to the one used in the model example.

Since the same slicing strategy is also employed in our subsequent e-regularity
theorems, we begin more generally with a cone of the form RF x C(X), where
0<k<n-2.

From the proof of the generalized splitting theorem, Theorem 2.3, it follows
that there exist harmonic functions, by, ... ,bg, on By (m), which are very “close”
to the coordinate functions of the factor, R¥, on the ball, B3((0,z*)). The notion of
closeness is in the “Gromov-Hausdorff sense” which is meaningful since the functions
involved are uniformly continuous.
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Let u denote the distance function from the closed set R* x z* C R* x C(X).
The function, u?, satisfies the equation Au? = 2(n — k).

From the proof of Theorem 2.9, the “almost volume annulus implies almost
metric annulus” theorem, there exists a function, u : Bs(m) — Ry, which is very
close to the function, u, in the Gromov-Hausdorff sense, such that Au? = 2(n — k)

We have maps, ® : Bs(m) - RF, A : B3(m) - R¥ x Ry, given by & =
(bl,... ,bk), A= (bl,... ,bk,'ll).

We would like to know that when intersected with sublevel sets of the the
function, u, generic fibres of the map, ®, resemble (k-dimensional versions of) the
surface, M2, in the model example.

The first step is to show that the notion of “generic” makes good sense i.e.
that the images of the maps, ®, A, have almost full measure. Here, the point of
departure is the theorem on volume convergence; see Theorem 3.5.

The next step uses the coarea formula and the Cheng-Yau gradient estimate
to establish that the volumes of almost all of the fibres are close to the volumes of
the corresponding sets in the space RF x C'(X).

In proving the above assertions (and additional ones which play a role in Section
7) the fact that the functions, b;, u, satisfy suitable elliptic equations is crucial for
obtaining the required estimates. Among other things, Bochner formulas are used;
for details, see [ChCoTi2].

At this point, we specialize to the case, k =n—2, X =S', H C U(%). (For the
e-regularity theorems of Section 7, it will be necessary to continue the discussion of
the general case.)

Let Soq denote the circle of circumference 2d. Assume that H C U(%) and that
there exists a tangent cone of the form, R"~2 x C(S},), which is not isometric to
R" i.e. 2d < 2w. Then we can find a Kéhler manifold, M*, for which a rescaled
ball, B;(m;), is as close as we like to the ball, B;((0,z*)), in the Gromov-Hausdorff
sense.

As above, the 2-dimensional area of a generic slice, £2, of M, is close to the
area of the ball By(z*) C C(S!). Since the metric on M} has been rescaled, the
pointwise norm of the first Chern form, ¢; is very small, and we have

lim c =0.
1—>00 212

On the other hand, according the theory of differential characters, the above
integral is equal mod Z, to the associated differential character, é;, evaluated on
0%?; [ChSi]. The crucial point is that the quantity, é (02?) € R/Z, is determined
entirely from the geometry of TM at 0X%. In fact, as i — oo, the secondary
geometric invariant, é (8X?), converges to the mod Z reduction of the boundary
term in Gauss-Bonnet formula for C(S},). As in the model example, this is nonzero
mod Z, unless 2d = 2r i.e. unless C(S5,;) = R%. Thus, we get a contradiction.

To see why the boundary term in the Gauss-Bonnet formula appears, note that
near 0%, as i — oo, the convergence of M} to R"~2 x C(S},), takes place in the
C* topology (since we are away from the singularity which is purported to be
developing). Thus, the tangent bundle, T M, converges to the Whitney sum of a
flat trivial bundle of dimension n — 2 and the tangent bundle to C(S?).

By the Whitney sum formula in Chern Weil theory, the Chern form, ¢; (T M),
converges, to the Chern form ¢;(X?). Since dim £? = 2, the first Chern form
is the Euler form i.e. the Gauss-Bonnet form of C(S};). According to [ChSi],
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these relations continue to hold at the more refined level of differential characters.
Moreover, when evaluated on %2, the Euler character is just the boundary term
in the Gauss-Bonnet formula.

REMARK 5.2. In the above argument, we used the first Chern form. This
required a Kahler structure and a 2-sided bound on Ricci curvature. Had we instead
attempted to use the Gauss-Bonnet formula for the induced metric on a slice, then
given our assumptions, it would not have been possible to show that the interior
term approached zero as ¢ — oco; compare the discussion in Section 7.

6. Special holonomy and tangent cones

In this section we indicate the proof of Corollary 0.13 and give some additional
results on the classification of tangent cones for the case of special holonomy; for
details see [Ch3], [ChTi2].

Corollary 0.13 states that if M deH, y  where the manifolds, MP, have
special holonomy and satisfy the 2-sided bound, |RicMin| < n — 1, then for all
Y € Sp—4 \ Sn—g, there exists at least one tangent cone, Yy, of H-orbifold type,

Y, =R"* xRYT.

By definition, if y € Sp,—4 \ Sn—5, then there exists some tangent cone of the
form, R"~* x C(X?®). By Corollary 4.6, the regular part of this cone is Ricci flat.
From Theorem 0.11, it follows that X3 is smooth. It follows that Y, = R*“*xR*/T
as above.

It remains only to show

Sn——ﬁ \Sn—ﬁ = @,
and if H C Sp(%)Sp(1), then
Sn—5 \Sn—S =0.

This is a consequence of the following Theorem 6.1.
Recall the inclusions SU(%) C U(%), Sp(%) C Sp(%)Sp(1), and SU(3) C G2 C
Spin(7).

THEOREM 6.1. ([ChTi2]) Let the sequence, M? €%, Y™ of manifolds with
special holonomy, H, satisfy (3.3), (4.1).

i) If H C U(%), then
Sn-i\Sn—i-1 =0 (i # 2k, for some k € Z).

ii) If H C Sp(%)Sp(1), then
Sn—i\Sn—i—1 =0 (z # 4k, for some k € Z).
iii) If H C Spin(7), then
Sn—i\Sn—i-1 =10 (i #4,6,7,8).
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7. Integral bounds on curvature

In this section (and the next) we describe the effect of adding an integral bound
on curvature to the hypotheses (3.1), (3.3). Recall that (3.1) specifies only a lower
bound on Ricci curvature and not a 2-sided bound as in Sections 5, 6. However,
the results apply in particular to Einstein manifolds.

The integral bound is an extra apriori assumption. But in the case of special
holonomy, an Ls bound on curvature is implied by a bound on the topological
invariant, C'(M™), of (0.10); see Section 9.

Let 1 < p < %. In the presence of an L, bound on curvature, there are two
basic statements which hold without further qualification:

i) The singular set has Hausdorff dimension < (n — 2p). In fact, H"~?P(S) =0
unless p is an integer.

ii) If p is an integer, the tangent cone is unique for H"~?P-a.e. y € S and is of
orbifold type Y, = R"~?’ x R?/T.

At least in the Kahler case and for manifolds with special holonomy, an addi-
tional fact holds:

iii) For p an integer, bounded subsets of the singular set have have finite (n—2p)-
dimensional Hausdorff measure and are actually (n — 2p)-rectifiable.

If the Kéahler or special holonomy assumption is omitted in iii), rectifiability of
bounded subsets is known for that part, N, of S, where “nonexceptional” tangent
cones are present. This awkward point might just be a reflection of the present
state of our technology. If p=1orp= %, then N = S.

There are three main steps in the proofs of i) and the statement in iii) concern-
ing the finiteness of Hausdorff measure. The first of these is also the starting point
for proving ii).

a) Show that if k < 2p, then for H"?P-a.e. y € S,_, there exists at least one
tangent cone of type R"~* x C(S*~1/T'), (k > 2), or R"~2 x C(S},), (k = 2).

b) Prove an e-regularity theorem to the effect that if a sequence satisfying (3.1),
(3.3), converges to a tangent cone, Yy, as in a), then when measured in the Ly sense,
a definite amount of curvature must concentrate in the limit at y.

c) Show that for bounded subsets of S, the curvature concentration required in
b) can only occur on a subset with finite (n — 2p)-dimensional Hausdorff measure,
whose intersection with S\ Sp—_2p, has vanishing (n — 2p)-dimensional Hausdorff
measure.

Step c) is proved by a standard covering argument. The assertion in step b)
should be compared to that of Corollary 0.13.

L, curvature bounds.

Step a) is trivial for p = 1.

For p = 1, the e-regularity theorem, step b), incorporates a direct generalization
of the argument in the model case which was described in Section 5. For simplicity,
we consider balls of radius 1; the case of arbitrary radius follows by a simple scaling
argument.
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THEOREM 7.1. ([ChCoTi2]) For all v,n > 0, there exists € = e(n,v,n) > 0,
£=£(n,v,n) < oo, § =d(n,v,n) >0, such that if M™ satisfies

Ricpym > —(n — 1)e, (7.2)
Vol(By (m)) > v, (73)
f mi<s, (7.4
B3e(m)

and for some 0 < d < and (0,z*) € R"2 x C(Si,),

dar(Be(m), Be((0,2*))) < €71, (7.5)
then for B.(0) C R", we have

deu(Bi(m), B1(0)) < 7. (7.6)

As in the proof of Theorem 0.11, the idea is to reduce to the 2-dimensional
case by employing a slicing argument. Since we don’t have a first Chern form at
our disposal, we want to use the intrinsic Gauss-Bonnet formula on a generic slice.
So we must continue the discussion of Section 5.

The next step in that discussion is to show that the second fundamental form
of a generic level set of the map ® is small in the Ly-sense. This, together with
(7.4) and the Gauss curvature equation, gives that the L;-norm of the intrinsic
curvature on a generic slice is small. Similar properties hold for the map A.

At this point, the proof can be completed by employing on a generic slice,
essentially the same argument as in the model example explained in Section 5.

Suppose we add to assumptions, (3.1), (3.3), the integral bound,

f o mise 1.7
Bl(mz)

Since c¢) above follows by a standard covering argument, we get:

THEOREM 7.8. ([ChCoTi2]) Let M 95 ¥ satisfy (3.1), (3.3), (7.7). Then
bounded subsets of the singular set, S, have finite (n — 2)-dimensional Hausdorff
measure.

L, curvature bounds; p > 1.

Assume

][ R|*? <ec. (7.9)
Bl (ml)

Flatness of R(Y,).

The proof of step a) begins by establishing a weaker statement. To avoid
inessential technical difficulties, we explain the argument in the Einstein case where,
by Theorem 4.2, the regular part, R, is a smooth Einstein manifold.

Relation (7.9), together with a covering argument, easily implies that for H"~2P-
a.e. y €Y, if we rescale the ball, B,.(y), to a ball of radius 1, and let » — 0, then

][ RIP =0 (asT —0). (7.10)
Bl(y)ﬁ’R :



EINSTEIN METRICS AND METRICS WITH SPECIAL HOLONOMY 59

To see this, let {U;} denote a sequence of neighborhoods whose intersection is some
bounded subset of S. Then

lim |RIP =0,
and since we let 7 — 0, in the covering argument, we need only consider balls which
are contained in the Uj;.
From (7.10) it follows that there exists A C S, with H"72P(S \ A) = 0, such
that R(Yy) is flat, for all y € A.

Existence of tangent cones of orbifold type.

If y € (Sp_k \ Sn_k_1), there exists some tangent cone of the form R¥ x C(X).
By induction on p, the cross-section, X can be assumed to be smooth. Otherwise,
we would have dim S > n—k+1 > n — 2p. (Here, we use dim S(C(X)) =
dim S(X) +1.) It follows that X is of the form S*~! /T which gives step a).

The e-regularity theorem.

For p a half integer, an argument which closely resembles the one given at the
end of Section 4 can be applied away from the singularity.

For n even and p = 7 there is no problem in generalizing Theorem 7.1, since
there is no second fundamental form to contend with.

As of this moment, for p an integer, with 1 < p < %, the proof of Theorem 7.1
has not been generalized to the case in which an L, curvature bound is assumed
and the cone, R"~2 x C(S},), is replaced by a cone R"™?? x C(X), where X =
Sn=2p—1 /T, A technical difficulty arises when one attempts to estimate Lo,-norm
of the second fundamental form of a generic slice.

The difficulty can be illustrated by considering the case, R x C'(X), in which
there is just a single harmonic function b. By a standard formula, the second
fundamental form of a level surface of b satisfies

|Hessp|?> — |Hessp( -, N)|?
Vb2 ’

112 =

where N = Vb/|Vb|. So to estimate the Lg,-norm of the second fundamental
form, one must bound an expression with |Hessp|?? in the numerator and |Vb|?P
in the denominator.

The L, bound on curvature, together with a higher order Bochner formula,
yields an La, bound on |Hessp|. This bound, which is also crucial for the results
on rectifiability of singular sets, is explained at greater length in Section 8.

To get the required bound on the denominator, it would suffice show that at
all points of a generic slice, |V is close to 1. Thinking (a bit loosely) in terms of
the Sobolev imbedding theorem, we note that the L, bound on |Hessp| gives an
Lyp bound on the norm of V|Vb|. However, since the slices have dimension 2p, it
would seem that what is actually needed is a bound on the Lyy-norm of V|Vb|,
for some p’ > p. Such a bound is lacking; compare the discussion of Section 8.

If on the other hand, we are given an L, bound on curvature, with p’ > p,
then we do get that |Vb} is close to 1, everywhere on a generic slice.

By a covering argument like that which plays a role in Theorem 7.8, we obtain:
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THEOREM 7.11. ([ChCoTi2], [Ch3]) Let M® €5 Vv satisfy (3.1), (3.3),
(7.9). Then

dim § <n—2p,
H'2P(S\Spk) =0 (k< 2p),
H"2P(S) =0 (p not an integer) .

Finiteness of Hausdorff measure.

Because of the difficulty in generalizing Theorem 7.1 to the case, p > 1, at
present there is only a partial analog of Theorem 7.11 in the real case. In the
complex case, one has an analog of Theorem 7.1 in which higher Chern forms, cp,
are used in the same way as c¢; is used in proving Theorem 0.11; compare Sections
5, 9. This leads to:

THEOREM 7.12. ([ChCoTi2], [Ch3]) Suppose that the sequence of Ké&hler

manifolds, M} don, Y, satisfy (3.3), (4.1), (7.9). Then bounded subsets of the
singular set, S, have finite (n — 2p)-dimensional Hausdorff measure.

The real case.

In the real case, the best we can do is to use Pontrjagin forms in place of
Chern forms. This requires our assuming that p = 2k is an even integer. However,
the e-regularity theorem still does not work perfectly. The reason is that there
are certain tangent cones, R"4* x C(S*~1/T"), for which all secondary geometric
invariants associated to Pontrjagin polynomials of degree k vanish; see [ChSi]. This
means that we can only deal with the subset, ' C S, for which there exists a cone,
R % x C(S*~1/T), which is not of this type.

If, for instance, k = 1, then the tangent cones which must be excluded are those
of the form R"~* x C(S3/T), where S3 /I is a lens space, L, 4, with ¢> = —1 mod p.

As in Theorem 7.12, we get:

THEOREM 7.13. ([ChCoTi2], [Ch3]) Let M} dony y satisfy (3.3), (4.1),
(7.9), for p = 2k. Then bounded subsets of the subset, A" C S, have finite (n — 4k)-
dimensional Hausdorff measure.

Uniqueness of tangent cones.

The statement concerning the existence of tangent cones of orbifold type can
be strengthened.

THEOREM 7.14. ([ChCoTi2], [Ch3]) Let MP 2%, YV satisfy (3.3), (4.1),
(7.9). Then there exists A C S, with H"~2P(S \ A) = 0, such that for all y € A,
the tangent cone is unique and of orbifold type R*~?F x R?P/T.

For p > 1, Theorem 7.14 is proved by a deformation argument.

It is not difficult to see that (in all situations in geometric analysis in which
tangent cones arise) the space of all tangent cones is connected in a suitable topol-
ogy. So in the context of Theorem 7.14, one can start with a tangent cone of the
form R"~2P x C(S?’~!/T') and try to show that it cannot be deformed within the
space of tangent cones.
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If we knew that every tangent cone split off an isometric factor, R 2P it
would follow as in the proof of existence of tangent cones of orbifold type, that every
tangent cone is of the form R"~2P x C'(S??~1/T). Although apriori, I' might depend
on the particular tangent cone, since spherical space forms cannot be deformed, we
would be done. (Here, the assumption, p > 1, enters.)

A volume comparison argument.

Since we can’t assume that every tangent cone splits off R"~?P isometrically,
we must bring in some additional information.

A general consequence of relative volume comparison is that, for all tangent
cones at a given point, the (n — 1)-dimensional Hausdorff measure of the cross-
section is the same. Using this and a volume comparison argument which depends
on knowing that for every tangent cone, Yy, the regular part, R(Y,), is flat, the
proof of Theorem 7.11 can be completed.

Specifically, one shows that among all tangent cones which are sufficiently close
to one of the form R*~?P xC(S??~1/T'), the cone, R*~?x C(S??~1/T'), is the unique
one for which the (n — 1)-dimensional Hausdorff measure, of the cross-section is
maximal.

REMARK 7.15. The volume comparison argument discussed above also uses
the rigidity of spherical space forms (for p > 1), to locate inside of Yy, a copy of
S?P=1/T'. This being done, one views Y, as a tube around S**~!/T" and uses the
flatness of R(Yy).

REMARK 7.16. If the conclusion of the volume comparison argument could
be shown to hold without without appealing to the flatness of the regular part,
R(Yy), it would follow that the tangent cone is unique at all points of Sp_4 \ Sp—s.
Alternatively, this would follow if the flatness of R(Y},) could be established without
using the integral bound on curvature (7.9). Knowing uniqueness of the tangent
cone at all points of S,,_4 \ Sp—6 would be helpful in proving Conjecture 0.15.

REMARK 7.17. For the case p = 1, there is a completely different proof of
uniqueness of tangent cones, which is closely related to the proof of rectifiablity of
singular sets discussed in Section 8. This argument is valid for all p. However, it
does not work in the absence of the integral bound (7.9).

8. Rectifiability of singular sets

A metric space, W, is called d-rectifiable if 0 < H¢(W) < oo and there exists a
countable collection of subsets, C;, with H*(W \ {J; C;) = 0, such that each Cj is
bi-Lipschitz to a subset of R.

Rectifiability can be thought of as a weak measure theoretic generalization of
the property of being a Lipschitz manifold. In particular, first order calculus makes
sense on rectifiable spaces.

Proving that a space is rectifiable can be a step in the process of establish-
ing additional regularity properties; compare [HarShiff|, [Ti3]. It is hoped that
the rectifiability theorems of this section and Section 9 will be useful in proving
Conjecture 0.15.
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While rectifiability plays a central role in geometric measure theory, most of
the classical theory is concerned with subsets of R ; compare [Fe], [Ma], [Sim1]-
[Sim3]. As a consequence, the standard criteria for establishing that a set is recti-
fiable do not apply in our (intrinsic) context.

Our main results are strengthenings of Theorems 7.8, 7.12, 7.13.

THEOREM 8.1. ([Ch3]) Let MP % Y satisfy (3.3), (4.1), (7.9). Then
bounded subsets of the singular set, S, are (n — 2)-rectifiable.

THEOREM 8.2. ([Ch3]) Let the sequence of Kiihler manifolds, MP €%, V',
satisfy (3.3), (4.1), (7.9). Then bounded subsets of the singular set, S, are (n — 2p)-
rectifiable.

THEOREM 8.3. ([Ch3]) Let M? 2S5 V| satisfy (3.3), (4.1), (7.9), for p = 2k.
Then bounded subsets of the subset, N' C S, are (n — 4k)-rectifiable.

Theorems 8.1-8.3 are proved by directly constructing the sets, C;, and bi-
Lipschitz maps from the C; to a Euclidean space of the appropriate dimension.
Apart from the differences in the hypotheses of the underlying e-regularity theo-
rems, the proofs in all three cases are essentially the same.

To fix notation, we suppose that our integral bound is on the L,-norm of the
curvature and hence, that dim S =n — 2p.

To grasp the main ideas, there is no harm in thinking of the Einstein case, in
which we have a closed singular set and a smooth regular part.

Tangent cones and locally defined Lipschitz maps.

Consider y € A, where A C § is as in Theorem 7.14. As in the discussion of
slicing in Section 5, a tangent cone of the form R"~2F x C(S?P~1/TI"), gives rise to
a locally defined map ®; = (b;1,...,bin—2p), from each approximating manifold,
MP, to R"~?P, where the b, ; are harmonic functions.

By the Cheng-Yau gradient estimate, the maps, ®;, have a uniform gradient
bound. Thus we can pass to the limit and get a locally defined Lipschitz map,
® = (by,...,bp_3p), from a neighborhood of y € Y, to R"~?7.

If we can show that when restricted to S, the map, ®, is bi-Lipschitz on some
subset, C C S, with H"~2P(C) > 0, then by standard soft argument, the proof can
be completed.

Intuitively, we would like to find C' C S, with H"~2P(C) > 0, such that & |C
is nondegenerate in the sense that the “gradients” of our Lipschitz functions, bj,
are linearly independent. In the simplest case, n — 2p = 1, we want the “gradient”
of b|C to be nonvanishing. (We use quotes because the sense in which b; | S has
a gradient is not immediately clear.)

Volume nondegeneracy of 9.

The first step is to show that ® | S, is nondegenerate in a weaker sense. Namely,
(n — 2p)-dimensional measure of the range of ® | S has a definite lower bound. This
statement entails kind of “gap” phenomenon: If A is nonempty, then H"~2P(4) > 0.

In fact, the gap theorem is just a quantitative version of the e-regularity theo-
rem. If near y € A, most slices (i.e. fibres of ®) did not intersect the singular set,
we could apply the e-regularity theorem directly on the limit space (to the union
of such fibres) and conclude that y ¢ S.
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Reduction to the existence of V® on S.

We observed above that @ | S does not totally compress volume. To complete
the argument, it would suffice to know that ®|S has the additional property that if
for H"~2P-a.e. y € A, it compresses distance in some direction (i.e. if ® is nowhere
bi-Lipschitz) then it does compress volume.

Nice maps such as linear maps, or more generally, differentiable maps, do have
this property. For instance, if a linear map defined on R™ has a nontrivial kernel,
then its image is lower dimensional and hence, has vanishing n-dimensional volume.
So we would like to know that near generic points of A, the map, ® looks asymp-
totically (generalized) linear i.e. differentiable, in some generalized sense; compare
(1.1).

In essence, we have reduced the problem of showing that the “gradient” of &
does not vanish on a subset of A with positive measure, to showing that V& exists
on such a subset!

It is not difficult to see that rather than working directly on the singular set,
it suffices to show that for y € A, the restriction of @ to the regular part, R, looks
asymptotically generalized linear as we approach y.

A higher order Bochner formula.

In our situation a function is (approximately) generalized linear if its Hessian is
small in the integral sense; compare the discussion of Bochner’s formula in Section
1 and the proofs of the splitting theorem and in its generalization, described in
Section 2.

Let f,,1 denote the average of f over the ball of radius 1.

Let h: Bi(m) — R be harmonic and put

sup |Vh|=V.
Bg(m)

By using in tandem the Bochner formulas for A|Vh|2, A|Hessp|?, one can derive
an estimate for the quantities,

7[ |Hessy|?? , ][ |VHessp|? - |Hessy|?P~*, (8.4)
B%(m) B%(m)
in terms of
Voo f VAR (TRl IRPS (5:5)
Bl(m) B](m)

see [Ch3],

For fixed V, the quantities in (8.4) will be as small as one likes, if the second
two quantities in (8.5) are sufficiently small.

If we apply the above estimate to the function, b; ;, then the first term in (8.5)
is bounded and the second vanishes in the limit as i — co. However, since as ¢ — oo,
we are converging to a (rescaled) neighborhood of a singular point, y € A, by the
e-regularity theorem, the curvature must be concentrating. Thus, while bounded,
the third term in (8.5) is definitely not going to zero as i — oo.

A removability property of the singular set.

The above estimate can be passed to the limit space, Y, and applied to the
functions b; on the regular part R. However, since apparently, a contribution from
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the curvature which has concentrated on the singular set must be included, what
this accomplishes is not immediately clear.

The same considerations which led in Section 7, to the conclusion that tangent
cones are flat on their regular parts, show that near y € A, after suitable rescaling,
the integral of |R|P over the regular set, R, is small.

Thus, it would suffice to know that if near y € A, we want to control the Ly,-
norm of Hessp; on R, then only the curvature on R contributes to the estimate i.e.
the curvature which concentrates in the limit on S can be ignored.

This assertion, which says that in a certain sense, the singular set is “remov-
able”, turns out to hold. To prove it, we attempt to repeat the derivation of (8.4),
(8.5), while working on the smooth incomplete manifold R.

Apart from a several integrations by parts, the argument is purely local. The
whole point is to show is that the integrations by parts don’t lead to a “residue
term” attached to the singular set.

Given that bounded subsets of S have finite (n — 2p)-dimensional Hausdorff
measure, the estimates which were gotten by passing the estimates in the smooth
case to the limit, provide enough control on the functions, b, to prove the absence
of a residue attached to the singular set. Here, although our ultimate interest is in
|Hessp, |,,, the estimate on the term involving |VHessp,| is needed as well.

9. Anti-self-duality of curvature and the structure of singular sets

In dimension 4, the notion of anti-self-dual (or self-dual) curvature tensor, one

which satisfies *xF' = —F (or xF = F) is of crucial importance in gauge theory and
of significance in riemannian geometry. The key point is the identity
1
MY = — F|?, 9.1
T =g [ 1P 01)

where p; denotes the first Pontrjagin class. This relation, which follows directly
from Chern-Weil theory, implies that the underlying connection is an absolute min-
imum for the Yang-Mills functional.

The class of riemannian manifolds with special holonomy provides a framework
for extending anti-self-duality to higher dimensions. For such manifolds, there is a
parallel (n — 4)-form ; compare [Joy3], [Sal], [Sa2] and see (0.8). The curvature
tensor of a connection on a bundle whose base space, M™, has such a parallel
(n — 4)-form, is called Q-anti-self-dual if

*xF=-FAQ; (9.2)

compare [Ti3], [BaHiSingl], [BaHiSing2]. From now on, we will supress the
dependence on ) and say F satisfying (9.2) is anti-self-dual.

In [Ti3], a program was initiated, whose aim is to extend anti-self-duality
and its consequences to higher dimensional gauge theory. Strong information was
obtained on the degeneration problem, and a compactification of the moduli space
was introduced, for the case in which the anti-self-dual connection on an auxilliary
bundle varies, while the riemannian connection stays fixed. In the present paper, by
contrast, we are concerned with the situation in which the anti-self-dual connection
is the riemannian connection itself.

As noted in [Ti3], for certain purposes, it is useful to require only that the
suitably defined trace free part, Fo, satisfies (9.2), and sometimes, that the trace of
F' is harmonic.
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If M™ has special holonomy, then the trace free part, Ry, of its riemann curva-
ture tensor, R, satisfies

*Rg=—Ro AN (93)

compare [Joy3], [Sal], [Sa2].

With the exception of the cases, Hy = U(%), Ho = Sp(%)Sp(1), we have
Ro = R.

In the U(%) case, the part, R — Ry, is determined by the Ricci tensor and the
almost complex structure.

In the Sp(%)Sp(1) case, (n > 4), R — Ry is determined locally by the anti-
commuting almost complex structures on the fibre (generated by I, J, K) and the
Ricci tensor Ricym = Ag.

As in the case of 4-manifolds with anti-self-dual curvature, for manifolds with
special holonomy, the Ly-norm of the full curvature tensor can be bounded in terms
of a topological invariant, C(M™), and a bound on the norm of F' — Fy, where in
the riemannian case, the norm of R — Ry can be bounded in terms of the Ricci
tensor. The characteristic number, C(M™), is defined by

C(M™) = (-p U [Q)(M™).

Just as in Section 8 (compare also Section 7) we have:

THEOREM 9.4. ([ChTi2]) Let the sequence, M? -2 ¥ of manifolds with
special holonomy and {C (M)} bounded above, satisfy (3.1), (3.3). Then bounded
subsets of the singular set, S, are (n — 4)-rectifiable.

REMARK 9.5. In light of Theorems 0.11, 6.1 and Corollary 0.13, the (n — 4)-
rectifiablity of & can be thought of as asserting that in a weak sense, S,_4 is
calibrated by the (n — 4)-form Q; see [HarLaw].

REMARK 9.6. The statements of Conjecture 0.15 and Theorem 9.4 can be gen-
eralized by replacing the sequence of manifolds, {M*}, by a sequence of H-orbifolds
with codimension 4 singularities. Part of the interest of this degree of generality
pertains to the quaternion-K&hler case with positive scalar curvature. As Blaine
Lawson pointed out to us, there are many examples of orbifolds with this property,
while conjecturally, in higher dimensions, the only smooth examples are symmetric
spaces; see[GaLaw], [HerHer].

10. Appendix; Review of special holonomy

In this appendix, we recall some material concerning aspects of special holo-
nomy which enter in the body of the paper. Specifically we discuss the Einstein
condition and the role played by complex structures (or partial complex structures)
in the various cases.

The cases: U(3),SU(3).

Let M™ be Kéahler, with Hermitian almost complex structure, I, satisfying
VI =0. Let e1,I(e1),... ,ex,I(ez) denote an orthonormal basis for the tangent
space, M;', at p € M"™. The Kébhler form, w, is given by

w=e A(e]) +---+ex Nl(ez).
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By the holonomy theorem of Ambrose-Singer (or by direct calculation) the
curvature transformations are contained in u(%) and the riemann curvature tensor
can be regarded as an element of A? ®u(3). With this understanding, the rela-
tion R(z,y,u,v) = R(z,y,I(u),I(v)) and the Jacobi identity give the well known
formula

<W7R>(w7 y) = R(eiaj(ei),x,y)

N

.
Il

Il
|
<. [an
vzl Mnl:
—
-

R(ZL’ ei’I(ei),y) - R(I(ei)7m’ ei;y)

=1

vl

= +ZR z,e;,e,I(y)) + ZR(%I(@i),I(@i)’y)

= RIC(CL' I(y)). (10.1)

Thus, if we regard R € S*(u(%)), then M™ is Kéhler-Einstein if and only if
relative to the decomposition of Sz( u(%)) induced by the decomposition, u(%) =
su(%) ® R -w, the mixed components of R vanish. Similarly, M™ is Ricci flat if and
only if R € S?(su(%)).

The cases: Sp(3)Sp(1), Sp(3).

Let M™ be hyper-Kahler, with parallel anti-commuting parallel almost complex
structures I, J, K, satisfying IJ = K. In this case, n is a multiple of 4. The group,
Sp(%) consists of those orthogonal transformations which commute with I, J, K.

Let ey, I(e1), J(e1), K(e1),e2,... ,K(e%) denote an orthonormal basis for the
tangent space, My, at p € M™.

Let wy, wy, wg denote the the Kahler forms of I, J, K, respectively.

Since, M™ is Kéahler with respect to I, by (10.1), we have (wyr, R)(z,y) =
Ric(z, I(y)). Since IJ = —JI and M™ is Kahler with respect to J,

(w, R)(z,y) = p _ Rlei, I(ei),z,y) + ) R(J((e:), 1 (ei)),z,y)

N
'Mm

fi
L
fi

1

R(ei, I(e:), 2,y) — ) R(J((e:), JI(es)), 2,y)

[
NS
N

—
-

1

.

wis |l

sl

= Res I(ei),z,y) — > R(((e:), I(e:)), ,v)

= i=1

=0,. (10.2)

Thus, Ricp» = 0 in the hyper-Kéahler case.

Let Id € SO(n) denote the identity transformation. Linear transformations of
the formr-IT+s-J+t- K+ u-1d, with r2 + s + t> + 4 = 1, form a subgroup
of SO(n). This subgroup, which is isometric to Sp(1), commutes with the action
of Sp(%) and intersects Sp(%) in the element, —Id. The group generated by Sp(%)
and Sp(1) is denoted Sp(%} )Sp(l)

The Lie algebra of Sp( )Sp(1) has the orthogonal orthogonal direct sum de-
composition sp(7) @ sp(1), where sp(1)=R-widR-wy®R-wx & R.

=
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We have (wr,ws) = (wr,wk) = (ws,wk) = 0. Thus, if the group, U(3), is
defined with respect to any one of the almost complex structures, I, J, K, then the
remaining two almost complex structures are contained in su(%).

If M™ is a riemannian manifold with Ho C Sp(7)Sp(1), the splitting, sp(%) @
sp(1), gives rise to orthogonal parallel sub-bundles of A*(M™). The second of these,
which we denote by FE, is spanned locally by I, J, K.

As above, let R denote the curvature tensor of M™, and let R denote the
curvature of E. It follows directly that R(L) = [R, L], for all L € E.

In fact, for n > 4,

8 .
Ryk = —— Ricy~(I(2),y),

n+8
8 .
RI,K = —m - Ricpsn (J(w),y) )
8 .
Rrs= ——5Rics (K(2),9). (103)

To see this, fix an almost complex structure, say I, and attempt to repeat
(10.2), which in the hyper-Kéhler case, gave Ricpym = 0. Using (10.3) in place of
(wr, R)(z,y) = Ricyn (z, I(y)) yields

<w17R>(xay) = R'iCM" (:E:I(y)) - RI,J("I"’ J(y)) + RI,K(wa K(y)) ’

(10.4)
and instead of (10.2), we get
Ricym (2,9) = —7 (@, 3)Ruk (10.5)
Relations (10.4), (10.5) imply
Ricyn (¢,y) = TRy (2, 1)) = Rrx (@, J) + Res(2, K©)), 100

which together with the corresponding relations for J, K, can be solved for Ry i (z, I(y)),
Rik(z,J(y)), Rrs(z,K(y)). This gives (10.3). (Note that for n = 4, the above
system of equations is degenerate, but we are assuming n > 4.)

From the last equation in (10.4), we get

Ry k(z,9)|2)* = R(z,y,2,1(2)) + R(z,y, J(2), K(2)) . (10.7)
Employing (10.7) four times gives
R(z,I(z),2,1(2)) + R(z, I(z), J(2), K(2)) + R(J(z), K(z), z,1(2))
+ R(J(z), K(z), J (2), K(2))

= nl_SSRicMn (z,z)|2]?

16 . )
= n . 10.8
n+8RlCM (z,2)|z| (10.8)

Relation (10.8) implies that M™ is Einstein.
In (10.2)—-(10.8), we have followed [Be], which is based on [Ish].
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Recall that the twistor space associated to M™ is by definition, the unit sphere
bundle, S(E), of E. When endowed with the natural riemannian submersion metric
induced by the connection on E, the fibration,

S? & S(E) & M™,

has totally geodesic fibres and, by (10.2), apriori bounded parallel integrability
tensor.

Given L € 7~ !(p), the tangent space at L splits as a direct sum of its horizontal
and vertical parts. Since L defines an Hermitian almost complex structure on My,
there is an induced Hermitian almost complex structure on the horizontal subspace
of S(E) at L. The tangent space to the fibre is an oriented 2-dimensional inner
product space. Thus, it carries a natural Hermitian almost complex structure as
well. Hence, there is an induced almost complex structure, Z, on S(E) which, as
can be checked directly, is actually integrable.

In general, the almost complex structure, Z is not parallel with respect to the
riemannian connection on the tangent bundle to S(E). However, there is a naturally
associated Hermitian orthogonal connection for which Z is parallel. This connection
is characterized by the condition that its torsion tensor is given by T = —1dVZ,
where 7 is viewed as 1-form with values in the tangent space and the exterior
derivative, dV, is defined by using the riemannian connection, V, on S(E).

The case: Gs.

Let V7 denote a real 7-dimensional inner product space, equipped with a 3-

form, ¢, for which there exists an orthonormal basis, ej,...,e7, such that for
€f,...,es the corresponding dual basis,
¢ =el Nes Aes + +ejAejhe; + e AegAer
+ e3N\ezAeg — esNef ey — esNejAe; — ezNeiAeg . (10.9)

The Lie group, Gs, is the subgroup of GL(V7) that fixes ¢. (A calculation
shows that up to normalization, ¢ can be identified with *Q of (0.8).)

Let a = aje; + ---+ arer, b= biel +--- + bres, and put Vol = ejA---Aek. Tt
is easy to check that

bAiPAiaPNiad = b(a) - |al® - Vol. (10.10)

Since, g fixes ¢, by choosing b such that b(a) = 1, it follows that |a|? = [g~!(a)|?det(g),
for all g €G,. Since g* fixes ¢ for all 4, by replacing g by g* and letting i — oo, it
follows det(g) = 1. Thus, Gy CSO(7).

Let i, denote interior product with e. When restricted to the orthogonal com-
plement, [e;]*, of the span of e;, the form, we, := i, ¢, is clearly symplectic. Define
the corresponding almost complex structure, I.,, on [e;]*, by we, (z,y) = (I, (), y).

Let H, C G2 denote the subgroup fixing the unit vector e and put H,, = H;.
For all 4, the subgroup H; C G2, consists of those elements of the unitary group,
U([es]*), which also fix the 3-form, ¢ — e;Aic, ¢ € A%([es]L). From this it is easily
checked H,, =SU([e;]*). In particular, dim H; = 8.

It is not difficult to verify that the action of G, is transitive on the unit sphere.
Hence, we get the fibration,

SU(3) = Go — S,

from which it follows that Gs is simply connected.
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Let M™ denote a riemannian manifold with restricted holonomy contained in
Ga. ‘

To see that Ricpsr = 0, note that since ¢ is Go invariant, it follows that ¢ is in
the kernel of the action (by derivation) of the Lie algebra g;. Writing this out in
terms of the basis, ey, ... , e7, yields the 7 independent equations which characterize
g2. If we view R € A*(V7) ® g2, then (written asymmetrically) these equations are

Reie, = Re4,€7 + Reg e 5

e1,63 — Re4186 - R65,87 ’

e1,e4 — Rez,e'r — Reg e
e1,e5 — —Repeq + R€3,€7 >
€1,66 — R€2765 + Reg ey

I~ =Ry~ Vi~V i~s)

er,er = Reges — Reges -

(10.11)

Let both sides of the i-th equation in (10.11) act on e;, take the innner product
with e1, and apply the Jacobi identity to the right-hand of the resulting equation. If
we sum over i, then terms the right-hand side cancel in pairs. Thus, Ricy(e1,€;1) =
0. Since G2 acts transitively on the unit sphere, this shows that Ricym = 0.

The case: Spin(7).

Let V2 denote a real 8-dimensional inner product space, equipped with a 4-

form, A, for which there exists an orthonormal basis, ej,...,eg, such that for
el,... ,es the corresponding dual basis,

A= PegNeg + *egPeg 5 (10.12)
where ¢, is the form in (10.9) and *., denotes the % operator on the subspace
spanned by e},...,e5. It is easy to check that the 4-form, A, has a corresponding
description with respect to any of the basis vectors, ej,...,es. The subgroup,

D C GL(V?®), for which the adjoint action fixes A, turns out to be Spin(7) C SO(8)
(and a calculation shows that up to normalization, A can be identified with Q of
(0.8)). This can be seen as follows.

Let K; denote the subgroup fixing e; and let #; denote its Lie algebra. Clearly,
K is isomorphic to Go, for all i.

The Lie algebra generated by £ and the standard almost complex structure,
I, given by I(es;—1) = egs, I(€2;) = —eai—1, is su(4) (where dim su(4) = 15). It is
easy to check that A is in the kernel of the action of su(4) (by derivation). Hence,
SU(4) c D.

Suppose there exists g € D such that g(eg) = c-eg, with ¢ # 1. The action of g*
on (V8)* fixes the subspace spanned by e}, ... ,e%. In addition, g*(e}) = c~le} +v*,
where v* is in the subspace spanned by ef,---,e5. From this it is trivial to check
that g fixes ., .. Hence g € Kg and ¢ = 1.

Since the subgroup, SU(4) C D acts isometrically and transitively on S7, it
follows that D C O(8); otherwise, there would exist g as above with ¢ # 1. Since
D preserves A2 # 0, this shows that D C SO(8).

The existence of the fibration,

Gy —»D— 57,
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implies that D is simply connected, with dim D=21. (This fibration plays a role in
the proof of Theorem 9.4, as does the corresponding fibration for the group Go.)
The subalgebra spanned by €7,€s and I, is easily checked to be isomorphic to
50(7) = spin(7). Thus, D is isomorphic to Spin(7).
The remainder of the discussion of the Spin(7) case can be completed in a
manner strictly analogous to the case Ga.
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