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NONCOMMUTATIVE YANG-MILLS THEORY AND
STRING THEORY

EDWARD WITTEN

I review recent work on the relation between string theory and Yang-
Mills theory on noncommutative spaces. In the long wavelength limit,
string theory has a conventional string perturbation expansion in terms
of ordinary Yang-Mills theory with small, o’-dependent corrections. On
the other hand, in a certain limit, where the B-field is effectively large,
the stringy excitations drop out and the string theory admits a system-
atic description in terms of non-commutative Yang-Mills theory. Com-
patibility of the two decriptions rests on a surprising mathematical fact:
though the gauge group of noncommutative Yang-Mills theory is dif-
ferent from the conventional Yang-Mills gauge group, the equivalence
relations generated by the two groups are the same, modulo a change of
variables. Open string field theory might offer a systematic framework
for describing open strings in terms of noncommutative associative alge-
bras, with all of the excited string states included, but this description
has not yet been useful.

Lecture at the Differential Geometry Conference, Harvard
(May, 1999).

In this lecture, I will describe recent results with N. Seiberg (8] aiming
to systematically describe the role in string theory of “noncommutative
Yang-Mills theory” in the sense of A. Connes. Noncommutative Yang-
Mills theory was first shown to give the solution of a string theory prob-
lem by Connes, Douglas, and Schwarz in the context of matrix model
compactification on a torus [2]. There have been many subsequent con-
tributions. Some of the new contributions that are most directly relevant
to today’s lecture are the work of Nekrasov and Schwarz [6] on instanton
solutions of noncommutative Yang-Mills theory, the work of Schomerus
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[7] on open strings in a background B-field, and Kontsevich’s work on
deformation quantization [4] together with its quantum field theory in-
terpretation by Cattaneo and Felder [1]. See also [3] for a recent review.
In the course of describing some of these results, I will also try to explain
how they relate to a wider picture.

First of all, I think that the main reason that string theory will
interest mathematicians in the long run is that at its core it is based
on a new kind of geometry, a successor to Riemannian geometry. But
this is very hard to convey, for two reasons. First of all, physicists do
not really understand the new geometry in any systematic way. Second,
the pieces of the story that we do understand are based on quantum
field theory constructions that are very difficult and typically inaccessible
mathematically.

Roughly speaking, in the new stringy geometry, the role of the Ein-
stein equations is played by the requirement that a certain two-dimensional
quantum field theory should be conformally invariant. This gives equa-
tions that are, in a certain limit, asymptotically close to the Einstein
equations, but do not coincide with them. Both parts of this assertion
are important.

If two-dimensional conformal invariance did not give the Einstein
equations to very high accuracy under ordinary conditions, string theory
would be in trouble, as a theory of nature. For Einstein’s theory is
certainly very successful experimentally.

On the other hand, as Einstein’s theory apparently cannot be quan-
tized, there is a need for a new theory that reduces to it in a suitable
limit. If two-dimensional conformal invariance gave the Einstein equa-
tions on the nose, string theory would fall short of providing this new
theory.

String theory in fact gives equations that differ from those of Ein-
stein’s theory in a very characteristic way. Einstein’s classical equations
are invariant under rescalings of length. If g denotes the spacetime met-
ric and ¢ is a positive real number, then the Einstein equations in vacuum
are invariant under g — tg. So, for example, classical black holes can
come in any size.

In string theory, this scale invariance is lost. There is a characteristic
length scale v/a'; in the most straightforward way of trying to relate
string theory to the real world, this length is about 10732 cm. (The
value is found by using the string theory formulas for the fine structure
constant and Newton’s constant.) For objects much bigger than this, the
Einstein equations are a good approximation. For small objects, they
are not.
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By analyzing the conditions for two-dimensional conformal invari-
ance, one can make a systematic expansion of the equations in powers
of the curvature. The expansion reads schematically

(1) 0= Ryj+ o' RixkrmRE™ + (o) DrRigLyy DT RJEIM 4 ..

where only a few illustrative terms have been written, and the ellipses
denote terms of higher order in o/. The generic term on the right-hand
side of (1) is of the form (’')® (for some integer s > 0) times a polynomial
in the Riemann tensor and its covariant derivatives that is homogeneous
of degree 2s + 2 (here the Riemann tensor is considered to be of degree
two, and a covariant derivative to be of degree one). In the small curva-
ture limit, the equation is dominated by the leading term 0 = R;;. For
simplicity, I have here considered only the vacuum Einstein equations
and their stringy extension. One can also incorporate matter; in fact,
on the string theory side, one is forced to do so, and the matter takes a
very definite form.

It is important for our story that the corrections to the Einstein
equations that appear in equation (1) are ordinary, local, covariant terms.
Einstein omitted them from his theory primarily on grounds of simplicity,
but otherwise they obey most of his criteria. (The one general criterion
formulated by Einstein that the corrections violate is, I believe, that
they contain higher derivatives while Einstein looked for second order
PDE’s. As I have tried to explain elsewhere [10] in a lecture that was in
a similar spirit to the one I am giving today, the higher derivative terms
indicate that some additional “fast” variables have been averaged out of
the equations. This is an important part of the story, but one that I will
not describe today.)

Though the string theory corrections to the Einstein equations are
usually negligible for large objects, for small objects these corrections are
typically big. A relatively simple example is a Calabi-Yau threefold X.
To use such a threefold for physical applications, one takes spacetime to
be R*x X (where R* is intepreted as four-dimensional Minkowski space).
When X is large compared to the stringy scale Va!, it can be treated
by classical Ricci-flat Kahler geometry, but when X becomes small, the
classical description breaks down and wild things happen, such as mirror
symmetry. It is very difficult to give a full account of all of the strange
things that happen in string theory for Calabi-Yau threefolds.

I am going to talk today about a case where we can come closer to
understanding what is going on in the stringy regime where the familiar
classical equations fail. This will be the problem of Yang-Mills instantons
on R%. How does this problem arise?
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Gauge fields, and therefore instantons, can be incorporated in string
theory in several different ways (which are nowadays often related to each
other by nonperturbative dualities). In a previous lecture [10], I consid-
ered instantons mainly from the point of view of the heterotic string,
but today we will use the older approach where gauge fields are asso-
ciated with open strings while gravity is associated with closed strings.
The most significant known physical application of the discussion is to
D-branes in Type II superstrings. For today, all that one needs to know
about D-branes is that a D-brane corresponds to a submanifold Y of
spacetime, and that we will be doing gauge theory on Y. Moreover, for
our purposes we can take Y to be a copy of R?* with its flat metric. R?
is linearly embedded in the spacetime, which for today’s lecture we can
take to be a flat R0,

Like the Einstein equations, the Yang-Mills equations receive cor-
rections in string theory which are unimportant for large objects but
very important for small ones. If F' is the Yang-Mills curvature, * the
Hodge star operator, and D the gauge-covariant extension of the exte-
rior derivative, the classical Yang-Mills equations read 0 = D % F, or
equivalently 0 = D! Fy;. The stringy extension of these equations reads
schematically

(2) 0= D'Fr; + o/[Fxr, DsjFEL) 4 ...

with higher order terms that are local, gauge invariant polynomials in
F and its covariant derivatives, multiplying suitable powers of o’. As
always, for large objects, the stringy corrections are small, and for small
objects, they are large.

The classical instanton equations, in particular, are scale-invariant, so
a classical Yang-Mills instanton can have any size. For a large instanton,
the classical Yang-Mills equations are a good approximation; for a small
instanton, they are not. So far, this is the usual story. The specific
problem of instantons on R*, however, has some additional features.

The flat metric on R? is, of course, essentially unique. However, the
problem of string instantons on R* depends not only on this flat metric
but on an additional microscopic parameter € A2R*; I will say a word
about its origin later. The self-dual projection of  will be called 6.

If @ # 0, then the rotation symmetry of R* is broken to a subgroup.
Thus, the case § = 0 is most similar to the classical instanton problem.
Indeed, one can show using the hyper-Kahler structure of R* that if
6+t = 0, then the instanton moduli space is the same in string theory
as in classical Yang-Mills theory. The string theory instantons of size
< Vo are not well approximated by classical instantons, but they have
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the same moduli space, if 87 = 0. I will let Mz,n denote the string
theory moduli space of based instantons on R* of rank N and instanton
number k for given 6.

In particular, the stringy instantons of #* = 0 have the familiar
“bubbling” singularities that bedevil Donaldson theory. In “bubbling,”
an instanton becomes small and collapses to a delta function. Oddly, the
term “bubbling,” which was certainly coined long before instantons were
studied in string theory, seems particularly appropriate in this stringy
situation. Our instantons are supported on R* ¢ R1?, but an instanton
that shrinks to a point in R* can literally “bubble away” into the higher
dimensional world. The bubbled instanton is a point-like object (called
technically a “—1-brane”) in R!?. The bubbling phenomenon in string
theory is described by the ADHM construction of instantons.

If 6% # 0, the instanton moduli space is modified from what it is in
classical gauge theory. For 8+ # 0, there is a “no bubbling theorem,”
which is proved by using the fact that there is an energetic barrier to
separating the —1-brane from R*. The barrier exists because a state
with such a separated —1-brane would not be supersymmetric. Hence,
for 6% # 0, the moduli space Mz’ ~ lacks the bubbling singularities. As
a result, in fact, MZ y is smooth if k and N are relatively prime. MZ’ N
still inherits a hyper’-Ké,hler structure from the hyper-Kahler structure
of R4, and it is independent of @ in the limit that the instantons are
extremely large.

What hyper-Kahler manifold has those properties? According to the
ADHM construction of instantons, the classical instanton moduli space
is a “hyper-Kahler quotient” x~!(0)/G, where p is the hyper-Kéhler
moment map for a linear action of G = U(k) on a flat hyper-Kahler
manifold R4*+4%N_ The relevant action of G preserves a hyper-Kahler
structure on R4k’ +4kN , and p is the associated hyper-Kahler moment
map. p takes values in S = A2TR* ® g, with g the Lie algebra of G.

Because the center of G is U(1), there is a natural embedding of
A%*tR% in S. A hyper-Kahler manifold that lacks bubbling singularities
and is smooth if (k,N) = 1 is u~1(8%)/G, for nonzero §+ € A>+(R?).
Taking " # 0 does not change the behavior of the big instantons, but
it eliminates bubbling for small instantons. This is what we want. The
hyper-Kahler manifold z~(6%)/G has been studied mathematically as
a partial desingularization of the usual instanton moduli space on R4
[6]. But what sort of objects does it parametrize?

This old question, which has been with us since the discovery of the
ADHM construction of instantons and the hyper-Kéahler quotient con-
struction of hyper-Kahler manifolds, was neatly answered by Nekrasov
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and Schwarz [6]. They identified u~1(8%)/G as the “moduli space of
instantons on noncommutative R*” with the given 6+.

To describe the appropriate notion of gauge theory on noncommuta-
tive R?, we begin with a bivector § € A?R?. (The definition of the theory
will depend on an arbitrary bivector. It can be shown, for instance via
the ADHM construction, that the instanton moduli space depends only
on the self-dual projection 8% of §.) @ determines a Poisson bracket of
functions on R*:

: ., Of Og
(3) {f,g}:i;eﬂa—z—,.@.

One can deform the algebra of functions on R* to an associative algebra
A, with multiplication *, such that

(4) frg—gxf={fg}+...

where the ellipses denote terms that in a suitable sense are small. This
notion is often captured by introducing a formal deformation parameter
h, and writing f xg — g * f = h{f, g} + O(h?). For our present purposes,
though, it is more pertinent to consider the behavior under scaling of R*.
If we set fi(z) = f(z/t), keeping f fixed as t — oo, then {f;,g:} ~ 1/t%.
The property of the * product that we want, apart from associativity, is
that

(5) frxge — gu* fr = {fi, 9} + O(1/t%).

The * product with these properties is essentially unique (up to auto-
morphism of the algebra A) and can be described by a very explicit
formula:

1 o 0
— z w2
6)  frgl@)=[exp |3 ZO oy 57 | T W92
Now let us move on to gauge theory, which we will formulate in the
most elementary possible way. A gauge field, in the rank one case, is

given by a “one-form”

4
(7) A= ZA,-dmz,
1=1

where the A; are elements of the algebra A. The gauge-covariant exterior
derivative is D = d+1A. The gauge transformation law is the statement
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that under an infinitesimal gauge transformation, 6D = i[D,¢], with
€ € A. We get for noncommutative gauge fields of rank one

(8) 0A =de+iA*e—iex A

For rank N gauge fields, one would use the same formulas, with A; and
€ regarded as elements of A ® Mat(N), where Mat(N) is the algebra of
N X N complex matrices. The gauge-covariant curvature is

-~ 1 . .
(9) F=: > Fijda’ A da,
1,3
where
(10) F;; = 6,'Aj — ain +iA;x Aj — 1A, x A;.

The instanton equation is
(11) Ft=o,

where F is the self-dual projection of F. Nekrasov and Schwarz showed
that solutions of this equation can be obtained by an ADHM construc-
tion, and that the moduli space of solutions so obtained is p~1(6)/G.

This gives an interpretation of the deformed hyper-Kéhler quotient,
but is it what we want for string theory? So far, I have described two
theories that both have classical Yang-Mills theory as a limiting approx-
imation. In fact, in each case, the deformation has small effects for large
objects, and large effects for small objects. In string theory the char-
acteristic length, above which the theory reduces to classical Yang-Mills
theory, is vVo/. In the case of the noncommutative Yang-Mills theory, a
similar role is played by /]8] = (8,8)'/4, where (, ) is the natural inner
product on bivectors in R4, and we take a fourth root because (8, 0) has
dimensions of (length)?. If the functions f and g have characteristic scale
of variation much greater than \/m , then the Poisson bracket {f, g} is
small and the noncommutative Yang-Mills theory reduces to ordinary
Yang-Mills theory.

So far, so good. There is a rough parallel between these two theories
with o’ corresponding to {#|. But if we probe a bit more closely, we find
what at first sight appears to be an insuperable obstacle to matching up
these two theories. Both string theory and noncommutative Yang-Mills
theory can be systematically expanded in powers of (length)~!. In the
string theory case, the general form of the expansion is schematically
indicated in (2). In noncommutative Yang-Mills theory, one obtains an
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analogous expansion by expanding in powers of the Poisson bracket. In
each case, one is expanding in powers of a quantity (o’ or |0|) with
dimensions of length squared.

But there appears to be a crucial difference between the two. In the
string case, the expansion involves more and more complicated terms
that are written in the standard framework of classical gauge invariance.
The higher order corrections involves increasingly complicated terms that
are all written in the standard framework. For noncommutative Yang-
Mills theory, by contrast, the expansion seems to involve a change in the
rules: it involves an expansion of the multiplication law (in the defini-
tion of the curvature ﬁ) in powers of the Poisson bracket. These two
expansions sound very different. How can they agree?

Here we meet a surprise, described more fully in [8]. These is a sense
in which these two types of expansion do agree. To draw out the essential
issue in the sharpest way, consider the case of gauge fields of rank one.
Let us contrast two types of gauge fields and gauge invariances. In the
first case, we have a gauge field A that takes values in the space B of
classical rank one connections. In the second case, the gauge field A’
takes values in the space B’ of noncommutative rank one connections.
The respective gauge invariances are:

(A) Classical abelian gauge invariance: §A; = Oze.

(B) “Non-commutative” gauge invariance: §A] = 0;¢' + 1A} x€' — i€’ *
Al

These infinitesimal gauge transformation laws generate group ac-
tions. The two groups involved are in fact different. The first is abelian
and the second is non-abelian. No change of variables will establish an
isomorphism between an abelian group and a nonabelian one.

It seems, therefore, that it is impossible for these two types of gauge
theory to be equivalent. But that is not the right conclusion. To do
physics with gauge theory, we do not need to know what the gauge
group is; we only need to be able to identify its orbits. In other words,
we need to know when two gauge fields should be considered equivalent.
We need the equivalence relation that is generated by the infinitesimal
gauge invariances, but we do not need to make a particular choice of
generators of this equivalence relation.

It turns out that, though no change of variables could convert the
commutative group (A) into the noncommutative group (B), there is a
change of variables that maps one equivalence relation into the other. To
identify only the equivalence relation, and not the group, one has more
flexibility in the change of variables. A change of variables that would
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map one group into the other would take the general form

(12) € — €(e,de,...)
(13) A— A(AdA,...).

Here, in other words, one transforms the group generator € to a new
group generator € which (in a formal series expansion in powers of 6)
can be a general local functional of € and its derivatives. But € is in-
dependent of A: to show that two groups are isomorphic, one should
establish an isomorphism that is independent of any details about the
space that the groups act on. Likewise, in claiming an equivalence be-
tween commutative and noncommutative gauge theory, one would want
a mapping between the two spaces B and B’ of connections, so A should
be a function of A and its derivatives, independent of €. Of course, a
mapping of the type (12) does not exist; an abelian group cannot be
equivalent to a nonabelian one.

To show not that the two gauge groups are the same, but only that
the two equivalence relations are the same, modulo a change of variables,
one has more freedom. For this, one looks at a change of variables of the
form

(14) € —€(ede,...;AdA,...)
(15) Ao A(AdA,...).

There is no change in the second equation: we want to define a definite
map from B to B’, so A’ depends on A only and not on €. The change is in
the first equation: ¢ may depend on A as well as ¢, as we are not aiming
to identify the two gauge groups, but only the orbits they generate in
B and B'. Existence of a change of variables of the form (14) from the
classical to the noncommutative theory has the following implication: if
A is a classical gauge field, g a classical gauge transformation, and A9
the transform of A by g, then the corresponding noncommutative gauge
fields A’ and (A9)" are gauge equivalent in the noncommutative sense,
but the gauge transformation g’ that establishes this equivalence will
generally depend on A as well as g. Such a transformation from classical
to noncommutative gauge invariance does exist, and can be found in a
completely elementary way once one is persuaded to look for it [8].
Thus, the general framework of classical gauge invariance is equiva-
lent to the general framework of noncommutative gauge invariance. The
question is thus not which of these is correct in describing a given prob-
lem, but which is more useful. In particular, in string theory, one wants



694 EDWARD WITTEN

to know which framework for describing the corrections to Yang-Mills
theory is more convenient in a given situation.

The answer to this question turns out to be as follows. String theory
has both o’ and . It can be usefully described as noncommutative Yang-
Mills theory in a certain limit in which effectively |#| >> o'. For |0| < o/,
the noncommutative Yang-Mills framework is still perfectly correct, but
does not appear to be particularly useful.

For a hint of how this comes about (for more detail see [8]), we
will finally have to look at the two dimensional quantum field theories
that stringy geometry actually comes from. The action for a string with
worldsheet ¥ is

1 i
__1 x! J_ 1 1 J
(16) S=1 /Zgud AxdX7 — 2 /2 §1 J: BrsdX' AdX

Here X!, I = 1,...,4 are coordinates on R* that we use to describe
amap X : ¥ — R*% g;7s is the flat metric on R?*; and * is the Hodge
star, using a conformal structure on ¥. The B-field for our purposes is
a two-form with constant coefficients Byj.

This theory leads in general to the full complexity of string theory.
There is, however, a limit of the theory in which the excited states of the
strings drop out and the string theory can be described systematically in
terms of noncommutative Yang-Mills theory. This is the limit in which,
by taking g/a’ to zero with fixed B (or by scaling things in various other
ways to get a similar result) the second term in the action dominates, so
that the action reduces to

17 S'zi/ BdXI/\dXJ=—i/X*B.
(17) 5 EZ 17 g (B)

1,J

Actually, to be more precise, this limit does not exist for closed strings,
for indeed if ¥ is a closed surface, then S’ always vanishes, since the two-
form B is exact. However, if ¥ has a boundary, S’ is nontrivial. For the
important case that ¥ is a disc, S’ is a functional only of the boundary
values of X. If B is nondegenerate, then S’ is the usual action functional
for maps of a circle (namely 0X) to the symplectic manifold R* with
symplectic form B, and is hence intimately connected with quantization
of particle motion on R*. Note that I said “particle motion” rather than
“string motion”: in the limit that the full action functional S reduces
to S, the strings effectively reduce to particles on R*, and that is why
things become simple. This is also tied up with the fact that S’ has more
symmetry than S: it does not depend on the conformal structure of X,
and so is invariant under arbitrary diffeomorphisms of X.
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At any rate, in the limit that S’ dominates, the string theory can be
analyzed systematically [8] in terms of noncommutative Yang-Mills the-
ory, with the noncommutativity parameter being the bivector § = B™1.
Actually, this limit is closely related to the content of many important
recent papers. An example in which S’ dominates is the limit of toroidal
compactification (small area with fixed period of B) studied in the origi-
nal application [2] of noncommutative Yang-Mills theory to string theory.
Also, as Cataneo and Felder explain [1], the action they use in reinter-
preting Kontsevich’s results on deformation quantization reduces in the
symplectic case to §’.

Thus, in this limit, which one can think of roughly as |#| >> </, the
string theory remains nonclassical but can be described in great detail in
terms of noncommutative Yang-Mills theory. The simplicity of this limit
is tied with the fact that the characteristic excited states of the string
drop out, and the conformal action S is replaced by the topological action
S’. Is there a systematic framework, which somehow reduces to this
description in the relevant limit, for using noncommutative, associative
algebras to study the full-fledged string theory, with all the excited string
states?

String field theory provides such a framework, at least for the open
strings [9], but is regrettably messy. Here one looks not at functions
on spacetime, but at functions on the path space of spacetime (suitably
enriched with ghosts), and one defines a multiplication law for such func-
tions using a gluing law for the paths. This description includes all of
the stringy degrees of freedom, and is based on an elegant concept with
an abstract Chern-Simons action f (A * QA+ %—A * A * A). But it is
messy in detail and not much useful in practice. Indeed, the limit I have
sketched, in which the stringy excitations drop out and the string the-
ory can be described via noncommutative Yang-Mills theory, is the only
known limit in which the open string field theory reduces to something
nonclassical yet tractable.

But the purpose of the open string field theory, or whatever replaces
it, should be precisely to incorporate the excited string states in the
noncommutative framework. Many mathematicians and physicists have
felt that the messiness of open string field theory comes from trying
to shoehorn the more elegant two-dimensional worldsheet quantum field
theory into an associative algebra framework that does not naturally fit.
It has, in particular, been suggested that one should use an A, algebra
rather than an ordinary associative algebra, but this suggestion has not
yet been accompanied by a suggestion of how to use an A, algebra to
write a Lagrangian.



696 EDWARD WITTEN

This work was supported in part by NSF Grant PHY-9513835 and

the Caltech Discovery Fund.

(1]

2]

[

[10]

References

A.S. Cattaneo & G. Felder, A path integral approach to the Kontsevich quantization
formula, math.QA/9902090.

A. Connes, M. R. Douglas & A. Schwarz, Noncommutative geometry and matriz
theory: compactification on tori, JHEP 9802:003 (1998) hep-th/9711162.

M. Douglas, Two lectures on D-geometry and noncommutative geometry, hep-
th/9901146.

M. Kontsevich, Deformation quantization of Poisson manifolds, g-alg/9709040.

H. Nakajima, Resolutions of moduli spaces of ideal instantons on R*, Topology,
Geometry, and Field Theory, (eds. K. Fukaya, M. Furuta, T. Kohno, and D.
Kotschick), World Scientific, 1994).

N. Nekrasov & A. Schwarz, Instantons on noncommutative R* and (2,0) super-
conformal siz-dimensional theory, Commun. Math. Phys. 198 (1998) 689, hep-
th/9802068.

V. Schomerus, D-Branes and deformation quantization, JHEP 9906:030 (1999),
hep-th/9903205.

N. Seiberg & E. Witten, String theory and noncommutative geometry, hep-
th/9908142.

E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B268
(1986) 253.

, Small instantons in string theory, Prosp. Math., (ed. H. Rossi), Amer.
Math. Soc. 111 (1998).

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA
INSTITUTE FOR ADVANCED STUDY, PRINCETON





