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UNIFYING THEMES IN TOPOLOGICAL FIELD
THEORIES

CUMRUN VAFA

We discuss unifying features of topological field theories in 2, 3 and
4 dimensions. This includes relations among enumerative geometry (2d
topological field theory) link invariants (3d Chern-Simons theory) and
Donaldson invariants (4d topological theory). (Talk presented in con-
ference on Geometry and Topology in honor of M. Atiyah, R. Bott, F.
Hirzebruch and I. Singer, Harvard University, May 1999).

1. Introduction

There has been many exciting interactions between physics and math-
ematics in the past few decades. Many of these developments on the
physics side are captured by certain field theories, known as topolog-
ical field theories. The correlation function of these theories compute
certain mathematical invariants. Even though the original motivation
for introducing topological field theories was to gain insight into these
mathematical invariants, topological field theories have been found to be
important for answers to many questions of interest in physics as well.

The aim of my talk here is to explain certain connections that have
been discovered more recently among various topological field theories. I
will first briefly review what each one is, and then go on to explain some
of the connections which has been discovered between them.

The main examples of topological field theories that have been pro-
posed appear in dimension two [26] known as topological sigma models,
in dimension three [27] known as Chern-Simons theory and in dimension
four [28] known as topological Yang-Mills theory. The 2d and the 4d
topological theory are related to an underlying supersymmetric quan-
tum field theory, and there is no difference between the topological and
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standard version on the flat space. The difference between conventional
supersymmetric theories and topological ones in these cases only arise
when one considers curved spaces. In such cases the topological ver-
sion, is a modified version of the supersymmetric theory on flat space
where some of the fields have different Lorentz transformations proper-
ties (compared to the conventional choice). This modification of Lorentz
transformation properties is also known as twisting, and is put in pri-
marily to preserve supersymmetry on curved space. In particular this
leads to having at least one nilpotent supercharge @) as a scalar quantity,
as opposed to a spinor, as would be in the conventional spin assignments.
The physical observables of the topological theory are elements of the Q
cohomology. The path integral is localized to field configurations which
are annihilated by @ and this typically leads to some moduli problem
which lead to mathematical invariants.
In these theories the energy momentum tensor is @ trivial, i.e.,

T,uu = {Qa A,u.l/}

which (modulo potential anomalies) leads to the statement that the cor-
relation functions are all independent of the metric on the curved space,
thus leading to the notion of topological field theories (i.e. metric inde-
pendence).

The case of the 3d topological theory, is somewhat different. In this
case, namely the case of Chern-Simons theory, one starts from an action
which is manifestly independent of the metric on the 3 manifold, and
thus topological nature of the field theory is manifest.

The organization of this paper is as follows: In Section 2 I briefly
review each of the three classes of topological theories and discuss how
in each case one goes about computing the correlation functions. In
section 3 I discuss relations between 2d and 4d topological theories. In
section 4 I discuss relations between 2d and 3d topological theories.

2. A brief review of topological field theories
In this section I give a rather brief review of topological field theories
in dimensions 2, 3 and 4.
2.1 TFT in d = 2: topological sigma models

Topological sigma models are based on (2,2) supersymmetric theories
in 2 dimensions. These typically arise by considering supersymmetric
sigma models on Kahler manifolds. In other words, we consider maps
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from 2 dimensional Riemann surfaces ¥ to target spaces M which are
Kahler manifolds (together with fermionic degrees of freedom on the
Riemann surface which map to tangent vectors on the Kahler manifold).
The topological theory in this case localizes on holomorpic maps from
Riemann surfaces to the target:

X : Y= M
80X =0

If we get a moduli space of such maps we have to evaluate an appropriate
class over it. This class is determined by the topological theory one
considers (for precise mathematical definitions see [5]. Also there are
two versions of this topological theory: coupled or uncoupled to gravity.
Coupling to gravity in this case means allowing the complex structure
of ¥ to be arbitrary and looking for holomorphic curves over the entire
moduli space of curves. The case coupled to gravity is also sometimes
referred to as ‘topological strings’.

A particularly interesting class of sigma modelds both for the physics
as well as for mathematics, corresponds to choosing M to be a Calabi-
Yau threefold, and considering topological strings on M. In this case the
virtual dimension of the moduli space of holomorphic maps is zero. If this
space is given by a number of points, the topological string amplitude
just counts how many such points there are, weighted by e *(:) where
k(.) is the area of the holomorphic map (pullback of the Kahler form
integrated over the surface) times A\2972) where g denotes the genus of
the Riemann surface and A denotes the string coupling constant. More
generally the space of holomorphic maps will involve a moduli space.
This space comes equipped with a bundle with the same dimension as
the tangent bundle (the existence of this bundle and the fact that its
dimensions is the same as the tangent bundle follows from the fact that
the relevent index is zero). Topological string computes the top Chern
class of such bundles again weighted by e *()X\29=2_ These have to be
defined carefully, due to singularities and issues of compactifications,
and lead in general to rational numbers. The sum of these numbers for a
given class v € H2(M,Z) and fixed genus g, which we will denote by 7,
is known as Gromov-Witten invariant. We thus have the full partition
function of topological string given by

FLE) = ) rgue Fv)y2e-2
veH2(M,Z)

here k denotes the Kahler class of M. Even though the numbers 7y,
are not integers, it has been shown, by physical arguments that F' can

675



676 CUMRUN VAFA

also be expressed in terms of other integral invariants [8]. These integral
invariants are related to certain aspects of cohomology classes of moduli
of holomorphic curves together with flat bundles.

These invariants associate for each v € Ha(M,Z) and eash positive
(including 0) integer s a number N, ; which denotes the ‘net’ number of
BPS membranes with charge in class v and ‘spin’ s (for precise definitions
see [8]). Then we have

(1) F(\ k) = > le,se‘"k(”)[2Sin(n/\ /2)])%2
n>0,v€ H2(M,Z) n

For all cases checked thus far the Gromov-Witten invariants 74, has been
shown to be captured by these simpler integral invariants N, s through
the above map. In particular the checks made for constant maps [6] and
for contribution of isolated genus g curves to all loops [21] as well as
some low genus computations for non-trivial CY 3-folds [14] all support
the above identification.

Let us illustrate the above results in the case of a simple non-compact
Calabi-Yau threefold, which we will later use in this paper. Consider the
total space of the rank 2 vector bundle O(—1) + O(—~1) — P!. This
space has vanishing c;, and is a non-compact CY 3-fold. In this case the
only BPS state is a membrane wrapping P! once. This state has spin
s = 0. If we denote the area of P! by ¢, then we have from (1)

1
) F= ng% n[2Sin(nA/2)]? ¢

—nt

For this particular case this has also been derived using the direct defi-
nition of topological strings in [6], [21].

2.2 Topological field theory in 3d: Chern-Simons theory

The 3d topological theory we consider is Chern-Simons theory, which is
given by the Chern-Simons action for a gauge field A:

k 2 3
Scs = ELJTT[A(ZA-}-gA]

where M is a 3-manifold and k is an integer which is quantized in order
for exp(iS) to be well defined. As is clear from the definition of the
above action, S does not depend on any metric on M and in this sense
the theory is manifestly topological (i.e., metric independent).!

1At the quantum level there is a metric dependence which can be captured by a
gravitational Chern-Simons term [27] [2].
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Thus the partition function of Chern-Simons theory gives rise to topo-
logical invariants for 3-manifolds for each group G. In other words

ZM(G) = e.'L'p(—FM(G)) = /DAexp[iScs]

where A is a connection on M for the gauge group G and the above
integral is over all inequivalent G-connections on M. The simplest way
to compute such invariants is to use the relation between Hilbert space
of Chern-Simons theory on a Riemann surface ¥ and the chiral blocks of
WZW model on ¥ with group G and level k. For example the partition
function on S% can be computed by viewing S® as a sum of two solid
2-tori, which are glued along T2 by an order 2 element of SL(2,Z) on
T?. In this way the partition function gets identified with

Zgs3(G, k) = Soo(G, k)

where Sgo = (0]S|0) is a particular element of the order 2 operation of
SL(2,Z) on chiral characters, and is well studied in the context of WZW
models. In particular for G = SU(N) it is given by:

Zg3(SU(N), k) = exp(—F)

_ (imN(N-1)/8 1 /N +Ek
(3) (N+k)N2V N
-1

N

. Jm N—
. J1;11(23111]\/,_+_k) J.

One can also consider knot invariants: Consider a knot v in M and
choose a representation R of the group G and consider the character of
the holonomoy of A around the knot v, i.e.,

P[y,R] = TTRPexp(i/A)

~
By the equation of motion for Chern-Simons theory, which leads to flat-
ness of A, we learn that the above operator only depends on the choice
of the knot type and not the actual knot?. One then obtains a knot
invariant by computing the correlation function

< HP[’)’i,Ri] >= /DAH P[’Yi;R/i]eXp(iSCS)

Again these quantities can be computed by the braiding properties of
chiral blocks in 2 dimensional WZW models and leads in particular to
HOMFLY polynomial invariants for the knots.

%In the quantum theory one also needs to choose a framing for the knot.
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2.3 Topological field theories in 4-dimensions

If one consider N = 2 supersymmetric Yang-Mills, with an unconven-
tional spin assignments, one finds a topological field theory. The par-
tition function is localized on the moduli space of instantons and the
observables of this theory are given by intersection theory on the moduli
space of instantons. More precisely each d-cycle on the four manifold
M will lead to a 4 — d cohomology element on the moduli space of in-
stantons (obtained by integrating out f TrF A F over the corresponding
cycle on the universal moduli space of instantons), and the wedging of
the cohomology classes gives rise to the observables in Donaldson theory.
This does not depend on the metric in M (except when b5 (M) = 1) but
will depend on the choice of smooth structure on M.

The computations in this case can be done for many choices of M
by finding an equivalence of this theory and a simpler abelian theory.
In this case studying the moduli space of non-abelian instantons gets
replaced with the study of an abelian system known as the Seiberg-
Witten equation. The relevant geometry for the case of SU(N) Yang-
Mills is captured by a certain geometric data related to a Jacobian variety
over an N — 1 dimensional family of genus N —1 Riemann surface, known
as Seiberg-Witten geometry [22]. For topological field theory aspects and
how the Seiberg-Witten geometry leads to computation of the topological
correlation functions see [25], [19].

There is another topological theory in 4 dimensions which has been
studied [24] and is related to twisting the maximal supersymmetric gauge
theory in 4 dimensions. This theory computes the Euler characteristic
of moduli space of instantons. In particular for each group G and each
complex parameter g one considers

Zu(G) = ¢ MY g x(My)
k

for some universal constant ¢ (depending on M and G), where k de-
notes the instanton number and x(M}j) denotes the euler characteris-
tics (of a suitable resolution and compactification) of My, the moduli
space of anti-self dual G-connections with instanton number & on M.
Moreover, according to Montonen-Olive duality conjecture one learns
that the above partition function is expected to be modular with re-
spect to some subgroup of SL(2,Z) acting in the standard way on 7
where g = ezp(2miT). For certain M (such as K3 ) the above partition
function has been computed and is shown to be modular in a striking
way. For recent mathematical discussion on this see [11] and references
therein.
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3. Connections between 2d + 4d TFT’s

There are three different links between 4 dimensional and 2 dimen-
sional TFT’s that I would like to discuss. In all three links the common
theme is that the moduli space of instantons are mapped to moduli space
of holomoprhic curves on appropriate spaces.

3.1 Topological reduction of 4d to 2d

The simplest link between the two theories involves studying the 4d TFT
on a geometry involving the product of two Riemann surfaces ¥; x ¥,
which was studied in [4]. In the limit where ¥; is small compared to
39 one obtains an effective theory on ¥ which is the topological sigma
model with target space given by moduli space of flat connections on ¥,
in case one considers N = 2 topological field theories in 4 dimensions or
the Hitchin space associated with 3; if one considers N = 4 topological
field theories. This is natural to expect because studying light super-
symmetric modes in either case gives rise to the corresponding space
of solutions, which thus behaves from the viewpoint of the space X9
as a target space. In particular the moduli space of 4d instantons get
mapped to moduli space of holomorphic maps for these target spaces.
Thus quantum cohomology rings of moduli of flat connections on a Rie-
mann surface, which are encoded in 2d topological correlation functions
capture the corresponding topological correlation functions of the 4 di-
mensional N = 2 theory. Similarly in the N = 4 case the reduction to
2 dimensions yields a sigma model on the Hitchin space (which can also
be viewed as a Jacobian variety). In this context the Montonen-Olive
duality of N = 4 theory gets mapped to mirror symmetry of this 2d
sigma model (by a fiberwise application of T-duality to Jacobian fibers).

3.2 A more subtle 2d « 4d link

For the N = 2 topologically twisted theory, an important role is played
by the Seiberg-Witten geometry, which is an abelian simplification of the
non-abelian gauge theory. This geometry is a quantum deformation of
the classical one, due to pointlike four dimensional instantons. This ge-
ometry was first conjectured based on consistency with various properties
of N = 2 quantum field theories and its deformation to N = 1 quantum
field theories with mass gap, where plausible properties of N = 1 theories
were assumed.

With the recent advances in our understanding of string theory, the
same 4-dimensional gauge theories have been obtained by considering
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particular geometries where strings propagate in. This procedure is
known as geometric engineering of QFT’s (see [14], [12] and references
therein). These geometries involve a non-compact Calabi-Yau threefold
geometry which is a blow up of a geometry with some loci of A-D-E sin-
gularities (locally modelled by C2/G where G is a discrete subgroup of
SU(2)), giving rise to the corresponding gauge theory in 4 dimensions.
Depending on the detailed structure of singularities one can obtain var-
ious interesting gauge groups and various matter representations.

It turns out that in this description of gauge theory, the guage the-
ory instantons are mapped to stringy instantons, which are just world-
sheet instantons. Thus being able to compute worldsheet instantons,
i.e., counting of holomorphic curves in these target geometries, captures
the geometry of 4-dimensional gauge theory instantons. Counting of
holomrophic curves is precisely what the (A-model) topological string
computes and thus in this way the geometry of vacua of 4-dimensional
gauge theory gets mapped to solving topological amplitudes in 2d. This
in turn can be done by using (local) mirror symmetry. For a physical
derivation of mirror symmetry and some references on this subject see
the recent work [10]. In this way, not only the Seiberg-Witten geome-
try has been rederived, but also other geometries which describe other
N = 2 systems with various kinds of gauge groups and intricate matter
representations have been obtained [15].

3.3 N =4 Yang-Mills on elliptic surfaces and 2d topologi-
cal theories

If we consider an N = 4 supersymmetric SU(N) topological theory on
an elliptic surface, with base B, the stable bundles get mapped to spec-
tral covers of B on a dual elliptic surface M (where the Kahler class
of the elliptic fiber is inverted). This uses the fact that in the limit of
small tori, the stable bundles become flat fiberwise and flat bundles on
tori are related to points on the dual tori. See (7], [3] for a discussion
of how this arises. In particular a rank N stable bundle with instan-
ton number k gets mapped to a spectral curve which is a holomorphic
curve wrapping the base N times and the elliptic fiber k£ times. Thus
the topological N = 4 amplitude on M, denoted by Zp/(SU(N)) which
computes the Euler characteristic of moduli space of SU(N) instantons
on M gets mapped to computing Euler characteristic of moduli space of
holomorphic curves (together with a flat bundle) which in turn is cap-
tured by genus zero topological string amplitudes, and can be computed
using mirror symmetry. This idea has been implemented in great detail
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for the case of rational elliptic surface (also known as “half K3”) [15],
[18], [17]. The results for the case of rank 2 and its implications for
the Euler characteristic of moduli space of instantons on rational elliptic
surface has been confirmed using rigorous mathematical methods in [30].

4. Connections between 2d < 3d TFTs

Over two decades ago 't Hooft conjectured that SU(N) gauge theories
with large N look alot like string theories. In particular the partition
function for these theories can be organized in terms of Riemann surfaces
where each Riemann surface is weighted with NX where x denotes the
Euler characteristic of the Riemann surface. In particular the low genera
dominate in the large N limit. The weight factor NX follows simply from
the combinatorics of Feynman diagrams, and the Riemann surface can
be identified with the Feynamn diagrams where the would be holes have
been filled.

The main difficulty in the conjecture of ‘t Hooft is to identify pre-
cisely which string theory one obtains. In the past few years for serveral
interesting gauge theories and in particular some in 4 dimensions the cor-
responding string theory has been identified [1}. Even though it has not
been possible to actually compute the string theory amplitudes in these
cases, due to the complicated background strings propagate in, there has
been mounting evidence for the validity of the identification. One would
like to have a similar conjecture in a setup which is more computable.
An ideal setup for this is topological guage theories, and in particular
the topological Chern-Simons theory.

If we consider SU(N) Chern-Simons theory on $3 in the limit of large
N, one could hope to get a string theory. It has been conjectured in [9]
that this is indeed the case. In particular it has been conjectured that
SU(N) Chern-Simons theory at level k on S is equivalent to topological
string with target being a non-compact Calabi-Yau threefold which is the
total space of O(—1) +O(—1) = P, where the (complexified) size of P!
is given by t = 2miN/(k+ N) and the string coupling constant A = ]\2,1’,6
This is a natural conjecture in the following sense: The Chern-Simons
theory on S3 can itself be viewd as an open string theory with target
T*S% [29] By open string we mean considering Riemann surfaces with
boundaries, where the boundaries are mapped to S53. The geometry
O(—1) + O(-1) = P! can be obtained from the T*S53 geometry by
shrinking S° to zero size and blowing P! instead. This kind of transition
is also very similar to what is observed to happen in the other cases
where large N string theory description was discovered [1]. In fact one
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can determine [9] the map of the parameters ¢t and \ given above using
this picture (and recalling the metric dependence anomaly in Chern-
Simons theory).

This conjecture has been checked at the level of the partition function
(which we have briefly reviewed for both the Chern-Simons theory on S°
and for O(—1) + O(—1) — P! in section 2). The implications of this
conjecture for knot invariants has been explored in [20] and provides a re-
formulation of knot invariants in terms of integral invariants which again
capture the degeneracy of spectrum of (BPS) particles in the correspond-
ing string theory. This involves considering a Largrangian submanifold
which intersects T*S2 along the knot and following it through the transi-
tion to O(—1)+O(—1) — P! where it corresponds to a Lagrangian sub-
manifold. The corresponding computation on the topological string side
will now involove Riemann surfaces with boundaries, where the bound-
ary can lie on this Lagrangian submanifold in O(—-1) + O(-1) — P1.
The results for the unknot [20] as well as the integrality properties of the
torus knots [16] are in perfect agreement with the conjecture.

5. Conclusions

We have seen some intricate relations among topological theories in
2, 3 and 4 dimensions and in some ways these connections parallel the
discovery of duality symmetries in superstring theories (see [23] for a
review of some mathematical aspects of string dualities). These topolog-
ical examples provide a simpler version of superstring dualities, which
one could hope to understand more deeply and which might provide a
hint as to how to think about dualities in general.

This research was supported in part by NSF grants PHY-9218167
and DMS-9709694.
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