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SEIBERG-WITTEN INVARIANTS, SELF-DUAL
HARMONIC 2-FORMS AND THE
HOFER-WYSOCKI-ZEHNDER FORMALISM

CLIFFORD HENRY TAUBES

1.Introduction

Suppose that X is a compact, oriented 4-manifold with 52t > 1. A
symplectic form on X is a closed, non-degenerate 2-form whose square
provides the given orientation. Little is known by way of sufficient con-
ditions which guarantee the existence of such a form. However, there are
smooth, closed forms on X which are symplectic off of a disjoint union of
embedded circles, with the latter being the vanishing locus of the form.
Indeed, if a sufficiently generic Riemannian metric is chosen for X, then
some of the self-dual, harmonic 2-forms on X have the aforementioned
property. Moreover, the given metric, with such a form, defines a com-
patible almost complex structure on the complement of the form’s zero
set. Thus, the complement, X C X, of the zero set of the given closed,
self-dual 2-form has a natural pseudoholomorphic geometry, the ‘Rie-
mannian pseudoholmorphic geometry’. This geometry seems worthy of
study if, for no other reason, then the following:A sufficient condition for
the zero set of the form to homologically bound a pseudoholomorphic
subvariety in its compliment is for X to have non-trivial Seiberg-Witten
invariants [16].

Prior to the discovery of the Seiberg-Witten invariants, Hofer intro-
duced [5] and then Hofer, Wysocki and Zehnder [9], [10], [11] (see [6])
systematically developed an elegant formalism for studying a particular
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version of pseudoholomorphic geometry on symplectic manifolds with
tubular ends. In particular, the complement, X C X, of the zero set of
a form as just described provides a nice example for the Hofer, Wysocki
and Zehnder formalism. These pseudoholomorphic geometries on X will
be called "HW Z pseudoholomorphic geometries’. In this regard, it is
important to note the the HW Z pseudoholomorphic geometry near the
zero set of the given form is not the same as the Riemannian one. In
particular, the relationship between the HW Z pseudoholomorphic ge-
ometry and the Seiberg-Witten invariants must still be sorted out, and
this article provides the first step in doing so with a theorem (Theorem
5.4, below) which implies the following:

e Suppose that X has a non-vanishing Seiberg-Witten invariant.
Then, there is a finite set of irreducible, HW Z pseudoholomor-
phic subvarieties in X whose union, with positive integer weights,
homologically bounds the zero locus of the given self-dual, har-
monic 2-form. This is to say that the weighted union has algebraic
intersection number 1 with each linking 2-sphere of the form’s zero
set.

e Moreover, X has its own Seiberg-Witten invariants from which the
Seiberg-Witten invariants of X can be computed, and if just the
former are non-trivial, then X still has an HW Z pseudoholomor-
phic subvariety as described in the preceding point.

(1.1)

Note that a Seiberg-Witten based existence proof for pseudoholmor-
phic subvarieties of compact symplectic manifolds has already been es-
tablished [17] (but see the revised version in [18] which corrects some
arguments in Section 6e of [17]). Moreover, in the case where X is a
compact symplectic manifold, the complete Seiberg-Witten invariant of
X can be computed completely in terms of the associated pseudoholo-
morphic geometry (see [19], [20]). This is to say that there is a symplectic
invariant, Gr, which is obtained as a count of pseudoholomorphic subva-
rieties [21] in X and which turns out to be the same as the Seiberg-Witten
invariant of X.

In the present context, there is a candidate for a version of Gr which
is defined for the cylindrical end manifold X C X, is computable com-
pletely in terms of the HW Z pseudoholomorphic geometry of X, and
may well be equal to the Seiberg-Witten invariants of X. This candidate
Gr and its relation to the Seiberg-Witten invariants of X is the subject
of a planned sequel to this article.
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By the way, there is some circumstantial evidence to the effect that
the pseudoholomorphic geometry of X C X, either Riemannian or HW Z,
provides 4-manifold information which goes beyond the Seiberg-Witten
invariants (see, e.g. [22]). In this regard, the HW Z pseudoholomorphic
geometry may prove the more tractible tool for the study of 4-manifold
differential topology. For example, it turns out that the singularities of
pseudoholomorphic subvarieties in the HW Z geometry are not hard to
classify. In contrast, the singularities of the pseudoholomorphic subva-
rieties in the Riemannian pseudoholomorphic geometry has only been
partly sorted out [23], and may turn out to be very complicated.

The remainder of this article provides the details to (1.1), and is orga-
nized along the following lines: Section 2 summarizes the basic features
of HW Z pseudoholomorphic geometry, with a special focus on those
manifolds which arise as the complement of the zero set of a generic,
closed, self-dual 2-form on a compact 4-manifold.This is to say that each
end of such a manifold is symplectically concave and is diffeomorphic to
[0,00) x (S x S?). Section 3 summarizes the Seiberg-Witten story on
compact 4-manifolds, and Section 4 summarizes the analgous story for
the class of non-compact manifolds 4-manifolds with [0, 00) x (S! x §2)
ends. Then, Section 5 points out some of the basic relationships between
the Seiberg-Witten story and the HW Z geometry on the class of man-
ifolds under consideration. The results in Section 5 are summarized by
Theorems 5.4 and 5.5. The final two sections are devoted to the proofs
of these last two theorems.

2. The HWZ pseudoholomorphic geometry

The HW Z geometry is designed for studying symplectic manifolds
with contact boundary. The general context for this is described in
Hofer [5] and Hofer, Wysocki and Zehnder [9], so attention here will be
restricted to the case where the manifold in question is 4-dimensional.
With this understood, the purpose of this section is to review the relevant
portions of the HW Z geometry.After a general review in the first three
subsections, the remaining subsections of Section 2 describe this HW Z
geometry in the restricted context that is used in the remainder of this
article.

a) Contact boundaries

Let Xo denote the 4-manifold in question, w the given symplectic
form, and Y a component of the 3-manifold boundary of Xy. The con-
vention here is to orient Y using the restriction to Y of the 3-form
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(w A w)(v,+,+,-) in the case where v is a tangent vector to X( along
Y which is outward pointing.

The manifold Y is a contact type boundary when there exists a
smooth 1-form « on Y such that

o da = 1*w.

e o Ada is nowhere zero.

(2.1)

In this regard, note that a A da can either agree or disagree with the
orientation of Y. In the former case, the boundary is called ‘convex’ and
in the latter case, it is called ‘concave’.

In any event, if Y has contact type, then there exists an orientation
preserving embedding ¢ : (0,1} x Y — X with the following properties:

e v:{1} xY — Y is the identity.

e ©*w =du A a =+ u da on some neighborhood of {1} x Y.
(2.2)

Here, u is the Euclidean coordinate on (0,1]. Also, the + sign is used
when Y is convex, and the minus sign when Y is concave. (The concave
case will be the case of interest in later sections.)

Write u = e®*® with +¢ > 0 depending on whether the contact struc-
ture is convex (+) or concave (—). Then,

(2.3) 0w = €e*(e ds A a + dav).

This form is defined for s non-positive and near zero, but it evidently
extends to all positive values of s. This is to say that the form w extends
from X to the noncompact manifold

(2.4) X = XoUy ([0,00) X Y).

Note that when measured with the product metric on ([0,00) x Y), the
form in (2.3) either grows or shrinks in size exponentially fast as s — oo
depending on whether Y is convex or concave.

b) Pseudoholomorphic geometry

In all that follows, assume that all components of 0X are of contact
type. An almost complex structure on X is an endomorphism, J, of
TX whose square is —1. Such a J will be called ‘w-compatible’ in the
case where the bilinear form w(-, J(-)) defines a Riemannian metric. It
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proves useful to impose some further requirements on J’s restriction to
each end [0,00) x Y of X. In particular, the HW Z geometry considers
w-compatible almost complex structures which restrict to [0,00) x Y so
that:

e J is invariant under the l-parameter semi-group of translations
(s,z) = (s+a,z) for a > 0.

e J - J; is annihilated by da.

e J preserves the kernel of a.

(2.5)

Because the space of w-compatible almost complex structures is con-
tractible, there is no problem with finding such almost complex struc-
tures which also obey the requirements in (2.5). With this last point un-
derstood, the almost complex structures henceforth under consideration
will be implicitly assumed to satisfy (2.5) as well as being w-compatible.

c) Pseudoholomorphic subvarieties
A subvariety C C X will be called ‘pseudoholomorphic’ when the
following conditions are met:

e (' is closed and locally compact.

e There is a non-accumulating set A C C of at most a countable
number of points such that C' — A is an embedded submanifold of
X whose tangent space is J-invariant.

(2.6)

A pseudoholomorphic subvariety C C X will be called an ‘HW Z subva-
riety’ when, in addition to (2.6),

(2.7) / da < oo.
CN((0,00)x M)

By the way, when integrating either da or € ds A a over a domain
in a pseudoholomorphic subvariety C, keep in mind that both restrict
to C as non-negative 2-forms. This is a consequence of C being pseudo-
holomorphic for the almost complex structure in (2.5). Here is a simple
consequence of this last fact:

Lemma 2.1. If all boundary components of Xy are concave, then
every pseudoholomorphic subvariety in X satisfies (2.7). That is, all
pseudoholomorphic subvarieties are HW Z subvarieties.
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This subsection ends with the.

Proof of Lemma 2.1. It proves useful to make a short, preliminary
digression to choose, for each R > 4, a function og on R with the
following properties:

e op=0 where s < 0,

e op=o0; and 0<01 <1 where 0 < s < 2,

e op=1 where 2 < s < R,

e —1<0R<0 where R<s< R+2,
(2.8) e or=0 where s > R + 2,

Thus, og vanishes until s = 0, then increases to 1 by s = 2, stays equal
to 1 until s = R and finally decreases to zero by s = R + 2. Moreover,
its derivative is nowhere greater than 1 or less than —1.

With the digression now over, remember that da on C is non-negative
as is og; and as og = 1 where s € [2, R], the demonstration of an R-
independent upper bound for the integral over C of or da proves that
C is an HW Z subvariety. With this last point understood, remark that
d(ogra) is also integrable over C. Stokes’ theorem finds this integral
equal to zero, and so

(2.9) /aRdaz/ —doRr A a.
c c

Thus, it is enough to find an R independent upper bound to the integral
over C of —dog A o

To achieve the latter task, remark first that —dogr A a has support
in two disjoint sets, the first where 0 < s < 2 and the second where
R < s < R+ 2. Moreover, if all components of Xy are concave,then
—dog A a. is non-positive on C where s > R because 0%, is non-positive
where s > R while —ds A a is non-negative on C. Thus,

(2.10) / orda < / oi(=ds A ).
c Cn{0<s<2}

As the right-hand side of (2.8) is finite and independent of R, the desired
bound follows.

d) The S' x S? example
The relevant example for this article takes Y = S' x S2. To write
the relevant contact form «, take standard spherical coordinates (8, ) €
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[0, 7] x [0, 27] for S% and a coordinate ¢ € [0, 27] for S*. In terms of these
coordinates,

(2.11) a = —(1 — 3cos? §)dt — /6 cos O sin? Odp.

A computation finds

(2.12) do = 6 cos 0 sin 8dtdd + /6(1 — 3 cos® §) sin 8dBdy;
thus a A da is seen not to vanish:

(2.13) a Ada = —/6(1 + 3 cos? §)dt sin dfd.p.

By the way, take the metric on S x S2? to be the product of the
standard round metrics and introduce the resulting Hodge star operator,
#, on differential forms. Then « in (2.11) obeys

o xda = —/6a.

e d'a=0.
(2.14)
This last point is mentioned in as much as it implies that the 2-form
(2.15) w = e V9 (—\/6ds A a + da)

on R x S! x §? is symplectic, and self-dual with respect to the Hodge
star operator from the product metric.

The compact, integral curves in the foliation that is defined by the
kernel of da are of prime importance in the story. In this regard, the
kernel of da is the linear span of the vector field

(2.16) v = —(1 — 3cos®8)8; — 1/6cos 00,,.
Thus, all integral curves of v can be parameterized by
(217) T — (t=to—7(1 —3cos?by),0 = 0, = @g — /67 cos bp)

where tg, 6y and g are constants. Note that the integral curve in (2.17)
is compact if and only if

V6 cos 6y

(2.18) (1 — 3cos? fp)

€ QU {oo}.

631
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By the way, the kernel of the contact form « in (2.11) is spanned by
the vectors

(2.19) {89, /6 cos Osin 09, — (1 — 3 cos® 0)(sin )19, }.

When considering almost complex structures on R x (S! x S?) which
obey (2.5), there is one which is especially useful. To describe this J, it
proves convenient to first digress for the purpose of introducing auxilliary
functions f and h on R x (S x S2) as follows:

o f=e"V05(1—-3cos?9).

o h=e V%, /6cosfsin? 4.
(2.20)

In terms of the ‘coordinates’ (¢, f,h, ), the form w and the product
metric on R x (S! x §2) are as follows:

o w=dt Adf +dpAdh.
o ds?+dt?+db?+sin? dp? = dt® + g~ 2(df? +sin~2 0dh?) +sin? Od 2.
(2.21)

Here, g = /6e~V6%(1 + 3cos?9)1/2 .
With the preceding understood, define J by

L4 J'atzgaf7

e J-0, =sin?6 g0.
(2.22)

It is an exercise to verify that the almost complex structure so defined
obeys the constraints in (2.5). (One reason for appreciating this particu-
lar J is that it acts as an orthogonal transformation with respect to the
standard product metric on R x (S x §2).)

The final comment on this example concerns orientations for the
homology of S* x S2. In this regard, orient H3(S' x S2;Z) by requiring
a A da to have negative integral. (This is equivalent to the requirement
that (wAw)(0s, -, -, -) have positive integral.) To orient the 2-dimensional
homology, first remark that da is non-degenerate on the kernel of «,
and thus orients this R? bundle by requiring da to be positive on a
positively oriented frame. The Euler class of this oriented bundle is
twice a generator of H?(S! x $2%;Z) ~ Z and so orients the latter by
making this Euler class positive. Use this last orientation to orient the
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2-dimensional homology by requiring the oriented generator of the latter
to pair with that of H? to give 1. Finally, an orientation on Hj is induced
from that on H? via Poincaré duality. In less prosaic terms, S x S? is
oriented by the form dt sin §dfdyp, while sin #dfdy orients the S? factor
and dt orients the S! factor.

e) The context

This example arises in the following context: Let X be a compact,
oriented 4-manifold with >t > 1. Put a Riemannian metric, g, on TX
and Hodge-DeRham theory provides a b>* dimensional vector space of
closed, self dual 2-forms. In this regard, note that a 2-form w is self-dual
when

(2.23) wAw = |w|?dvol.

Thus, closed, self-dual 2-forms are symplectic except where they vanish.

If the metric is chosen in a suitably generic fashion [7] (from a Baire
set of smooth forms), then there exist closed, self-dual 2-forms which
vanish transversely as sections of the R® bundle of self dual 2-forms.
Thus, if w is such a form, then

(2.24) Z = w }0)

is a disjoint union of embedded circles and w is symplectic on X — Z.

To consider the behavior of w near a component circle Zg C Z, note
that a neighborhood of Zj is diffeomorphic to the product of S! with a
centered 3-ball B3 C R3. In particular, a coordinate ¢t € [0,2n] for S!
and z = (z1,x2,23) for B3 can be chosen so that with respect to these
coordinates, the form w is given by

(2.25) w=dtA Ai,-xida:j + 2~1Aij$i€zjkd$3 ANdzp + 0(|:1:|2),
where A;;(t) is a matrix valued function on S'. Moreover,

o Ay = Aji,

>, A =0,
° det(A) < 0.
(2.26)

Here, the first two properties are consequences of the fact that dw = 0,
and the third is a consequence of the fact that w vanishes transversally
along Zy. (To be precise, this just insures that det(A) # 0; the sign is
arranged through a choice of orientation for Zj.)
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Now, the fact that A;, is traceless and symmetric and has negative
determinant implies that it has, at each ¢ € Zj, two positive eigenvalues
and one negative eigenvalue. Let ¢ — Zp denote the real line bundle
whose fiber at each t € Zj is the negative eigenspace of the matrix
A;j(t). This line bundle can either be orientable or not. In this regard,
the following result of Gompf [4] is fundamental:

Lemma 2.4. The parity (even or odd) of the number of components
of Z where ¢ is orientable equals the parity of bt — bl + 1.

In the case where ¢ is orientable, the form w can be modified near Zj
so that the resulting new form has the following properties:

e The new form is symplectic on X — Zy and agrees with the old
form outside of some previously specified neighborhood of Zj.

e There are coordinates (t,z) for an S' x B3 tubular neighborhood
of Zp in which the new form is equal to

dt A (:cldxl + xodzo — 2x3dx3) + T1dT2 A dX3

(2.27)
—z9dz1 A dx3 — 2x3dT1 A dXo

In the case where £ is not orientable, there is a modification of w
near Zy so that the first point above holds, and so that the second point
with (2.27) holds on a non-trivial, S* x B3 double cover of a tubular
neighborhood of Zy. An equivalent assertion in the £ non-orientable
case is the following: The form w has a modification on the original
S1 x B3 neighborhood of Zy so that the resulting new form obeys the
first point in (2.27) and so that there are coordinates (¢,z’) on some
S1 x B2 tubular neighborhood of Zy in which the new form is equal to
the form in (2.27) after the substitutions

o t=1t/2

o 11 =1,

o o = cos(t'/2)zy — sin(t'/2)as,

o z3 =sin(t'/2)zh + cos(t'/2)xf.
(2.28)

Now note that B2 — {0} is diffeomorphic to S? x [0, 00) via the map
which sends the centered sphere in B® with radius a > 0 to 5% x {s =
—27'Ina} in 8% x [0,00). The form in (2.27) pulls back under this
diffeomorphism to

(2.29) —d(e*271(1 — 3 cos? B)dt + e3/2 cos f sin? fdyp).
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This form is not described by (2.3) for any contact form o on S x S2.
However, it can be modified so that a constant multiple (2.3) is ac-
curate at large s with o given by (2.11). In particular, consider:

Lemma 2.3. Fiz R > 1 and there are constants ci,co > 0 with the
following significance: Let R’ denote either co or a number greater than
2R. There is a symplectic form w on [0,00) x S* x §2? which is described
by (2.22) on [0,R/2] x S' x S2, and by c1 times the form in (2.22) on
[R',00). Meanwhile, on [R, R'], the form is described by cy times the
form in (2.15).

(The proof of this lemma is left as an exercise save for the following
hint: The numbers c; 2 are on the order of e . See also [8].)

Lemma 2.3 implies that a disjoint, finite set of embedded circles can
be removed from any b?>* positive 4-manifold so that the resulting non-
compact manifold is described by the HWZ formalism. Here, each
boundary component is a copy of S' x S2; and after possibly passing
to the non-trivial double cover, there are coordinates where the relevant
contact form is given in (2.11).

f) A more general context

The subsequent discussions of the HW Z geometry takes place on a
connected, non-compact manifold X which splits as X = X U ([0, 00) X
0Xy), where Xy is a compact, 4-manifold with boundary where the latter
is a disjoint union of some number N > 0 copies of S* x §2. Furthermore,
it will be assumed that Xy has a symplectic form, w, for which each
boundary component is contact type and concave. Finally, it will be
assumed that each boundary component of X is described by at least
one of the following points:

e There are coordinates in which the contact form is given by « in
(2.11).

e There are coordinates on the non-trivial 2-fold cover in which the
pull-back of the contact form is given by « in (2.11).

(2.30)

A component of 9 X will be said to have orientable z-azis line bundle
when the first point in (2.30) holds. Otherwise, it will be said to have
non-orientable z-azxis line bundle.

Note that (2.15) with (2.30) provides an extension of the symplectic
form w on X to the whole of X. This extension of w will be implicit in
what follows.
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The HW Z geometry of X will be defined by a choice of w-compatible
almost complex structure, J : TX — T'X whose restriction to [0,00) x
08X is as follows: When a given component of 0 X has orientable z-axis
line bundle, then take J as in (2.30) on the corresponding component of
[0,00) x 8Xp. Otherwise, take J so that its lift to the non-trivial double
cover of the corresponding component of [0, 00) x X is given by (2.30).

As the boundaries of X are all concave with respect to the induced
contact form, Lemma 2.1 finds all of the pseudoholomorphic subvarieties
to be HW Z subvarieties. Moreover, these subvarieties are all reasonably
well behaved, as indicated by the following lemma:

Lemma 2.4.Let X, its symplectic form and its almost complex struc-
ture be as described at the beginning of this subsection. Now, let C C X
be an HW Z subvariety. Then the set A C C of non-manifold points
is a finite set at worst; infact, C intersects the complement of a com-
pact subset of X as a properly embedded, disjoint union of cylinders. In
particular, this implies that for sufficiently large s, the intersection of C
with {s} x Y is transversal and a disjoint union of circles; and, these
s-dependent circles in Y converge in the C* topology as s — oo to a
disjoint union of smooth circles whose tangent lines lie in the kernel of
do.

As this lemma, plays only a peripheral role in this article, its proof will
be given elsewhere. (Given that the ends of C are embedded cylinders,
the implication concerning the intersection of C with {s} x Y for large
s follow from Theorem 1.2 in [9].)

The preceding lemma and theorems from HW Z (see [11]) provide a
natural topology on the set of HW Z subvarieties in X which makes this
set into a reasonable topological space.In particular, a neighborhood of
a given HW Z subvariety C in this topological space is homeomorphic
to the inverse image of zero for some smooth map between a ball in one
finite dimensional Euclidean space to another such Euclidean space. In
addition, the components of the space of HW Z subvarieties have natu-
ral compactifications as stratified spaces where the extra strata are also
spaces of HW Z subvarieties. In short, these spaces of HW Z subvari-
eties are much like the moduli spaces of pseudoholomorphic subvarieties
on compact symplectic manifolds with compatible almost complex struc-
tures.

Before preceding to the next subsection, a two part digression is in
order to discuss issues which relate to the existence and uniqueness of
the coordinates in (2.30).

Part 1. (Existence). Let v be a concave contact form on S x
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S2. Then v can be either tight or overtwisted. (A contact form v is
overtwisted or tight if there is or is not an embedded, closed disk which
is transversal to the kernel of v along its boundary, but whose boundary
is tangent to the kernel v.) The contact form « in (2.11) is overtwisted,
witness the t = constant disk in S? where cos?d > 1/3. Thus, both cases
of (2.30) require overtwisted contact structure.

Meanwhile, a fundamental theorem of Eliashberg [1] asserts that the
overtwisted (concave) contact structures (up to homotopy through con-
tact structures) on a compact, oriented 3-manifold are in 1-1 correspon-
dence with the homotopy classes of oriented, 2-dimensional subbundles
of the manifold’s tangent bundle. In the case of S! x S?, the latter are
classified in part by the degree of the Euler class of the subbundle.In
both cases of (2.30), the Euler class in question has minimal (in absolute
value) non-zero degree. (This can be verified by examining the zeros of
the product of one of the vectors in (2.19) with sinf.) Moreover, there
are precisely two homotopy classes of 2-plane fields on S! x $? whose Eu-
ler class is +2, and these two are not permuted by the diffeomorphisms
group of S! x §2. On the otherhand, those with Euler class —2 can be
mapped to the corresponding +2 classes by an orientation preserving
diffeomorphism of S! x S2. Thus, up to homotopy through overtwisted
contact structures, any overtwisted contact structure on S! x S$% whose
kernel has Euler class with absolute value 2 obeys (2.30).

By way of contrast, another theorem of Eliashberg (see Theorem
4.1.4 in [2]) implies that there are no tight contact structures on S* x S?
whose contact 2-plane field has non-zero degree. Note that there is a
unique (up to diffeomorphism) tight contact structure on S* x §2 [2].

The preceding observations directly imply the following:

Lemma 2.5. Suppose that Xy is a compact manifold with boundary
where each boundary component is diffeomorphic to S x S2. Let w
be a symplectic form on Xy for which 0X¢ is contact type, concave,
and such that the kernel of the correponding contact structure has Fuler
class with absolute value 2 on each component of 0Xy. Then w can be
homotoped through symplectic forms for which 80Xy is contact type so
that the resulting form induces a contact structure on 80Xy which obeys
one of the two points in (2.80) on each component of 0Xp.

Part 2. (Uniqueness). Given that a contact form « satisfies (2.30),
it is by no means the case that the coordinates which realize (2.30) are
unique. Even so, there are certain features of such a coordinate system
which are invariant under diffeomorphisms which preserve the form in
(2.11). One of these features relates to the closed integral curves in (2.17)
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of the vector field v in (2.16).In particular, the curves in (2.17) are, but
with a single one parameter family of glaring exception, all non-trivial
in H1(S! x S%). The homologically trivial, closed integral curves are
characterized by the condition that cos?fy = 1/3. The union of the 1-
parameter family of such curves is a pair of embedded tori in S x §?
whose compliment is the disjoint union of three pieces,

® ag=S'x{(0,¢): —1/3 < cos?6 < 1/3},

o ar=S'x{(8,¢):+£cos?*d > 1/3}.
(2.31)

With regard to (2.31), note that the component ag is the product
of the circle with an annulus, while the other two components are the
products of the circle with a disk.

The following lemma (the proof is self-evident) concludes the digres-
sion:

Lemma 2.6. Any diffeomorphism of S* x S? which preserves the
form o in (2.11) must map ag to itself and either map a4 to themselves
or to each other.

g) SW-admissable HW Z subvarieties

Let X with its symplectic form w be as described in the previous
subsection. As every component of 90X is concave, Lemma 2.1 finds
all pseudoholomorphic subvarieties in X to be HW Z subvarieties. Even
so, this term will be employed as a reminder that (2.7) is obeyed along
with (2.6). Of particular concern are those HW Z subvarieties which are
‘SW-admissable’, a term which is specified in Defintion 2.9, below. This
definition requires a three part, preliminary digression.

Part 1. This first part of the digression presents:

Lemma 2.7. The contact form on 8Xo canonically orients the ho-
mology of 0Xp.

Proof of Lemma 2.7. This follows from the discussion in the final
paragraph of Section 2d.

Remember this lemma when considering the definition of SW-admissable,
below.

Part 2. Let C C X denote an HWZ subvariety. Then, an ir-
reducible component of C is, by definition, the closure of a component
of the compleient in C of the set A from the second point of (2.6). If
C is an HW Z pseudoholomorphic subvariety, then so are its irreducible
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components. Note that an HW Z subvariety has only finitely many irre-
ducible components. (If not, then the first point of (6) would force most
to lie entirely in (0,00) x 0Xo. But, this possibility is ruled out by the
fact that do restricts as a non-negative form with finite total integral.)

Part 3. The symplectic form w orients psuedoholomorphic sub-
varieties in X, and so any such variety, C, determines, by restriction, a
class [C] S H2(X0,6X0; Z).

Definition 2.8. A generalized HW Z subvariety is a finite collec-
tion ¢ = {(Cq, mqa)} with the Cy’s pairwise distinct, irreducible, HW Z
subvarieties and the corresponding m,’s non-negative integers. (The
integer my, is called the mulitiplicity of the corresponding C,). A gener-
alized HW Z subvariety {(Cq,mq)} is called SW-admissable when the
connecting homomorphism from H2(Xo,0X0o;Z) to H1(0Xo;Z) of the
long exact homology sequence for the pair (Xo,8Xy) sends Y, ma[Cq]
to the sum of the oriented generators of H;(0Xy;Z).

The following lemma offers some perspective on this definition:

Lemma 2.9. Let C be an HW Z pseudoholomorphic subvariety with
two properties: First, the pair (C,1) is SW -admissable. Second, there
exists so > 0 such that the intersection of C with each component of
{s0} x 8Xo is path connected. Then, the following conclusions can be
drawn:

e C intersects any large, constant s slice of any given component of
[0,00) x 80X as a circle which is an oriented generator of the first
homology of the corresponding component of 0Xo.

e If a particular component of 80Xy has orientable z-azis line bun-
dle,then C intersects the large s portion of the corresponding com-
ponent of [0,00) x 80X in [0,00) X ag.

e If a particular component of 0Xy has non-orientable z-axis line
bundle, then C intersects the corresponding component of [0, 00) x
0Xy in the image of [0,00) X ag from the non-trivial 2-fold cover.

e Moreover, in this last case: As s — oo on C'’s inverse image in the
non-trivial double cover of the component in question the function
6 converges to w/2 while ¢ converges either to /2 or to —7/2.

Proof of Lemma 2.9. Given the orientations of the homology of
0Xo, the lemma is a direct consequence of Theorem 1.2 in [9].
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3. The Seiberg-Witten invariants on compact 4-manifolds

This section consists of a summary of some of the relevant properties
of the Seiberg-Witten invariants of a compact 4-manifold. These invari-
ants, first introduced by Witten [24], are now discussed in a number of
books (see, e.g. [12]) to which the reader is referred for more details.

In this section, X is a compact, connected, oriented 4-manifold with
b?* > 1. Let S denote the set of equivalence classes of Spin® struc-
tures on X. This set is a principal bundle over a point for the addi-
tive group H%(X;Z). After a choice of orientation for the line det™ =
AYP(HY(X;R)) ® A*P(H?*(X;R)), and also H?*(X;R) in the case
where b*t = 1, the Seiberg-Witten invariants constitute a map

(3.1) SWx : S = A*(HY(X;Z)) =Z& HY(X;Z) @ A2 (HY(X;Z)) & - - -

The map SW is defined as an algebraic count of solutions to a certain
differential equation defined on X.

a) The Seiberg-Witten equations
The definition of the Seiberg-Witten equations has four parts.

Part 1. Fix a Riemannian metric on X. The latter specifies the
principal SO(4) bundle Fr — X of oriented, orthonormal frames in T'X.
By definition, a Spin® structure is a lift of Fr to a principal

(3.2) Spin®(4) = (SU(2) x SU(2) x U(1))/{*1}

bundle. In this regard, note that SO(4) = (SU(2) x SU(2))/{£1l};
and with this understood, the homomorphisms from Spin®(4) to SO(4)
simply forgets the U(1) factor in (3.2).

In any event, let F — X denote a lift of Fr to a principal Spin©(4)
bundle.

Part 2. Associated to F are two canonical C? bundles, Si. Here,
the association is via the representations of Spin®(4) to U(2) = (SU(2) x
U(1))/{£1} which forget either the first factor of SU(2) or the second.
By convention, the projective plane bundles PS_ and PS, are the unit
sphere bundles in the respective R3 bundles A of anti-self dual and self
dual 2-forms. The latter are associated to Fr via the two homomorphisms
from SO(4) to SO(3) = SU(2)/{=%1} which forget one or the other factor
SU(2). Note that both S inherit canonical Hermitian metrics.

There is also an associated U(1) principal bundle, L — X which is
defined via the homomorphism from Spin®(4) to U(1) which forgets both
factors of SU(2). In this regard, remember that U(1)/{+£1} is isomorphic
to U(1).
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As remarked above, the set of Spin© structures on X is a principal
bundle over a point for the group H?(X;Z). The action of this group
on S can be simply described in terms of its effect on the bundles Sy
and L. Here, remember that H%(X;Z) is in 1 to 1 correspondence with
the set of equivalence classes of complex hermitian line bundles where
the correspondence associates a line bundle E to its first Chern class,
c1(E) € H*(X;Z). With this understood, remark that when s € S
and e € H%(X;Z), then the Spin® structure e - s is characterized by
the condition that Si(e-s) = E ® Si(s) where E — X is a complex
line bundle with ¢;(E) = e. Meanwhile, L(e - 5) is characterized by the
property that its associated first Chern class equals ¢;(L(s)) + 2e.

Part 3. The Seiberg-Witten equations are defined with the help of
the Clifford multiplication map

(3.3) cl:TX — Hom(S4,S-)

Indeed, cl is a canonical bundle isomorphism between T Xo and
Hom(S,4,S-) which is defined by viewing the latter bundle as an as-
sociated bundle to Fr. The map in (3.3) has the following key property:
When v € TX, then cl(v)fcl(v) and cl(v)fcl(v) are equal —|v|? times
the identity endomorphism of S, and S_, respectively. Note that ¢l can
also be viewed as a homomorphism

(3.4) cd: S+ T*'X - S_.
Also required is the extension of ¢l to
(3.5) cly : Ay — End(Sy)

The map cl, sends AT to the traceless, anti-hermitian endomorphisms of
S,. It is defined by the requirement that it send the self-dual projection
of wAw' to

(3.6) 271 (cl(w") el(w) — cl(w) el (w")).

The adjoint of cl+ maps S_‘; ® S+ to the imaginary valued sections of
A*. This adjoint will be denoted by cl™.

Part 4. The data for the Seiberg-Witten equations consists of a
pair (A4, V), where A is a connection on L and where ¥ is a section of
S, . The Seiberg-Witten equations involve the curvature 2-form F4 of the
connection A and its projection, Fj{, in A4. These equations also involve
the covariant derivative V4 on sections of S; which A induces with
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the help of the Levi-Civita conection on T'X. Indeed, the Levi-Civita
connection provides a connection on the principle SO(3) x SO(3) bundle
Fr /{£1}. Thus, A and the Levi-Civita connection together provide a
connection on the principle (SO(3) x SO(3) x U(1))/{£1} bundle F
associated to F. As F is, fiberwise, a 4-fold cover of F, the connection
on F induces a unique connection on F. The covariant derivative of the
latter connection is V 4.
With the preceding understood, the Seiberg-Witten equations read

o DU =cl(V4T) =0,

o Ff =t (¥ ® T +ip.
(3.7)

Here, p denotes a fixed, favored self-dual 2-form.

b) Properties of the space of solutions to the Seiberg-Witten
equations

Fix a Spin structure s and so define the principal U (1) bundle L —
X and the C? bundle S;. The set of connections on L is naturally an
affine space which is modeled on the space of smooth, imaginary valued
1-forms, i- C®(T*X) C C*°(T*X)®C. This affine structure endows the
space of connections, Conn(L), with the structure of a smooth Frechet
space manifold. Meanwhile, the space of sections of S has its linear,
C*™ Frechet space structure.

Now, let m C Conn(L) x C*(S4) denote the space of solutions to
(3.7) for a given choice of . (Thus, m depends on the triple (s, g, ) of
Spin® structure, Riemannian metric and self-dual 2-form.) Topologize
m with the subspace topology.

The space m is always infinite dimensional because the equations in
(3.7) are invariant under a certain smooth action on Conn(L) x C*°(S)
of the group C*®(X;S') of smooth maps from X to the circle. Indeed,
a map n € C*°(X;S!) acts by sending the pair ¢ = (A4, ¥) of connection
on L and section of Sy ton-c = (A—2n~'dn,n-¥). For future reference,
note that this action is free except at pairs of the form (A, 0) where the
stabilizer is the circle of constant maps to S'. By the way, such pairs
(A,0) are termed reducible. In any event, let M denote the quotient
m/C*(X;S') which will be viewed as a topological space using the
quotient topology.

It also proves useful to introduce the space, M, which is the quotient
of X xm by the relation (z,c) ~ (z/,c') ifand only if z = 2’ and ¢ = ¢ ¢/
where p € C%°(X;S') obeys ¢(x) = 1. Away from reducible points, the
obvious projection from M to X x M has fiber S'.
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The following proposition lists some of the salient features of M and
M: (This proposition was known to Witten [24]; and proofs of its asser-
tions can be found in [12].)

Proposition 3.1. Fiz a SpinC structure s, a Riemannian metric g
and a self-dual 2-form p. Use this data to define the space M and M.
Then the following are true:

o M and M are compact.

o FEach irreducible c € M has a neighborhood which is homeomorphic
to the zero set of a real analytic map between balls about the origin
in finite dimensional Euclidean spaces. In particular, the domain
ball lies naturally in the kernel of a first order, elliptic operator o,
and the range of this map is the cokernel of this same operator.
Here, the index of 8. is equal to

(3.8) (B! =1 = *N) + 47 (=7x + c1(L) e 1 (L));

where Tx is the signature of X and the symbol ‘e’ between a pair
of 2-dimensional cohomology classes signifies the value of their cup
product on the fundamental class of X.

e In general, the subspace Mieg C M of irreducible orbits where
cokernel(d;) = 0 is open in M and has the structure of a smooth,
orientable manifold whose dimension is given by (3.8). Moreover,
an orientation of the line det™ = A'*P(H(X;R))QA®P(H?*+(X;R))
provides Meg with a canonical orientation. Meanwhile, the the
inverse image in M of X X Meg has the structure of a smooth,
principal St bundle.

e Suppose that b** > 0. Fiz the metric, and there is a Baire set
U C C®(X;A4) of self dual 2-forms p for which M = Mieg, and
so M has the structure of a smooth manifold of dimension given
by the number in (8.8). In particular, for u € U, the operator 4.
has trivial cokernel for all c € M.

By the way, this operator d. is defined for any ¢ € Conn(FE) x
C>®(X;S+) and maps i - C®(T*X) & C*(S4) to

i (C®(X) ® C®(Ay)) ® CP(S_).

In this regard, d. sends a pair (b,n) € i - C®°(TX*) & C*(S4+) to the
triple in 7 - (C*°(X) & C*(A4)) @ C°°(S-) with the components
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o d*b+47(nty — Tiy)
o dtb—clt(n® ¥t + T ®1h)
o Dan+2-1cl(b)T.

(3.9)

Here are some observations about the preceding assertions:

e The number in (3.8) is either even or odd; its parity is the same as
that of 1 — b + b%F.

e When b2t > 0,u € U, and the integer in (3.8) is negative, the
proposition asserts that M = ) since there are no negative dimen-
sional manifolds.

e When b** > 0, p € U and (3.8) is zero, then M consists of a finite
set of points. In this case, an orientation of M is an association
of a sign to each point in M. (Note that a point has a canonical
orientation since Ho(point;Z) has a canonical generator.)

e When b2t > 0, u € U and (3.8) is positive, let ¢ € X x M denote
the first Chern class of the principal S bundle M — X x M. Then

slant product with ¢ defines a canonical map, ¢, from H,(X;Z) to
H?™*(M;Z).

With regard to this map ¢, note that the image under ¢ of a class
v € HY(X;Z) has an alternate definition which goes as follows: Choose
a map, v : S — X, which pushes forward the fundamental class of S!
to give 7. The association to ¢ = (4, ¥) € Conn(L) x C®(X;8,) of
the holonomy of 7v*A around S' defines a smooth map, h,, : Conn(L) x
C>(X;S') — S1. Then ¢(7) is the same class as the pull-back via h,
of the generator of H'(S!).

c) The Seiberg-Witten invariants
Here is the definition of the invariant SW:

Definition 3.2. Let X be a compact, conected, oriented 4-manifold
with b2t > 0. Fix an orientation for the line det*, and, in the case b2t =
1, also fix an orientation of the line H**(X;R). Fix a Riemannian metric
on X and a Spin€ structure. Also, fix p € U in (3.7) to define M, but in
the case when b?t = 1, make the following additional requirement: Let w
denote a non-trivial, closed, self-dual 2-form whose direction provides the



SEIBERG-WITTEN INVARIANTS 645

orientation for H2*(X;R). Now require that r =4 i) x 1A w be positive
and very large. The value of

SWeZo HYX;Z)® N’ H\(X;2) & - --

on the given Spin® structure is computed using M as follows: Let d
denote the integer in (3.8).

e If d < 0, then SW = 0.

o If d =0, then M is a finite set of points and the chosen orientation
for det* defines a map, ¢, from M to {+1}. With £ understood,
then

(3.10) SW=> elc)ez
ceEM

e When d > 0, then SW has non-zero projection into APH(X;Z)
only if p has the same parity as 1 — b! + b?>*. In this case, SW
is defined by its values on the set of decomposable elements in
AP(H,(X;Z)/ Torsion); and here, SW sends y1 A --- A7y, to

(3.11) /M B(1) A+ d(1p) A $(x)4PV2,

where * € Hy(X;Z) is the class of a point.

The apparent dependence of SW on the Riemannian metric and on y is
spurious as the next proposition asserts:

Proposition 3.3. Let X be a compact, connected, oriented 4-manifold
with bt > 1. Then the values of SW on the elements of s are inde-
pendent of the choice of Riemannian metric and form p. In fact, SW
depends only on the diffeomorphism type of X in the sense that it pulls
back naturally under orientation preserving diffeomorphisms. This is to
say that if ¢ : X — X is a diffeomorphism, then ¢ pulls back the chosen
orientation of det (and of H?>* when b** = 1), it pulls back A*H'(X; Z)
and it pulls back Spin® structures (because metrics pull back). With this
understood, then SW(p x (-)) = ¢*(SW(-)).

See, e.g. [12] for a proof of this Proposition.

4. The Seiberg-Witten invariants on manifolds with S! x 52
boundaries

There is now a well developed theory of the Seiberg-Witten invariants
for manifolds with boundary. Here are a few relevant references:[13], [14],
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(15]. In principle, the general story is well understood, though the details
may be quite complicated if the boundary is a complicated 3-manifold.
Fortunately, the case where the boundary components are all ST x §%’s
is fairly simple to describe, and this section provides a description of the
salient features.

To begin, let Xy now denote a connected, compact, oriented 4-
manifold with boundary such that Xy = UlngNSl x S2. And, let
S denote the set of equivalence classes of pairs (s,0) where s is a Spin®
structure on Xy whose associated line bundle L is trivial on 80X, while
o is a class in H%(Xp,0Xo;Z) which maps to ¢1(L) € H?(Xo;Z).

After a choice of orientation for certain canonical lines, there is a
well defined Seiberg-Witten invariant for Xo which consitutes a map
SW :8 - Z®HY(Xo;Z) ® A2H'(X0;Z) @ ---. The definition of this
map and a description of its properties occupies the various subsections
of this Section 4.

By the way, the map SW which is defined below is very much like
the Seiberg-Witten invariant defined in [13] for manifolds with boundary
Sl x ¥, where ¥ is a surface of genus greater than 1. Indeed, the argu-
ments that justify assertions in this section are almost entirely slightly
modified or simplified versions of arguments from [13]. Thus, the proofs
of the various propositions and lemma to come will simply refer to the
sections in [13] where analogous statements are proved, leaving it to the
reader to make the necessary modifications.

a) Geometric preliminaries

To begin, consider X as the complement of an open set in the non-
compact manifold (without boundary) X, which is defined by identifying
0Xo C Xo with X x{0} C 8Xox[0,00). Thus, X = XoU(0Xox[0,00))
is a manifold with ‘tubular ends’.

Fix a metric with positive scalar curvature on Xy and then fix a
metric on X which restricts to a neighborhood of Xy x [0,00) as the
product of this standard metric on Xy and the Euclidean metric on the
half line. With such a metric chosen, fix a pair (s,0) € s and thus a
lift, F — X of the frame bundle Fr. Use F to define (as in the compact
case) the bundles Ay of self and anti-self dual 2-forms, the complex C?
bundles S4, and the principle S bundle L.

Let Conn.(L) now denote the space of connections, A, on the bundle
L with the property that the norm of the associated curvature 2-form Fa
has exponential decay on all ends of X and so that (27i) ™! F4 represents
the class 7. Meanwhile, let C°(S4) denote the space of sections of Si
whose norms have exponential decay on all ends of X. To be explicit
about this exponential decay condition, fix a function s : X — (-1, 00)
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whose restriction to 90X x [0,00) is the projection onto the half line
factor. Then a pair consisting of a connection A on L and a section ¥
of Sy are in Conng(L) x C°(L) when there exists § > 0 such that

(4.1) €%%|Fa| + €%%| 9|

is bounded on X, and when (27i) "1 F“ represents o.

Note that C2°(S ) is a linear Frechet manifold where a neighborhood
of zero is labeled by data (d,e,n, K) which consist of positive numbers
é and &, a non-negative integer n, and a compact set K C X. The
neighborhood labeled by this data consists of those ¥ € C2°(S;) with the
property the following two properties: First, all covariant derivatives of
¥ to order n are bounded by € on K. Here, the covariant derivatives are
defined by some hermitian connection on S4 which is fixed in advance.
Second, €% |¥| < € on X.

Meanwhile Conn,(L) is a fiber bundle over x yS! whose fiber is an
affine Frechet manifold. With regard to this last point, remember that
N denotes the number of components of X, and with this understood,
the k’th coordinate of this fibering map sends A € Conn.(L) to the limit
as s tends to co on the k’th end of X of the holonomy of A around
any circle in S! x S? which generates the latter’s first homology. The
boundedness of (4.1) for some § > 0 insures the existence of this limit.

By the way, as the curvature 2-form of each A € Conn.(L) has ex-
ponential decay along the ends of X, the 4-form —(472)"1F4 A Fy is
integrable on X. Moreover, the value of the ensuing integral can be ar-
gued to be independent of the particular choice of A from Conn.(L) and
thus depends only on s. Indeed,

(4.2) —(4m2)71 /X FANFyg=c(L)eci(L).

where the right hand side denotes the evaluation on the fundamental
class in Hy(Xo, 0Xo;Z) of the cup product with itself of any lift of ¢1(L)
to H?(Xo,0Xo;Z). (In particular, o is such a lift.)

The point here is that the bilinear pairing, e, on ®2H?(Xg,8Xo;Z)
is symmetric, but not perfect and the kernel of this pairing is precisely
the image of H!(8X,) under the connecting homomorphism for the long
exact cohomology sequence of the pair (Xo,0Xp). Thus, e can be viewed,
equivalently, as a non-degenerate pairing on the kernel of the restriction
induced homomorphism from H?(X¢; Z) to H?(8Xo;Z). (The fact is that
Poincaré duality provides only a perfect bilinear pairing from H?(X() ®
H?(Xo,0Xy) to Z.) It is convenient to view the pairing e at times from
one or the other of these view points.



648 CLIFFORD HENRY TAUBES

In any event, for the time being, view e as a symmetric pairing on
H?(Xo,0X0;Z) and let b*>*(X) denote the maximum of the dimensions
of those subspaces V C H?(Xp,0Xp) on which it is positive definite.

b) Properties of the solutions

The Seiberg-Witten invariant for a fixed pair (s,0) € S is computed
via an appropriate count of the solutions (A4, ¥) € Conn,(L)x C(S4+) of
the equation in (3.7) where p is a fixed self-dual form on X whose norm
has exponential decay on the ends of X. (That is, €**|u| is bounded on
X for some § > 0.) Thus, of prime interest is the set m C Conn.(L) X
C°(S4) of pairs (A, ¥) which obey (3.7) on X. The lemma below lists
some basic properties of elements ¢ € m.

Lemma 4.1. Let m be as just described. Then, there exist con-
stants & > 0 and, for each n > 0, there exists (, > 1 with the following
significance: Let (A,¥) € m. Then

o e"(|Fal +]¥]) < (o
e For eachn > 1, e*(|V"F4| + |(VA)"¥|) < (n-

e On each end of X, the connection A has exponential decay to some
flat connection in the following sense: There is a flat connection
Ag on L’s restriction to the given end such that a = A — Ag obeys
e*|V"a| < (n for all n.

Proof of Lemma 4.1. The proof is obtained by modifying the ar-
guments in Section 6.4 of [13]. Here, the fact that the scalar curvature
of the metric on S! x $? is positive plays the role played in[13] by the
assumption that the solutions to the Seiberg-Witten equations on S x X
are non-degenerate (See Section 5 of [13]). (The positivity of the scalar
curvature also implies that the only solutions to the unperturbed 3-
manifold Seiberg-Witten equations for the same metric on S! x S2 have
the form (A,0), where A is flat.) Note that the arguments in Section
6.4 of [13] give directly an exponential decay assertion in the L? Sobolev
norm. However, standard elliptic estimates can be used to prove that
there is exponential decay in the Cy norms for all k.

c) The moduli space

The group C*°(X;S') acts on Conng(L) x C(L) and this action
is smooth when C*(X;S!) is viewed as a Frechet lie group using the
C® Frechet topology. Here, the open neighborhoods of the constant
map 1 are indexed by triples (e,n, K) where ¢ > 0,n € {0,1,...}, and
K C X is compact; and the corresponding open set consists of those
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maps ¢ which obey |VFp| < € on K for all k& € {0,1,...,n}. Give
m C Conn.(L) x C°(S+) the subspace topology and then give M =
m/C>®(X;S') the quotient topology.

As in the compact X case, it proves useful to introduce the somewhat
larger space M which is the quotient of X xm by the equivalence relation
(z,c) ~ (z',c') when z = 2’ and when ¢ = ¢ - ¢’ where p € C*®(X;S?)
obeys ¢(x) = 1. This space M admits an continuous action of S! and
the quotient space is X x M.

Key properties of M and M are described in Proposition 4.2, below.
The statement of this proposition uses 7x to denote the signature of
the pairing ® on H?(Xy,8Xo)/ Image(H'(0Xo) and it uses H2*(Xy) to
denote any choice of 4>* dimensional subspace of

H?(Xo,08Xo)/ Image(H" (8Xo)

to which e restricts as a positive definite pairing.

Proposition 4.2. Fiz a pair (s,0) € S, a Riemannian metric g and
a self-dual 2-form p which exponentially decays on the ends of X. Use
this data to define the space M and M. Then the following are true:

e M and M are compact. In fact, given the Spin€ structure s, there
are only finitely many pairs (s,0') € S with M non empty.

e Fach irreducible c € M has a neighborhood which is homeomorphic
to the zero set of a real analytic map between balls about the origin
in finite dimensional Fuclidean spaces. In particular, the domain
ball and the range ball lie naturally in the respective kernel and cok-
ernel of a Fredholm operator, 6., between separable Hilbert spaces.
Here, the indez of 6. is equal to

bl —1—b*F + 47 Y (—7x 4+ c1(L) e c1(L)).

e In general, the subspace Mg C M of irreducible orbits where
cokernel(é.) = 0 is open in M and has the structure of a smooth,
orientable manifold whose dimension is equal to the index of d..
Moreover, the inverse image in M of X X M:eg has the structure
of a smooth, principal S* bundle.

e Fix attention on an end of X. Then, the assignment to ¢ =
(A,¥) € M of the s — oo limit of the holonomy of A around the
loop S x {point} x {s} in the given end of X defines a continuous
map from M to S' which is smooth on Meg.
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o Suppose that b*t > 0. Then, with the metric on X fized, there is
a Baire subset U of choices for p in (3.7) which have ezponential
decay on the ends of X and are such that the following hold:

a) M contains no reducible pairs.

b) M = M;eg.

¢) Fiz an end of X and the corresponding map from M to S*
is gemeric in the sense that it has at most a finite number
of critical points, and each is non-degenerate. Moreover, the
critical values of this map can be assumed to miss any previ-
ously specified countable set in S'.

d) The critical points for the maps to S' defined by distinct ends
of X are distinct.

e An orientation of the line A*PH!(X;R) ® AP H2*(X;R) canon-
tcally orients Mieg.

Proof of Proposition 4.2. Except for the final point about orienta-
tions, all of the assertions can be proved by slightly modified versions
of arguments from Section 8 of [13]. The final point can be proved by
modifying arguments from Section 9.1 of [13].

Two key examples take Xy = S! x B3 and Xo = B2 x §2, where
BP C RP denotes the closed, unit radius ball centered at the origin. In
the S* x B3 case, take the metric to be one with non-negative scalar
curvature which restricts to a product neighborhood of the boundary
S1 x 52 as the product of the Euclidean metric on the line with a metric

having positive scalar curvature. With such a metric and with g =0 in
(3.7,

(4.3) M =5

In fact, M consists solely of reducible pairs (A4, 0), where A is pulled
back from S!. In particular, the map from M to S! given by the holon-
omy of A about S! x {point} provides the identification in (4.3).

In the B2 x S? case, take the product of the round metric on S? with
a metric on B? which has non-negative scalar curvature and restricts to
a product neighborhood of the boundary circle as a flat, product metric.
With such a metric and with g =0 in (3.7),

(4.4) M = {point},

where the point in M is the reducible pair (A,0) with A a trivial con-
nection.
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d) The Seiberg-Witten invariants
Assume now that 4>7(Xy) > 0. Orient the line

A*PHY(Xo; R) ® A*P(H*F (Xo; R);

and if b2* = 1, also orient H?*(Xy;R). Having done so, the moduli space
M can be used to define a map SW : § — Z® H'(X¢;Z) ® - -- which is
suitably invariant under diffeomorphisms of Xy. Indeed, Definition 3.2
translates verbatim to define SW in the present case. This is to say that
the value of SW on a element (s,0) € S is computed as follows: First,
fix a suitable Riemannian metric on X and then fix p from Proposition
4.2’s set U to define M, but in the b2t = 1 case, make the following
added requirement on u: Let w denote a non-trivial, closed, compactly
supported 2-form whose class in H2(Xg, 8Xo; R) class has positive square
and defines the given orientation for H?*(X,). Then, require that r =
if x BAw be positive and very large. Note that resulting M is a compact,
oriented, smooth manifold of dimension

d=dimM =b' —1 - b*" + 47 (—1x + c1(L) e c1(L)).

With this last point understood, set SW(s,0) = 0 when d < 0 as
M = () in this case. In the case when d = 0, then M is a finite set of
signed points and SW (s, o) is the integer which is obtained by summing
the signs which are associated to the points of M. Finally, when d >
0, then the component of SW(s,o) in APH(X;Z) is defined by the
condition that it send the decomposable element

11 A - Ay, € AP(H1(X; Z)/ Torsion)

to the value of the expression in (3.1).
As just defined, SW has the following properties:

Proposition 4.3. The values of SW as just defined are independent
of the choice of Riemannian metric and form p subject to the aforemen-
tioned constraints on [0,00) x 8Xo. Infact, SW depends only on the
diffeomorphism type of Xg as a manifold with boundary in the sense that
it pulls back naturally under orientation preserving diffeomorphisms of
the pair (Xo,0Xy).

Proof of Proposition 4.3. The arguments in Section 9.2 of [13] carry
over directly. By the way, these arguments do not require a lemma to
the effect that the space of oriented diffeomorphisms of S! x §2 is path
connected, nor does it require a lemma to the effect that the space of
metrics on S x S? with positive scalar curvature is path connected. An
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argument for Proposition 4.3 can be made given only that the space of
all metrics on S! x S? is path connected.

The latter argument is made along the following lines: First, establish
a restricted version of Proposition 4.3 which limits the diffeomorphisms
under consideration to those whose boundary restriction is isotopic to
the identity, and which limits metric variation to that which changes
the boundary metric along a path in the Frechet space of positive scalar
curvature metrics. Then, establish an appropriate analog of the product
formula in Theorem 9.5 of [13] for the resulting restricted Seiberg-Witten
invariants. In fact, the analog of Theorem 9.5 from [13] for the restricted
Seiberg-Witten invariants can be phrased to read like a modified version
of Proposition 4.5, below; with the major modification occuring in the
assumptions about X. In particular, the modified Proposition 4.5 takes
X diffeomorphic to Xo+ and Xo_ diffeomorphic to [—1,1]x8Xo+. In any
event, the analog of Theorem 9.5 from [13] will imply the full invariance
of SW as stated in Proposition 4.3.

e) The invariant for X, and for compact 4-manifolds

Let X now denote a compact, connected oriented, smooth 4-manifold
with b2t > 1, and suppose that ¢ is an embedding of the disjoint union,
Y, of some N > 1 copies of (S! x §?) into X, each of which separates X.
Then, X can be written as X = Xy Uy X4+, where Xp4+ are compact,
oriented manifolds with boundary Y. In this case, the invariant SW for
X can be computed in terms of that for Xg— and Xgy. The story in
the general case is somewhat outside the scope of this paper. However,
there are three special cases where the story is quite simple:

e b2t > 0 for both Xox .

e bt > 0 for X, while Xo- C X is the closure in X of a tubu-
lar neighborhood of the disjoint union of embedded circles and 2-
spheres with self-intersection number zero. Furthermore, at least
one of these 2-spheres gives a non-zero class in Hz2(X;R).

e b2t > 0 for Xpy while Xg_ C X is the closure in X of a tubu-
lar neighborhood of the disjoint union of embedded circles and
2-spheres, where the latter are all inessential in the real, second
homology of X.

(4.5)

The story for the first two cases in (4.5) is simply stated as follows:

Proposition 4.4. Let X be as described above and suppose either
the first or the second case in (4.5) holds. Then SWx = 0.
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To describe SWx in the third case of (4.5), digress first to introduce
the set )V of B2 x §2 components of Xo—. Then, note that the boundary
of each Y € Y is also a component of the boundary of Xy, and thus
picks out a distinguished homology class, vy € H1(Xo+;Z). (This class
is non-zero in Hj(Xo;Z)/ Torsion because the core S? in Y is non-zero
on Hy(X;Z)/ torsion.) Digress again to note that the inclusion induced
map ¢ : H1(Xo+;2Z) — H1(X;Z) is surjective.

With these last points understood, consider:

Proposition 4.5. Suppose that X is a compact, oriented 4-manifold
with bt > 1 which decompose as Xo— Uy Xo where b*>*(Xo) > 0 and
where Xo— is a tubular neighborhood of a disjoint union of embedded
circles and 2-spheres with zero self-intersection number. Let Y denote
the set of components of Xo— which contain these 2-spheres. If Y = 0,
set kK = 1, and otherwise, order the components of Y and set kK Ayey vy
where the order of the terms in this exterior product conforms to the
chosen ordering of Y. Then,

SWx(e(m)A---AN(vp)) = SWxo (KA -+ A7),

where the + here is independent of {v;}1<j<p-

Proof of Propositions 4.4 and 4.5. The proof of Theorem 9.1 of [13]
can be modified in the present context to provide a natural description of
the extended moduli space M yx for a suitable metric on X in terms of the
corresponding moduli spaces _]\Z 4 for Xo+. In order to write this formula,
let My denote the extended moduli space M for X. Recalling that the
latter comes with a canonical projection to X, let Mx|y C Mx denote
the subset which lies over Y. Define M|y analogously. Moreover,
use (M_|y x M, |y)la C M_ly x M|y to denote the subspace which
lies over the diagonal, A C Y x Y. With these definitions understood,
the analog here of Theorem 9.1 from [13] asserts that there are certain
metrics on X for which M x |y has a natural, S'-equivariant identification
with (M _|y x M, |y)|a. Here, S1 acts on the product via the diagonal
action. (The metrics in question admit, for some large constant T, an
isometric embedding of [-T,T] x Y into X which map {0} xY toY C X
via the identity map. Here, [T, 7] xY has a metric which is the product
of a Euclidean metric on [T, 7] and a positive scalar curvature metric
on Y.) The assertions of both propositions follow with a little algebraic
topology from this picture of M x|y .

f) An important corollary
Proposition 4.6, below, summarizes the features of the map SW
which are relevant for the subsequent discussion of the assertions in (1.1).
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Note that this proposition is an immediate corollary to Propositions 4.3
and 4.5.

Proposition 4.6. Let Xy be as described in Section 4a, and suppose
that (s,0) € S has a non-zero value of SW. Let pu be any self-dual 2-form
on X with exponential decay on [0,00) X 0Xg. Then, there ezists at least
one solution to the ((s, o), p) version of (3.7). In particular, if X and Xy
are as described in Proposition 4.5 and X has non-trivial Seiberg- Witten
invariant, then so does Xo and so there exists (s,0) € S such that the
((s,0), 1) version of (3.7) has at least one solution for every choice of
exponentially decaying, self-dual 2-form p.

5. SW-admissable HW Z subvarieties and the Sieberg-Witten
invariants

This section returns to the milieu of Sections 2f and 2g. In par-
ticular, suppose that the manifold with boundary Xy and the corre-
sponding manifold X with its symplectic form w are as described in
the aformentioned parts of Section 2. Likewise, endow X with an w-
compatible almost complex structure, J, which restirct to the compo-
nents of [0,00) x 80Xy as follows: If a component of Xy has orientable
z-axis line bundle, take coordinates on this copy of S! x S? so that the
contact form is given by (2.11). Then, use (2.22) to define J. If the
component in question does not have an orientable z-axis line bundle,
take coordinates on the non-trivial 2-fold cover so that the pull-back of
the contact form is given by (2.11). Then, take J so that its pull-back
to this same double cover is given by (2.22) in these same coordinates.

Note that J defines the Riemannian metric g = /2w(-, J(+))/|w|,
and with respect to this metric, w is self-dual and J is an orthogonal
transformation. Moreover, the metric on [0,00) X 80Xy is given by the
second line in (2.21) in the coordinates on a component or its double
cover where J is given by (2.22) and « by (2.11).

The metric here will be used to define the Seiberg-Witten equations
on X; thus it plays a role in the definition of SW for Xy. Meanwhile,
the almost complex structure will be used, as in Section 2g, to define the
SW-admissable subvarieties. The task for this section is to point out a
relationship between the map SW on the one hand, and SW-admissable
subvarieties on the other.

a) SW-admissable subvarieties and the set S
The relationship between the Seiberg-Witten invariants and SW-
admissable subvarieties begins with the fact that a Spin® structure on
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X of the sort which arises in the definition of SW can be canonically
assigned to each SW-admissable, generalized HW Z subvariety:

Proposition 5.1. An SW-admissable, generalized HW Z subvariety
¢ = {(Cayma)} canonically defines a Spin® structure s, with associated
line bundle L that is trivial over 0Xg. Moreover, an SW -admissable,
generalized HW Z subvariety of the form (C,1) which satisfies the four
points in Lemma 2.9 canonically defines a pair, (s¢,0¢) € S.

The remainder of this section is occupied with the

Proof of Proposition 5.1. To start, fix a Spin© structure on Xo
whose corresponding line bundle L is trivial on 0Xy. Introduce the en-
domorphism cly in (3.5); then cl4(w) is a skew hermitian endomorphism
whose eigenvalues are +i - 4/2|w|. These eigenspaces of cl;(w) decom-
pose S; as Ly @ L_, a direct sum of complex line bundles where, ¢l (w)
acts as ¢ - y/2|w| on L. Note that the line bundle L is non-trivial over
any component of 0Xjp; its first Chern class is the oriented generator of
the second cohomology of each component of 8Xy. (The orientation of
this cohomology is describe in Lemma 2.7 and the discussion in the final
paragraph of Section 2d.)

Meanwhile, duality identifies Ho(Xo,8X0;Z) with H%(Xo;Z) and so
an SW-admissable, generalized HW Z subvariety ¢ defines a canonical
element, e, € H%(Xo;Z) which is the Poincaré dual to > (c;m)ee m(C]-
And, according to Definition 2.8, this class must restrict to each com-
ponent of X, as the oriented generator of the second cohomology of
the component in question. Thus, e, and ¢; (L) differ by an element in
H?(Xo,0Xo;Z) and so one obtains

Lemma 5.2. Let ¢ denote an SW-admissable, HW Z subvariety.
Then, there ezists a unique Spin® structure, s., over Xy with the follow-
ing properties:

e The associated line bundle L is trivial over 8Xy.

o ci(L+) =ec.

The next task is to find the class oc € H?%(Xo,0Xo;Z) so that
(s¢,o0¢) are in S under the assumption that C satisfies the four points
in Lemma 2.9. For this purpose, introduce the line bundle

K =Hom(L_,Ly).
Now there are four claims to be made about K:

Lemma 5.3. Define the line bundle K as above. Then K has the
following properties:
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K admits a canonical section, k, over 0Xy.

e The zero set of k is canonically homologous to twice C N 0Xp.

e The homology from the preceding point with any choice of an ez-
tension of k to a section of K over Xgo can be used with C to
canonically define a closed, oriented subvariety in Xp.

e The class in Ha(Xo,Z) of the subvariety just mentioned is indepen-
dent of the extension of k off of 0Xo, and its dual maps to c1(L)
in H*(Xo;Z).

Accept this lemma on faith for the moment to finish the definition
of Proposition 5.1’s class o¢: Take o¢ to be the dual class to the fun-
damental class in Hy(Xo;Z) of the subvariety from Lemma 5.3’s fourth
point. Then, the pair (s¢,0¢) € S because o, is constructed to be the
first Chern class of the complex line bundle L_%_K ~1 and this line bundle
is L = det(S4).

With the preceding understood, then the proof of Proposition 5.1 is
completed with the

Proof of Lemma 5.3. To start, it is important to realize that the
R? bundle underlying K is isomorphic to the orthogonal complement
in A4 to w. This is because the restriction to this complement of ¢l
produces purely off diagonal endomorphisms of S, with respect to the
decomposition of Sy as Ly & L_. Thus, studying K means studying the
orthgonal complement of w in Ay; and this view of K will be used to
prove the statements in Lemma 5.3.

To prove the first two statements of the lemma, it proves useful to
distinguish in the discussion those components of 90X, with oriented
z-axis line bundle from those without. Consider first the case where a
component Y C dX has orientable z-axis line bundle. In this case, there
are coordinates on Y where « is given by (2.11) and then w on [0,00) XY
is given by the first line in (2.21). In particular, where 0 < 6 < 7, the
line bundle K is spanned by the forms

e dt Asin?0dy — g~2df A dh.
e dt A dh —sin?8dy A df.
(5.1)

Take the first form above for the section « of K. With s understood,
note that x~1(0) on 8Xj is the set S x {0, 7}; it is left to the reader to
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check that the orientations are such that k~!(0) is twice the generator
of H1(S x §2;Z). These last observations justify the first two points of
Lemma 5.3 for Y.

To obtain the homology in question, use the points in Lemma 2.9
to conclude that when s is large, then C’s intersection with {s} x Y C
[0,00) X Y is a very small distance push-off of the parameterized loop
given by (2.17) where the the left hand side of (2.18) is an integer and has
positive denominator. (Note that the natural orientations are opposite,
however.) Thus, for large s, there is a canonical homotopy between C’s
intersection with {s} X Y and the orientation reversed version of the
loop in (2.17). Meanwhile, the orientation reversed version of this same
loop from (2.17) is canonically homotopic to S x {# = 0}: Indeed,
simply decrease the 6 coordinate in (2.17) from its given value of 6 to
0. Likewise, this loop is canonically homotopic to S x {§ = 7} via the
homotopy which increases the @ coordinate from 6y to .

Now consider the case where the given component Y C 98Xy has
unoriented z-axis line bundle. In this case, there are coordinates on the
non-trivial double cover of Y where o pulls back to give the form in
(2.11) and w pulls back to give the form in the top line of (2.21). In
particular, where 0 < 8 < 7 the pull-back of K is spanned by the forms
in (5.1). Save these last observation.

To exploit the preceding, introduce

(z1 = sinf cos p, z2 = sinfsin p, z3 = cos )

on the non-trivial double cover of ¥ and use them to define a set of
functions (t',z}, 25, z5) on Y itself via (2.28). It then follows from (2.28)
and the remarks in the preceding paragraph that the Poincaré dual to
the first Chern class of K'’s restriction to Y is the parameterized curve

(5.2) T — (¢ = 27,2} = 0,75 = sin(7), x5 = cos(7)).

Meanwhile, it follows from the final point of Lemma 2.9 that when s is
large, the intersection of C with {s} XY is a very small distance push-off
of the circle where ] = 1. Thus, this intersection is canonically homo-
topic to the z} = 1 circle. Meanwhile, the circle in (5.2) is canonically
homotopic to twice the 2} = 1 circle. Indeed, consider the homotopy
which replaces the right side of (5.2) which sends (7,7) € St x [0,1] to
(t' = 27,2} = (1 — r2)Y/2 22 = rsin(r),z§ = rcos(1)).

With the first two points of Lemma 5.3 understood, the third point
of the lemma follows now from the preceding discussion in an absolutely
straightforward manner.
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The fourth point of Lemma 5.3 immediately from the first three
points.

b) SW-admissable HW Z subvarieties and the Seiberg-Witten
invariants '

Take X as in the previous subsection and reintroduce the Seiberg-
Witten invariant for Xo, SW : S = Z@ HY(X0;Z) AN’ H (X0, Z) @ - - - .
The following theorem is the key result in this article:

Theorem 5.4. Let (s,0) € S be a class on which SW is non-zero.
Then there exists an SW -admissable, generalized HW Z subvariety c with
Sc = 5.

Note that there is no assertion here that about the existence of an
SW-admissable, HW Z subvariety C which obeys the four points in
Lemma 2.9, and has both s¢ = s and o¢ = ¢. Indeed, it is not clear
that this must be the case even with reasonable, additional assumptions.

Theorem 5.4 is a generalization of the main theorem in [17], [18] which
gives the Xy = () version. Theorem 5.4 should also be compared with
Theorem 1.2 in [16] which proves an analgous theorem in the more re-
strictive context of Riemannian pseudoholomorphic geometry. Moreover,
the proof of Theorem 5.4 here borrows heavily from that of Theorem 1.2
in [16], while the latter follows many of the lines of the main theorem in
[17], [18]. On the other hand, Theorem 1.2 in [16] can be viewed as a
corollary to the Theorem 5.4 and Proposition 4.5. Conversely, a special
case of Theorem 5.4 can be deduced from Theorem 1.2 in [16].

c) A generalization of Theorem 5.4

With a metric on X as described at the beginning of this section, fix
r > 1 and consider the version of (3.7) where p = 27 lrw. If ¥ in this
version (3.7) is replaced by +/r¥, then (3.7) reads

o DAV =cl(VaYP) =0,

o Ff =r(cdt(¥ T —i27lw).
(5.3)

Proposition 4.6 implies that the ((s,0),r) version of (5.3) has a solution
for every r > 1 when SW(s,0) # 0. Thus, Theorem 5.4 is a corollary of:

Theorem 5.5. Fiz (s,0) € S and suppose that there exists an un-
bounded, increasing sequence {r,} € (0,00) with the property that for
each index n, the r = ry version of (5.3) has a solution, (An,¥,) €
Conne(L) x CX(S4+). Then there exists an SW -admissable, generalized
HWZ subvariety ¢ with s = s. In addition, there is a subsequence
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of {(An, ¥pn)} (hence relabled by consecutive integers) with the following
property: For each n, let a,, denote the orthogonal projection of ¥, into
eigenspace of cli(w) in Sy with eigenvalue i-+/2|w|. Introduce the HW Z
subvariety C' = Uic,myecC Let @ C X be any compact set and then

(5.4) lim [ sup dist(z,a;'(0))+ sup dist(C’,z)]

exists and equals zero. Finally, there is a constant o which depends solely
on the symplectic form and the Riemannian metric of Xo, and is such
that

(5.5) > m/cw =27 w]eci(L) +p

(Cym)ec

6. Estimates for the proof of Theorem 5.5

The argument for Theorem 5.5 is begun in this section and completed
in the next. However, before starting, take note of the fact that the argu-
ment presented here is a modified version of the proof in [16] of Theorem
2.21in [16]. (The latter asserts an analog of Theorem 5.5’s existence result
in the context of Riemannian pseudoholomorphic geometry which plays
the role of Theorem 5.5 here.) The proof of Theorem 2.2 in [16] and that
given below of Theorem 5.5 can be viewed as having three distinct parts.
The first part derives global bounds for various measures of ¥ and Fjy.
The second part uses the global bounds to obtain stronger estimates on
compact domains. Note that these first two parts are more conceptually
distinct than chronologically distinct. In any event, the first two parts of
the proof occupy Section 6. The final part of the proof occupies Section
7. In the third part of the proof, the bounds on compact subsets of X
from this section are used in conjunction with various arguments from
[17], [18] to complete the proof of Theorem 5.5. In this regard, note that
[17], [18] proves Theorem 5.5 in the case where d.X( = 0.

As indicated, the discussion here follows closely the proof of Theorem
2.2 in [16], and so referrals to [16] are frequent.

In the remainder of Section 6 and in Section 7, the implicit assump-
tion is that a pair (s,0) € S has been fixed, that r is large and that
(A, ¥) is a solution to the ((s,o),r) version of (5.3).

a) Integral bounds for |¥|2.
As might be expected from the title, the purpose of this subsection
is to obtain integral bounds for |¥|2. The statement of these bounds
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requires a brief digression to introduce some notation. To start the
digression, introduce the characteristic number

6.1) £u(s) = [w] 0 0.

Here, [w] is the class of the symplectic form in H?(Xo,0Xo). In this
regard, remember that w is exponentially decaying along [0, 00) x 0Xj
and so canonically defines a class in H?(Xp,0Xp). Also, note that the
right hand side of (6.3), though written in terms of o € H(Xo,8X)),
depends only on ¢’s image, c1(L), in H?(Xp).

To continue the digression, let g denote the chosen Riemannian metric
and let Ry denote g’s scalar curvature function and Wg+ the self-dual part
of the Weyl curvature. Then, let R;,_ denote the minimum of zero and
R,. Thus, R, has compact support in Xo. Finally, let dvolg denote the
volume form of the metric g.

With the digression now over, consider:

Lemma 6.1. There is a universal constant ¢ with the following
significance: Let (s,0) € S be given. Now, suppose that (A, ¥) solves
(5.8) for the given (s,0) and for some choice of r > 1. Then

o [x(2V?w| - |2P%)*d vol, < er™(eu(s)
+ [ (|1Rg| + 71| Ry[?)|w]d vol,.

o [x 272l = [Pldvol, < ert(ew(s)
+ [x(I1Rg| + W |*)|w| + 77| Ry |)d vol,.

Proof of Lemma 6.1. The argument here is almost an exact copy
of that which proves Lemma 3.1 in [16]. The only difference occurs
in the modification of a particular term which appears in a differential
equation for |¥|2, the latter being implied by the Weitzenboch formula
which writes DLDA in terms of the Laplacian VLV 4. To be precise,
note that the Weitzenboch formula used in the proof of Lemma 3.1 of
[16] implies that

(62) 27" AP + VAL + 4 | EP(EP - 272|477 1Ry) <0,

which is the same equation as (3.4) from [16]. Now, the point is that
this last inequality holds with Ry replaced by R, :

(6:3) 27 d"d|¥* + |VAL | + 47 [P (|2 - 27 ?|w| + 77 R,1) <0,

With (6.3) understood, the subsequent arguments for Lemma 3.1 in
[16] can be imported verbatim to prove Lemma 6.1 here. (Note that
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Ry can be replaced by R,_ in the corresponding Equation (3.4) from
[16], but in the latter equation, the distinction is superfluous because
[16] considers these equations on compact manifolds.)

b) Pointwise bounds for |¥|?

The purpose of this subsection is to obtain pointwise bounds for |¥|2.
These bounds come via (6.3) with the help of the maximum principle.
In particular, since both |¥| and |w| decay to zero (exponentially fast) as
the parameter s € [0, 00) gets large on [0, 00) x 80Xy, and since |w| < /2,
the maximum principle with (6.3) immediately gives the bound

(6.4) P2 <1+77YRy|.

The following lemma gives some fine structure to the pointwise behavior
of |¥|%:

Lemma 6.2. There is a consant £ which depends only on the Rie-
mannian metric and which has the following significance: Given (s,0) €

S andr > 1, let (A, ) be a solution to the corresponding version of
(6.1). Let s =6"12Inr. Then,

o [U]2 <2712)w| 4 &r 1 where s < s.

o |U]2 < ¢rle(s-9)/v2 where s > s.
(6.5)

The remainder of this subsection contains the

Proof of Lemma 6.2. First, remember that w is both self-dual and
closed, and so (d*dw)™ = 0. The Bochner-Weitzenboch formula for this
last equation (see, e.g. Appendix C in [3]) implies that

(6.6) d*dlw| + |w|™HVw]? 2 —kFlwl,

where k* has compact support on Xy and is bounded by a universal
multiple of | Ry| and |W,;|. With this last equation understood, introduce
u = |¥|? — 27Y/2|w| and then (6.3) and (6.6) together imply that

(6.7) 27 d* du + (4v/2) " Lr|wlu < (e VO,

where (7 is a constant which depends only on the Riemannian metric.
Here, s has been extended as a smooth function to the whole of X from is
original domain of definition, [0, 00) x X. (This extension of the domain
of s will be implicit in the subsequent appearances of the function s.)

- By the way, the derivation of (6.7) uses (6.4) and the fact that |w|
and |Vw| obey bounds on X of the form
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® lwl > m—le—\/ﬁs,

o |w|+ [Vw| < me™ Ve,
(6.8)

where m > 1 is a constant.

The next step in the proof of Lemma 6.2, starts with the following
observation: Equation (6.7) implies that there exists a constant £ which
depends solely on the Riemannian metric on X and is such that u =
u — &r~! obeys the differential inequality 27 1d*du + (41/2) " 'r|w|u < 0.
Since u is negative where s is very large on X, the maximum principle
can be invoked with this last equation to prove that u < 0 everywhere
on X. That is,

(6.9) |9|? < 2712|w| 4 ¢r L.

This last bound gives the first point in (6.5).
To obtain the second point, first note that (6.9) and (6.2) together
imply that |¥|? obeys

(6.10) d*d| 92+ 27 ¥? < (e VO 4 r)e VO,

where s > 0. Here, ( is a constant which depends only on the Rieman-
nian metric. At the same time, |¥|?> < ¢r~! where s > s, and so the
comparison principle can be invoked for (6.10) to establish that

(6.11) |O|? < ¢rle(s—9)/V2

where s > s. This is the second point in (6.7).

c) Writing ¥ = (o, 3) and estimates for |3|°.
As in the proof of Theorem 2.2 of [16], the next step Theorem 5.5’s
proof requires the introduction of the components (o, 8) of ¥ as follows:

o a=2"1(1+4i(/2)w]) tely (w))T,

o B=2"11—-i(v2w|) el (w))D.
(6.12)

The claim now is that |3| is uniformly small over X. Here is the precise
statement:

Proposition 6.3. There are constant &1,&2 > 1 which depends only
on the Riemannian metric chosen for X and which have the following
significance: Let (A, V) be a solution to (5.3) as defined by the chosen
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pair (s,0) € S andr > (&)*. Let R € (r/(1,(1). Then, the 3 component
of U obeys

(6.13) 1B* < &R (272 |w| — |af?) + &R7?

where s < s — 6~ Y2In R. (This is where re~V% > R.)
The remainder of this subsection is occupied with the

Proof of Proposition 6.3. Modulo some notational changes, the proof
of Proposition 3.3 in [16] proves this proposition. Indeed, the arguments
in the latter proof can be followed with minor notational changes to
establish the existence of constants (3,(4 which are independent of the
data r, R, (s,0), and (A, ¥), and which have the following significance:
Set w = (27/2|w| - |a/?) and then let u = |8]?> — (GR~'w — (2 R™2. Also,
let u; denote the maximum of u and 0. Note that u;, may only be
Lipschitz where it is zero. In any event, where re"v6(s=1) > R this Uy,
viewed as a distribution, obeys the differential inequality

(614) d*d’lL+ + 6_1R’U,+ S 0

where £ > 1 is independent of R, 7, (s,0) and (A, ¥). (Note that (6.8)
was used to derive (6.14).)

Meanwhile, where re~vV8(s=1) = R, the first point in (6.5) and (6.8)
imply that u, < (3r"!R with {3 > 1 a constant which is independent
of r,R,(s,0) and (A,¥). Given this last observation and (6.14), the
comparison principle implies that

(6.15) u4 < 17 R¢sexp(~v/R(v/61n(r/R) + 1 — 5)//¢),

where re~V% > R and where ¢4 > 1 is independent of r, R, (s,0) and
(A,¥). This last inequality implies the lemma since r~!Re " VE/VE <
¢(R~? where ( can be taken to be independent of r and R.

d) Bounds for the curvature

The purpose of this subsection is to exhibit bounds on the curva-
ture 2-form of the connection A. In this regard, the arguments for these
bounds are essentially the same as those which appear in Section 3d of
[16] so the discussion will be fairly brief.

The discussion here begins with the self-dual projection, F;{, of the
curvature. In particular, the second line of (5.3) implies that

IF{] = r(2v2) (27| - |af?)?

6.16
(6:16) +21822 7wl + laf?) + 181"/,
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This last equality and (6.13) provide the following useful lemma:

Lemma 6.4. Fiz k > 1 and there is a constant, {y > 1, which is
independent of the data, r(s,0) and (A, ¥) and which has the following
significance: If r > (i, then

(6.17) IFFI < r2v2) '@ wl = o) + G

at all points where s < k.

Bounds for the anti-self dual part, F;, of the curvature of A are
obtained, as in [16], by exploiting a differential equation for the latter
which is implied by the fact that the total curvature is a closed 2-form.
The following proposition summarizes these bounds:

Proposition 6.5. Fiz the Spin® structure and fiz m > 1. Then,
there are constants, (m,(,, > 1, which are independent of the data r,0
and (A, ) and which have the following significance: Take r > (., and
then

(6.18) IF71 < r(2v2) 7 (1 + Gmr )27 | = o) + ¢n

at all points where s < m.

Proof of Proposition 6.5. Except for some minor notational changes,
the proof is essentially identical to the proof of Proposition 3.4 in [16] to
which the reader is referred. Note that this argument for Proposition 6.5
provides along the way the amusing integral inequalities given in (6.19),
below. Both involve a constant ¢ > 1 which depends on the given Spin®
structure s, but which is independent of r, o, and (A4, ¥). Moreover both
inequalities hold only when r > (. Here are the inequalities:

° fX |Fal? < ¢r.

o [x(1+dist(z,-)"2)(|VaP|? + r~}|F|?) < ¢ for any point z € X.
(6.19)
(The proof of the preceding two inequalities is the same as the proof of
(3.29) in [16].)

e) Bounds for V a and V40
The required bounds for these derivatives are summarized by

Proposition 6.6. Fiz the Spin® structure and fit m > 1. Then,
there are constants, (m,C,, > 1, which are independent of the data 7,0
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and (A, V) and which have the following significamce: Take r > (], and
then

(6200 |Vaal? +7[VaB < Gur(27 2] = |of?) + G-
at all points where s < m.

Proof of Proposition 6.6. Except for some minor notational changes,
the argument is the same as that for Proposition 3.7 in [16].

f) A summary of conclusions from [16] which now apply

The next series of arguments for Theorem 5.5 are borrowed virtually
verbatim from the proof of Theorem 2.2 of [16]. The results of these
arguments are summarized below, while the reader is referred to the
appropriate place in [16] for the proof.

To begin, suppose that B C X is a compact set, and consider the
energy of B:

(6.21) en = (4v2)"1r / w2 2w] - 2 ld vol, .
B

The key feature of eg is summarized by

Proposition 6.7. There is a constant { > 1, and given m > 1, there
s a constant (, > 1; and these constants have the following significance:

Suppose that r > (m and let (A, V) be a solution to the ((s,0),r)
version of (5.3). Let B C X be a geodesic ball with center z on which
s < m. Let p denote the radius of B and require that 1/(m > p >
2-17=1/2 Then

e ep < (p°.
o If la(z)] < (2v/2)Mwl, then ep > (1 p2.

This last proposition has various collaries, the most immediate being:

Lemma 6.8. Given m > 1, there is a constant (,n, > 4 with the
following significance: Fiz r > (n and let (A, ) be a solution to the
((s,0),7) version of (5.8). Let p € (Cmr~Y2,(m). Then,

e Let A be any set of disjoint balls of radius p whose centers lie
on o~ 1(0) and lie where s < m. Then A has less then (;'p~2
elements.

e The set of points in a~*(0) which lie where s < m has a cover by a
set A of no more that (mp~2 balls of radius p. Moreover, each ball
in this set has its center on a~1(0). Finally, the set of concentric
balls of radius p/2 is disjoint.
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The preceding lemma can then be used to prove the following refine-
ment of Proposition 6.5:

Proposition 6.9. Given m > 1, there are constants (m,(, > 1 with
the following significance: Fiz r > (m and let (A, ¥) be a solution to the
((s,0),r) version of (5.3). Then, at points of X where s < m,

(6.22) IF7l < r(2v2) 7' 272 ] = laf) + G-

Proof of Propositions 6.7 and 6.9, and Lemma 6.8. These are the
respective analogs of Propositions 4.1 and 4.3, and Lemma 4.2 in [16],
and the proofs of the latter in Section 4 of [16] carry over with only small
notational changes.

The next step in the proof of Theorem 5.5 is also borrowed from
[16], this being a description of (A4, ¥) at distances from a~!(0) which
are o(r~1/2). In particular,the assertion of Proposition 5.2 of [16] holds
here with the obvious changes: First, (A4, ¥) is a solution on X to (5.3).
Second, instead of choosing § > 0, choose m > 1 and restrict the point
x to lie where s < m. Finally, the constant (5 in the statement of
Proposition 5.2 of [16] is replaced by a constant ¢, > 1.

With the structure of (A, ¥) near a~!(0) understood, consider now
the behavior from Section 6 of [16] at larger distance from a_;(0). Here,
the assertions of Proposition 6.1 and Lemma 6.2 from [16] can be bor-
rowed with only notational changes. The notationally modified asser-
tions are summarized in

Proposition 6.10. Given m > 1, there is a constant (,, > 4 with
the following significance: Fiz r > (,, and let (A, V) be a solution to the
((s,0),7) version of (5.8). If z € X is such that s < m, then

rl27Hw| = laf?[ + 72|81 + [V aal® + 7|V 4BI?

(6.23) < (1 + 7 exp|—y/r dist(z, 67 (0)) /Gm])-

Proof of Proposition 6.10. Mimic the proof of Lemma 6.2 in [16].

This last result facilitates the identification of the connection A at
distances which are uniformly far from o~1(0). Indeed, at distances from
a~1(0) which are o(1), the bounds in (6.17), (6.22) and (6.23) imply that
the curvature F)4 has an r independent upper bound. This suggests that
when r is large, the connection A is close to some fiducial connection,
A® at such distances from o~!(0). This is indeed the case. To describe
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this canonical connection, introduce K C A" to denote the orthogonal
complement to the span of w. As AT is oriented, so K is oriented by
writing AT = Rw @ K. Moreover, A* has a natural inner product, so
does K and thus K can be viewed in a canonical way as a complex line
bundle over X. Furthermore, the Levi-Civita connection on T'X induces
a connection on AT and thus, by orthogonal projection, a connection on
K. The latter is hermitian with respect to the aforementioned complex
line bundle structure. Use A° to denote the dual connection on K 1.

To proceed with the defintion of A, reintroduce the line bundle
L, — X from the proof of Proposition 5.1. The line bundle L, enters be-
cause the determinant line bundle L for the Spin€ structure is naturally
isomorphicto L = K “‘lLﬁ_. With this point understood, note that « is a
section of L4 and so a? can be viewed as a section of Hom(K~!,L). In
particular, where « is not zero, a?/|a|? defines a hermitian identification
between K ! and L.

With the previous two paragraphs understood, it can now be stated
that the canonical connection A° on L is the image of the Levi-Civita
induced connection A% on K~! under the identification via a?/|a|? of
these two bundles.

Having now defined A°, consider:

Proposition 6.11. Given m > 1, there is a constant (,, > 4 with
the following significance: Fiz v > (p, and let (A, ¥) be a solution to
the ((s,0),r) version of (5.8). If x € X is such that s < m, and
dist(z,a~1(0)) > r~1/2, then

(6.24) |A—Ag|+|FaA—Fpo| < (mr™ " +mr exp[—+/r dist(z, a ™ (0))/¢m)-

Proof of Proposition 6.12. Copy the proof of Proposition 6.1 in [16].

7. Completion of the proof of Theorem 5.5

The proof of Theorem 5.5 is completed here with an analysis of the
n — oo limit of the sets o !(0) which appear in the statement of The-
orem 5.5. The analysis of this limit follows closely the discussion in

Section 7 of [16].

a) The curvature as a current

In this section, let {rp}n=12,.. be an unbounded, increasing sequence
of positive numbers such that for each n, the ((s,0),r = r,) version of
(5.3) has a solution {(An,¥,)}. The difference between the curvature
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2-form of the connection A, and that of the canonical connection A° on
K ! defines a current on X, which is to say, a linear functional on the
Frechet space of compactly supported, smooth 2-forms. To be precise,
the current in question assigns to a smooth, 2-form v with compact
support the number

(7.1) fav)=271 /X i/ (2m)(Fa, — Fy0) Av.

Note that if m > 0 is given, then (6.17), (6.22) and (6.23) together
provide (,, > 1 such that

(7.2) |fn(¥)| < Gnsup|v]|
X

when s < m on the support of v. This implies, in particular, that the
sequence {fn(-)} of linear functionals on the space of compactly sup-
ported 2-forms has weak limits and any such limit defines a bounded,
linear functional on the space of 2-forms with support on some fixed com-
pact subdomain in X. Choose one such weak limit, denote it by f, and
renumber the subsequence of {f,} which converges to f consecutively
from n = 1.

The current f is integral in the following sense: If v is a closed 2-form
with compact support and with integral periods on H2(X; Z), then

(7.3) fw)=cal(Ly)e[v] € Z,

where [v] is the class of v in H%(X,0X; Z).

b) The support of f

The support of f is described by Lemma 7.1, below. Note that except
for notational changes, the proofs of Lemmas 7.1 here and Lemma 7.1
in [16] are the same.

Lemma 7.1. There is a closed subspace C' C X with the following
properties:

e f(v) =0 if v has compact support on X — C'.

e Let B C X be an open set which intersects C'. Then, there is a
2-form v with compact support on B and with f(v) # 0.

e Fiz m > 0 and the set of points in C' where s < m has finite
2-dimensional Hausdorf measure.
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e Fiz m > 0 and there is a constant (,, with the following signifi-
cance: Let B C X be a ball of radius p < (.} and center on C'.
Then, the 2-dimensional Hausdorf measure of CNB is greater than

Cato?.

o There 1s a subsequence of {(An, ¥n)} such that the corresponding
sequence {a,; 1(0)} converges to C' in the following sense: If Q C X
15 any compact set, the following limit exists and is zero:

(7.4) lim [ sup dist(z,0;,'(0))+ sup dist(z,C")].

With Lemma 7.1 understood, the arguments in Section 7c,d of [16]
can be transferred here essentially verbatim to prove

Proposition 7.2. The set C' from Lemma 7.1 is the image of
a smooth, complex curve, Cy, via a proper, pseudoholomorphic map
f:Co — X. Thus, C' is a pseudoholomorphic subvariety and so an
HW Z subvariety. Moreover, there is a positive integer assigned to each
irreducible component of C' such that the following is true: Let ¢ denote
the corresponding generalized HW Z subvariety. Then c and the current
f are related in the following sense: For any compactly supported 2-form
V’

(7.5) flv)= Z m/;’u.

(Cym)ec

(Note that the conclusion here that C’ is an HW Z subvariety follows
from Lemma 2.1.)

c) An SW-admissable, generalized subvariety

The purpose of this subsection is to prove that the generalized, HW Z
pseudoholomorpic variety, ¢, in Proposition 7.2 is SW-admissable. In
this regard, note that (7.3) and (7.5) imply that e, = ¢1(L).

A proof that > e ™[C] in H2(Xo,0X0;Z) maps to the sum of
the oriented generators of H,(0Xy;Z) proves that c is admissable. For
this purpose, introduce a function x on R with total integral equal to
1 and with compact support in [0,1]. Then, for R > 0, introduce the
function x g of the parameter s via the formula xg(s) = x(s — R). Thus
XR is a function on X with support where s € [R, R+ 1]. With xr now
defined, set v = (27)"'xrds A dt.
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Now, consider first the case where Y C 80Xy is a component with
oriented z-axis line bundle. Identify Y as S x S? via coordinates where
the contact form is given by (2.11) and w by (2.21). Then, the image
of 3= (cmyec MIC) in H1(Y;Z) is the number ¢ = 37 5 )i M o v times
the oriented generator.

Now, the point is that (7.5) identifies this number g as equal to f(v),
and thus it follows from the definition of f that the number q is also given
by (7.1) in the case where n is large. In particular, since the curvature
of A, is exponentially decreasing to zero as s — oo on [0,00) X M, it
follows that the the image of }_ ¢ e m[C] in H1(Y;Z) is g times the
oriented generator, where q is equal to

mc

(7.6) —1i/(4m) /); FpoAv.

On the other hand, this last intergral computes the evaluation of
—271¢;(K7!) on the oriented 2-sphere {point} x S? in Y. The latter
is half of the evaluation of ¢;(K) on this same 2-sphere, and it follows
by considering the zeros of the sections of K in (5.1) that this number
equals 1, which is the required answer.

A similar argument proves the case for those components of 0.X( with
unoriented z-axis line bundle.

d) The symplectic area of C
The assertion in (5.5) follows directly from (7.3) and (7.5). In par-
ticular, the constant g is given by

(7.7) p=—2"1 /X i/(2m) Fpo A w.

(This integral converges since F4q is bounded on [0, 00) x 0Xo while |w|
decays exponentially fast.)
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