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CURVATURE AND FUNCTION THEORY ON
RIEMANNIAN MANIFOLDS

PETER LI

Function theory on Euclidean domains in relation to potential the-
ory, partial differential equations, probability, and harmonic analysis has
been the target of investigation for decades. There is a wealth of classical
literature in the subject. Geometers began to study function theory with
the primary reason to prove a uniformization type theorem in higher di-
mensions. It was first proposed by Greene-Wu and Yau to study the
existence of bounded harmonic functions on a complete manifold with
negative curvature. While uniformization in dimension greater than 2
still remains an open problem, the subject of function theory on com-
plete manifolds takes on life of its own. The seminal work of Yau [107]
provided a fundamental technique in handling analysis on noncompact,
complete manifolds. It also opens up many interesting problems which
are essential for the understanding of analysis on complete manifolds.
Since Yau’s paper in 1975, there are many developments in this subject.
The aim of this article is to give a rough outline of the history of a specific
point of view in this area, namely, the interplay between the geometry —
primarily the curvature — and the function theory. Throughout this arti-
cle, unless otherwise stated, we will assume that M™ is an n-dimensional,
complete, non-compact, Riemannian manifold without boundary. In this
case, we will simply say that M is a complete manifold.

One of the goal of this survey is to demonstrate, by way of known
theorems, the two major steps which are common in many geometric
analysis programs. First, we will show how one can use assumptions on
the curvature to conclude function theoretic properties of the manifold
M. Secondly, we will showed that function theoretic properties can in
turn be used to conclude geometrical and topological statements about
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the manifold. In many incidents, combining the two steps will result in
a theorem which hypothesizes on the curvature and concludes on either
the topological, geometrical, or complex structure of the manifold.

The references will not be comprehensive due to the vast literature
in the subject. It is merely an indication of the flavor of the field for the
purpose of whetting one’s appetite. As examples of areas not being dis-
cussed in this note are harmonic analysis (function theory) on symmetric
spaces, Lie groups, and discrete groups. The contributors to this subject
are Furstenberg, Varopoulos, Coulhon, Saloff-Coste, and etc. Another
point of view which was systematically taken up by Lyons-Sullivan, and
later by Varopoulos, is to relate the group theoretic property of the cov-
ering group to the function theory of a covering space.

1. Curvature assumptions and notations

In this paper, we will impose different curvature assumptions on var-
ious occasions. The two primary notions of curvature we will use are the
sectional curvature and the Ricci curvature. For a given point z € M
and a 2-plane section ¢ C T; M, we denote its sectional curvature by
Kps(o). The notation Kps(z) means the sectional curvature functional
defined on all 2-plane sections at the point z. The Ricci curvature will be
denoted by Ricp(z), which is a symmetric 2-tensor at the point z € M.
In the first half of this paper, there are primarily four different types of
curvature assumptions that are related to one another.

(1) Non-negative Ricci curvature: We assume that M has non-negative
Ricci curvature at every point, i.e.,

RiCM(:L‘) >0

for all z € M.
(2) Non-negative Ricci curvature near infinity: There exists a com-
pact subset D C M, such that

RicM(a:) Z 0

forall z € M\ D.
(3) Asymptotically non-negative Ricci curvature: There exists a mono-
tonically non-increasing function a(r) > 0 satisfying

oo
/ r"la(r)dr < oo,
0

such that,
Ricu(z) > —a(p(),
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where p(z) is the distance function from a fixed point p € M.
(4) Almost non-negative Ricci curvature: There exists a sufficiently
small € > 0, such that,

Ricy(z) > —ep~%(z)

for all z € M.
One easily verifies that the above assumptions satisfy the following
monotonically decreasing ordering:

(1) =(2)= )= (4.

We would also like to take this opportunity to point out that assumptions
on the Ricci curvature yield much less information on the manifold as
similar assumptions on the sectional curvature. For instance, the soul
theorem of Cheeger-Gromoll asserts that:

Theorem 1.1 (Cheeger-Gromoll [22]). If M has non-negative sec-
tional curvature, then there exists a compact totally geodesic submanifold
N C M such that M is diffeomorphic to the normal bundle of N.

The sectional curvature assumption places stringent topological re-
striction on a manifold. In particular, M must have the topological type
of a compact manifold. In a similar spirit, Abresch took their argument
a step further.

Theorem 1.2 (Abresch [1], [2]). Suppose M has asymptotically non-
negative sectional curvature, i.e., there erists a positive, monotonically
non-increasing function y(r) satisfying

(o9)
/ ry(r)dr < oo,
0

such that, Kp(z) > —v(p(z)) for allz € M. Then M must have bounded
topological type. Moreover, the number of ends of M and the total Betti
number of M can be estimated in terms of n and 7.

Contrary to the rigid topological restriction imposed on a manifold
with the sectional curvature assumptions in the last two theorems, Sha-
Yang [97] showed that there are manifolds with positive Ricci curvature
which has infinite topological type. In fact, their example is diffeomor-
phic to R* connected sum with k copies of CP?, for any k = 1,2,...,0c0.
Notice that the notions of asymptotically non-negative sectional curva-
ture and asymptotically non-negative Ricci curvature differs by a factor
of ¥ ! in the integrand. This factor seems to arise more naturally for
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Ricci curvature than sectional curvature. However, there are no con-
crete examples which indicate that this factor is not a mere technical
assumption.

Definition 1.3. Let D C M be a compact subset of M. An end FE
of M with respect to D is a connected unbounded component of M \ D.
When we say that F is an end, it is implicitly assumed that E is an end
with respect to some compact subset D C M.

From the definition, it is clear that if D; and Dy are compact subsets
with Dy C Do, then the number of ends with respect to D; is at most the
number of ends with respect to Ds. This monotonicity property allows
us to define the number of ends of a manifold.

Definition 1.4. M is said to have finitely many ends if there exists
0 < k < o0, such that, for any D C M, the number of ends with respect
to D is at most k.

In this case, we denote 7§°(M) to be the smallest such k. Obviously,
7g° (M) must be an integer. Also, one readily concludes that there exists
Dy C M, such that, the number of ends with respect to Dy is precisely
ng°(M). If M has infinitely ends, we will still use 7§°(M) = oo to denote
the number of ends.

2. Function theory

Definition 2.1. A Green’s function G(z,y) is a function defined
on (M x M)\ {(z,z)} satisfying the following properties:

e G(z,y) = G(y,x), and
* AyG(z,y) = —02(y),

for all = # y.

It was proved by Malgrange [84] that every manifold admits a Green’s
function. Recently, Li-Tam [69] gave a constructive argument for the ex-
istence of G(z,y). As in the difference between R? and R" for n > 3,
some manifolds admit Green’s functions which are positive and others
may not. This special property distinguishes the function theory of com-
plete manifolds into two classes.

Definition 2.2. A complete manifold M is said to be non-parabolic
if it admits a positive Green’s function. Otherwise, M is said to be
parabolic.
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For the sake of future reference, we will outline the construction
procedure in [69] for G(z,y). Let p € M be a fixed point and {€2;} be a
compact exhaustion of M satisfying

{plchc---CcHcC---CM

and
U;Q, = M.

Let G;(p,-) be the positive Dirichlet Green’s function on §; with pole at
p. The fact that
Q,CQ,

for ¢ < j and the maximum principle implies that
Gi(p,") < Gj(p,").

In particular, if G;(p, -) monotonically converges to some function G(p, -),
then G is a positive Green’s function, and hence M is non-parabolic.
In this case, one checks readily that G is the minimal positive Green’s
function. The minimality property determines G uniquely.

In the event that G;(p,-) oo, by defining

a, = sup Gi(p,-),
9Bp(1)
one can show that G;(p,-) — a; converges to some function G(p, -). This
function will indeed be a Green’s function which changes sign and, in
this case, M is parabolic. From this construction, one sees that

G(p, ) S_ 0

on M \ Bp(1). Note that G is not unique and may depend on the choice
of the compact exhaustion.

Let us now examine the situation when G;(p, -) converges to a positive
Green’s function. It was shown [69] that this occurs if and only if there
exists a harmonic function h defined on M \ B,(1) with the property
that

h =1 on 0B,(1)

and

inf h=0.
M\By(1)

To understand the existence of h, we consider the corresponding problem
on annuli of the form A,(1,7) = By(r) \ Bp(1). For each r > 1, let h, be
the harmonic function defined on A,(1,7) with the properties that

hr =1 on 0By(1)
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and
h, = 0 on 0Bp(r).

Clearly, h, is the minimizer for the Dirichlet integral

/ V5P
Ap(1,r)

among all functions in the space
Hy = {f € H2(4p(1,7))| f =1 on 8By(1), f =0 on 8By(r)}.

If we define

E(r) = inf \4ik =/ |Vh,|?
Hr J ap(1,r) Ap(1,r)

then clearly H, C Hp for 7 < R. Hence E(r) is a monotonically non-
increasing function of . Due to the boundary conditions, the sequence
h, satisfies h, < hg for » < R. The fact that h, < 1 because of the
maximum principle implies that the sequence {h,} converges uniformly
on compact subsets to a harmonic function hs. Moreover, ho has the
property that

heo =1 on 0Bp(1).

Clearly, unless h is identically constant 1, the function

h =
1 —infhe

will be the desired harmonic function we wish to construct.

We now claim that ho is the constant function 1 if and only if
E(r) \ 0. Indeed, using the fact that h, is harmonic and the boundary
conditions, we can rewrite the integral

E(r) = pr(l,r) |Vh,|?
— Ohy _ h,. 9he
= fBBp(r) hr B fBB,,(l) v
=— Ohy
= = JoB,(1) ov -
Hence the strong maximum principle asserts that ho, is identically con-

stant if and only if E(r) N\, 0. In particular, this implies that E(r) \, 0
if and only if M is parabolic. The quantity

lim E(r)

T—00
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is sometimes called the capacity of M at infinity. With this equivalent
condition for parabolicity, Royden’s theorem [92] follows immediately.

Definition 2.3. A manifold M is said to be quasi-isometric to
another manifold N if there exists a diffeomorphism ¢ : M — N and a
constant C > 0, such that,

C~ldsk, < ¢*(dsk) < Cdsy;.

Theorem 2.4 (Royden [92]). Let M be quasi-isometric to N. Then
M is parabolic if and only if N is parabolic.

Definition 2.5. An end F is said to be a non-parabolic end if it
admits a positive Green’s function with Neumann boundary condition on
OE. Otherwise, it is said to be a parabolic end. We will denote II§°(M)
to be the number of parabolic ends of M.

From the construction of [69] outlined above, one verifies that M is
non-parabolic if and only if it has a non-parabolic end. Indeed, if E is a
non-parabolic end, then it admits a Neumann Green’s function G(z, y).
For a fixed z € E, the strong maximum principle asserts that G(z,-)
must be positive on OE. If we define

g = min{G(z, -),a}

for some sufficiently large constant a > 0, then g is a positive superhar-
monic function define on E with

E
E >

for some constant b. Clearly, the function b~g can be used as a barrier
to solve for a positive harmonic function on E with

h=1ondF

and
infh=0.
E

The existence of h implies M is non-parabolic as indicated above.
Conversely, if M admits a positive Green’s function then the minimal
positive Green’s function will have the property that

1]r\14f G(z,)=0.
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Let E be an end with respect to some compact set containing z such
that
i%f G(z,-)=0.

Clearly, the above construction together with G(z,-)|g can be used to
construct a positive Neumann Green’s function on E.

It is useful to point out that Nakai [90] (also see [91]) showed at if M
is parabolic then there exists a Green’s function G(p, -) with the property
that

G(p,z) — —o0 as x — oo.

3. Geometric criteria for parabolicity

Though the definition of parabolicity is purely analytical, in some
incidents, there are geometric description of parabolicity. It was first
pointed out by Cheng and Yau [26] that if the volume growth of M
satisfies

Vp(r?) < Cr?

for some constant C' > 0, then M must be parabolic. The sharp con-
dition was proved by Ahlfors for dimension 2, and later independently
by Grigor’yan [43], {44] and Varopoulos [103] for all dimensions, that
a necessary condition for a manifold to be non-parabolic is that there
exists p € M, such that, the volume V,(t) of geodesic ball centered at p
of radius t satisfies the growth condition
© tdt

(3.1) . Vp(t) < 0.

Observe that this property holds at one point if and only if it holds at
all points of M. Moreover, this condition is clearly invariant under quasi-
isometry. The obvious question is to determine if this condition is also
sufficient. Unfortunately, the following example of Greene (see [103])
indicated that this is not true in general.

Example. Let M be R? endowed with the metric of the form
y~3(d2? + dy?) for y>2
ds® =< f(y)(dz® +dy®) for 0<y<2
da? + dy? for y <0,

where f is any smooth function satisfying f(0) = 1 and f(2) = 1/4. This
manifold is obviously parabolic because it is conformally equivalent to



CURVATURE AND FUNCTION THEORY

the standard flat metric on R%2. However, direct computation shows that
(3.1) holds.

An interesting phenomenon is that for manifolds with non-negative
Ricci curvature, condition (3.1) is also sufficient for non-parabolicity.

Theorem 3.1 (Varopoulos [102]). If M has non-negative Ricci cur-
vature, then M is non-parabolic if and only if

® tdt < oo
1 Ve(t)

for some p € M, where Vp(t) is the volume of geodesic ball centered at p
of radius t.

In fact, in the case of non-negative Ricci curvature, one can estimate
the Green’s function by the volume growth.

Theorem 3.2 (Li-Yau [79]). If M has non-negative Ricci curvature,
then there exists positive constants C7 and Cs, such that, the minimal
positive Green’s function satisfies

> tdt © tdt
Cl/ SG(x,y)SCb/ a0
p(zy) Va(t) p(zy) Va(t)

where p(z,y) denotes the geodesic distance between x and y.

In 1995, Li-Tam managed to prove that the volume growth condition
is sufficient for non-parabolicity for a larger class of manifolds.

Theorem 3.3 (Li-Tam [73]). Let us assume that there is a constant
C1 > 0 such that the Ricci curvature of M satisfies

Ricy(z) > —Ch p~%(x)

for all x € M. Assume that there erists p € M and Cs > 0, such that,
the volume comparison condition

is satisfied for all x € 0B,(R), then M is non-parabolic if and only if

/°° tdt <o
1 Vet)
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Corollary 3.4. If M has non-negative Ricci curvature near
infinity and finite first Betti number, then M 1is non-parabolic if and

only if S
/ RLAPYN
1 Vp(t)

Corollary 3.5. If M is quasi-isometric to a manifold satisfying the
assumption of Theorem 3.3, then M s non-parabolic if and only if

* tdt

< 00
1 Wl(t)

for some p € M.

for somep € M.

In [73], the authors obtained estimates for the Green’s function on
manifolds satisfying the hypothesis of Theorem 3.3. However, the es-
timates are not as clean as those of Theorem 3.4. Recently, Colding-
Minicozzi [31] showed that if M™ with n > 3 has non-negative Ricci
curvature and maximal volume growth then the Green’s function has an
asymptotic limit. In a joint work [74] of Tam, Wang, and the author,
they gave a short proof of the asymptotic limit and also gave sharp upper
and lower bounds for G. In this case, maximal volume growth means
that there exists p € M such that

lim inf =" Vp(r) > 0.

T—00

Bishop comparison theorem implies that, in fact,
Op(r) =r7"Vp(r) > 0

is a monotonically non-increasing function of r. Also, it is easy to see
that if
6 = lim 6Oy(r)

T—00

then 6 is independent of p.

Theorem 3.6 (Li-Tam-Wang [74]). Let M be a complete manifold
with non-negative Ricci curvature of dimension at least 8. Assume that
M has mazimal volume growth, and let p be the distance function to the
point p € M. For any § > 0, there exists a constant C > 0 depending
only on n and 6, so that the minimal positive Green’s function on M
satisfies

n 2—n
(14992 lom ey
< G(p,z)
2—n

<(1+C(E+8) (1-8)"F £
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where

B=62m max(){l—————gp(r) }

r>(1-4)p 0p((52“+1r)
In particular,

1
i n—2 G -
Jim p""(z) G(p, ) Y "

Let us consider the special case when M is a complete manifold with
a rotationally symmetric metric with respect to a point p € M. If A,(¢)
denotes the area of 0Bp(t), then let us assume that

> dt
(3.2) —— < 00.
1 Ap(t)

In this case, M is non-parabolic and the minimal positive Green’s func-
tion with the pole at p is given by

(3.3) Gp,z) = / :o | Adft).
PP,T P

Indeed, using the fact that A,(t) is asymptotically
Ap(t) ~ nuw, t™1

as t — 0, where w, denotes the volume of the Euclidean unit n-ball, we

verify that
© gt 1 -
~ P p,T
/,,(,,,@ LE "~ nm—dm PO

as T — p. Also, since the metric is rotationally symmetric, the Laplacian
in terms of polar coordinates can be written as

0?2 A, 0
=42
or? A, or

*© dt
. (/,,(p,x) Ap<t>) -

for z # p, and (3.3) is verified. In fact, a similar computation will confirm
that the function

PP:T) gt
(34) [ ae

A

hence
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is a Green’s function on a rotationally symmetric manifold regardless
of parabolicity. In case (3.2) holds, then (3.4) differs from (3.3) by a
additive constant. If (3.2) is not valid, then (3.4) is still a Green’s func-
tion and M is parabolic. Notice that if M satisfies some non-negativity
assumption on the Ricci curvature, then one can show that tAp(t) is
equivalent to V,(t), which explains the validity of Theorem 3.3.

In a recent works of Holopainen [50] and Holopainen-Koskela [51],
the authors gave a criteria upon which the condition (3.1) is equivalent
to non-parabolicity. In particular, one criterion has the property that it
is localized on a cone neighborhood of a geodesic ray.

Theorem 3.7 (Holopainen-Koskela [51]). Let M be a complete man-
ifold. Suppose there ezists a geodesic ray 7y : [0,00) — M satisfying the
following two properties:

e There ezists a constant C; > 0, such that, for all t > 0 and for all
geodesic ball B,(2r) C B.,(t)(%) the volume doubling condition

Cy Vz(r) > Vi(2r)
is satisfied.

e There exists a constant Cy > 0, such that, for all t > 0 and for all
B;(2r) C B.y(t)(%) the Poincare inequality

fracl2
Cor / ik > inf - fl.
) (B,@r)' fl) mt [, 1=

is satisfied for all f € Hy2(By(r)) with f = Vy(r)™! fBz(r) f.
The manifold M is non-parabolic if and only if

/°° tdt < o
1 V()

We would like to remark that the authors actually proved a more
general version of this theorem which holds for the p-Laplacian.

for some p € M.

4. A basic theorem on harmonic functions

In this section, we will indicate that various spaces of harmonic func-
tions will play certain roles in reflecting the topology of the underlying
manifold.
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Definition 4.1. Define H% (M) to be the space of bounded har-
monic functions with finite Dirichlet integral on M.

Definition 4.2. Define H*°(M) to be the space of bounded har-
monic functions on M.

Definition 4.3. Define H* (M) to be the space spanned by the set
of positive harmonic functions on M.

Definition 4.4. Define H'(M) to be the space spanned by the set
of harmonic functions which are bounded on one side at each end of M.
More precisely, a harmonic function, f, is bounded on one side at each
end if there exists a compact set D C M such that f is either bounded

from above or from below when restricted to each end with respect to
D.

It follows directly from the definitions that these spaces satisfy the
monotonic relations

{constants} C HE (M) C H®(M) C HT (M) Cc H'(M).
In particular, their respective dimensions satisfy
1 <dimHF (M) < dimH®(M) < dimHT (M) < dimH'(M).
Observe that if M has only one end, then H* (M) = H'(M).

Definition 4.5. A manifold is said to have the strong Liouville

property if it does not admit any non-constant positive harmonic func-
tion, i.e., dimH*(M) = 1.

Definition 4.6. A manifold is said to have the Liouville property
if it does not admit any non-constant bounded harmonic function, i.e.,
dimH*(M) = 1.

An interesting, but unrelated fact concerning the space H% (M) is
a theorem of Sario-Schiffer-Glasner [95]. It asserts that if M admits
a non-constant harmonic function with finite Dirichlet integral, then it
must also admits a non-constant bounded harmonic function with finite
Dirichlet integral. We are now ready to state the theorem which re-
lates the dimension of these spaces of harmonic functions to 7§°(M) and
I3 (M).

Theorem 4.7 (Li-Tam [72]). Let M be any complete Riemannian
manifold without boundary. The the number of ends, ni°(M), of M
satisfies the upper bound

7§ (M) < dim H'(M).

387
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If M is non-parabolic, then we have the improved estimate
(M) < dimH*T (M),
and the number of non-parabolic ends, II§° (M), satisfies the bound

I (M) < dim HE (M).

We should point out that the last case of Theorem 4.7 also follows
from the work of Grigor’yan [46], where he related dim H$ (M) to the
number disjoint of D-massive sets. At this point, perhaps it is useful
to consider a few examples so we have a better understanding of this
theorem.

Example 1. Let M = § k(R") be the connected sum of k copies
of R*. If n = 2, then M is parabolic. In this case,

7 (M) = k = dim H'(M).
If n > 3, then M is non-parabolic, and
o (M) =1Ig°(M) = k.
Moreover,
dim#H' (M) = dimHY (M) = dimHF (M) = k.

In any event, Theorem 4.7 is sharp.

Example 2. Let M be the hyperbolic plane H2. In this case,
dim#' (M) = dimH 1T (M) = dimHF (M) = oo.

However, M is non-parabolic and has only 1 end.
Example 3. Recall that a well-known theorem of Yau asserts that:

Theorem 4.8 (Yau [107]). If M has non-negative Ricci curvature,
then M has the strong Liouville property.

On the other hand, the splitting theorem of Cheeger-Gromoll implies
that:

Theorem 4.9 (Cheeger-Gromoll [21]). If M has non-negative Ricci
curvature, then either M = N x R, for some compact manifold N with
non-negative Ricci curvature, or M has only 1 end.
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Using these two theorems, we will analyze the situation when M
has non-negative Ricci curvature. First, let us consider the case when
M = N xR In this case, clearly M is parabolic according to the volume
growth condition (3.1) for non-parabolicity. One also checks easily that
the space H'(M) is spanned by the constant function 1 and the function
t € R. Hence

dimH' (M) = 2 = n§°(M).

The remaining case is when M has only 1 end. This implies that
H' (M) =HT(M)
from the definition of #'(M). In this case, Yau’s result implies that
dimH' (M) = dimH (M) = 1.

Hence whether M is parabolic or not, Theorem 4.7 is sharp for manifolds
with non-negative Ricci curvature.

To give a more quantitative description of Theorem 4.7, let us first
consider the case when M is parabolic. For any compact subset D C M,
let {e;};_, be the set of all ends. For each i # 1, there exists a harmonic
function f; satisfying

fi(z) = —o0 as z — e1(00),

fi(z) = o0 as z — e;(00),

and f; is bounded on e; for all j # 1, ¢. The notation z — e;(co) means
that £ — oo and z € e;. One checks readily that the set {f;};_, together
with the constant function form a linearly independent set. Hence, s <
dim H'(M) and the first assertion of Theorem 4.7 follows because D is
arbitrary.

When M is non-parabolic, for any compact subset D, let {e;};_; be
the set of parabolic ends with respect to D and {E,},_; be the set of
non-parabolic ends with respect to D. If s > 0, then for each 1 <i < s,
there exists a positive harmonic function g; satisfying

iélf gi(x) =0 for all a,

gi(z) > o0 as z — e;(00),

and g; is bounded on ey for all k # ¢. Also, for any 1 < a < ¢, there
exists a bounded harmonic function h, with the properties that

suphy =1,

Eo

389
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infhy =0 for B # a,
Eg

and h, is bounded on e; for all 1 < ¢ < s. Similarly to the parabolic case,
the existence of these harmonic functions implies the inequality asserted
in Theorem 4.7.

5. Historical background

Before we proceed to discuss various applications of Theorem 4.7,
perhaps it is useful to point out some historical aspects that lead to the
development of the theorem. In his fundamental paper [107], Yau in-
troduced the method of gradient estimate to prove Theorem 4.8. Right
after this work, Cheng-Yau [26] provided a local argument for the gra-
dient estimate which will become a basic technique and a starting point
for the theory of harmonic functions in years to come. The version of
the gradient estimate that is related to the content of this article is as
follows:

Theorem 5.1 (Cheng-Yau [26]). Let M be a manifold with boundary,
OM. Suppose p € M and r > 0 such that the geodesic ball By(r) centered
at p of radius v satisfies Bp(r) N OM = 0. If f is a positive harmonic
function defined on By(r), then for any 0 < o < 1, there exists a constant
C > 0 depending only on n = dim M and «, such that,

IVfl(z) < Cr7! f(z)
for all x € Bp(ar). In particular,

flz) <C f(y)

for all x, y € By(ar).

In 1987, in an attempt to understand and generalize Yau’s strong
Liouville theorem to a larger class of manifold, the author and Luen-
fai Tam considered manifolds which behave like a manifold with non-
negative Ricci curvature. The most elementary situation which we con-
sidered is the case when M is a connected sum of k copies of R" as
given by Example 1 of the previous section. The example indicated that
the validity of Yau’s theorem hinges on Theorem 4.9, even though Yau’s
proof is completely independent of Theorem 4.9. Also, the fact that
the manifold is Euclidean at each end allows us to use the explicit form
of the Green’s function as barriers. In fact, modeling on Example 1,
Li-Tam [68] successfully determined the spaces of bounded and positive



CURVATURE AND FUNCTION THEORY

harmonic functions on a manifold with non-negative sectional curvature
near infinity.

Theorem 5.2 (Li-Tam [68]). Let M be a complete manifold with
non-negative sectional curvature near infinity. It follows that M must
have finitely many ends. Hence there exists p € M and r > 0 such that
the number of ends with respect to By(r) is precisely ng°(M). An end E
is non-parabolic if and only if

® tdt
r VE(t)

Suppose {e;}?_, as the set of ends satisfying the volume growth condition

< 0.

® tdt
r Valt)

Q0.

where V,,(t) denotes the volume of the set By(t) Ne;. Also, let {E,}_4
be the set of ends satisfying the volume growth condition
*®  tdt < 0o
r VEa (t)

In particular, we have
(M) = ¢ and o (M) = s+ L.

IfTIP (M) = 0 then dimHT (M) = 1. If I(M) > 0, then for each e;
there erists a positive harmonic function g; satisfying

gi(z) =0 as z — Eq(00) foral «

gi(z) = o0 as z — e;(00),
and g; is bounded on ey for all k # i. Also, for any 1 < a < £, there
exists a bounded harmonic function h, with the properties that

ho(z) = 1 as - z — Ey(00),

ha(z) — 0 as z — Eg(o0)

for all B # o, and hy is bounded on e; for all 1 < i < s. Moreover,
the set {ha}f;zl spans the space of bounded harmonic functions denoted
by H® (M), and the set {ho}5_q U {9:}5, spans the space HY(M). In
particular,

NP (M) =H®(M) and  73(M)=HT(M).
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The reason that sectional curvature was assumed is because some
of the arguments used in proving Theorem 1.1 can be used to restrict
the topology and geometry at infinity of these manifolds. In particular,
the fact that these manifolds have finitely many ends, with each end
homeomorphic to a product space N X [0,00), is extensively used in
the proof. In the paper [68], the authors raised the question that if
we replace the sectional curvature assumption in Theorem 5.2 by the
Ricci curvature, to what extend will the consequences of the theorem
still remain valid. The first obstacle in proving this is to determine
if manifolds with non-negative Ricci curvature near infinity has only
finitely many ends.

Around the same time, Donnelly [37] proved that the space of bounded
harmonic functions, H*° (M), on a manifold with non-negative Ricci cur-
vature near infinity must be finite. Later, in an unpublished work, Cheng
showed that if M has non-negative Ricci curvature outside a set D with
diameter a, and if the Ricci curvature is bounded from below by —K
on D for some K > 0, then there exists a constant C(n,a vVK) > 0
depending only on n and a VK such that

dim H®(M) < C(n,a VK).

He also proved that H*(M) must be finite dimensional. In view of
these developments, if Theorem 5.2 holds for manifolds with non-negative
Ricci curvature near infinity, then it will imply that M has finitely many
ends if M is non-parabolic. In fact, this provides the motivation behind
Theorem 4.7.

6. Applications to Riemannian geometry

Theorem 4.7 allows us to estimate the number of ends, by estimating
dimH'(M).

Theorem 6.1 (Li-Tam [72]). Assume that M has asymptotically
non-negative Ricci curvature as defined in §1. Then there exists a con-
stant C(a, n) > 0 depending only on a and n = dim M such that

o (M) < C(a, n).

For the special case when M has non-negative Ricci curvature outside
some compact set D, then the estimate on n§°(M) takes the form

7P (M) < Crexp(C2aVK) +1
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where a is the diameter of D, —K < 0 is the lower bound of the Ricci
curvature on D, and C1 and Cy are constants depending only on n.

We would like to point out that independently Cai [17] used a Rie-
mannian geometric method to prove a slightly weaker estimate for the
case when M has non-negative Ricci curvature near infinity. Later, Cai-
Colding-Yang [18] refined Cai’s argument and showed that if aVK is
sufficiently small, then M has at most 2 ends. This can be viewed as
a generalization of the consequence of the splitting theorem (Theorem
4.9). Using some of the argument of Cai, Liu [82] also proved a ball
covering property for these manifolds.

Theorem 6.2 (Liu [82]). Let M be a complete manifold with non-
negative Ricci curvature outside a compact set D C Bp(a). Let —K <0
be the lower bound of the Ricci curvature on D. For any p > 0, there
exists a constant C(n, aVK, u) > 0, such that, for any r > 0 there exists
a set of points {p1,...,px} C Bp(r) with k < C(n,avK, ) satisfying

By(r) C UleB ;(pr).

Observe that the ball covering theorem implies that
(M) < C(n,aVK,1/2).

It is interesting to point out that it is still not known if the ball covering
property holds for manifolds with asymptotically non-negative Ricci cur-
vature. Note that for a non-parabolic manifold, in order to prove that
the inequality

dim {5 (M) > IIg° (M)

is indeed an equality, it is necessary to show that any bounded harmonic
function must have a unique infinity behavior up to a scalar multiple
at each non-parabolic end. For example, for the case when M has non-
negative sectional curvature near infinity, the authors [68] showed that a
bounded harmonic function must be asymptotically constant at infinity
of each non-parabolic end. One way to show this is to develop a spherical
Harnack inequality, which asserts that there is a constant depending only
on M such that, if f is a positive harmonic function defined on F then

flz) < Cf(y)

for all z, y € Bp(r) N E. This type of inequality allows us to conclude
that if
liminf f =0,

z— E(oc0)
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then
lim =0.
z—E(o00) f
If M has non-negative Ricci curvature on E then using Theorem 5.1, we
conclude that

(6.1) flz) < Cfly)

for z € 0Bp(r) and y € Bp(r/2). Hence, if we know that 0B,(r) N E
is connected, the ball covering property implies that one can iterate
the inequality at most C(n,av/K,1/2) times and obtain the spherical
Harnack inequality. It turns out that if we assume M has finite first
Betti number then one can show the basic connectedness of 0B,(r) N E.
This line of argument yield the following theorem:

Theorem 6.3 (Li-Tam [73]). Let M be a complete manifold with
non-negative Ricci curvature near infinity. Suppose the first Betti num-
ber of M 1is finite, then all the inequalities of Theorem 4.7 become equal-
ities. In particular,

7o(M) = dim H' (M),

and if M is non-parabolic then
7’ (M) = dim H1 (M) = dim H' (M)

and
P (M) = dimHE (M).

We do not know of a complete manifold with non-negative Ricci
curvature near infinity, but have infinite first Betti number. It is plausible
that the finiteness of b; (M) is a consequence of the curvature assumption.

We should also point out that, in proving Theorem 3.3, the authors
[73] proved that the ball covering property holds on a manifold satisfying
the hypothesis of Theorem 3.3. However, it is not known that the volume
comparison condition asserted in Theorem 3.3 holds even on manifolds
with non-negative Ricci curvature near infinity and has only 1 end.

Theorem 4.7 can also be applied to study stable minimal hypersur-
faces. In 1976, in their study of stable minimal hypersurfaces, Schoen
and Yau [97] showed that a complete, oriented, stable minimal hyper-
surface M™ in a manifold of non-negative Ricci curvature must have

dim HY (M) = 1.
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Exploiting this fact, Cao, Shen, and Zhu proved that such a manifold
must have only 1 end.

Theorem 6.4 (Cao-Shen-Zhu [19]) If M™ (n > 3)be a complete,
oriented, stable minimal hypersurface in R**+1, then

o (M) = 1.

Their argument used the Sobolev inequality of Michael-Simon [85]
to conclude that each end of M must be non-parabolic. Hence one can
apply the estimate to conclude that

m6°(M) = I3 (M)

An upshot of their argument is the following general fact on complete
manifolds. If a complete manifold M satisfies a Sobolev inequality of the
form

2p ? 2
(6.2) < /B i ) <c /B N

for some constants C' > 0, p > 1 and for all f € Hf 5(Bp(r), then each
end F of M must either have finite volume or be non-parabolic. In
particular, using the necessary criteria (3.1) for non-parabolicity, one
concludes that either the volume of E is finite or

/ © tdt <
—— < 00.

1 Ve(t)

This constitutes a gap phenomenon for the volume growth on manifolds
satisfying (6.2). Note that a finite volume end is possible. This can be
seen by taking a complete metric on a 2-dimensional annulus which has
constant —1 curvature. One can arrange the metric to have finite volume
on one end, but infinite volume on the other end. In this case, one verifies

easily that (6.2) holds for p = 1. Also, the manifold is non-parabolic, due
to the existence of one non-parabolic end.

7. Function theory under quasi-isometries

Recall that Theorem 2.4 asserts that parabolicity is a quasi-isometric
invariant. On the other hand, any topological data is certainly invariant
under quasi-isometries. Therefore, it is interesting to ask if the dimen-
sions of the spaces H', H*, and H$5 are quasi-isometric invariants.
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An example of Lyons [83] shows that there are manifolds M and N
which are quasi-isometric but

dimHt(M) =1 and  dimH®(N) > 1.

On the other hand, Grigor’yan [45], [46] proved that the dimension of
the space ‘HJ is invariant under quasi-isometry. This leads us to the
question that perhaps there are spaces of harmonic functions H; and
H2 which play the same roles as #* and H’ in Theorem 4.7, but their
dimensions are quasi-isometric invariants.

Recall that the De Giorgi-Nash-Moser theory implies that if a man-
ifold M is quasi-isometric to R?, then it must have the strong Liouville
property, namely,

dimH*t(M) = 1.

In view of this Yau conjectured that if a manifold M is quasi-isometric
to a manifold with non-negative Ricci curvature then

dimHt(M) = 1.

In fact, this was verified by Grigor’yan and Saloff-Coste independently.

Theorem 7.1 (Grigor’yan [47] and Saloff-Coste [93]). Let M be a
complete manifold satisfying the following two properties:

o Volume doubling property which asserts that there exists a constant
n > 0 depending only on M such that
(7.1) 27 Vp(r) = Vp(2r)
for allp € M and r > 0; and

o Weak Poincaré inequality which asserts that there exists a constant
C > 0 depending only on M such that

(7.2) / IVFI2>Cr2 inf/ (f — k)?
Bp(2r) k JBy(r)

for all functions f € Hyo(Bp(2r)).

Then
dimHt (M) =1.
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Since both the volume doubling property and the weak Poincaré in-
equality are invariants under quasi-isometries, and they both hold for
manifolds with non-negative Ricci curvature, this implies Yau’s conjec-
ture. Along the same direction, Sung pushed this one step further.

Theorem 7.2 (Sung [99]). Let M be quasi-isometric to a manifold
N with non-negative Ricci curvature near infinity. If M has finite first
Betti number, then all the inequalities in Theorem 4.7 become equalities.
In particular

dimH'(M) = dimH'(N) = 7°(N) = n§°(N).
Moreover if M is non-parabolic then
dim HF (M) = dimH* (N) = 7°(N) = ng°(M),

and
dimHF (M) =dimHF (N) = IIg°(N) = II3°(M).

A weaker version of isometry was defined by Kanai [55].

Definition 7.3. A map f: X — Y between two metric spaces X
and Y is a rough isometry if there exists constants £k > 1, b > 0, and
¢ > 0, such that, for all y € Y there exists £ € X with the properties
that

dy (y, f(2)) < ¢,

and for any z1, z2 € X

k! dx(ml,mz) -b< dy(f(.’L‘l),f(.’Bz)) < kdx(m1,$2) +b.

He studied the effect of function theory under rough isometries for a
special class of manifolds.

Definition 7.4. A complete manifold is said to have bounded Ricci
geometry if its Ricci curvature is bounded from below and its injectivity
radius is strictly positive.

In [55], Kanai showed that if M has bounded Ricci geometry and it is
roughly isometric to R™ then M satisfies the strong Liouville property.
He [56] also showed that if M is roughly isometric to N and both man-
ifolds have bounded Ricci geometry, then M is parabolic if and only if
N is parabolic. In 1993, Holopainen [49] generalized these theorems for
the p-Laplacian on manifolds with bounded Ricci geometry and finitely
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many ends, all of which are roughly isometric to Euclidean space. Re-
cently Coulhon and Saloff-Coste generalized Kanai’s theorem.

Theorem 7.4 (Coulhon-Saloff-Coste [36]). Suppose f : M — N is
a rough isometry. Assume that there exists a constant C > 0 such that
f satisfies

(7.3) C V(1) < Vi (1) < C V(1)

for all x € M. Also, assume that both manifolds have Ricci curvatures
bounded from below, then M is parabolic if and only if N is parabolic.
Moreover, if M has non-negative Ricci curvature then N satisfies the
strong Liouville property.

In fact, the Ricci curvature lower bound can be replaced by the as-
sumption that both manifolds satisfy a local parabolic Harnack inequal-
ity. Also the non-negative Ricci curvature assumption can be replaced
by a global parabolic Harnack inequality.

In [36], the authors define a rough isometry satisfying (7.3) as an
isometry at infinity. An upshot of their analysis is that if a manifold M
has Ricci curvature bounded from below, and it is isometric at infinity
to a manifold with non-negative Ricci curvature, then M must satisfy
(7.1) and (7.2). This fact will revisit in the discussion in §11.

8. Applications to Kédhler geometry

In this section, we will discuss various applications of harmonic func-
tion theory to Kahler geometry.

Theorem 8.1 (Napier-Ramachandran [91)). Let M be a complete
Kdhler manifold. Assume that M has bounded geometry, or that it ad-
mits a pluri-subharmonic exhaustion function, then the following state-
ments hold:

(a) If 7§ (M) > 2 then by (M) > 0;

(b) If ng°(M) > 3 then there exists a complete Riemann surface ¥ and
a proper, surjective, holomorphic map h : M — ¥ with compact

fibers.

Theorem 8.2 (Li-Ramachandran [66]). Let M be a complete Kdhler
manifold. Suppose R(z) is function defined on M which is a lower bound
of the Ricci curvature satisfying

Ricpr(z) > R(z)



CURVATURE AND FUNCTION THEORY 399

forallz € M. Let
R_(z) = max{—R(z),0}

be the negative part of the function R which is assumed to be integrable,

i.e.,
/ R_ < o0.
M

R(z) > —ep2(a),
for some sufficiently small € > 0. Then the following statements hold:

Also assume that

(a) If n§°(M) > 2 then M must be parabolic and by (M) > 0;

(b) If n§°(M) > 3 then there exists a complete parabolic Riemann sur-
face ¥ and a proper, surjective, holomorphic map h : M — ¥ with
compact fibers.

Let us remark that the curvature assumption in Theorem 8.2 is sharp.
In fact, let us consider M = C2 \ {p1,...,px}, where {p;} are k well-
spaced points in C2. For any § > 0, there exists [66] a complete Kahler
metric on M such that the Ricci curvature satisfies

Ricy(z) > —(1 + 6) p~2(x).

Obviously the conclusion of Theorem 8.2 is invalid. In particular this
indicates that € has to be less than 1 in the assumption of Theorem 8.2.
In this example, we can also take the number of points k to be infinite.

Theorem 8.3 (Li [61], [62]). Let M be a complete Kéhler manifold
with non-negative sectional curvature near infinity. Then the conclusion
of Theorem 8.2 holds. Moreover, if #3°(M) > 3, then for each end E of
M, the fibration

h:E—hE)CST

is a Riemannian fibration with fiber given by a compact Kahler manifold,
N, with non-negative sectional curvature. Locally E is a Riemannian
product of N and open subsets U C X. Also, ¥ is a parabolic surface
with non-negative curvature near infinity.

Corollary 8.4. If M be a complete Kahler manifold with positive
sectional curvature near infinity, then M has most 2 ends.

Using a vanishing theorem of Li-Yau [80], one can prove a rather
general theorem which put a restriction on the number of non-parabolic
ends for a Kihler manifold.
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Theorem 8.5 (Li-Tam [72]). Let M be a complete Kahler manifold
of complex dimension m. Suppose R(z) is function defined on M which
is a lower bound of the Ricci curvature satisfying

Ricp(z) > R(z)
for all x € M. Let
R_(z) = max{—R(z),0}
be the negative part of the function R. If

/R_<oo,
M

and the LI-norm of R_ over the geodesic ball of radius r centered at
some fized point p € M satisfies

/ R? = O(Tﬂ(q—l))
Bp(r)

for some ¢ > m and B < 2/(m — 2), then

(M) < 1.

9. Harmonic functions of polynomial growth

In 1980, Cheng [24] observed that the localized version of the Yau’s
gradient estimate (Theorem 5.1) can be used to show that a manifold
with non-negative Ricci curvature does not admit any non-constant sub-
linear growth harmonic functions.

Theorem 9.1 (Cheng [24]). Let M be a complete manifold with non-
negative Ricci curvature. There are no non-constant harmonic functions
defined on M which is of sublinear growth, i.e.,

|£(z)] < o(p(x))

as ¢ — 00, where p(x) denotes the distance function to some fized point
pe M.

In fact, in the same paper, Cheng proved that a similar statement is
true for harmonic maps into a Cartan-Hadamard manifold. Note that on
the n-dimensional Euclidean space, R", the set of harmonic polynomials
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generate all the polynomial growth harmonic functions. In particular,
for each d € ZT, the space of harmonic polynomials H4(R") of degree at
most d is of dimension

b —(*747)+ (4157

2 -1

~ n-1)

Cheng’s theorem asserts that manifolds with non-negative Ricci curva-
ture is quite similar to R™ for harmonic functions which grow sublinearly.
In view of this result, and the fact that all polynomial growth harmonic
functions in R™ are generated by harmonic polynomials, Yau conjectured
that the space of harmonic functions on a manifold with non-negative
Ricci curvature of at most polynomial growth at a fixed degree must
be of finite dimensional. To state this more precisely, let us define the
following spaces of harmonic functions.

Definition 9.2. Let #4(M) be the space of harmonic functions f
defined on a complete manifold M satisfying the growth condition

|f ()] = O(p(2))-

Note that in this notation, Ho(M) = H*®(M).

Conjecture 9.3 (Yau [109]). Let M be a complete manifold with
non-negative Ricci curvature. The dimension of Hq(M) is finite for all
d e RY.

In fact, Yau also raised the question if
dim Hg(M) < dim Hy4(R™)

for manifolds with non-negative Ricci curvature. In 1989, the author and
L. F. Tam [70] considered the case when d = 1.

Theorem 9.4 (Li-Tam [70]). Let M be a complete manifold with
non-negative Ricci curvature. Suppose the volume growth of M satisfies

Vp(r) = O(*)
for some constant k > 0. Then

dimHy (M) < dimH; (R*¥) = k + 1.
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Observe that the assumption on the Ricci curvature and the Bishop
comparison theorem assert that

‘/P(T) S Wn ’rnv

where w, is the volume of the unit ball in R". On the other hand, a
theorem of Yau [108] (also see [23]) asserts that V,(r) must grow at least
linearly. Hence the constant k£ in Theorem 9.3 must exist and satisfy
1<k<n.

Corollary 9.5. Let M be a complete manifold with non-negative
Ricci curvature. Then

dim’Hl(M) <n+41.

This theorem leads us to consider two obvious questions.

Question 9.6 (Li-Tam [70]). Let M be a complete manifold with
non-negative Ricci curvature. Suppose the volume growth of M satisfies

Vp(r) = O(r¥)

for some constant k > 0. Is it true that

amnaan) < amra) = (737 1) + (V1977 2

The answer to this question was affirmatively verified by Kasue [57]
and Li-Tam [71], independently, for the case when M is of dimension
2. In fact, they considered surfaces satisfying a much weaker curvature
condition. We will defer the discussion of this until the next section.

Question 9.7. What can we say about the manifold on which
equality is achieved in the upper bound given by Corollary 9.5, or even
Theorem 9.47

The first result in this direction, was due to the author, where he
assumed, in addition to non-negative Ricci curvature, that the manifold
is Kahler.

Theorem 9.8 (Li [64]). Let M be a complete Kahler manifold with
non-negative Ricci curvature. If

dim#H;(M) =2m +1
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where m = dimc (M), then M must be isometrically biholomorphic to
cm.

Later, Cheeger-Colding-Minicozzi proved this theorem without the
Kahler assumption. In fact, they proved a splitting type theorem for the
tangent cone at infinity.

Theorem 9.8 (Cheeger-Colding-Minicozzi [20]). Let M be a com-
plete manifold with non-negative Ricci curvature. If

dim'Hl(M) =k+1

then any tangent cone C(M) at infinity of M must spit into RF x N
where N is a (possibly singular) metric cone. In particular, if

dimH;(M)=n+1

then M must be isometric to R™.

In a recent paper, Wang [104] estimated dim#;(M) for manifolds
with non-negative Ricci curvature outside a compact set and have finite
first Betti number.

Theorem 9.10 (Wang [104]). Let M be a complete manifold with
non-negative Ricci curvature outside the geodesic ball By(a) centered at
p € M of radius a > 0. Assume that the first Betti number of M is finite.
Suppose that the Ricci curvature on Bp(a) has a lower bound given by

Ricyy > —K

for some constant K > 0. There exist a constant C(n,a, K) > 0 depend-
ing only on n, a, and K such that

dimH,(M) < C(n,a, K).

10. Surfaces of finite total curvature

Definition 10.1. A complete surface M is said to have finite total
curvature if the negative part of its Gaussian curvature is integrable.
More precisely, if K(z) denotes the Gaussian curvature on M and its
negative part is defined by

K_(z) = max{—K(z),0},
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then M has finite total curvature if

/K_<oo.
M

These kind of surfaces were first studied by Cohn-Vossen [28] in con-
nection to generalizing a Gaussian-Bonnet formula for complete surfaces.
He showed that if for any compact exhaustion §2; of a complete surface

Q,‘ M

converges to a possibly infinite limit denoted by [ u K, then the inequal-
ity

(10.1) /M K < 2nx(M)

holds, where x(M) is the Euler characteristic of M. This inequality is
referred to as the Cohn-Vossen inequality. Later, Huber [53] showed that

if
/K_<oo
M

then M must be conformally equivalent to a compact Riemann surface
with finite punctures. Moreover, the Cohn-Vossen inequality is valid.
Note that since

K=K,-K_

for
K, (z) = max{K(z),0}

being the positive part of K, the Cohn-Vossen inequality implies that

/M Ky < /M K_ + 2nx(M).

On the other hand, Huber’s theorem asserts that the right hand side is

finite, hence
/ K+ < 00
M

follows as a consequence. An upshot of this is that

/K_<oo
M
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/ |K| < oo.
M

This justifies the term total curvature in Definition 10.1. After Huber,
there were much work done [38], [48], [39] in understanding this class of
surfaces. In particular, Hartman — though had not explicitly stated in
his paper — showed that the correction term in Cohn-Vossen inequality
can be computed in terms of the volume growth of each end. Specifically,
since M is conformally equivalent to a compact Riemann surface with
finite punctures, M has finitely many ends given by {ei}le. Moreover,
each end e; is conformally equivalent to a punctured disk, hence must be
parabolic. The finite total curvature assumption implies that the volume
growth of M is at most quadratic. For each end e;, we can define

Ve,
a; =1— lim _3,_(_72'_),
TS0 T

implies

with o; < 1. Hartman showed that

k
27rX(M)_/1\4K=2ﬂiZ:;rl—1+I&(l—ai)'

The next theorem indicates that these constants «; also play an impor-
tant role in the function theory of M.

Theorem 10.2 (Li-Tam [71]). Let M be a complete surface with
finite total curvature. Then

k
dim#H4(M) < Z dim ’}{d(l—ai) (R2)7

=1

and if M has quadratic area growth, i.e., a; < 1 for some i, then for any

e>0
k

dim Hg(M) > dim Hy(1—q,)—e(R?) — &'
=1
where k' is the number of ends with a; = 1. Here we are taking the

convention that
dim Hg(R?) = 0

ford < 0.

This estimate can be sharpen, when the manifold has non-negative
curvature near infinity.
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Theorem 10.3 (Li-Tam [71]). Let M be a complete manifold with
non-negative Gaussian curvature near infinity, then

k
dimH4(M) = Zdlm'}'ld(l a) (R %)

=1
for alld > 1.

Note that when we restrict ourselves to manifolds with non-negative
Gaussian curvature, then either M is a cylinder S! x R or M has only
one end. In the first case when M = S! x R, the polynomial growth
harmonic functions on M are generated by the constant function and
the linear function ¢t which parameterizes R. Hence

1 if d<1

dim%d(M)z{z i d>1

When M has only one end, then according to Theorem 10.3,
dim Hg(M) = dim Hy( - 0l)(]R )
where

l1—a= lim vir)

r—oo w2’

Hence if M has linear volume growth, then
dimHg(M) =1

for all d > 1. On the other hand, if M has quadratic volume growth,
then the curvature assumption implies that a > 0 and

dim H4(M) < dim Hg4(R?).

In either case, Question 9.6 is answered affirmatively for surfaces. We
should point out that Kasue [57] independently proved the upper bound
in Theorem 10.2.

11. High dimensions

Before we discuss the higher dimensional development of Yau’s con-
jecture, we would like to point out different points of view of this type
of problems. The first is to consider polynomial growth solutions for
elliptic operators in R™. Let

0 0



CURVATURE AND FUNCTION THEORY 407

be an elliptic operator defined on R™ with measurable coefficients (a,,)
satisfying the uniformly bounded conditions,

(11.2) A(8;) < (ai5) < A(Sy)

for some constants A\, A > 0. The Harnack inequality of De Giorgi-Nash-
Moser implies that L has no non-constant bounded solutions. In fact, if
we define

Ha(L) = {f € HV*(R")| L(f) = 0,1f(z) = O(p%)}

then the De Giorgi-Nash-Moser theory implies that there exists dyp > 0
depending on A/, such that,

dim#H4(L) =1

for all d < dyp. For general d, Avelleneda and Lin [6] first considered the
special case when the coefficients (a;;) are periodic, Lipschitz continu-
ous functions in all the variables. They showed that there is a linear
isomorphism between polynomial growth solutions of

L(f)=0

to harmonic polynomials in R™, hence gave a precise estimate on
dim #H4(L). The Lipschitz condition was later dropped in a paper of
Moser-Struwe [88]. In a recent work of Lin [81], he considered elliptic
operators satisfying both (11.1) and (11.2) plus an asymptotically conic
condition (see Definition 2.1 of [81]). The condition roughly says that
the operator is asymptotic to a unique conic operator. With this extra
condition, Lin proved that

dim Hg(M) < 0o

for all d > 0. Moreover, the dimension of each H4(M) can be estimated
explicitly using information on L.

Recently, Zhang [110] proved a similar dimension estimate for
dim H4(L) for a class of uniformly elliptic operators of divergence form
that is more general than those in [81]. He considered those operators
which are not necessarily asymptotic to a unique conic operator, but
those who are asymptotic to a periodic family of conic operators. In this
case, he proved that

dimHq(L) < Cd™ L.
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Another class of elliptic operators which have some baring to this
problem are uniformly elliptic operators of non-divergence form. Let

0 0

(113) L ZaiJ%%

be an elliptic operator defined on R* with coefficients (a;;) satisfying
(11.2). Then the Harnack inequality of Krylov-Safonov (see [41}) implies
that there exists dy > 0 depending on A/, such that,

dim#4(L) = 1.

In yet another direction, Bombieri-Giusti [13] proved a Harnack in-
equality for uniformly elliptic operators on area minimizing hypersurfaces
M in R™. Hence in the same spirit as above,

dim#H4(M,L) =1

for d sufficiently small, where L is a uniformly elliptic operator on M

Recently there has been substantial developments on Yau’s conjec-
ture in higher dimensions. We will take this opportunity to document
various contributions and give the historical account in this direction.
The first partial result was indirectly given by Bando-Kasue-Nakajima
[10]. They proved that if the sectional curvature, Kjs of a complete
n-dimensional manifold satisfies

[Km(@)] < Cp~ ()

for some constants C,e > 0 and if the volume growth for each end F
satisfies

VE'(T) > C’rnv

then M is asymptotically locally Euclidean. This fact is sufficient [11],
[67], [58] to imply that
dim Hd(M ) < o0

for all d. In a series of papers, Colding-Minicozzi [29], [34] proved a
number of theorems which eventually lead to and went beyond Yau’s
conjecture. First, they proved the case when M has non-negative Ricci
curvature and has maximal volume growth. Eventually, they improved
their argument to give a dimension estimate for dim Hy(M) for man-
ifolds satisfying the volume doubling property (7.1) and the Poincaré
inequality.
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In the context of this section, we will say that a manifold satisfies
the Poincaré inequality if there exists a constant a > 0, such that, the
first Neumann eigenvalue for the Laplacian on B;(r) satisfies

(11.4) M (B (7)) > ar?

for all z € M and r > 0. It is worth pointing out that though (11.4) is
stronger than the weak Poincaré inequality (7.2), a covering argument
of Jerison [54] asserts that the volume doubling property (7.1) together
with the weak Poincaré inequality (7.2), in fact, imply that Poincaré
inequality. In [34], they also considered a volume growth property, which
asserts that there exists a constant v > 0 such that

(11.5) (r_,)., Va(r) > V(')

T

for all z € M and 0 < r < r'. Using these conditions, the main result
which they proved can be stated as follows:

Theorem 11.1 (Colding-Minicozzi [32], [34]). Let M be a complete
manifold satisfying the Poincaré inequality (11.4).

1) Suppose M also satisfies the volume doubling property (7.1), then
there exists a constant C > 0 depending only on n and o, such that,

dim Hq(M) < Cd"

foralld > 1.

2) Suppose M also satisfies the volume growth property (11.5), then
there ezists a constant C > 0 depending only on n an o, such that,

dim Hg(M) < Cd" L.

for alld > 1.

In particular, this confirms Yau’s conjecture since manifolds with
non-negative Ricci curvature satisfy both the Poincaré inequality [16]
and the volume growth property [12]. In this case, v = n. This gives a
sharp growth rate as d — oo, as indicated by the case when M = R"™. We
would also like to point out that the first estimate of Colding-Minicozzi
using the volume doubling property is not sharp in the power of d. The
sharp power should be n — 1, since n = n if M = R™. Also, the volume
doubling property and the volume growth property are related. It is clear
that, the volume growth property implies the volume doubling property

409
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with n = v. Moreover, one can easily argue that the volume doubling
property (7.1) implies

N7
(%) %) 2 %0
for v’ > r. In this sense, the volume doubling property is weaker than the
volume growth property. In view of the relationship between the volume
doubling property and the volume growth property, it is convenient to
define the weak volume growth property which encapsulate both prop-
erties. A manifold is said to have the weak volume growth property if
there exists constants C; > 0 and 1 > 0 such that

¢y =1
rn

(11.6) &2 Volr) 2 Vyl(r') = Vo)
forallpe M and 0 <r <7’

Due to the work of Grigor’yan [47] and Saloff-Coste [93], [94] it
is known that the volume doubling property (7.1) together with the
Poincaré inequality (11.4) is equivalent to the parabolic Harnack in-
equality which implies the elliptic Harnack inequality. Grigor'yan has
informed me, by way of an example, that the parabolic Harnack inequal-
ity is stronger than the elliptic Harnack inequality. In any case, (7.1)
and (11.4) imply a mean value inequality of the form

(11.7) Va(r) f(z) < G /B o

for some constant C9, and for any non-negative function f defined on
B, (r) satisfying

Af > 0.
In this case, C; will depend only on 7, «, and n. Indeed, it was argued
in [94] that (7.1) and (11.4) imply a Sobolev inequality of the form

p=2

e
Bz(r)

C Vm —2/pn 2 v 2 2

< CsVa(r) ( /B,m' fl +/Bz(r)f)

for any compactly supported function f € Hf,(Bz(r)), where C3 > 0
and p > 2 are some fixed constants, and z € M and r > 0 are arbitrary.
It is now clear that by running the Moser iteration argument [87] using

(11.8)
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(7.1) and (11.8), one obtains (11.7). In fact, Moser’s argument actually
implies the mean value inequality not only for non-negative subharmonic
functions, but for non-negative functions satisfying

(11.9) Af>-gf

where ¢ is a non-negative function satisfying some appropriate decay
condition (see [63]). In this case, C3 in (11.7) will depend on u, C3 and
g. In particular, a special case of this situation is when g has compact
support.

Colding-Minicozzi circulated an announcement [32] of Theorem 11.1
in June 1996 together with a number of applications using Theorem 11.1.
In [33] and [34], they proved many of the announced theorems, including
Theorem 11.1. Shortly after the circulation of [34], the author [65] came
up with a simple argument using a weaker assumption.

Theorem 11.2 (Li [65]). Let M be a complete manifold satisfying the
weak volume growth property (11.6). Let K be a linear space of sections
of a rank-q vector bundle E over M. Suppose each u € K satisfies the
growth condition

lul(z) = O(p*(2))

as the distance p to some fized point p € M goes to infinity for some
constant d > 1, and the mean value inequality

2 2
o /B 2 ) @)

for all x € M and r > 0. Then there exists a constant C > 0 depending
only on n and C1, such that

dimK < qCCyd™ L.

In their announcement [32], the authors also announced, without in-
dication of the proof, that H4(M) is finite dimensional if M is a minimal
submanifold in Euclidean space with Euclidean volume growth. In the
same note, they also announced a finite dimensionality result for polyno-
mial growth harmonic sections of at most degree d on a Hermitian vector
bundle with nonnegative curvature over a manifold with non-negative
Ricci curvature. Shortly after the circulation of [65], Colding-Minicozzi
circulated a new preprint [35] providing the proofs for the minimal sub-
manifold and the harmonic sections cases. In this paper, they also used a
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form of mean value inequality similar to (11.7). However their argument
did not provide the sharp power in d.

As indicated in the above discussion, as long as |u|? satisfies an in-
equality of the form (11.9) for some compactly supported g, and M also
satisfies the Sobolev inequality (11.8), then the mean value inequality
follows as a consequence. In particular, the following corollaries can be
deduced from Theorem 11.2.

Corollary 11.3. Let M™ be a complete manifold satisfying condi-
tions (11.6) and (11.7) for non-negative subharmonic functions. Then

dim Hg(M) < C Cyd™?

for alld > 1. In particular, if M is quasi-isometric to a manifold with
non-negative Ricci curvature, then

dim Hg(M) < Cd™!

for all d > 1.

In view of the discussion after Theorem 7.4, the work of Coulhon
and Saloff-Coste [36] together with Theorem 11.2 implies that one can
also deal with the case when M is roughly isometric to a manifold with
non-negative Ricci curvature.

Corollary 11.4. Let M™ be a complete manifold with Ricci curvature
bounded from below. Suppose M 1is isometric at infinity to a manifold
with non-negative Ricci curvature, then

dimH4(M) < Cd™ !

for all d > 1.

Using the fact that the mean value inequality holds for functions
satisfying (11.9), Theorem 11.2 also implies the next corollary.

Corollary 11.5. Let M be a manifold whose metric ds? is obtained
by a compact perturbation of another metric dsi which has non-negative
Ricci curvature. Suppose

HE(M) = {u € AP(M)|5u = 0, Jul(x) = O(pX(=)) as p — oo}

denotes the space of harmonic p-forms of at most polynomial growth of
degree d > 1. Then

dimHY(M) = dimH] (M) < nCd" L.
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If we further assume that ds? has non-negative curvature operator, then

dim HE(M) < (Z) cdl.

Corollary 11.6. Let M be a complete Ricci flat manifold. Suppose
Ka(M) is the space of Killing vector fields on M which has polynomial
growth of at most degree d > 1. Then

dim Kg(M) < Cd™L.

Corollary 11.7. Let M™ be a complete Kahler manifold of complex
dimension m. Assume that M satisfies conditions (11.6) and (11.7) for
non-negative subharmonic functions. Suppose E is a rank-q Hermitian
vector bundle over M and that the mean curvature (in the sense defined
in [59]) of E is non-positive. Let Hq(M, E) be the space of holomorphic
sections which is polynomial growth of at most degree d > 1. Then

dim Hq(M, E) < qC A d*™ L,

In particular the space of polynomial growth holomorphic functions of at
most degree d > 1 is bounded by

dim Hy(M) < CAd>™ L.

Complex and algebraic geometers have been interested in estimating
the dimension of H4(M, E) for many years. We would like to refer to
the survey article of Mok [86] for a more detail history and reference in
this direction. Another interesting result was due to Wu, Tam and the
author, where they considered Kahler manifolds with at most quadratic
volume growth. In this case, no additional assumption on the manifold
is necessary.

Theorem 11.8 (Wu [105], [106]). Let M be a complete Kéihler man-
ifold. If M has subquadratic volume growth

then M does not admit any non-constant polynomial growth holomorphic
functions. If M has quadratic volume growth

Vp(r) = O(r?),
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then there ezists constants C(m,d) > 0 depending only on m and d such
that
dim Hy(M) < C(m,d).

Theorem 11.2 also applies to uniformly elliptic operators on R™. The
following corollaries are consequences of the theorem.

Is) ol
L=3z <b?)

be an elliptic operator of divergence form defined on R™ with uniformly
bounded coefficients satisfying (11.2). Let

Corollary 11.9. Let

Ha(L) = {u € H5(R") | L(u) = 0, ul(z) = O(p"(x)) as p — oo}

be the space of L-harmonic functions that has polynomial growth of degree
at mostd > 1. Then
dimH4(L) < Cd™ L.

Corollary 11.10. Let

32

L= iges

be an elliptic operator of non-divergence form defined on R® with uni-
formly bounded coefficients satisfying (11.2). Let

Ha(L) = {u € Hy%(R") | L(u) = 0, |ul(2) = O(p*(z)) as p — oo}

be the space of L-harmonic functions that has polynomial growth of degree
at mostd > 1. Then

dim Hgq(L) < Cd™ L.

Corollary 11.11. Let M™ be a complete minimal surface in RV,
Suppose po is the distance function of RN with respect to some fized
point p € M. Assume the volume growth of M satisfies

V(Bo(r)N M) < Cr"
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where By(r) C RN is the Buclidean ball center at p of radius r. Let L
be a uniformly elliptic operator defined on M. Suppose Hq(M, L) is the
space of L-harmonic functions f on M satisfying the growth condition

|fI(z) = O(p§(2))
for some d > 1. Then
dimHq(M,L) < Cd™!

for some constant C depending on M and the ellipticity constants of L.

We would like to comment that, the mean value inequality (11.7) is
weaker than the Poincaré inequality (11.5). An interesting fact is that
Theorem 11.2 allows one to prove that

dim Ho(M) < o0

without implying
dimHo(M) = 1.

On the other hand, Theorem 7.1 asserts that the Poincaré inequality and
the volume doubling property imply that

dimHo(M) = 1.
An example of a manifold satisfying the hypothesis of Theorem 11.2 but
dimHo(M) > 1

is R*§R™ for n > 3.

In [35], the authors verified that a complete manifold satisfying the
assumptions of Theorem 3.3 has the volume doubling property and the
mean value inequality. Hence, Theorem 11.2 applies to this case. In a re-
cent preprint of Tam [101], he relaxed the volume comparison condition
of Theorem 3.3. Instead of assuming that the volume comparison condi-
tion holds on the whole manifold, he only assumed that it hold for each
end individually. Note that since the volume growth of each end may
be different, this covers a more general situation. In the same article, he
also considered harmonic forms on surfaces of finite total curvature and
on manifolds with asymptotically non-negative curvature operator .

Surprisingly, as it turned out, Wang and the author observed that
the conditions to ensure the validity of Yau’s original conjecture, namely
the finite dimensionality of H4(M), can be weaken. If one does not
aim for the sharp order estimate as in Theorem 11.2, the weak volume
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growth property (11.6) can be replaced by a polynomial volume growth
assumption. Sometimes it is also convenient to replace the mean value
inequality (11.7) by the weak mean value inequality of the form

(11.10) Ve(r) f(z) < 04/ f
Ba (br)

for some constants C4 > 0, b > 1, and for any non-negative subharmonic
function f defined on B;(fr). Note that if the manifold satisfy the weak
volume growth property (11.6), then the weak mean value inequality is
equivalent to the mean value inequality. On the other hand, without
the weak volume growth property, the weak mean value property is,
in general, easier to obtain. For example, if a manifold satisfies the
Sobolev inequality (11.8), then the Moser iteration argument yields the
weak mean value inequality.

Theorem 11.12 (Li-Wang [76]). Let M be a complete manifold
whose volume growth satisfies

Va(r) = O(r")

as r — 0o for some x € M and v > 0. Assume that M also satisfies the
weak mean value inequality (11.10). Then

dim Hg(M) < Cy(2b + 1)),

As we pointed out, the Sobolev inequality (11.8) implies the weak
mean value inequality. If we choose f € Hf,(Bz(r)) to be the non-
negative function satisfying f = 1 on B;(1), and f = 0 on M \ B,(2) ,
then after applying to (11.8), we conclude that V,(r) = O(r*). Hence,
Theorem 11.12 can be stated with only the assumption of (11.8). How-
ever, as indicated by a recent paper of Li-Wang [77], one can actually do
much better on the estimate if we assume (11.8).

Theorem 11.13 (Li-Wang [77]). Let M be a complete manifold
satisfying the Sobolev inequality (11.8). Then
dimH4(M) < Cd*

for some constant C > 0.

It is also worthwhile to point out that Theorem 11.12 can be applied
to harmonic sections of vector bundles. In particular, a weaker estimate
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as in Corollary 11.7 holds for manifolds satisfying the conditions of The-
orem 11.12. The argument of [65] and [76] also can be applied to study
d-massive sets [75], which yields interesting applications to the image
structure of harmonic maps.

Recently, Sung-Tam-Wang [100] considered the effect of dim H4(M)
under connected sums. They proved a formula for dim H4(M;§M3) in
terms of dim H4(M;) and dim H4(Ma).

In an attempt to give an affirmative answer to Question 9.6, Li-Wang
[77] recently proved a sharp asymptotic estimate for dim Hy(M) when
M has non-negative sectional curvature.

Theorem 11.14 (Li-Wang [77]). Let M™ be a complete manifold
with non-negative sectional curvature. Let us define a by

o= Tli)rglor Vp(r).

The Bishop comparison theorem asserts that 0 < a < omega, where
wn 18 the volume of the unit Fuclidean ball. Then the truncated sum of
dim H4(M) must satisfy

limsupd ™" zd: dimH; (M) < —?a—
d—infty i=1 n!wp
Moreover, the equality
n d : 2
}ilgll:}lt};d ; dimH;(M) = ]

holds if and only if M = R™.

In another recent paper of Li-Wang [78], they also proved a parallel
version of this theorem for uniformly elliptic operators of divergence
form. The estimate depends on the ratio of the ellipticity bounds at

infinity. In particular, if
0 0
L=—|a;—
ox* (a 7 8:1:3)

is an elliptic operator of divergence form defined on R® with uniformly
bounded measurable coefficients satisfying (11.2). We define the elliptic-
ity bounds )\, and A, on the complement of the Euclidean ball of radius
r centered at the origin so that they satisfy

Ar (035) < (ai(z)) < Ar (635)
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for all z € R™\ By(r). Obviously, both A, and A, are bounded, monotonic
functions, hence we can define

Ao = lim A,
7—00
and
A = lim A,.
T—>00

Theorem 11.15 (Li-Wang [78]). Let L be a uniformly elliptic oper-
ator of divergence form defined on R*. Let

Ha(L) = {u € H®R) | L(u) = 0, Jul(z) = O(p*(@)) as p — oo}

be the space of L-harmonic functions that has polynomial growth of degree
at mostd > 1. Then

d A n—1 2
i . < (=== —- n,
> dimH,(L) < ( Aw) = (d+2n)

i=1

12. LP conditions

Another type of growth conditions which appear naturally in geo-
metric problems are integrability conditions. For example, a natural
question to ask is whether a manifold possesses any non-trivial L? har-
monic functions. This was first answered by Yau in 1976. Notice that
since the absolute value of a harmonic function is subharmonic, we may
generalize this discussion to non-negative subharmonic functions which
satisfy some integrability conditions.

Theorem 12.1 (Yau [108]). Let u be a non-negative subharmonic
function defined on a complete manifold M. If uw € LP(M) for some
p > 1, then u must be identically constant. This constant must be zero
if M has infinite volume. In particular, a complete manifold does not
admit any non-constant LP harmonic functions for p > 1.

It turns out that for p < 1, the situation is not as definitive, but
geometrically more interesting. In a joint work of the author and Schoen
(67], they studied these cases and found out that the curvature of M
plays a role. In fact, the case p = 1 is also different from the remaining
cases p < 1.

Theorem 12.2 (Li-Schoen [67]). Let M be a complete manifold.
Suppose p € M is a fized point and p is the distance function to p. If
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there exists constants C > 0 and a > 0 such that the Ricci curvature of
M satisfies

Riew(z) 2 ~C (1+ p*(2))(08(1 + 9*()) ™

then any non-negative L' subharmonic must be identically constant. More-
over, this constant must be zero if M has infinite volume.

Theorem 12.3 (Li-Schoen [67]). Let M be a complete manifold.
Suppose p € M is a fized point and p is the distance function to p. There
exists a constant 6(n) > 0 depending only on n, such that, if the Ricci
curvature satisfies M satisfies

Ric(z) > —8(n) p~2(a),

as £ — 00, then any non-negative LP subharmonic must be identically
constant for p € (0,1). Moreover, this constant must be zero if M has
infinite volume.

In the same paper, Li and Schoen also produced examples of mani-
folds which possess non-constant LP harmonic functions. They showed
that for any € > 0, there are manifolds with sectional curvature decay at
the order of

Ky ~—C p2+5

as p — 0o, which admit non-constant L! harmonic functions. Also, for
any p < 1,, there exists manifolds with sectional curvature behave like

Ky ~ —Cp—2

as p — oo which admit non-constant LP harmonic functions. These
examples show that the curvature condition in Theorem 12.3 is sharp
and the condition in Theorem 12.2 is almost sharp. In fact, a sharp
curvature condition was later found by the author for the case p = 1.

Theorem 12.4 (Li [60]). Let M be a complete manifold. Suppose
p € M is a fized point and p is the distance function to p. If there exists
a constant C' > 0 such that the Ricci curvature of M satisfies

Ricy(z) > ~C (1 + p(2)),
then any non-negative L' subharmonic function must be identically con-
stant. Moreover, this constant must be zero if M has infinite volume.

Other than lower bounds on the Ricci curvature, there are also other
conditions which will imply the non-existence of L harmonic functions.

Theorem 12.5 (Li-Schoen [67]). Let M be a complete manifold
satisfying one of the following conditions:
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e M is a Cartan-Hadamard manifold.

e M has Ricci curvature bounded from below and the volume of every
unit geodesic ball is uniformly bounded from below.

Then for all p € (0,1], any non-negative LP subharmonic function must
be constant.

For the sake of application, Yau’s theorem can be relaxed to the
following form:

Proposition 12.6 (Yau [108]). Let M be a complete manifold. Sup-
pose u s a non-negative subharmonic function whose LP-norm satisfies

the growth condition
/ uP = o(r?)
Bz(r)

as r — oo for some fized point x € M. Then u must be identically
constant. Moreover, this constant must be zero if the volume growth of
M satisfies

limsupr 2 V,(r) > 0

r—00
as r — 00.

The interested reader should also refer to the work of Nadirashvili [89]
for a different type of integrability condition for the Liouville theorem.

13. Cartan-Hadamard manifolds

The function theory on a hyperbolic disk is quite different from the
Euclidean plane. Our previous discussion, in many ways models on the
Euclidean case. In this section, we will discuss the higher dimensional
analog of the hyperbolic case. With the intend of proving a uniformiza-
tion type theorem for higher dimensional K&hler manifolds, Greene-Wu
and Yau asked if a complete, simply connected, Kdhler manifold with
sectional curvature bounded from above by -1 is biholomorphic to a
bounded domain in C*. Clearly, to prove such a statement, one needs to
produce many bounded holomorphic functions to be used as embedding
functions. The first step is to study the real analog of this statement
and see if one can produce enough bounded harmonic functions. In fact,
Greene-Wu [42] posted the following conjecture:

Conjecture 13.1 (Greene-Wu [42]). Let M be a Cartan-Hadamard
manifold whose sectional curvature satisfies the upper bound

Ku(z) < —Cp~(z)
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for some constant C > 0, where p is the distance function to a fized
point. Then M must admit a non-constant bounded harmonic function.

In 1983, Sullivan [98] proved that there are abundance of bounded
harmonic functions on a strongly negatively curved Cartan-Hadamard
manifold. Anderson [4] later used an argument of Choi [27] gave another
proof of the same statement. To describe the space of bounded har-
monic functions on Cartan-Hadamard manifold with strongly negative
curvature, we need to define the geometric boundary.

Definition 13.2. Let M be a Cartan-Hadamard manifold. We de-
fine the geometric boundary M (co) of M to be the set of equivalent classes
of geodesic rays defined by the equivalence relation that two geodesic rays
v1(t) and 72(t) are equivalent if p(y1(t),¥2(t)) is a bounded function to
t € [0,00).

The geometric boundary M (co) together with M form a compact-
ification of M, and M U M(oco) has a natural topology inherited from
M, namely the cone topology. The cone Cp(v,d) about a tangent vector
v € T, M of angle ¢ is defined by

Cp(v,8) = {z € M | the geodesic v joining p to z satisfies (v',v) < 6}.

The open sets of the cone topology is generated by the sets of all trun-
cated cones Cp(v,0) \ Bp(r) and geodesic balls By(r), for p,q € M,
v €T,M, >0, and r > 0. Using the Toponogov comparison theorem,
one checks [5] that if the sectional curvature of M is strongly negative,
i.e.,

—a>Kpy > -b

for some constants 0 < a < b < 0o, then M(co) has a natural C%/®
structure.

Theorem 13.3 (Sullivan [98], Anderson [4]). Let M be a complete,
simply connected manifold. Assume that the sectional curvature of M
satisfy the bound

—a> Ky >-b

for some constants 0 < a < b < co. Then for any continuous function ¢
defined on the geometric boundary M(oo) of M, there exists a function
f defined on M U M(oco) which is harmonic on M, and

f=¢
on M(o0).
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Shortly after this theorem, Anderson and Schoen considered the ex-
istence of positive harmonic functions on the same class of manifolds.
In fact, they showed that the Martin boundary is homeomorphic to the
geometric boundary. The Martin boundary is defined on non-parabolic
manifolds. Let p € M be a fixed point and z,y € M. Suppose G is the
minimal positive Green’s function defined on M, then we defined the
normalized Green’s function with pole at y by

G(y,x)
G(y,p)

Clearly, the normalization yields hy(p) = 1. Let y; be a non-convergent
sequence of points in M, then the sequence {h;(z) = hy,(z)} of harmonic
functions are uniformly bounded on compact subsets of M. The Harnack
inequality implies that there exists a subsequence {h;,} which converges
uniformly on compact subsets to a positive harmonic function h defined
on M with the property that h(p) = 1. The corresponding subsequence
of points {y;,} is denoted to be a fundamental sequence. We say that
two fundamental sequences are equivalent if the corresponding limiting
harmonic functions are the same.

Definition 13.4. The Martin boundary M of a manifold M consists
of the equivalent classes of fundamental sequences § = [y;]. To each
§ € M there associates a positive harmonic function hyz from the above
construction.

hy(z) =

The Martin boundary together with M form a compactification for
M. The topology on M UM can be defined by the distance function g
given by

p(y,y') = sup |hy(z) — hy(z)].
z€Bp(1)
One checks readily that this structure is independent of the choice of p,
and this topology coincides with the topology induced by the Riemannian
structure of M.

When M is a complete manifold with non-negative Ricci curvature
near infinity and if M has finite first Betti number and it is non-parabolic,
then one can show that the Martin boundary consists of 7§°(M) points.
The compactification M UM is simply a 1-point compactification at each
end of M.

Theorem 13.5 (Anderson-Schoen [5]). Let M be a complete, simply
connected manifold. Assume that the sectional curvature of M satisfies
the bound

—a> Ky >-b
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for some constants 0 < a < b < co. Then the Martin boundary M is
homeomorphic to the geometric boundary and the homeomorphism is C®.
In particular, there exist a Poisson kernel K(z,y) defined on M x M (co)
which is C® in the variable § such that for any positive harmonic function

f, there exists a unique, finite, positive, Borel measure du defined on
M (o0) such that

f(z) = /M K@D i)

Two years later, Ancona [3] generalized this theorem to a larger
class of second order elliptic operator. In particular, a special case of
Ancona’s theorem asserts that the conclusion of Theorem 13.2 holds
for manifolds which are quasi-isometric to a strongly negatively curved
Cartan-Hadamard manifold.

Theorem 13.6 (Ancona [3]). Let M be a complete, simply connected
manifold. Assume that M is quasi-isometric to a manifold N satisfying

the curvature bound
—a>Ky>-b

for some constants 0 < a < b < co. Then the Martin boundary M of M
is homeomorphic to No.

Other progress has been made to relax the curvature assumption of
these theorems. For example, in [52], Hsu and Marsh relaxed the bounds
on the curvature assumption. They generalized Theorem 13.3 to Cartan-
Hadamard manifolds whose section curvature satisfies the estimate

~Cp?>Ky>-b

for some constants b > 0 and C > 2. In 1992, Borbély [14] relaxed the
lower bound by assuming that the sectional curvature satisfies

—a> Ky > —beM

for some constants 0 < a < b < co and A < 1/3. In this case, he proved
that the Dirichlet problem at infinity can be solved as in Theorem 13.3.
Recently, Cheng proved the existence of non-constant bounded harmonic
functions by assuming a pointwise curvature pinching condition.

Theorem 13.7 (Cheng [25]). Let M be a Cartan-Hadamard mani-
fold. Assume that the lower bound of the spectrum A1(M) for the Lapla-
cian on M is positive. Suppose there exists p € M and a constant C > 0
such that the sectional curvatures Kpr(o) and Kp(o') satisfy

|Kum (o)l < C1Em(o")]
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for any pair of 2-plane sections o and o' at x containing the tangent
vector of the geodesic joining x to p. Then for any continuous function ¢
defined on the geometric boundary M(oco) of M, there exists a function
f defined on M U M (oo) which is harmonic on M, and

f=9¢

on M(00).

Note that unlike the previous theorems in this section, Cheng’s the-
orem allows points where the curvature of M may vanish. The following
theorem of Ballmann also allows this possibility, but rather than a pinch-
ing condition he assumed that the manifold is of rank one.

Definition 13.8. A Cartan-Hadamard manifold is said to have rank
one if it admits a geodesic o with no parallel Jacobi field along o per-
pendicular to o’.

If M is a Cartan-Hadamard manifold which is irreducible and admits
a discrete, co-compact, isometry group, then it is known [7], [15] that
either M has rank one or M is a symmetric space of noncompact type
of rank at least 2.

Theorem 13.9 (Ballmann [8]). Let M be an irreducible, Cartan-
Hadamard manifold which admits a discrete, co-compact isometry group.
If M has rank one, then for any continuous function ¢ defined on the
geometric boundary M(oco) of M, there exists a function f defined on
M U M(o0) which is harmonic on M, and

f=9¢

on M(o0).

In a subsequent joint paper of Ballmann and Ledrappier [9], they
showed that, in fact, one can represent any bounded harmonic function
on M by a Poisson representation formula.

Theorem 13.10 (Ballmann-Ledrappier [9]). Let M be an irre-
ducible, Cartan-Hadamard manifold which admits a discrete, co-compact
isometry group. If M has rank one, then there exists an equivalent class
of harmonic measures dv, defined on M(co) for each p € M, such that,
for any bounded measurable function ¢ the bounded function defined by

f(z) = /M D@



CURVATURE AND FUNCTION THEORY 425

s a harmonic extension of ¢ to M U M(oo). Conversely, any bounded
harmonic function f can be such represented by some bounded measurable
function ¢ on M (o).

In view of the theorems of Cheng, Ballmann, and Ballmann-Ledrappier,
the natural questions to ask is whether it is true that the Martin bound-
aries of these manifolds are the same as their geometric boundaries?
Also, is there a Poisson representation formula similar to the case of
strongly negatively curved Cartan-Hadamard manifolds? What can one
say about the Martin boundary for manifolds which are quasi-isometric
to these manifolds?

Obviously, the set of positive harmonic functions on a complete man-
ifold does not form a vector space. However, if f and g are positive
harmonic functions then linear combinations of the form

af(z) +bg(z),

where a, b > 0, is again a positive harmonic function. Hence the set
of positive harmonic functions form a convex positive cone in a vector
space. The boundary points of this convex cone determines the cone
itself. A positive harmonic function f which is a boundary point of this
cone has the property that if g is another positive harmonic function
satisfying

9(z) < f(z),
then

9(z) = a f()

for some constant 0 < a < 1. This property is called minimal. The set
of positive harmonic functions are given by the positive span of minimal
positive harmonic functions. In his paper [40], Freire considered the
Martin boundary for the product of Riemannian manifolds by studying
the set of minimal positive harmonic functions.

Theorem 13.11 (Freire [40]). Let M = M; x M2 be a product to
two complete Riemannian manifolds whose Ricci curvatures are bounded
from below. If f is a minimal positive harmonic function defined on M,
then f(z) = f(z1,z2) can be written as a product

f(z) = fi(z1) fa(z2)

of positive functions defined on each factor. Moreover, the functions
fi > 0 satisfies
A, fi(z:i) = Ai fi(zi)
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on M; with constants A\; for i = 1,2 such that Ay + A2 = 0. Also, each
fi is a minimal positive (A; — \;)-harmonic function. Conversely, the
product of two minimal positive (A, — A;)-harmonic functions as above
yields a minimal positive harmonic function on M.

References

[1] U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology,
Ann. Sci. Ecole Norm. Sup. 18 (1985) 651-670.

, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II,
Ann. Sci. Ecole Norm. Sup. 20 (1987) 475-502.

[3] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin bound-
ary, Ann. of Math. 125 (1987) 495-536.

[4] M. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature,
J. Differential Geom. 18 (1983) 701-721.

[5] M. Anderson & R. Schoen, Positive harmonic functions on complete manifolds of
negative curvature, Ann. of Math. 121 (1985) 429-461.

[6] M. Avellaneda & F. H. Lin, Une théoréme de Liouville pour des équations elliptique
& coefficients périodigues, Compt. Rendus Acad. Sci. Paris 309 (1989) 245-250.

[7] W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. 122
(1982) 131-144.

(8]

, On the Dirichlet Problem at infinity for manifolds of nonpositive curvature,
Forum Math. 1 (1989) 201-213.

[9] W. Ballmann & F. Ledrappier, Poisson boundary for rank one manifolds and their
cocompact lattices, Forum Math. 6 (1994) 301-313.

[10] S. Bando, A. Kasue & H. Nakajima, On a construction of coordinates at infinity
on manifolds with fast curvature decay and mazimal volume growth, Invent. Math.
97 (1989) 313-349.

[11] R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl.
Math. 39 (1986) 661-693.

[12] R. Bishop & R. Crittenden, Geometry of manifolds, Academic Press, New York
and London, 1964.

[13] E. Bombieri & E. Giusti, Harnack’s inequality for elliptic differential equations on
minimal surfaces, Invent. Math. 15 (1972) 24-46.

[14] A. Borbély, A note on the Dirichlet problem at infinity for manifolds of negative
curvature, Proc. Amer. Math. Soc. 114 (1992) 865-872.



CURVATURE AND FUNCTION THEORY 427

[15) K. Burns & R Spatzier, Manifolds of nonpositwe curvature and their buildings,
Inst. Hautes Etudes Sci. Publ. Math. 65 (1987) 35-59.

[16] P. Buser, On Cheeger’s inequality Ay > h®/4 in Geometry of the Laplace operator,
Proc. Symp. Pure Math., Amer. Math. Soc. 36 (1980) 29-77.

[17] M. Cai, Ends of Riemannian manifolds with nonnegative Ricci curvature outside
a compact set, Bull. Amer. Math. Soc. 24 (1991) 371-377.

[18] M. Cai, T. Colding & D. Yang, A gap theorem for ends of complete manifolds,
Proc. Amer. Math. Soc. 123 (1995) 247-250.

[19] H. Cao, Y. Shen & S. Zhu, The structure of stable minimal hypersurfaces in R**1,
Preprint.

[20] J. Cheeger, T. Colding & W. Minicozzi, Linear growth harmonic functions on
complete manifolds with non-negatwe Ricci curvature, Geom. Func. Anal. 5 (1995)
948-954.

[21] J. Cheeger & D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci
curvature, J. Differential Geom. 6 (1971) 119-128.

[22] , On the structure of complete manifolds of nonnegative curvature, Ann. of

Math. 92 (1972) 413-443.

[23] J. Cheeger, M. Gromov & M. Taylor, Finite propagation speed, kernel estimates
for functions of the Laplace operator, and the geometry of complete Riemannian
manifolds, J. Differential Geom. 17 (1983) 15-53.

[24] S. Y. Cheng, Liouville theorem for harmonic maps, Geometry of the Laplace op-
erator, Proc. Symp. Pure Math. Amer. Math. Soc. 36 (1980) 147-151.

[25] , The Dirichlet problem at infinity for nonpositively curved manifolds, Comm.

Anal. Geom. 1 (1993) 101-112.

[26] S. Y. Cheng & S. T. Yau, Differential equations on Riemannian manifolds and
their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354.

[27] H. 1. Choi, Asymptotic Dirichlet problems for harmonic functions on Riemannian
manifolds, Trans. Amer. Math. Soc. 281 (1984) 691-716.

[28] S. Cohn-Vossen, Kirzeste Wege and Totalkrimmung auf Flichen, Compositio
Math. 2 (1935) 69-133.

[29] T. Colding & W. Minicozzi, On function theory on spaces with a lower Ricci
curvature bound, , Math. Res. Lett. 3 (1996) 241-246.

[30] , Harmonac functions with polynomial growth, Preprint.
[31] , Large scale behavior of kernels of Schrodinger operators, Preprint.
[32] , Generalized Liouville properties for manifolds, Preprint.

[33] ——, Harmomic functions on manifolds, Preprint.



428 PETER LI

[34] , Weyl type bounds for harmonic functions, Preprint.

[35] , Lrouville theorems for harmonic sections and applications manifolds, Pre-

print.

[36] Th. Coulhon & L. Saloff-Coste, Variétés remanniennes isométriques & l’infini,
Revista Mat. Iber. 11 (1995) 687-726.

[37] H. Donnelly, Bounded harmonic functions and positive Ricci curvature, Math. Z.
191 (1986) 559-565.

[38] F. Fiala, Le probléme des isopérimétres sur les surfaces ouvertes & courbure posi-
twe, Comm. Math. Helv. 13 (1940) 293-346.

[39] R. Finn, On a class of conformal metrics with application to differential geometry
in the large, Comm. Math. Helv. 40 (1965) 1-30.

[40] A. Freire, On the Martin boundary of Riemannian products, J. Differential Geom.
33 (1991) 215-232.

[41] D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order,
2nd Ed. Springer, Berlin, 1983.

[42] R. E. Greene & H. Wu, Function theory on manifolds which possess a pole, Lect.
Notes in Math., Springer, Berlin, Vol. 699.

[43] A. Grigor’yan, On the ezistence of a Green function on a manifold, Uspechi Matem.

Nauk 38 (1983) 161-162; Engl transl: Russian Math. Surveys 38 (1983) 190-191.
(44] , On the existence of positive fundamental solution of the Laplace equation
on Riemannian manifolds, Mat. Sbornik 128 (1985) 354-363; Engl transl: Math.
USSR Sbornik 56 (1987) 349-358.

[45] , On Liouville theorems for harmonic functions with finite Dirichlet integral,

Math. USSR Sbornik 60 (1988) 485-504.

[46]

, On the dimension of spaces of harmonic functions, Math. Notes 48 (1990)
1114-1118.

[47) , The heat equation on noncompact Riemannian manifolds, Math. USSR

Sbornik 72 (1992) 47-77.

[48] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964)
705-727.

[49] I. Holopainen, Solutions of elliptic equations on manifolds with roughly Euclidean
ends, Math. Z. 217 (1994) 459-477

[50] , Volume growth, Green’s functions, and parabolicity of ends, Duke Math.

J. 97 (1999) 319-346.
[51] I. Holopainen & P Koskela, Volume growth and parabolicity, Preprint.

[52] P Hsu & P Marsh, The limiting angle of certain Riemannian Brownian motions,
Comm. Pure Appl. Math. 38 (1985) 755-768.



CURVATURE AND FUNCTION THEORY 429
[53] A.Huber, On subharmonic functions and differential geometry in the large, Comm.
Math. Helv. 32 (1957) 13-72.

[54] D. Jerison, The Poincaré inequality for vector fields satisfying Hormander’s con-
dition, Duke Math. J. 53 (1986) 503-523.

[55] M. Kanai, Rough isometries, and combinatorial approzvmations of geometries of
non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985) 391-413.

, Rough isometries and the parabolicity of Riemannian manifolds, J. Math.
Soc. Japan 38 (1986) 227-238.

(56]

[57] A. Kasue, Harmonic functions with growth conditions on a manifold of asymp-
totically non-negative curvature. II, Recent Topics in Differential and Analytic
Geometry Adv. Stud. Pure Math., North-Holland, 1989, Vol. 18.

[58] J. L. Kazdan, Parabolicity and the Liouville property on complete Riemannian
manifolds, Seminar on New Results in Nonlinear Partial Differential Equations,
Max-Planck-Inst. Bonn, 1987, 153-166.

[69] S. Kobayashi, Differential geometry of compler vector bundles, Princeton Univ.
Press, Princeton, 1987.

[60] P. Li, Uniqueness of L' solutions for the Laplace equation and the heat equation
on Riemannian manifolds, J. Differential Geom. 20 (1984) 447—457.

[61] , On the structure of complete Kéahler manifolds with nonnegative curvature

near infinity, Invent. Math. 99 (1990) 579-600.

[62] , Erratum ”On the structure of complete Kdahler manifolds with nonnegative

curvature near infinity,” Invent. Math. 104 (1991) 447-448.

[63] , Lecture notes on geometric analysis, Lecture Notes Series No. 6, Re-
search Institute of Mathematics and Global Analysis Research Center, Seoul, Seoul

National University, 1993.

[64] , Harmonic functions of linear growth on Kdhler manifolds with non-negative

Ricci curvature, Math. Res. Lett. 2 (1995) 79-94.

[65] , Harmonic sections of polynomial growth, Math. Res. Lett. 4 (1997)

35—-44.

[66] P. Li & M. Ramachandran, Kdhler manifolds with almost non-negative Ricci cur-
vature, Amer. J. Math. 118 (1996) 341-353.

[67] P. Li & R. Schoen, L? and mean value properties of subharmonic functions on
Riemannian manifolds, Acta Math. 153 (1984) 279-301.

[68] P. Li & L. F. Tam, Positive harmonic functions on complete manifolds with non-
negative curvature outside a compact set, Ann. of Math. 125 (1987) 171-207.

(69] , Symmetric Green’s functions on complete manifolds, Amer. J. Math. 109

(1987) 1129-1154.




430 PETER LI

[70] , Linear growth harmonic functions on a complete manifold, J. Differential

Geom. 29 (1989) 421-425.
[71] , Complete surfaces with finite total curvature, J. Differential Geom. 33
(1991) 139-168.

[72] , Harmonic functions and the structure of complete manifolds, J. Differen-

tial Geom. 35 (1992) 359-383.

73]

, Green’s functions, harmonic functions, and volume comparison, J. Differ-
ential Geom. 41 (1995) 277-318.

[74] P. Li, L. F. Tam & J. Wang, Some sharp bounds for the Green’s function and the
heat kernel, Math. Res. Lett. 4 (1997) 589-602.

[75] P.Li& J. P. Wang, Convez hull properties of harmonic maps, J. Differential Geom.
48 (1998) 497-530.

[76] , Mean value inequalities, Indiana Math. J. 48 (1999) 1257-1283.

[77] , Counting massive sets and dimensions of harmonic functions, J. Differ-

ential Geom. 53 (1999) 237-278.

[78] , Counting dimensions of L-harmonic functions, Ann. of Math. 152 (2000)

645-658.

[79] P.Li& S. T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math.
156 (1986) 153-201.

(80] , Curvature and holomorphic mappings of complete Kihler manifolds, Com-

positio Math. 73 (1990) 125-144.

[81] F.H. Lin, Asymptotically conic elliptic operators and Liouville type theorems, Vol-
ume dedicated to S. Hildebrandt on the occasion of his 60th birthday, (ed. J. Jost),
to appear.

[82] Z. Liu, Ball covering property and nonnegative Ricci curvature outside a com-
pact set, Differential Geometry: Riemannian Geometry, Proc. Sypm. Pure Math.
Amer. Math. Soc. 54 (3) (1993) 459-464.

[83] T. J. Lyons, Instability of the Liouville property for quasi-isometric Riemannian
manifolds and reversible Markov chains, J. Differential Geom. 26 (1987) 33-66.

[84] B. Malgrange, Emistence et approzimation des solutions der équations auz dérivées
partielles et des équations de convolution, Ann. Inst. Fourier 6 (1955) 271-355.

[85] J. H. Michael & L. Simon, Sobolev and mean-value inequalities on generalized
submanifolds of R*, Comm. Pure Appl. Math. 26 (1973) 361-379.

[86] N. Mok, A survey on complete noncompact Kaihler manifolds of positive curvature,
Complex analysis of several variables, Proc. Symp. Pure Math. Amer. Math. Soc.
41 (1984) 151-162.

[87] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure
Appl. Math. 14 (1961) 577-591.



CURVATURE AND FUNCTION THEORY 431

[88] J. Moser & M. Struwe, On a Liouville-type theorem for linear and nonlinear elliptic
differential equations on a torus, Bol. Soc. Brasil Mat. 23 (1992) 1-20.

[89] N. Nadirashvili, A theorem of Liouville type on a Riemannian manifold, Russian
Math. Surveys 40 (1986) 235-236.

[90] M. Nakai, On Evans potential, Proc. Japan Acad. 38 (1962) 624-629.

[91] T. Napier & M. Ramachandran, Structure theorems for complete Kihler manifolds
and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995) 809-851.

[92] H. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. Math.
Soc. 73 (1952) 40-94.

[93] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differ-
ential Geom. 36 (1992) 417-450.

[94] , A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math.

Res. Notices 2 (1992) 27-38.

[95] L. Sario, M. Schiffer & M. Glasner, The span and principal functions in Rieman-
nian spaces, J. Anal. Math. 15 (1965) 115-134.

[96] J. P. Sha & D. G. Yang, Ezamples of manifolds of positive Ricci curvature, J.
Differential Geom. 29 (1989) 95-103.

[97] R. Schoen & S. T. Yau, Harmonic maps and the topology of stable hypersurfaces
and manifolds of nonnegative Ricci curvature, Comm. Math. Helv. 39 (1976)
333-341.

[98] D. Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J.
Differential Geom. 18 (1983) 723-732.

[99] C. J. Sung, Harmonic functions under quasi-isometry, J. Geom. Anal. 8 (1998)
143-161

[100] C. J. Sung, L. F. Tam & J. P. Wang, Spaces of harmonic functions, J. London
Math. Soc., to appear.

[101] L. F. Tam, A note on harmonic forms on complete manifolds, Preprint.

[102] N. Varopoulos, The Powsson kernel on positively curved manifolds, J. Funct. Anal.
44 (1981) 359-380.

[103] , Potentwal theory and diffusion on Riemannian manifolds, Conference
on harmonic analysis in honor of Antoni Zygmund, Vol I, II Belmont, Calif.,
Wadsworth Math. Ser., Wadsworth, 1983, 821-837

[104] J. Wang, Linear growth harmonic functions on complete manifolds, Comm. Anal.
Geom. 4 (1995) 683-698.

[105] H. Wu, Polynomial functions on complete Kdhler manifolds, Several complex
variables and complex geometry, Proc. Symp Pure Math, Amer. Math. Soc. 52
(1989) 601-610.



432 PETER LI

[106] , Subharmonic functions and the volume of a noncompact manifold, Dif-
ferential Geometry, Pitman Monographs Surveys Pure Appl. Math. 52 (1991)
351-368.

[107] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure
Appl. Math. 28 (1975) 201-228.

[108]

, Some function-theoretic properties of complete Riemannian manifolds
and their applications to geometry, Indiana Math. J. 25 (1976) 659-670.

[109] , Nonlinear analysis in geometry, L'Enseignement Mathématique, Série
des Conférences de I’'Union Mathématique Internationale, No. 8, Genéve, SRO-
KUNDIG, 1986.

[110) L. Zhang, On generic eigenvalue flow of a family of metrics and its application
in dimension estimates of polynomial growth harmonic functions, Comm. Anal.
Geom. 7 (1999) 259-278.

UNIVERSITY OF CALIFORNIA, IRVINE





