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WHICH SINGER IS THAT?

RICHARD V. KADISON

Most of us learn to crawl and walk; a few of us learn to run swiftly.
Is Singer is one of those people — he ran swiftly and still does, as this
is written. For those who doubt that, I invite them to try a set of
tennis with him! Singer was visiting us (at Penn from MIT) for a few
days while he gave us some lectures. Walking, with one of our graduate
students, in a department hallway that had a large glass window at one
end, I reached that window and looked out at some university tennis
courts below. Singer was there doing what he often does as he travels:
playing a set with a local pro. That student (now a famous homological
algebraist) and I watched as Singer fired aces to one side of the court
and the other. I asked my young, student friend, “Who is that fellow out
there?” He didn’t know. “That’s I. M. Singer,” I said. “Gosh! All that
and the Atiyah—Singer Index Theorem, too!” he exclaimed. We were
both impressed. As Singer runs, he also takes mathematics, and, often,
physics with him along the paths he follows.

Everyone acquainted with the major developments of research math-
ematics in the last third of the twentieth century has had contact with
the Atiyah—-Singer Index Theorem. There are people who have referred
to it as the “best” or “most important” theorem of the twentieth cen-
tury. I have called it that, but I have heard that from other people,
as well. Such declarations may not have very clear meanings; my own
is based on some “absolute” feeling for depth, scope, and applicability.
A good guess is that the Atiyah—Singer Index Theorem would appear
on virtually every broadly educated, research mathematician’s list of
the ten most important theorems of the twentieth century. Each such
list will contain personal favorites. Mine might include the Murray-von
Neumann theorems on existence and uniqueness of the additive trace in
factors of type II; and the uniqueness of the hyperfinite II; factor, as
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well as Tomita’s Main Theorem (in the Tomita—Takesaki Theory) — to
which many of the readers might respond “Huh?” My list would also
include the Spectral Theorem, and in an ecumenical spirit, The Allen-
dorfer, Chern-Weil versions of Werner Fenchel’s original extension of
the Gauss—Bonnet theorem to higher dimensions. “Huh?” would prob-
ably not be heard in connection with these latter choices, and certainly
not with the Atiyah—Singer Index Theorem. The Atiyah-Singer Index
Theorem is at the core of a vast body of work, created by Atiyah and
Singer, which has touched and influenced most of current mathematics
and much of theoretical physics.

Since pure mathematics is, in my view, the poetry of basic science,
it’s not surprising that its results and advances are less accessible to the
general public than those of, say, biology and chemistry. Nevertheless,
if we were seeking a result in those areas with an effect analogous to
the discovery of the Atiyah—Singer Index, we might point to the Crick—
Watson discovery of the double helix nature of DNA. Where the Crick—
Watson work discloses something of the fundamental biology of life, the
Atiyah-Singer Index Theorem reveals something as fundamental as the
interplay among the topological, geometric and analytic patterns in the
fabric of our universe. There is also something analogous in the process
by which both results were discovered. Two superbly talented scientists,
with a very clear view of where they are headed, a sure knowledge of
what they want to achieve, and a firm grasp of the techniques they need,
organize the large scientific enterprise needed to arrive at their goal and
orchestrate the results and methods used from the many component
subdisciplines into a powerful solution of their major problems.

The Atiyah-Singer Index Theorem extended the algebraic Riemann—
Roch Theorem to complex manifolds using analytic techniques in the
tradition of Hodge, Weyl, and Kodaira. It produced new topological
invariants that topologists are still challenged to describe by traditional
methods, thirty years later. Atiyah and Singer provided a unified treat-
ment of the Riemann—-Roch, Hirzebruch Signature, and Gauss—Bonnet
Theorems by their use of the Dirac operator. The Index Theorem re-
moved many barriers between algebraic geometry, differential geometry,
topology, and analysis.

They gave two proofs. The first proof involved a cobordism argument
that required the solution to an elliptic boundary value problem. The
methods they discovered remain valuable today. Their second proof
was an axiomatic treatment of the topological and analytic index. This
approach lends itself to a natural extension to operator algebras and
noncommutative geometry. A third proof, by P. Gilkey, is based on the
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heat equation approach to index theory, initiated by H. McKean and
Singer. There is a masterful presentation by Atiyah, Bott, and Patodi.
The Feynman-Kac formula expresses the heat kernel as a path integral.
Using supersymmetric path integrals, Witten derived the index formula
for the Dirac operator in a simple, elegant way .

Because the Index Theorem, its statement and proofs, encompasses
so much mathematics, it has had a great impact on virtually every area
of modern mathematics. Among the topics to which it has had crucial
application, one can list: invariants of actions of groups on manifolds —
the fixed point formula, families of elliptic operators and the determinant
line bundle, the value of Hecke L-series at 0 in number theory, spectral
flow and the theory of anomalies in physics, K-homology in operator
theory, gauge theories as applied to three- and four-dimensional topology,
the non-existence of spaces of positive scalar curvature in differential
geometry.

The last paragraph of a book review (N. Hitchin, BAMS, Vol. 15,
1986, pp. 243-245) sums up, very nicely, what many of us feel on the
subject of the Atiyah—Singer Index Theorem. “Like Stonehenge, the the-
orem stands there as an immovable edifice, with each generation giving
its own interpretation. For one it is a computational device, for an-
other a more mystical representation of supersymmetry. Either way, it
has created a bridge between mathematics and physics and has given
mathematicians and physicists a deeper, or at least more sympathetic,
understanding of each other’s work. The Dirac operator will never be
reinvented a third time!”

Given the monumental nature of the work just mentioned, it is sur-
prising to realize that Singer has run swiftly in other directions. He is
recognized as one of the great geometers of our time. Few of the younger
geometers are aware that the geometry of higher-dimensional manifolds
was anything but the smoothly functioning apparatus that they know
today. Of course, E. Cartan was the great initial developer and set the
theory on paper in a form that contained most of the important begin-
ning ideas; but that account had a noticeably different form from what
one sees today. Chern understood, in the deepest sense, what Cartan
was saying and taught it to us, along with his own deep contributions,
in our graduate student days (1949) at the University of Chicago. It was
a wonderful experience. Cartan’s largely descriptive account (collected
works) now found itself in a working mathematical form, though still
far from the precise style available to us today. It must be remembered
that Norman Steenrod was in the process of developing and writing his
celebrated book on fiber bundles (Princeton University Press 1951), a
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theory implicit in Elie Cartan’s treatment. We must also recall that
there were no copying machines available, so preliminary copies of vital
manuscripts did not “cover” the mathematical landscape as they do to-
day (in both paper and electronic form). In that environment, Singer
and his more senior colleague at MIT, Warren Ambrose, armed with the
notes from the Chern course, undertook to make precise mathematical
sense of connections, holonomy, parallel translation and all the other
key concepts of differential geometry that were cloaked in mystery for
all but a handful of “initiates.” Independently, Ch. Ehresmann and they
produced the form of the subject substantially as it is today. From my
own personal observation of that process, it was an heroic effort. Their
paper, “A Theorem on Holonomy” (TAMS Vol. 75, 1953, pp. 428-443),
remains a classic account of that theory. At the same time, their Ph. D.
students have written several “best sellers” based on the lecture notes of
his courses (among them, Bishop-Crittenden, Hicks, and Warner).

Singer’s current research in string theory and other differential geo-
metric aspects of quantum physics is well known and highly respected
in a large segment of the mathematics and theoretical physics commu-
nities. His work in that area earned him the Wigner Medal (1988) for
contributions to theoretical physics. It is unusual for a pure mathemati-
cian to have students (e.g., D. Freed, D. Friedan, and J. Lott) who have
contributed significantly to high energy theoretical physics.

Even less known is Singer’s powerful influence on the mid-century
development of functional analysis. In the early fifties, during his asso-
ciation with UCLA, he teamed with Richard Arens to usher in a new
era in the study of commutative Banach Algebras. This study broadens
the scope of the theory of several complex variables and recasts it in
the framework of functional analysis. Some of Singer’s Ph. D. students
and postdocs, notably Hugo Rossi and Ken Hoffman, became leading
researchers in this area of analysis.

The background for the title of this article is an incident that oc-
curred when Jacques Dixmier was revising his von Neumann algebra
book. I was visiting Paris and spent an afternoon with Dixmier dis-
cussing some of the additions he wanted to make. In particular, I told
him about Singer’s early contribution to the subject of derivations of
operator algebras (more about that, shortly). He interrupted me during
that description to ask, “Which Singer is that?” I was puzzled and asked
him what he meant. On an earlier occasion, I had mentioned to him
that I often “wrote up” our joint papers for publication “since Singer
had trouble writing them.” He replied that there were the Singers who
did differential geometry, commutative Banach algebras, operator alge-
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bras (and others). I don’t know how, but I managed to display no more
than a smile, and responded, “They are all the same Singer.” Dixmier
mused for a moment and said, “No wonder he has trouble writing up
papers!”

One evening, at a 1953 conference, Irving Kaplansky asked Is Singer
what he thought the derivations of C(X) (the algebra of all continu-
ous, complex-valued, functions on the compact Hausdorff space X un-
der pointwise operations and supremum norm) were. The next day,
Is showed us a sweet little argument that each such derivation is 0.
I can’t resist giving it here! To recall, a linear mapping § of C(X)
into itself satisfying the Leibnitz rule (for differentiation of products),
0(fg) =9(f)g+ fé(g), is called a derivation (of C(X) into itself). Since
each f in C(X) is the sum of a “real” and “purely imaginary” func-
tion in C(X) it suffices to show that §(f) = 0 for each real f in C(X).
Of course, §(1) = §(12) = 26(1), where ‘1’ denotes the function whose
value is 1 at each point of X. Thus §(1) = 0; by linearity, d(a) = 0 for
each constant function a. Given a point z in X, 6(f — f(z)) = 4(f).
Let h be f — f(z), h4 be 1(Ja| + k), and h_ be 1(|h| — k). Then hy
and h_ are positive functions in C(X), hy — h_ = h, hyth_ = 0, and
hy(x) = h_(z) = 0. Now, h, = g? for some (positive) g in C(X). Then
g9(z) = 0, and d(h4+)(z) = 29(z)d(g)(z) = 0. Similarly, §(h_)(z) = 0.
Thus 6(f)(z) = §(h)(z) = 0. Since z was arbitrarily chosen in X,
5(f) = 0. Hence § = 0. Kaplansky went on from there to write his
famous paper [11] showing (among other things) that all derivations of
type I von Neumann algebras are inner. Singer and Wermer [19] brought
Singer’s argument into a commutative Banach algebra context and ex-
tended it. A veritable army of researchers took the theory of derivations
of operator algebras to dizzying heights — producing a theory of co-
homology of operator algebras as well as much information about auto-
morphisms of operator algebras. It all started with Kaplansky’s thoughts
and Singer’s argument nearly fifty years ago.

Along with their efforts to put global differential geometry on a firm
foundation and make it broadly accessible, Ambrose and Singer con-
centrated on understanding the basic structure of the Murray—von Neu-
mann factors of type II;. They were trying to display such a factor as
a “matrix algebra” relative to an appropriate “orthonormal basis.” In
this instance there are complex entries at each “point” of the matrix
— the rows and columns are thought of as the unit interval [0, 1] and
each has an appropriate measure on it. Multiplication of elements in
the factor becomes matrix multiplication with the row-colunm product
being integrated rather than summed. The mathematical problems they
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encountered were daunting; one of their most baffling questions was an-
swered just a few years ago — more than 45 years after it was posed.
What remains in print is a single-sentence abstract, “La-matrices are
studied,” and some reference to the project in [18].

It is Singer’s role in the early development of the theory of operator
algebras that is the primary focus of this article; it is a role that is too
little known outside the field of operator algebras. I had better advise
the reader that, at this point, the account turns into what has become
known as a “research-expository” article. Let’s pause, first, to establish
some notation and background information. With H a Hilbert space
over the complex numbers C, we denote by ‘B(#)’ the family of all
linear transformations of # into itself (“operators”) continuous relative
to the metric topology on H induced by the norm that assigns to each x
in H its length (J|z|| =) < z,z >3, where < u,v > is the inner product
of u and v in H. If T is in B(H), sup{||Tz| : l|z|]| < 1} (= ||T]|) is finite
(T is “bounded” with “bound” or “norm” ||T’||). The metric topology on
B(H) associated with the norm T' — ||T’|| is called the norm or uniform
topology. Equipped with this norm, B(#) is a complete normed space,
a Banach space.

The usual operations of addition, multiplication by a scalar, and
multiplication (iteration) of linear transformations of a vector space into
itself provide B(#) with the structure of an associative algebra. It has
a unit element I, the identity operator, that assigns = to each z is H.
Each T in B(#) has associated with it a unique operator T*, called its
adjoint, characterized by the equality < Tz,y >=< z,T*y > for all z
and y in H.

The properties, (aA + B)* = aA* + B*, (AB)* = B*A*, (A*)* = A,
IT)l = |T*||, and ||T*T)| = ||T||? are established by simple computations.
If F is a subset of B(#), we denote by ‘F*’ the family {T* : T € F}
and say that F is self-adjoint when F = F*. In particular, a self-
adjoint subalgebra 2 of B(H) (called a self-adjoint operator algebra) is
a C*-algebra when it is norm closed in B(#). The topology on B(H)
corresponding to strong-operator convergence (A, — A when A,z —
Az, in the metric of #, for each = in H) is the strong-operator topology
on B(#H).

The von Neumann algebras are the self-adjoint operator algebras on
a Hilbert space, containing I, that are strong-operator closed. Those
whose centers consist of just the scalar multiples of I are called factors.
The von Neumann algebras were introduced in [16] (as “rings of opera-
tors”), where it is proved that for each such R, R = R”. (The commutant
F' of a subset F of B(H) is {T': T € B(H), TA = AT for all A in F}.)
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The factors were studied, intensively, in a series of papers [12], [13], [14]
and [15] published between 1936 and 1943. Of course, B(H) itself is
an example of a self-adjoint operator algebra, C*-algebra, von Neumann
algebra, and factor. The operators that “project” a vector in #, or-
thogonally, onto a given (closed) subspace of #H are called projections.
Each projection F lies in B(#), ||E|| =1 (0 when E is 0), E = E*, and
E? = E. The last two properties characterize the projections in B(#).
An operator A in B(H) commutes with a projection E if and only if A
and A* leave the space on which E projects (its range) invariant. Each
von Neumann algebra is the norm closure of the linear span of its pro-
jections. In particular, there are many projections in a von Neumann
algebra, while a C*-algebra may have no projections other than 0 and
I. The projections are ordered by the size of their ranges: £ < F when
E(H) C F(H). This is equivalent to the equality, EF = E (and agrees
with their ordering as self-adjoint operators). If E lies in a von Neumann
algebra R, is non-zero, and no smaller projection in R distinct from it
is non-zero, we call E a minimal projection in R. One of the earliest
results proved by Murray and von Neumann classifies factors that have
a minimal projection.

Theorem. A factor that has a minimal projection is isomorphic to
B(H) for some Hilbert space H.

Murray and von Neumann found examples of factors without min-
imal projections. The first construction of such examples [12] employ
a countable group G, with unit e, of one-to-one, measurability-and-
measure-zero-preserving transformations of a (countably separated, o-
finite) measure space S (with measure p). The action is free (each
transformation, other than e, has a fixed-point set of measure 0). Using
the Radon—Nikodym derivative of u, transformed by a group element g
of G, relative to p, we can associate with g a unitary operator Uy on
the Hilbert space La(S, ) (= H). If the transformations are measure
preserving, the Radon-Nikodym derivatives are (1 and) not needed.

Let K be the linear space of functions ¢ from G to 7, under pointwise
addition and multiplication by scalars, for which }° ¢ llp(9)]1? < oo.
Provided with the inner product < ¢,9 >= - o < 6(9),%(9) >, K
becomes a Hilbert space. Of course, K may be identified with the direct
sum of copies Hq of #, g in G. Thus operators in B(K) have representa-
tions as matrices with rows and columns indexed by the elements of G
and entries from B(#). With T in B(H), let ®(T') be the operator on K
whose matrix has T at each diagonal entry and 0 at all other entries (so

(2(T)(#))(9) = T(¢(9)) (¢ € K, g € G)).
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With f a bounded measurable function on S, we denote by ‘Mj’ the
(multiplication) operator that assigns f - h to h in #. The family Ap of
all such multiplication operators is an abelian von Neumann subalgebra
of B(#). Each T in B(#H) commuting with all the elements of A is
a multiplication operator, whence Ag is a mazimal abelian, self-adjoint
subalgebra of B(H) (a masa). With f a function on S and g in G, let
fo(s) be f(g~1(s)), where ‘g(s)’ denotes the result of g acting on s in S.
Assuming that g acts by measure-preserving transformations, we note
that

(UgMsUg h)(s) = (MUg-1h)(g™ 1 (s)) = F(g7"(s))(Ug-1h) (g™ (5))
= fo(s)h(9(g7'(5))) = (M, h)(s),

for each g in G, h in H, s in S, and bounded measurable f on S. Thus
UgMsU, =M f,- It follows that G acts by automorphisms (M; —
UngUg_l = Mfg) on Ag.

Let (Vy0)(g') be Ugp(g~'g') for all g and ¢’ in G and ¢ in K. The
mapping g — Vj is a unitary representation of G on K. Moreover,

[(Ve@(M§)Vy )ol(g") = Ug([B(My)Vy-1(9))(97'd"))
= Ug[Mf(Vy-1(8)(97'9"))]
= Ug[My(Ug-16(997'9"))]
= My, 0(9") = (2(Mj,)9)(9")

for all g and ¢’ in G, ¢ in K, and bounded measurable f on S. Thus
Vg@(Mf)Vg“1 = ®(My,), and G acts by automorphisms (®(M;) —
VQQ(MJ:)VQ‘:l = ®(My,)) of the abelian von Neumann algebra ®(.Ap)
on K. The von Neumann algebra R generated by ®(Ap) on K and
{V, : g € G} provides us with the example we want. The von Neu-
mann algebra R is a factor if and only if G acts “ergodically” on S (that
is, Ugegg(So) or S \ Ugegg(So) has measure 0 for each measurable set
Sp). When S has no atoms (no sets of positive measure without subsets
of smaller positive measure), the factor has no minimal projections. If
u(8) < oo, the factor is one of type II; — the factors that most of us
studied in the early days of the subject. A specific example is given by
the group of rotations of the circle, with Lebesgue measure, generated
by a single rotation through an irrational multiple of 7. A description
of R in matrix terms follows. Let (7}, 4) be the matrix of T in B(K).

Theorem. An operator T in B(K) lies in R if and only if there is a
mapping g — A(g) from G into Ag such that Tpq = U,e-1A(pg™!). An
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operator T' lies in R’ if and only if there is a mapping g — A'(g) of G
into Ao such that T, , = UpA’(q_lp)Up_l.

Note that the diagonal entries T}, ;, of each T' in R are equal to a single
element A(e) of A, while those T}, , of T" are the transforms U, A’(e)U,-1
of a single element A’(e) of Ao. If we use the mapping g — A(g) that
assigns 0 to each g other than e, the resulting operator 7" in R is ®(A(e)),
the diagonal operator with A(e) at each diagonal entry. It is not hard to
show that the abelian von Neumann subalgebra ®(.4p) of R is a masa
in R, by using the assumption of free action of G on S.

Let us suppose that G acts ergodically, S has no atoms, and u(S) = 1.
The algebra M we construct is a factor of type II; in this case. If u is
the element of K that assigns the constant function 1 on S to e and
0 to each other g in G, the linear functional 7 on M that takes the
value < Tu,u > (= [ fdp, where A(e) in Ay is My in our preceding
notation) has special properties. To begin with, it is a state of M. A
state on a C*-algebra is a linear functional on the algebra that takes
non-negative, real values on positive operators and is 1 at I. States
arising from vectors (as 7 does from u) are called vector states. Using
the facts that Uy(1) = 1, UgAoU,; = Ao, and Ay is abelian, we also
have that 7(AB) = 7(BA). In this case, we call T a tracial state of M.
In the explicit example of factors of type II;, just described, we exhibit
a tracial state in terms of the special construction. It is a deep fact
(proved in [13]) that such a state exists for each factor of type II; and
is unique. For present purposes, we may define the factors of type II; as
those factors that have no minimal projections and satisfy the condition
that VV* = I when V*V = I for some V in the factor. As innocent
and insignificant as this condition may seem, it is a simple expression
of the property that leads to a stunningly rich structure. The factors of
type II; are at least as natural a replacement of the finite-dimensional
matrix algebra M, (C), in the infinite dimensional case, as B(#) is, with
‘H infinite dimensional. For one thing, the factors of type II; are simple
algebras. For another, they have the all-important tracial state. If we
divide the trace of a matrix in M,(C) by n, we arrive at the unique
tracial state 7, on M, (C). It assigns to projections in M, (C) one of the
values 0, 111, 721, ..., 1 and all these values are assumed. For a factor of
type I3, the tracial state assigns all values in [0, 1] to the projections in
the factor. “Discrete” dimensionality has been replaced by “continuous”
dimensionality in the infinite-dimensional case; it makes serious sense to
speak of projections with dimensions v/2/2 and 1/e in factors of type
I1;.

As remarked, earlier, Ambrose and Singer undertook to represent a
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factor of type II; as a “matrix algebra” with complex entries at each
point of a square and measures associated with each column and row.
To go from transformations to matrices requires the choice of a basis —
an orthonormal basis, when the adjoint operation is part of the structure
considered. In view of “non-atomicity” of factors of type II;, we can-
not allow ourselves the luxury of an orthonormal basis of vectors. An
orthonormal basis ey, es,. .., for a (separable) Hilbert space H is deter-
mined, up to a phase factor (that is, a ¢ in C of modulus 1), by the family
of one-dimensional projections Ej, Ey, ..., there the range E;(#) of E;
is spanned by e,. The family {E,} generates an abelian von Neumann
algebra in which {E, } is precisely the family of minimal projections. Rel-
ative to the basis {e;}, the operators in the algebra are precisely those
with diagonal matrices. That algebra is a masa in B(#). In this sense,
we may speak of each masa A in B(#H) as a “generalized orthonormal
basis.” In this instance, some (or all) of the “vectors” in the basis may
correspond to “Dirac delta functions.” In the same way, an “orthonormal
basis,” where the facter M of type II; replaces B(#), is a masa A in M.

Applying a special process (the “GNS construction”) to the tracial
state 7 of a factor M of type II;, we “represent” M as a factor of type II;
acting on a Hilbert space H in such a way that 7 is the vector state of M
corresponding to a (unit) vector u whose transforms under the elements
of M form a dense submanifold of #. (We say that u is a cyclic or
generating vector for M.) In this situation, M’ is also a factor of type
IT; and the tracial state of M’ is the vector state corresponding to u. We
say that M is in standard form in this case. For each T in M, there is a
unique 7" in M’ such that Tu = T'u. The mapping T — T" is an adjoint-
preserving, anti-isomorphism of M onto M’. In particular, the image B
of a masa A in M under this mapping is a masa in M’. Of course, the
von Neumann algebra generated by A and B is abelian. Is it a masa in
B(#)? In the parallel situation of M, (C) acting on H in such a way
that its commutant is also (isomorphic to) My, (C), there is a unit vector
giving rise to the tracial states on each of the algebras and an adjoint-
preserving, anti-isomorphism of the algebra onto its commutant. The
abelian algebra generated by a masa and its image is a masa in B(H), in
this case. As we shall show, shortly, the algebra generated algebraically
by A and B is maximal abelian in the algebra generated algebraically
by M and M’. We shall also give an example showing that the von
Neumann algebra generated by .A and B need not be a masa in B(H)
(the von Neumann algebra generated by the factors M and M’). As
Ambrose and Singer discovered, when 4 and B generate a masa in B(#),
A serves as a particularly useful “orthonormal basis” for their matrix
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representation. (It could be effected in terms of “single-sheeted,” rather
than “multiple-sheeted” matrices.) They called such a masa in M simple
and knew that the masa ®(.Ag) of the measure-theoretic construction we
discussed is simple. Returning to that example, we note that if T in M is
positive, then T, . (= A(e)) is positive (in B(#)). If < Tu,u >= 0, and
A(e) = My, then f(s) > 0 for almost all s in S and [ fdu = 0. Hence
f is 0 almost everywhere on S, and A(e) = 0. The diagonal entries
Tpp of T are all 0 and T = 0 (since T is assumed positive). It follows
that S in M is 0 when Su = 0. We say that u is a separating vector
for M, in this case. This implies that M'u is dense in K, that is u is
generating for M’. Suppose < T'u,u >= 0 for some positive 7" in M’.
If T, , = UpA'(¢"'p)Up-1 and A’(e) = My, then T, , = A'(e) = My > 0
and h(s) > 0 for almost all s in S. Moreover, 0 =< T'u,u >= [ hdy,
and h is 0 almost everywhere. Thus 0 = A’(e) = UpA'(e)Up-1 =T}, , and
T' = 0. Hence u is separating for M’. It follows that u is generating for
M (= M"). When a trace vector u is generating for a II; factor M, u
is also a generating trace vector for M’.

The mapping g — A’(g) that assigns 0 to each g other than e, pro-
duces the operator 7" in M’ with matrix whose diagonal entry T,
is UpA'(e)U,-1 and all off-diagonal entries are 0. If T = ®(A(e)),
A(e) = My = A'(e), then Tu and T'u are the vector in K that as-
signs f to e and 0 to each other g in G. In particular, Tu = T'u. The
adjoint-preserving, anti-isomorphism of M onto M’ corresponding to u
maps T to T” and transforms ®(Ap) onto the algebra B of diagonal ma-
trices in M’. Thus B is a masa in M’'. We note, finally, that ®(Ap)
and B generate a masa in B(K). If S, with matrix (Sp4), commutes
with ®(Ap), then each Sp4 is a multiplication operator since Ao, the
algebra of multiplication operators on Lo(S, 1), is maximal abelian in
B(H). If, in addition, S commutes with all diagonal matrices in M/,
then S, Uy EU, = Sp,qUgEU; for each projection E in Ap. Replacing
E by U;EU,, we have that SpqE = S, U EU}, where g = gp~!. If
p # q, then g # e, and there is a non-zero subprojection Eg of F in
Ag such that EgU,EoU; = 0 (from the freeness of the action of G on
S [8, Lemma 8.6.5]). With Ep in place of E, SpEo = SpUgEoUy,
whence S, ;Ep = Sp,qu = Sp,qUgEoUgEg = 0. Each non-zero projec-
tion E in Ag has a non-zero subprojection Ey such that S, Ey = 0
when p # ¢q. By using Zorn’s lemma, we find a maximal orthogonal
family {E,} of projections in Agp such that S, E; = 0 for each a. If
I -3, Eq were not 0, there would be a non-zero subprojection Ep of
it in A such that Sp4Ey = 0, contradicting the maximality of {Fq}.
It follows that Spq = Spgd .o Fa = 2, SpeFa = 0 (with convergence
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in the strong-operator topology), when p # gq. Thus the algebra A’ of
operators in B(K) commuting with both ®(Ap) and B (hence, with the
von Neumann algebra A they generate) is a subalgebra of the abelian
algebra D of diagonal matrices with diagonal entries from Ap. As A
and A’ are abelian, A C A’ C A” = A. Thus A = A', A is maximal
abelian in B(K), and ®(.Ap) is a simple masa in M. For our example of
a masa that is not simple, we turn to a construction of factors of type
I1; introduced in [14]. We start with a countably infinite, discrete group
and construct an operator-algebra group algebra. Let G be a countable
(discrete) group and H be the separable Hilbert space l3(G), that is

{6:> 189 <00}, <@ ¥>=>_ (g)¥(g)),

g9eG g€eG

Let (Lgg)(g') be ¢(g7'¢') and (Rg¢)(g") be ¢(g'g) for ¢ in H. Then L,
and R, are unitary operators. Let L5 and Rg (the left and right-von
Neumann-group algebras of G) be the von Neumann algebras generated
by {Lg} and {Rg}, respectively.

Theorem. Lg and Rg are factors iff all conjugacy classes in G
but {e} are infinite. In this case, Lg and Rg are factors of type 11,
Lg =Ry, and Rg = L.

The free (non-abelian) group F, on n(> 1) generators and II, the
group of “finite” permutations of the integers, are examples of these
1.C.C groups.

Murray and von Neumann took a crucial step, proving [14] that there
are factors of type II; acting on separable Hilbert spaces that are not
isomorphic. We now have examples of uncountably many non-isomorphic
factors of type II; (as was to be expected after the Murray—Von Neumann
result that follows).

Theorem. Lz, is not isomorphic to L.

As this is written, we do not know if Lz, is isomorphic to Lz,, but
deep work of Voiculescu, laying the foundations of a non-commutative,
free probability theory, has given us such results as:

Theorem(Voiculescu). The II; factors Lx, and Ma(Lx,), the alge-
bra of 2 x 2 matrices with entries from Lr,, are isomorphic.

This same work of Voiculescu provides the technical basis for a bril-
liant proof [6] that the factors Lr,, among others, do not have simple
masas. (This came after the proof of a difficult intermediate result by
Voiculescu [20] that such factors do not possess a “Cartan subalgebra.”)
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Let z4(h) be 1 when h = g and 0 otherwise. Then {z, : g € G}
is an orthornormal basis for H and each x4 is a (unit) trace vector for
Lg and for Rg (that is, < ABzg,zy >=< BAzg,zy > when A, B €
Lg or A,B € Rg). In general, each element of L5 (R¢) is uniquely
representable as > gecMolg (deG ngRg), where the sum converges in
the strong-operator topology over the net of finite subsums. Defining
1(g) to be 1y, n € l2(G), but not each n in l2(G) appears in this way.
Since Lyz. = =4 = Ry-1z, the anti-isomorphism A — A’ of Lg onto Rg
(reflection about the trace vector z) maps 3 e NgLg onto 37 57y Ry,
where nj, = 1,1

To complete our construction of a masa that is not simple, we choose
Lr, for G. Let a and b be (free) generators of F». We show that the
algebra A generated by L, in Lz, is a masa in £(F3). In any case,
it consists of elements representable as ) nyLg, where 7y = 0 unless
g = a™ for some integer m. Suppose A = Y ngLg and L,A = AL,.
Then Y ngLag=) 1gLga. Thus ng = nyge-1 for each g in G. So ny =
Naga-1 = Ma2ga-2 = - - - = Tgngq-n fOT each integer n. If g ¢ {a™ : m € Z},
then {a"ga™ : n € Z} is an infinite subset of F,. Since n € [2(G),
n(g) = ng = 0, in this case. Thus AL, = LgA if and only if n, = 0
unless g = a™ for some integer m. It follows that A is a masa in Lgz,.
Of course, this argument and conclusion applies to the von Neumann
subalgebra generated by any one of the (free) generators of Lz, .

Theorem. The masa generated by L, in Lr, is not simple.

Proof. With A in B(lo(G)), if Azq = Y . acaZc, then a.q is the
entry in row ¢ and column d of the matrix for A relative to {z,}. Since
Loxe = Tqc, the matrix for L, has a 1 in row ac at column ¢ and 0 at all
other entries of that column, for each ¢ in Fo. Similarly, R,z = -1,
and the matrix for R, has a 1 in row ca™! at column ¢ and 0 at all
other entries of that column. Hence, with A as before, if L,A = AL,,
then acq = 0qcaq for all ¢,d in G. If R,A = AR,, then acq = Qcqda-
Conversely, these conditions on the matrix of A imply commutativity
with L, and R,.

Let A and B be the von Neumann subalgebras of £(F2) and R(F?)
generated by L, and R,, respectively. Since Loz, = x4 = Ry-1Z,, B is
the reflection of A about the trace vector z.. Let Zz’m:_k OnmLan Rom
be C. Such sums C form a weak-operator dense subalgebra of Ay,
the (abelian) von Neumann algebra generated by A and B. Moreover,
< Czp, zp2 >= 0 for each such sum C. Thus < T'zp,zy2 >= 0 for each
T in Ag. Let A be the linear operator that maps zonpem t0 Tynp24m, for
n,m = 0,%£1,+2,... and z. to 0 for each other ¢ in F3. Then A is the
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product of a “permutation unitary” (relative to the basis {z4}) and the
projection onto the subspace generated by {zgnpem : m,m € Z}. Thus
A € B(l2(F2)).

The matrix for A satisfies acq =1 if ¢ = a™b?a™ and d = a™ba™ for
some n and m in Z, otherwise, acqg = 0. If acq = 1, then ogenq = 1.
If acq = 0, then ogeqq = 0. Similarly, o g = Qcq,dq for all ¢ and d in
Fa. Thus AL, = LA, AR, = RoA, and A € Aj). But < Azp, zp2 >=
app = 1. Since < Txp, 2 >= 0 for all T in Ag, A ¢ Ap. It follows
that Ap is not maximal abelian in B(l2(G)) and A is not a simple masa
inLr,. q.e.d.

This same argument applies to the abelian von Neumann subalgebra
generated by L, for each (free) generator of Fy; each is a masa in Lz,
but none is simple. To what extent does the finite-dimensional situa-
tion (where a masa in a factor and its reflection about a trace vector
generate a masa in the algebra of all linear transformations on the finite-
dimensional space) carry over to infinite dimensions? The theorem that
follows shows that it does transfer in the algebraic sense. It is proved
in fairly general terms. For the case we have been discussing, R and S
should be taken to be the same factor of type II;, and R’ and T to be
its commutant.

Theorem. Let R be a von Neumann algebra, with center Z, acting
on a Hilbert space H, S and T be von Neumann subalgebras, containing
Z, of R and R', respectively, and A and B be masas in S and T, re-
spectively. Then the algebra C generated by A and B is mazimal abelian
in the algebra D generated by S and T .

Proof. Let D be an element of D commuting with C. Then D =
S$171 + --- + SpT,, for some Sq,...,S5, in S and some Ti,...,T; in 7.
Let S be the n x n matrix whose first row is {S1,...,Sn} and all of whose
other entries are 0. Let # be the n-fold direct sum of H with itself and a
be the norm of S acting on 7. We wish to show that D € C and, thence,
that C is maximal abelian in D. If a = 0, then D =0, and D € C. We
may assume that a > 0 and that ||S|| = 1, after multiplying each S, by
a! and T, by a.

Let {Ai,...,Apn} be a finite subset of A. Since A C C and D com-
mutes with C, we have that

0=A41D—- DA, = (A151 — SlAl)Tl + -4 (AISn - SnAl)Tn

(Note, too, for this that each A € A C S C R, and each T, € R'.)
From (7, Theorem 5.5.4], there are operators Cjx in Z (j,k € {1,...,n})
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such that the n x n matrix C, acting on 7, with Cjk as j,k entry, is an
orthogonal projection and
n
D (A1S; - S, A1)Ci =0 (k€ {L,...,n}),

71=1
Y CiuTu=T, (je{l,...,n}).
k=1

Hence

Ay (Z sjcjk) = (i SjCjk)Al (k=1,...,n)
J=1

=1

Thus ZFl SJT = ) p=1 Slek, where Skl = E?:l S;Cj for k in
{1,...,n}, and each Si; € S (since Z C S).

The matrix S; with first row {S11,...,Sn1} and all other entries 0
is SC. Thus ||S|| < 1. With A, in place of A; and Sy, in place of
S, proceeding as before, we find operators C’ ik in Z such that the nXxXn

matrix with j, k entry C’, jk 1s an orthogonal projection on H, Z C

(= Sk2) commutes with A2 and lies in S, and the n X n matrix 82 w1th
first row {S12, ..., Snh2} and all other entries 0 has norm not exceeding 1.
In addition, D = 3 }_, SkoTk and each Si2 commutes with A, as well
as Ag, since each Sj1 and each C', % commute with A4;.

Continuing in this way, we construct operators {Sim,...,Snm} in S
such that each Sj, commutes with all of Ay,...,Am, D = > ¢ _1 SkmTk,
and the n x n matrix S,, with {Sim .., Snm} as first row and all other
entries 0 has norm 1 or less. In general, if ‘F’ denotes the finite subset
{A1,...,An} of A, we write ‘S;x’ in place of ‘S;,’ and ‘Sz’ in place
of ‘Sp.’ Since ||Sz|| < 1 for each finite subset F of A, each S;r lies in
(S)1, the closed unit ball of S.

The net {Sjr}reca, indexed by the family A of finite subsets of
A ordered by inclusion has a weak-operator convergent cofinal subnet
since (S); is weak-operator compact. Starting with a convergent subnet
{S17(1)} of {S17}, passing to a convergent cofinal subnet {Syr(s)} of
{S2r)} and, successively, to a convergent, cofinal subnet {Smrm)}, we
have that each cofinal subnet {S;z(m)} of {S)x} converges, in the weak-
operator toplogy, to some A; in §. We shall show that each A; € A and
that D = A\Ty + --- + A, Ty.
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If A € A, the terms of {S, 7(,)} such that A € F(m) form a cofinal
subnet of it, and each of these terms commutes with A, by construction
of SjF(m) (Wwith A in F(m)). Hence the weak-operator limit A} of this
cofinal subnet commutes with A. Thus each A; commutes with A. Since
A; € § and A is maximal abelian in S, each A; € A

For each finite subset F of A, we have, by construction, that
Z_T;:l Sj]:Tj = D. Thus

Z < SjrTjz,y >=< Dz,y > (z,y € H).
j=1

Passing to weak-operator limits over the appropriate subnet, we conclude

that
<(Z A;T]> m,y> =< Dz,y > (z,y € H).
7=1

Thus D = A\Th +--- + AL T,.

Applying what we have just proved, with S and 7 interchanged, A
and B interchanged, and A;- in place of Sj, we see that there are operators
Bi,...,B} in B with the property that D = A1B| +---+ Al B, € C.
Hence C is maximal abelian in D. q.e.d.

If we limit the scope of the preceding theorem by assuming that
‘H is separable, then A is generated (as a von Neumann algebra) by a
single self-adjoint operator A. With A in place of A;, we conclude that
> 7=15iCjk € A, for each k in {1,...,n}. Letting A} be 37, S;Cj,
we arrive at the equality > 7_; A} Tk = D without the need to introduce
nets.

Is C=, the norm closure of C, (the C*-algebra generated by .A and B)
maximal abelian in D=, the C*-algebra generated by S and 77

While almost nothing of the Ambrose—Singer project for representing
a II; factor as a matrix algebra appeared in print, it still had an impor-
tant influence on the development of the theory of operator algebras. In
one way or another, word of it reached the ears of capable people over the
years. Among other routes, I included the question of whether all factors
of type II; possess a simple masa in my Baton Rouge list of problems
(from the 1967 conference at LSU in honor of Jacques Dixmier).

A paper [18] of Singer’s, that appeared in 1955, makes reference
to the Ambrose-Singer project in a footnote on p. 121. The talk that
Singer gave at the 1953 conference (mentioned earlier in connection with
his derivation result) was based on the results in [18]. In that paper,
Singer analyzes special automorphisms of a factor M of type II; arising
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from a countable group G acting as measure-preserving transformations
of a measure space (S, p) (1(S) = 1) that we discussed before. We use
the notation of that discussion. Singer studies the group Aut;(M) of
automorphisms a of M that map the masa ®(Ap) onto itself. Each such
automorphism « gives rise to a measure-preserving transformation o’ of
S onto itself. He characterizes the elements of Autl(M) in terms of the
action of &’ on S.

Theorem. A measure-preserving transformation o' of S is induced

by an automorphism « in Auti(M) if and only if there are measurable
sets X7 in S (g,h € G) such that

() w(XINX])=0 when h #k;
(1) p(UnecXj) =1;
(43i) (/7'h71a')(z) = g~ (z) for almost every z in o/ (X}).

Ambrose [1] developed a framework for studying groups of measure-
preserving transformations, his H-systems, that is roughly equivalent to
the Murray-von Neumann, group-measure-space construction. In [18],
Singer passes freely between both formulations, using the one he found
better suited to a particular situation. This probably led to the arti-
cle [18] not receiving as much attention as it deserved. In section 6 of
[18], the last section, consisting of two brief paragraphs, Singer notes
that the Murray-von Neumann construction (in our terminology) could
be effected without assuming ergodicity of G on S. The resulting von
Neumann algebra would not, then, be a factor. He remarks, that the
resulting operator algebra can be studied in terms of factors through the
then-recently-published “direct integral theory” [17]. He notes that that
is not his main interest. He was concerned, primarily, with the factor
case.

In the second paragraph of that section, he notes that the Murray-
von Neumann construction really occurs algebraically in terms of the
multiplication algebra Agp and G acting by automorphisms of 4y. He
suggests that this construction can be carried out with another algebra
in place of Ay, and notes that it would probably lead to different and
interesting examples of factors. Of course, Singer is anticipating the
“crossed product” construction in this comment (compare [8, Chapter
13]). It has, indeed, become one of the basic constructions of the subject
of operator algebras, leading to new and vital aspects of the theory.

Singer and I have several joint articles. The question of what an or-
thonormal basis is has been a dominant theme in most of that research.
At first glance, every trained mathematician will think that the con-
struction and properties of such bases form one of the less strenuous and
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most completely understood chapters in twentieth century mathematics!
Is there really anything left to say? Certainly, the question of the ex-
istence of a simple masa in a factor of type 1I;, needed as a “preferred
basis” for the Ambrose-Singer project of assigning a “matrix” to each of
the elements of that factor, is one aspect of that question. It led us on
a merry chase for nearly fifty years!

A good way to start thinking of the meaning of orthonormal bases is
to consider the uses to which we put these bases. In one instance, if we
are given an especially interesting basis for the topic we are studying, we
may want to expand all or some of the elements of H in terms of that
basis. We recognize the La-theory of Fourier series as one aspect of that
use of orthonormal bases.

We can turn that process around — instead of having an interesting
basis given to us, we may want to find a particularly appropriate basis
for some purpose, say, one that diagonalizes a self-adjoint operator on H
or a commuting family of such operators. Let’s phrase this example in
a more physical way. Given a compatible family of observables, we want
to find a complete set of simultaneous eigenstates for them. Dirac speaks
of finding a “representation” and even presents an agenda for this. The
following is quoted from pp. 74-75 of the Third Edition of his famous
“Quantum Mechanics.” Oxford University Press, London 1947

“To introduce a representation in practice

(i) We look for observables which we would like to have diagonal
either because we are interested in their probabilities or for reasons of
mathematical simplicity;

(i) We must see that they all commute — a necessary condition
since diagonal matrices always commute;

(iii) We then see that they form a complete commuting set, and if
not we add some more commuting observables to them to make them
into a complete commuting set;

(iv) We set up an orthogonal representation with this complete
commuting set diagonal.”

The representation is then completely determined except for
arbitrary phase factors. For most purposes the arbitrary phase factors
are unimportant and trivial, so that we may count the representation as
being completely determined by the observables that are diagonal ... ”

The emphasis, above, is mine. What would that say if it were
put down in precise mathematical form? For one thing, Dirac talks
about finding a basis that diagonalizes a self-adjoint operator, and while
that is always possible when H is finite dimensional, there are perfectly
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respectable self-adjoint operators on infinite-dimensional Hilbert space
that do not have a single eigenvector, in the strict sense. Still, we do
have a “spectral resolution” of such operators. Again, Dirac’s way of
going at that problem is inspiring. On pp. 57-58, he writes:

We have not yet considered the lengths of the basic vectors.
With an orthogonal representation, the natural thing to do is
to normalize the basic vectors, rather than leave their lengths
arbitrary, and so introduce a further stage of simplification
into the representation. However, it is possible to normalize
them only if the parameters which label them all take on dis-
crete values. If any of these parameters are continuous vari-
ables that can take on all values in a range, the basic vectors
are eigenvectors of some observable belonging to eigenvalues
in a range and are of infinite length...”

Dirac’s “ranges” are “intervals” and his “continuous variables” are
points in the interval. At this stage, Dirac introduces his é-functions and
develops their formalism. But without eigenstates that are vectors in H,
there are problems with what we mean by a “diagonalizing orthonor-
mal basis” — especially, if we are “representing” families of compatible
observables.

Let’s see what this means in the case of a classical basis {e1, ez,...}. If
Ag is the family of all bounded operators on H that are diagonal relative
to that basis, then A4 is abelian, as Dirac notes, and it is “complete” in
his sense — that is “maximal abelian” in B(#). We have noted that Aq
is a “masa” in B(H). Of course, there is no difficulty, here, in identifying
the “simultaneous eigenstates” for our “complete commuting” family of
observables; they are the vectors e, of our basis. But what are they when
our observables have “ranges” in their spectra. Dirac has his é-functions,
his vectors of “infinite length.” This is a bit cumbersome, from the rig-
orous mathematical point of view. What we want to do is to replace the
vectors e, by some acceptable mathematical construct that is effectively
the same as the vector, when there is one, and gives us something precise
and usable when there is only a é-function. Something that works very
well is the vector state w,, corresponding to e, (we,(T) =< Ten,e, >
for each T in B(H)). With this notation, w,, is “the expectation func-
tional” of the state, in physical terminology, corresponding to the vector
being replaced. The value we, (T'), the expectation value of T" in the
state corresponding to e,, is what is measured in the laboratory. If the
observable corresponding to T' is measured many times with the physi-
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cal system in the state corresponding to e, and those measurements are
averaged, the resulting number is (close to) we, (T).

Of course, we, is a state of B(#). We are not there as yet; the
states of B(#) are not quite the “replacement” for the (unit) vectors of
‘H. The states w, of B(H) corresponding to unit vectors z in H have
another crucial property; they are “pure.” A state w is a pure state when
w= %(wl +ws) only if w = wq = wq. In physical language, w is pure when
it is not a proper mixture of other states. The pure states of B(#) are the
“generalized unit vectors in H,” the smoothly functioning replacement
for the §-function in this quantum-measurement context.

We can certainly speak of states of operator algebras other than
B(H) — and pure states of those algebras — states that are not proper
mixtures of other states of the algebra. As luck would have it, the pure
states of Ay are precisely the (non-zero) multiplicative linear functionals
on Ay. More generally, the pure states of each abelian operator algebra
are the (non-zero) multiplicative functionals on the algebra.

For each unit vector z in H, w; is a pure state of B(#). But there are
others — many! If there weren’t, we wouldn’t have succeeded at includ-
ing all the §-functions, the “eigenstates” of observables with “ranges” in
their spectra. Even in the case of the classical basis {e,}, there are “si-
multaneous eigenstates” of A4 other than the states we,, — again, many!
When we try to deal with the non-vector eigenstates of a system in a
rigorous mathematical fashion, we open a large Pandora’s Box. But it’s
one that we must open, as we shall soon note.

When we speak of an “orthonormal basis,” or as Dirac does, “a rep-
resentation,” shall we talk about all the pure states of the masa A or
just those that correspond to unit vectors in H? As remarked, Aq has
many other pure states. The vector states are the only ones that are
“normal” (that is, strong-operator continuous on the unit ball of B(#)).
If we want to deal with the system (masa) A. generated by an observable
whose spectrum is the “range” [0, 1], for example, the position observable
of a particle oscillating back and forth on the unit interval, there are no
normal eigenstates, and we want to talk about eigenstates of that masa.
We can say that the “generalized orthonormal basis” “representing” a
masa A is the set of all simultaneous eigenstates of A, and wind up with
a “few” more eigenstates than we need in the case of A4. If we insist on
normal eigenstates in the case of A., we wind up with nothing — there
are no normal pure states. In the end, the best approach is to say that
A, itself, is the (generalized) orthonormal basis.

Definition. A generalized orthonormal basis for H is a masa on

B(H).
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We do know all these generalized bases.

Theorem. Each masa on a separable Hilbert space is unitarily equiv-
alent to one of Aq, where the underlying Hilbert space can have any finite
dimension or Rg, to Ac, or to Ag @ Ac.

There are, however, a number of basic things about generalized or-
thonormal bases that we do not know. Of course, each unit vector z in H
is contained in an orthonormal basis — so, w; is multiplicative on some
masa. Is each generalized unit vector “contained” in a masa? That is,
if w is a pure state of B(#), is it multiplicative on some masa .A? That
question has been with us for more than fifty years. There’s still no an-
swer. In [4] it is proved that, for a countably generated C*-algebra, each
pure state is multiplicative (pure) on some masa. In [3], it is proved that
the restriction of that pure state to the masa has unique state extension.

What becomes of Dirac’s statement in this framework: “so that we
may count the representation as being completely determined by the
observables that are diagonal ...”?7 First, we must interpret it in our
rigorous language. If two generalized unit vectors (pure states of B(H))
w1 and wy give rise to the same eigenstate (pure state) of a masa A, are
w1 and wg equal? Put in another way, can a pure state (multiplicative
linear functional) of A have distinct pure state extensions to B(#)? This
is the problem of “uniqueness of pure state extension” (from a masa to
B(H)).

In [9], Singer and I showed that answer is “No!” in general in the
case of pure states of A.. We proved something stronger. Using a tech-
nique of von Neumann [16], we defined and produced a “diagonalization
process” for B(#H) relative to a masa A of B(H). This “process” is a
module mapping ® of B(#) onto A, where B(#) is a two-sided module
over A (under left and right multiplication by elements of A) that takes
positive operators to positive operators and I to I. (It is a “conditional
expectation” of B(H) onto A, in present day terminology.) If p is a state
of A, then po ® is a state of B(H). We proved that there are distinct
diagonalization processes for A.. If ®; and ®; are two such and T is an
operator in B(#) such that ®,(T") # ®2(T) then there is a pure state p
of A such that p(®1(T)) # p(®2(T)) (the pure states of A “separate”
the elements of A). Let p; be po ®; and ps be po 3. With A in A,
®1(A) = A2 (I) = A = ®2(A). Thus p1(A) = p(A) = p2(A4), and p1, p2
are distinct state extensions of p from A to B(#). The set of all exten-
sions of p from A to B(H) is convex and compact in a special “weak”
topology, whence, it is the closed convex hull of its extreme points (from
the Krein-Milman theorem). Each of these extreme points extends p and

367
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is a pure state of B(#), since p is a pure state of 4. Since the set of
state extensions of p from A to B(*) does not consist of a single element,
there are distinct pure state extensions of p from A to B(H).

We showed that each we, has a unique (pure) state extension from A4
to B(H). We raised the question of whether or not the other pure states
of A4 have unique extension. The techniques we developed in proving
the non-uniqueness of conditional expectations from B(#) onto .A make
it possible to reduce this problem to inequalities with matrices. Some of
these matrix problems have arisen in other contexts. While much work
has been done on this set of (equivalent) problems, they remain open.

The discussion of orthonormal bases, to this point, has focussed on
their “general meaning” and the nature of the “vectors” in those bases.
There is another aspect of an orthonormal basis, inherent in the way we
usually use such bases, that is less recognized. That aspect is an ordering
of the basis. Typically, we are dealing with a separable Hilbert space H
and we choose our orthonormal basis as ey, eg, . ... In terms of this basis,
it is easy to describe the “one-way-shift” operator V' that maps each e,
onto e, 1. The operator V is a non-unitary isometry of # into itself with
spectrum the closed unit disk in C. If we want to describe the “two-way-
shift,” a unitary operator U on H with spectrum all complex numbers
of modulus 1, it’s convenient to choose our orthonormal basis labeled by
all the integers {en }nez. With this basis, U is the unitary operator that
maps e, to e,+1. Of course, we are using bases labeled by a linearly
ordered set: the ordering type of the positive integers, with a smallest
element but no largest element, in the first case, and the ordering type
of all integers with no smallest element and no largest element, in the
second case. There are other ordered sets that will serve as labels for an
orthonormal basis, for example, the set Q) of rationals in the interval
[0,1]. The basis so labeled can be used to confound “the unsuspecting.”
Recalling an earlier quote of Dirac,“However, it is possible to normalize
them only if the parameters which label them all take on discrete values.
If any of these parameters are continuous variables that can take on all
values in a range, the basic vectors are eigenvectors of some observable
belonging to eigenvalues in a range and are of infinite length...,” we can
form the bounded self-adjoint operator A that assigns re, to e,, for each
basis element e, of an orthonormal basis labeled by Q, for a separable
Hilbert space H. Then A is diagonalized by the basis {e,}, each e, is an
eigenvector for A (“normalized” to have length 1) corresponding to the
eigenvalue 7, and ||A]| = 1. Since the spectrum of A is a closed subset
of [0,1] containing @Q;, that spectrum is [0,1]. Each point of @Q; lies in
the “range” [0,1] and is an eigenvalue corresponding to an eigenvector
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of finite length 1.

Ordered bases serve many purposes; it is well worth understanding
what an ordered basis is. Singer and I studied that question in a pa-
per [10] that appeared in 1960. Work on that paper began while I was
visiting MIT during the academic year 1956-57. My permanent job was
at Columbia University, at that time. On occasion, I shared Is Singer’s
office with him at MIT. A large part of our joint work was done sit-
ting and talking together, in the office, at home, and while driving; we
traded ideas, thought about them, and then commented to one another
about them. Of course, a good deal of work was done privately — trying
to make computations and lemmas “go.” At first, the guiding question
was what it meant to put an operator on a Hilbert space in “triangular
form” — that is, to view it as part of the algebra of, say, upper trian-
gular matrices. So, we tried to isolate what it should mean to say that
an algebra of bounded operators on a Hilbert space is the algebra of all
upper triangular matrices. Of course, we thought first of the algebra
of upper triangular matrices of finite order. We see this algebra as up-
per triangular matrices only after we have chosen an appropriate basis
and put that basis in an appropriate order. We knew that we didn’t
want to be too literal in our interpretation of “basis” when dealing with
infinite-dimensional Hilbert space #, and we knew what a generalized
orthonormal basis should be in that case, namely, a masa on . From
the algebra of finite matrices of a given order, a good working definition
seemed to be: T is the algebra of all triangular matrices when 7N 7T™* is
a given masa A and 7 is maximal with respect to that property. So, we
tried that in infinite dimensions. Zorn’s lemma gave us maximal algebras
T for a given A. We called these algebras mazimal triangular and A the
diagonal of the algebras. The important question at the earliest stage
of our work was whether there is a family of projections in A, totally
ordered, generating A as a von Neumann algebra, each member of the
family invariant under the operators of 7. We called such a projection
a hull and the von Neumann algebra C generated by these projections,
the hulls, the core of 7. If S is a set of vectors in H, the closure of the
linear span of {T'z: z € S, T € T} is invariant under each operator in
T, in particular, under the operators in .A. Thus the projection E with
this closure as range commutes with A. Since A is maximal abelian,
E € A. Since the range of F is invariant under each operator in 7T,
E is a hull in 7. With F a projection in 7, we denote by ‘h(F')’ the
projection constructed in this way when the range of F is taken for S.
We call h(F') the hull of F. There was no difficulty in showing that C is
contained in \A. With some effort, we showed that the set of hulls of T
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is totally ordered (by the usual ordering on self-adjoint operators). At
that point, we knew that we had a theory before us, and there was no
turning back.

Is it the case that the core is always A7 That was the next question
that we tackled. In a short while, we knew that the algebra generated
by A and a unitary operator U that induces an ergodic automorphism
of A (no projection E in A such that UEU* = E other than 0 and I)
is triangular; Zorn’s lemma then gives us maximal triangular algebras 7
containing it. Of course, the core of such a 7 is just the scalars. We
called those triangular algebras (with core the scalars) irreducible. A spe-
cific example of an irreducible maximal triangular algebra is obtained by
choosing the multiplication algebra of the unit circle in C with Lebesgue
measure for 4 and the unitary operator induced by a rotation of that
circle through an irrational multiple of 7 radians for U. The maximal
triangular algebras whose core is the diagonal we called hyperreducible.
We proved several general results about the hyperreducible maximal tri-
angular algebras and then classified them completely algebraically and
with respect to their action on the underlying Hilbert space. We did
not get much further than establishing the existence of the irreducible
maximal triangular algebras. The main problem was that the final pas-
sage to the full algebra through the use of Zorn’s lemma did not give
us much of a handle on the elements in the final algebra. Although we
had found examples of such algebras, we had not constructed examples
in which we had any control over the general element in the algebra. In
the case of a von Neumann algebra, our examples were usually arrived at
as the strong-operator closures of a self-adjoint algebra whose operators
could be easily described — we could approach the general operator in
the algebra with nets or sequences of the operators in that self-adjoint
algebra. That gave us a handle, though not necessarily an easy path to
a proof. There certainly are (uncountably many) non-isomorphic irre-
ducible maximal triangular algebras but that hasn’t been proved as this
is written.

Theorem. If {E,} is a totally-ordered family of projections that
generates a mazximal abelian algebra A, then T, the set of all bounded
operators that leave each E, invariant, is mazimal triangular with core
and diagonal A. Each hyperreducible algebra arises in this way.

Theorem. If T is a mazimal triangular algebra with diagonal A
generated by its family {E,} of minimal projections, then T is hyper-
reducible. If we order {E,} by the relation 3, where E, 3 Ey precisely

when h(E,) < h(Ey) then 3 is a total ordering. Two mazimal triangular
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algebras with totally-atomic diagonals are unitarily equivalent if and only
if their sets of minimal projections are order isomorphic. Corresponding
to each total-ordering type there is a mazimal triangular algebra with a
totally-atomic diagonal whose set of minimal projections has this order

type.

Theorem. If T is hyperreducible, its diagonal A has no minimal
projections, and H is separable, then T is unitarily equivalent to the al-
gebra of all bounded operators on L2([0,1], 1), where p is Lebesgue mea-
sure, leaving each F) invariant, where F is the multiplication operator
corresponding to the characteristic function of [0, A].

Singer and I felt that our maximal triangular algebras played roughly
the role for the theory of non-self-adjoint operator algebras that von
Neumann algebras played in the self-adjoint theory. In any event, the
theory of non-self-adjoint operator algebras was initiated by [10]. It has
developed into a flourishing subject with a large number of very talented
research workers. Some of the original questions that we asked are still
open as this is written.

As we began to develop an intuition for the subject, we felt that the
irreducible case corresponds to factors and the hyperreducible case corre-
sponds to maximal abelian von Neumann algebras. Of course, we under-
stood that a masa is a generalized orthonormal basis — and we realized
that we should add “unordered orthonormal basis” to that understand-
ing. It was at a fairly early stage, certainly during that academic year,
1956-1957, that we knew that the hypperreducible maximal triangular
algebra was precisely what should be meant by a generalized ordered
basis. The ordering of the hulls corresponds to the ordering of the ba-
sis and the maximal abelian algebra that serves as the diagonal is the
unordered basis. We called these hyperreducible algebras (generalized)
ordered bases.

After that initial development, the main thrust of our paper was
classifying the ordered bases — the hyperreducible case — roughly, the
equivalent of handling the abelian case in the self-adjoint theory. We
were able to do that completely. Each ordered basis corresponds to a
closed subset of [0, 1] containing 0 and 1 up to what we called Lebesgue
order isomorphism — that is a homeomorphism of [0, 1] onto itself pre-
serving orientation and Lebesgue null sets. Given such an equivalence
class of closed sets, there is a canonically constructed ordered basis that
corresponds to it. Two ordered bases are unitarily equivalent if and only
if they correspond to the same equivalence class of closed sets.

The most difficult technical lemma we had to prove in connection
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with this classification is the following. If X and %) are two dense de-
numerable subsets of [0, 1] containing 0 and 1 and m, M are two num-
bers such that 0 < m < M < 1, then there is a homeomorphism f of
[0, 1] onto itself such that f(0) = 0, f(1) = 1, f maps X onto %), and
m(z —y) < f(z) — f(y) < M(z —y) when y < z and z,y are in [0, 1].

The work leading to [9], described before, grew out of the project
with triangular operator algebras. A year after that MIT work, Singer
was visiting me at Columbia. We were sitting together trading ideas
on some of the problems we still had with triangular operator algebras.
Singer suggested something. I thought about it and said, “To carry that
out, we would have to settle the question of uniqueness of pure state
extension from maximal abelian algebras.” That was a problem that Is
and I had discussed on occasion over the nine preceding years. At that
point, Singer said, “OK, let’s settle it!” Two to three weeks later we had
settled it. You may ask, with some justice, “And how about the ones
that got away?” There were plenty of those — but that’s another story!

Toward the end of my year at MIT, Singer and I were sitting in
his office — at about 1 AM — each reading material that the other had
written on our project. We were at desks against opposite walls with our
backs to one another. Suddenly, Singer began to laugh uncontrollably. I
turned around, smiling, and began to laugh, as well — it was catching,
and we were both slightly giddy after a long day of work. Singer asked,
“Dick, are you trying to become the William Faulkner of mathematics?”
He had just been reading some particularly complex prose I had written
— the syntax was correct, but required an oscilloscope for its analysis.
Well, the years have gone by; I can’t say anything about my becoming
the William Faulkner of mathematics, but I know who has become the
Pavarotti—Sinatra! Those two gentlemen have a duet on the popular hit,
“My Way.” Singer could teach them each something on that topic, and
he’d have his usual standing-room-only audience while doing it.
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