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THE ATIYAH-BOTT-SINGER FIXED POINT
THEOREM AND NUMBER THEORY

F. HIRZEBRUCH

1. Introductory remarks

It was a great idea of Shing-Tung Yau to organize a meeting spon-
sored by the Journal of Differential Geometry and dedicated to the
“Gang of Four,” Atiyah, Bott, Singer, and myself. The four members
of the Gang were not supposed to lecture at the meeting, they were to
give dinner speeches. Perhaps the ability to lecture decreases with age,
whereas the willingness to give dinner speeches increases. But neverthe-
less the out-of-town members of the Gang, Atiyah and I, lectured just
before the opening of the meeting. I talked at MIT in the joint col-
loquium on May 13, 1999. My lecture had the above title and was of
course dedicated to three members of the Gang. The lecture was of a
rather elementary character (if one knows the ABS-theorem), but I hope
ABS enjoyed it. In the dinner speech I pointed out that ABHS make up
the following graph of type Dy

H

S

where two vertices are connected by an edge if and only if they have a
joint paper. But I also said that BHS have many relations. There was
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much cooperation not represented by joint papers to which I look back
with great pleasure and gratitude. All this began in the fifties. All four
of us are good friends since more than four decades and influenced each
other mathematically through all these years.

My paper is also dedicated to Michael Atiyah on the occasion of his
70th birthday. I owe him very much mathematically (we have nine joint
papers) and in many other ways. It is impossible to thank him here in a
proper way. I would have to write many pages. But let me mention two

facts:

1. The thirty Arbeitstagungen in Bonn under my direction (1957 -
1991) were the backbone of the mathematical activity I tried to
build up and to keep in Bonn (Sonderforschungsbereich Theoreti-
sche Mathematik 1969 — 1985, Max-Planck-Institut fiir Mathe-
matik since 1982.) At these Arbeitstagungen Michael lectured 32
times. Very often it was the opening lecture. Everybody can see
how much Bonn owes him. On July 16, 1962, Michael gave the
Arbeitstagung lecture “Harmonic Spinors and Elliptic Operators”.
He reported on joint work with Iz Singer and on their conjecture
that the E—genus equals the index of the Dirac Operator on Spin-
manifolds. Here the story of the index and fixed point theorems
begins. This is the origin of the line which led to the “Gang of
Four”-meeting now 37 years later.

2. Michael worked for the foundation of the European Mathematical
Society (EMS) through the European Mathematical Council for
many years. He proposed me as the first president of the EMS
when the society was finally founded in 1990.

On July 3, 1999, I received an honorary degree of the University
of Konstanz. I have many connections with the mathematicians there.
Konstanz was founded in 1966. It is now in a process of reform. For
some time it looked as if mathematics would be reformed down to a
pure service institution. In my acceptance speech of the degree I tried
to make it clear that a University without mathematics hardly deserves
the name University. In the Konstanz mathematical colloquium I gave a
lecture in the same spirit as my MIT lecture. The manuscript was trans-
lated into English by Dr. Bruce Hunt whom I thank very much. This is
the present paper. The ABS-theorem and its relation to number theory
show the strength and beauty of mathematics and the unity of mathe-
matics independently of applications and of service to other fields. But
it has applications. The role of Atiyah, Bott and Singer in Mathematical
Physics shows what I mean.
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I thank the University of Konstanz for preparing the German TEX
file and International Press for producing the English version.

Last but not least many thanks again to Shing-Tung Yau for his great
energy and enthusiasm in organizing the “Gang of Four” meeting.

2. Lecture

We will first apply the Atiyah-Bott-Singer fixed point theorem ([1],
page 473) to a compact connected Riemann surface X.

Let a be an automorphism of finite order of X, not equal to the
identity. Then a has finitely many fixed points x and at each a rotation
angle a; with 0 < a; < 2m. The automorphism a induces by lifting an
action on the finite-dimensional C-vector space H'%(X) of holomorphic
one-forms on X. According to ABS, one has for the trace of a, denoted
x(a) (and which will also be referred to as the character), the formula

—_— i aw

1 _ - oz
M x(@) - Xx(@) =i Y cot 5

zeX

ar=x
(In ABS one has a —¢ on the right-hand side instead of ¢; we are us-
ing slightly different notations). According to the Lefschetz fixed point
theorem of topology, we have

(2) x(a) + x(a) = 2 — the number of fixed points,

so that we can calculate x(a) from these two equations.

Example. Consider the lattice Zi + Z in C (with coordinate z)
and the automorphism a of order 4 which is given by multiplication by
1. There are two fixed points which are represented by 0 and % + %, both
of which have rotation angle 7. Hence

— . U .
x(a) — x(a) = 2icot 1= 21

x(a) + x(a)
x(a)

which is the same as saying a*dz = idz.

For the following considerations, which will lead to a theorem of
HECKE (1928), compare [7] and the literature given there (E. HECKE,
Mathematische Werke, page 549).

We now make the following basic assumption, without worrying at
the moment whether it can be satisfied:

0

¢
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(¥*)  Let p be an odd prime number and @ an automorphism of X
of order p with p—;—l fixed points, with rotation angles 277%,
1 < k < p —1, where k a quadratic residue modulo p, i.e.,

(k> = l.
P
The assumption (*) implies

(%*)
x(a) — x(a) =i Z cotw%
()=
x(@) +x(@) = -2,

We first consider the case p = 1 mod 4. then we have x(a)—x(a) =0,
since —1 is a quadratic residue, and

(3) x(a) = ——2———5, (if (*) holds and p = 1 mod 4).

For p = 3 we would have

— T 1

x(a) — x(a) =icot 3= 7

This is impossible, as x(a) is an algebraic integer. We now assume p = 3
mod 4 and p > 3. Then by Gaufl’ theorem, we have

(4) Z cot w% = VPh(-p),

where h(—p) is the class number of the field Q(/—p) of discriminant —p.
Using the formula

(5) wcotrzzz !

zZ—MN
nez

with the summation which collects the summands for n and —n, one can
show that (4) is equivalent to the following formula

(© > (5) 7= Zhn:

k>0 p

For more details compare the beautiful book [8].
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From (*x) and (4), we have the formula

7 x@ =3 (<257 +ivBh(-n).

which also holds for p = 1 mod 4, if one sets h(—p) = 0, since —p is not
a discriminant.

Can the fundamental assumption (*) be realized? The answer is yes
for p > 3.

Consider the modular group PSL2(Z), which we will denote by T".
This group acts on the upper half-plane H by means of fractional linear

transformations
az+b

cz+d
The principal congruence subgroup I'(p) consists of those integral
unimodular matrices (¢ Z), which modulo p are equal to the identity ma-
trix. The group I'(p) acts freely on H.We obtain a non-compact Riemann
surface I'(p) \H, which covers I'\H finite-to-one. The Galois group of the
covering is

PSLZ(FP) =T'/T(p),

of order N := 1p(p? —1). The Riemann surface I'\H can be identified
with the complex plane C. There are two special points, as I' does not
act freely on H; these are representatives of the fixed points of orders 2
and 3, respectively, which one takes to be ¢ and p := %(—1 +14v/3). The
covering

I'(p)\H — I'\H

is branched at these two special points and has there % and % inverse
images, respectively. We obtain for the Euler-Poincaré characteristic
N N N 1 .,
e(CEN\H) = —N + 5 + = = — = = —==p(p — 1).

The Riemann surface I'\H can be compactified to the Riemannian sphere
S? by adding one cusp. The surface I'(P)\H can be compactified in the
same manner by adding 1—;— cusps, yielding a compact Riemann surface
X (p), on which PSL(F,) acts with quotient S2. The isotropy group of
a cusp is cyclic of order p. We denote by ico the standard cusp whose
stabilizer is generated by the transformation a : z — z + 1. The action
of PSLy(F,) on X (p) has three exceptional orbits of orders N/2, N/3
and N/p. The Euler-Poincaré characteristic of X (p) is

e(X(p) = ~35p(p? — 1) + 5~ 1).
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The genus g is equal to the dimension of H%(X (p)) and satisfies
2 —2g = e(X(p))-

One has g =0,3,26,... for p=5,7,11,....

The element @ mentioned above of order p generates a cyclic group
U, which has P—;—l fixed points acting on the set of %(p2 — 1) cusps, and
P—;—l orbits of p elements each (cyclic permutations). It has no further
fixed points for p > 3. The cusps correspond to the cosets PSLy(Fy,)/U,
the fixed points to the cosets N(U)/U, where N(U) is the normalizer
of U, which consists of all maps z — az + b, where a is a quadratic
residue modulo p. The quotient PSLy(F,)/N(U) is the projective line
F, U oo, on which @ : z — 2z + 1 acts with oo as sole fixed point and
cyclicly permutes F,. Each point of the projective line represents E;—l
cusps. Consider the case p = 5. Then, as is well known, PSL(F5) is the
automorphism group As of an icosahedron. The 12 corners of the latter
correspond to the 12 cusps of I'(5).

For the element @ : z — 2z + 1 the fundamental assumption (x) is
satisfied. It is easy to check that indeed the rotation angles at the E—;—l
fixed points are equal to 2#%, with quadratic residues £ modulo p.

Now we want to investigate for p = 3(4) the representation of
PSLy(F,) on HY(X(p)). Since one has the rule (ab)* = b*a* for lift-
ings of differential forms under automorphisms a and b, we may pass to
the transposed representation and get a homomorphism

(8) PSLy(F,) — EndH"(X (p)).

According to F. G. FROBENIUS and I. SCHUR the irreducible represen-
tations of PSLy(F,) for p = 3(4) are classified in the following manner.
There is the trivial representation of degree 1, the representation of de-
gree p which is obtained from the permutation representation on the
projective line over IF, by splitting off the trivial representation, and
there are %(p — 3) representations each of degrees p — 1 and p + 1, all of
which are real, and in addition there are two conjugate representations
x* and x~ of degree 3(p — 1) with

1 . _ 1 )
(9) x*(@) =5(-1+ivp), x(a)=5(-1-iyp).
These are the traces for the element

a:z—z+1, ae€ PSLyF,)
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mentioned above. It is interesting to recall the Gauflian sums

xt(a) = Z o*,  where a = 2™/P,

and

and that these relations characterize the splitting of the representations
x* and x~ when these are restricted to the cyclic subgroup of order p
generated by a.

Let m and n be the multiplicities of x* and x~, respectively, in the
representation (8).

Theorem of Hecke. Let p > 3 and p = 3(4). Then for the multi-
plicities m and n, we have

(10) m —n = h(—p).

This follows immediately from (7) and (9). By the way, one can also
calculate m + n:

1 -1
m+n= 5 (I—)—-ﬁ———}-(——l)ej_l) +-§-iffp':“2(3).

As is well-known, there are exactly 7 prime numbers p = 3(4) with
h(—p) = 1, namely 3, 7, 11, 19, 43, 67, 163 (HEEGNER 1952, STARK).

p |[m|n
7 110
11 11]0
19110
43 (| 2|1
67 || 3 (2
163 7 |6

Complex dimension two

Preliminary report (in preparation with DON ZAGIER)

We consider a compact connected Kahlerian surface X, for example a
complex algebraic surface. There are two fundamental topological invari-
ants, the Euler-Poincaré characteristic e(X) and the signature sign(X).
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If a is an automorphism of X, then the equivariant Euler characteristic
e(X,a) and the equivariant signature sign(X, a) are well-defined [1]. If
a has finite order and isolated fixed points, then one has

e(X,a) = number of ﬁxed points of a
(11) sign(X,a) = Z cot & cot

xeX
ax=x

Note that (1) is the equivariant signature for the one-dimensional case
(which vanishes for a = Id).

The first formula in (11) is the classical fixed point theorem of Lef-
schetz, the second is the ABS-fixed point theorem for the signature. Of
course @, B denote the rotation angles of a at the fixed point z. See
also [3] and [5].

As is well known,  (e(X) + sign(X)) is the arithmetic genus of the
surface X. This fact can also be applied equivariantly. This leads to
a formula for the character x(a) of the action of a in the vector space
H?0(X) of holomorphic two-forms on X, as long as we make the follow-
ing assumption.

Assumption 1. The first Betti number of X vanishes. The repre-
sentation of @ in H%? is real, that is, equivalent to its complex conjugate
representation in H20(X).

The vanishing of the first Betti number implies that the arithmetic
genus is equal to 1+ dimH?9(X). Because the representation is real, we
also get the relation

1+ x(a) = % (e(X,a) +sign(X,a)) = i Z (1 — cot —2- cot —'B—z-) .

z€X

ar==x

We now make an assumption which is analogous to (%) in the one-
dimensional case, which, however, we shall only be able to realize in
very special cases.

Assumption 2. Let p be an odd prime number > 3 and a an
automorphism of X of order p with 231 fixed points with rotation angles
2#%, —2r%d where 1 < k < p—1 and k is a quadratic residue modulo p.
In this formula d denotes a given fixed coset modulo p, which is relatively
prime to p.
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The assumptions 1 and 2 imply

1 wkd
(12) 1+X(a):Z —+ Z cot—cot———

1<k<p-1 p

(3)=1

The sum of cotangents lies in the field of pth roots of unity and in fact
lies in the quadratic subfield Q(y/—p) for p = 3(4) and in Q(,/p) for
p = 1(4). This can be seen with the help of Galois theory: the sum is
invariant upon replacing k by rk, where r is a quadratic residue modulo
.

For p = 3(4), —1 is a quadratic non residue. Hence the sum of
cotangents is invariant under the Galois automorphisms of Q(,/—p) and
lies in QQ, which is clear anyway since the sum is real. One has

1 kd
(13) l+x(a)==|p—-1+ E cot — cot =
8 p

1<k<p-1

Here one of the usual Dedekind sums appears:

ded(p,d) = Z cot mk cot mkd
1<k<p-1 p

(see [3], [6]). The expression on the right-hand side of (13) is a half-
integer, and an integer if and only if d is a quadratic residue modulo p
([3], formula (39), and [5]). The character must be integer-valued. This
is no contradiction to our assumptions, if we assume in addition that

(-

For p = 1(4), x(a) is of the form

x(a) = 222

Because of our assumptions, x(a) is an algebraic integer in Q(,/p).
Hence:
u, v €7Z and wu = v modulo 2.

The Galois automorphism of Q(,/p) will be denoted by p — p (p €
Q(y/P))- Then according to (12), we have

—_—

(14) 2+ x(a) + x(a) =2 +u = —-(p—1+ded(p,d)),
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while at the same time

, — X(a) — x(a)

VP
(15) S (B T
4vp 1<k<p—1 ‘P p p
DEF
= f(p,d)

One can show that (14) and (15) for p > 5 determine u, v as integers
with © = v modulo 2. For p > 5 and p = 1(4), our assumptions again do
not lead to a contradiction. Both numbers v and v are even if and only

if (%) = 1. For p = 5, one has f(p,1) = % and f(p,2) = % and moreover
ded(p,1) = —4 and ded(p,2) = 0.

We have been led to the introduction of the twisted Dedekind sums
f(p,d), which have very interesting properties, for example (for p =

1(4)):
= ¥ (55

1<r</p
r€Z, r odd

f(p71)_2f(p’2) =0

f(p’ 1) - Bf(p7 3) = %h(—3p)

f(p,1) —6f(p,6) =5h(—3p) for p=1mod3
= —h(—3p) for p=>5 mod 8

f(p,1) —8f(p,8) = 3h(—4p)+ 2h(—8p) for p=1 mod 8
= —h(—4p) + 2h(—8p) for p =5 mod 8

The first formula is related to the value of the Dedekind zeta function
of the field Q(,/p) at 2 (see [4], page 192), which can be seen with the
help of formula (5). The other formulas can be proved with the help of
(5) and formulas of the type (6).

Naturally we would like to have examples of surfaces X with an
action of PSLy(Fp) so that the action of @ € PSLy(F,) with a : z —
z + 1 satisfies our assumptions. All representations for p = 1(4) are real
anyhow. There are irreducible representations of degrees 1, p,p—1, p+1
and two exceptional representations x*, x~ of degree P—“g—l with

)= (@) = 2
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Once again, the Gauflian sums are interesting. For example one has

2ms
xt(a) =1+ Z o, wherea=er .
1<k<p-1

()=

All irreducible representations except for x* and x~ have characters
whose values at a are in Z. For the multiplicities m and n of x* and x~
in the representation of PSLy(F,) on H*%(X), we have

(16) m —n = f(p,d).

With the help of the congruence subgroups of the Hilbert modular group
for real quadratic fields, we can obtain many examples, which however in
general do not fulfill our simple assumptions. There is a general theory
([6] and the paper cited in that reference by H. SAIrTo). In [6] the
twisted Dedekind sums only occur implicitly. We would like to develop
the theory of these sums independently and derive some new properties
of the usual Dedekind sums. For the theory of the Hilbert modular group
see [4] and [2].

Examples which satisfy the assumptions 1 and 2:

Consider the field K = Q(v/5) and the ring of integers in K:

1
0C=7Z-1+7Z +2\/5.

The Hilbert modular group I' = PSL2(&) acts on the product H x H

. ’ / .
of two half planes via (¢ 3)(z1, z3) = (gzﬁl‘-i—s, ‘—c‘,—fg-}s—,), where the Galois

automorphism of K is being denoted by z + z’. The surface I'\H? has
six quotient singularities, two each of the orders 2, 3 and 5. The prime
numbers p = £1(5) can be split

p=mnnr withm >0,

where () is a prime ideal for which ¢/(n) = F,. Now let I'(7) be
the principal congruence subgroup of matrices in SL(&), which are
equivalent to the identity modulo =.

The subgroup I'(7) of T acts freely on H2. We have a Galois cover

(17) [(m)\H? — T\H?

with Galois group PSLy(F,). Under the action on I'(w)\H?, there are
only fixed points of orders 2, 3 and 5.

323
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We must compactify the surface and consider from the start the res-
olution of the cusp singularities:

The surface I'\H? is compactified by adding a rational curve with a
double point. According to (17) there lie on I'(7)\H? over this curve i;l
smooth rational curves, each of self-intersection number —3, which split
into p+1 times L;l curves, corresponding to the points of the projective
line P! (F,). Each set of 2% curves forms 251/t cycles, each consisting

of t curves, where t is determined as follows.

2 as well as g2 = 34¥5

as cosets modulo p, as we have a /5 in F, (just choose a root). The
order t of the element €2 in F;, is a divisor of %1 For p = 11, we have
=5 (¢2 =5 mod 11).
Hence we have 12 cycles of the form

The fundamental unit € = 14 may be viewed

where each of the 60 curves obtained in this manner has self-intersection
-3.

The element @ : z — z + 1 of PSLy(F,) permutes p of the points
of P!(F,) cyclically, while fixing the point co. Indexed by this latter
point there are pg—l curves, which are ordered in cycles. There are p—g—l
intersection points which are the fixed points of @. Our assumptions 1
and 2 are satisfied, with d = €2 mod p.

One can show that

(18) ded(p,e?) =1—p for p=+1(5),

for example one has ded(11,5) = —10. Using this, relations (13), (14),
(15) and (16) combined yield the following

Theorem. Let p be a prime with p = £1(5) and X (p) the compact
smooth Hilbert modular surface for the congruence subgroup I'(m) of the
Hilbert modular group T for the field Q(v/5). Here p = nn' (with m > 0)
and (7) is a prime ideal of norm p. The group PSLy(F,) acts on X (p)
and hence on H?>9(X(p), the space of holomorphic two-forms on X (p)
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(cusp forms of weight 2 for I'(w)). The character of a : z — z+ 1 under
this action is

(19) x@) = -1+ 129 5

where d = €2 = 3%5 modulo p. Here one has f(p,d) = 0 if p = 3(4).
For the multiplicities m, n of x*, X~ in the representation of PSLy(Fp)
we have

m——n:f(p,d).

From [6] and the paper of H. SAITO cited in that paper we deduce

that for p = +1 mod 5 and p = 1 mod 4, f(p,e?) vanishes for (%) =1,

and for (;7) = —1 its value is

f(p,®) = —2h(Q(V5, V=)

Hence the expression 1|m—n/| is the class number of a biquadratic number
field. For p = 41,61, 109, 149, 241, 269, 281,389 the value of this class
number is 1,1,1,1,3,1, 3, 1.

It follows from (19) that for p = +1 mod 5, in case f(p,&%) = 0, the
representation of the cyclic subgroup of order p generated by a acting on
H?9%(X(p)) (plus the trivial representation) consists of the direct sum of
%1— cyclic permutation representations of p elements. For this, we note
that for the arithmetic genus we have

p’-1

1+ dimH?%(X(p)) =p =

(See [4]. One must multiply the Euler-volume of I'\H? (which is 1) with
the order of PSLy(F,), which gives the Euler-Poincaré characteristic of
I'(7)\H?, then divide by 4 to get the arithmetic genus of X (p)).

By the way, one can also show that for f(p,e2) = 0, the represen-
tation of PSLy(F,) on H2%(X(p)) (plus the trivial representation) is
equivalent to the permutation representation of PSLy(F,) on the set of
cosets PSLy(F,)/As, using any embedding of As in PSLy(F,).
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