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SINGULARITIES IN THE WORK OF FRIEDRICH
HIRZEBRUCH

EGBERT BRIESKORN

My first love in mathematics was the theorem of Hirzebruch-Riemann-
Roch. In my second year as an undergraduate in Munich I took a course
on sheaf theory by Helmut Rohrl. Afterwards, Rohrl told us that if he
went on for another year, he could tell us about the theorem of Riemann-
Roch. I was deeply impressed, and when I asked Karl Stein where I
should go to learn about this theorem, I was advised to go to Bonn.

The summer term 1959 was my first semester in Bonn. I enrolled for
Hirzebruch’s seminar on “Geometry and Topology” and for his course
on “Algebraic Topology”. I remember the first day of that course. Our
teacher standing in front of the class was a very friendly, very young
man, less formal than the German professors I had known so far. My
first thought was, that it must be his assistant. However, it was Friedrich
Hirzebruch himself. In my first letter to my mother from Bonn I wrote
“Professor Hirzebruch ist mir sehr sympathisch. Er ist noch sehr jung”.
I became Hirzebruch’s student, and since then my sympathy, my admi-
ration and gratitude has grown continuously.

Hirzebruch had come to Bonn in 1956, after an offer of a chair in
Gottingen had been withdrawn as the result of intervention by Carl
Ludwig Siegel. Siegel had failed to recognize the significance of the new
methods employed so successfully in Hirzebruch’s Habilitationsschrift
“Neue topologische Methoden in der algebraischen Geometrie”, which
appeared in 1956. This book, which culminates in the proof of the the-
orem of Riemann-Roch for complex projective algebraic manifolds, is
dedicated to the teachers of Friedrich Hirzebruch, Heinrich Behnke and
Heinz Hopf.

After the end of the war, Behnke had quickly restored his contacts
with mathematicians in other countries, in particular with Henri Cartan,

17



18 EGBERT BRIESKORN

who together with Jean Pierre Serre applied the modern methods of sheaf
theory introduced by Jean Leray in their investigation of Stein manifolds
and of algebraic manifolds. Behnke’s contacts had also made it possible
for the young student Hirzebruch to visit Heinz Hopf in Ziirich, who
became his second teacher.

From 1952 to 1954 Friedrich Hirzebruch was at the Institute for Ad-
vanced Study in Princeton. This was certainly the most important pe-
riod in his mathematical development, a period of learning, of intensive
exchange and cooperation with Armand Borel, Kunihiko Kodaira and
D. C. Spencer and, by letter, with René Thom and J. P. Serre. Many
important results were obtained during this time, in particular the the-
orem of Riemann-Roch and large parts of the joint papers with A. Borel
on characteristic classes and homogeneous spaces.

I believe that besides his great mathematical ability Friedrich Hirze-
bruch’s personality, his friendly, open-minded, sincere character must
have helped in establishing mathematical cooperation and in making
friends in the mathematical world only a few years after the horrible
crimes committed by Germans in the time of the Third Reich. As an ex-
ample let me mention that Nicolaas Kuiper once told me that Friedrich
Hirzebruch was the first German mathematician who he was able to
speak to after the end of the German occupation of his country.

When Hirzebruch came to Bonn he began, of course, to build up a
group of students. Both his lectures and his seminars played an impor-
tant role in this. I have always admired his wonderful and unique style of
lecturing. Every new idea appears at the same time spontaneously and
naturally exactly at the right place, so much that one feels that one could
almost have had the ideas oneself. I remember a talk by Hirzebruch in
his seminar on the theorem of Riemann-Roch after which we almost had
the impression that we could have discovered it ourselves. The clarity of
these lectures becomes even more surprising when one looks at the notes
made in preparation for them — just a few formulas scattered on one
page or maybe nothing at all. Many lectures were prepared during the
five-minute-walk from Hirzebruch’s home to the mathematical institute.

For me, Hirzebruch’s seminars were even more important than his
lectures. One seminar was always called “Seminar uber Geometrie und
Topologie”. It dealt however with a wide variety of modern subjects.
There we learnt about such notions as manifolds, fibre bundles, charac-
teristic classes and theories such as homotopy theory, obstruction theory,
Morse theory, the index theorem and much, much more. We learned at
the same time modern conceptual forms of mathematical thought and
the interplay between such general theories and the analysis of well-
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chosen interesting concrete problems and examples. It was exciting for
us to have famous mathematicians like John Milnor in Bonn, lecturing
to Hirzebruch’s students on the latest theories. The most exciting week
in the year was always the Mathematische Arbeitstagung.

The Arbeitstagung

The first Arbeitstagung took place in 1957. The participants were
Michael Atiyah, Hans Grauert, Alexander Grothendieck, Friedrich Hirze-
bruch, Nicolaas Kuiper and Jacques Tits. In subsequent years, more
names of first rank were added to the list of participants. Instead of try-
ing to make a complete list, let me mention some of those who became
particularly faithful friends of the Arbeitstagung. Raoul Bott, Michel
Kervaire, John Milnor, Jean-Pierre Serre and René Thom were added
to this list in 1958, Frank Adams, Armand Borel and Serge Lang in
1959. In the sixties, James Eells, Giinter Harder, Wilfried Schmid and
C.T.C. Wall were added to those who frequently contributed to the pro-
gram of the Arbeitstagung. Of course, more names come to my mind:
Palais, Quillen, Remmert, Smale, Van de Ven, Zagier ... Let me stop
at this point. The program was decided on in a public program dis-
cussion chaired with subtle guidance by Friedrich Hirzebruch. The first
lecture was usually given by Michael Atiyah, who contributed more to
the Arbeitstagung than anybody else.

Altogether there were thirty meetings of the Arbeitstagung organized
by Hirzebruch. The last one took place in 1991. There is now a second
series, organized by G. Faltings, G. Harder, Y. Manin, and D. Zagier,
but this is another story. Hirzebruch’s Arbeitstagung was a unique phe-
nomenon in the mathematics of the second half of the twentieth century.
A large part of the history of mathematics of that period is reflected in
the annals of the Arbeitstagung, and some of it was written during its
meetings. For example, in his Arbeitstagung lecture given 16 July 1962
on “Harmonic Spinors and Elliptic Operators” Atiyah formulated the
problem of expressing the index of elliptic operators in terms of topo-
logical invariants associated to their symbol and stated the fundamental
conjecture for the Dirac operator “that spin(X, E) = A(X ,E), where A
is the so-called A-genus (cf. Hirzebruch Ergebnisse book).” He explained
that this included as special cases the Hirzebruch index theorem and the
theorem of Riemann-Roch for Kahler manifolds with zero first Chern
class.

A few months later, in February 1963, Atiyah and Singer announced
the general index formula for elliptic operators on closed manifolds and
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indicated the main steps of a proof in a note in the Bulletin of the
American Mathematical Society. This first proof was modelled closely
on Hirzebruch’s proof of the Riemann-Roch theorem. K-theory, which
gave the essential framework for the statement of the index theorem,
had been introduced by Atiyah and Hirzebruch following Grothendieck’s
lead in their 1959 paper Riemann-Roch theorems for differentiable man-
ifolds. In their paper Vector bundles and homogeneous spaces they had
given the first systematic exposition of this new cohomology theory. The
“central and deep point” of this new cohomology theory was the Bott
isomorphism.

Bott’s famous periodicity theorem 7 (U) = mg42(U) published Oc-
tober 1957 in the Proceedings of the National Academy of Sciences had
been suggested to Bott by results of Borel and Hirzebruch published
later in the paper Homogeneous spaces and characteristic classes and
by computations of homotopy groups of Lie groups done by Toda. In
the paper of Atiyah and Hirzebruch on Riemann-Roch for differentiable
manifolds, Bott’s theorem for the unitary group was reformulated as an
isomorphism

K(X x 8% 2 K(X)® K(5?).

In this or similar forms, it was applied also in the subsequent paper of
Atiyah and Hirzebruch on the Riemann-Roch for analytic embeddings
and in the original proof of the Atiyah-Singer index theorem as well as
in the later proof by embedding. Conversely, further generalization of
the index theorem led Atiyah and Bott to a beautiful elementary proof
of the periodicity theorem, which was presented by Hirzebruch during
the Arbeitstagung 1963.

The fusion of analysis and topology in the development leading from
the theorem of Riemann-Roch to the index theorem and the Lefschetz
fixed point formula for elliptic differential operators was one of the most
exciting achievements during the three decades of the Arbeitstagung
organized by Friedrich Hirzebruch. It was characterized by a vivid inter-
action between a small group of leading mathematicians, and some part
of that interaction happened during the Arbeitstagung in Bonn.

The work of Michael Atiyah presented in Bonn was not the only
work discussed at these meetings that won a Fields Medal. Half of the
medalists who won the award between 1950 and 1990 gave lectures at
the meetings of the first series of the Arbeitstagung.

Of course, Hirzebruch’s students tried to make themselves acquainted
with the exciting new mathematics presented at the Arbeitstagung. Thus,
in 1963, we had a seminar on the Atiyah-Singer index theorem, work-
ing hard on trying to understand the details of the proof. Two of us,
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Karl Heinz Mayer and Klaus Janich, wrote their PhD-thesis on related

subjects. Mayer constructed certain elliptic differential operators and

applied the index theorem in order to get an integrality theorem con-

taining as special cases all the integrality theorems previously proved by

Borel and Hirzebruch. The possibility of such a unified proof had been

indicated by Atiyah in his talk in the Séminaire Bourbaki in May 1963.
Klaus Janich constructed an isomorphism

(X,F] — K(X)

where [X,F | is the ring of homotopy classes of maps of a compact
space X into the space F of Fredholm operators of a separable Hilbert
space. Janich presented his result during the Mathematische Arbeit-
stagung 1964. In the proof he used a new theorem on which Nicolaas
Kuiper had lectured during the same Arbeitstagung: “The unitary group
of Hilbert space is k-connected”. Klaus Janich and Detlef Gromoll, who
spoke on exotic spheres and metrics of positive curvature, were the first
students of Hirzebruch to talk at the Arbeitstagung. The index map
[X,F ] = K(X) was also constructed in a slightly more general form
by Atiyah and was used in the definition of a map K (5% x X) — K(X)
leading to a new simple proof of Bott periodicity.

My own thesis written in 1962 dealt with subjects more in line with
the previous work of my teacher. Its first part was a theorem on complex
quadrics which was an analogue of a theorem on projective spaces proved
by Hirzebruch and Kodaira in 1957. The proof was an application of the
theorem of Riemann-Roch, and I had been given that problem because I
was in love with this theorem. The second part of my thesis generalized
work of one part of Hirzebruch’s own thesis, in which he had investigated
a particularly nice class of simply connected complex surfaces, namely
P;-bundles over P;. My generalization dealt with P,-bundles over Py,
which were also investigated from the new viewpoint of the deformation
theory of Kodaira and Spencer.

The Thesis

The thesis of Friedrich Hirzebruch was written in 1950. In the year
2000 we celebrated the 50" anniversary of that event in Miinster, the
“Goldenes Doktorjubilaum”, as it is called in Germany, and there Hirze-
bruch gave a talk on the other part of his thesis, which has been published
under the title Uber vierdimensionale Riemannsche Flichen mehrdeutiger
analytischer Funktionen von zwei kompleren Veranderlichen. At this
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point returning to the beginning of Hirzebruch’s work, I am finally ap-
proaching the subject given in the title: Singularities in the Work of
Friedrich Hirzebruch.

The fame of great mathematicians is justly founded on their great
achievements, the creation of new theories and the depth, originality
and strength of their mind shown in formulating and solving problems
of outstanding importance for the development of our science. In this
way the achievements of Friedrich Hirzebruch have been described in the
laudations given on the many occasions when he received awards of the
highest rank. Instead of repeating such praise I shall try to understand
some features in the work of my teacher by asking the questions: What
were the objects that he liked? How did he look at them? What did he
see?

These questions are not quite as harmless as they might appear,
since any attempt to explain the meaning of the words “mathematical
objects” must lead to deep philosophical problems. I remember discus-
sions on such matters revealing the belief underlying a whole life devoted
to mathematics.

Matthias Kreck has claimed that obviously manifolds are the central
objects in Hirzebruch’s work. Indeed, manifolds do occur in every work
in the two volumes of his collected papers, and in one of these papers he
himself writes

“Seit mehr als 30 Jahren beschdftige ich mich mit Mannigfaltigkeiten,
besonders mit algebraischen Mannigfaltigkeiten.”

But in the same place Hirzebruch mentions “die Theorie der Singu-
laritdten, die mich seit langem interessiert”. This interest in singularities
began with Hirzebruch’s thesis. In the first volume of the collected pa-
pers the thesis is the only paper in which singularities play an essential
role. However, for the second volume the situation is different; singu-
larities appear in three out of four papers, and in some cases they even
appear in the title. So singularities are obviously objects Hirzebruch is
interested in. They were among the first objects which he studied, et
P'on revient toujours a ses premiers amours.

I think that a case could also be made for yet another and more fun-
damental entity: number. Integrality problems, divisibility properties,
the calculation of integral invariants, and relations between number the-
ory and other fields such as topology, algebraic geometry and analysis
on manifolds play a role in many ways in Hirzebruch’s work. Finally, we
must add to the list of things which Hirzebruch likes, things which are
symmetric.

The most venerable symbols of symmetry are the platonic solids,
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and in particular the icosahedron. In Plato’s Timaios the world was
conceived as cosmos ordered and shaped by numbers and figures in the
best possible way. Anything good had to be beautiful, and beauty was
not possible without symmetry. The platonic solids were the elements of
Plato’s cosmology which has played a very important role in the evolution
of European science. Today the icosahedron is to be seen at the entrance
of the Max Planck Institute for Mathematics in Bonn. It was founded
in 1980 with Friedrich Hirzebruch as its first director for the first fifteen
years.

In Hirzebruch’s papers singularities are mostly not studied as iso-
lated objects for their own sake. Almost always they occur together
with interesting manifolds, frequently in relation to certain symmetric
configurations or group actions or in a number theoretic context. There
is such a rich variety of beautiful constructions of modern context and
relations to classical mathematics that it will be completely impossible
to do justice to this work in a few pages. All I can do, is to present some
of the themes. For the one which I know best, I shall also try to describe
its evolution.

Let me begin with Hirzebruch’s thesis. Adding our present knowl-
edge about complex spaces we might summarize its contents as being
a constructive resolution of the singularities of 2-dimensional complex
spaces. However, at the time when this thesis was written, Heinrich
Behnke, Karl Stein, and Henri Cartan had just begun to lay the foun-
dations for the theory of complex spaces. In 1951, Behnke and Stein
published a paper in the Mathematische Annalen entitled “Modifikation
komplexer Mannigfaltigkeiten und Riemannscher Gebiete”, in which they
introduced two new notions: the notion of complex space, defined by
means of analytic coverings of domains in C*, and the notion of modi-
fication. Also in 1951, Cartan introduced his notion of complex space,
modelled on normal analytic subsets of C¢. In 1955, Serre allowed ar-
bitrary analytic subsets, so that Cartan’s spaces became what is now
called normal complex spaces. The relation between the two notions of
complex spaces was clarified by Hans Grauert and Reinhold Remmert.
In their paper “Kompleze Rdaume”, published 1958 in Mathematische
Annalen they proved that the notions of complex space in the sense of
Behnke and Stein and in the sense of Cartan were coextensive.

Grauert and Remmert also clarified a question that Hirzebruch had
to leave unanswered in his thesis. They proved that every k-dimensional
normal complex space can be presented locally as an algebroid cover-
ing of a domain in C*. This means that locally it is the normalization
of a Weierstraficovering defined by an irreducible Weierstralpolynomial
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in C{z1,..., 2k }[zk+1].- Hirzebruch’s method of resolution uses such lo-
cal presentations of 2-dimensional complex spaces as algebroid coverings
of domains in C2. This is possible because normal singularities of 2-
dimensional complex spaces are isolated so that in dimension two reso-
lution is a local problem.

The discriminant of the WeierstrafSpolynomial describing a 2-dimen-
sional algebroid covering defines a curve in a domain of C2. The first step
in Hirzebruch’s resolution process consists in resolving the singularities
of this curve by a sequence of g-processes so that the total transform has
only normal crossings. The notion of o-process had been introduced by
Hirzebruchs teacher Heinz Hopf in 1951 as a local process of modifica-
tion of complex manifolds. It modifies a k-dimensional complex manifold
X in a point p by replacing p by the (k — 1)-dimensional complex pro-
jective space of tangent directions at p. Hopf knew that in algebraic
geometry quadratic transformations were an old and successful method
of modifying varieties. Zariski had introduced the notion of a quadratic
transformation at a point p of a surface in 1939 in his paper “The reduc-
tion of the singularities of an algebraic surface”, and in 1943 he defined
general monoidal transformations in his paper “Foundations of a general
theory of birational correspondences”. In dimension two, the o-process
replaces a point by a Riemann sphere, and that is the reason for its
name, o being the first letter of the greek word opaipa.

Now let ¢ : (X, z) — (C%,0) be an algebroid m-fold covering defined
by an irreducible WeierstraBpolynomial of degree m in C{z1, 23 }[23] such
that the reduced discriminant curve has the equation z1z0 = 0. The
irreducibility implies that all points of X' = X — {z} over z122 =0 are
branch points of the same order a—1 over z; =0 and of order b—1 over
29 =0, with integers a,b > 1. Define a ramified covering x:C? — C? by
x(¢1,C2) = (€8, ¢3). Let (Y,y) be the fibered product of (C2,0) and (X, z)
with respect to x and . The normalization of (Y,y) is a multigerm
unbranched over C2—{0}. So it consists of m germs isomorphic to (C2, 0).
Therefore we have a holomorphic lifting

(X, z)

(C%,0) (C%,0)

X

such that ¢ is an unramified covering over a suitable punctured neigh-
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bourhood Vj — {z} of z. If n is the degree of ¢, we have m-n = a - b.
We want a precise description of 1. Choose a polycylinder W ¢ C?
sufficiently small so that V = ¢~ }(W) C Vp. Let U C C? be the poly-
cylinder x "} (W). Let W', V', U’ be the spaces obtained by removing the
axes 2122 = 0 and their inverse images. These spaces have the homotopy
type of C* x C*. In particular, the fundamental groups are abelian. So
we have a diagram of regular unramified coverings

VI
@

v’ w’

X

Let G and H be the groups of covering transformations of x and .
The group G C GL(2,C) is the group of diagonal matrices with diagonal
entries the a-th and b-th roots of unity. The subgroup H of order n is also
the group of covering tranformations of the regular unramified covering
¥ : U — {0} -V — {z}. Therefore it is a “small” subgroup of GL(2,C)
which means that its nontrivial elements have no eigenvalue 1. Therefore
H must be one of the cyclic groups of order n

e2mq/n 0
Cn,q = < ( 0 e27ri1/n> >

where ¢ is an integer 0 < g < n relatively prime to n. So we obtain the
result that the germ (X, z) is isomorphic to the cyclic quotient singu-
larity (X, 4,0) where X, , = C?/C, , may be described as the algebroid
covering given by the Weierstrafipolynomial

2y — 2125 L.
Hirzebruch borrows this result from an article by Heinrich W. E. Jung
which appeared in 1908 in Crelles Journal. Of course, the modern ter-
minology used above does not occur in Jung’s paper. In particular the
notion of the quotient of a complex space with respect to a properly
discontinuous group of automorphisms was introduced not until 1953 /54
when it appeared in the Séminaire Cartan.

In view of the result obtained above, all we have to do is to resolve
the singularity of X, ,. Hirzebruch constructs a resolution by means of
an algorithm taken from the paper of Jung. I shall try to motivate this
construction and present it so as to show its relation to the theory of
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toroidal embeddings developed by Kempf, Knudsen, Mumford and Saint-
Donat in 1973. As a matter of fact, Mumford was partly motivated by
later work of Hirzebruch on cusp singularities which may be seen as a
natural continuation of his thesis.

Let T be the standard complex algebraic torus C*2 C C2. The basic
fact is that X, 4 contains the algebraic torus T, = T//Cr 4. We shall
construct the resolution X n,q — Xn,q by gluing several copies of C? which
map to X, 4 so that T is mapped isomorphically onto T, 4.

Let Yn,q C C® be the WeierstraBispace given by the equation 23 —
z1z5 ¢ = 0. Let X,, — Xn, be the normalization map induced by
the map C? — X, , given by (21, 22,23) = (t},t3,t1t5 7). This maps
T, 4 isomorphically onto its image Tn,q C Yn,q. Therefore isomorphisms
T — T, 4 can be given by

!
2 = ut?
!
29 = uMoH
!
23 = uv”

where the exponents have to satisfy the conditions
|/ —p'v| =1

and A\, )\ are determined by the other exponents. Let N be the 2-
dimensional lattice of algebraic homomorphisms C* — T'. The canonical
homomorphisms ¢ — (¢,1) and ¢ — (1,¢) form a canonical basis (1,0)
and (0,1) of N = Z?. If we compose T — T, , with the projection
Thng — T given by (21, 22, 23) — (22, 23), we get an isomorphism 7' — T,
and T — T, 4 is determined by the induced map N — N, i.e., by the
images (u,v) and (u',7') of the canonical basis. These two vectors span
a sector o in R3, consisting of their linear combinations with nonnegative
coefficients.

Consider the sector § C R? spanned by (0,1) and (n,n — q). If
we identify N with Hom(C*,T,,) via the projection T,, — T, the
points in S N N correspond to those algebraic isomorphisms C* — T, 4
which have a limit in X, 4 for ¢ — 0. Therefore, an isomorphism 7' —
T, will extend to a holomorphic map Cc? - Xn,q if and only if its
sector o is contained in S. If we try to construct the resolution f(n,q —
Xn,q by gluing a finite number s 4 1 of copies of C? with maps C2 —
Xn,q, the condition that Xn,q — Xn,q has to be proper, means that
the corresponding sectors oy, ...,0s have to cover S. Such a covering
is minimal if the sectors oy, ...,0, form a subdivision of S, and if their
number is minimal. As a matter of fact, there is a unique subdivision
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(o) o o o o o (o)
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o o o
Ws1
o o &
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Wo h
Wy
FIGURE 1

of S with that property. Let ¥ be the convex hull of SN N — {0},
and let wp,w1,...,wsy1 be the points of N on 9% between wg = (0, 1)
and wsy1 = (n,m — q). Then S is subdivided by the rays Rt - w; and
the sectors between them. Figure 1 illustrates this for Jung’s example

(n,q) = (5,2).

The vectors wy = (ug, vx) are computed recursively as follows:

We+1 = bpwp—wr—1 , k=1,...,s
wy = (0,1)
wy = (1, l).

Here by are natural numbers larger than 1 computed from the continued
fraction

This is the Hirzebruch-Jung algorithm. Xn,q is obtained by gluing s + 1
copies of C2. The gluing transformation from the (k — 1)-th copy to the
k-th copy is

wp = U vpg

Uk = Up_y-
Gluing of these two copies gives the total space of the bi-th tensor power
of the Hopf line bundle over the Riemann sphere. Thus the inverse image
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FIGURE 2

of the singular point of X, 4 in Xn,q is a chain of s nonsingular ratio-
nal curves with selfintersection numbers —by, such that only subsequent
curves intersect, and they intersect transversely.

Following Hopf’s example, Hirzebruch describes the configuration of
exceptional curves by a weighted dual graph

There are two interesting extreme cases: ¢ = 1 and ¢ = n — 1.
For ¢ = 1, the resolution graph is just one point with value n, and
the exceptional curve in X, identifies with the zero section in the n-
th power of the Hopf bundle. Compactifying that bundle by adding a
point at infinity for each complex line of the bundle gives the ¥, -surface
treated in the other half of Hirzebruch’s thesis.

The case ¢ = n — 1 is characterized by the fact that in this case
Ch,q is a subgroup of SL(2,C). It is also characterized by the fact that
in this case all by are equal to two. This can be interpreted as follows.
Up to a sign the intersection matrix of the exceptional curve in the
resolution of X, ,_; is the Cartan matrix of the root system of type
An—1, and the resolution graph is the Coxeter-Dynkin diagram of type
Ap—1. This correspondence between Cp, 1 and A,_1 is part of a perfect
correspondence between conjugacy classes of subgroups G C SL(2,C)
and isomorphism classes of their quotient singularities (C?/G, 0) on one
hand and simple Lie algebras of type A,, D, Eg¢, E7, Es on the other
hand. In their book “Compact Complex Surfaces” Barth, Peters and
Van de Ven say the following about this:

The relation between simple singularities and simple Lie groups is
one of the most beautiful discoveries in mathematics. It is impossible to
attribute it to a single author.

Friedrich Hirzebruch is one of those who have a share in this discovery,
and it is due to him that I too got involved in this on-going story of more
than a century.

The importance of Hirzebruch’s thesis from a historic point of view is
perhaps not primarily to be seen in the fact that he proves the existence
of a resolution of singularities of complex surfaces. As a matter of fact,
Robert J. Walker had given the first rigorous proof for algebraic surfaces
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as early as 1935 in a paper in the Annals of Mathematics apparently
not known to Hirzebruch at the time when he wrote his thesis. Walker
had used essentially the same approach as Hirzebruch, quadratic trans-
formations and Jung’s algorithm. Hirzebruch’s solution has the merit of
clarity and simplicity made possible by his strictly local complex analytic
approach as opposed to the projective algebraic methods of the previous
proofs. However, the primary importance of this thesis probably is to be
seen in the fact that it contained certain germs unfolded in future work
of Hirzebruch and his students.

One of these germs is Hirzebruch’s remark that the singular point
Xn,q has a neighbourhood in X, ;, bounded by the lens space L(n,q) =
S3/ Ch,q- Lens spaces, constructed by Poul Heegaard in 1898 and by
Heinrich Tietze in 1908 were the first examples of closed orientable 3-
manifolds not determined by their fundamental groups. In 1918 Alexan-
der proved that L(5,1) and L(5,2) are not homeomorphic although both
have the same fundamental group. In 1935 Kurt Reidemeister proved
that L(n,q) and L(n',q') are homeomorphic if and only if n = n’ and
¢ =+q mod mnorqq =+1 mod n. On the other hand Hirzebruch
proves that the singularities of X, ; and X, o are isomorphic if and only
ifn=n"andgq=q¢ orqg¢ =1 mod n.

The interest in the topology of singularities can be traced back to
the last decade of the 19*" and the first decade of the 20" century, when
Poul Heegaard wanted to develop topological tools for the investigation
of algebraic surfaces, and when Wilhelm Wirtinger adopted Felix Klein’s
geometric view of the theory of analytic functions and tried to under-
stand the topology of the ramification of functions of two variables. The
fascinating story how this led to the first result of modern knot theory,
Tietze’s proof that the trefoil knot is not trivial, is told in Moritz Ep-
ple’s book “Die Entstehung der Knotentheorie”. The story is too long to
be told here. Let me just indicate in moderately unhistoric terms what
Wirtinger did. He studied the algebraic function 2z of two variables z,y
defined by the equation

234+ 3cz2+2y =0.

In modern terms: the projection of the surface X with this equation
to the (z,y)-plane is the semiuniversal unfolding of the 0-dimensional
Aa-type singularity 22 = 0. The discriminant curve D C C? has the
equation

22 +y? =0.
The fundamental group of C?2 — D operates on the fibre over the base
point by the monodromy representation. Wirtinger calculates 7; (C? — D)
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and finds a presentation with two generators and one relation sts = tst.
In modern terms: m; is the braid group on 3 strings. The monodromy
representation is the canonical homomorphism of this group to the sym-
metric group Ss.

The group S3 is the Weyl group of As operating on the plane z; +
22 + 23 = 0 by permutations. If we map this plane to the (z,y)-plane by
means of the elementary symmetric functions o2, o3 and lift the covering
of the (z,y)-plane by means of this base extension, we get (z — z1)(z —
z2)(z — z3) = 0. So we get a trivial covering over the complement of the
discriminant II(z; — z;) = 0. The fundamental group of that complement
is the coloured braid group, i.e., the kernel of B3 — S3. It is part of the
beautiful relation between simple singularities and simple Lie algebras
that all this generalizes to all types Ag, Dy, Fg, E7, Eg.

In his computation of m;(C? — D), Wirtinger used an idea of Hee-
gaard. Heegaard reduced the complex geometry of an algebroid covering
(X,z) — (C%,0) with a singularity (D,0) of the discriminant to a situ-
ation of 3-dimensional topology. He considered a small 4-ball B C C2
centered at 0 with boundary 0B = S3, a 3-sphere. The intersection
L = DN S3is a knot or link in S%. In Wirtinger’s example it is the
trefoil knot. DN B C B is homeomorphic to the cone over L. Therefore
B — DN B has the same fundamental group as the complement S — L of
the link. Let U C X be the inverse image of B and OU = M the inverse
image of S3. Then M is a 3-manifold, which is a ramified covering of
53 ramified over L. Moreover, M is a boundary of the neighbourhood
U of z in X, and U is homeomorphic to the cone over M. This estab-
lished a link between the geometry of singularities of complex surfaces
and 3-dimensional topology which turned out to be very fruitful both for
complex analytic geometry and topology.

The title of Hirzebruch’s paper “Uber vierdimensionale Riemannsche
Flachen mehrdeutiger analytischer Funktionen von zwei komplexen
Verdnderlichen” and the 1928 paper of Wirtinger’s student Brauner in
the list of references are indications that Hirzebruch’s thesis is to be seen
in this context.

Eg

The gist of the story that I want to tell now is expressed in the
titles of a talk by Hirzebruch in the Séminaire Bourbaki, given November
1966, and of a paper by myself published in the same year in volume 2
of Inventiones Mathematicae. Hirzebruch’s title was “Singularities and
Ezotic Spheres” and mine was “Beispiele zur Differentialtopologie von
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Singularitaten”.

The story begins in the year 1956 with John Milnor’s sensational
discovery that there are 7-dimensional differentiable manifolds which are
homeomorphic but not diffeomorphic to the 7-dimensional sphere S”.
This discovery was certainly one of the most germinal achievements of
mathematicians in the twentieth century. In less than seven years a
theory describing these exotic differentiable structures was developed by
an extraordinary meshing of the results of mathematicians working in
diverse parts of topology.

Several fundamental tools and constructions had already been pre-
pared during the two decades preceeding Milnor’s discovery. Fibre bun-
dles and the characteristic classes of Stiefel-Whitney, Chern and Pon-
tryagin were at the disposition of differential topology. Cobordism and
framed cobordism had been introduced by Thom and Pontryagin, and
the signature theorem had been proved by Hirzebruch. In homotopy
theory Freudenthal had proved the stability of 74,,(S%) for d > n + 1
in 1937, and the resulting stable groups II,, had been proved to be finite
for n > 0 and had been computed for low values by Serre and Toda.
The stable homotopy groups of the classical groups had been computed
by Bott. A link between these groups had been established by George
Whitehead in 1942. Generalizing a construction by Heinz Hopf in his
1935 paper “Uber die Abbildung von Sphdren auf Sphdren niedrigerer
Dimension” Whitehead defined a homomorphism

Jn 1 1 (SO) — 11,

from the stable homotopy groups of the orthogonal group to the stable
n-stem of the homotopy groups of spheres. Work of Pontryagin culmi-
nating in his 1955 paper “Smooth manifolds and their applications in ho-
motopy theory” identifies II,, with the framed cobordism group of framed
embedded n-manifolds. The canonical homomorphism from the framed
cobordism group to II, is defined by means of the Thom-Pontryagin
construction.

Some of the most outstanding results of the period following Mil-
nor’s discovery were the proofs of the Poincaré conjecture in dimensions
greater than four by Stallings, Zeeman and Smale, the development of
handlebody theory and the proof of the h-cobordism theorem by Smale
and the determination of the image of the J-homomorphism by Frank
Adams.

The h-cobordism theorem allows the identification of oriented dif-
feomorphism classes of topological n-spheres with h-cobordism classes
for n > 5. Let ©, be the set of h-cobordism classes of closed oriented
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C*°-manifolds homotopy equivalent to S™. This is a group with respect
to the connected sum operation. Using Bott’s calculation of m,(SO),
Hirzebruch’s signature theorem and the results of Adams, Kervaire and
Milnor showed that homotopy spheres are stably parallelizable. There-
fore, they can apply the Thom-Pontryagin construction in order to define
a homomorphism

p: 0O, — coker J,.

The kernel of p is the group bP, 1 of classes of oriented homotopy—spheres
bounding parallelizable manifolds. The cokernel of p is trivial for n # 2
mod 4 and trivial or of order 2 if n =2 mod 4. Kervaire and Milnor
apply the technique of surgery developed by Milnor in order to determine
the group bP, ;. For n even bP, ; is trivial. For n odd bP,4; is finite
cyclic. The order is 1 or 2 if n = 4k + 1. For n = 4k — 1, the order ist

o%/8 = 22¥72(2%%~1 _ 1) numerator (4By/k),

where Bj, denotes the k-th Bernoulli number. Thus ©,, n # 3, is always
a finite abelian group, and for n odd the calculation of its order is reduced
to the calculation of the order of II, (up to a factor 2 if n = 4k +1). The
first non-zero group ©,, n # 3, is ©7. In this case coker J7 is trivial,
and ©7 = bP; is cyclic of order 28. The first nontrivial group bP,+; with
n =4k + 1 is bPyy.

An isomorphism bPys, — Z/(0y/8Z) is obtained as follows. Let &
be a homotopy sphere bounding a (2k — 1)-connected parallelizable 4k-
manifold W with signature o. The intersection form on Hox(W,Z) is
symmetric, even and unimodular. Therefore, its signature o is divisible
by 8. The isomorphism maps the class of ¥ in bPy; to 0/8 mod oy/8.
In particular one obtains a generator for bPy if 0 = 8. The minimal
rank for an even unimodular quadratic form with signature 8 is 8, and
up to isomorphism there is only one form with these properties, namely
that of the root lattice of Ej.

In a mimeographed manuscript dated Princeton, January 23, 1959,
Milnor constructed such a manifold W with this quadratic form. How-
ever, the choice of a basis of the lattice with which he begins his con-
struction is not the simplest possible choice, since the graph describing
the intersection matrix contains cycles. Up to isomorphism, there is
only one choice where the graph is a tree and all intersection numbers
are non-negative and 2 on the diagonal. The corresponding graph is the
famous Coxeter-Dynkin diagram of Eg, shown in Figure 3.

Hirzebruch noticed the possibility of simplifying Milnor’s construc-
tion and presented it in a colloquium lecture in Bonn in the winter
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FIGURE 3

1960/61 and in a lecture in Vienna on November 18, 1960. The cor-
responding publication “Zur Theorie der Mannigfaltigkeiten” is Hirze-
bruch’s shortest publication, just one page in the Internationale Mathe-
matische Nachrichten. Milnor adopted Hirzebruch’s “lovely” construc-
tion and used it in his essay “Differential topology” in the book “Lectures
on Modern Mathematics” edited by Saaty.

Let me describe the construction in somewhat greater generality with
a historical perspective. The first examples of exotic 7-spheres con-
structed by Milnor in 1956 were S3-bundles over S*. These may be
viewed as boundaries of D*-disk-bundles over S%. Thus it may appear
to be natural to consider more generally orientable D™-bundles over
S™. In his paper “Differentiable Structures on Spheres” in the Annals of
Mathematics 1959 Milnor took such bundles as basic building blocks for
a certain construction of manifolds with boundary. For a suitable choice
of the building blocks the boundary is an exotic sphere.

The construction is as follows. Take two D™-bundles p; : W, —
S™, ¢ = 1,2 with structure group SO(m). Choose m-disks U, C S™
and trivializations ¢; : D™ x D™ — p; }(U). Let W be obtained from
the disjoint union of W; and W; by identifying ¢1(z,y) with @a(y, z).
The result of this is a bounded manifold with corners. Unbending of
the corners finally gives a smooth compact orientable manifold W with
boundary.

The boundary W may be obtained by gluing two copies of D™ x
S™~1 along their boundaries by means of a suitable diffeomorphism. For
example, gluing D™ x S™~! and S™~! x D™ by means of the identity
Sm=ly gm=1 _, gm=1y gm=1 gives S?™~1 This was already observed
by Hopf in 1935 in his paper mentioned above. The archetypical case
of this construction is the Heegaard decomposition of S3 into two solid
tori. This is the case m = 2.

However, the construction is older yet. There are reasons to believe
that the case m = 1 was known to Gauss. Some evidence for this is
to be seen in the following two figures. The one on the left hand side
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FIGURE 4 FIGURE 5

dates from the years 1858-60 and is to be found in the collected works of
August Ferdinand Moebius, volume 2, page 541. The figure on the right
hand side is to be found in the essay “Der Census raumlicher Komplexe”
published in 1861 by Gauss’ student Johann Benedikt Listing. So the
simplest case of the construction introduced by Milnor in 1959 was at
least one hundred years old and probably known to Gauss.

For a suitable choice of the disk bundles used in Milnor’s construction
the resulting manifold W will be parallelizable. In particular this will
be so, if both copies are the unit-disc bundles in the tangent bundle of
S™. In 1960 Kervaire used the 10-dimensional manifold W obtained in
this way for m = 5 in order to construct a manifold Wy which does
not admit any differentiable structure. Wy is the union of W with the
cone over OW. The boundary OW is homomorphic to S?, but it follows
from Kervaire’s result that it is not diffeomorphic to it and it is thus
the exotic Kervaire sphere generating the cyclic group of order two bPp.
An analogous construction can be done for all odd numbers m, and the
resulting (2m — 1)-dimensional Kervaire sphere is the nontrivial element
of bP,,, whenever bP,,, is not trivial.

Milnor’s construction can be generalized in various ways. In the
first place, one may use more than two disc bundles in the construction,
with identifications along disjoint copies of D™ x D™. The scheme for
the construction may be given by a weighted graph. The vertices with
weights specify the bundles, the edges are the prescription for the gluing.
The graph has to be a tree if we want the resulting manifold M to be
highly connected. A further generalization consists in admitting disk-
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bundles over more general bases such as for example Riemann surfaces
of arbitrary genus instead of the Riemann sphere.

A construction of this kind was introduced in a germinal paper by
David Mumford submitted to the Publications Mathématiques of the
Institut des Hautes Etudes Scientifiques in May 1960 and published in
1961. The title of the paper was “The topology of normal singularities
of an algebraic surface and a criterion for simplicity”. In this paper
Mumford describes certain “good” neighbourhoods of normal singular
points z of a complex algebraic surface X in two different ways leading
to the same result. One way is to embed (X, z) in some affine space C"
and to intersect with a sufficiently small ball B?® with center z. The
resulting neighbourhood V' = XNB?" has a boundary K = 8V which is a
3-dimensional closed orientable manifold. Later work of Hassler Whitney
published in 1965 shows that this construction can be generalized to
isolated singularities (X,x) of arbitrary dimensions, that the resulting
neighbourhood boundary K = 9V is essentially uniquely determined by
(X,z) and that V is homeomorphic to the cone over K.

The second description uses a good resolution (Y, FE) — (X,z) of
the 2-dimensional singularity. The exceptional curve F in the complex
surface Y is a divisor with normal crossings. Its components E, are Rie-
mann surfaces intersecting transversely in at most one point. Mumford
constructs a smooth boundary M of a tubular neighbourhood of £ in Y’
from building blocks obtained from the normal S!-bundles of the curves
E, by removing the inverse image of small disks around points where
E; intersects some E,, j # i. These building blocks are “patched” by a

“standard plumbing fixture”
{(z,y,u,0) |(&® + %) < 1/4,(u® +2°) < 1/4,
(2% + y?)"(u? + v})™ = g < 1/8"T™].
The plumbing fixture is obviously homeomorphic to S* x S x [0, 1].
Mumford uses this description of the neighbourhood boundary M
to derive a presentation of its fundamental group. He then proves the

theorem that 71 (M) is nontrivial if z € X is not a regular point. This
implies that a normal complex surface which is a topological manifold

must be nonsingular.
In the last paragraph of his paper Mumford studies an interesting

example. He looks at surfaces in C? defined by an equation
0=2aP +y742",

where p, g and r are pairwise relatively prime, p < ¢ < r. Mumford does
not resolve these singularities. Instead, he notices that the neighbour-
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hood boundary K is an 7-fold branched covering of S branched over a
torusknot of type (p, ¢). Mumford then refers to Herbert Seifert’s paper
“Topologie dreidimensionaler gefaserter Rdume” in Acta mathematica
60, 1932, where it is proved that K is a homology 3-sphere. Among
these homology spheres, there is only one with finite fundamental group,
namely the one for (p,q,7) = (2,3,5). Its fundamental group is the bi-
nary icosahedral group, and it is the spherical dodecahedral space, as
proved by Seifert and Threlfall in part II of “Topologische Untersuchung
der Diskontinuitatsbereiche endlicher Bewegungsgruppen des dreidimen-
sionalen sphdrischen Raumes”. Mumford studies the singular point z of
the surface X defined by the equation

0=2% 493+ 25

He proves that for a resolution 7 : ¥ — X we have (RwOy), = 0.
This is done without an explicit description of the exceptional divi-
sor. In terms of Michael Artin’s 1960 Harvard thesis this means that
the singularity is rational. This, together with the fact that the neigh-
bourhood boundary is a homology sphere, implies that the local ring
Ox s = C{z,y,2}/(z? + y3 + 2°) is a unique factorization domain. Ac-
tually it is the only nonregular two-dimensional analytic local ring with
that property, as I was able to show some years later.

I have now described what was probably known to Hirzebruch when
he found the beautiful construction of Milnor’s exotic sphere generating
bPy,. The construction consists in gluing 8 copies of the tangent-disc-
bundle of $%* according to the Eg-scheme. The resulting parallelizable
4k-manifold is (2k — 1)-connected and has signature 8. Therefore, its
boundary is the Milnor generator of bPyy.

It would be interesting to know whether Hirzebruch’s construction
had its origin in the remarkable temporal coincidence of the construc-
tions of Milnor and Mumford, one coming from differential topology and
the other one from algebraic geometry. There is some evidence for such a
fusion of ideas. In February 1963 Hirzebruch gave a talk in the Séminaire
Bourbaki reporting on Mumford’s paper with a final section “Further re-
marks”, in which he mentions his Fg-construction of the Milnor sphere
and points out that certain singularities given by equations have resolu-
tion graphs of type A,, Dy, Eg, E7, Eg. In this Bourbaki talk Hirzebruch
adopts Mumford’s term “plumbing” for the construction of manifolds
by gluing disk bundles. However, the construction is presented in the
way of Milnor, with bending of corners, instead of fitting in Mumford’s
“plumbing fixture”.



SINGULARITIES IN THE WORK OF FRIEDRICH HIRZEBRUCH 37

In the one page paper “Zur Theorie der Mannigfaltigkeiten” Hirze-
bruch first refers to Milnor’s mimeographed notes “Differentiable mani-
folds which are homotopy spheres”, but finishes with the sentences:

“Die Konstruktion wurde motiviert durch die Singularitat der affinen
algebraischen Fliche 22 + 23 + 25 =0 in (0,0,0). Lést man auf, dann
wird der singulare Punkt aufgeblasen in einen Eg-Baum von 8 nichtsin-
guldren rationalen Kurven der Selbstschnittzahl —2.”

It is also interesting to take notice of Hirzebruch’s commentary on
this paper in his collected works. There he writes:

“In dem 2. Teil meiner Dissertation [...] hatte ich zwar die Fldchen-
singularitaten aufgelost, aber lerder, abgesehen von den Quotientensin-
gularitdten Anq [...], keine konkreten Beispiele behandelt. Um 1960
lernte ich die heute so beruhmten “einfachen” Singularitdten kennen,
deren Auflosungsbaume die aus der Theorie der Lieschen Gruppen bekan-
nten Diagramme An_1, Dpyo, Eg, E7, Eg sind (n > 2; Ap—1 = App—1)-
Ich benutzte die dalteren Arbeiten von Patrick Du Val [...]. Spdter ka-
men dann sein Buch (Homographies, quaternions and rotations, Oz-
ford University Press 1964) und eine interessante Korrespondenz mit
Du Val hinzu, wodurch ich auch die Beziehungen zur Invariantentheorie
nach F. Klein kennenlernte. Die Singularitdten wollte ich dann mittels
“plumbing” in hoheren Dimensionen “imitieren”. So kam ich auf die
Es-Konstruktion der Milnorschen exotischen Sphare.”

It is impossible to present in a few pages the historical development
to which Hirzebruch alludes in these sentences. I shall restrict myself to a
few comments on the names mentioned by Hirzebruch and to a narration
of some part of the story in which Hirzebruch and I myself were involved.

Klein’s invariant theory came into being in 1874. In his paper “Uber
bindre Formen mat linearen Transformationen in sich selbst” in Mathe-
matische Annalen 9 we find among other things a relation between three
invariants T, f and H of the binary icosahedral group acting on the ring
of polynomials in two variables. In 1877 Klein writes this relation as

T2 = 12f° — 12*H3.

Essentially the same relation had been found a few years earlier by
Hermann Amandus Schwarz. In his paper “Uber diejenigen Falle, in
welchen die Gaussische hypergeometrische Retihe eine algebraische Func-
tion ihres vierten Elementes darstellt” published in Crelles Journal, vol.
75 (1872/73) Schwarz considers three polynomials @12, 20 and @39 whose
roots correspond to the vertices, the midpoints of the faces and the mid-
points of the edges of an icosahedron inscribed in the Riemann sphere.
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He obtains the identity
3 3. 93 5 2
P30 — 47+ 371 = P30

Today, we see this as the defining relation between three generators of
the ring of invariants Clu, v]® of the binary icosehedral groups G acting
on C?, and we identify this ring with the ring of functions on the affine
variety C? /G imbedded in C* and given by such an equation. However,
it took a long time until it was possible to see things this way.

An important step relating singularities to root systems and groups
generated by reflections was a paper by Patrick Du Val published in 1934
in the Proceedings of the Cambridge Philosophical Society. Du Val con-
sidered surface singularities which have a resolution such that all compo-
nents of the exceptional curve are nonsingular with self-intersection num-
ber —2. He classified them by their resolution-graphs, which are, in mod-
ern terminology, the Coxeter-Dynkin diagrams of type A, D,, Eg, E7, Fs.
He also describes these singularities as singularities of double coverings
of the plane with a description of the singularity of the branch curve.
This amounts to writing down equations of the form 2% = f(z,y). For
Es, or Uy, in Du Val’s notation f(z,y) = y® — 5. Du Val notices the
analogy between his classification and Coxeter’s classification of finite
groups generated by reflections obtained in the years 1931/34. He shows
that the reflection groups, i.e., the Weylgroups of type A,, D, Eg, E7, E3
can be used in a systematic discussion of exceptional curves of the first
kind and of exceptional configurations of A-D-E-type on rational sur-
faces. Modern accounts of these matters were given by Manin in his
book “Cubic forms” and by Demazure in his four talks on Del Pezzo
surfaces in the “Séminaire sur les Singularités des Surfaces”, 1976/77,
dedicated to P. Du Val.

Du Val’s 1934 paper had established a link between singularities of
type A-D-E and Weyl groups of type A-D-E. On the other hand, around
1960 Hirzebruch realized that these singularities have a relation to the
finite subgroups G of SU(2), since their neighbourhood boundaries have
the same topological properties as the spherical space forms S3/G. The
exchange with Du Val finally clarified the situation. Du Val identified
these singularities with the quotient singularities C?>/G. Those of type
A,, correspond to the cyclic groups, the ones of type D, to the binary
octahedral groups, and Fg, E7, Eg correspond to the binary tetrahedral,
octahedral and icosahedral groups.

When Hirzebruch speaks of “simple” singularities, he is referring to a
beautiful discovery of Vladimir Igorevich Arnold made in 1972. In a pa-
per entitled “Normal forms of functions near degenerate critical points,
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the Weyl groups Ay, Dy, Ey, and Lagrange singularities” Arnold proved
the following theorem:

Every 0-modal germ of an analytic function with an isolated singu-
larity is stably equivalent to one of the germs of type A, D or E at zero;
these germs are themselves 0-modal.

Two germs are stably equivalent, if they become equivalent when one
adds a number of squares of new variables. Thus the germs equivalent
to surface singularities of type A2 or of type Eg look like this:

A+ttt o,
zir’+z§’+z§+~--+z,2l.

These stabilized germs, which were characterized by Arnold by a prop-
erty of their semiuniversal unfolding or deformation had already ap-
peared in an entirely different context. In 1955 J. Herszberg had charac-
terized them in his thesis by a property of their resolution: They are the
only absolutely isolated double points on hypersurfaces. An isolated sin-
gular point is called absolutely isolated if it can be resolved by a sequence
of monoidal transformations with 0-dimensional centre. For absolutely
isolated double points of surfaces this theorem had already been obtained
by D. Kirby and had been published in three parts in the Proceedings of
the London Mathematical Society 1955-1957. The title was “The Struc-
ture of an Isolated Multiple Point of a Surface”. Herszberg and Kirby
were aware of the earlier work of Du Val.

Later work of Hirzebruch, Milnor and myself was to show that these
higher-dimensional singularities of type Eg and A have a very close
relation to the Milnor and Kervaire spheres and to their plumbing con-
struction, a relation going beyond the intentions of Hirzebruch when he
wanted to “mimic” the 2-dimensional singularities by plumbing in higher
dimensions. This development came as a surprise while I was struggling
for the solution of another problem related to FEj.

It began when I asked Hirzebruch for a problem for my first postdoc-
toral work. This was at some time in 1963. Hirzebruch gave me a 7-page
paper by Michael Atiyah published in 1958 in the Proceedings of the
Royal Society. The title was “On analytic surfaces with double points”.
Hirzebruch suggested that I might try to generalize this from ordinary
double points, i.e., surface singularities of type A, to the other surface
singularities of type An,Dn, Eg, E7, Eg. At that time, there was cor-
respondence between Hirzebruch and Du Val about these singularities,
there were two Ph.D.-theses on plumbing written by two of Hirzebruch’s
students, Arlt and von Randow, and there were mimeographed notes of
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lectures by Hirzebruch at the University of California, Berkeley in 1962
entitled “Differentiable manifolds and quadratic forms”. In these notes
the A-D-E singularities were treated as twofold algebroid coverings of
the plane and resolved by Hirzebruch’s method.

Atiyah’s paper dealt with Kummer surfaces. The history of these
surfaces is too long to be told here. I shall say only a few words about it.
The first example of a Kummer surface appeared long before Kummer
in the work of Fresnel between 1820 and 1830. He introduced a surface
now called Fresnel surface describing the expansion of light in a crystal.
Around 1860 this surface appeared in another context in the work of
Kummer who investigated focal surfaces of algebraic ray systems. In
1865 Kummer proved that the focal surface of a ray system of order 2
in complex projective 3-space is a surface of degree 4 in P3(C) with 16
ordinary double points or a degeneration of such a surface. Conversely
any surface of degree 4 in P3(C) with 16 ordinary double points is the
focal surface of a ray system of order 2. Subsequent work of Weber,
Borchardt, Rohn and Klein showed that these Kummer surfaces of degree
4 in P3(C) with 16 double points are exactly the surfaces Jac (C)/{%1},
where Jac (C) is the Jacobian of a Riemann surface of genus 2.

One of the results in Atiyah’s 1958 paper is that the nonsingular
complex surfaces obtained by the minimal resolution of the 16 double
points of a Kummer surface are diffeomorphic to the nonsingular quar-
tic surfaces in P3(C). This theorem was one of the starting points of
the fabulous development of the theory of K3-surfaces which began at
that time. André Weil refers to Atiyah’s theorem in his final report on
Contract No. AF 18(603)-57 and to his exchange with Atiyah. He says
that he had observed independently that the minimal resolution of a
surface in P3(C) with one ordinary double point and a nonsingular sur-
face in P3(C) of the same degree are diffeomorphic. The reason for the
name K3-surface introduced by Weil is given in his comment on that
final report: “ainsi nommés en ’honneur de Kummer, Kéahler, Kodaira
et de la belle montagne K2 au Cachemire”. Today, a K 3-surface may be
defined as a compact complex surface with trivial canonical bundle and
first Betti number 0. The minimal resolutions of Kummer surfaces are
very special K3-surfaces, which have remarkable symmetry properties,
and which are used in the analysis of moduli problems of K 3-surfaces.
I refer to the chapter on K3-surfaces in the beautiful book “Compact
complex surfaces” of Barth, Peters and Van de Ven.

Atiyah used the following basic facts. Consider the quadric cone V'
in C* given by the equation

Ir1x2 — T3x4 = 0.
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Let Q C P3(C) be the quadric of complex lines £ C V. In the Grass-
mannian of complex planes in C* there are two projective lines Py of
planes p C V. Each line £ € QQ is contained in two uniquely determined
planes p+(£) € P+. This defines two projections p+ : @ — P1 and an
isomorphism @ — P4 x P_.

Now define three modifications W, W_ and W of V as follows:

Wi ={(z,p) € X x Py |z € p},
W={(z,£) e X xQ|z et}

There is an obvious diagram of holomorphic maps

The modifications 7, w4, 7 are three different resolutions of the sin-
gularity (V,0). Whereas 7 replaces the singular point by the divisor @
in W, the resolutions 74 and w_ are “small” resolutions. They replace
the singular point only by the 2-codimensional curves Py in W,. The
resolution 7 is obtained by blowing up the maximal ideal of the local ring
Ovy,p. This local ring is not a unique factorization domain. Its divisor
class group is infinite cyclic. The divisors p € P, represent one genera-
tor, those in P_ the other one. W, and W_ may be obtained by blowing
up the nonprincipal ideals corresponding to these divisors, e.g. (z1,z3)
and (z1,x4). The transition from W, to W_ is the simplest example of
what people working on complex 3-manifolds nowadays call a flop.

Atiyah uses these modifications as follows. Let f : (X,z) — (S,s)
be the germ of a map from a 3-dimensional complex manifold to a 1-
dimensional complex manifold. Assume that the fibre has an ordinary
double point of type A; at . Let ¢ : (T,t) — (S,s) be a double
covering by a smooth germ (7, t) ramified in ¢t. Then the fibred product
(T xs X,t x z) is isomorphic to the quadric cone (V,0). Choosing an
isomorphism and choosing one of the two modifications W, W_, we get
a modification X’ of T' x g X. Choosing suitable representatives, we get
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a diagram of holomorphic maps of complex manifolds

x Y x

7 f

T — S
©

with the following properties: (i) f’ is a regular map, i.e., without singu-
larities, (ii) ¢ is a ramified covering, (iii) ¢ is proper and surjective, (iv)
for each fibre X; of f’ the map X; — X4 is a resolution of the singu-
larities of the fibre X ;) of f. Let us call such a diagram a simultaneous
resolution of the singularities of the fibres of f.

The construction of Atiyah indicated above gives the existence of
simultaneous resolutions for maps f : X — S of 3-manifolds X to 1-
manifolds S with only A;-type singularities. His theorem on Kummer
surfaces is an easy consequence of this.

I took it that my task was to generalize this to all surface singularities
of type A,, Dy, Eg, F7, Eg. One difficulty in the beginning was that it
was not quite clear what was meant by “the” A-D-E-singularities, since
a priori the definition by the resolution graph was wider than the other
definitions (i.e., by equations, or as quotient singularities or as absolutely
isolated double points). Correspondence on this with Du Val and Kirby
was not conclusive, but in 1964 /65 the situation was clarified by means
of Michael Artin’s new work on rational singularities published in 1966
in the American Journal. The A-D-E-singularities were identified with
Artin’s rational double points and were determined up to isomorphism
by the corresponding diagram.

When f(z,y,z) = 0 is the equation of such a singularity, the fibered
product for a base extension by a covering of degree d will have the
equation

fz,y,2) — t4 = 0.

Thus, in the cases A,, Eg and Ejg this leads to equations of the form
4+ + 2+t =0.

I tried to find small modifications of these 3-dimensional singularities
by mapping them to others such as the quadric cone and inducing the
small modification from another one already constructed. For example
mapping to the quadric cone V meant writing F = f(z,v,2) —t% in the
form ¢1¢2 — Pp3¢4. With such methods and encouraged by my teacher I
constructed in 1964 the simultaneous resolutions for A,, D,, Fg and E7.
It also became clear that for maps f: X — S of 3-manifolds to 1-manifolds
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simultaneous resolutions could only exist for the A-D-E-singularities. So
the only case in question was FEj.

My calculations in the other cases had shown that somehow the right
number d for the base extension was the Coxeter number for the corre-
sponding root system. Thus the equation to consider for Fg was

?+yP + 25 +£0 =0.

I was unable to treat this case with the methods which I had used for
the other cases. During the Arbeitstagung in 1965 I talked about this
with Heisuke Hironaka. He suggested that I should study the divisor
class groups of the local rings of the 3-dimensional singularities which I
wanted to modify by blowing up the ideals of nonprincipal divisors. In
particular, I should study the cohomology of the neighbourhood bound-
aries of these singularities, since the divisor class group of the local ring
of a 3-dimensional isolated Cohen Macaulay singularity injects into the
second cohomology group of the neighbourhood boundary with integer
coeflicients.

Shortly afterwards I set sail for New England because following Hirze-
bruch’s advice I had successfully applied for a C.L.E. Moore instructor-
ship at MIT. This was a very good place for me, since Michael Artin
was at MIT and David Mumford at Harvard. Michael was very friendly
and always ready to help, and I learned a lot from the many discus-
sions which we had. David was also very friendly and in a number of
discussions gave me very valuable ideas. The two years in Boston and
Cambridge are among the best in my mathematical life.

Shortly after my arrival in Boston I intended to calculate the divisor
class group for

2+ +22 4+ =0.

However, Mumford suggested that I should first look at the simpler ex-
ample
2+ +25 42 =0.

This is the 3-dimensional Eg-singularity. I decided to do first a much
simpler case, namely, the 3-dimensional As-singularity

z12+z%+z§+sz=0.

I discovered quickly that it was factorial because the second cohomology
group of the neighbourhood boundary was zero. Then I did the Eg-case
suggested by Mumford, which was much more tedious, since the resolu-
tion by a sequence of monoidal transforms with the singular points as
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centres leads to an exceptional divisor with a dozen components. Again
I found that the second cohomology group was zero and the divisor class
group trivial. I was not happy about this, since I wanted nontrivial
divisor class groups. Anyhow, I had a closer look at the topology of
the neighbourhood boundary of the 3-dimensional Az-singularity, and in
September 1965 I made the irritating discovery that this singularity was
topologically trivial. Its neighbourhood boundary is homeomorphic to
S5. Thus, there was no analogue of Mumford’s theorem for singulari-
ties of dimension higher than two. Of course, I told this immediately to
Mumford, and I also wrote a letter to Hirzebruch. In that letter dated
September 28, I speculated about the FEg-singularity and possible con-
nections with Hirzebruch’s Fg plumbing contruction and exotic spheres.

At that time, Hirzebruch was at a conference in Rome. He gave a
very nice talk entitled “Uber Singularitdten komplexer Flachen”, where
he explained the A-D-E surface singularities and many related subjects.
Among other things, he reported on my work on simultaneous resolution,
and on the recent discovery announced in my letter.

Meanwhile I continued my efforts to construct the missing simulta-
neous resolution for Fg. I tried to gather strength by looking at the
beautiful crystal icosahedron on the mantelpiece of my apartment on
Beacon-Hill, but I did not get anywhere, and I got more and more de-
pressed. In December 1965 I wrote to my mother that I was abandoning
Eg. 1 also wrote about an experience intensifying my melancholy mood,
namely, meeting John Nash. I knew that he had done extraordinary
things before he got ill. In 1965/66 he was in Brandais and back in MIT,
and he was able to do mathematics. Sometimes late in the evening we
met in the long high corridors of MIT and started to talk about mathe-
matics. Nash was interested in the resolution of singularities of complex
algebraic varieties. Some traces of our conversation may be seen in a
draft of a paper entitled “Arc structure of singularities”, where abso-
lutely isolated double points of dimensions 2 and 3 serve as examples
illustrating his distinction between essential and inessential components
of the exceptional set in a resolution. What made me sad to the extent
of being terrified was the feeling that he had lost his strength. I felt that
this once powerful mind had broken wings.

In February 1966 I gave a talk in Cornell on the topology of singu-
larities showing my example

24 4+2-28=0 , k>1odd,

for a singular normal complex space which is a topological manifold. I
had been invited by my friend, Hirzebruch’s student, Klaus Janich. We
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had a good time together, thus feeling at home in a foreign country. I
do not remember whether we talked about Janich’s work. If we did, we
certainly didn’t anticipate what happened next.

In a letter dated March 24, 1966 Hirzebruch told me that he had
found out that there were very close connections between my work and
that of Janich, which were explained in a provisional manuscript of eight
pages.

Janich was studying actions of compact Lie groups G on connected
differentiable manifolds X without boundary. Such a G-manifold X was
called “special”, if for each £ € X the action of the isotropy group G,
on the normal space in x to the orbit Gz is the direct sum of a trivial
and a transitive representation. “Transitive” means transitive on the
set of rays. The orbit space X/G of a special G-manifold is canonically
a differentiable manifold M with boundary. Let M? be the interior of
M and A be the set of boundary components. The orbit structure of
X associates to M? the conjugacy class of isotropy groups H(x) = Gz
of x € X over My and to a € A the conjugacy class of isotropy groups
Ua(z) = G4 of points z over a. Jéanich defined a notion of admissible fine
orbit structures in terms of data H C G, H, C G, a € A. His main result
was a classification of special G-manifolds X with quotient M in terms
of these fine orbit structures. The result was published in Topology 5,
1966. Hirzebruch used the manuscript of this paper. At about the same
time, there was independent closely related work of Wu-Chung Hsiang
and Wu-Yi Hsiang announced in the Bulletin of A.M.S.

Hirzebruch applied Jinich’s result to a very special class of examples.
Motivated by my work he looked at the neighbourhood boundaries of
absolutely isolated double points of type Ag_ 1. Thus, he considered the
differentiable manifolds W2"~!(d) in C**! given by the equations

zg + 22 4422 =0

L2+ |21+ + |za]? = 2.

He noticed that there is an obvious operation of the orthogonal group
O(n) on W2"~1(d). The operation is obvious indeed, but only if you have
the idea of looking for it. Hirzebruch proved that W?"~1(d) is a special
O(n)-manifold with orbit space D?, the 2-disk. The isotropy groups are
conjugate to O(n — 1) for the special orbits, i.e., those with |zp| = 1 and
to O(n — 2) for the general orbits.

Hirzebruch applied Jénich’s classification result to the special case of
special O(n)-manifolds, n > 2, with this orbit structure H = O(n — 2),
U = 0(n—1). According to Janich, they are classified up to equivariant
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diffeomorphism by an integer d > 0. For d = 0 one has the diagonal
action on S™ x S*~1. For d > 0 Hirzebruch proved that one gets exactly
the O(n)-manifolds W?"~1(d), d > 1.

Certain O(n)-manifolds M2"~! with orbit type (O(n —2),0(n — 1))
had been studied by Bredon in a paper in Topology 3, 1965. Hirzebruch
noticed that they are special, and thus he could identify M,f""l with
W2r=1(2k + 1). Using Bredon’s results, he could prove that W2"~1(d)
is a homology sphere if and only if d is odd, and that for fixed n and
different d's one gets different knots.

But the most exciting result was derived from a result of Bredon on
his M7 derived from a result of Kosinski: M7 is an exotic sphere. Hence
Hirzebruch got

Theorem 3. The manifold
W93) = {(z0,...,25) € C® | B2+ 4+22=0, 2| =1}

is an exotic 9-sphere.

W?2r~1(d) is obviously embedded in S?"*!. Kervaire had proved in
a paper which appeared in the volume “Differential and Combinatorial
Topology™:

A homotopy m-sphere can be imbedded in S™*? if and only if it
bounds a parallelizable manifold.

Thus it was clear that W?(3) is the 9-dimensional Kervaire sphere.
But where was the highly connected parallelizable manifold obtained by
plumbing two disc-bundles with boundary W9(3)? And how about the
absolutely isolated singularities of type Fg? The parallelizable manifolds
were not expected to be found by resolution. Hirzebruch speculated on
this question in a postscript referring to my own speculation on his Fg-
construction. Hirzebruch expected to deal with the Eg-case by means of
a certain generalization of Janich’s result to O(n)-manifolds with 3 types
of orbits and to show in this way that the neighbourhood boundaries of
the n-dimensional Eg-singularities were the Milnor generators of bP,,, for
n even.

The joy about these wonderful results was so great that I was almost
beside myself, and I wrote in a letter to Hirzebruch that I could not
imagine a more beautiful interplay between teacher and students.

Two weeks later a new player appeared. On April 16, John Nash
showed me a letter to him from John Milnor, dated Ann Arbor 4-13-66.
As far as I know, this letter has not been published. I hope that it is not
improper when I publish it here. It is also a sign of gratitude to John
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Nash. The text is as follows.

Dear John,

I enjoyed talking to you last week. The Brieskorn example is fasci-
nating. After staring at it a while I think I know which manifolds of this
type are spheres, but the statement is complicated and the proof doesn’t
exist yet. Let X(p1,...,pn) be the locus

P+ =0, |+ =1

where p, > 2. It is convenient to introduce the graph G which has one
vertex for each p; and one edge for each p,, pr which have G.C.D. greater
than one. .

Eg (4,6,7,15) — ————e

Assertion. X(pj,...,pn) is a topological (2n — 3)-sphere if and only
if n # 3 and either
a) G has at least two isolated points
or b) G has one isolated point and one component consisting of an odd
number of p,’s, any two of which have G.C.D. = 2.
For example ¥(2,2,2,25) and X(2,2,2,3,5) are topological spheres,
but ¥(4,6,7,15) or 3(2,2,2,2,3) is not.
In the case 2n — 3 =1 mod 8 one can describe which are exotic
spheres and which not; but I can’t handle the other dimensions.
Are results of this type known to Brieskorn or Hirzebruch?
Note: The conjecture I mentioned about (disk, diskNI') = (slab, slabN
I') is true and not so difficult.
Regards
Jack
There was a little figure about 1 cm in diameter on the margin next
to the last sentence. Figure 6 is a magnified facsimile.

Initially I must have overlooked this figure or failed to realize that it
was a key for understanding Milnor’s approach. For, when I sent a copy
of the letter to Hirzebruch I wrote that I had no idea how he was going
to prove his assertion.

But even without knowing Milnor’s ideas I was able to prove his as-
sertion by good luck in less than two weeks. On the shelf for the latest
journals in the library of MIT I found an article by Frédéric Pham, sub-
mitted to the Bulletin de la Société Mathématique de France in March
1965. The title was “Formules de Picard-Lefschetz généralisées et rami-
fication des integrales”. Pham, who at that time was working at the Ser-
vice de Physique théorique in Saclay was motivated by problems which
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FIGURE 6

at first sight seemed to be unrelated to what we were doing. The pa-
per was a contribution to efforts of theoretical physicists aiming at a
better understanding of the singularities and discontinuities of Feynman
integrals by applying methods of algebraic topology developed for the
topological analysis of algebraic manifolds. Thus these efforts had their
mathematical roots in the two volume treatise “Théorie des fonctions
algébriques de deuz variables indépendantes” published by Picard-Simart
in 1897 and 1906 and in Lefschetz’ 1924 monograph “L’analysis situs et
la géométrie algébrique”. Pham was also influenced by work of Leray and
Thom. The first part of Pham’s paper was a generalization of the clas-
sical Picard-Lefschetz formula. This formula describes the monodromy
transformation on the homology of a general member of a pencil of al-
gebraic varieties such that the singularities of the special members are
at most ordinary double points. Pham generalized the Picard-Lefschetz
formula exactly to the class of singularities considered in Milnor’s letter
to Nash.

Let a = (ag,...,a,) be a tuple of positive integers. Pham considers
the pencil of affine hypersurfaces

E4t) = {(20, -+, 2n) €C* | 250 + ... 4 220 = t}.

Let wy, = e2™/% and C,, the cyclic group of unit roots generated by wg.
Pham constructs a simplicial complex in Z%(1) which is a deformation
retract of Z%(1). As an abstract complex it is the iterated join

Cop *...%Cy,.
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=2(0) is the only singular member of the pencil. Intersecting with the

sphere ||z|| = 1 one gets Milnor’s ¥(ayg, ..., an). Removing the singular
fibre on gets a fibre bundle C**! — Z2(0) — C — {0}. There is a geo-
metric monodromy (2o, ...,2n) — (w020, .. .,wWn2y) acting in the obvious

way on the complex Cg, * ... *x C,, . Using these facts Pham calculates
the homology of Z%(1) and the monodromy transformation on the only
nontrivial reduced homology group H,(Z%(1)) with integral coefficients.
He also calculates the intersection form on the homology.

From these results I could painlessly deduce the homological part of
Milnor’s assertion. All I had to do was to calculate the characteristic
polynomial of the monodromy

A, = H (x—wéo...wf{‘>
O<ip<ag

and to show that A,(1) = +£1 is equivalent to Milnor’s condition on
the graph G, associated to a. This was done on four pages by April
25 and sent to Milnor and Hirzebruch. Until the end of the month I
had also proved on two more pages that m(X(ao,...,an)) is trivial for
n > 2. Thus the proof of Milnor’s assertion was complete and I went on
to show that Pham’s result also allowed to calculate the signature o, of
E%(1) for n even and thus to determine the differentiable structure when
Y(ag, - -.,a,) was an exotic sphere of dimension 4m — 1. I did the case
¥(2,2,2,3,5) explicitly and found that it was Milnor’s generator of bP;
constructed by Hirzebruch’s Eg-plumbing construction.

Meanwhile by the end of April Milnor had completed a manuscript
entitled “On isolated singularities of hypersurfaces”. It did not give a
complete proof of the assertion about the class of singularities considered
in his letter to Nash, but it contained foundational results on arbitrary
isolated hypersurface singularities.

Consider holomorphic functions f defined in a neighbourhood U of
0 in C**! with an isolated singularity at 0 and f(0) = 0. Let B, Cc U
be the ball ||z|| < € and S; = 0B¢. For n > 0 let D, C C be the disk
|t| < n. Consider the “slab”

Ney = Be 0 fH(Dy).

This is the slab shown by the figure in the letter to Nash. f defines a
map

f:Ney — Dy
Let F; denote the fibre of this map over t € D,,. The fibre Fj is singular
for small €. The intersection

K. =FNS:
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is a closed manifold and the diffeomorphism type of this neighbourhood
boundary does not depend on €. Fix € and choose n sufficiently small.
Then

f:Ney— Fo — Dy — {0}

is a differentiable locally trivial fibre bundle. The fibre F; is parallelizable
and (n — 1)-connected with boundary diffeomorphic to K. It has the
homotopy type of a wedge of n-spheres. OF; is (n — 2)-connected. It
is a homology sphere iff A(1) = %1 for the characteristic polynomial A
of the fibre bundle. For n odd, the value A(—1) mod 8 determines
the Arf invariant and hence the class of K in bPs,, if K is a homotopy
sphere. For homotopy spheres K with n even, the class of K in bP,, is
determined by the signature of F; divided by 8.

There is a homeomorphism N, , — B, keeping K pointwise fixed.
It identifies N, , with S¢. The part of ON;, lying over 0D, is identi-
fied with the complement of a tubular neighbourhood of K in S; which
therefore becomes a fibre bundle over a circle with typical fibre F;. The
fibration may be defined by z — f(2)/||f(2)]]. Thus K C S is a fibred
knot. These fibrations are nowadays called “Milnor fibrations” and Mil-
nor’s results or analogues of them are fundamental for nearly all work
on the topology of singularities.

Later on a local Picard-Lefschetz theory was developed which allows
to represent certain bases of the homology of the Milnor fibre by vanish-
ing cycles which are embedded n-spheres with tubular neighbourhoods
isomorphic to their tangent disc bundles. In the case of the absolutely
isolated double points of type Ay, Dy, Fg, E7, Eg a suitable choice of such
a basis of vanishing cycles allows to identify the Milnor fibre directly with
the corresponding parallelizable manifold constructed by plumbing.

Meanwhile Hirzebruch had been pursuing his idea of dealing with
stabilized curve singularities

fle, ) +2+...+22=0

via certain O(n)-manifolds with three types of orbits. Nearly simulta-
neously with Milnor’s manuscript I got a manuscript from Hirzebruch
dated May 1, 1966 with many beautiful results on these manifolds.

The general theory of such knot-G-manifolds was developed in the
last paragraph of Janich’s article. Consider a closed connected (2n + 1)-
dimensional O(n)-manifold M with the following properties:

(i) The isotropy groups are conjugate to O(n — 2), O(n — 1)
or O(n).
(i1) The set F of fixed points is not empty and for any z € F’
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the operation of O(n) is the diagonal operation on R*"
plus a trivial operation on R.
(iii) M — F is a special O(n)-manifold.

These conditions imply that the orbit space M/O(n) is a 4-dimensional
manifold with boundary. M is called a knot O(n)-manifold, if there is a
diffeomorphism of M/O(n) with the 4-disk D* sending the image of F in
the orbit space bijectively onto a knot k C §% = dD*. Jinich proves that
for each knot k C S3 and each integer n > 2 there is a welldetermined
(2n + 1)-dimensional knot O(n)-manifold v,(k). For n = 1 we define
71(k) as the 2-fold covering of % branched along k.

Hirzebruch announced the following result. ~,(k) is an (n — 1)-
connected manifold bounding a parallelizable manifold which can be
constructed explicitly from a Seifert diagram of the knot. When ~, (k)
is a homotopy sphere the invariants determining its class in bP,+2 can
be calculated from invariants of the knot.

Now let k£ be an algebraic knnt, i.e., a knot associated to a plane
curve singularity at the origin

k={(zy) €C| f(z,y) =0, |z +y|* = 1}.

Then v,(k) is the neighbourhood boundary of the corresponding stabi-
lized singularity and is imbedded in the standard sphere §2"*3 in C**2:

(k) = {(z,y,21,...,22) € S| f(z,y) + 22 + ... + 22 =0}.

In particular for a torus knot k = ¢(p, ¢) one obtains

w(k) =%(p,q,2,...,2).

Hirzebruch indicated a tentative way for calculating the signature and
obtained an explicit formula for ¢(p, q). In particular, he also concluded
that for ¥(3,5,2,...,2) for n odd is the Milnor generator of bPa, 2.

When Hirzebruch got my letter referring to Pham’s paper, he saw
very quickly how to calculate the signature of the evendimensional vari-
eties of Pham by using Pham’s description of the intersection form. He
told me the result together with the proof in a letter dated May 9, 1966.
The result is as follows. For a = (ag,...,an), n even, the signature o,
of E%(1) is

oo =0 —0o,

where o and o are the numbers of tuples (jo, - . ., jn) With 0 < ji < ay
such that
0 < Zjr/ag <1l mod 2 for of,
-1 < Zj/ar <0 mod 2 for o,

a
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The proof given in my paper in Inventiones is Hirzebruch’s proof.
Later on the formula for ¢, went through a remarkable metamor-
phosis. In March 1970 I got a letter from Don Zagier who had been a
student of Atiyah and had attended lectures on singularities and exotic
spheres which I gave in Oxford in 1969. Don Zagier had discovered a
formula for o, resembling closely the form of the Atiyah-Bott fixed point
theorems and Atiyah-Singer G-signature theorems. Here is the formula:

2N . . . .
(=)r/? nj o omj o mj mj
= cot——=cot ————cot——,..cot———
Te= TN ; 2N 2a; 2a,
JJOdd
where n is even and N is any common multiple of ag,...,a,. I sent

Zagier’s letter to Hirzebruch, who found Zagier’s result very interesting,
since he had studied similar questions and had tried to get o, through the
G-signature theorem. In March 1970 Hirzebruch had been taking part in
the inauguration of the new Fine Hall in Princeton and had given a talk
entitled “The signature theorem: Reminiscences and recreations”. The
underlying theme was “More and more number theory in topology”. In
that talk Hirzebruch dealt with Dedekind sums and reciprocity theorems
and Markoff triples and tried to establish relations with the Atiyah-Bott-
Singer index theorem and fixed point theorem. When he got Zagier’s
formula, he pointed out to Zagier that it could be deduced from a formula
of Eisenstein, which Hirzebruch had found in Rademacher’s lectures on
Analytic Number Theory: Let ((z)) =z — [z] — 5 for € R — Z and
((z)) = 0 for x € Z. Then Eisenstein’s formula expresses ((z)) for
rational = p/q with positive integers p, ¢ by a trigonometric sum:

(9/9)) Zcot | 2mikp/q.

Zagier’s formula can be deduced from this formula since o, can easily be
expressed as a sum of values of (( )) for rational numbers.

Hirzebruch invited Zagier to discuss these matters with him in Bonn,
and this was the beginning of a cooperation that led to Zagier’s Lec-
ture Notes “Fquivariant Pontrjagin Classes and Applications to Orbit
Spaces”, to the joint monograph “The Atiyah-Singer theorem and ele-
mentary number theory” and to joint papers on Hilbert modular sur-
faces. Zagier proves in his lecture notes a signature theorem expressing
Sign(g,Z%(1)) as a trigonometric sum, where g is any element of the
group Cyy X ... x Cy,, operating on Pham’s Z%(1). For g = 1 this special-
izes to his formula for o,. Other specializations include a result of Hirze-
bruch and Janich published in 1969 in their joint paper “Involutions and
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Singularities”. The description of exotic spheres bounding parallelizable
manifolds as neighbourhood boundaries ¥(ao, . .., an) gives lots of exotic
actions of finite groups on these manifolds. It is natural to try to dis-
tinguish them by invariants. One such invariant is the Browder-Livesay-
invariant. Hirzebruch and Janich identify it with an invariant introduced
by Hirzebruch in his paper “Involutions on manifolds”. They calculate
this invariant in certain cases for the involution T on ¥(ay, . .., an) given
by T(z) = —z, where all a, have the same parity. For even parity they
have a general formula, and this formula turned out to be a special case
of Zagier’s theorem.

When the problem relating to the manifolds X(ayg,...,an) had been
clarified by Hirzebruch, Milnor and myself, I returned to my old problem
of constructing simultaneous resolutions for the rational double point Fg,
the icosahedral singularity. Now I was finally able to solve it. I found
that the number of solutions of the problem is

ol4.35.52 7

This is the order of the Weyl group of type Eg. The divisor class group
of the local ring of the singularity

22 +P+2° +130 =0

has the structure of the lattice of weights of the root system Eg, and the
different solutions correspond to the Weyl chambers. For each chamber
one obtains a solution by blowing up any ideal class in the chamber. The
construction of the solution used very classical algebraic geometry, an old
paper of Max Noether on rational double planes from 1889 and properties
of the exceptional curves on rational surfaces obtained by blowing up 8
points on a plane cubic. Some of these facts had been explained to
Hirzebruch and to me by Du Val, and Hirzebruch had mentioned them
in his talk in Rome.

In May 1969 Grothendieck read my papers on simultaneous reso-
lution. He told me some interesting conjectures on related problems.
Whereas I had been considering simultaneous resolutions of a very spe-
cial kind of deformation of the A-D-E-singularities, he suggested to look
at the semiuniversal deformation. He conjectured that this deformation
was to be found in the adjoint quotient map of the simple Lie algebras
of type A-D-E, and that a universal simultaneous resolution was to be
obtained by means of a generalization of the Springer resolution of the
nilpotent variety. I proved these conjectures with the help of Tits and
explained it at the ICM in Nice 1970. Later developments were beautiful
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extensions to all simple Lie algebras by Slodowy and characterizations of
the universal simultaneous resolution as universal deformation of the res-
olution of the rational double points by Michael Artin and Huikeshoven.
Recently there has been very interesting work of Slodowy and Helmke
on the relation between loop groups and elliptic singularities. But this
is a different story.

Cusps

Let me return to the singularities in the work of Friedrich Hirze-
bruch. In the hierarchy of singularities as described by Arnold there is
an interesting class of singularities lying between the simple singularities
of A-D-E type and the simply elliptic singularities of type E¢, E7, Eg.
These are the singularities Tpq, with equation

P +y?+ 2" +zyz =0,

where 1/p+1/g+1/r < 1. These belong to a class of singularities which
Hirzebruch discovered in 1970.

Hirzebruch has given four talks in the Séminaire Bourbaki. It is a
remarkable fact that in three of them singularities played an important
role. The first of these Bourbaki lectures was the report on the work
of Mumford and the higher dimensional Fg-plumbing construction. The
second was on singularities and exotic spheres. Finally the third lec-
ture, delivered in June 1971, had the title: “The Hilbert modular group,
resolution of the singularities at the cusps and related problems”.

This contribution of Hirzebruch is on one hand a direct continuation
of work in his thesis and on the other hand has its origin in work of David
Hilbert in 1893/94 and in the Habilitationsschrift of Hilbert’s first stu-
dent Otto Blumenthal. In his thesis Hirzebruch had considered surface
singularities which are resolved by a chain of rational curves. Now the
objects to be studied are surface singularities which are resolved by a
cycle of rational curves. In the printed version of his thesis Hirzebruch
had claimed without proof that there could be no cycles in the resolution
graph of a surface singularity. He had soon noticed that this was wrong,
and now singularities resolved by a cycle of rational curves became ob-
jects with which he occupied himself during a whole decade, from 1970
until 1980.

Let us consider a finite sequence of nonnegative integers by, ..., b,.
We want to construct a surface singularity with a cyclic resolution by
nonsingular rational curves with self-intersection numbers —b;. We want
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to do a construction in the style of Hirzebruch’s thesis by using toroidal
embeddings.

A cyclic configuration of exceptional curves with mutual intersection
numbers 0 or 1 has at least 3 elements. So we assume ¢ > 3. For ¢ > 3 an
exceptional curve of the first kind in such a configuration can be blown
down, and the resulting configuration is still cyclic. So for ¢ > 3 we can
assume by > 2 for all k. Thus for ¢ > 3 we admit all sequences such that
br > 2 for all k, but not all b; equal 2. For ¢ = 3 we admit also sequences
of the form (a+3,2,1) with a > 3 and (a1+1, 1, a2+1) with a1, a2 > 2 and
a1 > 3 or as > 3. In these two cases blowing down of exceptional curves
of the first kind leads to “reduced” sequences (a) and (a1, az) of length
1 and 2 respectively. Hirzebruch gives two constructions for singularities
with cyclic resolution. The first one is analogous to the construction in
his thesis and uses the nonreduced sequence b = (b1, ..., bs). The second
one uses the reduced sequence, which I shall again denote by (b1, ..., b,).
I admit that this is an abuse of notation.

Here is the first construction. We define a doubly infinite sequence of
integers by, k € Zby b; = by if j =k mod ¢. Now we proceed in strict
analogy with the construction in Hirzebruch’s thesis. We construct a 2-
dimensional complex manifold Y}, by gluing an infinite number of copies
of C?, one for each integer k. The transformation from the (k — 1)-th
copy to the k-th copy is

b

Up = U Vp_1

Vg = u,:il.
In Y, we have an infinite chain of nonsingular rational curves with self-
intersection numbers —bg, and the complement of this system of curves
is an algebraic torus C* x C*. Because of the periodicity of the sequence
br we have a transformation T : Y, — Y} identifying the k-th copy of
C? canonically with the (k + ¢)-th copy. T has a fixed point in (1,1) €
C* x C*, but there is a T-invariant tubular neighbourhood Y;O of the
chain of exceptional curves on which T acts freely. X, = Y/(T) is a
complex manifold with a cyclic configuration of ¢ nonsingular rational
curves with self-intersection numbers —by,...,—b;. The conditions on
these sequences imply that the intersection matrix is negative definite.
So, according to Grauert, one can blow these curves down. Thus we
get a normal complex space X, with a singular point z, and we have
constructed a singularity (Xp,z) with cyclic resolution Xy = Xp.

The second construction is somehow analogous to the description of

the X, 4 in Hirzebruch’s thesis as quotient singularities C2/ Ch,q, Where
the group C, 4 is constructed from the sequence of self-intersection num-
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bers by means of a continued fraction. Now the singularity of X, will be
constructed as a partial compactification of a quotient H?/G}, where H
is the upper half plane and the group G, acting on H x H is defined by
means of infinite continued fractions.

We start with the doubly infinite sequence of integers by > 2 with
reduced period ¢ generated from the reduced sequence associated to b.
(Recall that this is an abuse of notation.)

For any integer k we define a real number a; by an infinite periodic
continued fraction

1
o =bp - ———

bk+1 - bk+2

These numbers are totally positive algebraic numbers in the real
quadratic field K = Q(a1). In K we consider the lattice

M =Za; ® Z.
In M we consider the sector of totally positive elements
Mt ={weM|w>0,vw >0},
where w' is obtained from w by the nontrivial automorphism of K.
Mt ={y —za | (z,y) € Z®,y — xay > 0,y — za] > 0}.

The boundary of the convex hull of M is an infinite polygon with ver-
tices wy, € MT which may be computed recursively by wg = 1 and
Wgt1 = a,:ilwk. Any pair (wg,wg+1) is a basis of the lattice M gen-
erating a sector contained in M, and the system of these sectors is
a subdivision of MT. The manifold constructed from these data by
toroidal embeddings is exactly the manifold Y; in the first construction,
if the original sequence b was already reduced. The next figure illus-
trates the situation for the simplest reduced sequence by = 3 for all k
and ¢ = 1, where a; = (3 + v/5)/2 for all k. This case corresponds to
the singularity T3 37. Figures of this kind occur already in Felix Klein’s
lectures “FElementarmathematik vom hoheren Standpunkte aus”.

Now we define the group G,. Let ¢ be the product € = a;...aq. Thisis a
totally positive unit in the ring of integers of the field K. Multiplication
with € is an automorphism of the abelian group M. Thus we may form
the semidirect product

Gb =M x (E )
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FIGURE 7

with the infinite cyclic group (¢) generated by e. We identify G, with a
subgroup of SL(2, K)

(" H
Gb_{<0 1)|neZ,ueM}.

SL(2, K) operates on H x H as follows:

a b (21, 2) = azi +b  dTlzg 4+ ¥
c d) VP T ey +d cllzz+d )
The action of Gy on H x H is properly discontinuous, so that the orbit

space 2 /Gy is a 2-dimensional normal complex space. We define a
partial compactification

H2 /Gy, = H? /Gy U {0}

A basis of neighbourhoods of oo is given by the sets Im z;-Im z5 >
d, where d is any positive real number. A complex valued function
on an open neighbourhood U of oo is holomorphic if it is continuous
and holomorphic on U — {co}. With these definitions H2/G, is a 2-
dimensional normal complex space, and Hirzebruch proves

HQ/Gb = (Xb,ilt).
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These singularities with cyclic resolution occur as cusp singularities of
compactified orbit spaces H?2 /G, where the groups G are certain discrete
groups operating on H? such as SL(2,0), where o is the ring of integers
in a real quadratic field K over Q. By resolving all singularities of H? /G,
one gets the Hilbert modular surfaces. Hirzebruch has made a detailed
investigation of such surfaces in a series of papers written between 1970
and 1980. Some of these papers were joint work with Don Zagier and
with Van de Ven. As an example let me quote the main result of the
joint paper with Van de Ven in Inventiones dedicated to Karl Stein on
the occasion of his sixtieth birthday. Let Y (p) be the Hilbert modular
surface associated to K = Q(,/p), where p is a prime congruent 1
mod 4.

Theorem. The surfaces Y(p) are rational for p = 5,13,17; blown
up elliptic K3-surfaces for p = 29,37,41; honestly elliptic surfaces for
p=53,61,73 and surfaces of general type for p > 89.

It is a pity that I am unable to render adequately the wealth of results
in these papers on Hilbert modular surfaces. Let me mention at least one
more beautiful result which I think is very typical of Hirzebruch’s way
of looking at mathematical objects. It is related to classical results of
Clebsch and Klein. In 1873 Klein had proved that the famous diagonal
surface of Clebsch, which is the surface in P4(C) with equations

3+ +ri+ad+z; = 0
To+xT1+rT2+T3+24 = 0,

can be obtained from P2(C) by blowing up 6 points in P>(C) in a special
position, namely the 6 points in Py(R) = S2/{%1} corresponding to the
12 vertices of an icosahedron inscribed in S%. Now Hirzebruch blows
up 10 more points, namely those corresponding to the 20 vertices of
the dual dodecahedron. The resulting surface Y can also be obtained
from the Clebsch diagonal surface by blowing up 10 Eckhardt points,
that is points, where 3 of the 27 lines on the surface meet. In a paper
dedicated to P. S. Aleksandrov, this classical surface is identified with
a Hilbert modular surface. Let o C Q(v/5) be the ring of integers and
I’ C SL(2,0) the congruence subgroup mod 2. Hirzebruch proves: The
icosahedral surface Y is the minimal resolution of H2/T.

After his work on Hilbert modular surfaces Hirzebruch wrote a series
of papers in which the problem of the existence of complex manifolds with
invariants satisfying certain conditions was related to the problem of the
existence of various types of geometric configurations and in particular
to the problem of the existence of certain configurations of singularities
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FIGURE 8

on certain algebraic manifolds. These papers contain such a wealth of
beautiful geometry with relations to classical configurations of the 19-
th century, but also to modern theoretical physics, that I am unable to
produce an adequate summary. Instead, let me mention just one example
which is taken from the last paper of the Collected Works published in
1987.

Consider hypersurfaces of degree d in complex projective m-space
with singularities which are only ordinary double points of type A;.
Let pn(d) be the maximal number of double points that can occur on
some hypersurface. For example p4(5) < 135 by a theoretical estimate
of Varchenko. It was not known whether this number is attained. In
1986 C. Schoen had constructed a quintic with 125 double points. In
1987 Hirzebruch constructed a quintic with one more double point. The
construction is as follows. Consider a configuration of five lines in the
real Euclidean plane forming a regular pentagram. Let f(u,v) be a
polynomial of degree 5 describing this configuration and invariant under
its group of symmetries. f has 10 critical points of level 0 in the 10
intersection points of the five lines, 5 critical points of a certain level
a # 0 in the triangles and one critical point of level b, 0 # b # a, at
the center of the pentagon. Now consider the quintic in P4(C) with the
affine equation

f(u,v) - f(zaw) =0.
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Obviously this quintic has only ordinary double points and their number

is
10-104+5-5+1-1=126.

I have tried to show how singularities figure in the work of Friedrich
Hirzebruch. I have also tried to show how much I owe to him. Many
people, students and mathematicians from all parts of the world owe
him thanks. He is always ready to listen, to give advice and to help. He
has done an enormous amount of work organizing mathematical research
and teaching and international cooperation. In the midst of all that he
still has time and energy for wonderful mathematics When I asked him
how he does it, he just said: I enjoy it.
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