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The Stability of Minkowski Space-Time

Demetrios Christodoulou

1. Introduction

The general theory of relativity, discovered by Einstein in 1915 [9, 10], is a
unified theory of space, time and gravitation. According to general relativity, the
space-time manifold is a four-dimensional oriented differentiable manifold M which
is endowed with a Lorentzian metric g, that is, a continuous assignment of g,, a
symmetric bilinear form of index 1 in T, M, at each p € M. The Lorentzian metric
divides T, M \ 0, into three subsets, I, Np, Sy, the set of time-like, null, space-like
vectors at p, according as to whether the quadratic form g, is respectively negative,
zero, or positive. The subset N, is a double cone N; UNp_ , the null cone at p.
The subset I, is the interior of this cone, an open set consisting of two components
I; and I, the future and past components respectively. The boundaries of these
components are the corresponding components of N,. The subset S, is the exterior
of the null cone, a connected open set.

A curve in M is called causal if its tangent vector at each point belongs to
the set I|J N correponding to that point. We assume that (M, g) is time oriented,
that is a continuous choice of future component of I, at each p € M can and has
been made. A causal curve is then future directed or past directed according as to
whether its tangent vector at a point belongs to the subset It |JN* or I |JN~
corresponding to that point. The causal future J*(K) of a set £ C M is the set
of points which can be reached by a future directed causal curve initiating at K.
Similarly J~(K), the causal past of K, is the set of points which can be reached
by a past directed causal curve initiating at K. The boundaries 87+ (K) \ K and
0J~ (K)\ K are hypersurfaces generated by null geodesics, null hypersurfaces, with
the past end points of the null geodesics generating 7 (K)\ K and the future end
points of those generating 0.7~ (K) \ K all lying in K. The specification of J*(p)
and J~ (p) for every p € M defines the causal structure, which is equivalent to the
conformal geometry of M.

A hypersurface H in M is called space-like if at each x € H the restriction of g,
to T, H is positive definite. We denote by g the induced metric or first fundamental
form of H:

9z = 9o

The pair (#,g) is then a Riemannian manifold. The orthogonal complement of
T,H in T, M is a one dimensional linear subspace of T, M contained in I,. There
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is therefore a unique future directed unit time-like vector N, whose span is this
orthogonal complement, the unit normal to H at x. We denote by k the second
fundamental form of H. Its components in an arbitrary frame e;, i = 1,2,3 in H
are given by:

kij = g(Vei N, ej)

where we denote by V the covariant derivative operator on M associated to g. A
space-like hypersurface H in M is called a Cauchy hypersurface if (H,g) is complete
and each causal curve in M intersects Hy at one and only one point. We assume
that (M, g) posesses such a Cauchy hypersurface. This assumption essentially
means that we consider only space-times arising from the evolution of initial data.
Under this assumption we can define on M a time function, that is a differentiable
function ¢ such that at each p € M, dt- X > 0 whenever X € I;L . The level sets H;
of a time function constitute a foliation of M into space-like hypersurfaces, The
lapse function of the foliation is defined by:

¢ = (—g"8,t0,t) "/

It measures the normal separation of the leaves of the foliation. We also have the
time-like future directed vectorfield whose components in an arbitrary frame are
given by:
T# = —¢2g" 0,t

It is characterized by the fact that its integral curves are orthogonal to the foliation
and are parametrized by ¢t. The one parameter group of diffeomorphisms generated
by T maps the hypersurfaces H; onto each other. We call T the time translation
vectorfield corresponding to the time function ¢t. The space-time manifold M is
represented by the product R x Hy, where we identify p € M with the pair (¢, z)
and the integral curve of T through p intersects Ho at . In this representation we
have:

0

Tz'éz

and the space-time metric is given by:
g=-¢dt* +7
Ife;, i = 1,2,3 is a local frame in ‘Hy we propagate it to a local frame in each #;
according to:
[T, ei] =0

The components of the first fundamental form of H; then satisfy the first variation
equations:

oy

L = 20k

(1.1) £

2. The Einstein Vacuum Equations

In general relativity the connection of the Lorentzian metric g is identified with
the gravitational force, while its curvature, which produces geodesic deviation, is
identified with the tidal force. Einstein’s basic physical insight in discovering the
theory was the fact that the gravitational force can be locally elliminated by going
to a freely falling frame, just as the connection coefficients can be made to vanish
along a geodesic by going to cylindrical normal coordinates (equivalence principle).
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The laws of general relativity are the Finstein equations [10] linking the space-
time curvature to the matter content:

(21) G,uu = 2T;w
Here G, is the Einstein tensor, given by:
(2.2) Guv =Ry — (1/2)Rgun

with R, the Ricci tensor and R the scalar curvature of the metric g, while T},
is the energy-momentum tensor of matter. The twice contracted Bianchi identities,

(2.3) VG =0,
then imply the energy-momentum conservation laws:
(2.4) VT, =0,

Thus general relativity incorporates the equations of motion of classical mechanics.
In the absense of matter equations (2.1) reduce to the Finstein vacuum equa-
tions for the space-time manifold:

(2.5) Ry, =0

In the present article we shall confine our attention to this case.
The principal part of the Ricci tensor is:

(1/2)gaﬁ(auaagﬁu + 3u3agﬂu - auaugaﬁ - 6aaﬁg;w)

For a given metric g the symbol o¢ at a point p € M and a covector { € Ty M is
the linear operator on Sz(T, M), the space of symmetric bilinear forms ¢ in T, M
(variations of g), obtained by the replacement:

0u9ap = Eufap
This gives:

(‘75 'g);w = (1/2)(£ufagcw + £u£agau - gaﬁguu - 5p§u9aﬂgaﬁ)
which we can write as:

oe g =(1/2)({ ®icg +1ieg ® ¢ — (§,€)9 — § ® &tryg)
Here i.g is the covector obtained by contracting g with the vector corresponding
to &:
(ie9)v = € guv
and we denote g*P¢,£5 = (£,€). We see that for any given ¢ and any other covector
¢, the variation
§=£60(+(®¢
belongs to the null space N(o¢) of the symbol at £. Thus the Einstein equations
seem at first sight to be a degenerate differential system, N(o¢) being non-zero for
any £ € Ty M. This is due to the fact that the equations are generally covariant;
proper account must be taken of the geometric equivalence of metrics related by
a diffeomorphism. Since any one parameter group of diffeomorphisms is generated
by a vectorfield ¢ and the infinitesimal action of the group on the space of metrics
is the Lie derivative
(Egg);w = Vu(u + VVC[L
the symbol of which is { ® {(+{ ® &, we consider the quotient Q¢ of S2(T, M) by the
following equivalence relation: gy ~ g, if and only if §; — g = £ ®(+( Q& for some
covector { at p. The symbol o, when reduced to @ is then seen to have zero null
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space when £ is not null. Moreover, when £ is a non-zero null covector, choosing a
null conjugate to £ to £, i.e. another null covector in the same component of the
dual null cone at p such that (£,£) = —2, we can identify Q¢ with the space of all
g € S2(TpyM) such that i¢g = 0. Then N(o¢) is seen to be the subspace of Q;
consisting of those ¢ which also verify i¢g = 0 and trg = 0. Therefore, when ¢ is
null N(o¢) can be identified with S, (11), the space of trace-free symmetric bilinear
forms on II, the space-like plane which is the intersection of the null spaces of £
and . Thus, the two dimensional space S, (IT) represents the space of dynamical
degrees of freedom of the gravitational field at a point (gravitational waves).

In terms of the foliation induced by a time function ¢ the Einstein vacuum
equations become:

(2.6) R — |k|® + (trk)? =
(2.7) ki — Vitrk =0

ki, _s5..,_ (& m
(2.8) 7 = VZVJ¢ - (R” + kijtrk — 2kimk ])¢

Equations (2.6) and (2.7) correspond to the Gauss and Codazzi equations respec-
tively, while equations (2.8) represent the second variation equations and must be
considered in conjunction with equations (1.1). Here V is the covariant derivative
operator, R-ij the Ricci tensor and R the scalar curvature on H;, defined by .
Note that ¢ is left completely undetermined by the above equations, a freedom
which corresponds to the complete arbitrariness in chosing the time function. Re-
mark that by virtue of the identities (2.3), if g, k satisfy equations (1.1,2.8), then
equations (2.6,2.7) are satisfied on any H; provided that they are satisfied on H,.
Therefore they can be regarded as constraints on given initial conditions for g, k.
Accordingly, an initial data set for the Einstein vacuum equations is defined to be a
triplet (Mo, gy, ko) consisting of a complete three dimensional Riemannian manifold
(Ho,7p) equipped with a 2-covariant symmetric tensorfield ko, satisfying the con-
straint equations (2.6,2.7). By a development of such an initial data set we mean
a Lorentzian manifold (M, g) satisfying the Einstein vacuum equations (2.5) and
an embedding of H as a Cauchy hypersurface in M such that g, and ko are the
induced first and second fundamental forms respectively.

3. Asymptotic Flatness

The central mathematical problem of the theory is the study of the devel-
opments of general asymptotically flat initial data sets. These represent isolated
gravitating physical systems. By an asymptotically flat initial data set we mean an
initial data set (H,g, k) such that the complement of a compact set in H is dif-
feomorphic to the complement of a closed ball in %2 and there exists a coordinate
system in this complement relative to which the metric components g;; approach
d;; and those of k approach zero, sufficiently rapidly for the notions of total en-
ergy, linear momentum and angular momentum to be well defined and finite. The
Arnowitt , Deser and Misner [1] definitions of these notions are, respectively,

(3.1) E--Tlggo /S > (8igi; — 8;5:)d

"Z]
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(3.2) =——rlLr§o[s Z ij — 94;trk)dS;
TJ
(3.3) ‘5}3& /S r];n €ijm 2 (kmn — Trmntrk)dSn

where S, is the coordinate sphere of radius 7 and dS; are the components of its
oriented area element.

The notions of total energy, linear and angular momentum are in particular
well defined and finite if there is a coordinate system in a neighborhood of infinity
in which
(3.4) 9ij = (1 + Mo/27r)d;5 + 02(r=3/%), kij = o (r=5/?) asr - 0o

Here, a function f is said to be 0,(r~®) asr — oo if f is C™ and 8™ f = o(r— ™~ %)
as r — oo, for any m = 0,...,n where 0™ denotes all partial derivatives of order
m. Initial data sets verifying (3.4) we call strongly asymptotically flat. The leading
term

(1 + M0/27T’I')(5ij
in the expansion of the metric of a strongly asymptotically flat initial data set we
call the Schwarzschild part of the metric. The conditions (3.4) imply:

E=M,, P'=0

Thus a strongly asymptotically flat initial data set defines a center of mass frame.
The posivite mass theorem first proved by R. Schoen and S.T. Yau [14] and later,
by a different method, by E. Witten [15], states that My > 0 with equality if and
only if the initial data set is embedded in the flat Minkowski space-time.

The total energy, the linear momentum and the angular momentum are con-
served quantities. That is, given a time function ¢ whose lapse function ¢ tends to 1
at infinity each level set, then if the zero level set H defines an asymptotically flat
initial data set, so do all the level sets H; and the values of each of these quantities
are the same for all the H;.

4. The Maximal Time Function

In a space-time arising from asymptotically flat initial conditions we can define
a unique mazimal time function t. This is defined by the condition that its level
sets H; are complete space-like hypersurfaces of maximal volume on which ¢ tends
to 1 at infinity and P? = 0. The maximality condition is expressed by:

(4.1) trk =0
Relative to the maximal time function the constraint equations (2.6,2.7) reduce to:
(4.2) R = |k|?
(4.3) ki =0
while the evolution equations (1.1,2.8) reduce to:
09

oki; == =

(4.5) L =ViVj¢ — (Rij — 2kimk™) o

ot
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Furthermore, taking the trace of (4.4) and imposing (4.1) we obtain the following
elliptic equation for the lapse function:

(46) Bo = k6

A complete maximal space-like hypersurface in Minkowski space-time is necessarily
a hyperplane. Thus if the initial data set (Ho, g, ko) satisfies the maximality con-
dition trky = 0, it has trivial development if and only if (#o,g,) is the Euclidean
space and ky = 0. In the following we shall restrict ourselves to strongly asymp-
totically flat initial data sets satisfying the maximality condition. An appropriate
version of the local existence theorem gives us a development M represented by the
product Z x Hop, where 7 is an interval containing 0 and the projection to the first
factor is the maximal time function. We remark here that Z = R does not imply
that the development is geodesically complete, for we may have infq ¢ = 0.

5. Statement of The Problem

The simplest solution of the Einstein vacuum equations is of course the flat
Minkowski space-time of special relativity, introduced by Minkowski in 1908 [13]
as the geometric framework of that theory, in a work which was instrumental in
the transition from Einstein’s formulation of special relativity of 1905 [8] to his
discovery of the general theory in 1915 [9]. Minkowski space-time is the manifold
R* together with the metric n whose components form the diagonal matrix with
entries -1, 1, 1, 1.

The problem which we shall discuss in the present article is the problem of
the global stability of Minkowski space-time in the framework of general relativity.
That is, whether any asymptotically flat initial data set which is sufficiently close
to a trivial one has a development which is a geodesically complete space-time
approaching the Minkowski space-time at infinity along any geodesic. This question
has been answered in the affirmative in my joint work with Sergiu Klainerman [7]
when asymptotic flatness of the initial data set is meant in the strong sense defined
above and an appropriate notion of closeness is required.

In the following we shall discuss the main ideas and methods of the proof, after
a brief exposition of general methods of treating problems of global stability of the
trivial solution for field theories in Minkowski space-time and a discussion of the
peculiar difficulties present in the problem at hand and the obstacles that had to
be overcome.

6. Field Theories in a Given Spacetime

Consider a field theory in a given space-time (M, g) whose field equations are
derivable from an action A. For any domain D with compact closure in M the
action in D is the integral:

(6.1) AD] = /D Ldu,

where L is the Lagrangian. The field equations of the theory express the condition
that for any such domain D the action is stationary with respect to variations of the
field with support in D. On the other hand, variations of the action, supported in
D, with respect to the underlying metric, give rise to the energy-momentum tensor
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through the formula:
. 1 .
(6.2) Aoy = =5 [ 1 i,

By its definition T*¥ is symmetric. If 4 is invariant under diffeomorphisms of
M reducing to the identity outside D, then the field equations imply that T is
divergence-free:

(6.3) VT =0
This is in accordance with (2.4), so the theory is compatible with general relativity.

Now suppose that X is a vectorfield generating a one parameter group of isome-
tries of (M, g) (Killing vectorfield). Then the 1-form

(6.4) P, =-T,X"
is divergence-free

(6.5) VP, =0
or, equivalently, the dual 3-form *P is closed:
(6.6) d'P =0

It follows that the integral of *P on two homologous hypersurfaces is the same and

/ P
H

on a Cauchy hypersurface H is a conserved quantity, that is, its value is the same
for all Cauchy hypersurfaces. This is essentially what is called Noether’s Principle.
Moreover if the action is invariant under conformal transformations of the metric
then the energy-momentum tensor is trace-free and these considerations extend to
the case where X generates a one parameter group of conformal isometries of (M, g)
(conformal Killing vectorfield). An important requirement on a physical theory is
that the energy-momentum tensor should satisfy the positivity condition:

T(X:1,X2) >0

for any pair X1, X2 of time-like future directed vectors at a point. Then, provided
that the vector multiplier X above is time-like future directed, the quantity

/H p = L T(X, N)dug

is non-negative, N being the unit normal to /. As its value is the same as that on
the Cauchy hypersurface on which the initial data is given, it provides an estimate
for the solution in terms of the initial data.

Furthermore, if we suppose, as is natural, that the Lagrangian posesses the
symmetries of the underlying metric, the pullback by an isometry of a solution is
also a solution of the field equations. Moreover, if the field equations are linear then
the difference of two solutions is also a solution. It follows that given a vectorfield
which generates a one parameter group of isometries of the space-time, the Lie
derivative of a solution with respect to this vectorfield is also a solution of the same
equations, being the limit of a difference quotient of solutions. In the case of a
conformally invariant action, the same is true for the Lie derivative with respect
to a vectorfield generating conformal space-time isometries. Thus in the linear
case the previous construction applies to Lie derivatives as well, in fact to iterated
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Lie derivatives of arbitrary order, giving a series of positive conserved quantities
controlling the solutions. In fact, once enough such quantities of sufficiently high
order are obtained, the Sobolev inequalities imply uniform decay estimates of the
solutions at infinity.

In the non-linear case, the Lie derivative of a solution is no longer a solution
of the same field equations. An analogous construction does give energy tensors
corresponding to the Lie derivatives, but their divergence no longer vanishes. The
positive quantities obtained using suitable vector multipliers as before, are conse-
quently not conserved. The difference of the values corresponding to two Cauchy
hypersurfaces is the integral of error terms over the space-time region bounded by
the hypersurfaces. Nevertheless, if we have enough quantities of sufficiently high
order at our disposal then the integral of the error terms may be estimated, using
Sobolev-type inequalities, in terms of the quantities themselves. Thus one arrives
at a closed system of ordinary differential inequalities which controls the growth of
these quantities in time and implies that they remain bounded for all time provided
that their initial values are sufficiently small. This yields a global existence theorem
for small initial data.

In the case that the underlying space-time is the Minkowski space-time, there is
a large group of conformal isometries available, consisting of the space-time trans-
lations, the space-time rotations (Lorentz group), the scaling, and the inverted
space-time translations, generated by the vectorfields:

(6.7) T,=0u n=0,1,2,3

(6.8) Quv =2,0, —2,0,; p,v=0,1,2,3
(6.9) S =z"0,

(6.10) K, =-22,5+ (z,2)0,; £ =0,1,2,3

respectively. Here,
— v — v
zy = Nut’, (z,z) =nuahc

Of these only the time translations and the inverted time translations are generated
by everywhere time-like future directed vectorfields, Ty and Ky respectively, and
are thus suitable for use as multipliers. Lie derivatives can be taken with respect
to all generating vectorfields.

The general method outlined above grew as a synthesis of the conformal method
which I introduced in the case of the Yang-Mills equations [4] and later applied it to
quasilinear hyperbolic systems of scalar equations [5], and the commutator method
introduced by Klainerman [12] in the study of non-linear perturbations of the wave
equation. The conformal method corresponded to a special case of the method
just outlined, namely the case where Lie derivatives are taken only with respect
to inverted space-time translations and only the inverted time translation is used
as a multiplier, the integrations being carried over space-like hyperboloids, while
Klainerman’s commutator method corresponded to the case where Lie derivatives
are taken only with respect to the Lorentz group and scaling and only the usual
time translation is used as a multiplier, the integrations being carried over space-like
hyperplanes.
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7. Weyl Fields and Bianchi Equations

If one tries to apply the general method just outlined to the problem of the
global stability of the Minkowski space-time in general relativity, one quickly reaches
an impasse for the following two reasons. First, the energy-momentum tensor in the
case of gravitation, defined as in (6.2) above, but relative to the Einstein-Hilbert
action:

1
AlD) =~ [ R,

vanishes, as this expresses the field equations of gravitation, namely the Einstein
vacuum equations. And, second, space-time in general relativity posesses in general
no symmetries, hence the conformal isometry group is trivial and the vectorfields
required in the construction do not exist. At this point two main ideas were intro-
duced which overcame these obstacles.

The first idea was that instead of the Einstein equations we should concentrate
our attention on the Bianchi identities

(7.1) ViaRsyjse = 0

(here [ ] stands for cyclic permutation), considering them as equations for the
curvature. This leads us to introduce the concept of a Weyl field W55, in a given
space-time, a 4-covariant tensorfield posessing the algebraic properties of the Weyl
or conformal curvature tensor. The natural field equations for a Weyl field are the
Bianchi equations, identical in form to the Bianchi identities:

(7.2) ViaWpyjse =0
We can write these simply as:
(7.3) DW =0

A particular case of a Weyl field is, of course, the Riemann curvature tensor of
a metric satisfying the Einstein vacuum equations, but the situation considered
here is more general as there need be no connection between a Weyl field and the
underlying space-time metric. In a four dimensional space-time the dual *W of a
Weyl field W is also a Weyl field and if W satisfies the Bianchi equations so does
*W. The operator D although formally identical to the exterior derivative, is not an
exterior differential operator and D? # 0. As a consequence, the Bianchi equations
imply an algebraic condition:

Ruaﬁ7*Wuaﬁ7 _ RVaB'Y*Wuaﬁ,), =0

The Bianchi equations are conformally covariant. If f is a conformal isometry of
(M, g), that is f*g = Q2g for some positive function Q, and W is a solution of the
Bianchi equations then so is Q7! f*W.

To a Weyl field we can associate a tensorial quadratic form, a 4-covariant ten-
sorfield which is fully symmetric and trace-free. This tensorfield is a generalization
of one found previously by Bel and Robinson [3] so we call it the Bel-Robinson
tensor. It is given by:

(7.4) Qapys = (1/2)(Wapye Wy’s” + Wapys W5's")
and satisfies the following positivity condition:

Q(X1)X2,X3aX4) Z 0
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for any tetrad of time-like future directed vectors at a point, with equality if and
only if W vanishes at that point. Furthermore, if W satisfies the Bianchi equations
then @ is divergence-free:

(7.5) VaQaﬁ'yé =0
It follows that given three vector fields X;, X5, X3, each generating a one parameter

group of conformal isometries of (M, g), some or all of which possibly coincident,
then the 1-form

(76) P= _Q('7X1,X27X3)

is divergence-free, consequently the integral

.
H

on a Cauchy hypersurface H is a conserved quantity, which is positive definite in
the case that the X7, X5, X3 are all time-like future directed.

Given a Weyl field W and a vector field X the usual Lie derivative LxW of W
with respect to X is not in general a Weyl field. However we can define a modified
Lie derivative £x W which is a Weyl field:

ﬁXWamg = LxWapys — (1/8)tr7rWaﬁ75
—(1/2) (7' Wogys + 75 Wauys + iy Wapps + 75" Wapyu)
(7.7)

Here m,, = Lxguv and 7 is the deformation tensor of X, namely the trace-free
part of 7. The modified Lie derivative commutes with the Hodge dual:

(7.8) Lx*W =*LxW

As a consequence of the linearity and the conformal invariance of the Bianchi equa-
tions, if W is a solution of these equations and X is a vector field generating a one
parameter group of conformal isometries f;, then

~ _ d —1 p*
LxW = a—t(ﬂt It W)L=0

is also a solution of the same equations. Therefore the considerations regarding
conserved quantities can be applied to the Weyl field Lx W as well.

8. The Optical Function

The second main idea of the proof of the global stability of Minkowski space-
time was in overcoming the obstacle that a general metric in fact posesses only
a trivial conformal isometry group. The idea originates in the observation that a
space-time which arises from asymptotically flat initial conditions should itself be
asymptotically flat, approaching the Minkowski space-time at infinity. Thus we
have a group acting at infinity as a conformal isometry. The problem is how to
extend this action to the whole space-time in such a way that the deviation from
conformal isometry is globally small and approaching zero at infinity sufficiently
rapidly. The crux of the idea was the solution of this problem by means of a
geometric construction. It turns out that we can only define the action of the
subgroup of the Minkowskian conformal group consisting of the time translations,
the scaling, the inverted time translations and the spatial rotation group O(3)
leaving the total energy-momentum vector invariant, however this subgroup suffices
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to derive a complete system of estimates. First, the action of the group of time
translations is the simplest to define, for, we have a unique maximal time function.
The corresponding time translation vector field T generates the action, mapping
the maximal hypersurfaces of vanishing linear momentum H; onto each other. The
action of the other groups is defined with the help of an optical function u.

This is a function whose level sets C,, are null hypersurfaces, defined as follows.
We start with a surface Sp o diffeomorphic to S? on H, and we define the level set
Co to be the outer component of .77 (So ), an outgoing null hypersurface. The
surface Sp o must be chosen so that the null geodesics generating the latter have no
future end points. We would like then to define the level sets C,, u # 0, to be other
outgoing null hypersurfaces such that, if we consider the surfaces St = H¢[)Cu,
the restriction to S;, of minus the signed distance function along H; from ;g
tends to u as t — oo. However, this definition can be implemented only after global
existence has already been proven.

In the course of the proof, a continuity argument, we have a final maximal
hypersurface H;,. We would like then to define u on #;, to be minus the signed
distance function along H;, from S, . However, the definition is inappropriate
because this is only as smooth as the metric, two orders of differentiability smoother
than the curvature, even though &, o itself is of the maximal smoothness allowed,
one order smoother than the metric. With such a loss of smoothness we would not
arrive at a closed system of estimates. We instead define u on #;, by imposing
certain equation for the lapse function a of the foliation of #;, generated by u:

(8.1) a = (g9 8;udju)~1/?

As the lapse function measures the normal separation of the leaves of the foliation,
the equation for a, to be given below, can be thought of as an equation of motion for
a surface on a the three dimensional Riemannian manifold. The given surface S;, o,
which is to be the zero level set of u on H;,, plays the role of an initial condition.
To write the equation for a in a form which is as simple as possible we shall neglect
the terms contributed by the second fundamental form of H;,. Then a satisfies on
each surface S, , level set of u on H,, the equation:

(8.2) Aloga=f—f, loga=0
where f is the function:

(8.3) f=K- %(tr0)2

Here K is the Gauss curvature of S, ,, and 6 is the second fundamental form of S, ,,
relative to H¢,. Also, Y is the covariant derivative operator on &, , associated to
the induced metric . Finally, we denote by an overline the mean value of a function
on &, . To see why the function u constructed by solving (8.2,8.3) has the required
smoothness properties, recall the trace of the second variation equations of the
foliation of a three dimensional Riemannian manifold induced by a function wu:
otrf
ou
Since we are neglecting the second fundamental form of H;, we have, in accordance
with (4.3), R = 0; therefore, by virtue of (8.2) this reduces to:

l otré
a Ou

pa + —;-a(§+ 16]* + (tr6)? — 2K)

(8.4)

1 - 1 -
= 510 + 5 (tr6)* + |V logal® - F
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Here we denote by 6 the trace-free part of §. The gain in smoothness is evident from
the fact that the curvature terms have been elliminated in favor of terms which are
one order smoother. The propagation equation (8.4) is considered in conjunction
with the Codazzi equations:

~ 1 —

(8.5) WBGAB - §WAtr9 = Ras

an elliptic equation for 8 on each St. .u, and with the Gauss equation:
1 1. —

(8.6) K - Z(tr9)2 + §|0|2 = —Ra33

to complete the smoothness argument. Here e4, A = 1,2 is an arbitrary local frame
in S, 4, complemented by ez, the unit outward normal to &, ., in Hy, .

Once the surfaces S, ,, have been constructed, the null hypersurfaces C, are
defined to be the inner components of 8J (St ) and the construction of the
optical function is complete.

9. Vector Fields and the Controlling Quantity

The surfaces S; ., define a two parameter foliation of the space-time slab bounded
by Ho and H;,. Let r(¢,u) be the area radius of S, defined by:

_[Area(S;.)
(9.1) r(t,u) = —
We then define the function

(9.2) u=u+2r

Let L and L be respectivelly the outgoing and incoming null normals to S,
whose component along T is equal to . We then have:

(9.3) T= %(L + L)
and we define the generator of scalings by:

(9.4) S = %(QL +ulL)
and the generator of inverted time translations by:
(95) K = S +v’L)

To define the action of the rotation group O(3) on H;,, we consider the vector
field on ‘H;, whose components in an arbitrary frame in H;, are given by:
(9.6) U' = a5 0u
The integral curves of U are orthogonal to the foliation induced by v on #;, and
are parametrized by u. The one parameter group of diffeomorphisms generated by
U maps the surfaces S, ,, onto each other. The induced metric v on &;, ,, rescaled
by the factor r~2 tends along the flow of U to a metric of Gauss curvature equal to
1 as u = —oo. We can thus attach the standard sphere S? at infinity on H;,. We
have the standard action of O(3) on S? by isometries. The action is then extended
to H;, by conjugation: Given an element O € O(3) and a point p, € S, 4, there is
a point ¢ € S?, the ideal point at parameter value —oo along the integral curve of
U through p, at parameter value u. The action of O(3) on S? gives us the point
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Oq € S2%. The point Op,. € S, 4 is then defined to be the point at parameter value
u along the integral curve of U leading to the ideal point Ogq at parameter value
—00.

The action of O(3) is then extended to the space-time slab using the vector field
L. The integral curves of L are the null geodesic generators of the hypersurfaces C,,
and are parametrized by ¢. The one parameter group of diffeomorphisms generated
by L maps the surfaces S;, corresponding to the same value of u but different
values of ¢ onto each other. Given an element O € O(3) and a point p € S; 4,
to obtain the point Op we follow the integral curve of L through p at parameter
value t to the point p, € S, . at parameter value ¢.. The action of O(3) on H,
just defined gives us the point Op, € S, . The point Op € S, is then defined
to be the point at parameter value ¢ along the integral curve of L through Op, at
parameter value t,.

The three rotation vector fields (¥)2, a = 1,2,3, generating the above action
satisfy:

(9.7) (*Q,L]=0

(9-8) (190, L) = g(\“0,T) = 0

and, of course, the commutation relations of the Lie algebra of O(3):
(9.9) (@), ®)0] =4 2

The group orbits are the surfaces St .
By the above construction the deformation tensors of the generating vector
fields depend entirely on the geometric properties of the hypersurfaces C, and #;.
Once the vector fields are defined we consider the 1-form P, given by

(9.10) P=P+P +P,
where:
PR = -QQR)(,K,T,T)
P, = -Q(LoR)(~K,K,T)-Q(LrR)(, K, K,K)
P, = -QUoR)\(-E,K,T)- Q(cozTRx WK EE)
- QsLrR)(,K,K,K) - QUrR)(- K, K,K)
(9.11)
and

K=K+T
while O stands for the collection (¥, @ = 1,2,3. Here Q(W) is the Bel-Robinson

quadratic form associated to the Weyl field W and R stands for the space-time
curvature, the original Weyl field. We then define the controlling quantity:

(9.12) E = max{E;, Ey}

where

(9.13) E, :sup/ *P, E, :sup/ *P
t He u Cu

and everything is restricted to the space-time slab (*)M = Ute[o,t,,] ‘H: under con-
sideration.
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10. The Continuity Argument

The values of the integral of *P on two homologous hypersurfaces are not the
same, for the vector fields T, S, K and O are not exact conformal Killing vector
fields. The difference of these values is the integral of error terms, linear in the
deformation tensors of the vector fields and quadratic in the Weyl fields, over the
space-time region bounded by the hypersurfaces. The crucial point and success of
the geometric construction is the fact that these error integrals can be bounded in
terms of the controlling quantity itself.

The proof of the stability theorem is by the method of continuity and it involves
a complex bootstrap argument. Starting with a strongly asymptotically flat initial
data set satisfying the maximality condition, and using an appropriate version of the
local existence theorem we can assume that the space-time is maximally extended
up to a value t, of the maximal time function. This value is defined to be the
maximal one such that certain geometric quantities defined by the hypersurfaces
H; and C,, remain bounded by a small positive number 9. These quantities include,
in particular,

sup sup )r2K - 1|
t,u St

which controlls the isoperimetric constant of the surfaces S; ,,, on which the Sobolev
inequalities depend. They also include:

supsup(l — ¢)
t H,

(note that by the maximum principle applied to (4.6): ¢ < 1). It then follows that
a cetrain norm of the deformation tensors of the vector fields T, S, K and O in the
space-time slab bounded by Ho and #;, is less than another small positive constant
€1. Using this bound for the deformation tensors, as well as the Sobolev inequalities,
we are able to estimate the integral of the error terms over the space-time slab by
ce1 E and thus arrive at an inequality of the form:

E<c¢(D+eE)

where D stands for initial data. When &; is chosen sufficiently small, which is
achieved by choosing ¢¢ suitably small, this implies £ < ¢D. On the other hand
we are able to show that the aforementioned geometric quantities associated to the
hypersurfaces H; and C,, are bounded by cE. Thus if D is suitably small this bound
does not exceed €¢/2, which by contituity contradicts the maximality of ¢., unless
of course t, = 00, in which case, in view of the fact that ¢ has a positive lower
bound, we have geodesic completeness and the theorem is proved.

We remark that the estimate of the error terms would fail if it were not for the
fact that the worst error terms vanish due to a simple algebraic identity: if A, B,C
are any three symmetric trace-free two dimensional matrices then tr(ABC) = 0.
The reason why such matrices appear can be traced back to the symbol of the
Einstein equations; they represent the dynamical degrees of freedom of the gravi-
tational field.

The smallness condition on the initial data which is required in the proof of
the theorem is the following. Take a point p € Ho = H and a positive real number
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A. Let d, be the distance function on H from p. Set:

D(p,)) = sup{A~*(d} + A\*)’|Ric|*}
H
+ A {/ > 2+ 2?) YT kf2dyy
H =0
(10.1) + / Z(d§+/\2)’+3|V'B|2dug}
H1=0

5. Siis ¢ . . . .
Here, |Ric|?> = R R;j, V' denotes the covariant derivative of order !, and B is the
Bach tensor or conformal curvature of (H,g), a symmetric trace-free 2-covariant
tensorfield given by:

1 —_ —_
(10.2) Bij = 5(E,-“" VaRj+ €, VoRy)
with ﬁ,-j the traceless part of R;;. Then it is the dimensionless invariant
inf  D(p,\)
PEH,A>0

which must be sufficiently small.

11. The Geometry of Maximal and Null Hypersurfaces

The most difficult and complex step in the proof of the stability theorem is the
step demonstrating that if the geometric quantities defined by the hypersurfaces
H: and C, do not exceed g¢ they are in fact bounded by cE.

The instrinsic and extrinsic geometry of a maximal hypersurface #; is is con-
trolled by the elliptic system:

(11.1) Rij — kimk"} = E;;

(11.2) Vikjm — Vjkim =€} Hmn, V' k,, =0, trk=0

Here E;; and H;; stand for the electmc and magnetic parts of the space-time
curvature respectively, symmetric trace-free 2-covariant tensorfiels on H;, defined
in terms of an arbitray frame e;, ¢ = 1,2,3 in H; by:

(11.3) Eij = R(e,-,f’,ej,T), Hij = —*R(e,-,T,ej,T)

where 7" is the unit normal to ;. These are directly controlled by the quantity E.
The estimates however involve the foliation of H; given by the surfaces S, the
level sets of the restriction to H; of the optical function u, and some control of the
properties of this foliation, provided by the a priori assumption that the geometric
quantities do not exceed ¢y, is needed in order to proceed.

The intrinsic geometry of a null hypersurface C,, is described in terms of the
foliation of C,, given by the surfaces S;,,,. If we denote by eg = ¢~!T the unit normal
to H;, then e and e_, respectively the outgoing and incoming null normals to to
St,u, whose component along eq is equal to eg, are given by:

(11.4) e+ =ey+ez, e =ey—e3
where e3 = —a~!U is the unit outward normal to S; , in H;. We have:
(11.5) er =¢ 'L
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As e, is tangent to C,, X, the second fundamental form of S; ,, relative to ey is an
aspect of the intrinsic geometry of H,. Its components in an arbitrary local frame
ea, A=1,2in S; , are given by:

(11.6) xaB = 9(Ve,e4,€B)

The second fundamental form of S; , relative to e_, which is transverse to H,, we
denote by x:

(11.7) X,p =9(Ve,e_,eB)
We have:
(11.8) xX=0+n x=-0+n

where 6 is the second fundamental form of S; ,, relative to H; and 7 is the restriction
of k to S;,. As we have already discussed how k is estimated we shall describe
below how estimates for x are obtained; the intrinsic geometry of &; ,, is controlled
by the Gauss equation:

(11.9) K+ %trxtr)i - %)ZX =—p
where

1
(1110) p= ZR(G_,€+,€_,€+)

and we denote by X, x the traceless parts of x, X, respectively. The function try
satisfies along the integral curves of L (which are parametrized by t) the propagation
equation:

1 Otr 1 N
(11.11) E‘bTX = virx - 5(trx)? - %17
Here,
(1112) V= g(ve+60,63) = V3 10g¢ + 5, 6= k33

Note that by virue of the Einstein vacuum equations no curvature term appears on
the right hand side of (11.11). The propagation equation (11.11) is considered in
conjunction with the Codazzi equation:

. 1 . 1
(11.13) V2%ap = 5V atrx = €"%ap — getrx — fa

1
(11.14) €a=kas, Ba= §R(6A,€+,€—»e+)

an elliptic equation for x on each &; 4, to obtain the required optimal estimates for
X, one order of differentiability smoother than the space-time curvature.

The foliation of space-time given by the null hypersurfaces C,, are described
in terms of the foliation of each H; given by the surfaces S;,. The properties of
the latter include, besides what we have already discussed, the lapse function a
given, on each H;, by (8.1). The estimation of loga is the most subtle part of the
argument. It is accomplished by introducing the mass aspect function:

1
(11.15) p=-Y-(+K+ Ztrxtrx

where

(11.16) (=Vloga—e¢
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The function p turns out to satisfy along the integral curves of L the propagation
equation:

o bux = 28780 -2
— (P A+ AP + 232~ p)
+(C = A) - (Vtrx — etrx)
(11.17) —%tr&lﬂ? +¢-x-A
Here,
(11.18) A =9g(Ve,e0,e4) = YV logop+es

and we denote by Y®( the 2-covariant symmetric trace-free tensorfield on St given
by:

(V&0)45 = 5(VaCo + VpCa ~1a5Y -

What is remarkable here is that, by virtue of the Einstein vacuum equations, the
right hand side of (11.17) does not contain terms involving the first derivatives of
the curvature. This fact allows us to consider the propagation equation (11.17) in
conjuction with the definition (11.15), which is equivalent to:

1
(11.19) Aloga=—p+V-e+ K+ 7 trxerx

an elliptic equation for loga on each &; 4, to obtain the required optimal estimates
for log a, two orders of differentiability smoother than the space-time curvature.

We remark that equation (8.2) on H;,, when the terms contributed by the
second fundamental form of #;, are no longer neglected, takes in terms of the
function p the form, simply:

(11.20) p=p

where 77 denotes the mean value of p on each & .

12. Asymptotic Behaviour

Once the proof of the stability theorem is completed we show that the optical
function (t*)u defined during the course of the proof in the slab (!-M, converges as
t. — oo to a global optical function u. For each ¢t > 0, the 0-level set of (t+)y is the
part of Co, the O-level set of u, contained in the slab #<)M. Thus the restrictions
of &L, L to Co () **)M coincide. We shall describe in the remainder of this article
the asymptotic behaviour of the solutions. The derivation of these results is found
in the last chapter of ””.

Let us denote by *+k, and w; the one parameter groups of transformations
generated by (*+)L and L respectively. Let us also denote by (t-)), and 1/, the one
parameter groups of transformations generated by (*)U and U respectively. Given
a diffeomorphism x of S? onto the surface Sp ¢ we define the one parameter family
1,0 of diffeomorphisms of S? onto St by:

Pt,0 =Wt oXx
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We then define the one parameter family (t*)got,,s of diffeomorphisms of S? onto
(t.)S;, s by:
(t*)‘Pt*,s =10 $t.,0
Finally we define the two parameter family (+)p, ,, t € [0,¢.], of diffcomorphisms
of $? onto (*)S; ; by:
(t')SDt,s =Wt—t, © (t‘)sot,.,s

We then show that as t, — oo, (t*)got,s converges for each t and s to a diffeomorphism
of 52 onto Sy ;.

We call a n-covariant tensorfield w on M S; ,-tangent if at each p € M and
for any n-tuplet Xy, ..., X, of vectors at p € S;,, we have:

w(Xy, .oy Xp) = wlXy, ..., IIX,)
where II is the orthogonal projection to TpS;,. Given any such tensorfield we
define:
Weu = Pt (r™"w)
Then 1w, is a n-covariant tensorfield on S2, for each ¢t and u. We say that on C,
w tends to a limit W (u) as t = oo, and we write:

lim w=W(u)

Coyt—00
if:
tl—lfgo Weu =W (u)
on S2. It then follows that:
Bu = e e
The induced metric v on S;,, tends in this sense to a metric % on S2, which

is independent of u and of Gauss curvature equal to 1. Therefore (5’2,%) can be
identified with the unit sphere in R3. Also,

(121 et ? = B0t =
and:
(12.2) Cul}rgoo rtry = — c..l,yﬁoo rtry = 2
Moreover,

. 24 . ~ =
(23 clim Y=, Jim k=2

where ¥ and Z are symmetric trace-free 2-covariant tensorfields on S? depending
on u and related by:

ox 1_
(12.4) 30 = T3
Also,
(12.5) = =o(Jul%/?) as |u| = 0o

Note that according to (12.2,12.3),

(12.6) lim =
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so the surface S¢,, for fixed u does not become umbilical relative to H; as t — oo.

The space-time curvature decomposes relative to the surfaces S ,, into the St -
tangent 2-covariant symmetric trace-free tensorfields a, a, whose components in an
arbitrary local frame e4, A = 1,2 in S, are given by:

(12.7) aap = R(ea,e+,ep,e4), QAB = R(es,e—,ep,e_)
the Sy,,-tangent 1-forms 3, 8, with components:

(12.8) Ba= -;—R(eA,e+,e_,e+), B,= %R(e,q,e_,e_,q)
and the functions p and o, defined by:
(12.9) p= %R(e_,e+,e_,e+), oe(es,ep) = %R(eA,eB,e_,e.,_)
where ¢ is here the area 2-form of S; ,. We have:
dm rfas0  lm ra= 4w
Mm =0l = B
(12.10) cul’i"'xﬂoo rp = P(u), ,,lj‘.rgoo o = Q(u)

where A is a symmetric trace-free 2-covariant tensorfield, B is a 1-form and P and
Q are functions on S2, all depending on u and having the decay properties:

A=o(lu|*?), B = o([u|~%?)
P —P = o(ju[7/?), Q = o(|u|71/?)
(12.11) as |u| = oo
while:
P = o(u|~'/?) as u — 00
(12.12) P+ —gr-q = o(|u|~Y/?) as u = —o0
Here My is the ADM mass. Moreover A and B are related to Z according to:
0= 1
12.1 — =-=A
(12.13) Ou 2
and (relative to an arbitrary local frame in S?)
oB
(12.14) Y ZaB=Ba

The following result shows that the ADM mass enters the asymptotic expansion
of the area radius of the sections S; ,, of a null hypersurface C,, as t — oo:

(12.15) r(t,u) =t — —J;% logt+ O(1) :at constant u as t — oo
The Hawking mass m(t,u) contained by a surface S;,, is defined by [11]:
1
(12.16) m(t,u) = 27r (1 + T6n /Sz,., trxtrx)
Note that:
(12.17) A= —

273
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The Bondi mass M (u) contained in C, is defined by:

(12.18) M(u) = lim m(t,u)
t—o00
One of the achievements of our work was the rigorous derivation of the formula:
oM 1

12.19 — == Z2dp.

(12.19) 5w =5 L Eldus
due to Bondi [2]. Morever, we obtain:

(12.20) lim M(u) = My, lim M(u)=0

uU—r—00 uU—>00

Our final result has to do with the difference of the limits ¥+, ¥~, of ¥ as
u — 00, u = —00, respectively. This difference is determined by the equation:

(12.21) %B (EXB - X4B) =§7A o
where @ is the solution of:

(12.22) Ad=-2F-F), T=0
and F is the function on S? defined by: _

(12.23) F:%/ZE@W@

In view of (12.19), F'//4r is the total energy radiated to infinity in a given direction,
per unit solid angle. The integrability condition of (12.21,12.22), is that F is L*-

orthogonal to the 1st eigenspace of A:

(12.24) Fay=0

Now the L%-inner products of F' with the three Cartesian coordinate functions z¢,
[e]

i=1,2,3, on S? C R3, which form an orthogonal basis for the 1st eigenspace of A
represent the components of the total linear momentum radiated to infinity. Since
the initial and final states both have zero linear momentum, (12.24) expresses here
the law of conservation of linear momentum.

The solution of (12.21,12.22), evaluated at an arbitrary pair X,Y of vectors in
R3, tangent to S? at an arbitrary point &, is given by:

(St -S7)(X,Y) =

1 _ N (X 8) (1 ¢) — (1/2)(X, Y)[TIE'?
o \er=1 (F F[l])(£ ) 1— (5761)

(12.25)

Here the subscript [1] denotes the projection on the sum of the Oth and 1st eigenspaces

of /A, the projection on the Oth eigenspace being the mean value, (,) denotes inner
product in ®% and II denotes projection to the plane orthogonal to £&. Now, by
(12.4) we have:

1 o0
(12.26) z+—2—:—§/ =(u)du
In view of (12.26,12.23), equation (12.25) constitutes a non-linear relationship sat-
isfied by = on R x §2. The non-linearity of Einstein’s equations is therefore partially
retained even at infinity!

—00
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It turns out that the difference X(u)—X " is directly related to the instantaneous

displacements of faraway test masses with respect to a reference test mass, relative
to which they are initially at rest. The difference ¥+ — X, thus yields a permanent
displacement of the test masses, a non-linear effect, which is observable in principle
(see [6] for the details).

(1]
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