Lectures on Einstein Manifolds

General Relativity
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1. Introduction

1.1. Aims. In this essay, my brief is to describe some current research in
general relativity which would be of interest to mathematicians working elsewhere in
geometry. To achieve this, I shall need first to review a range of background material
in modern general relativity, corresponding roughly to a second or graduate-level
course. For reasons of space, I shall need to assume that the reader has had a first
course in the subject. After the review, the choice of topics is my own.

1.2. A way in. One way into relativity for a mathematical audience is to
compare and contrast Riemannian and Lorentzian geometry — what changes when
the signature of the metric changes? What familiar things cease to be of interest
and what new things become of interest? One may classify topics of interest in
relativity by their relation to Riemannian geometry into one of three classes:

o direct uses of Riemannian geometry. e.g. space-like surfaces are intrin-
sically Riemannian, therefore so are questions to do with the Initial Value
Problem; the classification of black holes is concerned with time-independent
solutions, where the field equations become elliptic; the first proof of the
Positive Mass theorem uses the methods of Riemannian geometry;

e Lorentzian problems motivated by analogy with Riemannian ones.
e.g. there are Lorentzian Splitting theorems, motivated by analogy with
the Riemannian ones, but with their own physical interpretation; with an
indefinite metric, positive sectional curvature is not a helpful notion but
certain conditions of positivity of the Ricci tensor are of crucial importance,
and play an analogous role in forcing the existence of conjugate points on
geodesics;

e complete novelties. e.g. anything explicitly hyperbolic, so existence the-
ory for the Einstein equations; singularity theorems and cosmic censorship.

1.3. One difference. It is instructive to pursue one answer to the question
‘what changes when the signature changes?’, namely the answer ‘the Hopf-Rinow
theorem;’ cf. e.g. [9]. In Riemannian geometry, the manifold becomes a metric
space with the distance defined by the metric tensor, and the open sets in the
manifold are determined by the metric. The Hopf-Rinow theorem asserts that the

(©2000 International Press
329



330 K.P.TOD

manifold is complete as a metric space if and only if it is geodesically complete. Fur-
ther, in this case, there will be a geodesic connecting any two points which achieves
the (minimum) distance between them. When the metric tensor is indefinite, none
of this works.

For the topology, one can seek instead to define the open sets by causal relations
and one is led into a study of causal spaces, which represent an important layer of
structure between the topological and the metric in relativity. For the completeness,
one can distinguish a whole range of (independent) geodesic completenesses, and
completeness for other types of curve. There is also the important condition of
global hyperbolicity in relativity which implies the existence of maximal curves
in appropriate circumstances. (Note ‘maximal’ rather than ‘minimal’: time-like
geodesics locally maximise distance; it is always possible to join points by ‘short’
curves by making them nearly null.)

1.4. Physical arguments. Relativity is a theory of gravity, and an extremely
accurate one; cf. e.g. the theory of binary pulsars [95, p.230]. This means on the
one hand that physical concerns and heuristic arguments have a proper place in
the subject, and on the other that physical insight can lead one to results which
can then be proved to the most rigorous standards — physical insight can coincide
with what is true in the theory. However as a mathematician, one may not want to
delve too deeply into the physical aspects of the theory. There is a standard way
to achieve this aim:

1.5. The Einstein inequalities. Recall the Einstein equations in the form
(1.1) Gap = 8TGTyp

where G is the Einstein tensor of some Lorentzian metric and T,; is the energy-
momentum tensor of some matter source. (Relativists commonly, though by no
means invariably, use indices. In this article, where necessary, I shall use the abstract
indez convention of Penrose [96]. This allows one to use all the notations of local
tensor calculus, so that one does not need to devise notational synonyms for tensor
operations, while remaining perfectly invariant.)

The left-hand side of (1.1) is the mathematical side (the ‘marble palace’ of
Einstein) and the right-hand side is the physical side (the ‘wooden shed’). In many
situations, one may regard (1.1) as producing a set of inequalitites by requiring
of the right-hand side only that it have some positivity properties, and ignoring
its details. The physical input of general relativity into geometry is then confined
to demanding these positivity properties of the left-hand-side. These positivity
properties are the various energy conditions: they express different conditions of
positive energy locally, and most of what we shall see below is premised on one or
another energy condition.

1.6. Conjugate point arguments. It is the energy conditions which make
gravity attractive. One consequence of this attractiveness is that, given a large
amount of mass in a small region, gravity may overwhelm the forces holding the
matter up and bring about a gravitational collapse to a singularity. The mathe-
matical counterpart of this physical argument is that energy conditions eventually
lead to the existence of conjugate points on geodesics provided the geodesics can be
extended to arbitrary values of affine parameter. Then these conjugate points can
be shown to be inconsistent with other physical hypotheses which encode the fact



GENERAL RELATIVITY 331

of collapse, from which one is led to geodesic incompleteness. This is a paradigm
conjugate point argument. A consequence of it is that relativists are obliged to con-
sider manifolds which are geodesically incomplete or singular in other ways. Many
of the arguments in sections 3 to 7 are conjugate point arguments in this sense.

1.7. Causality. One of the other ways to be singular is to have a closed
time-like curve (or CTC). If such a thing existed in a space-time, then one could
travel along it into one’s past, when various, usually murderous, paradoxes could
be generated. There is a whole range of causality pathologies which one might seek
to forbid for physical reasons. Now a compact Lorentzian manifold necessarily has
a CTC (in fact many, joining any point to any point), which is why these have
traditionally held less interest for relativists.

1.8. Positive energy. An interesting problem historically has been how to
derive global positive energy, as measured ‘at infinity’ and containing non-local
contributions from the gravitational field, from an assumption of positive energy
locally, expressed by an energy condition. (This problem is difficult because one
expects gravitational energy to exist and so to contribute to total energy, but not
to be the integral of any local quantity.) There are now three different ways to
derive this result, two which work on space-like surfaces and are therefore ‘elliptic’
and a newer four-dimensional way. The result, the Positive Energy theorem, has
subsequently been used to prove new results and strengthen old ones.

1.9. Cosmic censorship. Arguably the biggest unsolved problem in relativ-
ity is to prove or disprove the cosmic censorship hypothesis. In a weak form, this
is the hypothesis that, while the formation of singularities in certain circumstances
is inevitable, these singularities are hidden inside black holes and cannot be seen
from large distances. In a strong form, the hypothesis is that only particular kinds
of singularities can ever arise in an evolution of regular data. Either form is a
hard problem, made harder by a physical consideration: these are supposed to
be statements about the world so that one is interested in generic or stable sets
of circumstances arising with reasonable matter, and all the italicised words are
problematic.

1.10. Contents. This essay is organized as follows:

In §2, we describe the landscape of general relativity as it is now. The devel-
opment here is inevitably condensed almost to the telegraphic but it sketches what
is needed to locate the later sections.

In §3, we review various topological issues in relativity. These include those
mentioned above, ideas related to dynamic topology, changing with time, and the
recent notion of topological censorship, which is analogous to cosmic censorship.

In §4, we describe the Lorentzian Splitting Theorems and related material and
in §5 we review what is known about existence for solutions of the Einstein equa-
tions.

In §6, we review work on the Black Hole Uniqueness theorems, where there
has been a resurgence of interest recently, and finally in §7 we review work on the
evidence for and against the Cosmic Censorship Hypothesis.

ACKNOWLEDGMENTS 1.10.1. In composing this review, I have benefitted from
discussions with many people among whom I would like to mention Lars Andersson,
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Piotr Chrusciel, Helmut Friedrich, Lionel Mason, Vince Moncrief, Ted Newman,
Roger Penrose, Alan Rendall and Bernd Schmidt.

1.11. Further reading. A review such as this, to be successful, needs to lead
the reader onward and beyond itself. Thus a good text for Section 2 is [137]; more
details in particular directions will be found in [60], which after 24 years is still the
place to start, and in [9]. A useful resource in the near future will be the ‘Living
reviews’ on various topics in relativity maintained by the Albert Einstein Institute
in Potsdam at http://www.aei-potsdam.mpg.de, and much of the topical material
discussed in this review first appeared in the gr-qc archive at http://xxx.lanl.gov/
or one of its mirrors.

2. Background Material

We will use conventions as in [96], so that the signature of the metric is
(+,—,—,—) and indices are abstract.

2.1. Infinity for flat space. We need a definition of isolated source in general
relativity, which must convey the idea of asymptotic flatness at large distances. The
idea is to define an infinity for flat space as a boundary, so that one may later define
a space to be asymptotically flat if it has the same kind of infinity as flat space.

To this end, call flat space M and consider the metric of M in spherical polar
coordinates:

(2.1) ds? = dt* — dr? — r*(df? + sin® 8d¢?)
Radially in- and out-going null geodesics have respectively
(2.2) v=t+7 = constant; u =t —r = constant; —oo < u < v < o0

Introduce u and v as coordinates in (2.1) to find:
(2.3) ds® = dudv — %(v — w)2(d6? + sin? 8dg?)

We shall add a boundary to M by first adding a point to the end of each radial
null geodesic. This is achieved by introducing coordinates p and q via

i T
u = tanp; v = tang; so that —§<p§q<§

when (2.3) becomes
(2.4) ds? = % sec? psec? g[4dpdq — sin(p — ¢)(d6? + sin® 8d¢?)]
In this form, the metric can be conformally-rescaled to give a new metric on a larger
manifold than M:
(2.5) ds? = 0%ds? = 4dpdq — sin®(p — q)(d6* + sin® 8dp?)
where
Q0 = 2cospcosq

and now we can extend the range of p and q to include the end-points 3. The
rescaled metric (2.5) is the product metric on Rx S% as one may see by introducing
one last set of coordinates via

T=p+q; R=p—gq
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when
(2.6) ds? = dT? — dR? — sin® R(d6? + sin? d¢?)

In this context, this product metric is known as ‘the Einstein static cylinder’, having
been at one time proposed as a cosmological model by Einstein.

We have found that flat space M is conformally related to the part of the
Einstein static cylinder lying in the range

(2.7 T+R>-mT—-R<mw

The conformal structure of M extends to the boundary of this region in R x S3,
which is the locus where Q from (2.5) vanishes. The boundary consists of the past
null cone Z* (pronounced ‘scri-plus’) of the point 7%, which is also the future null
cone of the point i®, together with the past null cone Z~ of i®, which is also the
future null cone of the point :~ (see figure 1). These symbols are conventional and

T=—-r —

FIGURE 1. The (t,r)-half-plane of Minkowski space in the (T, R)-
space of R x S3; 0 is antipodal to the origin on S3.

are associated with the following names:

TERMINOLOGY 2.1.1.

I+ is future null infinity;

7~ is past null infinity;

it is future time-like infinity;
i~ is past time-like infinity;
i° is space-like infinity.

All null geodesics have a past end-point on Z~ and a future one on Z7; all
time-like geodesics run from i~ to i*; all space-like geodesics run from ° back to
i%. We may sometimes use Z to mean the union Zt UZ~.

We have defined this boundary using coordinates but invariant descriptions are
possible.
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2.2. Asymptotic simplicity. We use the work of the previous section to give
a definition intended to capture the notion of asymptotic flatness.

DEFINITION 2.2.1. A space-time M with metric g is asymptotically simple if
there is a smooth manifold M with boundary Z = &M and metric § and a scalar
field €2 such that

o M =int M;

§ = Q%gin M;

 and § are smooth everywhere in M ;

Q2>0in M; Q=0and d? # 0 on Z; and

every null geodesic in M acquires a future and a past end-point on Z.

The last condition is needed to avoid trivial satisfaction of the conditions with Z
empty, but is too strong in practice since even the extended Schwarzschild solution
will fail to be asymptotically simple. Thus one defines:

DEFINITION 2.2.2. A space-time M with metric g is weakly asymptotically sim-
ple (or WAS) if there is an asymptotically simple M’ and a neighbourhood U of Z
in the corresponding M such that U N M’ is isometric to a subset of M.

2.3. Causal relations. Causal relations define a layer of structure prior to
the smooth in a space-time. This section consists largely of definitions, made to
introduce a convenient language.

DEFINITION 2.3.1. A Lorentzian manifold M is time-orientable if it is possible
to make a consistent choice of future-light-cone at every point; M is space-orientable
if it is possible to make a consistent choice of a right-handed triad of space-like
vectors at every point.

If M is time and space orientable, then M is orientable but not conversely. If
M admits spinors then M is orientable in all three senses.

DEFINITION 2.3.2. For points p and ¢ in a time-orientable M define the rela-
tions:

p < q (read ‘p chronologically precedes ¢’) iff there is a future-directed (non-
empty) time-like path from p to g;

p < g (read ‘p causally precedes ¢’) iff there is a future-directed (possibly empty)
path from p to ¢ which is everywhere non-space-like (i.e. is time-like or null at each
point; call this a causal path).

DEFINITION 2.3.3. We define the sets:
I*t(p) = {q|p < q} the chronological future of p;

o I~ (p) = {q|lp > q} the chronological past of p;
e J*(p) = {q|p < ¢} the causal future of p;
e J=(p) = {q|p > q} the causal past of p.

‘Time-like’ is an open condition, whence it follows that I*(p) and I~ (p) are
open, but J*(p) and J~(p) are not necessarily closed (though they will be in
Minkowski space).

In terms of these notions one can frame various causality conditions:

DEFINITION 2.3.4. M satisfies the chronology condition if it contains no closed
time-like curves, equivalently if for no p € M is it true that p € I*(p) or p € I (p).
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DEFINITION 2.3.5. M satisfies the causality condition if it is never true that
p < q < p for distinct p and g.

A range of stronger conditions restricting causal pathologies is available. A
useful one, needed in 3.1.1, which excludes almost closed causal paths is:

DEFINITION 2.3.6. M is strongly causal at p if there is a neighbourhood of p
which no non-space-like path intersects more than once.

The strongest condition normally encountered is the following:

DEFINITION 2.3.7. M is globally hyperbolic if the strong causality condition
holds everywhere and, for any p,q € M, the set J*(p) N J~(g) is compact.

Global hyperbolicity is related to Cauchy developments, so we need to define
these:

DEFINITION 2.3.8. An achronal set S is one for which I*7(S)N S = 0.

DEFINITION 2.3.9. The future Cauchy development or future domain of depen-
dence D*(S) of an achronal set S in a space-time M is the set of p € M such that
every past-inextendible non-space-like path through p intersects S.

DEFINITION 2.3.10. The future Cauchy horizon of S is the future boundary of
D*(S), that is the set HT(S) = D+(S) — I~ (D*(S)) (writing U for the closure of
U).

One defines D~(S) and H~(S) analogously, and then D(S) = D*(S)UD~(S).
The relation with global hyperbolicity is provided by the result:

ProprosITION 2.3.11. [60, Prop 6.6.3] If S is a closed achronal set then int D(S),
if non-empty, is globally hyperbolic.

PROPOSITION 2.3.12. An achronal set S is a Cauchy surface for M if M = D(S).

Thus if a space-time M has a Cauchy surface, then it is globally hyperbolic.
We shall encounter a converse in 3.3.1.

An aspect of the role of global hyperbolicity as a completeness condition is
provided by the result:

PROPOSITION 2.3.13. [60, Prop 6.7.1] If p,q lie in a globally hyperbolic set U
with ¢ € J*(p) then there is a non-space-like geodesic from p to q whose length is
greater than or equal to the length of any other non-space-like curve from p to gq.

Finally in this section, we note that there is an invariant characterisation of 7~
and Z7 in terms of causal structure, so that these can be added as future and past
causal boundaries.

2.4. The Schwarzschild solution.

SPACE-LORE 2.4.1. The Schwarzschild solution is characterised by Birkhoff’s
theorem [60] as the spherically-symmetric vacuum solution. It is weakly asymp-
totically simple, and static, which means that it admits a hypersurface-orthogonal
Killing vector which is time-like at large distances (one reserves the term stationary
for a solution with a time-like Killing vector which is not hypersurface-orthogonal).

The solution depends on a single parameter which can be identified as the mass
(see §2.11).
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EXAMPLE 2.4.2 (Extending the Schwarzschild solution). In a first course on gen-
eral relativity, the Schwarzschild solution is usually exhibited in coordinates as

(2.8) ds? = (1 - 2?)dt2 -(1- 2%)-%2 — r2(d§? + sin® 8d¢?)

where the coordinate ranges are —oo < t < 00, 2m < 1 < 0.

This form of the metric is singular at 7 = 2m but this is only a coordinate sin-
gularity. A first exercise is to solve the geodesic equations for radial null geodesics,
when one readily finds that these geodesics run off the coordinate patch by arriving
at r = 2m at finite values of affine parameter, but infinite values of ¢t. The strategy
is now to mimic the process leading to equation (2.2), introducing coordinates u
and v constant on out- and in-going radial null geodesics respectively, to arrive at
an extended form of the metric:

3
(2.9) ds® = 32:” exp(—Lm)dudv — r2(d6? + sin? 8d¢?)
where uv = — (55 — 1) exp(35-).

The metric is no longer ‘time-independent’, the Killing vector K* which was
0/0t has become
o 1 0 0
9t~ "o “ou)
We may represent the manifold on which the metric is defined by its Carter-Penrose
diagram, figure 2.

(2.10)

FIGURE 2. Carter-Penrose diagram of maximally analytically ex-
tended Schwarzschild solution; each point represents a 2-sphere;
null-lines are at 45°; note initial and final » = 0 singularities, two
asymptotic regions and two Killing horizons at r = 2m.

In figure 2 each point represents a 2-sphere of symmetry, and null directions
are at 45°. The surprise about the diagram is the presence of two singularities, one
in the past (at the bottom) and one in the future, and two asymptotic regions. The
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picture includes the two distinct Z1’s and two distinct Z~’s, where the conformal
structure is regular. The conformal structure is singular at the points i*, but also,
perhaps surprisingly, at i°.

The Killing vector (2.10) is time-like and future-pointing near the righthand
asymptotic region and time-like, past-pointing near the left-hand one (choosing
again the time-orientation which has the future towards the top of the page). The
Killing vector becomes null on the pair of null hypersurfaces N; : v = 0 and
Ns : v = 0; each of these is a Killing horizon:

DEFINITION 2.4.3. A Killing horizon is a null hypersurface with a null Killing
vector K° tangent to the (null, geodesic) generators.

DEFINITION 2.4.4. The Killing horizon has a surface gravity x defined by
Vo(KPKy) = —2kK,.

Under quite general conditions the surface gravity is constant on the Killing
horizon. For the Schwarzschild solution, k = 1/4m.

DEFINITION 2.4.5. A Killing horizon is degenerate if it has zero surface gravity.

In the extended Schwarzschild case, there are two Killing horizons, which in-
tersect in the bifurcation surface at v =v = 0.
A Killing horizon often defines an event-horizon:

DEFINITION 2.4.6. In a weakly asymptotically simple space-time, the event
horizon (strictly, the future event horizon) is 8J~ (Z+) if this is non-empty.

Thus if there is an event horizon, then it separates points from which there is a
causal path to Z+ from those where there is no such path i.e. it bounds the region
from which one can ‘escape’ to infinity. In the extended Schwarzschild manifold,
N defines the event horizon for the Z+ to the right.

We noted above that any point in figure 2 defines a 2-sphere. Furthermore, the
area of the 2-sphere is 47r2. Now consider a point in the top triangle, that is one
with u < 0, v > 0, r < 2m; if the corresponding 2-sphere is moved in any direction
normal to itself and into its own future then it will move to a smaller value of r
and so its area will decrease (strictly speaking, one needs to calculate something to
prove this). We define:

DEFINITION 2.4.7. A space-like 2-surface is said to be trapped if its area locally
decreases in every future-pointing normal direction.-

Now consider a line like v running across the Carter-Penrose diagram from one
i to the other (and not necessarily through the bifurcation surface). This defines
a spherically-symmetric space-like surface which is a Cauchy surface for the space-
time. At the minimum value of r there will be a (stable) minimal surface, in the
usual sense, but every sphere of constant r less than 2m will be trapped, while the
spheres 7 = 2m are marginally-trapped in that the area is non-increasing in every
future-normal direction, and is strictly decreasing in all directions except one of the
two null normal directions.

TERMINOLOGY 2.4.8. This Cauchy surface has the character of a worm-hole in
that it connects two asymptotically flat regions through a minimal surface.
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r = 0: final singularity

It

Star

FIGURE 3. Carter-Penrose diagram of collapse of a star to a black
hole; the solution outside the star is Schwarzschild and NV; is the
event horizon; the final singularity is formed in the collapse.

However it is not possible in the Schwarzschild manifold to follow a causal path
through the worm-hole from one asymptotic region to the other (this can be seen
from figure 2, which correctly shows causal relations).

On a Cauchy surface through the bifurcation surface, the bifurcation surface
itself is both minimal and marginally-trapped with respect to both its null normals.
This is a rather degenerate situation.

The collapse of a spherically symmetric body, say a star, surrounded by vac-
uum, to a singularity may be represented by a Carter-Penrose diagram, figure 3,
consisting of the outer region of figure 2 joined across the surface of the star to
another solution with matter. The matter solution cuts off the ‘unphysical’ past
singularity. Now the null hypersurface NV; defines the event horizon as the bound-
ary of a black hole. A singularity forms in this collapse but it cannot be seen from
infinity, that is to say no future causal path connects it to Z1 - it is ‘censored’.

An important property of the Schwarzschild solution is the following:
CONDITION 2.4.9. For any p € Z~, I'*(p) contains all of Z+.

This surprising result is a consequence of the phenomenon of time-delay in the
passage of light past a massive body (equivalently ‘of time-delay in the solutions
of the null-geodesic equation in the Schwarzschild metric’). It is characteristic of
positive mass - it is not true in flat space or in the negative-mass Schwarzschild
solution.

2.5. The Reissner-Nordstrom solution.

SPACE-LORE 2.5.1. The Reissner-Nordstrom solution is characterised as the
spherically-symmetric electrovac solution, which is to say a solution of the Einstein
equations for which the energy-momentum tensor is that for electromagnetism, in
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which the spheres of symmetry vary in size. Again it is static and weakly asymp-
totically simple.

The metric is usually encountered first in the form
(2.11) ds? = V(r)dt?* — (V(r))"tdr? — r2(d6? + sin? d¢?)

where now V =1 — 2—,,"—‘ + %;; e, m real constants, and we shall suppose that

(2.12) e <m?

The parameter m may be identified with the mass at infinity, while e is the charge.

Because V has two zeroes, the extension is more complicated. The Carter-
Penrose diagram is as in figure 4. The Killing vector K¢ = 9/8t is time-like
in the (infinitely many) asymptotic regions, and again near the (infinitely many)
singularities, being space-like in an intermediate region. There are inner and outer
Killing horizons (with different surface gravities) where the Killing vector is null,
intersecting at bifurcation surfaces where it vanishes.

A curve like vy defines a spherically-symmetric achronal surface S which is now
not a Cauchy surface: note that S has a Cauchy horizon, because of the time-like
character of the singularities.

Also because of the time-like character of the singularities, it is possible to
follow a causal path from one asymptotic region down to small values of r then into
the future and into a second asymptotic region. By identifying the diagram with
a periodicity vertically one may therefore introduce closed time-like curves. (We
shall see this again in §3.5.)

In the case e? = m?2, the zeroes of V coincide. The Carter-Penrose diagram
simplifies to figure 5. The Killing vector is time-like everywhere except on the
Killing horizon where it becomes null. The bifurcation surface has disappeared
from the picture and the Killing horizon has become degenerate (these phenomena
are related). There are internal points ‘at infinity’ in that the Riemannian distance
on a (space-like) hypersurface of constant ¢t from a value of  greater than m down
to 7 = m is infinite. Thus a constant ¢ hypersurface is asymptotically flat at large
distances, but asymptotic to an infinite cylinder as r tends to m. (Degenerate
horizons will lead to problems in §6.)

By matching to a collapsing spherically-symmetric charged body, the Reissner-
Nordstrom solution can be interpreted as a black hole solution.

2.6. The Majumdar-Papapetrou solutions. The Majumdar-Papapetrou
solutions are electrovac solutions generalising the Reissner-Nordstrom solution with
e? = m2. They may be written
(2.13) ds? = V2dt? — V=2(dz? + dy® + d2?)
where V' is harmonic

o’v 0V 9V

Ozx2 + Oy? + 022 0

In the special case

(2.14) v=1+Y

the solution represents a superposition of charged black holes, the i-th having mass
m; and charge e; satisfying e? = m?, the same sign taken for all. The locations are
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FIGURE 4. Carter-Penrose diagram of the maximally analytically
extended Reissner-Nordstrom solution with e? < m?; note the r =
0 singularity has become time-like and there are infinitely many
asymptotic regions, also infinitely many Killing horizons at r = r
and r = r_; note also the occurrence of a Cauchy horizon at r = r_
for the surface ~.

freely specifiable since, physically speaking, the mutual gravitational attractions
are balanced by the electrostatic repulsions. All the black holes have degenerate
horizons.

2.7. Homogeneous and isotropic cosmologies. We shall need these in §5.
TERMINOLOGY 2.7.1. The Robertson- Walker (or FRW) metric is the metric

(2.15) ds® = dt* — (R(t))%do}
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t = const.

F1GURE 5. Carter-Penrose diagram of the maximally analytically
extended Reissner-Nordstrom solution with €2 = m?; the Killing
horizons of figure 4 merge in pairs and become degenerate at r = m;
the surfaces of contant ¢ have points at infinite distance at r = m.

where R(t) is the scale factor and the spatial part do? is the metric of a 3-space of
constant curvature k.

With any scale factor, this metric has a 6-dimensional isometry group transitive
on the surfaces of constant time ¢, hence the title of this section. The metric is
always conformally-flat and so is conformal to part of the Einstein static cylinder.

Particular examples are:

EXAMPLE 2.7.2. The de Sitter space, for which k = 1 and R(t) = acosh(t/a),
or k =0 and R(t) = exp(t/a).

EXAMPLE 2.7.3. The (universal cover of the) anti-de Sitter space, for which
k = —1 and R(t) = acos(t/a).

These are in fact Lorentzian symmetric spaces. De Sitter space is conformal
to the region 0 < T < 7 on the Einstein static cylinder, so it has a space-like 7~
at T = 0 and a space-like ZT at T = 7. Anti-de Sitter space is conformal to the
region R < 7/2 on the Einstein cylinder and has a time-like 7 at R = n/2. It
is a consequence of the definition of weak asymptotic simplicity 2.2.2 that, if the
Einstein equations in the form

Rop - Agay =0

hold near Z, then Z is time-like, space-like or null according as the cosmological
constant ) is greater than, less than or equal to zero (there is a choice of convention
in the sign of the Ricci tensor R, which can confuse this issue; see §5.4).

2.8. Energy conditions. With the Einstein equations as in (1.1):

CoNDITION 2.8.1. The stress-energy tensor Tg is said to satisfy the weak en-
ergy condition if T,;t%t® > 0 for every time-like vector t®.
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CoONDITION 2.8.2. The stress-energy tensor T, is said to satisfy the strong
energy condition if Typt®t® > 1TCgept?t for every time-like vector #9.

CoONDITION 2.8.3. The stress-energy tensor T,y is said to satisfy the dominant
energy condition if Topt® is a non-spacelike, future-pointing vector for every future-
pointing time-like vector ¢°.

These conditions can all be regarded as reasonable conditions on (classical)
matter. From them and the Einstein equations one deduces:

CoNDITION 2.8.4. If Ty, satisfies the weak energy condition, then the Ricci
tensor R, satisfies the null convergence condition: Rapn®n® > 0 for every null
vector no.

CONDITION 2.8.5. If Ty, satisfies the strong energy condition then R,; satisfies
the time-like convergence condition: R,pt®t® > 0 for every time-like vector ¢°.

The dominant energy condition is the one needed in the first two proofs of
the positive energy theorem; the others are relevant to the existence of conjugate
points, which we turn to next.

2.9. Geodesic deviation. We need some formalism here. Suppose v is a
time-like geodesic with unit future-pointing tangent vector 7. Write D = T°V,
for the directional derivative along v and s for proper time along v, and let e} =
{e$,€%,e5} be an orthonormal basis of vectors orthogonal to T® and parallely-
propagated along . A Jacobi field X is a vector field defined at points of v and
satisfying the geodesic deviation equation. If we assume that X is orthogonal to
T* and expand it in the triad e} then geodesic deviation is the equation

2wt i
(2.16) D*X' = &% X7

where

(2.17) X® = X'ef; and ®Je? = —Ryeq “T*T%;.

We wish to consider simultaneously all Jacobi fields vanishing at a point p taken as
s = 0. These can be represented by the columns of a matrix A = (A?) satisfying

(2.18) D?A = ®A

where we adopt a matrix notation and write ® = (Qf )-
Introduce the matrices M and ¥ and the scalar 6 by

DA = MA
(2.19) M = £+ %01
where ¥ is trace-free and I is the identity. Then (2.18) implies
TERMINOLOGY 2.9.1. the Raychaudhuri equation:
(2.20) DO+ 6% +tr(2?) = trd
and a (nameless) propagation equation for X:
(2.21) DY + %92 +32 - %Itr(22) =0 %m(@)

Note that tr(®) in (2.20) is, by (2.17), equal to — R, T%T® which is nonpositive if we
have the time-like convergence condition, so D + 62 in (2.20) is non-positive. Now
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a point g is conjugate to a point p iff there is a (non-trivial) Jacobi field vanishing
at p and at q. This will happen iff detA satisfying (2.18) vanishes at g, but from
(2.19)

(2.22) 0 = trM = D(logdet A)

Thus q is conjugate to p iff 0 is infinite at q. The idea is to prove from (2.20) and
(2.21) that this is inevitable: by (2.20) 8 will become infinite along « if it once
becomes negative, and by (2.21) if ® is non-zero somewhere on +, then that will
produce ¥ which will enter (2.20) to reduce 6. This can be made precise:

PROPOSITION 2.9.2. [60, Prop 4.4.2] Given

(i) the time-like convergence condition;
(ii) the generic condition: RgpcaT°T° # 0 at some point of each time-like geo-
desic;
(iii) time-like geodesic completeness;
then every time-like geodesic contains a pair of conjugate points.

A similar formalism can be developed for geodesic deviation along null geodesics
with one slight difference: one concentrates on Jacobi fields representing infinitesimally-
neighbouring geodesics ‘abreast’ of the fiducial one, which is to say lying in a null
hypersurface with it. This entails that the matrix A in this case is 2 x 2 rather than
3 x 3. The proposition analogous to 2.9.2 can be proved:

PROPOSITION 2.9.3. [60, Prop 4.4.5] Given

(i) the null convergence condition;
(ii) the generic condition: TioRyjescTayT eTf # 0 at some point of each null
geodesic;
(iii) null geodesic completeness;
every null geodesic contains a pair of conjugate points.

The role of the generic condition is to constrain the relevant term for the
modification of (2.21).

The significance of conjugate points is their relation to maximising properties
of geodesics. One has:

LEMMA 2.9.4. (i) a time-like geodesic curve v from p to q is mazimal iff
there is no point conjugate to p along v in (p,q);
(ii) if p and q lie on a null geodesic v and there is a point r conjugate to p
between them, then there is a time-like curve from p to q.

As an application of (ii) used below, consider the boundary of the future of p,
It (p); near p this is ruled by the null geodesics generating the null cone at p; if
one of these generators meets a point r conjugate to p, then, by (ii), beyond r it
lies inside I*(p) and no longer on OI*(p). This observation is the key ingredient
in the proof of 2.12.1.

2.10. The Cauchy problem for general relativity. Here the problem is
to express the Einstein equations as the evolution of something, and then to prove
existence and uniqueness of solutions. The idea is to decompose tensorial quan-
tities with respect to a foliation by hypersurfaces of constant ‘time’, t say, in the
knowledge that the choice of this foliation usually has a great deal of arbitrariness
in it. The variables are the first and second fundamental forms of the 3-surfaces
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of constant ¢, say h;; and K;;, where the indices are abstract but 3-dimensional,
together with whatever matter variables are needed. One needs the Gauss and
Codazzi equations to relate 3-dimensional and 4-dimensional tensors.

Suppose that the normal to the 3-surfaces is N* and take the Einstein equations
to be

(2.23) Gap = 87T up

These decompose into ‘constraints plus evolution’. The (time,time) component,
using the Gauss equation twice-contracted, is

2.24 SR+ K? - K;; K" = 2G,,N°N® = 167T,, N°N?®
J

where 3R is the 3-dimensional scalar curvature and K = h;; K%. This is known
as the Hamiltonian constraint. The (time, space) component, using the Codazzi
equation once contracted is

(2.25) D;K! — D;K = G4iN® = 87T,;N°®

where D; is the intrinsic 3-dimensional Levi-Civita derivative. This is the momen-
tum constraint. These are four constraints: they are conditions on the data which
must hold at each time and so in particular must hold initially.

The (space,space) components are the evolution equations, determining the
time-derivative of K;;, equivalently the second derivative of h;;. There will also be
matter evolution equations, and possibly matter constraints too.

The equations will not be strictly hyperbolic until the diffeomorphism invari-
ance (or coordinate freedom) has been constrained. One then needs to verify that
all the constraints are preserved by the evolution, which usually follows from the
contracted Bianchi identities.

Notice from the Hamiltonian constraint that, if a 3-surface is mazimal, which
is to say that the trace K = A" K;; is zero, then either the weak energy condition
or the dominant energy condition implies that the 3-dimensional Ricci scalar is
non-negative.

2.11. Definitions of mass and positive energy theorems. In §2.4, we
mentioned the ‘mass’ of the Schwarzschild solution. How is this defined? Without
going into details, let us note that there is a definition of mass ‘at infinity’ on
asymptotically flat hypersurfaces in asymptotically flat space-times. This is the
ADM mass and is, roughly speaking, read off from the O(1/r) terms in the metric.
In an analogous way, one can define a mass at any (topologically spherical) section
(or cut) of ZT or I~ in a weakly asymptotically simple space-time. This is the
Bondi mass, and it decreases as the cut is moved into the future on Z%, or into the
past on Z~. In both these cases, the mass is more properly called the energy as it
is the time-like component of a 4-vector at infinity, the total energy-momentum.

In a stationary space-time with a Killing vector K, one may associate a mass
with any 2-surface by the Komar integral

1

= — dK
47 *

(2.26)

The integrand is closed given the Einstein vacuum equations. On a sphere at large
distances the Komar integral gives the Bondi or ADM mass (which are equal in a
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stationary space-time). In a vacuum space-time containing one or more black holes,
the Komar integral gives the formula:

1
(227) M= E Zl: fiiAi

in terms of the individual surface gravities x; and areas A; of the black holes (of
course, one does not expect there to be multiple static vacuum black hole solutions,
but the extension of this formula to charged, rotating holes is a significant resource).

There has been a great deal of work with the aim of defining a mass or energy-
momentum vector to be associated with an arbitrary 2-surface in an arbitrary
space-time [59, 94, 5, 129]. Usually such a mass is called ‘quasi-local’ since one
does not expect it to be the integral of a local density over a spanning 3-surface -
gravitational mass-energy is not a local quantity - but one does require that it be
determined by geometrical quantities at the 2-surface.

Given one of the definitions of total energy-momentum, one can seek to prove
that the vector is time-like given some local energy condition, and vanishes only in
flat space. We call such a result a Positive Energy Theorem.

The first proof that the ADM momentum is time-like and vanishes only for
flat space given the dominant energy condition and an asymptotically flat maximal
space-like hypersurface diffeomorphic to R® was given by [112]. In a sequence of
extensions, they subsequently dropped the condition of maximality, allowed the
hypersurface to have an inner boundary which was minimal, and extended the
result to the Bondi mass {113, 114]. They use methods of Riemannian geometry
applied to the data for the space-time on the maximal hypersurface: they show
that nonpositive mass together with non-negative Ricci scalar (which follows from
the Hamiltonian constraint) permit the existence of a particular kind of minimal
surface, which in turn forces the data to be data for flat space.

Under the assumptions of the dominant energy condition and the existence of
an asymptotically flat space-like hypersurface diffeomorphic to R?, the same result
was proved by Witten in a very different way [145]. He uses a 2-component spinor
field and an identity, quadratic in the spinor field, which relates a component of
the ADM energy-momentum to an integral over the space-like hypersurface. This
integral is manifestly non-negative if the spinor field satisfies a linear equation,
a modification of the 3-dimensional Dirac equation generally known now as the
Witten or Sen-Witten equation. The problem is therefore reduced to the existence
theory for the Witten equation. This has been established, and the Witten-style
proof has been extended to permit inner boundaries and to prove positivity of the
Bondi energy [86, 75, 54, 109, 61].

There is a third approach to the positive energy theorem [97]. First we need a
definition:

DEeFINITION 2.11.1. For a weakly asymptotically simple space-time M, define
the domain of outer communications D = I (Z~)NI~(IT).

These authors prove:

ProPOSITION 2.11.2. In a WAS space-time M, if D is globally hyperbolic and
every null geodesic in D possesses a pair of conjugate points then the ADM energy-
momentum is future-pointing.
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The idea is to exploit the result noted in 2.4.9: causal properties of the point
i% are quite different if the ADM mass is positive or negative; for positive mass
and any point p € Z~, all of Z% is contained in It (p); for negative mass, this is
not true and there is a ¢ € I (p) N Zt; in this case one then shows that there
is a null geodesic 7 from p to g lying in the boundary 8I*(p); but v contains a
pair of conjugate points and so cannot remain on the boundary 81 (p) by 2.9.4 (ii)
yielding a contradiction. The existence of conjugate points follows from 2.9.3 given
the Einstein equations, an energy condition and the generic condition.

2.12. Singularity Theorems. We saw in §2.4 how the Schwarzschild singu-
larity may be seen to ‘form’ in gravitational collapse to a black hole. It was at one
time argued that the formation of singularities was a very special circumstance,
attributable possibly to the high degree of symmetry in the Schwarzschild solution.
This position changed after the first singularity theorem appeared.

PROPOSITION 2.12.1. [87] The following conditions on a space-time M cannot
hold simultaneously:

(i) M has a non-compact Cauchy surface S;
(ii) M contains a closed trapped surface T';
(iii) M 1is null geodesically complete;

(iv) the null convergence condition holds in M.

This is a ‘singularity theorem’ to the extent that geodesic incompleteness is
taken as the criterion of singularity. We sketch the proof: by (ii) the outgoing
null geodesics orthogonal to T are converging at T'; (iii) and (iv) then enforce the
appearance of a point conjugate to T along each such geodesic by a version of
the argument leading to 2.9.3; beyond this conjugate point, the geodesic is in the
interior of I (T') by a modification of 2.9.4; thus the boundary 8I*(T') is compact;
this is incompatible with (i) - to see this, choose a smooth time-like vector field on
M and use the integral curves of it to map &I (T') continuously into S, which is
not compact.

This was the first of the conjugate point arguments which have been crucial in
mathematical relativity. There have been many more singularity theorems proved
under different assumptions, for example different energy conditions, dropping
global hyperbolicity, allowing causality violations, allowing compact spatial sec-
tions. The proofs typically derive contradictions from the simultaneous existence
of conjugate points and some geometric condition implying collapse.

3. Topological Issues; Topological Censorship

3.1. The Alexandrov topology. As observed in §1, in a space-time M the
spacetime metric does not define a topological metric. One may seek instead to
define the open sets of the manifold by causal properties. The Alexandrov topology
is the one generated by open sets of the form I (p) NI~ (g); when does it coincide
with the manifold topology (which will always be assumed to be Hausdorff)?

ProprosITION 3.1.1. [89] The following are equivalent:

(i) M is strongly causal
(ii) the Alezandrov topology agrees with the manifold topology;
(iii) the Alezandrov topology is Hausdorff.
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Clearly some causal condition is needed, and strong causality turns out to be
the right one.

3.2. Compact Lorentzian manifolds. Historically, relativists have not been
much interested in compact space-times. There are several reasons for this:

PROPOSITION 3.2.1. [8] Any compact M contains closed time-like curves.

PRrRoOOF. Take an open cover of M by sets I*(p) and contemplate a finite sub-
cover. O

Next:

PROPOSITION 3.2.2. [8] The 4-manifold M admits a Lorentzian metric iff M
admits an everywhere time-like direction field. If M is compact this happens iff
the Euler characteristic is zero, so in particular would imply that M is not simply-
connected.

Hawking and Ellis [60] interpret 3.2.2 as meaning that a compact spacetime is
‘really’ a non-compact space-time with identifications. Against this view is Tipler’s
‘No-return’ theorem [125]: call a space-time M with a Cauchy surface S time-
periodic if M admits an infinite cyclic group of isometries G = {6;|i € Z} with
0:(S) N 6;(S) =0 for all ¢,j. Then:

PROPOSITION 3.2.3. If M admits a compact Cauchy surface S and the generic
and time-like convergence conditions hold in M then M cannot be time-periodic.

PrOOF. Note first that the generic and convergence conditions imply the ex-
istence of conjugate points on time-like geodesics; now one connects copies S; and
S; of the Cauchy surface under the isometry by maximising time-like geodesics;
take a limit, then the limit geodesic has conjugate points which contradicts the
maximality. O

From Tipler’s no-return theorem, [82] deduces another pathology of compact
space-times:

PROPOSITION 3.2.4. If M is compact and satisfies the null and time-like con-
vergence and generic conditions, then M cannot admit a closed, embedded, edge-
less, space-like hypersurface.

The proof shows that, if it did, 3.2.3 would be violated in a suitable covering
space.

3.3. Topology change. The idea that space-like hypersurfaces might have
nontrivial topology which, furthermore, might change with time has long interested
relativists. Typically, though, there are problems with topology change:

PROPOSITION 3.3.1. [48] If M is globally hyperbolic then M admits a Cauchy
surface S and M is homeomorphic (in fact diffeomorphic) to R x S .

Thus the topology cannot change with time if M is globally hyperbolic. In the
absence of conditions, however, topology can change:

PROPOSITION 3.3.2. [103, 46] Any two compact (not necessarily connected) 3-
manifolds S and S’ are Lorentz cobordant: there is a compact M, whose boundary
is the disjoint union S[]S’, and which admits a Lorentzian metric in which S and
S’ are space-like.
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But causality is necessarily violated if topology does change:

PROPOSITION 3.3.3. [46]) With M, S and S' as in 3.3.2, if M is time-oriented
and contains no closed time-like curves then S and S’ are diffeomorphic.

The idea for 3.3.3 is to use the time-like direction field which M admits (by
3.2.2) tomap S to S'.

Even giving up causality is not enough:

PROPOSITION 3.3.4. [123, 124] With M, S and S’ as in 8.3.2, if the null
convergence and null generic conditions hold in M then S and S’ are diffeomorphic
and M is R x S.

A different kind of difficulty with topology change was found by Gibbons and
Hawking [55]. This is the problem of defining spinors on a topology changing
space-time.

PROPOSITION 3.3.5. There is a mod 2 invariant u(S) of 3-manifolds such that,
with M, S and S’ as in 3.3.2, M will admit SL(2,C) spinors iff u(S) = u(S").
Here u(S) is the Kervaire invariant:

u(S) = dim7,(Ho(S;Z2) ® H1(S;Z2)) mod 2

Thus, for example, a Lorentzian metric can be defined on the topology-changmg
space-time M with S = S3 and S’ = S31I S3, but M will not admit spinors.
Gibbons and Hawking argue that failing to admit spinors is a more serious defect
in a space-time than having closed time-like curves.

3.4. Obstructions to spatial topology. Given that it is difficult to change
spatial topology, are there are obstructions to having it at all? The answer is, “No,
but ... ”

PROPOSITION 3.4.1. [144] Every closed 3-manifold occurs as a space-like hy-
persurface in a vacuum space-time; every closed 3-manifold minus a point occurs
as an asymtotically flat initial data set for a vacuum space-time.

The proof is by an explicit construction of a solution of the constraints for the
vacuum field equations exhibited in §2.10.

However, if one seeks to impose the extra condition that the hypersurface is
maximal then there is a problem: the Hamiltonian constraint implies that the
(3-dimensional) Ricci scalar is positive. Thus:

PROPOSITION 3.4.2. [144] Any closed oriented 3-manifold with a K(w,1) as a
prime factor admits no metric with R > 0 and only flat metrics with R > 0, thus
there are many space-times (vacuum or with matter satisfying an energy condition)
with no mazimal slice.

A simple explicit example of an asymptotically flat space-time containing no
maximal surface due to Brill [12] contains an asymptotically flat space-like hyper-
surface which is topologically T minus a point. It is constructed by joining part of
the Schwarzschild solution to a piece of the £ = 0 dust-filled FRW universe across
a collapsing sphere, and then identifying the FRW part to a torus. This example in
turn has been generalised by Bartnik [4] to give a space-time with spatial topology
T34T3 which admits no space-like hypersurface of constant mean curvature for any
value of the constant.
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There is current interest in the existence of foliations by constant-mean-curvature
or CMC hypersurfaces: see §5. There are at present no examples in the literature
of vacuum space-times which admit no CMC hypersurfaces.

3.5. Topological censorship. We met cosmic censorship in §2.4 and will
meet it again in §7. Topological censorship [35] is a related idea, that an asymp-
totically flat space-time may well have complicated topology close in, but this fact
cannot be communicated to large distances. The starting point is the singularity
theorem of Gannon [45], which needs a definition:

DEFINITION 3.5.1. A space-like hypersurface S in an asymptotically flat space
is regular near infinity if it satisfies the following three conditions:
i S = Ufil W;, W; C W41 and each W; is is a compact 3-manifold with
boundary homeomorphic to a 2-sphere;
(ii) S — intW; is homeomorphic to OW; x R*;
(iii) the ingoing null geodesics normal to W; are converging everywhere on OW;.

Note that (iii) is what you would expect on a large 2-sphere — this is not a
‘trapped’ condition. Then:

PROPOSITION 3.5.2. [45] If a space-time M admits a Cauchy surface which
is reqular near infinity and not simply-connected, and if the time-like convergence
condition is satisfied in M, then M is not null geodesically complete.

PROOF. The idea is to consider, in the universal covering space M of M, a copy
A of one of the large spheres W; lying on a copy S of S; the ingoing null geodesics
normal to A define a submanifold N which is part of the boundary 8J%(A); by the
argument in 2.12.1 they leave the boundary after passing conjugate points if they
are complete, so that N is compact and A = ON; now a time-like direction-field
maps N down to S, but A cannot bound a compact 3-manifold in S. 0O

Topological censorship deals with a weakly asymptotically simple space-time
M and causal curves from Z~ to Zt. Let 7 be such a curve which lies in a simply-
connected neighbourhood of Z =7t UZ".

PROPOSITION 3.5.3. [35] If M is WAS and globally hyperbolic and the null con-
vergence condition holds in M then every causal curve from I~ to I is homotopic
to 7.

The idea is that, if T is a causal curve from Z~ to ZT not homotopic to
then, in the universal cover of M, I" connects different asymptotic regions; to do
this I' must pass through a trapped surface T say on its way to Zt; one derives a
contradiction from a conjugate point argument applied to a null geodesic generator
of the boundary of the future of T', 8ZF (T'), which meets Z+.

The interpretation of 3.5.3 is that topological complexity close in in an asymp-
totically flat space-time satisfying an energy condition collapses ‘too fast’ for an
observer outside to probe the topology, and in particular therefore, too fast for the
observer to pass through any wormholes and escape safely. A result equivalent to
3.5.3 due to Galloway is:

PROPOSITION 3.5.4. [41] If M is WAS, the null convergence condition holds
in M, and the domain of outer communication D = I (Z=) NI~ (Z%) is globally
hyperbolic, then D is simply connected.
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In this form, the result will be seen to be relevant to the study of black holes
in §6.

Finally, there is a version of topological censorship due to Galloway and Woolgar
[44] which drops the condition of global hyperbolicity, replacing it with a form of
cosmic censorship and a causal condition at i°.

A testing example of a traversable wormhole was provided by Schein and Aichel-
burg [111]. Their electrovac solution can be interpreted as an exterior consisting
of a 2-body Majumdar-Papapetrou solution containing two topologically-spherical
charged shells, joined across the shells to an interior consisting of part of the ex-
tended Reissner-Nordstrom solution; the trick is that the two shells are in two
different asymptotic regions in the Reissner-Nordstrom solution, one later than the
other. The matching is done without violating energy conditions. Now it is possi-
ble to follow a causal curve through one shell at a certain time tg, move forward in
time in the Reissner-Nordstrom part but re-emerge into the Majumdar-Papapetrou
exterior from the second shell at a time earlier than to: there are closed time-like
curves through every point of the space-time; the wormhole is traversable but the
energy conditions are not violated.

3.6. Signature change. Signature change, while not a topological issue, is
related to the idea of topology change. The question is can the Einstein equations
have solutions in which the signature of the metric changes from Riemannian to
Lorentzian or vice-versa? The motivation for considering the possibility has come
from the Hartle-Hawking ‘No-boundary’ proposal in quantum gravity [58]. There
is a need for care because the metric must degenerate to change signature.

Gibbons and Hartle [53] consider the general theory, showing that the signa-
ture can only change across an umbilic (equivalently, a totally geodesic) space-like
hypersurface S. Then the Hamiltonian constraint again constrains the topology of S
as in 3.4.2. Ellis et al [31] present some explicit solutions of the Einstein equations
with matter which do change signature.

4. Lorentzian Splitting Theorems; Related Matters

4.1. Yau’s question. For this we first need a definition:

DEFINITION 4.1.1. A time-like line is an inextendible time-like geodesic which
maximises the distance between any two of its points.

Yau [147] posed the problem, slightly rephrased here, of proving that a geodesi-
cally complete space-time M in which the time-like convergence condition holds
and which contains a time-like line is isometrically the product of the line and a
space-like hypersurface. This was proposed as an analogue of the Cheeger-Gromoll
splitting theorem in Riemannian geometry.

The Lorentzian Splitting Theorem in this form was proved by Eschenburg [32],
with the extra assumption that M is globally hyperbolic, by a modification of
the Riemannian proof. Galloway [40] proved the theorem with the assumption
of global hyperbolicity but dropping the assumption of time-like geodesic com-
pleteness. Then Newman [83] proved the theorem precisely in Yau’s form, with
the assumption of time-like geodesic completeness and without the assumption of
global hyperbolicity. (See [9] for a more detailed account of this history.)
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4.2. Geroch’s suggestion. A related set of ideas is associated with the sug-
gestion of Geroch [46, 49] that most closed universes should be flat or become
singular. This was interpreted by Galloway and Horta [43] as ‘spatially closed
space-times should fail to be flat only under exceptional circumstances’. Geroch
supported his contention with a singularity theorem, which we give in a modified
form due to Bartnik [4]:

PROPOSITION 4.2.1. Suppose the time-orientable space-time M has a compact
Cauchy surface S and that the time-like convergence condition holds in M ; suppose
that there is at least one point p € S with no horizon in the sense that M — (It (p)U
I~ (p)) is compact; then M is time-like geodesic incomplete or splits as a metric
product. '

The ‘no-horizon’ condition means roughly that every observer can exchange
communications with p. The idea of the proof is to move the surface S until it
has everywhere negative or everywhere zero expansion; then use a conjugate point
argument on the geodesic normals to S to prove incompleteness, or find a time-
like line. Geroch assumed a stronger form of time-like convergence, namely that
Rgst®t® > 0 for all time-like t2, and Rgpt®t® = 0 for some time-like t* only if
Ry, = 0. With this, the split case is actually flat.

For this section only, and following [4], call a space-time ‘cosmological’ if it
is globally hyperbolic with a compact Cauchy surface and satisfies the time-like
convergence condition. Then Bartnik [4] further conjectures that:

CONJECTURE 4.2.2. Any cosmological space-time is time-like geodesically in-
complete or splits as a metric product.

One approach to this would be to find a maximal surface and use a conjugate
point argument to prove incompleteness. Another would be to prove that a time-like
line exists. The difficulty with the second strategy is that one can seek to construct
the line as a limit, only to have the limit become null, a Lorentzian difficulty not
existing in Riemannian geometry. With extra assumptions, the second route has
been successfully followed by Eschenburg and Galloway [33, 42].

A related splitting theorem, due to Andersson et al [2], is concerned with
warped products. They show that a globally hyperbolic space-time satisfying an
energy condition with a negative cosmological constant (positive with their conven-
tions) and having a finite but long enough time-like line is a warped product. With
some more assumptions, they characterise anti-de Sitter space by this route.

5. Existence and Uniqueness

Questions of existence and uniqueness for the Einstein equations split into prob-
lems with the constraints, which are usually elliptic, and problems with evolution,
which are hyperbolic. Solution of the constraints on constant-mean-curvature hy-
persurfaces, either compact, asymptotically flat or asymptotically hyperbolic, is well
understood. Local-in-time solution of the evolution equations is also well under-
stood. References to this material can be found in the ‘Living review’ Ezistence theo-
rems for the Einstein equations by A.D.Rendall at http://www.aei-potsdam.mpg.de.
For an earlier review, see [34]; for the situation with matter, see [108].

The big question now is global or long-time existence. In cosmological solutions,
one expects initial and sometimes final singularities to form; in asymptotically flat



352 K.P.TOD

solutions one expects gravitational collapse to be possible, resulting in singulari-
ties. Thus there is often no expectation that a solution obtained from Cauchy data
will exist forever. Rather one hopes to investigate and perhaps constrain the kinds
of singularities that are formed, and to prove existence up to the singularity. In
particular, one would like to know whether Cauchy horizons ever arise in an evolu-
tion, or equivalently whether the maximal development of a set of data is globally
hyperbolic; cf. e.g. [20]. Here we are getting close to cosmic censorship, discussed
below in §7.

Results on long-time existence can be classified by the amount of symmetry a
solution possesses:

5.1. Spatially-homogeneous cosmologies. These have isometry group tran-
sitive on space-like hypersurfaces (they are ‘cohomogeneity-one’) so the Einstein
equations reduce to a system of ordinary differential equations. This system can
often be solved; cf. e.g. [135]. Rendall [105] gives existence theorems for some
symmetry types and matter models, which expand forever from an initial singu-
larity, or expand and recollapse, with no Cauchy horizons. This is a ‘large-data,
long-time’ theorem.

5.2. 141 reductions. Reductions with two commuting space-like symmetries
lead to partial differential equations with one time and one space variable. These
include Einstein-Rosen cylindrically-symmetric gravitational waves [10, 146] and
Gowdy vacuum cosmologies [80, 19, 24|, where the group orbits are compact . In
both cases there are large-data, long-time existence theorems.

5.3. Spherical symmetry. Here collapse is possible. In a long series of pa-
pers, Christodoulou has investigated spherically-symmetric solutions with scalar-
fields, which also lead to (1+1)-pdes; see [16] for references. He has produced a
very complete picture, reviewed by Wald [138] and described at greater length in
7.2.3. From sufficiently small, asymptotically flat initial data, solutions last forever
with a complete ZT.

Rein et al. [102] established long-time existence for spherically-symmetric and
other (1+1)-solutions of the Einstein-Vlasov equations, again for small data.

5.4. No symmetry. Christodoulou and Klainerman [18] have proved the
global existence of solutions to the vacuum equations with data close to flat on
an asymptotically flat initial hypersurface (see the chapter by Christodoulou in
this volume). They find that, with generic (small) asymptotically flat data the
conformal structure is not smooth at Z.

Friedrich, in a long series of papers, has studied the vacuum equations with
cosmological constant. We noted in 2.7.3 that the nature of Z+ depends on the
sign of the cosmological constant (though note that Friedrich’s conventions have
the opposite sign for the cosmological constant). For positive cosmological con-
stant, (negative with his conventions) Friedrich [36] shows that, with data on S3
close to the data for de Sitter space, the solution exists globally, and is asymptoti-
cally simple. For negative cosmological constant (positive with his conventions), he
poses an initial-boundary-value problem, with boundary data on a finite interval of
the (time-like) Z, and initial data on a ball and proves existence of an asymptoti-
cally simple space-time generalising the anti-deSitter metric, with no assumption of
smallness. In vacuum, he first considers ‘hyperboloidal initial data’ which is data
on an asymptotically hyperbolic surface S spanning a cut of Z+ [36, 1]. He proves
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[36] that the solution exists to the future of S and that the smoothness of Z% is
preserved by the evolution. Most recently [38], he considers the case of data for
the vacuum equations on an asymptotically flat hypersurface S. What one wants
to know here is what, if any, conditions on the data lead to hyperboloidal data, or
equivalently to a smooth Z*. This requires an intricate analysis of the geometry
near i°. Friedrich has a necessary condition on the data for the evolution to admit
a smooth Z7, but it is not yet known whether the condition is sufficient. For more
details, see [39].

It is worth remarking that one knows already from the study of Maxwell’s
equations in flat space that, to obtain a solution which is smooth at ZT, one needs
to impose conditions on the data on an asymptotically flat hypersurface which are
stronger than naive asymptotic flatness: crudely speaking with increasing &k each
2%_pole must fall off at a faster rate in r; equivalently the solution must be smooth
at i°. It seems reasonable that one should expect something similar in the vacuum
equations.

There do exist radiating electrovac solutions which are smooth at Z+. Cutler
and Wald [27] give a spherically-symmetric solution of the constraints for an elec-
trovac (actually ‘magnetovac’) solution. The data is asymptotically flat, and in fact
is data for the Schwarzschild solution outside of a certain radius. These authors
are able to show that the evolution therefore leads to hyperboloidal data which by
Friedrich [36] evolves to have a complete Z.

5.5. Isotropic singularities. Another class of cosmological space-times where
the solution is known ‘up to’ the singularity is the cosmologies with an isotropic sin-
gularity [56, 130, 84]. In fact, these are the other way round: data is given at the
singularity, then local existence is proved; the data is unconstrained, but less data
can be given than at a finite surface. Existence and uniqueness has been proved
for some perfect fluid matter models {26, 3] and for the spatially homogeneous
massless Einstein-Vlasov equations [3].

5.6. CMC foliations. Under certain circumstances, a space-time will admit
a foliation by constant-mean-curvature space-like hypersurfaces, one for each value
of the mean curvature in some range (e.g. the range (—oo, +00) in the £k = 1 FRW
solutions; the range (—o0,0) in the k = 0 FRW solution). The value of the mean
curvature is then a useful time coordinate, and ‘global in CMC-time’ can be thought
of as the canonical existence problem. For spatially compact space-times, and given
the right energy condition, such a foliation is unique if it exists [77]; see also [6] for
the asymptotically flat case, and [30] for application to numerical relativity. We
saw in 3.4.2 that there are space-times without such a foliation. There are examples
where only part of the space-time is covered, and cases where the existence of the
foliation is assured. See [107] for a recent review.

One may also seek foliations of a space-like hypersurface by constant mean
curvature 2-surfaces (in fact 2-spheres). This is a wholly Riemannian problem.
Huisken and Yau [66] use a mean curvature flow and the positive energy theorem
to prove that a unique stable foliation exists in a neighbourhood of infinity on
an asymptotically flat space-like hypersurface. The spheres approach a family of
Euclidean spheres at large distances, all with the same centre which these authors
interpret as a ‘centre of mass’. See [148] for a similar result.
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6. Black-Hole Uniqueness

6.1. The problem. A time-independent, asymptotically flat but not flat, vac-
uum space-time cannot be everywhere non-singular [74]; cf. [21]. Roughly speak-
ing, the (non-zero) gravitational field needs a source. However, as we saw in the
example of the Schwarzschild metric in §2.4, it can be non-singular everywhere out-
side a horizon. The problem of black hole uniqueness is the problem of first finding
all time-independent solutions of the Einstein field equations which are asymptot-
ically flat outside a horizon, and then showing that these are indeed all. The field
equations are allowed to have one of a small number of matter sources correspond-
ing to various fields. (This is hard to make precise and indeed the rules of the game
evolve: the idea is that there are no sources in the sense of non-zero T, outside
the hole except for fields generated by ‘charges’ attributable to the hole.)

SPACE-LORE 6.1.1 (Classical Results). The first results were Israel’s charac-
terisations [68, 69] of the Schwarzschild (respectively, Reissner-Nordstrom) solu-
tions as the only static vacuum (respectively, electrovac) black holes. Then, at the
end of a long chain of results, with contributions from Carter, Hawking, Robinson,
Bunting and Mazur, the Kerr and Kerr-Newman solutions were characterised as
the corresponding stationary black holes. A sequence of arguments shows first that
one need only consider stationary, axisymmetric metrics with a single, topologically
spherical hole, and then that the system of non-linear PDEs to which the Einstein
equations reduce has the corresponding unique solutions, depending on a small
number of constants. References can be found in the excellent recent monograph
of Heusler [63].

SPACE-LORE 6.1.2 (No Hair). The Kerr-Newman solution depends on three
constants, interpretable as the mass, charge and specific angular momentum. The
black hole uniqueness theorem is often aphoristically stated as ‘a black hole has no
hair’ [79], being characterised uniquely by its values of these constants.

There has been a resurgence of interest in black hole uniqueness. This is partly
with the aim of proving the uniqueness theorems under weaker conditions, or of
proving stronger theorems, and partly because new solutions have been found with
other fields.

Under the first heading, see the critical account due to Chrusciel [21]. Accord-
ing to this author, weak links in the proof of the theorem as it stood at his time of
writing included:

¢ the proof that stationary black holes are topologically spherical; the horizon
is a null hypersurface, but one thinks of the black hole as being a space-like
cross-section of the horizon and so 2- dimensional;

e the proof that stationary black holes are axisymmetric if not static: this
requires the metric to be analytic on the horizon; it also uses a physical
argument about ergoregions;

e the assumption that the black holes are connected — i.e. that there is only
one hole.

We first consider progress in these areas. We recall the definition of domain of
outer communication (DOC) from 2.11.1, then a recent result due to Galloway [41]
met in 3.5.4 is the following:
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PROPOSITION 6.1.3. If in an asymptotically flat space-time M the null conver-
gence condition is satisfied and the DOC is globally hyperbolic, then the DOC is
simply connected.

Galloway notes that this is equivalent to the Friedman-Schleich-Witt topologi-
cal censorship theorem 3.5.3 (the proof is similar; note that there is no assumption
of stationarity). In the context of this section, 6.1.3 shows that all black holes are
topologically spherical.

EXAMPLE 6.1.4. Chrusciel and Galloway [22] show by an example that a Cauchy
horizon can be nowhere differentiable. Analyticity for stationary black holes is
proved where the Killing vector is time-like so that the Einstein equations become
elliptic. However, at the horizon no Killing vector is time-like so there is a real
question of whether elliptic regularity holds ‘up to the boundary’.

6.2. Multiple static black holes. The example of the Majumdar-Papapetrou
solutions shows that time-independent solutions corresponding to multiple black
holes are possible, that is the horizon need not be connected. The physical explana-
tion of the Majumdar-Papapetrou solutions is that electrostatic repulsion balances
gravitational attraction, so that this should not happen with vacuum solutions.
Bunting and Masood-ul-Alam [14] show that, indeed, in the vacuum case there
cannot be multiple, static black holes with all components non-degenerate. The
proof, which is extremely elegant, is an application of the positive mass theorem
with black holes; cf. e.g. [54, 61].

Ruback [110] extended their work to show that, in the electrovac case, there
could not be multiple black holes with every horizon non-degenerate. Here the
proof uses a positive energy theorem for charged black holes [54].

However, the Majumdar-Papapetrou black holes have all components degener-
ate. Heusler [64] shows that, if all components are degenerate and the charges of
all holes have the same sign, then a multiple-black-hole static electrovac solution
is necessarily in the Majumdar-Papapetrou family. There are still open questions
about mixtures of degenerate and non-degenerate holes.

6.3. Multiple stationary black holes. One may ask if there exist solutions
corresponding to multiple rotating black holes. The physical idea would be that
there is a spin-spin repulsion which could balance gravitational attraction. There
are 2-body solutions in the literature [28, 65] but the solutions are extremely
complicated and hard to analyse.

In a series of papers, Weinstein {139, 140, 141, 142] has analysed the problem
of multiple, rotating black holes. The solutions are stationary and axisymmetric,
with the holes strung out along the axis. He shows that, for each n, there is a
4n — 1 parameter family of solutions containing n charged, rotating holes, where
the parameters are related to mass, charge, and angular momentum of the n holes
and their n — 1 separations. The solutions are asymptotically flat and regular
everywhere except that there may be conical singularities on the axis segments.
Physically, the idea is that ‘rods’ or ‘struts’ may be needed on the axis to keep the
black holes apart. It is not yet known whether the axis can be regular for suitable
parameter values. The black holes are all non-degenerate.

6.4. Yang-Mills fields and other ‘sources. One may seek black hole solu-
tions in theories with various other matter fields. Very often, one finds that the
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Kerr or Schwarzschild solutions are still the only regular black holes. See [63] for
this with various scalar field and harmonic map sources.

The situation is different when the source is the Yang-Mills field. Bartnik
and McKinnon [7] described a numerical study which found spherically symmetric,
asymptotically flat, static solutions of the Einstein-Yang-Mills equations with a
regular centre. This paper generated a great deal of excitement. Spherical solutions
with black holes were subsequently found numerically by Bizon [11] and Volkov and
Galtsov [133], and a countably infinite family of solutions describing spherical black
holes was found numerically by Kiinzle and Masood-ul-Alam [73].

Proofs that the solutions really do exist were given by Smoller et al [120], for
the solutions with a regular centre, by Smoller and Wasserman [118] for a countably
infinite family of solutions with a regular centre, and by Smoller, Wasserman and
Yau [121] for black hole solutions. The problem is to show that solutions exist
to the boundary-value problem for the coupled non-linear ODEs which the field
equations reduce to. The infinite families are associated with a winding number.

Smoller and Wasserman [119] showed that the extreme Reissner-Nordstrom
metric is the unique degenerate black hole among the SU(2)-Yang-Mills solutions.
Brodbeck and Straumann [13] have shown that both the solutions with a regular
centre and the black holes are unstable. This indicates that the solutions are
probably not significant physically.

Other black hole solutions with matter sources related to the Yang-Mills field
continue to appear in the literature, and may be found at the gr-qc archive.

7. Cosmic Censorship

7.1. Terminology. The term is due to Penrose [88]: ‘Does there exist a “cos-
mic censor” who forbids the appearance of naked singularities, clothing each one
in an absolute event horizon?’. This would now be called the weak cosmic censor-
ship hypothesis, that singularities will form in gravitational collapse, but they will
be hidden behind horizons, while the strong cosmic censorship hypothesis is the
suggestion that space-time is globally hyperbolic. This distinction is also due to
Penrose [92]; for example, weak cosmic censorship would allow time-like singular-
ities to form inside horizons while strong cosmic censorship would not allow them
anywhere.

7.2. Counterexamples. Attempts to disprove the cosmic censorship hypoth-
esis (CCH) inevitably centre on finding counterexamples. A counterexample would
be an evolution of regular data which results in an asymptotically flat space-time
with a singularity in J—(Z1). So far, proposed counterexamples have served mostly
to hone the ‘correct’ statement of the CCH (a process which the unsympathetic may
regard as moving the goal-posts).

CONDITION 7.2.1. The notion of a ‘tame’ matter model has emerged [108, 81].
Suppose one has a putative counterexample to the CCH with some matter model;
for this to be a real threat to the CCH the matter model should be ‘tame’ in the
sense that it would not lead to the same kind of singularities without gravity - it
is not reasonable to expect general relativity to remove a pathology from a matter
model which produces singularities already in special relativity. Thus the shell-
crossing singularities of the first counterexamples [149, 150] occur already with
perfect fluids in flat-space: perfect fluids are not tame.
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ExAMPLE 7.2.2. The Einstein-Vlasov equations are tame, because the Vlasov
equation is linear, and also because the Newtonian limit has long-time existence
[98]; cf. [101]. Shell-crossing singularities cannot occur in the spherically-symmetric
Einstein-Vlasov equations {102], although shell-focussing singularities may arise
[30]. Shapiro and Teukolsky [117] have presented numerical evidence of a violation
of the weak CCH with solutions of the Einstein-Vlasov equations. However, it is
difficult to be certain that the CCH is violated in their examples, and their initial
distribution function is non-smooth; cf. [104].

EXAMPLE 7.2.3. Scalar fields are tame.

Christodoulou has investigated collapsing, spherically symmetric, massless scalar
field configurations in a long and ongoing series of papers; for the references, see
[16]. He gives data on a future light cone, centred at the origin, and shows [16] that
there are choices of asymptotically flat initial data which evolve to solutions with
a naked singularity. The singularity forms first at the origin and then propagates
out to Z* along a singular null cone arriving at a finite (retarded) time. In a recent
preprint [17], he obtains a very complete picture according to which one of three
things happens:

(i) long-time existence with a complete Z+;

(ii) a singularity forms, surrounded by a horizon, and again Z7 is complete;
(iii) neither of the above;

and (iii) includes naked singularities, but the third case is non-generic: Christodoulou
exhibits an arbitrarily small perturbation of the data converting (iii) to (ii).

7.3. Evidence for the CCH.

ExHIBIT 7.3.1 (stability of black holes). If the time-independent black hole so-
lutions were unstable, then they could not be the (stable) endpoint of collapse and
it is hard to see how the weak CCH could be true. However first the Schwarzschild
solution [134, 99, 72] and later the Kerr solution [143] have been shown to be
(linearly) stable.

ExHIBIT 7.3.2 (Existence Theorems). In addition to the work of Christodoulou
described in 7.2.3, there are other existence theorems supporting various aspects
of the CCH. Much of what is described in §5 can be interpreted in this light: for
example, Christodoulou and Klainerman [18] prove the CCH for small data and
vacuum, Friedrich [36, 37] proves it for vacuum plus cosmological constant and
small data. Strong cosmic censorship is the claim that the maximal evolution of
Cauchy data is a globally hyperbolic space-time, possibly with singularities but with
no Cauchy horizons, probably with a requirement that the data be ‘generic’. Proofs
of strong cosmic censorship have been given in some restricted cases [25, 105]. Note
that Cauchy horizons can exist in solutions of the Einstein equations (e.g. in the
Reissner-Nordstrom solution; see figure 4) but the expectation is that they are
necessarily unstable, [57], and therefore non-generic.

ExHIBIT 7.3.3 (Area Theorem for Black Holes). For the next pieces of evidence,
we first need the following result [60, Prop 9.2.7]: Given the null convergence con-
dition in a WAS, black-hole space-time M in which the weak CCH holds in the
sense that 7 is in the domain of dependence D(S) of a Cauchy surface S, then
the area of any connected space-like cross-section of the event horizon 8J~(Z1)
increases into the future.
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The proof uses a conjugate point argument: if the area starts to decrease then
it goes to zero in finite time and a naked singularity will appear. Chrusciel and
Galloway [23] have emphasised that the present proof also assumes smoothness of
the horizon.

Now one may attempt to devise gedanken experiments which reduce the area of
a black hole and therefore violate the weak CCH, for example by firing in charged
[136], dyonic [116] or spinning [136, 126] particles. The details of the particle
trajectories turn out to foil these attempts.

7.4. The Penrose inequality.

EXHIBIT 7.4.1 (The Inequality). There is a whole cycle of ideas around this
prediction of the CCH. The weak CCH, together with the null convergence condi-
tion, implies via the area theorem 7.3.2 an inequality between mass and area of a
black hole: suppose a black hole forms in a gravitational collapse, and then settles
down to a stationary or static one; in the process its area A will increase, but its
Bondi mass m will decrease; when it has settled down, black hole uniqueness tells
us that it will be a Kerr or Kerr-Newman solution and these quantities will satisfy
the following inequality, which can readily be seen to be true for the Kerr family:

(7.1) A < 16mm?
Thus this inequality must be true at all earlier times too.

In fact there is a whole range of inequalities like (7.1) in the literature where
A may be the area of a trapped or marginally-trapped surface and m may be the
Bondi, ADM or even quasi-local mass. Not all of these proposed inequalities are
strictly speaking predictions of the CCH.

EXHIBIT 7.4.2 (Special Cases). Ludvigsen and Vickers [75], Tod [127, 128],
Jezierski [71] and Malec and O’Murchadha [76] have proved versions of the in-
equality under different assumptions. Herzlich [62] proves something very like (7.1)
using a modification of the Witten positive energy theorem on an umbilic space-like
hypersurface S (as we saw in §2.4, a marginally-trapped surface is then a minimal
surface; A is the area of the minimal surface and m is the ADM mass. Herzlich’s
inequality has a different constant from (7.1), related to a Sobolev constant).

Gibbons [52] recently completed a programme started by himself [51] and
Penrose [90] to prove (7.1) when A is the area of a marginally trapped surface and
m is Bondi mass at Z~ in an idealised model of gravitational collapse. Here (7.1)
is implied by other geometric inequalities, like Minkowski’s inequality for convex
bodies as recently generalised by Trudinger [132].

Huisken and Ilmanen [67] prove (7.1) in the same setting as Herzlich; they show
that an inverse mean curvature flow proposed with the aim of proving the positive
energy theorem by Geroch [50] and modified to prove (7.1) by Jang and Wald [70]
does indeed work, evolving in from infinity to the (outermost) minimal surface.

ExHIBIT 7.4.3 (Converse). There are physical reasons for hoping for a converse
to (7.1): that a black hole will form if matter of mass m is squeezed into a small
region, for example one enclosed by area A. This is is hard to make precise. There
is a result of this form due to Schoen and Yau [115], modified by O’Murchadha
[85]. Rather than area, they have a sophisticated measure of the size of a region
in terms of the largest torus which it can contain. The proof uses minimal surface
techniques.
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CONJECTURE 7.4.4 (Hoop Conjecture). Related to the Penrose inequality and
its converse is the hoop conjecture of Thorne [122]. The idea is that a black hole
will form when and only when matter of mass m is squeezed into a region whose
every circumference C satisfies

(7.2) C <4mm

Part of the idea here is that there could be a collapse of a long, thin object to a
singularity without the formation of a horizon, therefore with a violation of the
CCH. The study of Shapiro and Teukolsky [117] was presented as just such a
violation of the CCH and a vindication of the hoop conjecture. Note [131] that
there are real difficulties with making (7.2) precise and some formulations of it are
false.
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