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Einstein Metrics from Symmetry and Bundle Constructions
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Introduction.

In this article we will primarily discuss the construction of Einstein metrics
whose holonomy group is generic, i.e., the restricted holonomy is SO(n), where n is
the dimension of the manifold. Unfortunately, such Einstein metrics are not at all
well-understood. There is no known obstruction for Einstein metrics in dimensions
greater than 4, nor is there a general existence theorem for Einstein metrics with
generic holonomy. For a discussion of obstructions in dimension 4, see the essay by
LeBrun in this volume.

Recall that the Einstein equation Ric(g) = Ag is a non-linear second order
system of partial differential equations which is invariant under the action of the
diffeomorphism group of the manifold. (We will call the constant A the Finstein
constant, while physicists call it the cosmological constant.) In the absence of any
general understanding of the solutions of this system, the current strategy for con-
structing examples is to employ either symmetry or bundle structures to reduce the
Einstein equation to more manageable systems of equations.

By the use of symmetry we mean constructing Einstein metrics having a finite-
dimensional Lie group of isometries. Generally speaking, progress has been made
only when the Lie group acts transitively on the manifold or acts with hypersurface
principal orbits. Under these assumptions, the Einstein equation becomes respec-
tively a system of algebraic or ordinary differential equations.

By the use of bundle structures we mean constructing Einstein metrics on the
total spaces of bundles which are put together from special families of metrics on the
fibres and base using suitable connections. In this situation the Einstein condition
translates into a coupled system of equations involving the Ricci curvatures of the
fibres and base, as well as the curvature of the connection. Since bundles have
structural groups which play a role in the construction, we may, in the spirit of
physicists, regard bundle constructions as exploiting the “internal” symmetry of
the manifolds. Indeed, these bundle constructions originated from Kaluza-Klein
theories of supergravity.

Where the methods surveyed here also produce Einstein metrics with special
holonomy, a brief account of the results will be given. The reader is referred to the
relevant chapters in this volume for further information.
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We do not claim to give a complete survey of all work done in the above topics.
Rather, this article only surveys those developments which the author knows how
to link into a coherent whole. Also, in view of the excellent book of A. Besse [17],
we will concentrate only on developments in the last decade.

Acknowledgements: I would like to thank Christoph B6hm, Andrew Dancer, and
Wolfgang Ziller for their careful reading of earlier versions of this article and for
their many helpful suggestions and corrections. Thanks also go to the taxpayers of
Canada for their partial support through NSERC operating grant no. OPG0009421.

1. Kaluza-Klein Constructions on Principal and Fibre Bundles.

Let # : P - M be a smooth principal G-bundle, where G is a compact Lie
group, and n and d denote respectively the dimensions of P and M. Let ¢ be a
connection on P with curvature form Q = d¢ + [¢, ¢]. Given a left-invariant metric
(, ) on G and a metric g* on M, we may use ¢ to construct a metric g on P given
by the formula

(1.1) 9(X,Y) = g% (m(X), e (Y)) + ($(X), (Y)).

Then 7 : (P, g) — (M, g*) becomes a Riemannian submersion with totally geodesic
fibres. We refer readers to Chapter 9 of {17] for the basic theory of Riemannian
submersions. The connection ¢ is said to be Yang-Mills if £ is coclosed as an
ad(g)-valued 2-form on M. Clearly, this notion depends on the choice of g*. The
Kaluza-Klein ansatz is the construction of Einstein metrics g on P of the type
described. In physical theories, (M, g*) is space-time and matter fields are sections
of vector bundles associated to the principal G-bundles P. A good reference for
Kaluza-Klein theory from the physical viewpoint is [50]. For a good mathematical
account, see [23].

The Einstein condition for g is equivalent to the system

(1.2)
Rica(9(U), 6(V)) + 3 Y (2esre5), S(U)) Oew, ), 6(V)) = MB(V), 6(V),
%,j

(1.3)  Ric(g™)(ma(X), mu(Y)) — %Z(Q(X, €i), (Y, ) = Ag* (e (X), 7 (Y),

(2

together with the Yang-Mills condition for ¢. (In the above, A is the Einstein
constant, U, V are vertical tangent vectors, X, Y are horizontal tangent vectors, and
{e1,--- ,eq} is a g-orthonormal basis of horizontal tangent vectors.) This Einstein
condition follows immediately from (9.61) in [17], and the “unknowns” in the above
system are ¢, ( , ), and g*. The Yang-Mills condition is equivalent to the condition
that the horizontal and vertical distributions of ¢ are orthogonal with respect to
Ric(g).

As was pointed out in [17, (9.62)], the Einstein condition implies that g* has
constant scalar curvature and the pointwise norm of (! must be constant. The
latter condition obviously holds if §2 is parallel or if M is homogeneous and ¢ is
an invariant connection. However, it is not clear to the author how strong this
condition is, especially when G is non-abelian.

The equations (1.2) and (1.3) are in general coupled equations on P. If (, ) is
a bi-invariant metric, then (1.3) becomes an equation on M and (1.2) is invariant
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under the right action of G. However, it is a non-vacuous condition for the second
term of the left-hand side of (1.2) to be invariant under the left action of G, contrary
to the claims in (9.63) of [17] and the ensuing corollary.

As in the situation of Kaluza-Klein theory, the case of an abelian G is more
approachable and we will discuss this case first.

Let G be an r-torus T". Notice that all left-invariant metrics on 7" are bi-
invariant. We will think of 7" as an r-fold product of circles S* = /—1R/2nv/—1Z.
Then a principal torus bundle P is classified by r cohomology classes x1,- -, Xr
in H?(M;Z), which can be thought of as the Euler classes of the circle bundles
P/T™ !, where T"~! ranges over the r codimension 1 subtori obtained by omitting

one of the circle factors. Given a connection ¢ on P, the R"-valued 2-form 525;19 is
the pull-back of an R"-valued 2-form n =, + - -+ + 5, on M whose components 7;
represent x;. If a metric g* is chosen on M, then there is a connection on P such
that the corresponding 2-forms 7; are harmonic. If in addition H'(M;R) = 0, then
the choice of ¢ is unique up to gauge equivalence. Thus when G is abelian, the
Yang-Mills condition is easily satisfied. Recall, however, that the pointwise norm
of n; must also be constant.

In order to increase the chances of solving (1.2) and (1.3), we need to be able
to vary g* in a family of metrics whose Ricci tensors are simple and whose scalar
curvature functions are constant. In general, the harmonic forms 7; will vary with
g*, so at least some information about this variation is required in solving the
Einstein equation.

With these considerations in mind, let (M;,J;), j = 1,---,m, be Fano man-
ifolds, i.e., Kéhler manifolds with positive first Chern class. By [129] they admit
a Kahler metric with positive definite Ricci tensor, so by [73] they are simply con-
nected. The cohomology group H?(M;;Z) is torsion free and so the first Chern
class ¢;(M;) can be written as pja; where p; is a positive integer and «; is an
indivisible class in H2(M;;Z).

We assume further that these Fano manifolds are equipped with a Kéhler-
Einstein metric g; normalized so that Ric(g;) = p;g;. This assumption is non-
trivial and we refer the reader to Tian’s article in this volume for up-to-date in-
formation. We will denote the Kéhler form of gj by wj and its Ricci form by
P
! Now let M = My x --- X My, and 7; be the projection map onto M;. We will
consider principal 7" bundles P, over M which are classified by cohomology classes
X; of the form

m
Xi = Zbijﬂ;aj, 1<i<r,
i=1

where b;; are integers. On M we let g* denote a general product metric of the
form z197 + -+ - + Tmg;, with z; > 0. Every such metric is Kahler with respect to
the product complex structure on M. Furthermore, the 2-forms n; = % > ; bijw;
are harmonic with respect to any of the product metrics g*. We equip P, with a

connection ¢ such that %?dqﬁ =r*(m + -+ ).

THEOREM 1.1. [124] Let m : P, — M be a principal r-torus bundle with
characteristic classes x = (X1, ,Xxr) as described above. If the matriz B = (b;;)
has mazimal rank, then there is an Einstein metric g with positive scalar curvature
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on P, of the form (1.1) where ( , ) is a certain left-invariant metric on T" and g*
is a certain product metric.

Because the connection form has been fixed and the metrics g} are Einstein,
the Einstein condition in the situation of the theorem becomes a system of algebraic
equations in the scaling parameters x;,--- , 2., and in the components of the left-
invariant metric ( , ). It turns out that the latter are determined by the former,
and so we are reduced to a system involving only the z;. This is then solved by
a degree argument. Notice that the rank assumption on B is necessary in view of
Bonnet-Myers, as the fundamental group of P is finite iff the rank of B is maximal.
Note that the submersed product metric g* is generally not Einstein.

When » = 1 and m = 1 in the above theorem, we recover the well-known
theorem of S. Kobayashi [74]. The Einstein metrics on circle bundles over CP* x
CP? and CP' x CP! x CP' were independently found by the physicists D’Auria,
Castellani, Fré, and van Nieuwenhuizen [35], [46] in their quest for 11-dimensional
supergravity theories. Circle bundles over an m-fold product of CP* was studied
by Rodionov [103] in the context of homogeneous Einstein metrics.

The Einstein manifolds constructed in Theorem 1.1 display many interesting
geometrical and topological properties. Especially noteworthy are the following,
whose details can be found in [124].

1. There are compact simply connected manifolds in all odd dimensions greater
than 4 which admit infinitely many pairwise non-isometric Einstein metrics
(with positive scalar curvature) belonging to different path components of
the moduli space of Einstein structures. If the volumes of these Einstein
metrics are normalized to be 1, then the Einstein constants have 0 as an
accumulation point. For example, for each k > 1,52 x §2*¥*1 and certain
non-trivial RP***! or $4+! bundles over S? exhibit this property. Fur-
thermore, the infinitely many Einstein metrics on any of these manifolds all
have isomorphic transitive isometry groups which are not conjugate in the
diffeomorphism group, and hence represent inequivalent actions by the same
abstract group.

In §2D we will describe some recent examples of C. Bohm [19] which
include even-dimensional manifolds, e.g., S%, S8, admitting infinitely many
inhomogeneous Einstein metrics of volume 1 such that the sequence of Ein-
stein constants converge to a positive value.

2. In dimension 7, among the circle bundles over CP' x CP?, there are certain
bundles P, such that for each homotopy 7-sphere ¥, the manifold P, { ¥
(connected sum) exhibits the phenomena described in (1) above. For differ-
ent homotopy spheres, the spaces are homeomorphic but not diffeomorphic.
These results follow from Theorem 1.1 and the classification theorem of
Kreck and Stolz [79]. Thus it would appear that Einstein metrics with pos-
itive scalar curvature do not always show a preference for one differential
structure over another.

3. Condition C of Palais-Smale consequently fails in general for the total scalar
curvature functional on the space of Riemannian structures of volume 1.

4. There are Einstein metrics of positive scalar curvature (in odd dimensions)
whose (connected) isometry group acts with arbitrarily large cohomogene-
ity. (Recall that the cohomogeneity of a compact Lie group action is the
codimension of any principal (generic) orbit.) Indeed, provided that the
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characteristic class x is complicated enough in a suitable sense, the cohomo-
geneity of P, is the sum of the cohomogeneities of the factors of M. Hence
the above fact follows from the existence of cohomogeneity 1 Kéhler-Einstein
Fano manifolds [75]. (In [76] K&hler-Einstein Fano manifolds of arbitrary
large cohomogeneity are constructed by a blowing-down process.)

5. There are odd-dimensional Einstein manifolds with positive scalar curvature
which have Einstein moduli spaces of positive dimension. Indeed these are
circle bundles of sufficiently complicated topology over Kahler-Einstein Fano
manifolds with positive-dimensional K&hler-Einstein moduli.

One may be tempted to extend Theorem 1.1 by letting the base (M, g*) vary
over all K&hler manifolds with constant scalar curvature, or by choosing more gen-
eral elements of H2(M;Z) to be the characteristic classes of P,. However, at least
in the case of circle bundles, we have the following converse.

THEOREM 1.2. [116] Let 7 : (P, g) = (M, g*) be a principal circle bundle such
that g is an Einstein metric making 7 into a Riemannian submersion with totally
geodesic fibres onto a compact Kdhler manifold. Suppose further that the Euler
class of P is a cohomology class of type (1,1) with respect to the complex structure
of M. Then (M,g") is isometric to a Kdhlerian product [];(M;, g;) where g5 is a
Kabhler-FEinstein metric on a Fano manifold M; and the Euler class of P is a linear
combination of the first Chern classes of M;.

We shall give the principal ideas in the proof of the above theorem. First,
since the scalar curvature of g* must be constant, the contracted second Bianchi
identity implies that the Ricci form of g* is harmonic. Therefore, the 2-form corre-
sponding to the second term of the left-hand side of (1.3) is also harmonic. Using
these facts, one shows that the eigenvalues of the symmetric operator S given
by ¢*(S(X),Y) = —Q(J*(X),Y) are constant over M and the eigenspaces corre-
sponding to distinct eigenvalues have constant dimension. The eigenbundles £; are
therefore well-defined. They are actually J*-invariant and satisfy a strong integra-
bility condition: [£;,&;] C & for all i and [€; ®E;,E®E;] C E;BE; for all i # 5. We
consider next the leaves of eigenspace foliation £;, which are complex submanifolds.
Using the Riemannian submersion structure, one checks that in the induced metric
the leaves all have Ricci curvature bounded below by that of g*. The compactness
of M then implies that all the leaves are compact simply connected regular sub-
manifolds of M. Finally, using a Bochner argument, one shows that all the leaves
are totally geodesic and give a de Rham decomposition of (M, g*). Equation (1.3)
then implies that each de Rham factor is Kahler-Einstein and that the curvature
form of the circle bundle is a linear combination of the Kahler classes of the factors.

There are, however, Einstein metrics of type (1.1) on circle bundles over K&hler
base manifolds. Of course, the submersed metric on the base is not Kéhler.

THEOREM 1.3. There are Einstein metrics on the total spaces of the following
principal S* bundles over the specified coadjoint orbits:
(i) [119, 36, 92, 56, 77, 26] any non-trivial S* bundle over SU(3)/T?,
(ii) [110] any non-trivial S* bundle over SU(p + q+1)/S(U(p)U(q)U(r)) and
SO(2n)/U(n —1)U1),n > 3,
(iii) [111] Let G/L be a coadjoint orbit where G is semisimple and the Lie algebra
of L is obtained by deleting a simple root from the Dynkin diagram of g
which has a coefficient of 2 in the expression of the mazimal root of G as a
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linear combination of the simple roots. Then on the principal circle bundle
corresponding to the U(1) factor in L there is an Einstein metric other than
that from Kobayashi’s theorem [74).

In the above theorem, note that since all base manifolds are coadjoint orbits,
for any homogeneous complex structure one chooses, the first Chern class is pos-
itive. Thus all 2-forms are of type (1,1). In (i) the principal circle bundles P,
can be indexed by 2 integers k, [, where in order to eliminate covering manifolds
one assumes that they are relatively prime. Furthermore, notice that the Weyl
group N(T)/T acts on the right on SU(3)/T, and so there are some obvious dif-
feomorphisms among the bundles, e.g., P, 1 = Py; and P, » & P; ;. (We caution
the reader that our notation is such that P, corresponds to the first Chern class
of SU(3)/T.) Similar remarks apply to the other cases where the subgroup has a
non-trivial normalizer.

The existence of an Einstein metric in (i) was first obtained in [119] in order
to show that in a fixed dimension there can already be infinitely many homotopy
types among homogeneous Einstein manifolds. These metrics were rediscovered in
[36] in a more explicit form. A second Einstein metric was constructed by Page
and Pope [92]. These physicists also showed that the Einstein metrics have Killing
spinors, a fact later rediscovered by Friedrich and Kath [56]. Finally, Kowalski and
Vlések [77], in a very careful study of these examples, discovered that for large
k, one of the Einstein metrics on P_j_;  also has positive sectional curvature. A
third Einstein metric was discovered on P_;; in [26]. All the Einstein metrics in
(i) are also related to G2 structures, as was discovered in [30).

If we put p = ¢ = r = 1 in (ii), we recover (i). The second Einstein metric in
(iii) lies in the canonical variation [17, 9.70] of the Kobayashi metric.

As for examples with non-abelian G, the following framework unifies many
known Einstein metrics. Suppose that M is an irreducible Riemannian manifold
such that the structural group G of its holonomy bundle P is non-simple. Let
G = H - K where - means the quotient of the product by a finite normal subgroup.
Then P = P /H is a principal K bundle over M for a certain quotient K of K. We
can ask for an Einstein metric of type (1.1) on P.

ExampPLE 1.1. If (M, g*) is K&hler-Einstein Fano, then G = U(n) and we can
let H = SU(n). One is then precisely in the situation of Kobayashi’s theorem [74].

ExampLE 1.2. If (M, g*) is quaternionic-K&hler with positive scalar curvature,
then either G = Sp(n) - Sp(1) and we can let H = Sp(n), or M is quaternionic
symmetric and G = H - Sp(1) with H C Sp(n). Then K = SO(3) unless M = HP",
in which case K = K = Sp(1). The connection on P induced by the Levi-Civita
connection is Yang-Mills with constant norm, as was observed by independently in
[32] and [90]. Using this connection, one can construct two non-isometric Einstein
metrics of type (1.1) on P [17, 14.85]. When M = HP", P = §*"*3  and the two
Einstein metrics are the constant curvature metric and the Jensen metric [68]. Al-
ternatively, since P is a principal circle bundle over the quaternionic-Kéhler twistor
space of M, we can also appeal to Kobayashi’s theorem and the canonical variation
[17, 9.70] to obtain the two Einstein metrics. These metrics also occur among those
in Theorem 1.3(iii). Still another viewpoint is that the Einstein metrics come from
3-Sasakian structures [25, 26].
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ExAMPLE 1.3. If M is a compact irreducible hermitian symmetric space, G =
K -U(1). Then if we let H = U(1), we obtain two non-isometric Einstein metrics
on P. Except in the case K = SU(p)SU(q),p # g, one of these Einstein metrics
was found by Jensen [68]. For the remaining case and the second Einstein metric
(which comes from the canonical variation), see {120, Theorem 4].

ExaMPLE 1.4. If M is a compact quaternionic symmetric space, G = K-Sp(1),
and if we let H = Sp(1), there are again two non-isometric Einstein metrics on P.
When K is simple, one of the Einstein metrics was again found in [68]. For the
rest, see [120, Theorem 2].

ExampLE 1.5. If M is a compact irreducible symmetric space whose isotropy
group is non-simple, and H is not one of the choices already discussed, then Einstein
metrics on the bundle P for such a choice of H were again obtained in [68].

Instead of principal bundles, we can also consider Kaluza-Klein constructions
on associated fibre bundles of principal bundles. As before, let 7 : P — M be a
principal G-bundle with connection ¢ whose curvature form is 2. Let G act almost
effectively on a manifold F' and let W = PxgF. If g* is a metric on M and (, )
now denotes a G-invariant metric on F, then (1.1) defines a metric g so that the
projection 7 : (W, g) — (M, g*) is a Riemannian submersion with totally geodesic
fibres. The Einstein condition for g is again equivalent to the Yang-Mills condition
on ¢ and equations similar to (1.2) and (1.3).

In order to describe these equations precisely, recall that a point in W is an
equivalent class [p,z] where p € P,z € F and (p,z) ~ (pg,g~'z). Having chosen
a representative (p,x), there is an inclusion i, : F — W given by iy(z) = [p, z].
Because ipy = i, 09, ip is an isometry between (F,( , )) and the fibre through [p, z]
with the metric induced from g. To take care of horizontal directions, we make
use of j, : P - W given by j,(p) = [p, z], which satisfies j,, = j, © Ry. Then the
equations analogous to (1.2) and (1.3) are respectively

(1) Rier (it (©),i2 (V) + 7 S0 &), i (U)) (), i (V)
%)

= Ni; (U), i1 (V)),

» “px

(1.5) Ric(g™)(me(X), me(Y)) — %Z(Q(X,éi)w, AU, &),) = Ag" (1. (X), mu(Y)),

where ~ denotes horizontal lifts and for Z € g, Z, denotes the value of the Killing
field induced by Z on F at z. Unlike the principal bundle case, it is possible for Z
to vanish at some points.

We now describe some Einstein metrics on bundles for which G acts transitively
on F. The first family gives quaternionic analogues of Einstein metrics given by
Theorem 1.1.

THEOREM 1.4. [120] Let (Mj,g;f),l < j < m, be quaternionic Kdhler man-
ifolds with positive scalar curvature and P; be the canonical SO(3)-bundle over
M; associated with the quaternionic-Kdhler structure. Let P = Py X -+ X Py,
G = SO@3) x --- x SO(3), ( m factors ), and F = G/ASO(3) where ASO(3)
denotes the diagonally embedded subgroup. Then W = P xg F admits an Einstein
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metric with positive scalar curvature of type (1.1) submersing onto a product of the
metrics g; and having a normal homogeneous fibre metric.

(A normal homogeneous metric on G/K is a G-invariant Riemannian metric
induced by some bi-invariant metric on G, not necessarily positive definite.)

This theorem is proved in a similar way as Theorem 1.1. On the other hand,
the Einstein metric can also be deduced as a special case of 3-Sasakian reduction
discovered by Boyer, Galicki and Mann [25, 26]. See the article by the first two
authors in this volume for details and up-to-date information.

Constructions similar to those in Theorem 1.4 can be performed with the bun-
dles P in Examples 1.3 and 1.4. Namely, let M7 x --- X M, be the m-fold prod-
uct of the same compact quaternionic (resp. irreducible hermitian) symmetric
space M, and let Pj be the holonomy bundle of M; with group G = H - K where
H = Sp(1) (resp. U(1)). Denote by P; the quotient P;/H, which is a principal
K-bundle. Then under certain conditions there are Einstein metrics of type (1.1)
on W = (P x -+ x Pp,)/AK. We refer the reader to Theorems 3 and 5 in [120]
for details. Here we only mention two examples to indicate the possibilities.

EXAMPLE 1.6. For M = HP",n > 1, there is an Einstein metric of type (1.1)
on W if the number of factors m satisfies

2n%(m — 2) < n(3m? — Tm + 6) + 5m? — 5m + 2.

EXAMPLE 1.7. For M = CP", there is an Einstein metric on W of type (1.1)
provided
n?(2 —m) +n(m? - 2m) +2m?> + m —2> 0.

2. Einstein Metrics of Cohomogeneity One.

A. Generalities. Let G be a compact Lie group. A connected G-manifold
is said to be of cohomogeneity 1 if the principal orbits are hypersurfaces. In this
section we will be concerned with G-invariant Einstein metrics on such manifolds
whose full isometry groups do not act transitively. The orbit space of a cohomo-
geneity 1 manifold is either an interval I whose boundary points represent singular
orbits, or it is a circle. We will only concern ourselves with the former situation. For
cohomogeneity 1 metrics, the Einstein condition reduces to a system of nonlinear
ordinary differential equations on I together with appropriate boundary conditions
to ensure that we have a smooth metric. The first systematic study of cohomogene-
ity 1 Einstein metrics was carried out in [16]. Some recent works about manifolds
of cohomogeneity 1 which contain useful information include [1, 8, 87, 97, 113].

We will give first a geometric description of the Einstein condition for a coho-
mogeneity 1 metric following [55].

Let (M,§) be a cohomogeneity 1 G-manifold of dimension n + 1 with a G-
invariant metric. Let P = G/K be the principal orbit type and Q; = G/H; be
the singular orbit types. There are at most 2 singular orbits, and when we are
concentrating on one of them, we will use () and H respectively to denote the
orbit and its corresponding isotropy group. We can easily arrange for K C H;.
For example, we can choose a unit speed geodesic that starts from a singular orbit
and intersects each principal orbit orthogonally. Then the points in the geodesic
belonging to principal orbits all have the same isotropy group K, which then lies in
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the isotropy groups of the points on the geodesic belonging to the singular orbits.
It follows from the cohomogeneity 1 condition that H; must act transitively on the
unit sphere in the normal slice to Q;. So H;/K = S* | and P may be viewed as the
unit sphere bundle of the normal bundle of Q; in M, which has the form v(Q;) =
G x u, V;, where H; acts orthogonally on the slice representation V; = R¥*+!. (This
last identification is given by the normal exponential map.)

Let Mo denote the union of the principal orbits in M. The geodesic chosen
above gives a diffeomorphism My 2 I x P, where I = int(f ). The pull-back of g via
this diffeomorphism takes the form

dt2+gt, tel,

where g; is a 1-parameter family of G-invariant metrics on P. It is occasionally
useful to fix a background metric g, on P of type (1.1) where ¢g* is a G-invariant
metric on @, ¢ is a connection for the principal bundle H - G — G/H, and (, )
is the constant curvature 1 metric on H/K = S*. In terms of gy, we can think of
g: as a gp-symmetric endomorphism of T'P. The Ricci tensor of g; can be thought
of as an endomorphism r; of T P, symmetric with respect to g; but not in general
so with respect to gp.

If we can construct a smooth metric § on M such that on M, the Einstein
equation is satisfied, then by continuity we have an Einstein metric on M. In order
to write down the Einstein equation on My, we introduce the shape operator £; of
the principal orbits {¢t} x P. This is the endomorphism of T'P given by £;(X) =
Vx N, where N is the unit vector field 8/t.

By using the Gauss and Codazzi equations, we easily obtain the Einstein equa-
tion for ¢ on My as a system on P. This is the system below corresponding to the
choice € = 1.

(2.1) 9 =29L,

(2.2) L'+ tr(L)L —ery = —eA -1,
(2.3) tr(L') + tr(L%) = —eA,
(2.4) tr(X-dVL) =0,

for all X € TP, where A is the Einstein constant, - denotes interior multiplication,
and dV is the exterior covariant derivative T*P ® TP — A%(T*P) ® TP formed
using the Levi Civita connection V! of g;. If we take ¢ = —1 instead, we obtain the
Einstein condition for the Lorentz metric —dt? + g;.

Note that (2.1) is essentially the definition of £, which must also be symmetric
with respect to g;. Equation (2.4) is just Rz—\c(X ,N) = 0, and equations (2.2—-
2.3) represent the Einstein condition in the direction of the principal orbit and N
respectively. Let s; denote the scalar curvature of r;. Then if we take the trace of
(2.2) and use (2.3), we immediately obtain the equation

(2.5) es — (tr(L))* + tr(L?) = (n — 1)eA.
It is possible to interpret this equation as a first integral of a suitable Hamiltonian
system.

By using the contracted second Bianchi identity, A. Back has deduced the
following useful lemma [13].
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LEMMA 2.1. Let § = dt? + g; be an equidistant family of hypersurfaces I x P
satisfying (2.1) and (2.2) for some constant A. Let the scalar curvature s; of g
be constant for each t € I and vy be the volume distortion of g; with respect to
some background metric on P. Then ﬁi?(X ,N)v is constant in t for any X € TP.
Furthermore, if (2.4) is also satisfied, then (Ric(N, N) — A)v? is constant in t.

Applying this lemma together with Theorem 5.2 in [48] gives

PROPOSITION 2.2. Let M be a cohomogeneity 1 G-manifold with at least one
singular orbit of dimension strictly smaller than that of the principal orbits. If § is
a G-invariant metric of class C? such that (2.1) and (2.2) are satisfied on I x P,
then § is actually a smooth Einstein metric and hence real analytic.

Proofs of the above statements can be found in [55]. Proposition 2.2 implies
that we can focus on equation (2.2), provided we can ensure that the solution repre-
sents a smooth enough metric. Here, a C3 metric is needed because the contracted
second Bianchi identity is used in the proof. In special cases, the smoothness re-
quirement can sometimes be weakened. We describe now a practical criterion for
smoothness for the metrics §, following [55], and then give an example illustrating
how one applies this criterion in practice.

Let p, (resp. p_) denote the subspace of the tangent space of G/K at the
coset (K) corresponding to H/K (resp. G/H). For example, we could choose an
Ad(K)-invariant decomposition

E=E®p+®p_

such that h = €@ p, and p_ are Ad(H)-invariant. A smooth G-invariant metric §
on G xg V is equivalent to an H-equivariant smooth map

V:V—=S2(Vaep),

where H acts on V via the slice representation and on p_ by the isotropy repre-
sentation of G/H. We can approximate 3 near the origin by Taylor polynomials
whose homogeneous parts are H-equivariant polynomials of degree p on V with
coefficients in A := S%2(V @ p_), i.e., elements of Homg(SP(V), A).

On the other hand, in writing § in the form dt? + g;, we are really restricting
¥ to a ray in V emanating from the origin. We then obtain a smooth curve a(t)
in AX the K-invariant elements in A. Conversely, given such a smooth curve
a: Ry — AKX we obtain a smooth map V \ 0 — A by using the H-action. The
smoothness question is when such a map extends smoothly to an H-equivariant
map ¢ : V = A.

LEMMA 2.3. [55] A smooth map a : Ry — AK estends to a smooth map ¢ :
V — A as above iff each Taylor coefficient ap, of a(t) is the restriction of an element
of Homg(SP(V), A) to the unit sphere S¥ C V.

Clearly, entirely analogous criteria exist for smoothness of G-invariant tensors
of other types on G xg V. One just has to replace A above by the relevant H-
representation.

We now make some observations regarding the lowest degree Taylor coefficients.
First, note that smoothness implies that ag € AH¥. Now

AP =82Vep ) =52(V)Te(Vep )T ()",
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and V is an irreducible H-representation since H acts transitively on the unit sphere
in V. The component of ag in S?(V)# =1 is the Euclidean metric because in the
exponential coordinate system, spheres with decreasing radii must become round
to first order. The component of ag in S?(p_)# is just the G-invariant metric on Q
induced by §. ap has no component in (V ® p_)¥ because V is the normal slice to
Q at the coset (H) € G/H. Thus ay is just the identity map relative to a suitable
background metric.

Next we consider the first order Taylor coefficient a;. Smoothness implies that
it is an H-equivariant linear map V' — A. It is not difficult to see that there are
no non-zero H-equivariant linear maps V — S%(V'). Hence, tr(a;) comes only from
V — S%(p_). This part of a; is just the shape operator of @ by (2.1). Since tr(a;)
is an H-invariant linear function on V, it must be zero. Hence we have deduced
the following corollary using only local smoothness considerations.

COROLLARY 2.4. [65] If (M, §) is a smooth Riemannian manifold of cohomo-
geneity 1 with a singular orbit Q), then Q is a minimal submanifold.

In [65], the above corollary followed from an equivariant variational principle.

EXAMPLE 2.1. Let M = S* be the unit sphere in R?, viewed as the space of 3x3
symmetric matrices with real entries and trace 0. Let G = O(3) act by conjugation
on these symmetric matrices. Then the principal orbits consist of matrices in S4
with distinct eigenvalues and the principal isotropy group is K = O(1)2. The two
singular orbits comprise matrices in S* with 2 distinct eigenvalues. The isotropy
group H is, up to conjugation, O(2) x O(1), and @ is the projective plane, minimally
embedded as the Veronese surface. The isotropy representation of G/K is

(-le-1)d(-11le-1)d(1®-1® —-1),

where £1 denote respectively the trivial/non-trivial representation of O(1) ~ Z/2.
With the above choice of H, p, = —1® —1 ® 1. The slice representation at the
singular orbit Q is p? ® 1, where p™ is the irreducible 2-dimensional representation
of O(2) lying in the mth symmetric power of the usual representation p! which
does not already lie in the (m — 2)nd symmetric power. Then we have H-module
decompositions

S*p)=(*®1)a(131),

S™(V) = (p"" ®@1) @ S"X(V).

Hence for m > 1, Homg(S*™(V),S%(p_)) ~ Homg(S%(V),S%(p_)), which is 1-
dimensional and is generated by t? times the identity matrix. Likewise, we have
Hompy(S?™1(V),S8%(p_)) ~ Hompg(V,S?(p_)), which is again 1-dimensional,

generated by
t1 to
ta —t

where (t1,t2) are Euclidean coordinates in V ~ R? and t? = t? + ¢3. Up to a
constant, this is the shape operator of the Veronese surface in S*. On the other
hand, it is a general fact (see [55, §1, Lemma 2]) that for a compact linear group H
acting transitively on the unit sphere in V, one has Homg(S?™~1(V),S%(V)) =0
and Hompg (S?™(V),S%(V)) ~ Homg(S?(V),S?(V)). In the present example, this
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last space has dimension 2 and for the generators one can take ¢? times the identity

matrix and
2 —tits
( —t1ty t} ) ‘
However, only multiples of the second generator are candidates for the second order
Taylor coefficient of a smooth metric.

Let B denote the bi-invariant metric on O(3) given by —tr(XY). We express
gt as

3 3
h(t)? 2Blp, ® i(0)* 5Bl © fa(t)? SBlyr.
(The coefficients in front of B are chosen so that dt? +2Blp+ is the Euclidean metric
on V = R%) It follows that smoothness of § means that

(e ) =2 fown () oo (1))

As for h(t), smoothness is equivalent to it being odd with h’(0) = 1. Note that for
the usual metric on S%, in terms of B above, h(t) = sint, f;(t) = cost — % sint,

and f»(t) = cost + = sint over the interval [0, §].

B. Initial Value Problem. A basic analytical question about the Einstein
system (2.1-2.4) is the initial value problem. The easier case is the initial value
problem at a principal orbit. Considerably subtler is the initial value problem at a
singular orbit. We begin with the easier case.

THEOREM 2.5. [55] Let G be a compact Lie group and K be a closed subgroup
such that G/K is connected. Let h be a given G-invariant metric on G/K and
Lo be an h-symmetric endomorphism of T(G/K) such that for all X € T(G/K)
we have tr(X - av" Lo) = 0. Then there is a unique Einstein metric § = dt*> + g
defined on (—¢,€) X G/K, for some € > 0, with go = h and Lo equal to the shape
operator of {0} x G/K. Furthermore, § depends continuously on the initial values
h and Lo.

Let us now assume that there is a singular orbit of strictly smaller dimension
than the principal orbits. By Proposition 2.2, for the initial value problem, we
need only consider the equations (2.1) and (2.2). In a neighbourhood around @,
the term £; has t~! dependence while r; has t~2 dependence. So the differential
equations have a singularity at ¢t = 0. Of course, these equations are very nonlinear,
especially because of the Ricci term, whose dependence on the metric g; cannot be
very explicitly written down if we want to leave G/K general. (r; is a rational
function of the components of g;, but the constants in the expression depend on
the specific G/K.) The linearization of (2.2) has the form 2’ = t~2A(t)z where
A(0) is a lower triangular matrix. The initial value problem for the linear case,
though well-understood, is not completely trivial. In particular, a formal power
series solution cannot be expected in all cases.

The singular initial value problem has been solved under an additional assump-
tion.

THEOREM 2.6. [55] Assume that as K -representations, V and p_ have no ir-
reducible sub-representations in common. Then, given any G-invariant metric g*
on Q and any G-equivariant homomorphism L; : v(Q) — S*(T*Q), there ezists
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a smooth G-invariant Einstein metric on some open disk bundle of v(Q) with any
prescribed sign ( positive, zero, or negative ) of the Finstein constant A and having
g* and Ly as initial metric and shape operator on Q.

The theorem is proved by the classical method of asymptotic series. The key
step is to show that there is a formal power series solution any finite truncation
of which defines a smooth metric on v(Q). This involves input from geometry and
representation theory since from a purely analytic point of view there is no reason
to expect power series solutions at all. (From the smoothness discussion above,
asymptotic series which are not power series do not give rise to a smooth metric.)
One then applies a Picard iteration scheme to sufficiently high order truncations of
the formal power series solution to get a smooth metric defined in a tube around
Q. Alternatively, for this last step, one may quote a theorem of Malgrange [83].

Uniqueness is not true for the above singular initial value problem. It turns
out that in general one needs to prescribe a finite number of additional Taylor
coefficients in order to obtain a unique solution. These parameters can be calculated
explicitly using representation theory once the triple K C H C G is given. Non-
uniqueness can be explained as follows. In constructing the formal power series
solution, as is customary, one has to solve for Taylor coeflicients recursively in
terms of Taylor coeflicients of lower degrees. The linear operators involved in this
process are only injective above a certain critical degree which varies from situation
to situation. Non-uniqueness comes from the kernels of these operators in lower
degrees. In fact, there are sequences of examples for which the critical degrees tend
to infinity (see example 3, §5 of [55]).

When the assumption on V and p_ as K-representations does not hold, the
initial value problem has been solved in the special case of the Kervaire spheres in
[13]. The statement of the result is the same as in Theorem 2.6. It is conceivable
that Theorem 2.6 holds without the technical assumption on V and p_.

C. Examples With Special Holonomy. Under the further assumption of
special holonomy, classification theorems are often available in addition to the con-
struction of examples. We shall begin with cohomogeneity 1 hyperkahler metrics,
which are metrics on 4n-dimensional manifolds whose holonomy lies in Sp(n). Al-
ternatively, these are Riemannian manifolds which are K&hler with respect to 3
complex structures satisfying the multiplicative relations between the quaternions
i,J, and k. See the article by A. Dancer in this volume for further information.

If we assume that the hyperkéhler metric is irreducible, then since the Ricci
tensor is zero, a cohomogeneity 1 metric exists only on a noncompact manifold.
Calabi constructed {31] a complete hyperkahler metric on T*CP" of cohomogeneity
1 under PSU(n + 1). When n = 1, this metric was discovered earlier by Eguchi-
Hanson [54]. In dimensions greater than 4, one has the following classification
theorem.

THEOREM 2.7. [43] Let (M, §) be an irreducible hyperkihler manifold of dimen-
ston greater than 4 which is of cohomogeneity 1 with respect to a compact simple
Lie group G. Then, up to coverings, M is an open subset of either T*CP" with
the Calabi metric or the H* or H*/Zy bundle over a quaternionic symmetric space
of compact type with the Swann metric. If g is in addition complete, then it is
isometric to the Calabi metric.
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R. Bielawski [18] independently obtained the classification theorem under the
additional assumption of completeness.

To describe the Swann metric, recall from Example 1.2 that every quaternionic
Kahler manifold has a canonical SO(3) bundle over it. Therefore there is an associ-
ated H* /Zs bundle, which is an H* bundle in the case of the quaternionic projective
space. A. Swann constructed an incomplete hyperkihler metric on this bundle in
[114].

The above classification is also valid for a compact semisimple cohomogeneity
one group action provided that any su(2) ideal in g acts trivially on the three
complex structures on M.

THEOREM 2.8. A non-flat hyperkdhler 4-manifold of cohomogeneity 1 with re-
spect to a compact connected simple group is one of the following.

(i) [15]) a member of a 2-parameter family of SU(2)-invariant incomplete ex-
amples or the Eguchi-Hanson metric on T*CP*,

(ii) [60] the U(2)-invariant Taub-NUT metric on R*,

(iii) [11] up to a double covering, the 2-monopole space MY, which is the unique
complete hyperkdihler 4-manifold with cohomogeneity 1 under G = SO(3)
and such that G rotates the complex structures,

(iv) [58] a member of a family of incomplete examples with G = SU(2), which
also acts transitively on the complex structures.

Cohomogeneity 1 Kéhler-Einstein metrics of non-positive scalar curvature on
holomorphic line bundles over Kihler manifolds can be found among the bundle
constructions of Calabi [31), Bérard Bergery [16], Page and Pope [93]. For these
authors, the Euler class of the line bundle is proportional to the first Chern class
of the base. Theorem 3.2 generalizes these examples in the bundle context to line
bundles over a product of Fano manifolds such that the Euler class is a linear com-
bination of the first Chern classes of the de Rham factors of the base. Furthermore,
certain blow-downs of the zero section are also allowed, as was anticipated by Calabi
[31, p. 277]. In the cohomogeneity 1 context, the choices for the Euler class of the
line bundles are even more numerous. We have the following classification/existence
theorem.

THEOREM 2.9. [45] Let G be a compact connected semisimple Lie group acting
with cohomogeneity 1 via isometries on a Kdhler-Einstein manifold (M ,3) which
18 irreducible and not hyperkdhler. Suppose further that the isotropy representa-
tion of the principal orbit G/K splits into pairwise inequivalent irreducible sub-
representations.

(i) There is a coadjoint orbit G/L with a fized invariant complex structure J*
so that K C L,L/K = S' and the induced metric on each principal orbit
gives G/K — G/L the structure of a Riemannian submersion with totally
geodesic fibres onto an invariant Kdhler metric on G/L.

(ii) The complex structure on M is induced by J*, the underlying connection
of the Riemannian submersions, and the metric on the fibres. On Moy, the
union of all the principal orbits, the Kdhler-Finstein metric can be expressed
explicitly in terms of rational functions which depend on dim H%(G/L;R)
continuous parameters in the Ricci flat case and on a single constant of
integration otherwise.
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(iii) When there is a singular orbit G/H, then it is also a coadjoint orbit with
an invariant complex structure induced from J*. Moreover, it is a totally
geodesic Kihler submanifold of M and H/L is analytically isomorphic to a
complex projective space CP'L.

(iv) Let x denote the Euler class of the circle bundle L/ K — G/K — G/L. Then
the cohomology class

Cl(G/L,J*) +lx

is 0 when restricted to H/L, and, as an element of H>(G/H;R), is positive,
zero, or negative depending on the sign of the Einstein constant.

(v) The geometric data in (1), (#5), () are sufficient for the construction of
a smooth G-invariant Kdhler-Einstein metric on a neighborhood of the zero
section of the bundle G x g C!, and this metric extends to a complete metric
on the underlying smooth vector bundle when the Einstein constant is non-
positive.

(vi) If (M ,§) is complete, then either there is a singular orbit G/H as above and
M =G xygC, orelse M is compact and the Finstein constant is positive.

Of course, the condition on the isotropy representation of G/K is not always
satisfied, but since it is satisfied for all coadjoint orbits G/L (L has maximal rank
in G) a generic choice of K with L/K = S will result in a G/K with the same
property. In any event, the existence part of the theorem (i.e., part (v)) remains
valid without this condition on the isotropy representation.

For the above theorem, the semisimplicity of G provides us with a moment map
which takes orbits in M to coadjoint orbits in g*. Under the assumption on the
isotropy representation of G/ K we obtain (i). The Einstein condition is then seen to
be the same as (3.2-3.4) in the bundle situation discussed in the next section. One
therefore gets explicit local solutions in the same manner. Note that the analysis
of the singular orbits shows that the admissible quadruples (G, H, L, K) can be
enumerated in terms of combinatorial data. Also, moduli of the Ricci-flat Kahler
metrics come from the choice of an invariant K&hler metric on G/H. When the
Einstein constant A is non-zero, the cohomology class in (iv) is really A times the
Kabhler class of the metric on G/H.

While the condition on the isotropy representation of G/K is generically satis-
fied, interesting Kéhler-Einstein metrics nevertheless exist in situations where the
condition does not hold. The Calabi metric on T*CP" is one example. We also
have

THEOREM 2.10. [112] There ezists a complete Ricci-flat Kdhler metric of co-
homogeneity 1 on the cotangent bundle of a compact symmetric space of rank 1.

The complex structures on the above spaces are special cases of adapted com-
plex structures on tubes of zero sections of tangent bundles of real analytic manifolds
constructed by Lempert, Szoke, [82, 115] and Guillemin and Stenzel [59].

Cohomogeneity 1 Kahler-Einstein metrics of positive scalar curvature were first
constructed by Sakane [110] on certain CP! bundles over a product of two compact
Hermitian symmetric spaces. Later, Koiso and Sakane [75, 76] generalized this
construction to the bundle (rather than the strictly cohomogeneity 1) situation and
discovered the sufficiency of the vanishing of the Futaki invariant for existence in
this set-up. (This is not true for the general existence problem in the Fano case,
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cf Tian’s article.) These constructions will be discussed further in §3 below. As in
the non-positive case there is the following classification/existence theorem.

THEOREM 2.11. [75, 76, 45, 102] Let G and (M, §) be as in Theorem 2.9
and suppose that the Finstein constant is positive. In addition to (i) and (ii), we
have the following analogues of (i) and (iv):

(iii)* Fach singular orbit G/H;, i = 1,2, is a coadjoint orbit with an invari-
ant complex structure induced from J*. They are totally geodesic Kdhler
submanifolds of M. Furthermore, H; /L = CP“~1 and their isotropy repre-
sentations have no common root spaces.

(iv)* Let x be as in Theorem 2.9. Then for i = 1,2, the class

a(G/L, J*) + (=1)"lix
restricts to 0 on H;/L and lies in the Kihler cone in H*(G/H;; R).
The geometric data in (i), (111)* and (iv)* together with the vanishing of the Futaki

integral
la
/ H(/\jx —1)%/2gdx
b 7

are sufficient for the existence of a G-invariant Kahler-Einstein metric with positive
constant on M having the stated orbit types.

In the above, d; is the (real) dimension of the jth irreducible summand in
the isotropy representation of G/L and J; is the corresponding eigenvalue of the
curvature form of the circle bundle L/K — G/K — G/L, which can be expressed
in terms of the first Chern class of G/L and the Euler class of the circle bundle. As
in Theorem 2.9 the existence part does not require the condition on the isotropy
representation of the principal orbit.

The special case of 4-dimensional K&hler-Einstein manifolds with cohomogene-
ity 1 has also been analysed. Here, the Ricci flat case is precisely the hyperkahler
case, which has already been mentioned.

When G = SU(2), Dancer and Strachan [42] proved that the complete co-
homogeneity 1 Kihler-Einstein metrics with negative Einstein constant form two
families. One of the families consists of U(2)-invariant metrics on complex line
bundles over CP' with Chern class < —2. These are just the noncompact Kahler
examples discovered independently in [16], [31], and [58], and can be viewed as spe-
cial cases of Theorem 3.2(ii) below. The second family consists of triaxial metrics,
i.e., the metric components in the 3 independent directions in the principal orbits
(S3) are unequal. On the other hand, compact solutions must be the canonical
Einstein metrics on CP? and CP! x CP'.

Quaternionic-Kahler manifolds with positive scalar curvature and of cohomo-
geneity 1 with respect to a compact connected isometry group have been investi-
gated in [8], resulting in a partial classification. Recently, Dancer and Swann [44]
proved that a complete quaternionic-Kahler manifold with positive scalar curvature
which has a semisimple compact group of isometries with cohomogeneity 1 must be
quaternionic symmetric. The methods in [44] involve the associated twistor space
of the quaternionic-Kahler manifold and its complex contact geometry. As a result,
they also obtain information in the incomplete as well as non-compact cases.
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For metrics of cohomogeneity 1 with holonomy G5 or Spin(7), see Theorem
3.7.

In closing this subsection on cohomogeneity one Einstein metrics with special
holonomy, we would like to mention Hitchin’s classification [64] of the cohomogene-
ity one SU(2)-invariant anti-self-dual Einstein metrics on 4-manifolds. Recall {cf
LeBrun’s article) that an oriented Riemannian 4-manifold is anti-self-dual (ASD) if
the self-dual part of its Weyl tensor vanishes identically. While ASD Einstein met-
rics do not have special holonomy in general, the anti-self-duality gives an extra
structure which can be used to analyse the Einstein condition via twistor theory.
Furthermore, an ASD Einstein metric with zero scalar curvature is locally hy-
perkahlerian, so Hitchin’s classification includes the Einstein manifolds in Theorem
2.8.

THEOREM 2.12. [64] Suppose that (M, §) is a complete ASD Einstein manifold
with an isometric SU(2) action with cohomogeneity 1.

(i) If the scalar curvature is positive, M is either S* or CIP? with the canonical
metric.

(ii) If the scalar curvature is zero, then M is isometric to flat R*, R* with the
Taub-NUT metric, T*S? with the Eguchi-Hanson metric, or the Atiyah-
Hitchin 2-monopole space.

(iii) If the scalar curvature is negative, M is either the unit 4-ball with the flat
metric, the Bergmann metric, Pedersen’s metric [99], or a member of a
family of metrics arising from solutions of Painlevé VI, or else M is the
complex line bundle over S? with Euler class < —2 equipped with the Bérard
Bergery metric.

Part(i) of the above result recovers a well-known earlier theorem of Hitchin
[63]. The conformal structure of the Bérard Bergery metric in (iii) was studied by
Pedersen [99] and LeBrun [81]. In [64], Hitchin actually gives a local classification,
from which the above global classification follows by examining completeness issues.
The proof of the local classification is twistorial in nature. The SU(2) action
can be lifted to a Lie algebra of holomorphic vector fields on the twistor space
Z. Generically, one obtains from this a section of the anti-canonical line bundle

over Z and a flat connection on the trivial SU (2)([‘, bundle over the complement
of the zero set of the above-mentioned section. Restricting the connection to a
connected family of twistor lines intersecting the zero set transversally, one obtains
an isomonodromic deformation of connections over CP!, whose residues can be
associated to a solution of Painlevé’s sixth. The Einstein condition then gives
strong restrictions on the above data, and the local classification results from a
detailed analysis of the possibilities. The non-generic situation corresponds to the
locally hypercomplex case.

D. Examples with Generic Holonomy. Solutions of (2.1-2.4) with generic
holonomy include some of the very first examples of cohomogeneity 1 Einstein met-
rics, e.g., the Page metric on CP*#(—CP?) [91] and its generalizations [16, 93].
These however will be dealt with in the broader context of §3, where the bundle
structure plays a more important role and allows examples with little or no sym-
metry to be constructed. We would like to mention, however, that 4-dimensional
Einstein orbifolds with U (2)-actions of cohomogeneity 1 have been studied in detail
in [100]. Both Kahler and non-Kéhler Einstein orbifolds with positive Einstein
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constants were found, but not with zero or negative constants. It is interesting
to compare this study with Theorems 2.9, 2.11, and Theorems 3.1-3.5 below since
these results show that blow-downs of the singular orbits can be realized on mani-
folds when the base of the bundle is more complicated. On the other hand, when
there are no manifold solutions in these situations, it might in turn be possible to
find many orbifold solutions as in [100].

We turn now to the work of C. B6hm, who studied the cohomogeneity 1 Ein-
stein equations (2.1-2.4) in the situation where the isotropy representation of the
principal orbit G/ K splits into two inequivalent sub-representations and H/K is a
sphere of dimension greater than 1. Because of the first integral (2.5), the Einstein
equation can be thought of as a vector field on the 3-dimensional constant energy
hypersurface defined by it.

THEOREM 2.13. [19] There exists infinitely many pairwise non-isometric Ein-
stein metrics of cohomogeneity 1 with positive scalar curvature on S"*t1,4 < n < 8.

This theorem provides for the first time infinitely many inhomogeneous Einstein
metrics on standard spheres as well as the existence of more than one Einstein metric
on even-dimensional spheres. The group G in these examples is SO(p+1)x SO(g+1)
where p + ¢ = n, p,q > 2 and the principal isotropy group K = SO(p) x SO(q).
The two singular orbits are SP x {*} and {*} x S?. Using this range of values
of p and ¢, Béhm obtains one infinite sequence of pairwise non-isometric Einstein
metrics on S® and S®, two infinite sequences of non-isometric Einstein metrics on
S7 and S8, and three such infinite sequences on S°.

A new phenomenon is exhibited by these sequences of Einstein metrics. Let

the Einstein constants be normalized to be equal to 1. For fixed p, ¢, the sequence
of Einstein metrics converges in the Gromov-Hausdorff distance to the singular
Einstein metric 1 1
5_ 1 sin(t)2gsr + Z —1 sin(t)2gsa.
Away from the singular orbit, the sequence actually converges in the C™ topology.
Notice that the volume of the limiting space is positive and the sectional curvatures
blow up at the singularities. Also, the group action survives in the limit with the
exception that the singular orbits are blown down to points. By contrast, a se-
quence of similarly normalized examples from Theorem 1.1 have bounded sectional
curvatures and volumes tending to 0. Furthermore, if the diameter of the fibres
tends to 0, which is automatic in the case of circle bundles, then the sequence of
Einstein manifolds collapse (in the sense of Gromov) to the base with some product
metric, not necessarily Einstein.

Because of the inexplicit nature of Bohm’s solutions, one cannot yet decide
whether or not the infinitely many Einstein metrics belong to different compo-
nents of the Einstein moduli space. However, from the convergence to the singular
Einstein space, it is possible to check that the Einstein metrics with different G’s
belong to different components of the moduli space and also belong to different
components than the homogeneous Einstein metrics on spheres.

Besides low-dimensional spheres, Bohm has also constructed cohomogeneity 1
Einstein metrics on certain low-dimensional product manifolds.

dt? +

THEOREM 2.14. [19] There exists infinitely many non-isometric Einstein met-
rics of cohomogeneity 1 on M = SP*! x Q7, where 5<p+q+1<9,p>1,¢> 1,
and Q is a non-flat compact isotropy irreducible homogeneous space G/H.
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In the above, the group G is SO(p + 1) x G and the principal isotropy group
is K = SO(p) x H. The two singular orbits are both Q = G/H, with H = SO(p +
1) x H. Note that G/H is just the effective version of G/H.

Furthermore, Bohm was able to construct analytically an Einstein metric on
HP?4(—~HP?). Numerical solutions were obtained in [94] on the connected sum of
two HIP™ for a range of n.

We will now give a sketch of the methods employed by Béhm to obtain the
above existence theorems.

In the situations of Theorems 2.13 and 2.14, the principal orbit is a product
manifold whose isotropy representation consists of two inequivalent irreducible sum-
mands p; and p,. Hence the metric § can be written as dt?+ f; (t)2gb|p1 +f2 (t)ng|p2,
where g is an appropriately normalised background product Einstein metric on P.
For Theorem 2.14, Bohm looks for solutions on an interval [0,T] with boundary
conditions f1(0) = 0 = fi(T), f1(0) = 1 = —fi(T), and f2(0) = fo(T) = a > 0,
f3(0) = 0 = f3(T). Geometrically, this means that reflection about the mid-
point of the interval [0,7] is an isometry and the principal orbit at the midpoint
is totally geodesic. In Theorem 2.13, the boundary conditions used are instead
£1(0) = 0 = fo(T), f1(0) = 1 = —f5(T), and f2(0) = a > 0,/1(T) = b > 0,
fi(T) = 0 = f3(0). In either case, the boundary conditions are precisely the
smoothness conditions for the particular singular orbit type, and the initial value
problem for Einstein metrics has a unique solution depending continuously on the
single initial value a or b.

For any (local) solution emanating from a singular orbit it is first shown that
the trace of the shape operator of the principal orbits is strictly decreasing and
reaches zero before the maximal time of existence of the solution. Such a zero is
called a turning point. Furthermore, all the critical points of the function w = f1/ fa
of t are non-degenerate. Let N, denote the number of critical points of w occurring
before the turning point of the solution f, = (fi, f2) with initial value a. N, is
finite and remains constant as a is varied in an interval [a;,a3] C R4 provided
that no a in the interval corresponds to a reflection symmetric solution, i.e., one
which reaches a totally geodesic principal orbit (f](¢t*) = f5(¢t*) = 0), which can
therefore be extended to a global solution by reflection. On the other hand, if f,
passes through a reflection symmetric solution, then N, jumps up or down by at
most 1. Consequently, the change in N, as a is varied can be used to detect and
give a lower bound for reflection symmetric solutions.

In order to exploit this fact, Bchm shows that in the examples of the theorems
above, N, tends to +0o as a — 0. It is here that the dimension restrictions in
Theorems 2.13 and 2.14 enter crucially, together with the special properties of two-
dimensional vector fields.

Recall that the first integral (2.5) implies that the Einstein equations can
be viewed as a vector field on the three-dimensional constant energy manifold
E(w,w', fa, f3) = 0. Bohm first shows that the spherical cone (dt? + sin(t)?gs)
of the product Einstein metric of the principal orbit is a local attractor for the in-
tegral curves of the Einstein vector field. Next, he uses special charts to study this
vector field in detail and establishes certain rotational behaviour of the solutions.
In a chart parametrized by w, fa, f5, it is shown that after a suitable blow-up, the
Einstein vector field extends to a vector field V' defined on a rectangular region
in the boundary fo = 0. V has two zeros: (0,0), and z which corresponds to the
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spherical cone. Now z is a focal point (in the sense that the linearization of V at
z has non-real eigenvalues) only if n < 8. In this case, the integral curve starting
from (0, 0) eventually spirals around 2. Here, one has to use Poincaré-Bendixson
and also rule out the possibility of a limit cycle. From this behaviour of the integral
curve, one can then deduce the limiting behaviour of N, as a — 0%.

Theorem 2.14 now follows immediately from the above properties of N,.

In order to prove Theorem 2.13, B6hm again uses the attracting property of the
Einstein spherical cone. This time, he constructs a 2-dimensional slice whose origin
is a point on the integral curve of the spherical cone. He shows that solutions
emanating from the two singular orbits with small enough initial values a or b
intersect this slice at a unique point. As a (resp. b) tends to 0, the locus of the
intersection point is a clockwise (resp. anti-clockwise) spiral, both with the origin
as limit point. The two spirals intersect in infinitely many points (in the slice), and
each intersection represents an integral curve emanating from one singular orbit
which continues to the other singular orbit. In this way, one obtains infinitely
many Einstein metrics.

Finally, simple geometric arguments show that the metrics constructed cannot
be homogeneous and cannot be isometric to each other.

In the case of HP?§(—HIP?), the zero z of the vector field V is a node and one
only has N, > 1 asa— 0F.

Readers who are familiar with the many constructions of minimal submanifolds
in spheres and other symmetric spaces using equivariant geometry will recognize
that Bohm uses many of the same techniques. Of course, the Einstein equation is
somewhat more complicated because one is dealing with a system rather than a
single ODE.

A large family of complete, non-compact Einstein metrics of cohomogeneity
1 has very recently been found by Bohm [21] as a result of further study of the
dynamic properties of the cohomogeneity 1 Einstein equations (2.1-2.4).

THEOREM 2.15. [21] Let m > 1 and k > 3 be integers and G;/K;,1 < i <
m, be non-flat, compact isotropy irreducible spaces. Then RF x G1/K; X --- %
Gmn/Km has an m-dimensional family of complete Finstein metrics with negative
scalar curvature as well as an (m — 1)-dimensional family of complete Ricci flat
metrics. All these metrics are of cohomogeneity 1 under the group SO(k) x G X
el X Gm

In certain cases, Béhm also finds finite subgroups of SO(k) x G1 X -+ X Gp,
which act freely on the product manifold, and in this way obtain families of Einstein
metrics on the corresponding quotient manifolds.(Compare Theorem 4.1(i) below.)

E. Non-Existence. It follows from the analyses in [16] and [93] that the
cohomogeneity 1 Einstein equations, specifically (3.2-3.4), can fail to have global
smooth solutions, and hence there are closed simply connected manifolds of coho-
mogeneity 1 with respect to a fixed G-action which do not admit any G-invariant
Einstein metrics. We present here one rather intriquing example, which was already
mentioned in [17, p. 275].

EXAMPLE 2.2. As in §1, let P, be the principal U(1) bundle over S = CP*
with Euler class b - @, where « is the generator of H?(S?;Z) corresponding to the
hyperplane bundle. P; is really the lens space U(2)/(U(1)-Z). The associated CP*
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bundles are closed manifolds with an almost effective cohomogeneity 1 U(2)-action.
(In fact, with the natural induced complex structure, these are the Hirzebruch
surfaces.) For |b| > 2, it follows from [16] or [93] that there are no U(2)-invariant
Einstein metrics. However, there are only 2 diffeomorphism types among the CP*
bundles: S? x S? when b is even and CP*4(—CP?) when b is odd. These two
smooth manifolds admit respectively a homogeneous (the product metric) and a
cohomogeneity 1 Einstein metric (the Page metric). This shows that the same
manifold can have infinitely many cohomogeneity 1 actions by the same abstract
group, but only some actions support invariant Einstein metrics.

Recently, Bchm has obtained a non-existence criterion for cohomogeneity 1 Ein-
stein metrics on closed manifolds in terms of the orbit structure and the geometry
of the principal orbit.

THEOREM 2.16. [20] Let M be a closed G-manifold with cohomogeneity 1 and
two singular orbits Q; = G/H;, i = 1,2. Let G/K be the principal orbit type,
with K C H;. Suppose that h, = E® p;, are Ad(K) invariant decompositions,
and my @ --- @ ny is the decomposition of the isotropy representation of G/K into
Ad(K) invariant isotypic components. ( Isotypic means a direct sum of equivalent
irreducible representations.) If for some j, m; is Ad(K)-irreducible, m;N(p, Up,) =
{0}, and the restriction of the trace-free part of the Ricci tensor of any G-invariant
metric on G/K to the summand m; is negative definite, then there cannot be any
smooth G-invariant Einstein metrics on M.

A large number of examples satisfying the hypotheses of the above theorem
can be constructed [20] using compact homogeneous manifolds which do not admit
any homogeneous Einstein metrics (see §4A). A simple example is the following.
Let G = SO(k+1) xG, H=8S0(k+1) x H, and K = SO(k) x H, where G/H
is SO(21)/(SO(l) x U(1)),! > 32. The G-manifold is S**! x (G/H), and has no
G-invariant Einstein metrics if 1 < k£ < /3.

3. Modified Kaluza-Klein Ansatz on Fibre Bundles.

In this section we consider a useful modification of the Kaluza-Klein ansatz.
Let # : P — M be a principal G-bundle and F a manifold on which G acts
almost effectively with cohomogeneity 1. Let K denote a principal isotropy group
of this action and let H (resp. Hi, Hz) denote the isotropy group(s) of the singular
orbit(s). We will only refer to the situation having one singular orbit since analogous
statements hold for the other singular orbit, if it is present. As in §2 we may assume
that K C H. Recall also that H/K is diffeomorphic to a sphere S*.

Let W be the manifold PxgF. Then W is the union of a 1-parameter family
of hypersurfaces diffeomorphic to P = Px¢(G /K) = ]3/K which collapse onto
Q = Pxg(G/H) = P/H. P is an H/K = S* bundle over Q and this sphere bundle
may be identified with the unit sphere bundle of the normal bundle of @ in W.

We can construct a metric § on W as follows. We choose a connection ¢ on
the principal bundle P. This induces connections on W —» M as well as on P
and Q. Recall that a G-invariant metric on F can be written as dt? + ¢; where
g; is a 1-parameter family of homogeneous metrics on G/K defined on an interval
I =(0,T) where T is allowed to be +o00. Let g; be a 1-parameter family of metrics
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on M defined on the same interval. Using the connection ¢, we let
(3.1) G=dt* +q +7g;.

Of course there has to be boundary conditions at t = 0 and, in the compact case,
at t = T to ensure that § is smooth, just as in the cohomogeneity 1 case. Notice
that for a fixed ¢, g, = ¢¢ + 7*gf makes (P,g) — (M, g}) into a Riemannian
submersion with totally geodesic fibres. The modified Kaluza-Klein ansatz asks for
g to be Einstein.

In order to write down the Einstein condition for §, we need only observe
that W\ Q = I x P is an equidistant family of hypersurfaces with unit normal
field N = 8/dt. Introducing the shape operators £; of the hypersurfaces as in the
cohomogeneity 1 case, we see that the Einstein condition for § is again given by
(2.1-2.4) where the Ricci operator r; of g; can be computed using the theory of
Riemannian submersions.

If we examine the arguments in Lemma 2.1 and Proposition 2.2 we find that
Proposition 2.2 also holds in the present situation provided that for each ¢ the scalar
curvature of g/ is constant and the pointwise norm of the curvature form  is a
constant function on P.

We will first discuss a special case that gives rise to large families of Einstein
hermitian metrics and also unifies and generalizes many known examples. In par-
ticular, we obtain Einstein metrics on certain Fano manifolds when K&hler-Einstein
metrics are obstructed (see Theorems 3.3 and 3.4).

Let (Mj,J;,g;) be Kahler-Einstein Fano manifolds as in §1 and let Py be
a principal U(1) bundle over M = M; X --- x M,,, where its Euler class x =
>, bjmja; € H*(M;Z). For F we take C or 5% = CP' or RP?, on which S acts
by complex multiplication in the first two cases. In the last case, the circle acts by
the induced action on the Z/2 quotient, so that the singular orbits are a point and
a circle. Then W is a complex line bundle (resp. CP', RP? bundle) over M. As

before, the connection ¢ on P, will be chosen so that Edq& is the pull-back of a
2-form harmonic with respect to the product metric on M We let

g=d® +h®)*(, )+ ij )*mrg;,
where h, f1,--- , fm are smooth positive functlons on I and ( , ) is the metric on

S so that it has length 2w. We shall denote the real dimension of M; by 2n;.
The Einstein equation is the following system.

h" i "
(3.2) —— =Y ;L =A
=

h// m K f! m

(3.3) Z%% +Z]2

W fifi | f_f) _BR
(34) Y Zz T (fz- et

where 7} is the Ricci endomorphism of g;, which is p; - I in our situation.
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For the detailed analysis of these equations we refer the reader to [45, 118].
We will, however, make a few remarks about the special features of this system.
First, equating the first two equations gives the relation

o (10 B
(3.5) Zz (L W + 4f;) =0.
Let
_ fl/ hlfl b2 h2
(3.6) S A YA

It turns out that explicit solutions can be obtained by setting all y; to be identically
zero, To see this, we change variables by letting dr = h(t)dt and defining Ag(r) =
h(t)* and A;(r) = fi(t)?. Then the Einstein equations become

1 i A Al
(3.1 §A + Ao (logv)’ +A0]z:1n] (—J -3 (A_J) ) = —A,

1 n 1 ! ! AO = b? _ A
(3.8) 5" + 5 Ad (logv)' = 2D Ty = A,
j=1 J

Al Ao (B AL (A AN
39 Pty <A2+A (E) + (logv)’ ;1—) — G =-A

where m
v=JI 5™ =147
j=1 J
There are two types of solutions of the equation p; = 0. Either

Ai(r) = £(bir + a;),

or L

Ai(r) = Xilr + i) - Z/\_zi’
where a; and A; are constants of integration. We shall refer to these two cases
respectively as the linear and quadratic cases. Observe that (3.9) is a linear equation
in Ag, so it can be integrated, and Ay can be expressed in terms of the functions
A

In order to have explicit local solutions of (3.7-3.9), there will be consistency
conditions to satisfy so that the m equations in (3.9) determine the same function
Ap. One can then see that all of (3.7-3.9) hold. Using these local solutions, we
can analyse the boundary conditions that will ensure that the solutions extend to
a smooth metric on W. When W is non-compact, there are additional conditions
which guarantee a complete metric.

In the cases where F' = C or 52, there is a complex structure Jj, on W obtained
by lifting the product complex structure of the base to the horizontal tangent spaces
using the connection ¢ and defining J;,(IN) to be h~1U, where U is the infinitesimal
generator of the S! action, i.e., ¢(U) = /~1. Then § is hermitian with respect to
Ji. In the compact and Ricci-flat cases, Jp, is equivalent to the natural complex
structure induced from the base and fibres. Furthermore, the K&hler condition for
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g becomes simply A; = —b;, 1 < i < m. Therefore, the linear case of the explicit
solutions corresponds to Kéhler metrics modulo orientation.

If g is Kahler, then the right S! action on I x P has a momentum map and
it is easy to see that it corresponds to an anti-derivative of h. Thus the change of
variable used above to simplify the equations (3.2-3.4) is not at all ad hoc. It gives
an explicit representation of the Einstein metric § in terms of rational functions.
Also, there is a geometrical interpretation of the condition u; = 0,1 <7 < m. It
can be shown (see [118, §7]) that it is equivalent to

~(Jn- R)(X,Y, Z,V) := R(JnX, WY, JwZ,JnV) = R(X,Y, Z,V),

for all tangent vectors X,Y, Z,V of W, where R in the above is the Riemann cur-
vature tensor of §.

Thus far in the case under consideration, we have P = P, and Q = M, and we
will refer to the situation as an S! collapse. On the other hand, it is possible to
have S* collapses with k > 1. In that case, one of the factors of M must be CP'™?
with k = 2] — 1. Our convention is then that the S' collapse case is identified with
the case when [ = 1 and one of the factors of M reduces to a point.

We will now give precise statements of the existence theorems and describe the
special cases which were previously known. We begin with the linear (Kahler) case.

THEOREM 3.1. [75, 76] Let m > 3, (My,J;) = (CP"~, can) and (M, J%)
= ((C]Pl’"-l,can). Suppose that by = —b,, = —1 and ba, - ,b—_1 are non-zero
integers. Suppose that further that lib; > —p; and p; > Lub; for all j, 2 < j <
m — 1. Then there is a Kdhler Einstein metric with positive scalar curvature on
[Py xu) CP']/ ~, ( where ~ means collapsing M x {0} onto Mz X -+ X Mp,
and/or M x {00} onto My X --- X My,_1 ) iff the Futaki integral

lm m . n;
/ H (& - a:) zdr = 0.
— b;

b

(Note that n; =13 —1 and ny, = l,, — 1. Hence when Iy = 1 or [, = 1, then the
corresponding factors are identically 1 in the above integral.) Actually, Theorem
3.1 is a version of the existence theorem of Koiso-Sakane adapted to the present
framework in order to facilitate comparison with Theorem 3.4 below. The general
form of their theorem [75, Theorem 4.2] deals with compactifications of hermitian
line bundles over a Kihler-Einstein Fano manifold such that the eigenvalues of the
curvature form of the line bundles are constant with respect to the Ricci form of
the base.

THEOREM 3.2. [117, 118, 45] Let m > 2 and (M, J}) = (CP"™!, can), I, >
1. Assume that x is determined by integers by = —1 and bz, - , by

(i) If bjly = —p; for all j > 2, then there is an (m — 1)-parameter family
of complete Ricci-flat Kahler metrics on [Py xy) C]/ ~, where ~ means
collapsing M x {0} onto My X -+ X Mp,.

(i) If =bjly > p; for all j > 2, then there exists a complete Kdihler-Einstein
metric with negative scalar curvature and infinite volume on [Py xy1)D]/ ~,

where D is an open disk containing 0 in C and ~ is as in (4).

The m = 2,l; = 1 case is due to Bérard Bergery. We turn next to the quadratic
case and begin with compact examples.
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THEOREM 3.3. [117, 118, 45] Let by, - ,bm, m > 2, be integers satisfying
b1 =1, 0<UhLlbjl<pj, j>1

where (My,J) = (CP1~2 can), Iy > 1. Then there is an Einstein metric with
positive scalar curvature on [PXXU(I)C]P’I]/ ~ where ~ means collapsing M x {0}
and M x {00} down to My X --- X M,,. The FEinstein metric is hermitian with
respect to Jp, and has Z/2 symmetry about the equator of CP*.

When m = 2 and I; = 1, we obtain the well-known Einstein metrics of Bérard
Bergery [16] and Page and Pope [93]. Taking M, further to be CP' we recover
the Page metric [91] on CP?4(—CP?), which has the distinction of being the first
compact inhomogeneous Einstein metric of positive scalar curvature discovered.
Note that in these cases p; = 0 is not an additional condition.

THEOREM 3.4. [117, 118, 45] Let m > 3 and (M,, Jf) = (CP"7!, can),
(M, Jy) = (CP'"~1, can), with l; > 1,1, > 1. Suppose that there are integer
b1, ,bm, and g; = £1,1 < j < m, with the following properties:

(@) [b1] =1 = |bm].
(if) For2<i<m-1,ife; =1, then 0 < l1]b;| < p; and if e;, = —1, then
0< lmlbil < pi-
(iii) &1 = 1, &m = —1, and when |y = l,, = 1, then at least one of the g;, 2 <

1 <m — 1, is positive.

(iv) The integral
lm ™M D; nj
/ H (—] +5jw> zdr < 0.
—1y i3 \ b4l

[
Then there exists an Einstein metric with positive scalar curvature on [Py Xy
CP']/ ~, where ~ means collapsing M x {0} onto My x - - - x My, and/or collapsing
M x {oo} onto My X --- X My,_1. The Einstein metric is hermitian with respect
to the complex structure Jp and does not have Z/2 symmetry with respect to the
equator of S?.

The Einstein metrics in this theorem should perhaps be grouped with the
Kahler-Einstein metrics in Theorem 3.1. This is because the integral condition
in (iv) complements that in Theorem 3.1, which expresses the vanishing of the Fu-
taki invariant evaluated on the (real) holomorphic vector field hd/0t. For example,
over CP! x CP",n > 1, the CP* bundles with (b1,by) = (—1,k),0 < k < n + 1,
do not admit any Kahler-Einstein metric, but they all admit an Einstein metric by
the above theorem.

As for non-Ké&hler Einstein metrics with non-positive Einstein constant, we
have

THEOREM 3.5. [117, 118, 45] Let (M, J;) = (CP"™!, can) with I; > 1 and

bi, - ,bm, m > 2, be non-zero integers.

(i) If lh|bj| < pj for j > 1 and |b1| = 1 whenever l; > 1, then there ezists a
complete Ricci flat Jp-hermitian metric on [Py xy(1)C]/ ~, where ~ denotes
collapsing M x {0} onto M X --- X My,.

(if) If |bi] = 1 when l; > 1, then there exists a l-parameter family of non-
homothetic complete Einstein metrics with negative constant on [Py xy(1)
D]/ ~, where D C C is an open disk about 0 and ~ denotes collapsing
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M x {0} onto My x --- X M,,. These Einstein metrics are Jp, hermitian and
have infinite volume.

In all the above results (3.2)-(3.5), the versions without blow-downs were first
obtained in [117]. Complete proofs together with a study of the associated hermit-
ian geometry and analogues in Einstein-Weyl geometry can be found in [118]. The
present versions were announced in the preprint version of [45]. The proofs consist
of combining the analysis in [118] with the study of the blow-down situation in the
cohomogeneity 1 Kahler case in [DaWaj.

Just as in [31] and [16], it is also possible to construct both Kéhler and non-
Kahler Einstein metrics with negative constant on the total spaces of complex line
bundles over a product of compact Kéihler-Einstein manifolds with negative first
Chern class and /or compact Ricci-flat Hodge manifolds. For a factor M; of the first
type, as in §1, we shall write the first Chern class as —p, -a;, where q; is indivisible,
pj is positive, and we normalize the Kahler-Einstein metric to have constant —p;.
For a Ricci-flat factor, we shall assume that the Kéhler class is of the form 27a;,
i.e., the Kahler-Einstein metric is Hodge.

THEOREM 3.6. Let M = My x --- X My, be a product of compact Kdihler-
FEinstein manifolds of the above types and P, be the principal U(1)-bundle over M
with Euler class x = 3, bjmia;, bj # 0. Let Wy denote the associated complex line
bundle with the induced complex structure.

(i) If b; < O for all j, then there exists a complete Kdhler-Einstein metric with
negative constant on a disk subbundle of W, .

(i) For any choice of the b;, there ezists a 1-parameter family of non-homothetic
hermitian but non-Kdhler Einstein metrics with negative constant on a disk
subbundle of W,.

Note that in the above theorem, the base M can contain factors of both types.

The modified Kaluza-Klein ansatz can also be used to construct Einstein met-
rics with special holonomy.

THEOREM 3.7. [29, 57] There are complete Einstein metrics of type (3.1) with
the indicated holonomy on the following bundles:

(i) the bundle of anti-self-dual 2-forms over S* or CP?; holonomy type G
(ii) the bundle of real spinors over S3; holonomy type G
(iii) the negative spin bundle over S* regarded as a self-dual manifold; holonomy

type Spin(7).

In (i) above, P is an SO(3)-bundle and SO(3) acts on F = A2 (R*) 2 R® in
the usual manner. Likewise in (iii), P is an SU(2)-bundle with SU(2) acting in
the usual way on F = C2, which is also a cohomogeneity 1 action. The fact that
the base manifolds are self-dual and Einstein is significant because these properties
provide P with the Yang-Mills connection ¢ required in the construction. In (i), P
is the trivial SU(2) bundle over S® and SU(2) = Spin(3) acts on H by quaternion
multiplication. The bundles in (ii) and (iii) are both topologically trivial. Further-
more, all the metrics in the above theorem are explicit and, since the base manifolds
are homogeneous, are of cohomogeneity 1 as well. Many incomplete metrics with
G5 or Spin(7) holonomy were also found in [29]. We refer the reader to the article
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by Joyce for further information about the search for Einstein metrics with these
holonomy groups.

Finally, we mention some numerical solutions of the Einstein system of the
modified Kaluza-Klein ansatz.

In [94], the authors considered the situation where G = Sp(1) and P = §4"+3 ig
the total space of the Hopf bundle over HP". The fibre F is S* = HU{co} or H, on
which Sp(1) acts as the unit quaternions. In the first case, W is HP" ! (—HP™*!).
Numerical evidence for an Einstein metric of type (3.1) was given. As was pointed
out in §3, the case n = 1 has now been analytically established by Bshm [19].
He also produced numerical evidence for a second solution when n > 2. In the
second case, W is either H"*! or a non-trivial quaternionic line bundle over HP".
Page and Pope produced numerical solutions with negative and zero Einstein con-
stants. Recently, Bohm [21] gave a proof of these numerical results as well as the
corresponding result for the Hopf bundle over the Cayley plane.

A second situation was studied by Gibbons, Page, and Pope in [57]. Here,
G = SO(3) and P — M is the canonical SO(3) bundle of a quaternionic Kihler
manifold with positive scalar curvature. The fibre F' is either S = R® U {00}
or R® with @ acting in the usual way as rotations. The hypersurfaces P are the
quaternionic-K&hler twistor spaces of M. In the first case, numerical solutions exist
when the dimension of M is small, e.g., when M = S* or CP?. Again, B6hm found
a second numerical solution for M = HP" for a certain n. In the second case,
numerical solutions were also found, which have again recently been proved in [21]
for all values of n > 3.

4. Homogeneous Einstein Metrics.

The Einstein condition for a homogeneous metric is a system of algebraic equa-
tions for which one seeks a real solution satisfying some positivity condition reflect-
ing the positive definiteness of the metric which the solution represents. By the
theorem of Alekseevsky-Kimel'fel’d [6], Ricci-flat homogeneous spaces are flat. A
homogeneous Einstein manifold with positive Einstein constant must be compact
with finite fundamental group by Bonnet-Myers, while an Einstein manifold with
negative Einstein constant must be noncompact by Bochner’s theorem.

A. Positive Einstein Constant. We begin with a qualitative picture. Ho-
mogeneous Einstein metrics on a compact homogeneous space G/K are precisely
the critical points of the scalar curvature function on the space of G-invariant met-
rics with a fixed value for the volume. This fact was first exploited in [67] for
left-invariant metrics on Lie groups.

THEOREM 4.1. [123] Let G/ K be an effective, compact homogeneous space with
G and K compact and connected. Let S denote the function that assigns to each
G-invariant metric of volume 1 its scalar curvature.
(i) S is bounded from below iff the universal cover of G/K has the form R* x
(G1/K1) x - -- x (G1/ K;) where Gj/K; are isotropy irreducible. In this case,
S is proper iff k = 0. When k = 0, there is a unique critical point and S is
bounded below by a positive constant. The critical point corresponds to the
product Einstein metric. If k > 1, then S has a critical point iff G/K is a
torus.
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(ii) S is bounded from above and proper iff € is a mazimal subalgebra ( by in-
clusion ) in g. In this case, S has a global mazimum which is therefore an
Einstein metric.

((iil) S is bounded from above but is not proper iff K - U(1) is a subgroup of G
and G/(K -U(1)) is a compact irreducible hermitian symmetric space other
than SO(n + 2)/(SO(n)S0O(2)).

Isotropy irreducible spaces will be defined and described presently. Compact
homogeneous spaces with ¥ maximal in g are quite numerous and Theorem 4.1
therefore gives rise to many homogeneous Einstein manifolds. Roughly speak-
ing, there are as many maximal subalgebras as there are irreducible representa-
tions. To explain this we recall some classification theorems of Dynkin in [52].
Let K be a compact simple Lie group, p : K — SU(N) be an irreducible finite-
dimensional unitary representation of K, and 7 be the usual complex 1-dimensional
representation of the circle. What Dynkin proved in the unitary case can be for-
mulated (see [121]) more succintly as follows. p(K) is maximal in SU(N) unless
p(K) C SU(n) C SU(N) in which (a) the realification of p®7 : K xU(1) — U(n)
is the isotropy representation of an irreducible hermitian symmetric space, and (b)
the second inclusion belongs to a distinguished subset of the (irreducible) exterior
powers of the vector representation of SU(n). For the symplectic and orthogonal
cases, see [121].

When K is closed but not necessarily connected, and € is maximal in g, then
4.1(ii) still implies that G/K admits a G-invariant Einstein metric. This is because
the Ad(K)-invariant inner products on the tangent space at the coset (K) form
a closed subset of the Ad(Kj)-invariant inner products, where Ky is the identity
component of K.

Theorem 4.1 implies that when £ is not maximal in g then generically the scalar
curvature function S would be unbounded from above and from below. In this case,
S can fail to have any critical points. For example, let G = SU(4) and SU(2) be the
subgroup given by the irreducible 4-dimensional (symplectic) representation. Then
M = SU(4)/SU(2) does not have any homogeneous Einstein metric. Other families
of similar examples can be found in [123]. A more complicated family was con-
structed recently by Park and Sakane [96]. The existence of compact homogeneous
spaces which do not admit homogeneous Einstein metrics shows that in higher di-
mensions, Hamilton’s Ricci flow with an initial metric of positive Ricci tensor need
not converge to an Einstein metric, even if it exists for all time. (Hamilton’s flow
preserves the symmetries of the initial metric.)

From the point of view of Riemannian geometry, isometric Einstein metrics are
always identified. In the homogeneous situation, the normalizer N(K) of K in G
acts on G/ K via the adjoint action and hence induces an action of N(K)/K on the
space of invariant metrics. The moduli space of homogeneous Einstein structures
can therefore be regarded as the quotient of the set of G-invariant Einstein met-
rics of volume 1 by this action. Since the space of volume 1 G-invariant Einstein
metrics is diffeomorphic to Euclidean space, its quotient by the N(K)/K action
is contractible. (This is a special case of a general theorem of R. Oliver that the
orbit space of a topological action of a compact Lie group on a contractible space
is contractible.) Put another way, the domain of the scalar curvature function S
does not acquire topology in passing to the quotient by N(K)/K.
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An open general question for homogeneous Einstein manifolds with positive
constant is the following. Suppose that G/K is a compact homogeneous manifold
with finite fundamental group. Is it true that in the quotient of the space of G-
invariant metrics with volume 1 by the above action of N(K)/K, there are only
finitely many Einstein structures ?

Moving now to specific examples, we begin with isotropy irreducible spaces.
These are connected homogeneous spaces G/K where K is compact and acts irre-
ducibly on the tangent space. As was observed in [127], these spaces are Einstein
since any Ad(K)-invariant inner product on the tangent space at the coset (K) must
have Ricci tensor (also Ad(K)-invariant) proportional to itself by Schur’s lemma.
The main problem is therefore the classification of such spaces.

Among the isotropy irreducible spaces are the irreducible symmetric spaces,
which were classified by Cartan in [33, 34]. In view of the importance of holonomy
in the study of Einstein metrics, we might suggest {126, §2] as a modern version of
Cartan’s first method of classification, which is based on classifying the holonomy
representation. The classification of the remaining isotropy irreducible spaces in-
volves two steps. First, one classifies the strongly isotropy irreducible spaces, which
are those for which the identity component of K already acts irreducibly on the tan-
gent space. This classification is due independently to Manturov [84, 85, 86] and
J. Wolf [127]. It should be noted that Wolf in addition made an extensive study
of the geometry of these spaces. Another classification of these spaces appeared
in [78] much later. There is a conceptual relation between the strongly isotropy
irreducible quotients of the classical groups and irreducible symmetric spaces which
allows one to deduce the classification of the former from that of the latter. This
relationship was noticed by C. T. C. Wall [127, pp. 147-148], and is proved in two
different ways in [126] and [62].

The isotropy irreducible spaces which are not strongly isotropy irreducible were
classified in [125] using the classification of normal homogeneous Einstein quotients
of compact connected simple groups in [122]. It was shown in [122] that if G/K
is a homogeneous space with G compact, connected, and simple, then the Killing
form metric is Einstein iff the Casimir operator of the isotropy representation is a
multiple of the identity. This fact formed the basis of the classification in [122],
which is relevant to the isotropy irreducible case because the key case in this latter
classification is the situation of a compact and simple G, with the Killing form in-
ducing an Einstein metric on Go/Kp, where Gy and K are the identity components
of G and K respectively. Instead of describing the classification in [125] in detail,
we will illustrate the phenomenon using an example.

EXAMPLE 4.1. Let G = SO(nk), K = SO(k) x --- x SO(k) (n times). Then
the isotropy representation of G/K is easily seen to be

Y 19-019p4010---010pe10-- 31,
1<i<j<n

where the pj, belongs to the ith and jth factor in each summand. Hence G/K is not
strongly isotropy irreducible. Although the irreducible summands are inequivalent,
they become equivalent under outer automorphisms of K. Because the Casimir
constants are equal, the Killing form metric is Einstein. On the other hand, the
outer automorphisms which interchange the SO(k) factors actually extend to au-
tomorphisms of G. Therefore, if we enlarge G to include these automorphisms,
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we obtain an isotropy irreducible space. Note that depending on which automor-
phisms are included there could be different ways of enlarging G to give an isotropy
irreducible space.

In general, therefore, one has to select from the spaces classified in [122] those
whose isotropy representations are permuted transitively by automorphisms of K
and carry out the corresponding analysis of the extensions of the necessary auto-
morphisms to G.

The Einstein condition for the Killing form metric on G/K where G is semisim-
ple, compact, connected but non-simple has been studied recently in [104, 105,
106, 108, 109, 95, 89].

In [104, 108], Rodionov proved that if G is compact, connected, semisimple but
nonsimple, and K is a closed simple subgroup such that G/K is simply connected
and effective, then G = K x --- x K and K is embedded diagonally. So G/K is
actually isotropy irreducible but not strongly isotropy irreducible unless G = K x K,
in which case we get a symmetric space. The automorphisms which one has to add
to get isotropy irreducibility could be any subgroup of the permutation group which
permutes the K factors in G transitively.

Several new infinite families of homogeneous spaces G/K whose Killing form
metric is Einstein were produced in [89] and [109]. We mention here one of the
families in these references.

EXAMPLE 4.2. [109, 89] Let G = Sp(m+n)x Sp(n)? and K = Sp(m) x Sp(n),
where m,n > 1. Suppose also that the embedding of K in G is given by composition
of

id x A : Sp(m) x Sp(n) C Sp(m) x Sp(n)P*!,
where A denotes the diagonal map, and the obvious embedding
(Sp(m) x Sp(n)) x Sp(n)” C Sp(m +n) x Sp(n)*.

Then it was shown in [109] that the Einstein condition is satisfied for the Killing
form metric on G iff m, n, p satisfy the diophantine equation 2n?+ (4—p)n+2—p=
2m(p(n+1)+m). This equation was completely solved in [89] and there are infinitely
many solutions.

In the study of homogeneous manifolds it sometimes happens that several Lie
groups act transitively on the same manifold. If a subgroup H C G acts transitively
on G/K, then the isotropy group of the H-action is K N H. Therefore the dimen-
sion of the space of invariant metrics could very well increase. When this happens,
there may be more Einstein metrics. This phenomenon is of special interest if the
underlying manifold is important in many geometrical situations. The irreducible
symmetric spaces fit this criterion. In this regard, Ziller determined all the ho-
mogeneous Einstein metrics on the compact rank 1 symmetric spaces [130]. The
non-symmetric Einstein metrics on these manifolds all come from Hopf fibrations
by scaling the fibres differently. They are

1. the Jensen metric on S4"*3 from the fibration Sp(n +1)/Sp(n) — Sp(n +

1)/(Sp(n) x Sp(1)),

2. the metric found in [24] on S'® from the fibration Spin(9)/Spin(7) —

Spin(9)/Spin(8),
3. the Ziller metric on CP?"*! from the twistor fibration Sp(n + 1)/(Sp(n) x
U(1)) — Sp(n +1)/(Sp(n) x Sp(1)).
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THEOREM 4.2. [70] Let G/K be a compact irreducible symmetric space of rank
> 1 such that G is the identity component of the isometry group of the symmetric
metric. Assume that G/K # (K x K)/K. Then there is a non-symmetric homoge-
neous Einstein metric with respect to a transitive subgroup H C G precisely in the
following cases:

(i) G=S0(2n),K =U(n),H=S02n-1), HNK=U(n—-1), n >4,

(i) G =SO(7),K = SO(2) x SO(5),H =G2, HNK =U(2),
(iii) G = SO(8),K = SO(3) x SO(5),H = Spin(7), HN K = SO(4).

There are respectively 1, 2, and 2 non-symmetric Einstein metrics.

The non-symmetric Einstein metric in Theorem 4.2(i) was first found in [123].
The case of group manifolds was studied earlier in [67, 68] and more extensively
in [40]. While a complete classification has not been achieved, there are numerous
examples of left-invariant Einstein metrics. For example, every compact simple Lie
group of dimension greater than 3 has a left-invariant Einstein metric other than
the Killing form metric. SO(2n) and SO(2n + 1) have at least 3n — 2 distinct
left-invariant Einstein metrics.

Another important family of homogeneous spaces consists of the coadjoint or-
bits of compact connected semisimple Lie groups G, also known as the generalized
flag manifolds. Each coadjoint orbit is of the form G/C(T') where C(T) is the cen-
tralizer of a torus in G. It has a natural invariant complex structure and the first
Chern class is positive. The existence of a homogeneous Kahler-Einstein metric is
due to Koszul. Both [17, chapter 8] and [7] are excellent references for these and
other classical facts about coadjoint orbits. The question therefore arises if there
are any other homogeneous Einstein metrics on the generalized flag manifolds.

The classification of [122] shows that the Killing form metric is Einstein for the
generalised flag manifolds SU (nk)/S(U(k)x---xU(k)), Sp(3n—1)/(Sp(n) xU(2n—
1)), SO(3n+2)/(SO(n)xU(n+1)), Eg/(Spin(8)-U(1)-U(1)), and G/T where T is a
maximal torus in a compact semisimple connected Lie group whose local factors are
of type A;, Dy, Eg, E7 or Eg. In [9] and [72] all the homogeneous Einstein metrics
on certain families of coadjoint orbits were determined by explicitly solving the
Einstein equation, e.g., SU (p+q+7)/S(U(p)U(q)U(r)) and SO(2n)/(U(n—-1)U(1)).
In addition, Arvanitoyeorgos found at least "7' +n+1 solutions of the Einstein
equation on SU(n)/T when n > 4, of which n + 1 are non-Kahler. It should be
pointed out that in [9] and [72], the distinct solutions sometimes represent isometric
metrics. For example, the %' solutions in the SU(n)/T case are just the Kahler-
Einstein metrics for the n! distinct invariant complex structures (which correspond
to the natural complex structures induced by different embeddings of SU(n)/T as
coadjoint orbits). The action of the Weyl group (the symmetric group) identifies
them as Riemannian metrics. Similarly, n of the other solutions are also isometric.
The remaining solution is the Killing form metric.

Homogeneous Einstein metrics with positive sectional curvature have been stud-
ied. One takes the classification of homogeneous spaces admitting positive sectional
curvature (due to Berger, Bérard Bergery, Wallach, and B. Wilking) and examines
which of the positively curved homogeneous metrics are Einstein as well. For the
compact symmetric spaces of rank 1, Ziller [130] found that all homogeneous Ein-
stein metrics have positive sectional curvature. In [122, 5.4] it is shown that in
Berger’s classification of normal homogeneous manifolds with positive sectional cur-
vature, Sp(2)/SU(2) is the only space other than the rank 1 symmetric spaces that
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has a positively curved normal homogeneous Einstein metric. The situation with
the Aloff-Wallach spaces was studied in [77] (cf remarks about Theorem 1.3(i)).
Although homogeneous Einstein metrics with positive curvature were found on an
infinite family, a complete classification has not been achieved. The remaining cases
of F4/Spin(8), SU(5)/(Sp(2)-U(1)), Sp(3)/(Sp(1)Sp(1)Sp(1)), and SU(3) /T* were
studied by Rodionov in [104].

The classification of compact homogeneous Einstein manifolds of low dimen-
sion has also been attempted. A classical result of G. Jensen [66] is that all
four-dimensional homogeneous Einstein manifolds are symmetric. Compact five-
dimensional homogeneous Einstein manifolds with positive scalar curvature were
classified in [5, 107]. Besides symmetric metrics and product metrics, there is an
infinite family of homogeneous Einstein metrics on $2 x $%. These are precisely the
circle bundles over CP! x CP! in Theorem 1.1. While they are all diffeomorphic,
their homogeneous structures are all distinct. See remark (1) after Theorem (1.1).

While a complete classification has not been obtained, the dimension 7 case has
been extensively studied by mathematicians as well as by theoretical physicists in
connection with 11-dimensional supergravity theory. See [50, pp. 63-64] for more
references. The circles bundles over CP! x CP?, CP' x CP' x CP' , and SU(3)/T?
encountered in Theorems 1.1 and 1.3 are homogeneous Einstein manifolds of dimen-
sion 7. Indeed, every simply connected compact homogeneous 7-manifold admits a
homogeneous Einstein metric with positive scalar curvature, by [37].

Finally, a well-known technical difficulty in studying homogeneous Einstein
metrics is the presence of multiplicities in the decomposition of the isotropy rep-
resentation into irreducible representations. In [71] examples of this phenomena
are studied. They include Spin(8)/G, = S7 x S7, Spin(7)/SU(3) = 87 x S8,
Spin(8)/U(3) = 87 x G§ (R®), and the Stiefel manifolds SO(n 4 1)/SO(n — 1).

Kerr classified all the G-homogeneous Einstein metrics on these spaces, al-
though some of the Einstein metrics were already known. In the first three cases,
modulo the action of N(K)/K, there is at least one Einstein metric other than
the product Einstein metric. In the case of the Stiefel manifolds, there is a unique
invariant Einstein metric, a fact already proved in [14] and later reproved in [10].
The existence of this Einstein metric, however, already follows from Kobayashi’s
theorem [74], since the Stiefel manifold under consideration is a circle bundle over
the corresponding oriented Grassmann of 2-planes. In all of the above cases except
Spin(8) /G, the group N(K)/K is a circle and Kerr uses this action to eliminate
one of the off-diagonal components of the invariant metrics. It turns out that apart
from Spin(8)/U(3) all the non-product Einstein metrics, up to isometry, can be
found among G-invariant metrics which are diagonal with respect to a fixed de-
composition of the isotropy representation.

B. Negative Einstein Constant. Let (M = G/K,g) be a homogeneous
Einstein manifold with negative scalar curvature. Then it follows from Bochner’s
theorem that both M and G are non-compact. The well-known unsolved conjecture
of D. V. Alekseevsky asserts that K must be a maximal compact subgroup of
G. If this conjecture is true, then using the Levi and Iwasawa decompositions,
it follows that (M, g) is isometric to a left-invariant metric on some solvable Lie
group S. Indeed, all known examples are isometric to left-invariant metrics on
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simply connected solvable Lie groups. If S is unimodular, then a theorem of Doti-
Miatello [49] shows that there are no left-invariant Einstein metrics, generalizing
an earlier result of Milnor [88] for the nilpotent case.

The most classical examples of homogeneous Einstein manifolds with nega-
tive scalar curvature are the symmetric spaces of non-compact type and the non-
compact homogeneous Kahler-Einstein manifolds, which are shown to be precisely
the bounded homogeneous domains with the Bergmann metric in [39] and in un-
published work of Koszul. For the latter class of examples, Piatetskii-Shapiro [101]
has shown that there exists continuous Einstein moduli on the bounded homoge-
neous domains. The remaining case for which the holonomy is not generic is that
of homogeneous quaternionic-Kahler manifolds, whose classification was begun by
Alekseevsky [2] and completed by Cortés [38].

We will therefore consider below the non-unimodular case with generic holo-
nomy. Also, we will confine ourselves to the simply connected case and hence will
describe results in terms of Lie algebras. We begin with several definitions, following
[128] and [61].

A metric solvable Lie algebra is a pair (s,g), where s is a finite-dimensional
solvable Lie algebra and g is a left-invariant metric. A solvable Lie algebra is
completely solvable if for all X € s the eigenvalues of adx are real. A metric
solvable Lie algebra (s, g) is called standard if the g-orthogonal complement of the
derived algebra [s,s] is an abelian subalgebra a of s. The left-invariant metric g
is then referred to as a standard left-invariant metric. Finally, a standard metric
solvable Lie algebra is of Jwasawa type if in addition (a) for all 0 # X € a, adx # 0
and is a symmetric linear operator with respect to g, and (b) there exists some
Xo € a such that adx,| [s,s] has positive eigenvalues.

There are many examples of simply connected Einstein solvmanifolds with non-
positive sectional curvature. See [3, 47, 41, 22] for earlier results. Recently, Wolter
[128] constructed two infinite families.of such examples using Heisenberg groups.
These examples include the examples of Deloff. Wolter’s construction uses a general
sufficient condition for a left-invariant metric on a solvable Lie algebra of Iwasawa,
type to be Einstein. This condition is then verified in special cases to give Einstein
solvmanifolds with non-positive sectional curvature. In [80], Lanzendorf classified
all the left-invariant Einstein metrics (with non-positive sectional curvature) that
can be obtained by Wolter’s construction, and obtained some new examples.

In [53], an infinite family of quite explicit examples was constructed as follows.
Let K be a compact connected Lie group with an almost faithful irreducible rep-
resentation p on R". Let g = £ ® R" & RA be equipped with an inner product g
such that the three summands are orthogonal, g(A, A) = 1, on R" it is an arbitrary
K-invariant inner product, and on € it is —% times the trace form of p. Define
the Lie bracket on g by using the Lie bracket of ¢ and by declaring that ad(A)
acts as the identity on R™ and twice the identity on &, that [¢, R"] = 0, and that
[R",R"] C & so that for X,Y € R", Z € ¢, one has ¢g([X,Y],Z) = g(p(Z2)X,Y).
Then g gives a left-invariant Einstein metric on the associated simply connected
solvable Lie group.

The above examples as well as all other known examples are of standard type.

Recently, J. Heber, building on the work in [128], has made a very systematic
study of Einstein solvmanifolds of standard type. We will only describe some of the
results in [61], referring the reader to that paper for details as well as other results.
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Heber has also constructed in [61] many examples of solvable Lie algebras which
do not admit any left-invariant Einstein metrics. While nonstandard left-invariant
Einstein metrics are not known to exist, there is a dichotomy and a uniqueness
theorem for standard Einstein metrics.

THEOREM 4.3. [61] Let s be a solvable Lie algebra. If s admits a standard
left-invariant Finstein metric, then it cannot admit a non-standard left-invariant
Einstein metric. Furthermore, if s admits two standard left-invariant Einstein met-
rics g1 and go, then there is a positive constant ¢ and an isometry ¢ such that
g1 = cd*ga. If s is in addition completely solvable, then ¢ is an automorphism of
s.

Heber has also characterized when an Einstein left-invariant metric must be
of standard type. The characterization is an open algebraic condition, which is
satisfied, for example, if s is completely solvable, or if the Killing form is either
non-negative semidefinite or have signature at most 1. According to Azencott and
Wilson [12], (s, g) is standard as well if g has non-positive sectional curvature.

The first step towards classifying standard left-invariant Einstein metrics is the
theorem in [61] that such a metric solvable Lie algebra (s, g) is isometric to one of
Iwasawa type after possibly altering the Lie bracket. Combining [4, Corollary 1.10]
with this theorem, one obtains the following interesting fact.

THEOREM 4.4. [4, 61] A simply connected standard Einstein solvmanifold with
negative scalar curvature has a quotient of finite volume iff it is symmetric.

Returning to the situation of the associated (solvable) algebra of Iwasawa type
of a standard, Einstein, metric solvable Lie algebra, a canonical element Xy € a
can now be chosen such that adx, acting on [s, s] has eigenvalues which are positive
integers with no common divisors. The ordered list of eigenvalues together with
their multiplicities is called the eigenvalue type of (s,g). For a fixed dimension,
only finitely many eigenvalue types can occur. Heber then gives an outline of the
steps towards a complete classification of standard Einstein metrics. In particular,
he gives a reduction theorem which allows the description of Einstein solvable Lie
algebras of Iwasawa type for which dima > 1 in terms of those with dima = 1.

Now let n be a positive integer and define M™ to be space of all Einstein
metric solvable Lie algebras of dimension n and.scalar curvature —1 modulo the
action of the diffeomorphism group of the underlying R". Let M?, be the subspace
of Einstein algebras of standard type. Both spaces are regarded as subspaces of the
space of all metric solvable Lie algebras of dimension n modulo diffeomorphisms,
equipped with the C* topology.

THEOREM 4.5. [61] Let M} C M7, be the subset of standard Einstein metric
solvable Lie algebras with a fized eigenvalue type A. Then
(i) MY, is a finite disjoint union of spaces MY which are homeomorphic to
compact, semi-algebraic analytic subsets of some auziliary Euclidean space,
(i) each MY is open in M™ in the C* topology.

Finally, Heber has computed the dimensions of those spaces M% which contain
an irreducible non-compact symmetric space of rank 1.

THEOREM 4.6. [61] Let M?} contain a rank 1 symmetric space of non-compact
type. In the cases of real or complex hyperbolic space, M% consists of only one point.
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For quaternionic hyperbolic space of real dimension n = 4(m + 1), if m = 1 then
the symmetric metric is an isolated point in M?%, while for m > 2, a neighborhood
of the symmetric metric in M7 has dimension 8m? — 6m — 8. For the hyperbolic
Cayley projective plane, the corresponding dimension is 8.

There is actually a geometrical description of a neighborhood of the symmetric
space in MY in terms of spaces of orbits in certain representations. See [61] for
further details.
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