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Four-Dimensional Einstein Manifolds,
and Beyond
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1. Introduction

The aim of modern Riemannian geometry is to understand the relationship
between topology and curvature. A case in point is that one would like to know
when a given smooth compact n-manifold M admits an Einstein metric — that is,
a Riemannian metric g such that

T =g,

where 7 is the Ricci tensor of g and A is some real constant. When such a metric
exists, moreover, it is natural to ask to what extent it is unique; in other words,
one would like to understand the Einstein moduli space of M — i.e. the set of unit-
volume Einstein metrics on M, modulo the action of the diffeomorphism group.

These existence and uniqueness questions are easily answered in dimensions
2 and 3, because a Riemannian manifold of dimension n < 4 is Einstein iff it has
constant sectional curvature. In low dimensions, the sign of A is therefore completely
determined by the topology of M — indeed, by the size of w1 (M). Moreover, the
moduli space of Einstein metrics on a 2- or 3-manifold is always connected [43], so
the value of A, for unit-volume Einstein metrics g, is actually an invariant of M. In
dimension 2, the moduli space is never empty, and has positive dimension if A < 0.
By contrast, the moduli space of a 3-manifold is [43] a single point if A < 0. On the
other hand, the Einstein moduli space is empty [8, 61] for any 3-manifolds with
ma # 0; cf. [3].

In dimension n > 4, the curvature tensor of g is no longer determined by
the Einstein condition in a point-wise manner, and Einstein metrics are no longer
describable in terms of universal local models. While this, of course, is precisely
what gives the subject its interest, the existence and uniqueness problems are com-
mensurately harder when n > 4. Indeed, there are, to date, no non-existence or
uniqueness results known when n > 4. Fortunately, however, a constellation of low-
dimensional accidents makes the borderline case of n = 4 comparatively tractable.
My aim here is to survey the current state of our knowledge regarding the existence
and uniqueness of Einstein metrics on 4-manifolds, and point out some hints these
give us regarding higher dimensions.
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2. The Hitchin-Thorpe Inequality

Four-dimensional Riemannian geometry displays many features which have no
adequate analogues in other dimensions. These are largely attributable to a single
Lie-group-theoretic fluke: the rotation group SO(4) isn’t simple. Indeed,

s0(4) = s0(3) @ s0(3),

so the adjoint action of SO(4) on its Lie algebra preserves a decomposition into
two 3-dimensional subspaces. Now so(n) and A%(R") are isomorphic as SO(n)-
modules. Thus the rank-6 bundle of 2-forms on an oriented Riemannian 4-manifold
decomposes invariantly into two rank-3 bundles:

(1) A=At oA
Schur’s lemma. tells us that these bundles must coincide with the eigenspaces of the
Hodge duality operator
*: A% — A2
With appropriately chosen conventions, sections of A* are thus characterized by

*p = ¢, and sections of A~ satisfy xp = —.

DEFINITION 2.1. On any smooth oriented 4-manifold, sections of At are called
self-dual 2-forms, whereas sections of A~ are called anti-self-dual 2-forms.

Now let us suppose that (M, g) is a compact oriented Riemannian 4-manifold.
The Hodge theorem then tells us that every de Rham class on M has a unique
harmonic representative; in particular, there is a canonical identification

H*(M,R) = {¢ € T(A?) | dp =0, d*p = 0}.

But the Hodge star operator x defines an involution of the right-hand side. We
therefore have a direct sum decomposition

(2) H*(M,R) =H} & H,,
where
Hy = {p e T(AF) | dp = 0}

are the spaces of self-dual and anti-self-dual harmonic forms. Notice that x is
conformally invariant in the middle dimension, so the decomposition (2) remains
unchanged if the metric g is multiplied by a smooth positive function.

The intersection form

—: H*(M,R) x H*(M,R) — R
(W, ) = [ env
M

becomes positive-definite when restricted to H;, and negative-definite when re-
stricted to #;; and the two are mutually orthogonal with respect to —. Thus,
combining an L2-orthonormal basis for H; with an L2-orthonormal basis for H;

gives us a basis for H%(R) in which the intersection form is represented by the
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diagonal matrix

1

e ——
b4 (M)

b (M)
-1

L -
The numbers b+ (M) = dim ’H;‘: are therefore oriented homotopy invariants of M;
namely, b, (respectively, b_) is the dimension of any maximal linear subspace of
H?(M,R) on which the restriction of - is positive (respectively, negative) definite.

The intersection form described above is a bilinear form over R. But of course,
the cup product is also defined on integer cohomology, and one should therefore
think of the intersection form over R as a mere shadow of a more fundamental
object

- HZ(M,Z) X H2(M,Z) - Z,
concretely representable as a by X by integer matrix of determinant +1. While such

an integer quadratic form can of course be diagonalized over the reals, the analogous
assertion fails over the integers. For example, the intersection form

1]

of 5% x S? is an even form, meaning that a — o = 0-mod 2 for all « € H2(M,Z).
By contrast, of course, the diagonal form

o 1]

is odd — which, by definition, just means that it is not even!
Manifolds with any specified values of by can easily be constructed by the
following operation:

DEFINITION 2.2. Let M; and M; be connected compact oriented 4-manifolds.
Their connected sum M;# My is then the oriented 4-manifold obtained by deleting
a small ball from each manifold and gluing together the resulting S® boundaries
via a reflection.

For example, the 2 x 2 diagonal form considered above can be realized as the
intersection form of CP,#CP,, where CP, is the complex projective plane with its
standard orientation, and CP; is the same smooth 4-manifold with the opposite
orientation. Similarly, the iterated connected sum

kCPo#LCP2 = CPo#t - - #CPy # CPo# - - - #CPy
, A
has diagonal intersection form, with by = k and b_ = £. Notice that n(S? x §?)
and nCP2#nCP, are simply connected 4-manifolds with the same invariants b,
but are not homotopy equivalent because one has even intersection form and one

has odd intersection form. This distinction can be restated by saying that one is
spin and the other is non-spin. An oriented manifold is called spin iff it satisfies
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wy = 0, where wy € H%(Z,) denotes the second Stiefel-Whitney class of the tangent
bundle. In dimension 4, this is equivalent to the statement that every a € H%(Z,)
satisfies @ — a = 0 € Z,, as a consequence of the Wu relation

We—a=a— q€ L.

In particular, a simply connected 4-manifold is spin iff its intersection form on
H?%(Z) is even.

Once this distinction between spin and non-spin 4-manifolds is understood, the
topological classification of smooth simply connected 4-manifolds is easily stated.

THEOREM 2.1 (Freedman). Two smooth simply connected oriented 4-manifolds
are orientedly homeomorphic iff

o they have the same invariants by and b_; and
o both are spin, or both are non-spin.

Freedman’s result was originally stated [19] in terms of the equivalence of
intersection forms; but Donaldson’s celebrated theorem [17] on the diagonalizability
of definite intersection forms and the Minkowski-Hasse classification of indefinite
forms [28] allow one to make the simplified statement given here. On the other
hand, the reader should immediately be warned that the classification of 4-manifolds
up to diffeomorphism, while still poorly understood, is at least known to be much
more complicated. In particular, the Seiberg-Witten invariants discussed in §4 allow
one to show that some of the homeotypes treated by Theorem 2.1 can be realized
by infinitely many distinct diffeotypes.

The difference 7(M) = b*(M) — b= (M) is called the signature of M. It is
precisely the index of an elliptic operator

d=d* : T(A*) - T(A™),

and the Atiyah-Singer index theorem therefore predicts [4] that it must be calculable
by integrating an invariant polynomial in curvature; and indeed, this had been
been discovered much earlier by Hirzebruch [25], using a less general argument. Of
course, the same is also true of the Euler characteristic x(M) = 2—2b; (M) +b2 (M),
which is the index of

d+d* : T(A®*") - T(A°%);

in this case, the corresponding Gauss-Bonnet formula was first proved by Allen-
doerfer and Weil [1]. In both cases, the integrand is quadratic in curvature, as
is forced on one by invariance under rescalings g — cg, where ¢ > 0 is any real
constant.

Now let g be an arbitrary Riemannian metric on an oriented 4-manifold M,
and, by raising an index, identify its curvature tensor with the curvature operator
R : A2 — A2, Decomposing the 2-forms as in (1), this linear endomorphism of A2
can then be decomposed into primitive pieces

=So

+
W™+ 5

=So

S

+
Sle
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Here W, are the trace-free pieces of the appropriate blocks, and are called the
self-dual and anti-self-dual Weyl curvatures, respectively. The scalar curvature s is
understood to act by scalar multiplication, whereas the trace-free Ricci curvature

P=r— 19 acts on 2-forms by

S c S c
Pab = Tac @ p— The P 4-
Each of these curvatures corresponds to a different irreducible representation of
SO(4), and so any invariant quadratic polynomial in curvature must be a lin-

ear decomposition of s2, | 7 |2, [W*|? and |W~|2, and the signature and Euler
characteristic are thus expressible as a linear combination of their integrals. The
coefficients, of course, may then be deduced by inspecting a handful of well-chosen
examples. Thus the 4-dimensional Gauss-Bonnet formula may explicitly be written
as

x(M)=i/ o Sy Ll P
8z /o 24~ 2 ’

whereas the Hirzebruch signature theorem takes the form
1
M)=— W12 — W] dp.
") = oz [ IWHFE - W] du
Here the curvatures, norms | - |, and volume form du are, of course, those of our

chosen Riemannian metric g.
In particular, it follows that

@) @ i3r)(M)—i/ awap+ L],

X Tanr [, |V T T |
Since the above integrand is non-negative for any Einstein metric, we therefore have
the following celebrated result of Thorpe [60] and Hitchin [26]:

THEOREM 2.2 (Hitchin-Thorpe Inequality). If the smooth compact oriented 4-
manifold M admits an Einstein metric g, then

2x(M) > 3|r (M),
with equality iff the g-induced connection on one of the bundles A* is flat.

The last statement follows from the observation [53] that the self-dual and anti-
self-dual parts of the curvature of A* are precisely represented by the two left-hand
blocks of (3), whereas the two right-hand blocks represent the self-dual and anti-
self-dual parts of the curvature of A~. An oriented Riemannian 4-manifold is called
locally hyper-Kdhler if A is flat; and A~ is therefore flat iff the orientation-reverse
of the manifold is locally hyper-Kéhler. We will discuss the classification of locally
hyper-Kahler manifolds in the next section. For now, suffice it observe that the
bundle At becomes trivial when pulled back to the universal cover of any locally
hyper-K&hler manifold, so that the universal cover must, in particular, be spin.

EXAMPLE 2.1. The simply connected non-spin 4-manifold kCP,#¢CP; has y =
2+ k+£¢and 7 =k — ¢, and so cannot admit an Einstein metric unless 4 + 5k >
£> (k—4)/5.

It is worth pointing out that the invariant 2y + 37 has an intrinsic importance:
it is the first Pontrjagin number of the bundle A*. Indeed, the above description of
the curvature of A% tells us that our integral formula for 2 + 37 thus coincides with
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the usual integral formula for p; (AT). Notice that the Riemannian connection on
AT is self-dual iff g is Einstein, so the Hitchin-Thorpe inequality is a special case of
the celebrated fact that a bundle with self-dual connection must have non-negative
instanton number [18].

Note that the Hitchin-Thorpe inequality only involves homotopy invariants of
the 4-manifold in question. Thus, for instance, we could have reached precisely the
same conclusion in the above example if M were merely homeomorphic to one of
the connected sums kCP,#¢CP, considered in the above example. On the other
hand, the scalar and Weyl terms have effectively been treated as junk terms. My
primary aim in this essay will be to describe some interesting new estimates on
these terms which allow one to improve on the Hitchin-Thorpe result. At times,
however, this will be done at the price of sacrificing the homotopy invariance of the
obstruction.

Let me conclude this section by mentioning an amusing elementary interpreta-
tion [53] of the 4-dimensional Einstein equations. By (3), one sees that a 4-manifold
is Einstein iff the curvature operator R commutes with the Hodge star operator *.
But this is clearly the same as asking that the sectional curvature assigned to any
2-plane be the same as that assigned to its orthogonal complement:

(M*, g) Einstein <= K(P) = K(P1) V 2-plane P C TM.

Of course, this can also be proved in a completely elementary manner. Indeed, the
definition of the Ricci tensor and the symmetries of the Riemann tensor tell one
that

(r11 + 722) — (133 + T44) = 2(R1212 — R3434)

in any orthonormal frame on a 4-manifold. But the left-hand side obviously vanishes
for every orthonormal frame iff the eigenvalues of r are all equal.

3. Complex and Almost-Complex Structures

In order to give our discussion some substance, we need to have some examples.
The simplest examples of Einstein manifolds are of course the spaces of constant
curvature. A much richer and more illuminating family of examples, however, is
provided by the K&ahler-Einstein manifolds. Let us begin our description of these
by first recalling the notion of an almost-complex structure.

An almost-complex structure on a smooth n-manifold M is by definition an
endomorphism J : TM — TM of the tangent bundle such that J> = —1. Such
an object may be thought of as scalar multiplication by v/—1, and so makes T M
into a complex vector bundle, denoted by T1:; in particular, such a structure can
exist only if M has even dimension n = 2m. Sections of the dual A1'? of T!:° may
concretely be identified with those complex-valued 1-forms on M which convert J
into multiplication by i:

¢ € AV = ¢(Jv) = ig(v) Yv € TM.

The sections of the rank-m complex vector bundle A1:* — M?™ are therefore called
(1,0)-forms. More generally, a complex-valued (p+ ¢)-form on M is called a (p, q)-
form (with respect to J) if it is a section of

APT = AP(ALO) ® AT(ALD).
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DEFINITION 3.1. Let (M, J) be an almost-complex manifold of real dimension
2m. The rank 1 bundle
K =A™ 5 M>™
is called the canonical line bundle of (M, J). Its dual
K—l — AmTl,O
is called the anti-canonical line bundle.

Notice that we thus have a number of equivalent expressions for the first Chern
class of (M, J):

a(M,J):=a(T) =ca(K™) = —a(K) = —a(A™).

A Riemannian metric g and an almost-complex structure J on M are said to
be compatible iff J is an orthogonal transformation with respect to g:

9(,-) =g9(J- J).
This is the same as requiring that the tensor field
w(--) =g(J")

be skew-symmetric. When this happens, w will be called the associated 2-form of
(g,J). Notice that w is automatically J-invariant, in the sense that

LU(J', J) = (U(', ')7

which is to say that w is a (real) (1,1)-form with respect to J. If J is an almost-
complex structure, and if w is a real (1,1)-form, then we may, conversely define a
symmetric tensor field g by

q(°) = w('a J),
if g is positive-definite, it is then a J-compatible metric for which w is the associated
2-form.

If g is any Riemannian metric on M, and if J is any almost complex structure,
then we can produce a J-compatible metric h by setting h = [g + g(J-, J-)]/2. But
any metric h on M may be uniquely written as h = g(H-, H-), where the ‘symmetric’
endomorphism H of TM corresponds to yet another Riemannian metric g(H-,-).
Since the set of such H’s is convex, this provides us with a deformation-retraction
J — HJH™! of the space of almost-complex structures J onto the space of g-
compatible almost-complex structures on M. In particular, M admits an almost-
complex structure iff it admits some J compatible with any given metric g.

Now if (M, g) is an oriented Riemannian 4-manifold, and if J is a compatible
almost-complex structure, then J has matrix

-1 -1

5 @] » o o] " .

1 -1
in an appropriate oriented orthonormal frame e;, ... ,e4. The associated 2-form
w=e'Ae? e net
is therefore always either self-dual or anti-self-dual, and has norm V2. The self-

dual/anti-self-dual distinction amounts to whether or not J determines the given
orientation on M. Conversely, every self-dual or anti-self-dual 2-form of norm /2
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arises from a g-compatible J. Thus a smooth compact oriented 4-manifold M ad-
mits an orientation-compatible almost-complex structure iff AT admits a nowhere-
zero section.

In fact, the specification of an almost-complex structure J compatible with
g and the orientation gives us a concrete alternate description of A*. Indeed, if
€1,...,e4 is an oriented orthonormal frame in which J is given by (5a), then K is
spanned by

(€' +ie®) A (e +iet) = (e Ne® —e? Aet) +i(el Aet + e Aed),
the real and imaginary parts of which are self-dual 2-forms. Thus
AT = Rw @ ReK,
and B
AtegC=CwaKaK.
In particular,
(2x +37)(M) =pi(At) = —c2(COK ® K1) = [er(K™1))? = 2 (M, J).
We also see that the first Chern class satisfies the constraint
we (M) = wa (A1) = wo(ReK) = ¢1(K) = (M, J) mod 2.

Conversely, if « € H*(M,Z) is any element satisfying

(6) o’ = 2x+37
(7 a = wy;mod?2
we may take K to be a complex line bundle with ¢;(K) = —a, and notice that

R®ReK then has the same characteristic classes p; and we as A*. Since these char-
acteristic classes completely classify SO(3)-bundles over any 4-manifold [16], it fol-
lows that A1 has a non-zero section, and that M admits an orientation-compatible
almost-complex structure, iff equations (6) and (7) have a solution @ € H2(M,Z).

EXAMPLE 3.1. The 4-sphere S does not admit an almost-complex structure,
since H%(S*) = 0, whereas (2x + 37)(S*) = 4 # 0. Notice, by the way, that the
rank-3 bundle AT — S* therefore does not admit a nowhere-zero section, even
though its Euler class e(AT) € H3(S*) is of course zero.

An almost-complex structure J on a 2m-manifold M is said to be integrable
if there is an atlas of charts on M in which J becomes the standard, constant-
coefficient almost-complex structure on R?™ = C™. For such an atlas, the transition
functions are biholomorphisms, and M acquires the structure of a complexr m-
manifold. In this case, we will therefore say that J is a complex structure on
M. If V is any torsion-free connection on 7'M, the Newlander-Nirenberg theorem
asserts that that the obstruction to integrability is precisely the (A*° @ A%?) @ TM
component of VJ; the latter is usually called the Nijenhuis tensor or the Frohlicher
torsion. An easy partition-of-unity argument therefore shows that J is integrable
iff there is a torsion-free connection V such that VJ = 0.

A Riemannian metric g is said to be Ké&hler with respect to a compatible
almost-complex structure J iff VJ = 0, where V is now the Riemannian (Levi-
Civita) connection. When this happens, (M, J) is a complex manifold, per the
above discussion. Moreover, the 2-form w, which is now known as the Kdhler form,
satisfies Vw = 0, and so is closed. Conversely, g is Kahler with respect to J iff J
is integrable and w is closed. Since g is completely determined by J and w, this
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allows one to construct all Kahler manifolds as complex manifolds equipped with
closed, real, non-degenerate (1, 1)-forms.

The Kahler concept may be further clarified by a discussion of holonomy. On
any Riemannian manifold (M, g), parallel transport around a piece-wise smooth
loop v based at © € M gives rise to a so-called holonomy transformation L., :
TeM — T, M. Of course, L, is automatically an orthogonal transformation, since
Riemannian parallel transport preserves g. The Kéhler condition may now be re-
stated as requiring that every L., be a unitary transformation. (When this happens,
the relevant complex structure on T, M can be declared to be J|;, and this can be
uniquely extended to an almost-complex structure J on M by Riemannian parallel
transport.) Since curvature just represents parallel transport around infinitesimal
loops, it follows the curvature tensor of a Kahler manifold is a 2-form with values in
the skew-Hermitian endomorphisms of the tangent space. But index-lowering with
g identifies the skew-Hermitian endomorphisms of T'M with the bundle Ahl of real
(1,1)-forms. This tells us that the curvature operator R of a Kahler manifold is
just an endomorphism of Ahl, since the first Bianchi identity always tells one that
R is self-adjoint.

In particular, the 2-form p = R(w/2) is of type (1,1) on any Kahler manifold.
Now one can use the first Bianchi identity and the fact that VVJ = 0 to show that
p(,) =r(J+),
and the (1,1)-form p is therefore called the Ricci form. On the other hand, p
represents the half the real trace of the infinitesimal holonomy composed with J,
and so is —i times the curvature of the canonical line bundle K with its induced
connection. The latter connection is called the Chern connection, and can be
characterized by the fact that it preserves the induced inner product, and that

its (0,1) component is

'K) — TA%®K)
Il |
rA™°) -4 ™).
Because the Ricci tensor and Ricci form are related in exactly the same way as
are the metric and Kéhler form, a Kéhler manifold is Einstein iff

p=w.

When this happens, g is called a compatible Kéhler-Einstein metric on the complex
manifold (M, J), and (M, g, J) is called a Kéhler-Einstein manifold. If A < 0, this
says that K is a ‘positive’ holomorphic line bundle, and the Kodaira embedding
theorem tells us that K is ample, meaning that there is a holomorphic embedding of
(M, J) in complex projective space defined by the holomorphic sections of K®¢ for
any sufficiently large £. If A = 0, one instead concludes that K ®¢ is holomorphically
trivial for some £ # 0. Finally, A > 0 would imply that K~! is ample.

In the A > 0 case, however, the ampleness of K~! is not enough to guarantee
the existence of a Kéhler-Einstein metric. Indeed, if there were such a metric, it
would follow [41] that the identity component of the biholomorphism group would
be a complexification of the identity component of the isometry group. Since the
latter group is compact, this constrains the Lie algebra of holomorphic vector fields
to be a reductive Lie algebra. Thus we have one extra necessary condition for
the existence of a Kihler-Einstein metric in the A > 0 case. But amazingly, the
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necessary conditions we have described also turn out to be sufficient [5, 68, 55,
63, 62] in real dimension 4:

THEOREM 3.1 (Aubin/Yau). A compact complex manifold (M,J) admits a
compatible Kdhler-Einstein metric with A < 0 iff its canonical line bundle K is
ample.

THEOREM 3.2 (Yau). A compact complex manifold (M, J) admits a compatible
Kéhler-Einstein metric with A = 0 iff (M, J) admits a Kdihler metric and K®¢ is
trivial for some positive integer £.

THEOREM 3.3 (Tian). A compact complez surface (M*,J) admits a compatible
Kihler-Einstein metric with X > 0 iff its Lie algebra of holomorphic vector fields is
reductive and its anti-canonical line bundle K~ is ample.

For further discussion, see the essays by Tian and Yau in this volume.

ExAMPLE 3.2. Consider the Fermat hypersurface

{lw:v:w:z] € CP; | u* +vF +w* + 2% =0}
of degree k in complex projective 3-space. The canonical line bundle K of such a
surface is the restriction of the hyperplane line bundle raised to the power k — 4.
Moreover, the Lie algebra of holomorphic vector fields is trivial, except for k£ = 1,
where it is the reductive Lie algebra sl(3,C), and k = 2, where it is the reductive
Lie algebra so(4,C). Thus these complex algebraic surfaces all admit compatible
Ké&hler-Einstein metrics.

Notice that A has the same sign as 4 — k. All of these surfaces are simply
connected (by the Lefschetz theorem), so we see that knowing the fundamental
group alone cannot allow one to predict the sign of the Einstein constant A.

The first two of these surfaces are just CP; and CP; x CP;, and their K&hler-
Einstein metrics are just the obvious homogeneous ones. The cubic surface £ = 3
is much more interesting; it is diffecomorphic to CP2#6CP,, and its A > 0 Kahler-
Einstein metric is not known explicitly.

The quartic (k = 4) surface has trivial canonical line bundle, and carries Ricci-
flat Kahler metrics. Notice that this manifold has 2y + 37 = ¢? = 0, and so exactly
saturates the Hitchin-Thorpe inequality of Theorem 2.2. Generalizations of this
quartic, called K3 surfaces, will be discussed at length below.

Finally, notice that most of the Einstein manifolds under consideration have
A < 0. As we let K — 00, we run through infinitely many different homeotypes. As
we will see in a moment, these k£ > 4 surfaces are examples of surfaces of general
type.

The quartic in CP3 provides us with the prototypical example of a K3 surface.
By the usual definition [7], a compact complex surface is called a K3 iff it is simply
connected with ¢; = 0. (As it turns out, however, a compact complex surface is a K3
iff it is diffeomorphic to our quartic prototype.) Every K3 admits Kéhler metrics
[54], and in light of Theorem 3.2, therefore admits Ricci-flat Kéhler metrics. Now
recall that At = R® K for a Kihler surface, and K is flat iff the Ricci curvature
vanishes. Thus any Ricci-flat Kahler surface is locally hyper-Kahler in the sense of
Theorem 2.2. In fact [26], this is essentially the general case.

PROPOSITION 3.4 (Hitchin). Let (M,g) be a compact oriented Einstein 4-
manifold with 2x + 3t = 0. Then the pull-back of g to some finite cover of M
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is either a Ricci-flat Kdahler metric on a K3 surface, or else a flat metric on a
4-torus.

ProOOF. The proof of Theorem 2.2 tells us that g is Ricci-flat, and induces a
flat connection on A*. But the Cheeger-Gromoll splitting theorem asserts that any
compact Ricci-flat manifold has universal cover equal to the Riemannian product
of a compact, simply connected Ricci-flat manifold with a Euclidean space. Since
any Ricci-flat manifold of dimension < 4 is necessarily flat, this tells us that the
universal cover M of our 4-manifold M must either be compact, or else is Euclidean.
In the latter case, Bieberbach’s theorem [10, 67] asserts that M is finitely covered
by a flat torus.

We are left with the case in which M is compact. But the pulled-back metric §
induces a flat connection on A*, and the simple-connectivity of M then guarantees
that At is then spanned by parallel 2-forms. An arbitrary such form w of norm /2
corresponds to a parallel almost-complex structure J on M, and makes (]\7[ ,§) into
a Kihler manifold. We then have AT = Rw @ K, and since A7 is flat and trivial, so
is K. Thus (M, J) is a K3 surface, and § is a compatible Ricci-flat Kahler metric
on this K3. O

Let us now consider how the Kdhler-Einstein complex surfaces fit into Kodaira’s
general scheme of surface classification. The single most important invariant of a
compact complex surface is its Kodaira dimension. Let (M*,J) be a compact
complex 2-manifold, and let K = A%(T1°M)* be its canonical line bundle. For
each positive integer ¢, we have a tautological map K—¢ — [['(M, O(K*))]* defined
by evaluation of a global holomorphic section of K¢ on an element of its dual line
bundle. This map descends to a holomorphic map M — B, — P([T(M, O(K*%))]*)
with values in a projective space, but at the price of throwing out the base locus By
where all the holomorphic sections of K¢ vanish. The Kodaira dimension is defined
to be the maximal complex dimension of the image of M — B, as £ ranges over the
positive integers. Here §) is assigned dimension —oo, so the Kodaira dimension is
an element of {—00,0,1,2}. The classification of complex surfaces with Kodaira
dimension < 2 and b; even is thoroughly understood. A complex surface is said to
be of general type if its Kodaira dimension is 2.

A following procedure [7] provides a simple, beautiful way of modifying a com-
plex surface without changing its Kodaira dimension.

DEFINITION 3.2. Let (M, J) be a compact complex surface, and let x € M be
any point. The blow-up of M at z is the unique compact complex surface (M, J)
obtained by replacing x with a complex projective line CP;.

The introduced CP; has self-intersection —1, and so is called a (—1)-curve.
The blow-up can be explicitly constructed by replacing a small ball around z with
a tubular neighborhood of the zero section in the Chern class —1 line bundle over
CP,. Since the one-point compactification of this line bundle is diffeomorphic to
CP, in an orientation-reversing manner, the blow-up M is diffeomorphic to the
connected sum M#CP,. Notice that the blow-up procedure can be iterated as
many times as we like, and so gives us complex structures on M#kCP, for each
positive integer k.

There is an inverse process, called blowing down. Indeed, if a complex surface
(M, J) contains a CP; of self-intersection —1, it is necessarily the blow-up of some
other surface. Moreover, one can iterate this procedure until one finally produces
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a surface without (—1)-curves. (The process must terminate after a finite number
of steps because each blow-down reduces b2 by 1.) A complex surface X without
(—1)-curves is called a minimal surface. If M is obtained from X by some sequence
of blow-ups, we say that X is a minimal model for M. If M has Kodaira dimension
> 0, moreover, its minimal model is unique.

Using Nakai’s criterion, the Kodaira-Enriques classification [7] and a result of
Siu [54], the previous criteria for the existence of Kéhler-Einstein metrics can be
restated as follows:

COROLLARY 3.5. Let (M, J) be a compact complex surface. Then the following
are equivalent:
(M, J) admits a compatible Kdhler-Einstein metric with A < 0;
(M, J) has ample canonical line bundle;
(2x +37)(M) > 0, and every CPy C (M, J) has self-intersection < —3;
(M, J) is minimal, of general type, and contains no (—2)-curves.

Here a (—2)-curve means a CP; of self-intersection —2. If a minimal complex
surface of general type contains such curves, we can collapse them all to obtain a
complex orbifold which has K ample in the orbifold sense. The Aubin/Yau proof
then constructs [29, 64] a Kéhler-Einstein orbifold metric on this so-called pluri-
canonical model. This shows that a complex surface is of general type iff it can be
obtained from a Kahler-Einstein orbifold with A < 0 by resolving the singularities
and blowing up.

COROLLARY 3.6. Let (M, J) be a compact complex surface. Then the following
are equivalent:

e (M,J) admits a compatible Kihler-Einstein metric with A = 0;
o (M,J) is finitely covered by a K3 surface or complex torus;
e (M, J) is minimal, of Kodaira dimension 0, and has by even.

COROLLARY 3.7. Let (M, J) be a compact complex surface. Then the following
are equivalent:

e (M,J) admits a compatible Kihler-Einstein metric with A > 0;

o (M,J) has ample anti-canonical line bundle and reductive automorphism
algebra;

o (M,J) is CPy, CPy x CPy, or the blow-up of CPs at k distinct points, 3 <
k < 8, with no three on a line and no siz on a conic.

While there is no Kahler-Einstein metric on the blow-up of CP, at one or
two points, there is [8, 46] an Einstein metric on the one-point blow-up which is
conformally Kahler. There is reason to hope that this so-called Page metric on
CP,#CP, has a companion on the two-point blow-up CP,#2CP,. On the other
hand, one can show [37] that the only compact complex surfaces which might admit
Hermitian but non-K&hler Einstein metrics are the blow-ups of CPP, at one, two, or
three points in general position.

4. Seiberg-Witten Estimates

The Hitchin-Thorpe argument treats the L2 norms of s and W+ as ‘junk terms,’
about which one knows nothing except that they are non-negative. Seiberg-Witten
theory [33, 66], however, provides remarkable information about both these terms
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[36, 38]. In this section, we will develop the rudiments of Seiberg-Witten theory,
and explore some of its ramifications regarding the scalar curvature.

Let (M,g) be a compact oriented Riemannian 4-manifold, and suppose that
M admits an almost-complex structure. As we saw in §3, we can then find almost
complex structures J which are compatible with g in the sense that J*g = g.
Choose such a J, and consider the rank-2 complex vector bundles

®) Vi = A0 A2
9) V. = A%

Notice that g induces canonical Hermitian inner products on these bundles.

As described, these bundles depend on the choice of a particular almost-complex
structure, but they have a deeper meaning [26] that is invariant under deformations
of J. Indeed, on any contractible open subset of M one can define Hermitian vector
bundles

C - S:t

!
M

called spin bundles, characterized by the fact that their determinant line bundles
A2S. are canonically trivial and that their projectivizations

CP, - P(S4)

4
M

are exactly the unit 2-sphere bundles S(A*). On the other hand, one cannot
generally define the bundles S1 globally on M; manifolds on which this can be
done are called spin, and are characterized by the vanishing of the Stiefel-Whitney
class we = wo (T M). However, our bundles V. still satisfy

P(Va) = S(AF),
and we formally have
Vi=S:® L2,
where the Hermitian complex line bundle L = A%V, is just the anti-canonical
line-bundle K ! associated with J.
The isomorphism class ¢ of such a choice of V. is called a spin® structure on M.
The cohomology group H?(M, Z) acts freely and transitively on the spin® structures

by tensoring V1 with complex line bundles. Each spin® structure has a first Chern
class ¢; := ¢1(L) = ¢1(Vy) € H%(M,Z) such that

(10) c1 = wy mod 2,

and the previously mentioned H?(M,Z)-action induces the action ¢; — ¢; + 2a,
a € H%*(M,Z), on first Chern classes. Thus, if H?(M,Z) has trivial 2-torsion
— as can always be arranged by replacing M with a finite cover — the spin®
structures are precisely in one-to-one correspondence with the set of cohomology
classes ¢; € H?(M,Z) satisfying (10). A spin® structures ¢ arises from some almost-
complex structure J iff its first Chern class satisfies the additional constraint

e =2x + 3.

It is with these spin® structures of dlmost—complez type we will concern ourselves
here.
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The Levi-Civita connection V of g naturally induces Hermitian connections
on the locally defined bundles S4. Given a spin® structure ¢ and a Hermitian
connection A on the anti-canonical line bundle L, we therefore have induced Her-
mitian connections V 4 on V1. On the other hand, there is a canonical isomorphism
A' ® C = Hom (S4,S_), so that A! ® C = Hom (V,,V_) for any spin® structure,
and this induces a canonical homomorphism

. !A1®V+—)V_

called Clifford multiplication. Composing these operations allows us to define a
so-called twisted Dirac operator

Dy:T(Vy) — IT(V2)
by Dsg® = V 4 - ®. This is an elliptic operator of index

2 (M
indCD 4 = dimCker D4 — dimCker D% = Cl—;(—)
If ¢ is of almost-complex type, this number becomes the Todd genus (x + 7)/4 of

the almost-complex manifold (M, J).

ExAMPLE 4.1. Let (M, g, J) be a Kdhler manifold of complex dimension 2. Let
¢ be the spin® structure induced by J, and let A be the usual (Chern) connection
on the anti-canonical line bundle L = K~!. Then

Da=vV20a0): (A% & A%?) - T(A%Y)

where 0 is the Dolbeault operator and 8" is its formal adjoint. In particular,
the index of Dj4 is just the alternating sum of the dimensions of the Dolbeault
cohomology groups H%4(M), and our (Noether) formula for its index (the Todd
genus) is an elementary consequence of the Hodge decomposition.

For any spin® structure, we have already noted that there is a canonical dif-
feomorphism P(V,) 3 S(A™). In polar coordinates, we now use this to define the
angular part of a unique continuous map

O'!V+—)A+
with 1
d)| = —|P|°.
0(®)| = 519!

This map is actually real-quadratic on each fiber of V, ; indeed, assuming our spin®
structure is induced by a complex structure J, then, in terms of (8), o is explicitly
given by
w -
a(f,¢) = (If° - |¢|2)Z + Sm(f¢),
where f € A%0, ¢ € A%2, and where w(:,-) = g(J-,-) is the associated 2-form of
(M,g,J).
We are now in a position to introduce the Seiberg-Witten equations
(11) Dy® = 0
(12) Ff = io(®),
where the unknowns are a Hermitian connection A on L and a section @ of V.
Here F;{r is the self-dual part of the curvature of A, and so is a purely imaginary

2-form. A solution of (11-12) is said to be reducible if ® = 0; otherwise, it is called
irreducible.
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ExaMPLE 4.2. Let (M, g,J) be a Kihler surface of scalar curvature s = —1.
Let & = (1,0) € A°° @ A%? and let A be the Chern connection on L = K.
Since Fy = —ip = —ir(J-,-), its self-dual part corresponds to the trace piece of
the Ricci tensor, and so is given by F{ = —isw/4 = iw/4. On the other hand,
Ds® =8(1) + 8*(0) = 0, and o(®) = (1,0) = w/4. Thus (®, A) is an irreducible
solution of the Seiberg-Witten equations (11-12).

The geometric character of the Seiberg-Witten equations makes them invariant
under automorphisms of L. Thus the so-called gauge group of smooth maps f :
M — S' acts on the space of smooth solutions of the Seiberg-Witten equations
(11-12) by

(A’ Q) — (A - 2f_1df’ f‘b)

Notice that this action is free on the set of irreducible solutions, whereas the sta-
bilizer is precisely S! if ® = 0. In particular, the solution space is always either
infinite-dimensional or empty. However, one can compensate for the action of the
gauge group by choosing some back-ground connection Ay and then imposing the
gauge-fizing condition

(13) d* (A — Ag) = 0.

The system (11-13) is then elliptic, and the solution space is finite dimensional.
There is still a residual part of the action of the gauge group; the constant S!-
valued functions still act, and after modding out by these there is still an action of
the discrete group H!(M,Z) of homotopy classes of maps M — S!. After dividing
out by these, however, we obtain the moduli space 9. 4, which is by definition the
set solutions of (11-12) modulo the action of the gauge group.

Not only is this moduli space finite-dimensional — it is also compact. This is
because (11-12) imply the Weitzenbick formula

(14) 0=4V4VAd + sd + [®[?D.
Taking the inner product with ®, we have
0 =2A|®|% +4|Va®|> + s|®|* + |®|*,
and at the mazimum of |®|? we therefore have
0>4|Va® +|9*(s + |®[*),
so that any irreducible solution must satisfy the QO estimate
(15) |®|? < — mins.

Moreover, equality can only occur at points where V4@ = 0. In particular, one
has uniform LP-bounds on ® for all solutions, and compactness therefore follows
[33, 42] via the LP versions of the Garding inequality for (11-13) and the Rellich
lemma.

Now consider a perturbed versions of the Seiberg-Witten equations, obtained
by replacing (12) with

(16) iFf +0(®) =¢,

where ¢ is some self-dual 2-form. For generic €, Smale’s infinite-dimensional version
of Sard’s theorem implies that the corresponding ‘perturbed’ moduli space M. 4 . is
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a smooth manifold whose dimension is given by the (real) index* of the linearization
of (11-13), which is to say that

dimM. g = (by—1—b")+2indCDa

X+7 -t
- 2
2 ( 8 )

et — (2x +37)
4

If our spin® structure ¢ is of almost-complex type, the moduli space is therefore

discrete. Moreover, a slight variation on the previous Weitzenbock argument shows

that these moduli spaces are compact. Again assuming that our spin® structure is

of almost-complex type, the moduli spaces 9. 4. are thus finite for generic ¢.

As we vary ¢ and €, the moduli spaces remain cobordant as long as one can
avoid hitting reducible solutions. Now a reducible solution can only occur when
the self-dual part 27c]” of the harmonic representative of 2mrc; = [iFa] agrees with
the harmonic part of €. Since (c¢f)? > ¢2, it follows that we can avoid reducible
solutions if we assume that

(18) 2x + 37 =ci >0,

(17)

and if, for each metric, we only consider & with L? norm smaller than 27+/c?. Thus
(18) is enough to guarantee that we have a cobordism class of 9. ;. determined
by the smooth structure of M and the spin® structure ¢ alone.

DEFINITION 4.1. Let (M, ¢) be a smooth compact 4-manifold, equipped with
the spin structure and orientation determined by some almost-complex structure
J. Assume that (18) holds. Then the (mod 2) Seiberg-Witten invariant n.(M) € Zo
is defined to be

ne(M) = #9M. 4. mod 2,

where g is any Riemannian metric on M and ¢ is a generic self-dual form of small
L? norm on (M, g).

Notice that (18) implies that b, (M) > 1. On the other hand, if by (M) >
2, the set of ¢ for which there is a reducible solution has codimension > 2; it
is then easy to see that the generic moduli spaces M . are all cobordant, and
one can thus define the Seiberg-Witten invariant even if (18) fails. However, the
Hitchin-Thorpe inequality makes (18) a very natural hypothesis for investigations
concerning Einstein manifolds, and adopting it here will enable us to treat the
bt =1 and bT > 2 cases simultaneously.

We have now defined an elegant invariant of a smooth compact 4-manifold by
counting solutions of a non-linear system of partial differential equations. But have
we merely given a complicated definition of zero? Fortunately not!

THEOREM 4.1 (Witten/Kronheimer). Let (M, J) be a complex surface of gen-
eral type for which (18) holds. Then n (M) # 0, where ¢ is the spin® structure
induced by J.

1This dimension count actually involves a subtle cancellation which is often overlooked.
Namely, the contribution due to the 1-dimensional cokernel of d* : T'(A') ! T'(A) is canceled out
by the action of the 1-dimensional group S! of constant gauge transformations.
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For simplicity, let us just sketch a proof assuming that (M, J) satisfies any of
the equivalent conditions catalogued by Corollary 3.5. There is then a J-compatible
Kahler-Einstein metric g on M of scalar curvature s = —1, and hence there is an
irreducible solution of the Seiberg-Witten equations obtained by taking ® = (1,0) €
['(A%° @ A%2?) and letting A be the Chern connection on L = K~1. It is not hard
to see that the linearization of (11-12) is surjective at this solution, so it suffices to
show that any other solution is gauge-equivalent to the constructed one. But the
C? estimate (15) implies that

8 [ 1FiPdn= [ (@ltdn< [ sdu=samcion,
M M M

and equality can only hold if [#|2? = —s = 1 and V4% = 0. But since 4 is a
connection on L = K1, we have

swich = [ IFFF - P3P du,

and the reverse inequality also holds. Thus ® has unit length, and is parallel with
respect to V4. It follows that (A, ®) is gauge-equivalent to our explicit solution.

If (18) holds and the Seiberg-Witten invariant n.(M) is non-zero, it follows that
the unperturbed equations (11-12) have an irreducible solution for each metric. Via
the Weitzenbock formula (14), this severely constrains the geometry of Riemannian
metrics on the given manifold: ’

THEOREM 4.2. Let (M,¢) be a smooth compact oriented 4-manifold with a spin®
structure of almost-complex type. Assume that (18) holds, and that n (M) # 0. Let
g be any Riemannian metric on M. Then the scalar curvature sy of g is negative
somewhere, and

[ sty 2 3,

with equality only if g has constant negative scalar curvature, and is Kdhler with
respect to a c-compatible complex structure.

PRrOOF. The C° estimate (15) for any irreducible solution of (11-12) forces any
metric to satisfy mins < 0.

Now any conformal class of metrics [g] = {u%g|u : M — Rt} contains a metric
of constant scalar curvature [40, 51], and when the constant is negative, such a
metric is unique up to scale. Moreover, such a metric minimizes the functional
J s?dp within its conformal class. It thus suffices to prove the stated lower bound
for [ s2dp assuming that g has constant scalar curvature.

Now when s is constant, the C° estimate (15) takes the form

|(I)|2 S -,
and if equality holds identically we have V 4® = 0. Thus

[z [1ordu=s [1F}Pdu> 322t

If equality holds, Vo (®) = 0, and the metric is Kahler with respect to a complex
structure J for which o(®) is a constant positive multiple of the Kéhler form w.
Now

Vi=A"oA"?)QF
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for some Hermitian line bundle E with connection, and ® # 0 is a parallel section
of A>°® E C V.. Thus E is trivial, and ¢ is exactly the spin® structure determined

by J. O

This has an immediate application to the sign-of-the-Einstein-constant prob-
lem. Recall that the Hitchin-Thorpe inequality implies that if a 4-manifold admits a
Kahler-Einstein metric with A = 0, any other Einstein metric on M also has A = 0.
Seiberg-Witten theory implies the analogous conclusion in the negative case:

COROLLARY 4.3. Let M be a smooth compact jJ-manifold which admits a
Kahler-Finstein metric g with A < 0. Then any other FEinstein metric § on M
also has A < 0.

PROOF. Give M the orientation and spin® structure ¢ induced by the complex
structure. Then (18) holds by the Hitchin-Thorpe inequality, and has n (M) # 0
by Theorem 4.1. Theorem 4.2 thus tells us that § cannot have s > 0, and so must

have A < 0. O
But we also have the following remarkable estimate:

COROLLARY 4.4. Let M be an oriented smooth compact 4-manifold equipped
with a spin® structure ¢ of almost-complex type. Assume that (18) holds, and that
n.(M) # 0. Then any Riemannian metric g on M satisfies

1 2
>
327{'2 AJ Sgd/,tg = (2X + 37—)(M)’

with equality iff g is Kdhler-Einstein.

PROOF. One has
(c)? > cf =2x +3r,
with equality iff the harmonic representative of ¢; is self-dual. But for a Kihler
metric of constant scalar curvature, the Ricci form p is the harmonic representative
of 2mey, and p is self-dual iff the metric is Einstein. The claim therefore follows
from Theorem 4.2. O

This implies a Riemannian version [35] of the so-called Miyaoka-Yau [7, 68]
inequality:

THEOREM 4.5 (LeBrun). Let (M, g) be a non-flat compact Einstein 4-manifold
which admits an almost-complex structure. Give M the induced orientation and
spin® structure ¢, and assume that n (M) # 0. Then Euler characteristic x and
signature T of M satisfy

X 2 37,
with equality only if the universal cover of (M,g) is complex-hyperbolic 2-space
CHz := SU(2,1)/U(2), with a constant multiple of its standard metric.

Proor. By Corollary 4.4 and the Gauss-Bonnet formula, we have

3 g 82

1 2
3272 /M sdp

(2x + 37) (M),

3(2x — 37)(M)

v

v
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with equality only if the metric is Kahler-Einstein and W~ = 0.

If the latter happens, ReK, Rw, and A~ are eigenspaces of the curvature op-
erator R, with respective eigenvalues 0, s/4, and s/12. Since s is constant and w
is parallel, this implies that VR = 0, and g is therefore locally symmetric. Since
2x + 37 > 0 by the Hitchin-Thorpe inequality, the assumption that n. # 0 forces s
to be negative, and the point-wise form of R then tells us that the universal cover
is isometric to a rescaled version of the symmetric space CHs. a

In particular, we get a uniqueness result [35]:

COROLLARY 4.6 (LeBrun). Let M = CH2 /T be a compact complez-hyperbolic
4-manifold, and let go be its tautological metric. Then every Einstein metric g on
M is of the form g = p*cgo, where ¢ : M — M is a diffeomorphism and ¢ > 0 is a
constant.

PRrROOF. Because M carries a tautological Kahler-Einstein metric with A < 0,
Theorem 4.1 guarantees that M has a non-trivial Seiberg-Witten invariant n..
Up to rescaling, any Einstein metric g on M is therefore complex-hyperbolic by
Theorem 4.5. But Mostow rigidity [43] tells us that the fundamental group of
a complex hyperbolic 4-manifold determines the manifold up to isometry, so the
result follows. O

For constructions of compact complex-hyperbolic hyperbolic 4-manifolds, see
[13, 43]. For a generalization of the above result to the non-compact, finite-volume
setting, see [11].

The analogous result for real-hyperbolic 4-manifolds is also true, and indeed
was proved by Besson-Courtois-Gallot [9] several months before the discovery of the
above result {35]. However, as will explained in §9, the proof of the real-hyperbolic
result proceeds upon completely different lines.

Seiberg-Witten theory also allows one to prove non-existence results for Ein-
stein metrics [36]. To see this, first notice that Theorem 4.4 can be sharpened in
the following direction:

THEOREM 4.7. Let M be a 4-manifold which has a smooth connected sum de-

composition L L

M = X+t CP2# - - - #CP

[ L —

k
for some positive integer k. Assume that (18) holds, and suppose that M has a spin®
structure of almost-complex type for which n (M) # 0. Then every Riemannian
metric g on M satisfies
2 —

327 /., sydpg > (2x +37)(X) = (2x + 37)(M) + k.

PROOF. The first Chern class ¢; of ¢ can be uniquely expressed as
k
a=aX)+ Za]‘Ej,
=1

where ¢1(X) € H*(X,Z) and the E; are generators for the k relevant copies of
H?(CP,,Z). Since ¢; = wy mod 2 and E; - E; = —1, the integers a; are all neces-
sarily odd. Let g be the arbitrary metric on M which we wish to examine, and let
us fix our choice of generators E; so that ¢;(X)* - E; > 0 for all j.



266 CLAUDE LEBRUN

Now notice that complex conjugation [2! : 22 : 23] = [z! : 22 : 23] defines a
self-diffeomorphism of CP; with non-empty fixed-point set which acts by —1 on
H?2. Using this as a model, one can construct self-diffeomorphisms of M which act
trivially on H?(X) and reverse the sign of exactly one E;. Moving ¢ by a sequence
of such diffeomorphisms, one can thus obtain a spin® structure ¢ with n; # 0 and

k
a=aX)+)_lalE;.
j=1
Thus
@"h? = [a@)P+ O lalEN?+2) lajl(c(X)*t - E;)

[
[er(X)+]?
e (X))?
a+ Z a?

> (2x+37)(M) + k.
Theorem 4.2 therefore tells us that

1 /s2du2(2x+37‘)(M)+k=(2x+3T)(X).
M

v v

3272

If equality held, g would be necessarily be Kahler with respect to a ¢-compatible
complex structure. Also, our specification of ¢ would have not been unique, since
we would also have [¢;(X)*]- E; = 0 for all j. The same reasoning could thus be
applied to 2* different spin® structures to give us 2**! different parallel complex
structures, and AT would therefore have to be flat and trivial. But any two parallel
sections would then by deformation-equivalent, and hence determine the same spin®
structure, contradicting the construction. Hence the inequality is necessarily strict.

O

In particular, we get the following non-existence result:

THEOREM 4.8 (LeBrun). _Let X be a minimal complex algebraic surface of gen-
eral type, and let M = X#kCPy be obtained from X by blowing up k > 0 points.
If k> 2(2x + 37)(X), then M does not admit Einstein metrics.

PROOF. If M admits an Einstein metric g, it satisfies (18) by the Hitchin-
Thorpe inequality, and has a non-trivial Seiberg-Witten invariant by Theorem 4.1.
Using the scalar curvature estimate of Theorem 4.7 and the Gauss-Bonnet formula
(4), we have

2x+31)(X) -k = (2x+37)(M)

- (w5

1 2
> R
= 3.3272 /MS dp

> 1ax+3n)(X),

so that
(2x +37)(X) > k.

Wi N
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Hence M cannot admit an Einstein metric if k > 2(2x + 37)(X). O

COROLLARY 4.9 (LeBrun). Even up to homeomorphism, there are infinitely
many smooth compact simply connected 4-manifolds which satisfy the strict
Hitchin-Thorpe inequality 2x > 3|7|, but nevertheless do not admit Einstein met-
TiCS.

PRrOOF. If X is any minimal complex surface of general type with 2x + 37 > 3,
there is then at least one integer k satisfying (2x + 37)(X) > k > %(2)( + 37)(X).
The complex surface M = X#kCP» then satisfies 2x > 3|7|, but does not admit
Einstein metrics by the above result. Theorem 4.9 therefore follows by considering
the sequence of X’s given by the hypersurfaces of degree > 4 in CP3. O

It should be pointed out that, even when bt = 1, Seiberg-Witten theory can
be used to prove results along the lines of Theorem 4.7 without assuming (18).
However, the proofs are complicated by the metric-dependence of the moduli spaces,
and one is saved only by considering different spin€ structures for different metrics.
For details, see [20, 36]. .

It should also be observed that the results of this section really depend only
on the existence of solutions of the Seiberg-Witten equations for each metric on
the given manifold. This may occur even when n, € Z, vanishes. In particular, it
turns out that the moduli spaces 9., can be oriented in a natural way, and this
gives rise to an invariant SW, € Z whose mod 2 reduction is n.. One can also
generalize the definition of SW, so as to allow [59] for spin® structures which are
not of almost-complex type. Some of these invariants turn out, moreover, to be
non-trivial [58] on any symplectic 4-manifold with by > 2.

On the other hand, Kronheimer [34] recently showed that certain 4-manifolds
with SW = 0 nonetheless admit solutions of the Seiberg-Witten equations for each
and every metric. A different construction of such examples, with direct relevance
to the theory of Einstein manifolds, is described in §5 below. In any case, it would
seem that the Seiberg-Witten equations have ramifications for the theory of Einstein
manifolds which in contexts beyond the scope of the invariants which have been
explored to date.

5. Surgery and Scalar Curvature

We have already observed that lower bounds for the L? norm of the scalar
curvature have natural applications to the theory of Einstein metrics on 4-manifolds.
Let us consider such bounds in a broader context. If M is a smooth compact n-
manifold, consider the diffeomorphism invariant

TO0") = inf [ [s,|"dy
9 Jm

where the infimum is taken over all metrics on M. Notice that choice of the power
n/2 is dictated by scale invariance; for any other power, the analogous infimum
would perforce be zero.

The invariant 7 is well behaved with respect to under surgeries in high codi-
mension [49]; this fact is essentially a quantitative refinement of results of Gromov-
Lawson [22] and Schoen-Yau [52] concerning metrics of positive scalar curvature.
Recall that if M is any smooth compact n-manifold, and if S C M is a smoothly
embedded g-sphere with trivial normal bundle, we may construct a new n-manifold
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M by replacing a tubular neighborhood S x R*~¢ of S with $”~¢~! x R’*!. One
then says M is obtained from M by performing a surgery in codimension n — ¢ (or
dimension g). This operation precisely describes the way that level sets of a Morse
function change as one passes a critical point of index ¢ + 1, and two manifolds are
therefore cobordant iff one can be obtained from the other by such a sequence of
surgeries.

PROPOSITION 5.1 (Petean-Yun). Let M be any smooth compact n-manifold,
and let M be obtained from M by performing a surgery in codimension > 3. Then

—

I(M) < I(M).

PROOF. We may assume that n > 3, as otherwise there is nothing to prove.
But with this assumption, Z can be rewritten as

7() =i [ [l duy
9 Jm

where

_J 0 520
== s s <0.

Indeed, if M admits a metric of positive scalar curvature, it also [5] admits a
metric with s = 0, so both infima vanish. If, on the other hand, M does not admit
a metric of positive scalar curvature, both functionals [9] are minimized in each
conformal class by a metric of constant scalar curvature < 0, and the claim is then
an immediate consequence. .

Now let g be a metric on M such that

[ ooy <) + 5,
M 2

and suppose that S C M is any embedded sphere of codimension n — ¢ > 3. By
making a conformal change which is trivial outside a small tubular neighborhood
of the sphere, one may produce a conformally related metric § = ug which has
positive scalar curvature along S9, but still satisfies

/ ls_ ;" 2dp; < T(M) +e.
M

But on the manifold M obtained by surgery on S9, a celebrated local construction
of Gromov-Lawson [22] then gives us a metric § which has positive scalar curvature
in the surgered region, and agrees with § on the set where s; < 0. Thus

Joto-g g = [ s gl dug < T0MD) 4,
M M
so that
T(0) =inf [ Js-g|"2dsy < T0M),
as claimed. O
Because any surgery can be undone by another surgery, this implies [47]

COROLLARY 5.2 (Petean). If M is any smooth compact 4-manifold, then
T(M#[S* x §3]) = Z(M).
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PROOF. One may obtain S! x S3 from S* by a surgery in codimension 4, and
S* may be obtained from S x S2 by a surgery in codimension 3. Taking connected
sums with M, we see that M = M#S* and M#[S* x S3] can each be obtained
from the other by a surgery in codimension > 3. By Theorem 5.1, it follows that
I(M) < Z(M#[S' x §%]) < T(M),
and the result follows. O
This and Theorem 4.7 now imply [47]

THEOREM 5.3. Let X = CHz /T be any compact complex-hyperbolic 4-manifold.
Then X#£(S" x S®) does not admit Einstein metrics for any £ > 0. Moreover,
X#kCP2#L(S* x S) does not admit Einstein metrics for any £ > 3k > 0.

PROOF. Let M = X#kCP, and M = M#£(S* x S3) = X #kCPo#£(S* x S?)

for some k£ > 0 and ¢ > 0. If M admitted an Einstein metric, then the Hitchin-
Thorpe inequality would then tell us that

(2x + 37)(M) = (2x + 37)(M) + 4£ > 0,

and M would thus satisfy (18). But M is the underlying 4-manifold of a com-
plex surface of general type, and hence has a non-zero Seiberg-Witten invariant by
Theorem 4.1. Thus Theorem 4.2 tells us that

(M) = irglf/ s2du > 3272 (2x + 37)(X).
M
Hence -
I(M) = Z(M) > 327%(2x + 37)(X)

by Theorem 5.1. Now suppose that § is an Einstein metric on M. Then the
Gauss-Bonnet formula (4) tells us that

- 2
-3 = g [ (2w + 5;) dus
1 —
> 3o M)
> 22+ 3n()
= (x-30(0),

where in the last step we have used the fact that x(X) = 37(X) for any complex-
hyperbolic 4-manifold X. But since
(2x — 37)(M) = (2x — 37)(X) + 5k — 4¢,
this tells us that
5k—4£>0
if M = X#kCP2#£(S* x S®) admits an Einstein metric. The claim now follows by
contraposition. O

In particular, this yields a new proof of a beautiful result of Sambusetti [50],
whose own proof will be discussed in §9 below.

COROLLARY 5.4 (Sambusetti). Let (a,b) be any pair of integers with a = b mod
2. Then there is a smooth compact oriented 4-manifold M which does not admit
Finstein metrics, such that x(M) = a, 7(M) = b.
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ProoF. Let X be any compact complex-hyperbolic 4-manifold CH, /T'. Since
I' C SU(1,2) is a finitely generated matrix group, Mal’tsev’s theorem [69, p. 151]
asserts that it is residually finite, and in particular has a non-trivial homomorphism
to a finite group. The kernel I'; of such a homomorphism then defines a finite cover
X7 = CH2 /Ty of X. Iterating this procedure, we obtain an infinite tower

e X2 X 2 X

of finite covers of Xy. Thus there is a sequence of integers j; — oo such that each
(37i, i) = (x(X3),7(X;)) for some complex-hyperbolic 4-manifold X;. Now choose
i to be large enough so that

a+b 2_a

Ji > ma.x(b,T, 3 b).
The positive integers
k = j7;—-b
. a+b
£ = 25— 2
then satisfy £ > 2k. Thus M = X,;#kCPo#£(S* x S®) has
x(M) = 3j;+k—-20=a
T(M) = ji—k‘—“b,
and yet, by Theorem 5.3, does not admit Einstein metrics. O

The reader should note that the xy and 7 are necessarily congruent mod 2, so
that the above result is optimal.

Probing the scalar curvature estimates provided by Seiberg-Witten theory with
concrete sequences of test metrics actually allows one to compute Z for any complex
surface of general type [36]. Applying Corollary 5.2 then yields

PROPOSITION 5.5. If X is any complex surface of general type, then
T(X#KkCP,#£[S* x S%)) = 327%(2x + 37)(X).

This of course immediately implies non-existence results for Einstein metrics
for certain values of k£ and ¢. The curious thing about this argument, however, is
that it ultimately exploits the existence of solutions of the Seiberg-Witten equations
(11-12) on one manifold to obtain scalar curvature estimates on another! Might
it not be more satisfying to show that there are actually solutions of the Seiberg-
Witten equations on the manifold in question? Fortunately, as was recently proved
by Ozsvath and Szabé [45], and noticed independently by the present author and
various others, such Seiberg-Witten solutions do in fact exist.

To this end, suppose that we have a spin® structure ¢ on a 4-manifold M for
which (17) predicts that the moduli space M. 4. generically has dimension £ > 0.
Fix £ loops vi,...,v in M, and define a map M. ;. — T* by sending (&, A) to
the holonomies of A around the ¢ given loops. For a fixed (¢, g,¢), the homotopy
class of this map only depends on the homology classes [v;] € H1(M,Z), and we
may therefore define n.(M,[v1], - ,[ve]) € Z2 to be the degree mod 2 of this map.
If this invariant is non-zero for some choice of [v;], it of course follows in particular
that there must be a Seiberg-Witten solution for every metric g on M.
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THEOREM 5.6. Let N be a complez surface of general type, let M = N#£[S* x
S3], and let v1,...,v; be St factors of the £ relevant copies of S x S3. Assume,
for simplicity, that M satisfies (18), and let ¢’ be the spin® structure on M obtained
by pulling back the canonical spin® structure ¢ from the complex surface N. Then

n’t(Ma [’yl]: o 7[’7[]) ?é 0.

One way of proving this is to consider metrics on M which approximate stan-
dard product metrics on each S x §3, where the S factor is taken to be extremely
long. By cutting out an S% and capping off, each such metric can be approximated
by a metric on N containing two long cylinders [0,5] x S® for each S! x S%. On
the other hand, the Weitzenbock formula (14) forces |®|2 to fall off exponentially
along such a cylinder because of the positivity of the scalar curvature. Hence one
can use a cut-off function to pass from a solution of any small perturbation of
the Seiberg-Witten equations on N to a solution of a small perturbation of the
Seiberg-Witten equations on M which has any specified holonomy around the +;;
conversely, solutions on M can be pasted back onto N. This allows one to conclude
that ng (M, [n], ... ,[ve]) = n(N) = 1. For a different argument, see [45].

Thus we see that the 4-dimensional scalar curvature estimates obtainable by
Theorem 5.1 can, in practice, actually be deduced directly from the theory of the
Seiberg-Witten equations. However, the most striking consequence of Theorem 5.1
is to be found in dimensions bigger than four. Indeed, this surgical argument implies
[48]

THEOREM 5.7 (Petean). Let M™ be any simply connected smooth compact n-
manifold, where n > 5. Then I(M) = 0.

The proof builds on a circle of ideas due to Gromov and Lawson [22], using
Theorem 5.1 to reduce the problem to that of finding a suitable system of generators
for the spin-cobordism ring.

It follows that any simply connected n-manifold, n > 5, has unit volume metrics
of scalar curvature —¢, for any € > 0. If the manifold is also non-spin, one can even
find unit-volume metrics of constant scalar curvature > 0 by the earlier result of
Gromov-Lawson [22]. Thus, while Seiberg-Witten theory tells us that a Kéhler-
Einstein metric with A < 0 maximizes the scalar curvature among constant-scalar-
curvature metrics of fixed volume, the analogous assertion is dramatically false on
simply connected manifolds of higher dimension. Thus, one might suspect that the
sign of the Einstein constant is not determined by the smooth topology in high
dimensions. In the next section, we shall see that the facts show that this suspicion
is completely justified.

6. The Sign of the Einstein Constant

We have already seen that the fundamental group alone does not contain enough
information to determine the sign of the Einstein constant. However, one might still
hope [8] that the sign of ) is somehow determined by the topology of M. Indeed,
Corollary 4.3 seems to support such a hope in dimension 4. In higher dimensions,
however, the theory of Kahler-Einstein manifolds allow one to actually construct
counter-examples to such a conjecture [14, 31]. The first step is to observe that
Corollary 4.3 becomes false if the rules are altered so as to allow one to change
not only the metric, but also the differentiable structure, on a fixed topological
4-manifold.
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THEOREM 6.1. There is a homeomorphic pair of 4-manifolds (M, Ms) such
that My admits a Kdhler-Einstein metric g; with X < 0, and such that My admits
a Kdhler-Finstein metric g, with A > 0.

In higher dimensions, it therefore turns out that the sign of A cannot be deduced
from the smooth topology.

THEOREM 6.2 (Catanese-LeBrun). There is a smooth 8-manifold M which ad-
mits a pair of Einstein metrics for which the Einstein constants A have opposite
signs. Moreover, one may arrange for both of these Einstein metrics to be Kdhler,
albeit with respect to wildly unrelated complex structures.

Indeed, one may take the 4-manifold M, to be CP,#8CP,, which, as we saw in
Theorem 3.3, admits Kahler-Einstein metrics with A > 0. On the other hand, M;
may be taken to be the underlying smooth 4-manifold of the Barlow surface. The
Barlow surface [6] is a simply connected minimal complex surface of general type
with the same by as CP,#8CP,. With Barlow’s complex structure, M; contains
four (—2)-curves, and so does not have K ample, but one can deform this complex
structure [14] so as to destroy these (—2)-curves. Thus M; admits other complex
structures for which K is ample, and so admits K&hler-Einstein metrics with A < 0
by Theorem 3.1. In particular, by taking the product metrics, it follows that
M, x M; and M5 x M, admit Kahler-Einstein metrics with Einstein constants A
of opposite signs.

On the other hand, the intersection forms

—: H2(Z) x HX(Z) > T

of M; and M; are isomorphic because the Minkowski-Hasse classification [28] as-
serts there is only one isomorphism class when b, and b_ are both non-zero and
T =by—b_ #Z 0mod 8. A theorem of Wall [65] therefore shows that M; and M, are
h-cobordant; that is, there is a 5-manifold-with-boundary V' with 8V = M; [ Ma,
such that the inclusions M;, My — W are both homotopy equivalences. Hence
M; x M; is h-cobordant to My x My, via (M; x W)U (W x M;). But Smale’s
h-cobordism theorem [56] asserts that simply connected h-cobordant smooth mani-
folds of dimension > 5 are necessarily diffeomorphic. Thus M; x M is diffeomorphic
to My x M, and the K&hler-Einstein metrics under discussion may therefore be
considered to live on the same manifold M = M; x M;.

On the other hand, Corollary 4.3 makes it painfully obvious that M; and M,
are not diffeomorphic — a fact which was first proved [30] using Donaldson theory
[18]; cf. [44]. In other words, the h-cobordism theorem breaks down in dimension
4. However, Freedman did manage to salvage the topological part of Smale’s proof
in dimension 4, and Theorem 2.1 thus allows one to still conclude that M; and M,
are homeomorphic.

7. Weyl Estimates

So far, we have seen that the Seiberg-Witten equations give rise to scalar-
curvature estimates on 4-manifolds. We will now see that that also give rise [38]
to estimates concerning the Weyl curvature.

LEMMA 7.1. Let (M,g) be an oriented Riemannian 4-manifold, and let ¢ be
a spin® structure on M. Let § be a Yamabe metric conformal to g. If there is
an irreducible solution (P, A) of the Seiberg- Witten equations (11-12) on (M, §,¢),
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then the L%-norms of the self-dual Weyl curvature and scalar curvature of g must
satisfy
IIW+I|2+ lsllz > = lef .
V3 f 3
Moreover, equality occurs iff g is Yamabe and also Kdéhler, with respect to some
c-compatible complex structure.

PrOOF. By conformal rescaling, we may assume that the scalar curvature s is
a negative constant. Now consider the Weitzenbtck formula

(@+d")6 = V'V6 - 2W (9, ) + 36,

which holds for any self-dual 2-form ¢. Assuming that ¢ Z 0,this formula implies
that

(19) Iw

v o sl 16l V3l
”2—2fn¢1|4[ 1ol =157 T

where again we have assumed that the scalar curvature s is a negative constant.
We now apply this to the particular 2-form ¢ = o(®) = —iF]: associated with a
solution of the Seiberg-Witten equations. To do so, first notice that (14) and the
Cauchy-Schwarz inequality tell us that

(st = VBllgl) VElglla > [ [(=s)ia? - 121 du = [ 47 a8,

since [®[* = 8|¢|>. On the other hand, [V¢|> < 1|®[*|V 4®|?, and (15) tells us that
|®|2 < |s|. Since harmonic theory tells us that
(20) l¢ll2 > 27lcf|,

we therefore have

1902 _ lille _, 4
sl < 22~ 2mel

Finally, another application of (15) gives us

(21)

Islligll2 o
(22) 2
2\/_H¢”4
Plugging (20-22) into (19) then proves the lemma. O

This lemma can be usefully exploited by interpreting the left-hand side as a
dot product in R2:

V3) - (VE[w |, Lol

Wy + 26

4 L sl = (
V3 2\/§sz—f

The Cauchy-Schwarz inequality therefore tells us that

(3+3) (2wt + B) > (Zowope + \/—||3||2) > ¥,

or in other words that

1 b2y A 32
=/ <2|W 2+ 24) g 2 ().
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Now there is no reason to believe that the constant g—g is sharp, so there is little to
lose if we replace it here with g, which is only 1% smaller, and much more easily
remembered. Doing so yields

THEOREM 7.2. Let (M, g) be a compact oriented Riemannian 4-manifold with
a non-trivial Seiberg-Witten invariant. Let c¢1(L) € H*(M,R) be the first Chern
class of the corresponding spin® structure on M, and let cf # 0 denote its projection
into the space of g-self-dual harmonic 2-forms. Then

—1—/ 2|W+|2+ﬁ dp >§(c+)2
4r2 [y, 97" 24 g7 9

This leads to yet more obstructions to the existence of Einstein metrics. Indeed,
the Gauss-Bonnet formula (4) tells us that the left-hand side of the inequality in
Theorem 7.2 is just (2x + 37)(M) if g is Einstein. This then gives us the following
improvement of Theorem 4.8:

THEOREM 7.3 (LeBrun). _Let X be a minimal complez algebraic surface of gen-
eral type, and let M = X#kCP, be obtained from X by blowing up k > 0 points.
Ifk > %(2)( +37)(X), then M does not admit Einstein metrics.

Again, the constant of % is not sharp, but suffices for our present purposes.

ExAMPLE 7.1. Let X; be the Fermat surface of degree £ > 8 in CP3, and let
M,y = X,#kCP, be obtained from X, by blowing up k = £(£ — 4)? — 2(!;1) +4
points. Since c(X) = £(£—4)? ~ £3, whereas k ~ 2£3, we must have k > £c?(X) for
sufficiently large ¢; and indeed, closer inspection shows that this actually happens
for all £ > 8. Thus Theorem 7.3 implies that none of these 4-manifolds M, admits
an Einstein metric.

Now assume, for simplicity, that £ is odd, so that (lgl) = 0 mod 4, and notice

that M, has
-1
by = 2 1
+ (3>+,

-1
- = 1
= (54

exactly like the surface N, gotten by taking the the double branched cover of
CP; x CP, ramified over a smooth holomorphic curve of bidegree (6, ([;1) + 2).
(The latter is an example of a Horikawa surface [27].) Since the simply connected
complex surfaces M, and N; both have 7 = —6[(‘;') + 2] = 4 mod 8, both are
non-spin, so Theorem 2.1 tells us that M, and N, are homeomorphic. But N,
is a minimal surface of general type, and contains no (—2)-curves. Corollary 3.5
therefore tells us that N, carries an Einstein metric, even though it is homeomorphic
to My, which does not.

Thus Theorem 7.3 gives us a simple proof of a result originally deduced by
Kotschick [31], who instead applied Theorem 4.8 to some rather more exotic
algebraic-geometric examples.

THEOREM 7.4 (Kotschick). For infinitely many homeotypes of compact simply
connected non-spin 4-manifolds, there are some choices of smooth structure which
admit Einstein metrics, and others which do not.
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Presumably this also occurs in the spin case. However, K3 provides the only
spin homeotype where this phenomenon has been observed to date.

Notice that the holonomy-modified Seiberg-Witten invariants of Theorem 5.6
also give rise to obstructions to the existence of Kihler-Einstein metrics. For ex-
ample, one has

THEOREM 7.5. Let X be a minimal surface of gemeral type. Then M =
X #kCPo#£[S' x S%] does not admit Einstein metrics if k +4€ > 5(2x + 37)(X).

The proof imitates that of Theorem 4.7, but uses Theorem 7.2 in place of
Theorem 4.2. Details are left to the reader.

8. Minimal Volumes

If M is a compact n-manifold, multiplying any given metric on M by a large
enough positive constant will yield a new metric on M of sectional curvature > —1.
This rescaling process, however, will also typically make the volume of M enormous.
Gromov [21] thus realized that it is natural to define a a diffeomorphism invariant,
called the minimal volume, by setting

Volg (M) = inf{Vol(M, g) | g has K > —1}.

But it is equally natural to consider minimal volumes with respect to lower bounds
on the Ricci or scalar curvatures:

Vol.(M™) = inf{Vol(M,g) | g satisfies r > —(n — 1)g}
Vol,(M™) = inf{Vol(M,g) | g has s> —n(n—1)}.
Notice that our conventions have been chosen so that
Volg (M) > Vol .(M™) > Vol,(M™)

tautologically.
For any manifold of dimension n > 3, one can show, by first considering one
conformal class at a time, that the minimal volume for s is given by

ny — _ L(M)
Vols(M™) = nZ(n = D2’
where the invariant 7 was defined in §5. Inspection of the Gauss-Bonnet formula
(4) therefore shows that an oriented 4-manifold M can admit an Einstein metric g
only if
1 3
2X(M) 3|T(M)| 2 967T2I(M) - 27‘_2V018(M),

with equality iff ¢ is half-conformally flat and Vols;(M) is realized by a suitable
rescaling of g. Much of what we have done so far simply consists of making this
inequality effective by introducing non-trivial estimates for Vol,(M).

In a sense, however, this inequality is quite wasteful; after all, if g is an Einstein
metric, its Ricci curvature is determined by its scalar curvature. Thus, the same
argument actually proves the following:

LEMMA 8.1. Let (M, g) be a 4-dimensional Einstein manifold. Then
3
2X(M) 2 3[r(M)| + 5 Vol (M),

with equality iff g is half-conformally flat and can be rescaled so as to realize the
minimal Ricci volume.
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Of course, such an inequality only acquires content in conjunction with an effec-
tive method for estimating the invariant Vol,.(M). The first result in this direction
was discovered by Gromov [21], and involves an invariant ||| of a compact topo-
logical n-manifold known as its simplicial volume, and defined as the infimum of
expressions of the form ) |c;|, where ) c¢;o; is any singular homology cycle with
real coefficients c; representing the fundamental cycle [M] € H,(M,R).

ProPOSITION 8.2 (Gromov). For every smooth compact n-manifold M,

1
=M

We will say a bit about the proof of this result in the next section. For the
moment, let us merely notice that, with Lemma 8.1, it immediately implies

Vol.(M) >

THEOREM 8.3 (Gromov/Kotschick). Let (M,g) be a 4-dimensional Finstein
manifold. Then
Ml
12962

Curiously, Gromov only derived the weaker inequality obtained from this by
dropping the 7 term. The fact that Gromov’s results actually imply an improved
version of the Hitchin-Thorpe inequality was only recently brought to light by
Kotschick [32]. Notice that, in contrast to results derived by Seiberg-Witten meth-
ods, the Gromov/Kotschick inequality only involves terms depending on the ho-
motopy type of M. However, the simplicial volume ||M|| turns out to vanish for
any simply connected manifold, so the inequality only improves upon the Hitchin-
Thorpe inequality in cases where the fundamental group is infinite.

On the other hand, Theorem 8.3 does represent an honest improvement over
the Hitchin-Thorpe inequality. For example, let X is a hyperbolic 4-manifold, and
recall that Mal’tsev’s Theorem [69] predicts that there are ¢-fold covers X, of X
for arbitrarily large ¢. If M = X,#mCP,, then ||M]|| > £||X||, and ||X|| in turn
is positive — in fact, || X|| = %X(X ), where vy is the volume of a regular ideal
hyperbolic 4-simplex. Since the Gromov-Kotschick inequality requires that

1 m
(2 B 972U4> X(X) >,

whereas the Hitchin-Thorpe inequality would merely stipulate that
2x(X) > 7,

2x(M) 2 3|T(M)| + 5e5

Theorem 8.3 actually predicts non-existence in a certain range of m missed by
Hitchin-Thorpe, provided that ¢ is sufficiently large. But in the next section, we
will see that one can do a great deal better: none of these manifolds admits an
FEinstein metric!

Even without the signature term, Gromov was able to predict non-existence in
cases missed by the Hitchin-Thorpe inequality by considering examples of the form
M = 2(T x T)#k[S* x S3], where ¥ is a Riemann surface of large genus. It is for
this reason that simple connectivity was emphasized in Corollary 4.9.

9. Entropy and Ricci Curvature

Let (M, g) be a compact Riemannian manifold, and let (M, g) be its universal
cover. Let z € M, and let B,(z) C M denote the open distance ball, consisting of
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of points of distance < ¢ from z; let Vol(B,(z)) denote the Riemannian volume of
this distance-ball. Then the volume entropy of (M, g) is defined to be

huoi(M,g) = lim 2BYOBe(@)
0—00 Q
This is independent of the base-point z, but of course can be non-zero only if the
fundamental group of M is infinite.
An easy calculation shows that an n-manifold of constant sectional curvature
K < 0 has entropy hyo = (n—1)y/|K|. After a bit of of pure thought, we therefore
get the the following:

LEMMA 9.1. Any compact Riemannian manifold (M, g) withr > ~(n—1)g has
volume entropy

hvol(M,g) <n-1.

Indeed, this is an immediate consequence of Bishop’s inequality [12, 8], which,
in light of our assumption that the Ricci curvature of (M,g) is no smaller than
that of hyperbolic space H™, says a ball of radius g in (M, g) must have volume no
bigger than that of the corresponding ball in #H".

Of course, the entropy hyo (M, g) is not invariant under rescalings, and indeed

it is easy to show that
hvol(Ma Cg) = C_I/thol(Ma g)-

Fortunately, this is easily remedied by instead considering the scale-invariant quan-
tity
E(M™,g) = [hvat(M, g)]"Vol(M, g).

This invariant was already considered by Gromov [21], who showed that any metric
on any compact n-manifold M satisfies

£(M,g) > —1M].

With Lemma 9.1, this then implies Proposition 8.2.

While Gromov’s lower bound on £(M, g) opened up several new frontiers of
mathematical research, it is, in practice, far from sharp. It was therefore a de-
velopment of the greatest significance when Besson, Courtois, and Gallot [9] were
able to prove that locally symmetric metrics of strictly negative curvature actually
minimize this functional:

THEOREM 9.2 (Besson-Courtois-Gallot). Let M be any compact quotient of a
real, complex, quaternionic, or octonionic hyperbolic space, and let gy be the stan-
dard metric on M. Then any other metric g on M satisfies

g(M7 g) 2 g(Ma gO):
with equality iff g is locally symmetric.

SKETCH OF PROOF. Let S*° denote the unit sphere in the real Hilbert space
L?(8M) of square-integrable half-densities on the sphere-at-infinity of M, and let
S$° C 5% denote its intersection with the open cone of positive half-densities. We

will consider smooth 7; (M )-equivariant maps @ : M - S$°. Each such map in-
duces a (possibly degenerate) metric gg on M which is 7 (M)-invariant, and so
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descends to M. The volume Vol(M, g¢) may then be viewed as a sort of equivari-
ant volume of the image of ®, and it is natural to ask whether some choice of ®
minimizes this volume.

Such a minimizer actually does exist. Indeed, for each € M, consider the
map from the unit sphere in T, M to M obtained by following the geodesics of go
all the way to infinity. The Poisson measure dp, on OM is the push-forward of the
usual probability measure on the unit sphere in T, M via this map. The promised
minimizer is then given by ®¢(x) = /p:. The fact that this is a minimizer is
proved by a calibrated geometry argument. Namely, there is a canonical baricenter
map w : S — M, and one may therefore define a closed n-form w on S by

_ { hwot(90) -
= (P52 =t

where dp,, is (traditional bad notation for) the volume n-form of go. The integral
of w on any n-manifold is then less than or equal to the manifold’s volume, and
equality holds for the image of ®,. Since any other ® is smoothly, equivariantly
homotopic to ®¢, Stokes’ theorem tells us that

Vol(M, ga) > / P = / B3 = Vol(M, ga,) = (4n)™/2E(M, go).
M M

On the other hand, given any metric g on M and any constant ¢ > hy(g), one
may define a smooth equivariant map by

®yc(7) = [ Jir e~ dp,dp, o i
, Jowt [ e 0@V dpydpy o
where 4, is the Riemannian distance. One is then able to show that
zlc-:';g 2> 9%, .5
so that
E(M,g) > (4n)"/2 irgf Vol(M, gs, ).
Thus £(M, g) > £(M, go), as claimed. O

In light of Lemma 9.1, Theorem 9.2 implies
COROLLARY 9.3. Let M be any compact hyperbolic 4-manifold. Then

2
Vol (M) = fl—;r— (M).

Of course, we also get similar results in other dimensions; for example, if M?™ is
any even-dimensional hyperbolic manifold, Vol.(M) = (—47r)m(2ﬂm’)—! x(M). In high
dimensions, alas, this tells us essentially nothing about Einstein metrics. But in
dimension 4, we find that any Einstein metric on a hyperbolic 4-manifold saturates
the inequality

3
2X > 3|7'| + '2—7TEVOL,.

of Lemma, 8.1, is therefore conformally flat, and hence has constant curvature. With
Mostow rigidity, this yields:
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THEOREM 9.4 (Besson-Courtois-Gallot). Let M* be a smooth compact quotient
of hyperbolic 4-space H* = SO(4,1)/SO(4), and let go be its standard metric of
constant sectional curvature. Then every Einstein metric g on M is of the form
g = Ap*go, where p : M — M is a diffeomorphism and A > 0 is a constant.

Notice that Theorem 9.2 also makes an assertion about complex-hyperbolic 4-
manifolds, so one might expect to also be able to prove Theorem 4.6 by this method.
Unfortunately, however, because Lemma 9.1 uses the Bishop comparison theorem
to compare metrics with real hyperbolic space, the associated lower bound for Vol,
turns out to be too small by a factor of g—‘f. It would of course be of fundamental
interest to find some over-arching point of view which could explain both results
simultaneously.

By imitating the proof of Theorem 9.2, one can also prove the following:

THEOREM 9.5 (Besson-Courtois-Gallot). Let (X, go) be a compact oriented lo-
cally symmetric space of negative curvature, and let M be a compact manifold of
the same dimension. Let f : M — X be any smooth map. Then any metric g on
M satisfies

where deg(f) denotes the degree of f.

COROLLARY 9.6. Let X be a compact oriented hyperbolic-4-manifold, and sup-
pose M is a compact oriented 4-manifold which admits a map f : M — X of degree
q. Then

472
Vol (M) > QTX(X)-
ExAMPLE 9.1. Let X be a compact oriented hyperbolic 4-manifold, and let
M = X#4(S* x S*)#mCP..

Then M admits a degree-1 map to X, and hence

4 2
Vol, (M) 2 —=x(X).
On the other hand, we have
x(M) = x(X)-2t+m,
(M) = m.

Plugging these numbers into the inequality
3
2y > 317+ WVOIT
of Lemma 8.1, we conclude that M can admit an Einstein metric only if
2x(X) —4€+ 2m > 3m + 2x(X).

If either £ or m is positive, such a manifold therefore never admits an Einstein
metric. Moreover, since our estimate of Vol,. only depends on the existence of a
map of a degree-1 map to X, the same conclusion applies to any 4-manifold which
is even homotopy equivalent to one of these examples.
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Now for any compact oriented hyperbolic 4-manifold X, the Euler characteristic
Xx(X) is even and positive, and we may arrange for it to be as large as we like by
passing to finite covers — which exist in abundance by Mal’tsev’s theorem [69].
By choosing X and ¢ appropriately, we may, for any m > 0, therefore construct
manifolds M as above such that x(M) is any given integer = m mod 2. Since one
also has 7(M) = m, this family of manifolds M, together with their orientation

reversed versions M, suffices to prove a stronger version of Corollary 5.4:

THEOREM 9.7 (Sambusetti). Any integer pair (x,7) with 7 = x mod 2 can be
realized as the Euler characteristic and signature of a smooth compact oriented 4-
manifold M (with infinite fundamental group) which is not homotopy equivalent to
any 4-dimensional Einstein manifold.

Once again, notice how these entropy arguments involve the gigantic size of the
fundamental group in an essential way. These beautiful results can therefore shed
no light at all on the simply connected case.

10. The Positive Case

This essay has focused almost exclusively on recent results concerning 4-
dimensional Einstein manifolds with A < 0. However, recent years have also wit-
nessed remarkable progress in our knowledge of the A > 0 case. The most striking
result in this direction is the weak compactness theorem of Anderson [2], which
shows that, while the moduli space of A > 0 Einstein metrics on a 4-manifold M is
generally non-compact, it can always be compactified by adding points represent-
ing orbifold Einstein metrics on spaces obtained from M by collapsing chains of
2-spheres. For a description of results in this direction, see the essay by Petersen
in this volume.

In the negative case, we have seen that the presence of a non-vanishing Seiberg-
Witten invariant is enough to guarantee that any Riemannian metric on a manifold
satisfies [ s?du > 327%(2x +27). For an Einstein metric, one may use (4) to rewrite

this in the form )
s
—dp > / W |%du.
[ ez [ W

It may therefore come as something of a surprise to learn that Gursky [23, 24]
has proved that any Einstein 4-manifold with A > 0 satisfies exactly the opposite
inequality, unless it is anti-self-dual:

THEOREM 10.1 (Gursky). Let (M,g) be a compact oriented FEinstein 4-
manifold with s > 0 and W+ £ 0. Then

2
s
t2dp, > [ 2d
/Mle [“dpg > /M 54>
with equality iff VW = 0.
SKETCH OF PROOF. The Einstein equations and the second Bianchi identity
imply that W is divergence-free. This implies that
0> (}]W+|1 /3,
where { = 6A +s—2v/6|WT|. However, the quantity & = s —2+/6|W*| transforms
under conformal transformations according to the rule

Guzg = u3Ou.
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Thus, assuming that W+ # 0, we may take u to be a smooth positive approximation
of |[W+|'/3, and thereby construct a conformally rescaled metric § = u%g such that

/M [sg - 2\/6|Wg+|] dp; < 0.

Now ¢ minimizes [ s dp among all metrics of fixed volume in its conformal

class, so that
1/2
S,d
(/ Sgd/ig) _ fM gQlg
M

vV Jar dtsg

Jar 55915

\/fM dpg

fM 2\/6|Wg+|dﬂg

NI

1/2
< (24 [ 1wy oy
1/2
= (24/ |Wg+|2dug)
by the positivity of s, and the conformal invariance of |W T |?du. |

The resulting estimate [ s?dp < 327%(2x + 37) is certainly interesting, but
not particularly powerful in the absence of other geometric assumptions. If one
assumes, however, that the sectional curvature of g is non-negative, one also has
the point-wise estimate

s

V6
and the Gauss-Bonnet formula therefore tells one that x < % /, M %du. Putting
these two inequalities together, reversing the orientation if necessary, and using
Bishop’s inequality, one thus obtains

> WH+ W,

PRrOPOSITION 10.2. Let (M,g) be a smooth compact oriented FEinstein /-
manifold with non-negative sectional curvature. Assume, moreover, that g is neither

self-dual nor anti-self-dual. Then the Euler characteristic x and the signature T of
M satisfy

15
92X>I|T|

In particular, if a 4-manifold M has b_ = 0 and b, # 0, any Einstein metric
of non-negative sectional curvature on M must be self-dual. Since Hitchin has
proved [8] that the only self-dual Einstein manifolds with positive scalar curvature
are the symmetric spaces S* and CPs, this gives us a clean characterization of the
Fubini-Study metric [24]:

THEOREM 10.3 (Gursky-LeBrun). Let M be a smooth compact oriented f-
manifold with strictly positive intersection form. Suppose that g is an Einstein
metric on M which has non-negative sectional curvature. Then (M, g) is isometric
to CP4, equipped with a constant multiple of its standard Fubini-Study metric.
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One might thus hope that any Einstein 4-manifold with non-negative sectional
curvature is actually locally symmetric. One piece of evidence in favor of such a
conjecture is the fact [57] that any Einstein manifold of positive curvature operator
R : A2 - A? is locally symmetric. For a further discussion of the (extremely
strong) condition R > 0, see the essay by Chow in this volume.

In any case, there are, up to diffeomorphism, only finitely many compact 4-
manifolds with Einstein metrics of non-negative sectional curvature. The flat 4-
manifolds, of course, nominally form a subclass of the the manifolds under dis-
cussion, but Bieberbach’s theorem [10] in any case tells us that there are finitely
many diffeomorphism types of these. For the others, the Ricci curvature must be
positive, and we may thus rescale the metric so that, for example, r = 3g. The
definition of the Ricci curvature then tells us that the sectional curvatures all sat-
isfy 0 < K(P) < 3. Gauss-Bonnet therefore tells us that the volume is > 872/15.
On the other hand, Myers’ theorem predicts that the diameter is < w. Given such
bounds, Cheeger’s finiteness theorem [15] then predicts that there are only finitely
many diffeomorphism types — although, of course, the actual number could still be
astronomical. By contrast, Proposition 10.2 and Freedman’s classification [19] tell
us that there are at most twelve homeotypes of simply connected compact Einstein
4-manifolds with non-negative sectional curvature.

REMARK 10.1. If an Einstein manifold instead has non-positive sectional cur-
vature, one still has the inequality
|s| -
> W+ |W

and it is straightforward to show that consequently
S 15|T|
X g !l

This is actually a minor improvement on a result of Hitchin [26], who observed
that such an inequality holds for the somewhat smaller coefficient of (2)3/2. In all
likelihood, however, the present constant of 18—5 isn’t sharp, either.- In any case, it
would be extremely interesting to construct some non-locally-symmetric examples,
and give this discussion some substance!

11. Concluding Remarks

In this essay, we have explored several recent streams of thought which bear
upon the existence and uniqueness of Einstein metrics on 4-dimensional manifolds.
For example, we have seen that Seiberg-Witten theory gives one control of the
L%-norms of scalar and Weyl curvature when certain diffeomorphism invariants
are non-zero. Entropy estimates instead allow one to control the Ricci curvature
under certain homotopy-theoretic assumptions. The mystery is that, while these
techniques sometimes lead to analogous results, they seem completely unrelated.
One might hope for a deeper, unified explanation of these results involving principles
which remain to be discovered.

On the other hand, it could be that the striking parallels between these two
sets of results are merely ephemeral. For example, the parallel formulations of
Theorem 9.4 and Corollary 4.6 hide an important technical distinction. The proof
of Theorem 9.4 actually shows that any Einstein 4-manifold which is homotopy
equivalent to a hyperbolic manifold must itself be hyperbolic, whereas the proof of
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Corollary 4.6 yields no such conclusion in the complex-hyperbolic case. Does this
merely illustrate a limitation of the methods of proof, or does it capture a factual
difference between the real- and complex-hyperbolic cases?

In the same vein, it is interesting to compare the information that these very
different sets of techniques provide concerning blow-ups of complex-hyperbolic man-
ifolds. Theorem 7.3 tells us that blowing up such a space at, say, 47 points will
result in a smooth manifold without Einstein metrics. Theorem 9.5 is less efficient,
but it does reach a similar conclusion [50] if something over 67 points are blown up.
However, the entropy argument yields non-existence for every smooth structure on
the manifold.

While we have described a number of techniques for showing that Einstein
metrics do not exist on certain 4-manifolds, a direct variational approach to the ex-
istence problem [3] might suggest that one should instead try to construct sequences
of metrics on a given 4-manifold which geometrically converge to a disjoint union
of Einstein pieces. For example [36], while complex surfaces of general type do not
generally admit Einstein metrics, they do always admit minimizing sequences for
the functional [ s2dp which converge to orbifold Einstein metrics on their pluri-
canonical models, at the price of ‘bubbling off’ some topology. However, there are
circumstances [3, 39] in which such minimizing sequences instead ‘collapse’ to a
lower-dimensional object. At any rate, while most 4-manifolds do not admit Ein-
stein metrics, one might still hope that unions of special Einstein manifolds will
eventually play a roéle in 4-dimensional smooth topology similar to that played by
minimal models in complex surface theory.

In a different direction, we have seen that the sign of the Einstein constant is
definitely not a diffeomorphism invariant in high dimensions. On the other hand,
we have seen some weak indications that just the opposite may hold in dimension
4. Further exploration of this issue would seem to be one of the most compelling
potential directions for future research.

Finally, it is worth comparing the general state of our knowledge concerning
the positive and negative cases. For example, we now know that there aren’t any
non-standard Einstein metrics on compact quotients of H* or CH,. What about
non-standard Einstein metrics on $* or CP2? The question seems fair enough. Yet
the only results currently available in this direction pertain to metrics of positive
sectional curvature. The need for such an extraneous hypothesis should serve as a
clear indication of the depth of our present ignorance.
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