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Einstein Deformations of Hyperbolic Metrics
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Introduction

The simplest non-trivial examples of Einstein metrics are the rank-one sym-
metric spaces. In this essay, we will be interested in those of negative curvature
— i.e. the hyperbolic spaces KH™ (m > 2), where K is the field/algebra of real
numbers (R), complex numbers (C), quaternions (H) or octonions (@); in the last
case, only the Cayley hyperbolic plane OH? is well-defined. These spaces are the
non-compact duals of the projective spaces KP™. We normalize the metric so that
the maximum of the sectional curvature is —1, and denote the real dimension of K
by d (=1, 2, 4 or 8), and the real dimension of KH™ by n = md.

The boundary sphere S™~1 of a hyperbolic space carries a rich geometric struc-
ture, namely a conformal Carnot-Carathéodory metric. Let see this first in the real
and complex examples.

The real hyperbolic space (with constant sectional curvature —1) is the unit
ball B” in R™, with the metric

euc
=2
where euc is the flat metric on R” and p the radius. The metric g induces a metric
on the boundary S™~!
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the function (1 — p?) is a defining function for the boundary, and the metric
depends on the choice of the defining function only up to a conformal factor, so
that the conformal class [v] is well defined. We shall say (following LeBrun’s ter-
minology) that [y] is the conformal infinity of g.

The complex hyperbolic space (with constant holomorphic sectional curvature
—4) is the unit ball of C™ with the Bergman metric

euc  p*(dp® + (Idp)?)
A (ot
Now equation (1) would lead to a very degenerate tensor on the boundary, so we
consider instead

g:

¢) v = lim (1 - p?)gs, ;
p—1
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this metric is infinite, except on the distribution V' = kern, where n = Idp is a
connection 1-form for the S'-bundle S?2~! — CP™~!. Such a metric defined on
a contact distribution is called a Carnot-Carathéodory metric. Again, only the
conformal class [y] is well defined and we extend the previous terminology to call
it the conformal infinity of g.

These two examples fit in with the following more general picture. Fix a base
point * in the hyperbolic space and denote by r the distance to * and by S, the
radius r sphere around *. The metric v on the boundary sphere S of the hyperbolic
space KH™ is defined as
3) v = lim e7?7gs, .

T—00

This metric is infinite except on a distribution V of codimension 1 (complex case),
3 (quaternionic case) or 7 (octonionic case). In the real case it is finite and V = TS.
The brackets of vector fields in V' generate the whole tangent bundle T'S, making
v into a Carnot-Carathéodory metric. Moreover, there is a contact form 7 with
values in Im(K) = R, R® or R7, such that the metric is exactly

g = dr? + sinh?(2r)n? + sinh?(r)y.

In the real case, the ? term does not appear. To give a sense to the formula in the
three other cases, we have to choose a supplementary subspace to the distribution
V C TS. This is given here by the fibers of the fibration

Sd—l N Sn—l

!
]KPm-—l

Of course, all this depends on the choice of the base point %, but the conformal
class [v] is well defined by (3) and will be called the conformal infinity of g.
The symmetric metrics are Einstein, Ric? = —\g with

A=n-1,n+2,n+8, 36

in the real, complex, quaternionic and octonionic cases respectively. In this arti-
cle, we will explain how all (in a sense to be precised) Einstein deformations of
the hyperbolic metric are obtained as solutions of the following problem: given a
Carnot-Carathéodory metric v on the boundary, compatible in some sense with a
contact structure, find a metric g in the interior such that

(i) Ric = -Ag;

(ii) g has [y] as conformal infinity.

This problem has a long history. In the complex case, one can try to find
Kéhler-Einstein deformations. The problem is solved by the theorem of Cheng and
Yau [3]: they prove in particular that any smooth strictly pseudoconvex domain
in C™ admits a unique complete Kahler-Einstein metric, which is asymptotic to
the CR-structure of the boundary as in equation (2). High order approximate
formal solutions near the boundary had been constructed earlier by Fefferman [5]
for this complex Monge-Ampere equation, and the regularity of the solution near
the boundary has been determined by Lee and Melrose [15].

In the real case, LeBrun [12] has solved, in dimension 4, a local problem near
S8, or more generally near any real-analytic 3-manifold M. Since equation (i) with
initial data (ii) is an underdetermined local Cauchy problem, he needs the following
additional condition:
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(iii) g is self-dual.

This means that the Weyl tensor W9 of the metric is a selfdual 2-form. Using
Penrose twistor correspondence, he proves that for any real analytic v on M, there
is a unique solution g of equations (i), (ii) and (iii) in a neighborhood of M, up
to diffeomorphisms. Moreover, if ¢ is a defining function for the boundary M, the
tensor t?g is smooth up to the boundary, so that [v] is the conformal infinity of g in
a strong sense. We have given earlier a weaker definition, since, for example in the
complex case, such a regularity does not hold for the solutions produced by Cheng
and Yau: the asymptotics provided by Lee and Melrose contain logarithmic terms.

Now, condition (iii) is special to dimension 4; in order to get a generalization
to any dimension, Fefferman and Graham [6] have replaced condition (iii) by a less
geometric condition: in a coordinate system such that

n—1
g= t2 (dt2 + Z 9ij (z, t)dx"da:j) R
1

where t is a defining function for the boundary M, they ask
(iii’) gi;(x,t) is an even function of ¢.

This condition is independent of the coordinate system. They prove that, for n
even, given a metric v on M1, the equations (i), (ii) and (iii’) have a unique
formal solution, which converges in a neighborhood of M if v is real analytic (for n
odd, there exist conformal structures [y] for which there is no formal solution). The
aim of their study was to construct conformal invariants of [y] from Riemannian
invariants of the canonical metric g. It seems that this theorem is a rediscovery of
a theorem of Schouten and Haantjes [22, 23].

Finally, in the case of quaternionic hyperbolic space, LeBrun [13] has con-
structed an infinite dimensional family of quaternionic Kahler deformations, using
the twistor correspondence for quaternionic Kahler metrics.

Explicit solutions are known only in one case: SUs-invariant solutions of (i),
(i) and (iii) in B*. Given any left-invariant metric or Carnot-Carathéodory metric
7 on S3, Hitchin [10], using twistor theory, has found formulas for the solutions in
terms of elliptic functions. The case when + is the metric of a Berger sphere had
been established earlier by Pedersen [21].

These explicit examples are very special, since for general boundary data, one
can not hope to solve more than equations (i) and (ii) if one wants global solutions.
These have been produced, when + is close to the standard metric on the sphere
at infinity, by Graham and Lee [7] in the real case, by the author [2] in the three
other cases. In the rest of this survey, we explain this solution. In section 1, we
define the Carnot-Carathéodory metrics needed at infinity, and then state the main
theorem (theorem 3). In section 2, we give an idea of the proof, and in section 3,
we ask some questions related to the problem.

1. Asymptotically Symmetric Metrics

Given a conformal Carnot-Carathéodory metric v on S, in order to solve prob-
lem (i)-(ii), we begin by producing a first order solution. This leads to the definition
of special Carnot-Carathéodory metrics on the boundary, and then to the notion of
“asymptotically symmetric metrics”. We close the section by stating the theorem
giving the solution to problem (i)-(ii).
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1.1. Carnot-Carathéodory Metrics. If v is defined on a distribution V,
choose a supplementary V5 in TS, and a 1-form 5 with values in R¢~! and kernel
V. We define

(4) g = dr? + sinh®(2r)n? + sinh®(r)7y;

this metric is not smooth at r = 0, so we modify it for »r < 1 so that it extends
smoothly in the interior; we can do so with smooth dependence to the parameter
v. Choose a local basis of vector fields on S in the following way: (Xi,...,X4-1)
is a basis of V5 such that (n(X;)) is the standard basis of R¥~!, and (Xg,..., X,)
is a -orthonormal basis of V. Define now the orthonormal basis §, = 8, & =
X/ sinh(2r) for 1 < i < d, and & = X;/sinh(r) for ¢ > d. Using the form of the
metric, we see easily that

[£0a£i] = _252 + O(e—r), 1 S 1< da
(5) [£0a gl] = _gi + O(e_r)’ ] 2 d7
[527{1] = O(e_r)a ? > 1, 1 g .7 < d,
(6,6 = Xibk& +0(e), i,j>d,
where the bfj = —dn(X;, X;) are the coeflicients of the tensor induced by the

bracket V @ V. — V,. In particular, we see that at infinity, the bracket structure
on an orthonormal basis depends only on this tensor. We shall require that this
tensor is the same as in our model, that is the symmetric space.

This motivates the following definition. Let H = Up—1, Spm—15p1 or Sping
in the complex, quaternionic or octonionic cases. As is well known, rank one sym-
metric spaces are characterized by the fact that their spheres are homogeneous,
and the group H is precisely the isotropy group of S”~! when we represent it as
a quotient under isometries of KH™, that is as a homogeneous sphere Uy, /Up,—1,
SpmSp1/Spm-1Sp1 or Sping/Spins.

DEFINITION 1. A Carnot-Carathéodory H-metric on the sphere S™~! is the
data of a Carnot-Carathéodory metric v on a distribution of codimension d — 1,
such that there exists a I-form n with values in Im(K) = RY! and kernel V,
satisfying

e complex case: the restriction to V of dn is a symplectic form, compatible

with v (that is, dn(-,-) = y(I-,-) with I an almost complex structure on V' );

e quaternionic case: the three 2-forms (dn,,dnq,dns) on'V give a quaternionic

structure on V, compatible with v (that is, dn;(-,-) = v(l;-,-) for almost
complex structures I; which satisfy the commutation relations of the quater-
nions);

e octonionic case: the seven 2-forms (dn;)i=1,...7 give an octonionic structure

on V, compatible with v (that is, dn(-,-) = v(Ii,-) for almost complex
structures I; which satisfy the commutation relations of the octonions).

The meaning of this definition is that, in each case, we get a H-structure
on V, with H C SO(vy), compatible in some sense with the symplectic form dn.
In the real case, the isotropy group is H = SO(n — 1), and we need nothing
more than a metric v on S®~!. In the complex case, there are lots of metrics
compatible with a given contact form, but any deformation of a contact structure
V is diffeomorphic to V: when we study this case, we may fix V and vary the
almost complex structure on V. In the quaternionic and octonionic cases, the
situation is completely different, because the metric is completely determined by
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the contact form 7, and more precisely-by the fundamental 4-form )" dn?, whose

stabilizer is H (except for m = 2 in the quaternionic case). Finally, remark that

given the H-structure on V, the contact form 7 with values in R¢~! is unique in

the complex case, defined up to the action of the sections of the trivial SOs-bundle

(resp. SO7-bundle) on R? (resp. R7) in the quaternionic (resp. octonionic) case.
In all cases, the definition means that for a K-basis (e;) on V, we have

dn (Z ziei, y yiei) =-Im) Ty

For the question of existence of such structures in the quaternionic and octonionic
cases, see section 3.5.

1.2. Solution of (i)-(ii). We can now come back to our metric g defined from
a Carnot-Carathéodory H-metric v, and to formula (5). We see that the coefficients
bfj are the same for g and for the symmetric metric, and can be chosen constant in
an adapted basis. From this follows easily that the curvature tensor of g at infinity

is asymptotic to the curvature tensor of the symmetric metric, that is
(6) |R? — R*¥™| = 0(e™");

in particular,
[Ric + Ag| = O(e™ "),
so we get the promised first order solution.

Because of the form (6) for the curvature, we shall say that g is asymptotically
symmetric. We want to define more precisely this notion. For this, we introduce
a little analysis: we need the usual Holder spaces C*© for the metric g, and the
weighted versions

CH® = cosh(—dr)Che .
This weighted space corresponds to functions decreasing as e~°", with their deriva-
tives. Now we suppose that the Carnot-Carathéodory metric has regularity C*;
then it is easy to see that RY — R*¥™ belongs to Cf. Therefore, the following
definition is natural.

—or

DEFINITION 2. We say that a metric h is asymptotically symmetric if, for
some g constructed as above, one has h — g € 012 '*. We say that the conformal
infinity of h is [v].

Of course, the order § = 1 is arbitrary, as is the number of derivatives that we
require. We are now able to state the theorem giving the solution to the problem
(i)-(ii) of the introduction.

THEOREM 3. If a conformal Carnot-Carathéodory H-metric [7] is close enough
(in C** norm) to the symmetric conformal infinity, then there is an asymptotically
symmetric metric h, solution to the problem (i)-(ii). This metric is locally unique,
that is if we have another solution h' close enough to h, then there exists a diffeo-
morphism ¢, equal to the identity at the boundary, such that h' = ¢.h.

In the real case, this is the theorem of Graham and Lee [7], with a slight
technical difference in dimension 4, because they had to ask a regularity C3* on
~v: this reflects the difference between their method and ours.

In the complex case, in dimension 2m — 1 > 5, the integrability of the CR-
structure (sufficiently close to the standard CR-structure) is equivalent to the solu-
tion h being Kihler-Einstein. Indeed, if a CR-deformation of S>™~! is integrable,
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it can be realized as a strongly pseudoconvex hypersurface in C™ (see [24, theorem
9.4]); then the theorem of Cheng and Yau furnishes a Kahler-Einstein solution to
the problem (i)-(ii). Conversely, if the CR-structure is not integrable, the solution
h cannot be Kahler-Einstein.

Again in the complex case, recall that all nearby contact structures are dif-
feomorphic, so we may suppose that the distribution V is fixed. It follows that
all the metrics constructed by the metric in the real or complex cases are mutu-
ally bounded; in fact, it will be shown that these metrics exhaust all the bounded
Einstein deformations of the symmetric metric in the real and complex cases (with
sufficient regularity at infinity). On the contrary, there is no bounded Einstein defor-
mation of the symmetric metric in the quaternionic and octonionic cases. Finally,
the theorem holds around other metrics than the symmetric one, provided that
some L2-obstruction space (see definition 4) vanishes. For all these complements
to the theorem, see section 2.3.

2. Proof of the Theorem

Recall that we want to solve the problem (i)-(ii) of the introduction. The
symmetric metric is a solution; given a perturbation of the data at the boundary,
we have constructed a first order approximate solution g, already satisfying the
boundary condition (ii).

2.1. A Gauge-Fixing Condition. We now want to solve the equation (i),
that is Ric® + Ah = 0, for h close to g. As is well known, this is not an elliptic
problem, because the equation is invariant under the action of the group of dif-
feomorphisms. This reflects also in the fact that the Ricci tensor always satisfies
the Bianchi identity §"Ric® = —1ds", where s" is the scalar curvature. However,
the method to overcome this difficulty is now well known: one can use harmonic
coordinates to break the invariance, or more globally require that the identity map
(X,h) = (X,ref) is a harmonic map, where ref if a reference metric. In the real
case, Graham and Lee [7] choose for ref the first approximation g. We choose
another condition, much in the spirit of the Coulomb gauge in gauge theory: it is
a linear condition, essentially the infinitesimal version of the previous harmonicity
condition:

(7) BI(h) = 6% + %dtrgh =0.

There are two reasons why this is the correct choice. First we want to prove
that this is a “gauge fixing condition” for the action of the diffeomorphism group,
that is: given h close to g, prove that there is a unique diffeomorphism ¢ (equal to
the identity on the boundary), such that ¢,h satisfies condition (7). It is sufficient
to check this infinitesimally: the diffeomorphism group acts infinitesimally on g by
taking the vector field X to the symmetrized covariant derivative (69)*X, so the
problem to solve is

B ((69)*X) = —B9(h).

But one has the formula

(8) BY(¢%)" = %((D”)*Dg - Ric%),
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where DY is the covariant derivative; as we consider essentially metrics g with
negative curvature, the analysis explained later in section 2.3 proves easily that the
operator BY9(49)* is an isomorphism.

The second reason why the gauge condition (7) is the right one is that a solution
of equation (i) put in this gauge will satisfy

©) B9(h) = Rich + Ah + ()" (égh + %dtr%) 0.

The linearization of the nonlinear second order differential operator 9 at g is now
very simple:

. .1 .. . o .
dy®9(h) = %(Dg)*Dgh + 3(Ric® o h+ hoRic® +2\h)— R? h.

o
Here, (R? k)x,y = Y k(R xY,e;). In particular the operator ¢ becomes elliptic.
Conversely, using the Bianchi identity B"(Ric") = 0, a solution & of (9) will satisfy

Bh(6")* (5% + %dtrgh) =0.

Therefore, using equation (8), we see that h actually satisfies the gauge condition
(7) and the initial equation (i).

We deduce from these considerations that the resolution of equation (i) modulo
diffeomorphisms near g is completely reduced to problem (9).

2.2. An L? Obstruction. Let us now look at the linearization dy®9 in the
case where g is Einstein. The operator is then reduced to

d,®°(h) = %(Dg)*Dgh— R h.
The kernel consists of the infinitesimal Einstein deformations of g.

DEFINITION 4. If g is an Finstein asymptotically symmetric metric, we define
the L2-infinitesimal deformation space, L°H'(g), as the L2-kernel of d,®9.

By a Weitzenbock formula (see [1, lemma 12.71]), it is easy to prove that
(10) 2 [(d4,82(0), 1) > (0~ 2)(-sup &) [ Ihf?.

Therefore the operator d,®7 is an isomorphism in L? if g has negative curvature,
and in particular if g is symmetric. This is the argument used by Koiso [11] to
prove that compact quotients of irreducible symmetric spaces of noncompact type
and dimension greater than 2 do not admit Einstein deformations.

However, in the noncompact case, L?-theory for the operator d,®¢ is not
enough. Since this is a nonlinear problem, we need to work in Holder spaces rather
than L2?-spaces. More importantly, the L2-condition gives a strong decay at infin-
ity: functions like exp(—dr) are in L? if § > H, where the critical exponent # is
easily seen from (4) to be

(11) H=

n—1 n n
5 ,§,§+4,11

in the real, complex, quaternionic and octonionic cases respectively. Therefore, in
order to understand bounded deformations of g, we need to understand the behavior
of the operator dy®9 in the weighted Holder spaces Cf’a, for § = 0.
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We have also another problem to solve: if g is now the first order approximate
solution to the problem (i)-(ii) that we have constructed before for some C* data
< on the boundary, then we have ®9(g) € Cf* and we want to find an exact solution
h of ®3(h) = 0 with h — g € Cf’o‘. Basically, if g is a good enough approximate
solution, this has a chance to be true if the differential d,®¢ is an isomorphism for
the weight & = 1. The space L?H!(g) then appears as the obstruction for d,®¢
being an isomorphism in L?. We shall see below that there is no other obstruction.

Before we proceed to the analysis, we need the following lemma on the eigen-
values of the curvature acting on symmetric 2-tensors. The only proof I know is by
checking case by case.

(o]
LEMMA 5. For the rank 1 symmetric metric g, the highest eigenvalue of R? is
4 (except in the real case, it is 1), and the other eigenvalues are negative.

The value 1 for RH™ if due to the choice of the sectional curvature equal to
—1, instead of —4 for example for the holomorphic sectional curvature of CH™.

2.3. Analysis and Resolution. For P a zero-th order homogeneous self-
adjoint operator on hyperbolic space, analyzing the behavior of the operator & =
D*D + P is quite subtle, and we will confine ourselves here to a heuristic discussion
of the problem. Suppose, for example, that we know that ® is an isomorphism in
L?, that is essentially for the weight § = H. The question is: for which range of
weights (8, d1) does the operator ® remain an isomorphism?

There is an elementary (but non optimal) approach: using Kato’s inequality
|Ds| > |d|s|| and the maximum principle, one can prove that the interval (do, 61)
contains the interval (8g,d1) for the scalar operator d*d+ v, where v is the smallest
eigenvalue of P. Now one can see that for functions f(r) depending only on r, one
has

(12) (d*d+v)f =07 f —2M, f +vf +O(e™")(f,0:f).

The operator —82 — 210, +v is called the indicial operator. It governs the behavior
at infinity of the operator d*d + v because differentiating along the other directions
always has a weight exp(—r) or exp(—2r). It is not difficult to see that the solutions
exp(—dr) of the indicial operator give the values of §j and 4], that is

(13) 5 = H-VH2+v,
(14) & = H+VH 4.

Let us apply this result to d,®¢, using lemma 5. We have v = —8 (-2 in the
real case) so we cannot catch the weight § = 0 but we can try to catch the weight
§ = 1. One can see easily, using (11), that §) < 1 if n > 4 in the real case, n > 9
in the complex case, and always in the quaternionic and octonionic cases. This
is the analysis result used in the real case by Graham and Lee, and the technical
restriction in dimension 4 we mentioned after theorem 3 comes from here: in this
case, they have to find a higher order approximation before applying this analysis.

Now come back to our operator ® = D*D + P. In order to get the optimal
values of dp and &;, one cannot use Kato’s inequality, because this neglects zero
order terms in D*D. Actually, there is an indicial operator as in (12) for D*D
itself, given by the asymptotic behavior of D*D:

-02 - 2MHo, +C,
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where C is now some zero order operator. The above discussion remains true when
we replace the smallest eigenvalue v of P by the smallest eigenvalue p of C + P,
and we get

(15) do = H-VH:+yp,
(16) 01 H+VH2+u.

This is a considerably more difficult result, because one cannot use the maximum
principle, which forgets the zero order term C. These operators are probably a
matter for the beautiful theory of edge operators, see for example [17] in the real
case, [4, 19] in the complex case. In our symmetric case, there is an alternative
approach using some elementary harmonic analysis [2]. Now apply this theory to
the operator d,®9. A calculation gives p = 0 in the real and complex cases, and
> 0 in the quaternionic and octonionic cases. In the last two cases, we deduce
that d,®9 is an isomorphism C%® — C?, so ®9 is a local isomorphism, which
means that there is no bounded Einstein deformation. On the contrary, in the real
and complex cases, there are lots of bounded Einstein deformations, corresponding
to sections on the sphere at infinity of the eigenbundle associated to the eigenvalue
p = 0. This eigenbundle can be made explicit: in the real case, it is SymgTS"‘l, )
that Einstein infinitesimal deformations are given by conformal deformations of the
boundary metric. In the complex case, recall that we have the contact distribution
V with a symplectic form and a complex structure I, and the eigenbundle can be
seen to be the subspace of SymRV consisting of symmetric 2-tensors k on V such
that k(I-,I-) = —k(-,-). This is exactly the tangent space to metrics on V' which
remain compatible with the symplectic form. Thus we see that our theorem 3 gives
all bounded Einstein deformations of the symmetric metric, such that the data on
the boundary has regularity C%“.

Now pass to the problem of actually producing the Einstein deformations. De-
note the symmetric metric by go, and g the first approximation to the solution of
problem (i)-(ii). In the complex case, one can fix the contact structure and deform
only the almost complex structure. In the real and complex cases, the metrics re-
main mutually bounded, so that the weighted Holder spaces for g and go remain
equal, and the problem is solved by applying the implicit function theorem to the
equation ®9(h) = 0 at g = go, using the analysis above for the weight § = 1. In
the quaternionic and octonionic cases, this is not possible, because g and g are
no more close, but a more constructive method proves that if «y is close enough to
the standard metric on the boundary, so that h = g is a very good approximate
solution, then one can deform g into a solution h of ®9(h) = 0. This proves theorem
3.

The analysis above for the symmetric space has a counterpart for any asymp-
totically symmetric metric. Indeed, in the complex case, any contact structure is
locally diffeomorphic to the standard contact structure, so that it is locally possible
to approximate an asymptotically symmetric metric by a symmetric metric. In the
real case, this is of course even simpler. In both cases, using this local approxima-
tion, one can graft the isomorphism obtained for the symmetric model to construct
a parametrix for an operator ® = D*D + P, and prove that ® is Fredholm for
0 € (o, 01), where &y and d; are given by formulas (15)-(16). In particular, if ® is
an isomorphism in L?, it remains an isomorphism Cg’a — Cy for ¢ in this range.
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In the quaternionic and octonionic cases, our special contact structures are not lo-
cally diffeomorphic, so that such an approximation by the symmetric model seems
difficult; at least, one can use the first more elementary method above to prove
a similar statement, but with the weight J restricted to (dj,d]), where &y and 4}
are given by formulas (13)-(14); as we have seen earlier, this is probably not the
optimal interval, but it is sufficient for these two cases. The application of these
considerations is that theorem 3 remains true around any asymptotically symmet-
ric Einstein metric g, provided that the L2-obstruction space L?H*(g) vanishes. In
view of (10), this is true in particular if g has negative curvature.

3. Open Questions

3.1. Regularity. There are two questions on regularity. The first question
is: suppose v is smooth, what can be said on the regularity of the solution g up
to the boundary? In the real case, Graham and Lee have constructed a high order
approximate formal solution: the resolution stops at the critical weight §; = 2H =
n — 1 in the notations of section 2.3; this enables them to prove that, if n > 4,
the solution satisfies t?g € C"~2*(B"), where t is some defining function of the
boundary and the Holder spaces are taken with respect to the flat metric on the
ball. There is no doubt that such a high order approximate formal solution can
be constructed in the other cases and that the resolution stops at the weight 6;.
Is it possible to construct an expansion in power series? this expansion should
eventually contain logarithmic terms, as does the Lee-Melrose expansion for the
Cheng-Yau metric.

The second question on regularity goes in the opposite direction: we have
required a regularity C>* for the boundary metric v, because the first order ap-
proximation can then be merely defined by (4), but it is obvious that this is not
optimal. What is the lowest regularity on the Carnot-Carathéodory metric which
enables to solve the problem?

3.2. Uniqueness. The Einstein metric with given conformal infinity is lo-
cally unique modulo the action of the group of diffeomorphisms, so an important
question is to get a more global answer: namely, if g and h are two asymptotically
symmetric Einstein metrics, with the same conformal infinity, does there exist a dif-
feomorphism ¢, equal to the identity on the sphere at infinity, such that h = ¢.g?

There are partial answers to this question, when g is the real or complex hyper-
bolic metric; these answers are rigidity results for the scalar curvature rather than
for the Ricci tensor, and the idea comes from Witten’s spinorial proof of the positive
mass conjecture [25]. Namely, in [20], Min-Oo has proven that a metric & which is
strongly asymptotic to the real hyperbolic metric g and such that s* > s9, is equal
to g; here strongly asymptotic means that h — g and one derivative are Q(e~(+e)r)
(one can give weaker L' and L? bounds instead). For other rigidity results based on
Min-Oo’s theorem, see [16]. In [9], Herzlich has proven a similar statement in the
case where g is the complex hyperbolic metric and A is a Kahler metric, strongly
asymptotic to g, such that s* > s9; here, strongly asymptotic means that h — g and
one derivative are O(e~("*2+4)7) and the same for the difference between the two
complex structures (again one can use some integral bounds instead).

3.3. Global Existence. Related to the uniqueness statement is the very dif-
ficult question to know for which [y] on the boundary one can solve problem (i)-(ii).
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The problem is completely open, and is probably related to a better understanding
of the obstruction space L2H!(g).

3.4. Conformal Geometry. If one believes in the uniqueness of the solution
(up to diffeomorphism), then it is clear that the conformal geometry of [y] must be
related to the Riemannian geometry of g. An interesting step in this direction in the
real case is the following result of Lee [14], relating the Yamabe invariant of [y] and
the spectrum of g. The essential L? spectrum of an asymptotically real hyperbolic
metric is [(n — 1)?/4, 00), without embedded eigenvalues [18]; moreover the real
hyperbolic metric has purely continuous spectrum consisting of this ray. If g is an
Einstein asymptotically hyperbolic metric with conformal infinity [v], such that the
conformal class [y] on S™~! contains a metric with positive scalar curvature, then
the infimum of the L2-spectrum of the scalar Laplacian of g is again (n — 1)2/4
(that is, there is no discrete eigenvalues below the continuous spectrum, as for the
symmetric metric).

3.5. The Quaternionic and Octonionic Cases. In the quaternionic and
octonionic cases, even the basis theorem 3 remains mysterious. In the real and
complex cases, we know precisely that the Carnot-Carathéodory metrics are given
by sections on some bundles. In the quaternionic and octonionic cases, existence
of the corresponding Carnot-Carathéodory metrics is already a complicated differ-
ential system! it is an important question to understand these metrics. In the
quaternionic case, examples are provided by LeBrun’s twistorial construction in
[13], but the metrics g share the same holonomy Sp,, Sp; as the hyperbolic metric;
are there [y] for which the metric g is not quaternionic Kahler? In the octonionic
case, we have no example at all; note that in this case, it is impossible to deform the
hyperbolic metric preserving the holonomy Sping, since any metric with holonomy
Sping must be locally symmetric.

Added in proof. Since this article was written, some new developments have
occurred. In a new version of [2] (to appear in Astérisque), it is proven that in
dimension 4m — 1 greater than 7, a Carnot-Carathéodory Sp,,_1Sp;-metric is the
conformal infinity of a unique quaternionic Kahler, asymptotically symmetric met-
ric defined in a neighborhood. This gives a higher dimensional version of LeBrun’s
theorem (problem (i)-(ii)-(iil) in the introduction). In dimension 7, a similar state-
ment is probably true with some added integrability hypothesis.

In a different direction, the correspondence between conformal metrics and
Einstein metrics has recently led to exciting developments in physics concerning
the relationship between conformal field theory and string theory; cf. [26, 8] and
the references there.



246

(1]
2]
(3]

(4]
(5]

(19]
(20]
(21]
(22]
(23]

(24]

OLIVIER BIQUARD

References

A. L. BESSE, Finstein manifolds, vol. 10 of Ergebnisse der Mathematik und ihrer Grenzgebiete
(3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1987.

O. BIQUARD, Métriques d’Finstein asymptotiquement symétriques. Preprint, Ecole Polytech-
nique, 1997.

S. Y. CHENG AND S. T. YAU, On the ezistence of a complete Kihler metric on noncompact
complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math., 33
(1980), pp. 507-544.

C. L. EpsTEIN, R. B. MELROSE, AND G. A. MENDOZA, Resolvent of the Laplacian on strictly
pseudoconver domains, Acta Math., 167 (1991), pp. 1-106.

C. L. FEFFERMAN, Monge-Ampére equations, the Bergman kernel, and geometry of pseudo-
convez domains, Ann. Math. (2), 103 (1976), pp. 395-416.

C. L. FEFFERMAN AND C. R. GRAHAM, Conformal invariants, Astérisque, hors série (1985),
pp. 95-116. The mathematical heritage of Elie Cartan (Lyon, 1984).

C. R. GRAHAM AND J. M. LEE, FEinstein metrics with prescribed conformal infinity on the
ball, Adv. Math., 87 (1991), pp. 186-225.

C. R. GraHAM AND E. WITTEN, Conformal anomaly of submanifolds observables in
ADS/CFT correspondance. hep-th/9901021.

M. HERZLICH, Scalar curvature and rigidity of odd-dimensional compler hyperbolic spaces,
Math. Ann., 312 (1998), pp. 641-657.

N. J. HITCHIN, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Dif-
ferential Geom., 42 (1995), pp. 30-112.

N. Koi1so, Nondeformability of Einstein metrics, Osaka J. Math., 15 (1978), pp. 419-433.
C. R. LEBRUN, H-space with a cosmological constant, Proc. Roy. Soc. London Ser. A, 380
(1982), pp. 171-185.

, On complete quaternionic-Kahler manifolds, Duke Math. J., 63 (1991), pp. 723-743.
J. M. LEE, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal.
Geom., 3 (1995), pp. 253-271.

J. M. LEE AND R. B. MELROSE, Boundary behaviour of the complex Monge-Ampére equation,
Acta Math., 148 (1982), pp. 159-192.

M. C. LEUNG, Pinching theorem on asymptotically hyperbolic spaces, Internat. J. Math., 4
(1993), pp. 841-857.

R. MAzzEoO, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equa-
tions, 16 (1991), pp. 1615-1664.

, Unique continuation at infinity and embedded eigenvalues for asymptotically hyper-
bolic manifolds, Amer. J. Math., 113 (1991), pp. 25-45.

R. B. MELROSE, Calculus of conormal distributions on manifolds with corners, Internat.
Math. Res. Notices, 3 (1992), pp. 51-61.

M. MIN-Oo0, Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math.
Ann., 285 (1989), pp. 527-539.

H. PEDERSEN, Finstein metrics, spinning top motions and monopoles, Math. Ann., 274
(1986), pp. 35-59.

J. A. SCHOUTEN AND J. HAANTIES, Beitraege zur allgemeinen (gekruemmten) konformen
Differentialgeometrie, Math. Ann., 112 (1936), pp. 594-629.

, Beitraege zur allgemeinen (gekruemmten) konformen Differentialgeometrie. I, Math.
Ann., 113 (1936), pp. 568-583.

N. TANAKA, A differential geometric study on strongly pseudo-conver manifolds, Kinokuniya
Book-Store Co. Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics,
Kyoto University, No. 9.

E. WITTEN, A new proof of the positive energy theorem, Comm. Math. Phys., 80 (1981),
pp. 381-402.

, Anti de Sitter space and holography, Adv. Theor. Math. Phys., 2 (1998), pp. 253-291.
hep-th/9802150.

CMAT, ECOLE POLYTECHNIQUE, F-91128 PALAISEAU CEDEX, FRANCE,

E-mail address: biquard@uath.polytechnique.fr





