Lectures on Einstein Manifolds

Rigidity and Compactness of Einstein Metrics

Peter Petersen

ABSTRACT. We survey some rigidity and compactness results for Einstein met-
rics, with special emphasis on the degeneration results of Michael Anderson.

1. Introduction

In this essay, we shall explain some rigidity and compactness phenomena for
Einstein manifolds and, more generally, for manifolds with bounded Ricci curvature.
Many of the compactness results are due to Anderson and Anderson-Cheeger. Our
proofs are not always rigorous. However, we have tried not to cheat too much, and
to at least present the most important ideas.

The introduction is followed by a short section on notation, just to nail down
our conventions on the various curvature tensors and LP norms. After that, we pro-
ceed to establish a very general Bochner-Lichnerowicz-Weitzenbock formula which
contains almost all the formulae of this type (spinor fomule excepted). In sec-
tion 3 we begin to examine the Einstein condition and prove some results. The
main focus here is on how the Einstein condition helps us go from weak to strong
pinching conditions. This leads us to several rigidity /gap results. In section 4 we
discuss harmonic coordinates and how they can be used to introduce pseudo-norms
of Riemannian manifolds. In section 5 we use all of the previous material to study
compactness and degeneration phenomena for Einstein manifolds. Also we have two
pinching theorems that use these compactness results. First we show how to prove
the compactness theorem from (1], when one has a lower bound for the injectivity
radius. Then we slowly work our way up to proving the orbifold degeneration result
from [1] for manifolds with an L™? bound for the curvature. This is used to get
some nice corollaries for 4-manifolds. In the last section we given some examples
of orbifold degeneration of Einstein metrics.

We shall not always be careful with giving the original references, instead will
rely heavily on the two books [5] and [16] whenever it is convenient.

I would like to thank C. LeBrun for convincing me to write this article and for
advising me on many of the issues brought up here.

1991 Mathematics Subject Classification. Primary 53C20.
Supported in part by a grant from the National Science Foundation.

©1999 (International Press)
221



222 PETER PETERSEN

2. Notation

On a Riemannian n-manifold (M, g), usually denoted M, we have the metric
and torsion free connection V. This enables us to define covariant derivatives of all
tensors, in particular we get the curvature tensor as

R(X,Y)Z = (Viy-Vix)(2)
VxVyZ -Vy,vZ -VyVxZ+Vy,x2Z
= vayZ—VnyZ—V[X,y]Z.

This gives us the Ricci tensor Ric which we think of as a (1,1) tensor

Ric(X) =Y R(X,E))Ei,

Il

where FE; is an orthonormal frame. The (0, 2) version of the Ricci tensor is defined
by

ric(X,Y) = g (Ric(X),Y).
Finally we have the curvature operator R : A2T'M — A2T M defined implicitly by
RXAY),VAW) =g(R(X,Y)W,V)

For a function v : @ — R on a bounded domain in a Riemannian manifold M
we define the LP norm as

1 » 1/p
Il = (o /L ol avol)

where dvol denotes the Riemannian volume element. In case M is compact we
usually let 2 = M and omit it as a subscript.

3. Bochner-Lichnerowicz-Weitzenbock Formulae

First we explain a very general Weitzenbock formula due to Lichnerowicz. In
subsequent sections we shall see how this general formula behaves in some specific
situations that lead to some interesting rigidity and regularity results for Einstein
metrics.

Consider a Riemannian n-manifold M and a vector bundle E over M endowed
with a metric and compatible connection. We shall use the notation V and R (X,Y)
for the connection and curvature on both E and T M.

For an (E,p) tensor T on M, i.e.,, T (Xy,...,X,) is a section of E for vector

fields X1,..., X, on M, we have the covariant derivative and its dual defined by
(VT) (Xo,...,Xp) = (Vx,T)(X1,...,Xp)
P
= Vx,T(X1,...,Xp) = > T(X1,..., VX, Xi,... , Xp),
=1

=Y (VeT)(Ei, Xa,..., Xp),

=1

(V'T) (X2, ..., Xp)

where E; is an orthonormal frame. Note that if S has p + 1 variables and T has p
variables then we can construct a 1-form

w (X) (S(X,---),T(--))
> (S (X Buyoe,By,), T (Biyyoo+ , By )) -
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The divergence or codifferential of this form is V*w and by the divergence theorem
we know that the integral of V*w is zero. This implies that V and V* are adjoints
in L? since we have the identity

V*'w =~ (S,VT) +(V*S,T).
Note that this identity also gives us the basic identity
AT, Ty) = VV{T1,T,)
—(VT1,VTy) +(V*VT1,Ts) + (T1,V*VT,) .
When we can express the connection Laplacian V*V in terms of curvature and a

different Laplacian this gives us a Bochner formula.
The generalized Lichnerowicz Laplacian Ay on E-valued tensors is defined as

AT = V*VT +RicT,

P n
(RicT) (X1,-.., Xp) = Y. (R(E,X;))T)(X1,...,Ei,..., Xy),
Jj=11i=1
where E; replaces X; in the j** spot. Note that if the curvature of both M and
E is bounded, then RicT is also bounded in terms of T. Using the Lichnerowicz
Laplacian we get the Bochner formula

ATy, T;) = —(VI,VT,) + (V*VTl,T2> + (T, V*VT2>
= (AT, T3) + (T, ALTy)
—(VT1,VT;) — (RicT, Tz) — (Th, RicT?)

In case T is skew symmetric we also have the exterior covariant derivative
defined by
P
(dT) (Xo---, Xp) = 3 (1) (Vx,T) (XO,... Xy ,X,,).
i=0
Note that V* is dual to both d and V. In the case of the exterior covariant derivative
d this dual is often also denoted as d* or §. Moreover, one easily checks that we
have the Weitzenbock formula

Ap =dd* + d*d.

This demonstrates that the Lichnerowicz Laplacian is nonnegative in these cases
and also that it is the Hodge Laplacian on forms.

4. Rigidity

In this section we shall see how an Einstein metric gives us extra control over
the curvature tensor and how this leads to some rigidity results.

Consider the special case where E = A2T M and the tensor T is the Riemannian
curvature operator R : A2TM — A2T M. In fact we shall modify this tensor a little
by subtracting a constant tensor so that we can study some pinching phenomena.
Thus we let T = R — M. It follows from Bianchi’s second identity that dR = 0,
thus also d (R — A\I) = 0. Furthermore the fact that the metric is Einstein also tells
us, again via Bianchi’s second identity, that d*9® = 0. Therefore we get

V*VT + RicT = 0.
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This leads to a Bochner formula of the form
1
As IT|? (V*VT,T) — |VT)?

— (RicT, T — |VT|?
C1 () R |TI* - |VTP*.

IA

Since we also have
1
A |T|* =|T(AT| = VT
Kato’s inequality then tells us that
AIT] < Ci(n)|R|T]
< Ci()|T)P +Cs (n) e

We can now multiply both sides by |T|2’7 ~! use integration by parts, and the
Sobolev inequality
1
— <
H“ volM /“ . < Cs |IVul,

to obtain an inequality of the form

Tz, < Ca 020 08) (ITlyin + (1T0ep) ).

This does not look very promising for iteration purposes as we might have 2p+1 >
%{—"5‘ However given some sort of L? bound for T' we can make things look a little
better. Namely we can use Holder’s inequality to obtain

Tz, < Calnp 0 C5) (Il Tl + (1T0y) ™ ).

When ¢ < n/2 this doesn’t give anything useful. However, as long as ¢ > n/2 this
can easily be iterated to yield a bound of the type

ITI S 04 (N,p, )‘7 CS) ”T“q .

When ¢ = n/2 we can bring the first term on the right-hand side to the left-hand
side to obtain
2p=1

(1= C3 (.0, Cs) ITlly ) (Tl 225, < Cs (2,0, X, Cs) (ITlypes) -

Provided 1-C3 (n, p, A, Cs) [|T|,, ;o > O, or in other words that ||T|,, , is sufficiently
small, this can be iterated to yield

|T| S 05 (nvpa /\’ CS) ”T[In/2 .

Thus an L?, ¢ > n/2 bound for the curvature tensor of an Einstein metric
immediately leads to a C° bound on the curvature. This is one of the crucial
ingredients in all of our compactness results for Einstein metrics. As for pinching
we see that if the L™/? norm of T is small then T is itself small and hence the
eigenvalues for the curvature operator are pinched to be near A. In order for these
estimates to be truly interesting we must also have bounds for the Sobolev constant.
Thanks to Gromov and Gallot (see [9], [10]) we now know that upper diameter
bounds and lower Ricci curvature bounds suffice to give bounds for Cs. In fact,
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this was recently generalized to the case where one allows for the Ricci curvature
lying below a certain constant to be small in L?, p > n/2 (see [18]).
Our first rigidity/gap theorem is the following L™/ pinching result.

THEOREM 4.1. Let X\ > 0 be given, there is a constant € (n,\) > 0 so that any
Einstein metric with ||R — A||,, ;, < € has constant curvature.

PROOF. Given a bound for the Sobolev constant the above result tells us that
the curvature operator has eigenvalues close to one, in particular they are positive.
One knows from a result of Tachibana that any Einstein metric with positive cur-
vature operator has constant curvature (see [16, Chapter 7]). To get a bound for
the Sobolev constant we first need a bound for the Ricci curvature. However, the
L"/? pinching for the curvature tells us that the Einstein constant must be bigger
than (n — 1) A — C (n)e. Thus for small € we get a positive lower bound for the
Ricci curvature. Then Myers’ Theorem gives us a diameter bound as well. O

N.B. Our conventions on L? norms, established in §2, involve a volume nor-
malization which is by no means standard. Without this normalization, the above
result, and many other results in this article, would be false in the stated form.
Readers accustomed to other conventions should thus exercise appropriate care in
interpreting the results herein.

In case A = 0 we cannot expect such a nice result since any Einstein metric can
be scaled so as to have small L™/2 norm on curvature. However, if we bound the
diameter as well we get

THEOREM 4.2. There is a constant € (n,D) > 0 so that any Ricci flat metric
with ||R]],, /5 < € and diam < D s flat.

PROOF. Simply observe that we get pinched curvature as in the almost flat
manifold theorem of Gromov. In particular, the manifold must be K (m,1) (see
[12]). Then it follows from the Cheeger-Gromoll splitting theorem that the manifold
is flat. O

We shall later obtain a similar gap theorem for complete Ricci flat metrics which
give us some very interesting compactness results. There is also a gap theorem when
A < 0 which is proved below (see 5.4).

To prepare for the non-compact result let us see what the above iterations can
do for us. Let M be a complete Ricci flat manifold with volB (p,r) > v - r™ and
[|R[™? dvol < Q. Note that these three condition are scaling invariant, i.., if we
multiply the metric by a constant these conditions will still hold with the same v
and Q. We need to get some sort of smallness for the L™/2 norm of the curvature.
This is achieved as follows. Absolute volume comparison tells us that annuli of the
form A (r) = B (p,2r)— B (p, r) satisfy volA (r) > v'-r™ for some v’ (n,v) . Moreover
since [ |R|™? dvol < Q we must have that Ja |R|"/% dvol = 0 as r — co. The
volume estimate for the annuli then tells us that

”R“n/Q,A(r) <e(r)-r2,

where € (r) — 0 as r — co. We now claim that this, in analogy with the compact
case, gives us an inequality of the form

IRllo,a(ry < C (ny0) € (r) - 772,
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in other words the curvature decays faster that quadratically at infinity. In order
to prove this we have to use a Sobolev inequality of the form

lull 25, o < Cs [ Vullyq

where u has compact support in the bounded domain 2 C M. Results of Croke
(see [7]) tell us that the volume growth condition and nonnegative Ricci curvature
yield a bound for this Sobolev constant. The next problem is to bump |R| down
so that it has compact support in A (r). To this end one selects an appropriate
bump function ¢ with compact support in A (r) and then multiply the inequality
A|R| < Ci (n)|R|* by ¢*"|R[*’"!. After some calculations and an iteration as
above one then gets an estimate of the form

”¢R“oo,A(r) <C(n,v)-e(r)-r>

While this is not precisely the promised estimate is good enough to give us the
desired curvature decay condition. In section 5 we shall see how this curvature
decay condition is used to “classify” all of the manifolds with these conditions and
also how the space is Euclidean space provided @ is sufficiently small.

5. Harmonic coordinates

Harmonic coordinates give us even better control over the metric than we had
in the previous section. A more in-depth account can be found in [16, Chapter 10].
Suppose we have harmonic coordinates £ = (z!,...,z") on some open set
U C M,ie., Az = 0. The Weitzenbdck formula for the gradient fields V! then
tells us that V*V (Vz') = Ric (Vz'). From this we can derive a Bochner formula

%A (Va* vat) = —(V22F, Vat) — (Vz*, V22!) - ric (Vz*, Va') .

If we write out the gradient in terms of the coordinate vector fields d; and define
9ij = (05, 0;) , then one obtains

1 .
§Agij = Q (g,0g) — ric(0;,0;)

for some universal function @) that depends on the metric coefficients and its deriva-
tives. What is interesting about this equation is that if one had C' bounds for
the metric coefficients and C° bounds for the Ricci curvature then standard el-
liptic estimates tell us that one in fact has C1** bounds for the metric for any
a € (0,1). Moreover, if the metric is Einstein then one gets C¥® bounds for any
k and o € (0,1). This is similar in spirit to what we saw above for the curvature
tensor.

In order to make these estimates a little more precise and useful we introduce
some more notation. Let O C M be a subset. We say that the C** norm of O C¢ M
on the scale of r is bounded by K, denoted ||O C M||gx. , < K, if we can find a
covering U of O by harmonic coordinate charts such that

1. z;,: U —» B(0,7) C R" is a diffeomorphism,

2. for each = € O the ball B (z,re~¥) lies in some chart Uj,

3. |Dz| < eX, |(Dx)_1, <eX, and

< K.
ce ~

4. gi; as functions on B (0,r) satisfy r¥te Z(I(:k 0 gi;
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This norm has many important and interesting properties. First we mention
what happens with the above (interior) elliptic estimates. If |Ric| < A, then for
any scale ¥ < r we have

“O C M”Cl‘ﬂ,; S C(n,a,A,r, F) ”O C M”C'l,

-
Moreover, if the metric is Einstein Ric = AI, then

10 € Mllgka » < C (n,k,0,A,7,7) |O C M|,

< .
We mention some further important facts about the norm:

1. If we multiply the metric on M by A\? we get a new Riemannian manifold
N whose norm satisfies

10 C Nllgk.a xr =10 C Mllgr.a -

2. If (M;,p;) converges to (M,p) in the pointed C*® topology, then for any
set O C M we can find sets O; C M; such that

10: € Millgk.a,, = 110 C Mlg.c -

3. Given r the norm ||O C M||gk.« . is realized at some p € O if O is compact,
in other words

10 C Mllgu.a » = {P} C Mllg.,

re

For the latter norm it suffices to use one chart. In case O is open or un-
bounded we can at least find p € O such that

1
;10 € Mlicra , < I{p} € Mllora,, < 11O € Mllgna,y -
4. For a compact set O the norm satisfies
”O - M”Cvk,a’,,. —0asr—0.

5. Euclidean space is the only Riemannian manifold such that all of its norms
are zero on all scales r. In fact

IM|lgk.a , = 00 asT — 00

unless M is Euclidean space.

6. Compactness

In this section we shall work our way towards understanding certain classes of
manifolds with bounded Ricci curvature. The first part of the material is covered in
[16, Chapter 10] for the rest be have supplied references to the appropriate research
articles. :

We begin by mentioning the following finiteness and compactness theorem es-
sentially due to Cheeger.

THEOREM 6.1. Given n,k,a and r,K,D > 0 we have that the class of Rie-
mannian n-manifolds with ||M||cx.. , < K and diam < D contains only finitely

many diffeomorphism types and is compact in the C**# topology for any B < a.
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In case we allow for complete manifolds and don’t have a diameter bound we can
no longer get finiteness for diffeomorphism types, but we can still get compactness
in the pointed C*? topology. More precisely this means that for each sequence M;
with [[M;||or.« , < K and p; € M; we can find a subsequence (again indexed by i)
and a limit manifold M with a point p € M such that for each R > 0 there are
embeddings ¢; : B (p, R) — M, which contain B (p;, R) and such that the pull-back
metrics ¢} g; — g in the C* topology on B (p, R) .

In order for all this to be useful it is of course necessary that we have some sort
of method that allows us to get bounds for these norms. This is a achieved by a
very interesting rescaling argument which was first explored in detail by Anderson.
The simplest result along these lines is (see [1] and [16, Chapter 10])

THEOREM 6.2. Given n,ig, D, and A the class of Riemannian n-manifolds with

inj > 1o
diam < D
Ric] < A

has the property that for every K > 0 we can find r (n,i0,D,A, K,0) > 0 such
that any manifold in this class satisfies ||M||c1,a . < K. In particular, this class is

compact in any C'8 topology.

Proor. The proof goes by contradiction. Thus suppose that we have a se-
quence of manifolds M; in this class such that ||[{p;} C Millp1.a ,, = [IMillgra ,, =
K for a sequence r; — 0. If we rescale these Riemannian manifolds by r; 2 the
norms stay the same on the new scale of 1. Thus we have a new sequence of
Riemannian manifolds N; which satisfy

I{pi} C Nillgray, = K
IRiCNiI - 0

From the above compactness theorem we can conclude that a subsequence (not
renumbered) will converge in the pointed C'# topology to some complete Rie-
mannian manifold N. First we note that since all of the manifolds have bounded
Ricci curvature we can in fact assume that their C1*? norms are bounded for any
v € (0,1), but on some slightly smaller scale. Thus we can also assume that the
manifolds converge in the C1*® topology. Since the C'!*® norm is continuous with
respect to the C1:* topology we therefore get that ||[{p} C N|| c1e, = K, in partic-
ular, the manifold cannot be Euclidean space. On the other hand if we look at the
formula for the Ricci tensor in harmonic coordinates on N; we see that the limit
metric must be a weak solution to

1
§Ag =Q(9,99),

since |RicN;| — 0. Elliptic regularity theory then tells us that the metric on N
is smooth of any order and Ricci flat. Now we come to the crucial point. Since
injN; — oo the limit manifold also has injN = oo, thus the Cheeger-Gromoll
splitting theorem tells us that the manifold is the standard Euclidean space. We
have therefore arrived at a contradiction. O
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If we insist on only considering Einstein metrics the class becomes compact in
the C* topology for any k,a. In the Einstein case we can also get a similar result
which lies closer to some of the stuff we are aiming for.

THEOREM 6.3. Givenn,q > n/2,v9,D,Q and X the class of Finstein n-manifolds
with

vol > g
diam < D
Ric = I
IRIl, < Q

has the property that for every K > 0 we can find r (n,q,v0,D,Q,A, K, k,a) > 0
such that any manifold in this class satisfies ||M||gr.a , < K. In particular, this

class is compact in the C*# topology.

PRrROOF. We know from above that the curvature is bounded not just in L? but
in C°. Cheeger’s lemma then tells us that this class must have a lower bound for
the injectivity radius (see [16, Chapter 10]). The above theorem then takes care of
the rest. O

From the proof of this theorem we can also get the promised gap theorem for
negative Einstein metrics.

THEOREM 6.4. Given n,D and A < 0 there is an € (n, D, \) > 0 such that any
FEinstein metric with diam < D and || — AI||, /2 S € has constant curvature.

ProoF. The iterations from the above section tell us that the metric satisfies
| — AI| < C-e. In particular, the manifolds have pinched negative curvature. This
together with the diameter bound tells us that the manifold has a lower volume
bound (see [11]). Therefore, if the theorem were false we would have a sequence
of Einstein metrics converging to a hyperbolic metric in any C** topology. This
however contradicts a rigidity result of Koiso (see [5, 12.F and 12.H]}). O

It is interesting to see what happens if relax the Einstein condition so that we
only have |Ric| < A. In this case we still get compactness in the C*® topology. The
argument goes by contradiction and uses rescaling as above. The way in which we
get that the limit manifold is flat is to note that [ |R;|? — 0 after the rescaling (a
slightly stronger convergence coming from elliptic L? estimates is needed here (see
[13, p167-202])). Also, as we have a global diameter bound and a lower volume
bound, relative volume comparison gives us that the limit manifold has a volume
growth condition volB (p,r) > v-r™ for some v (n,vg, A) . Now the only flat manifold
with such volume growth is R™.

Finally we could try to examine the borderline case ¢ = n/2. We already studied
what happened when ||R — M|, ,, was small in the Einstein case. Furthermore
we showed that Ricci flat manifolds with volume growth volB (p,7) > v - r™ and

J |R|™? < Q have faster than quadratic curvature decay.
Suppose we have a sequence of manifolds with

vol > v,
diam < D,
[Ric] < A,
JIR"? < Q.
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If we blow up these metrics as above, then we have that the volume condition gives
us a volume growth condition in the limit, the Ricci curvature makes the limit
Ricci flat, and finally since [ |R|"/ % is a scale invariant quantity the limit satisfies

I |R[”/ 2 < . The next result tells us what happens when Q is small.

THEOREM 6.5. Given n,v there exists € (n,v) > 0 such that any Ricci flat
manifold with volB (p,r) > v -r™ and [ |R|"? < ¢ is Euclidean space.

PROOF. First we exploit the fact that the metric has faster than quadratic
curvature decay. Note that relative volume comparison implies that the volume
growth condition is independent of the base point. Thus we have good lower volume
bounds for all balls in M. If we take z so that d (z,p) = r, then the ball B (z,r/4)
will have volume > v - (r/4)" and the curvature on this ball will be smaller than
e (r) 2. These two facts tell us that the injectivity radius at x must be larger than
¢ (n,v)-r (this requires a slight improvement on Cheeger’s original argument which
can be found in [6]). In particular, any of the norms [|M||ox.a . will be finite and

bounded uniformly in terms of v and [ |R|"/ 2,

To prove the theorem we now proceed by contradiction. Thus suppose we have
a sequence of non-flat Ricci flat manifolds M; satisfying volB (p;,r) > v - r™ and
[IR™® = &; & 0 as i — oo. Since any manifold which is not Euclidean space
has the property that its norm goes to infinity as the scale goes to infinity, we can
find r; such that ||M;l|ck. ,, = 1. Now rescale these metrics by r;° 2 so that we
have new manifolds N; with ||N¢HC,¢,Q,1 = 1. Thus we can find ¢; € N; such that
[{g:} C Nillgr.a ; > 1/2. Since all of the conditions for M; are scale invariant we

also have that || Nil|ges ; < K (n,v,f [R|"/2) , where 8 > a. This means that we

can assume that N; converges in the pointed C** topology to a complete Ricci
flat manifold with volB (g,7) > v - ™. Moreover, since the norm is continuous
in this topology we must also have |[{¢} C N||gk.«; > 1/2. On the other hand

J |RI"/ > = ¢; = 0, showing that the limit space is flat. This together with the
volume growth condition tells us that the manifold is Euclidean space. Thus we
have arrived at a contradiction. a

We can use this result to obtain a very general pinching theorem.

THEOREM 6.6. Givenn,q > n/2,v9, D, and A, X we can find e (n,q,vo, D, A, \) >
0 such that any n-manifold with

vol > o,
diam < D,
[Ricll, < A,

IR=Mll,,, < ¢

is C%, a <2 —mn/q close to a metric with constant curvature \.

PROOF. For this to work we actually need to work with L**? norms of manifolds
as in [13, p167-202]. Also in order to get relative volume comparison as in [17] we
need to know that the amount of Ricci curvature below a certain constant is small
in LY for some ¢’ > n/2. However the fact that IR = All,,, < & |Ricl], <A
implies that for any ¢' € [n/2,q) we have ||Ric — (n — 1) Al||, < C(n,q,A, X €).
As e — 0 also C (n,q,A, \,e) — 0, so we get the desired pinching. This means we
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have relative volume comparison and hence that the above arguments kick in to

finish the proof. O
We are now ready to study the more general class of manifolds which satisfy
vol > v,
diam < D,
[Ric| < A,
IRl < @

When rescaling (blowing up) manifolds in this class we end up, as already pointed
out, with complete Ricci flat metrics satisfying volB (p,r) > v-r"™ and [ IR™* < Q.
Such metrics are called almost locally Fuclidean gravitational instantons. If Q) is
not small these manifolds are not necessarily Euclidean space. The Eguchi-Hanson
metric is an example of a non-flat limit space of this type. Still, one can say
something intelligent about these spaces. We already know that they have faster
than quadratic curvature decay. This implies that if we multiply the metric by a
constant £ — 0, then the curvature will converge to zero outside any compact set.
Moreover, we also showed that the injectivity radius was large outside compact sets.
Thus we get that the metric outside any compact set converges (in any topology)
to a flat metric with Euclidean volume growth. This means that the limit as
£ — 0 must look like a cone over a space form of the type S*~!/T', where T is
a finite group of isometries acting freely on the sphere (see also [4]). The ALE
gravitational instanton is then Euclidean space precisely when I' is trivial. Note
that when the dimension is odd, the space from must be even dimensional, hence
it is either a sphere (total space is Euclidean) or a real projective space. The latter
case, however, cannot occur as an even dimensional projective space cannot be the
boundary of a compact manifold. As for the Eguchi-Hanson metric we know that
it is a Ricci flat metric on T'S?, so when we scale the metric it will converge to the
flat cone over RP2. The type of cone singularities that develop in this way are also
known as orbifold point singularities.

From the above observations we obtain the following result of Anderson (see

[1])

THEOREM 6.7. A sequence of n-manifolds satisfying

vol > o,
diam < D,
[Ric] < A,

IRl < Q.

will subconverge to an orbifold with finitely many point singularities. Away from
these points the convergence is in C1*. In case n is odd the limit space is a manifold
and the class is compact in the C® topology.

It is important that one only gets finitely many singularities. The reason for
this is that each singularity takes up.a certain amount of [ |R|"/ ? | otherwise the

above gap theorem tells us that there isn’t a singularity. Given that [ |R|"/ % is
bounded we can therefore only develop singularities at a given number of points.

Studying in detail this special type of possible degeneration Anderson and
Cheeger (see [3]) were able to obtain a very attractive finiteness theorem for this
class of manifolds.



232 PETER PETERSEN

THEOREM 6.8. The class of n-manifolds satisfying

vol > o,
diam < D,
[Ric] < A,

contains only finitely many diffeomorphism types.

These two results take a particularly nice form on dimension 4. Namely, given
the bound on the Ricci curvature one can obtain a bound on the L™/2 = L? norm
of the curvature from the Euler characteristic. This is done using the Allendoerfer-
Weil formula for the Gauss-Bonnet integrand in dimension 4

1 2 scal |2
M = —_— —_ 1c — ——
xon = = [ <|R| 'Rlc 2 )
_ 1 9 1 . scal |2
= w/'Rl ~gm | Rie- L

Thus
IR <cx0ni+a).

This means that in these two theorems we can replace the L™/2 bound on curvature
by a bound on the Euler characteristic. Note that for an Einstein metric Ric = -Sj‘—alI ,
so in this case we don’t need to know the Einstein constant in order to bound the
L™? norm of the curvature. Moreover, the Einstein constant is actually bounded
by the Euler characteristic provided we have a lower volume bound.

From the discussion on Euler characteristic and L2 norms on curvature we now
obtain

COROLLARY 6.9. Given D,v,C there are only finitely many diffeomorphism
classes of Finstein 4-manifolds satisfying

vol > v,
diam < D,
x < C

Moreover, a sequence of such manifolds always has a subsequence which converges
to an orbifold.

Having such a finiteness theorem means that we only need to study metrics on
a fixed manifold. Thus we are left with studying the moduli of Einstein metrics
on a fixed 4-manifold M. It is standard practice to fix something like the volume,
but here it seems more natural to fix the Einstein constant. This leaves us with
3 different cases according to whether the Einstein constant is positive, zero or
negative. Furthermore in the positive/negative case we can fix the constant to be
+3. In the positive case the degeneration results then take the form

COROLLARY 6.10. Let v > 0 be given. A sequence of 4-dimensional Finstein
manifolds with Finstein constant 3 and volume > v has a subsequence which con-
verges to an orbifold with only point singularities.
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One can also establish a Gauss-Bonnet type formula for the ALE gravitational
instantons. First we note that the volume growth together with the nonnegative
Ricci curvature imply that the fundamental group is finite. From Poincaré duality
it then follows that the Euler characteristic is x = 1+ by = 1 +dim H? (M, R) . The
Gauss-Bonnet formula now gives a formula for the modified Euler characteristic

. _ 1 _ 1 2

where I' is the finite fundamental group at infinity. The formula is obtained by
applying the Gauss-Bonnet formula to a suitable sequence of sets that exhaust M.
The 1/ |I'| term comes from the boundary terms as we pass to the limit. This means
that the L2 norm of the curvature is quantized, i.e., can only take certain values.

Moreover, if
1 s 1
@/IRl <3

then the space must be Euclidean space. The Eguchi-Hanson metric in fact has
a free Zs action by isometries. If we pass to the quotient 7'S?/Zs we obtain a
complete manifold where the Betti numbers satisfy b; = by = b3 = by = 0. The
topology of the example dictates that gty [|R|> = 2. It is not hard to show that

this is the smallest possible nontrivial value for = [ |R|.

7. Examples

It is worthwhile to study the orbifold degeneration in a little more detail. First
we briefly mention some examples which show that such degeneration does occur.

The first examples of orbifold degeneration on compact manifolds come from
[14]. Consider the standard flat 4-torus T* = R* /Z*. Let o : T* — T* be a Cartan
involution, i.e., an involution in a point. Such an isometry has 16 fixed points. If
we divide out by o then we get a flat orbifold T*/o with 16 singularities each of
which looks like a cone over RP2. We can blow each of these singularities up to get
a K3 surface. On this K3 surface it is now possible to construct a sequence of Ricci
flat metrics which converge in the above sense to the flat orbifold 7% /0.

Tian in [19] shows that surfaces of the type CP?fkCP?, where 3 < k < 8,
admit positive Kahler-Einstein metrics. Moreover, it is also established that when
5 < k < 81t is possible for these Kéhler-Einstein metrics to degenerate to orbifolds.
Tian even gives very explicit possibilities for the exact type of degenerations that
might occur. We just mention a folklore example which looks similar to the above
K3 surface example. Take X to be the orbifold obtained from S? x S? by dividing
out by the Cartan involution that rotates 7 on each sphere. One can blow up the 4
resulting singularities to obtain M = CP245CP?, and on this manifold it is possible
using Tian’s work to construct Kéhler-Einstein metrics which converge to X.
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