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Introduction

Interest in quaternion-K&hler manifolds and metrics has developed during the
past decades from at least four separate, originally unrelated, sources: (i) the clas-
sification of holonomy groups, (ii) the theory of quaternionic manifolds, (iii) self-
duality in 4-dimensions, (iv) o-models in theoretical physics.

An understanding of (i) leads to the holonomy definition of a quaternion-Kéhler
manifold that dates back to the 1960’s. It needs clarification when the dimension
is 4, for which curvature conditions enter explicitly into the definition. This aspect
of the theory regards (iii), and involves the decomposition of the Weyl tensor, the
significance of which was not fully understood (at least in the Riemannian context)
until the end of the 1970’s. The net result is that quaternion-K&hler manifolds
are always Einstein, though their nature depends very much on the sign (positive,
negative or zero) of the scalar curvature s.

One aspect of quaternion-Kahler geometry that is inherently higher-dimensional
arises from the representation theory of the simplest non-abelian group SU(2). This
is most evident in the description, first given by Wolf, of a class of symmetric spaces
that include the only complete examples known for s > 0. Despite this limitation
in the global theory, there is a surprisingly rich geometry underlying the defini-
tions, and the title and contents of this chapter are meant to reflect that. Some
of the underlying constructions that we present are valid for the broader theory
of quaternionic manifolds, described in §4, that was developed independently by
Bérard Bergery and the author, building on earlier work of many others [17, 105).

For the uninitiated, the most important point to be made is that a quaternion-
Kéhler manifold M is not necessarily Kahler in the usual complex sense. Indeed,
locally M has a compatible Kéhler metric if and only if s = 0, in which case it
is hyper-Kahler, and amenable to techniques described elsewhere in this volume.
On the other hand, the quaternionic structure of M can always be ‘untwisted’ by
passing to the total space of a suitable fibre bundle, and a quaternion-Kéhler man-
ifold does always possess associated higher-dimensional complex manifolds, which
are Kahler if s > 0. Of particular impo{*tance in this case is the twistor space, a
contact Fano manifold, whose algebraic geometry provides the best hope for tack-
ling the classification problem. Results of LeBrun and others in this direction are
presented in §5.
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Curvature conditions follow automatically from torsion ones in dimensions
greater than 4, and it is sometimes possible to conclude that a given manifold M
is quaternion-Kéahler without identifying the Einstein metric explicitly. Each point
of M corresponds to a rational curve in its twistor space, and one approach is to
reconstruct M from the identification of such rational curves and their deforma-
tions. We shall illustrate this process in §6. Many techniques for the construction
of quaternion-K&hler metrics also have their origins in the 4-dimensional theory.
Important constructions of quaternion-Kahler (equivalently, self-dual Einstein) 4-
manifolds that we do not discuss can be found in the works of Hitchin [57], Pedersen
[93] and Tod [115].

The fundamental role played by isometry groups in the theory of quaternion-
Kahler manifolds pervades the whole chapter, though §6 and §7 are specifically
devoted to properties of group actions. This includes Swann’s generalization of Wolf
spaces and their relationship to complex nilpotent orbits and work of Kronheimer,
and the quotient construction of Galicki-Lawson. Morse theory turns up in an
essential way in these topics, and leads to a number of open problems. An important
tool is that of a moment mapping and, whilst this can be interpreted entirely within
the realm of symplectic geometry, it comes in other flavours that are peculiar to
the quaternionic setting. The quotient construction produces an abundance of local
quaternion-K&hler metrics, though the appearance of orbifolds is inherent in the
theory. Four-dimensional quaternion-Kahler metrics themselves give rise to Ricci-
flat metrics with holonomy equal to G2 or Spin(7) [29], and are therefore especially
relevant to the general search for Einstein metrics.

It would be true to say that this chapter represents only a selection of topics
in what is a very active field. A final section is devoted to the topology associated
to quaternion-Ké&hler structures, and reflects the author’s own interest. The main
applications are to the case of positive scalar curvature and link in with §5. The
general philosophy is to try to duplicate results known to hold for the Wolf spaces
to arbitrary quaternion-K&hler manifolds with s > 0. The theory in §8 also allows
one to pose a number of related questions for compact quaternion-Kahler manifolds
with s < 0, or indeed the more general class of quaternionic manifolds.

We conclude by mentioning some other topics that we do not pursue further.
In a direction related to (iv) above, there is a large class of solvable Lie groups with
quaternion-Kahler metrics with s < 0 that were discovered by Alekseevsky [3],
and have recently been re-classified within the framework of supergravity [38, 35].
In this set-up, one considers mappings from a space-time of dimension d into a
complete target manifold with a specific geometrical structure, such as Kahler,
special K&hler, quaternion-Kéhler. In the latter case, topological considerations
place one in the realm of negative scalar curvature, though this point of view
leads to constructions uniting the various geometries. The theory of special K&hler
metrics (Kéhler ones admitting a certain type of flat symplectic connection) has
recently captured the imagination of mathematicians [42], and is likely to lead to
further developments in the quaternionic field.

An early result of Gray to the effect that any quaternionic submanifold of a
quaternion-kahler manifold is totally geodesic [51] puts a stop to any naive theory
of submanifolds. Methods in [33] effectively classify quaternionic submanifolds of
symmetric spaces, and other types of submanifolds have been considered in [83].
There is also a vast literature concerned with the classification of various types
of submanifolds of quaternionic projective space. But the most effective direction



QUATERNION-KAHLER GEOMETRY 85

is the study of certain holomorphic submanifolds of twistor space, and there is an
extensive theory of harmonic mappings of surfaces into quaternion-K&hler manifolds
[32, 67] that generalizes the more familiar situation of mappings into 4-manifolds.

1. Almost-Complex Structures and the Canonical 4-Form

A hyper-Kéhler manifold (‘HK manifold’ for short) can be defined as a Rie-
mannian manifold of dimension 4n > 4 admitting an anti-commuting pair I,J of
almost-complex structures, relative to both of which the metric is Kéhler. This
implies that I, J and therefore K = I.J are parallel or ‘constant’ relative to the
Levi-Civita connection, and define integrable complex structures. The triple of en-
domorphisms I, J, K behaves like the imaginary quaternions, and if (a,b,c) is a
unit vector in R® then al + bJ + cK is also a parallel complex structure. Thus,
an HK manifold is endowed with a set of complex structures parametrized by the
2-sphere.

Quaternion-kéhler manifolds form a more general class of Riemannian mani-
folds that incorporate not just hyper-Kéhler ones, but also the quaternionic pro-
jective space space HIP™. Actually, one can define a Riemannian symmetric space
that is quaternion-Kahler with an arbitrary compact simple isometry group, and
HP"™ corresponds to the case Sp(n + 1) = Cr+1. On a general quaternion-Kéhler
manifold (‘QK manifold’ for short), it is not possible to find individual structures
1, J, K that are parallel, but only a bundle V' of endomorphisms with fibre isomor-
phic to the imaginary quaternions which as a whole is preserved by the Levi-Civita
connection V. Locally, one can therefore find Iy, I, I3 satisfying

(11) IlIQ = I3 = —Ig]l,
and 1-forms a; such that
vV, = —a3® L+ ay ® I3,
(12) VIQ = a3®11 —aq ®13,
VIih, = —as®11 +01 ® Is.

These equations were considered by Ishihara [59].

Identify R*" with the space H" of quaternion column vectors, so that the Eu-
clidean inner product is given by (v,w) = Re(v*w), where * is the operation of
transposing and quaternionically conjugating entries. The group Sp(n) of quater-
nion n X n matrices for which A*A equals the identity then acts isometrically on
R4" by left multiplication. An HK manifold is then the same as a Riemannian
manifold whose holonomy reduces to this group. The parallel complex structures
I,J, K arise from the right action of the corresponding unit quaternions.

The group Sp(n) is a subgroup of SO(4n), but not a maximal one since it
commutes with the action of the group Sp(1) of unit quaternions on R** by right
multiplication. The enlarged group of transformations

(1.3) v — Avg®, A € Sp(n), q € Sp(1)

is denoted by Sp(n)Sp(1). It is a subgroup of SO(4n) isomorphic to the quotient
Sp(n) x7, Sp(1), where Zs is generated by (—1I,-1).

DEFINITION 1.1. A QK manifold is a Riemannian manifold of dimension 4n
whose holonomy group is contained in the group Sp(n)Sp(1).
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Since Sp(1)Sp(1) = SO(4), the geometry resulting from this definition generalizes
that of oriented Riemannian 4-manifolds. For the moment though, we shall assume
that n > 2.

It is an immediate consequence of the above definition that the frame bundle of
a QK manifold reduces to a principal bundle with structure group Sp(n)Sp(1). The
bundle V' defined above is none other than that associated to the homomorphism

Sp(n)Sp(1) = Sp(1)/Z2 = SO(3),

and a local basis {I1, I, I3} of V satisfying (1.1) is determined up to the action
of SO(3) at each point. Each almost-complex structure I; determines a 2-form w;
by the usual identity w(X,Y) = g(I;X,Y), and the w; are analogues of self-dual
2-forms in 4 dimensions. It is easy to see that the 4-form

(1.4) Q= Awr +ws Aws + w3 Aws

is independent of the choice of basis, and )" is nowhere zero. This form was
introduced by Bonan in [20]. An orientation of M can be defined by decreeing
that the volume form is a constant positive multiple of 2.

Replacing the I;’s in (1.2) by w;’s, we see that €2 is parallel, and therefore
closed. Since the stabilizer of Q in GL(4n,R) is exactly §p(n)Sp(1), the holonomy
reduction of a QK manifold is characterized by the existence of a 4-form which is

(i) in the same GL(4n, R)-orbit as Q at each point, and

(ii) parallel.

If M has dimension at least 12, it turns out surprisingly that (ii) is equivalent to
requiring that the 4-form be closed [112]. The case of 8 dimensions is in a certain
sense richer, as there exist metrics at least locally admitting closed but non-parallel
4-forms satisfying (i). This contrasts with the case of Spin(7) holonomy which, as
observed in [28], is defined by a closed 4-form linearly equivalent to

szl Awr + w2 Awgy — w3 A ws.

On its own, condition (i) defines the class of ‘almost QK manifolds’. Let h*
denote the orthogonal complement of h = sp(n) + sp(1) in so(4n); this is in fact
an irreducible representation of Sp(n)Sp(l) (denoted A2 ® £2? below). General
principles imply that, on any almost QK manifold, the covariant derivative V x$
(for any tangent vector X ) belongs to a subspace of A*T* isomorphic to h=*.
Numerous classes of almost quaternionic manifolds can be defined by decomposing
the space T* ® h* and imposing corresponding conditions on (2 [106, 111], though
we shall adopt a different approach in §4, Analogues of quaternion-Kahler geometry
with torsion have been studied by theoretical physicists (see e.g. [58]).

Remark. The fact that 4-forms arise automatically from a holonomy reduction may
be deduced from the following purely algebraic observation, Let h denote the Lie
algebra of a compact holonomy group H, regarded as a subspace of A2T*. Then
there is an H -equivariant mapping

(1.5) b: S2h — NT*

defined simply by skewing 2-forms together. The symmetric product S52h contains
at least a 1-dimensional space of H -invariant elements, so let p be such an element.
If b(p) = O then p is a curvature-like tensor satisfying the first Bianchi identity,
and the fundamental work of E. Cartan implies that p is the curvature tensor of a
Riemannian symmetric space. Otherwise, b(p) will determine a non-zero parallel
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4-form. In the case of h = sp(n) + sp(1), both these possibilities occur as there
is a 2-dimensional space of invariants in S2h, spanned by elements p;,ps with
p1 € kerb. The corresponding symmetric space is HP" with curvature tensor p;,
and the 4-form b(p3) is proportional to 2.

A more careful analysis of the ‘Bianchi map’ (1.5) for h = sp(n) + sp(1) shows
that, provided n > 2, its kernel is spanned only by p; and the highest-weight
component W in the tensor product sp(n) ® sp(n). The summand W contains the
curvature tensor of an HK manifold, and since it has no components in common
with the space S2T™* of Ricci tensors, one deduces

COROLLARY 1.2. Any QK manifold of dimension 4n > 8 is Finstein, and its
scalar curvature s vanishes if and only if it is locally HK, i.e. its restricted holonomy
group Hy is a subgroup of Sp(n).

In this case, the classification of possible holonomy groups H having connected
component Hy = Sp(n) has been carried out by McInnes [85], and a related theory
of ‘locally quaternion-K&hler’ manifolds is developed in [96]. It also makes sense
to talk about QK manifolds with zero curvature.

Definition 1.1 is the traditional one, though we are now able to point out
drawbacks in the terminology.

(i) As it stands, a 4-dimensional QK manifold is none other than an oriented Rie-
mannian one. The curvature restrictions that apply from (1.5) in higher dimensions
disappear because A*T* is just 1-dimensional. However, we may re-impose them
by redefining a quaternion-Kahler 4-manifold to be an oriented Riemannian one
whose curvature tensor belongs to

Ss(NLT*) @ (p1),

relative to (3.3), where p; spans kerd. The first component is the ‘positive half’
Wy of the Weyl tensor, and the second is a multiple of the constant curvature
tensor of S* = HP'. This condition is equivalent to asserting that M is ‘self-dual’
(meaning that W_ = 0) and Einstein.

(ii) A quaternion-Kéahler manifold is not in general Kahler, since Sp(n)Sp(1) is not
a subgroup of U(2n). (For this reason, the author sees the abbreviation ‘QK’ as
avoiding a certain amount of embarassment.) In fact, if H is a subgroup of

(Sp(n)Sp(1)) NU(2n) = Sp(n)U(1),

then Hj is a subgroup of Sp(n) [119] and M is locally HK. As we have remarked,
the two situations are distinguished locally by the Ricci tensor.

(iii) There is a natural tendency to restrict the terminology ‘quaternion-Kahler’ to
the case of non-zero scalar curvature, a situation significantly different from the
hyper-Kéhler one. This is indeed the approach we adopt in this chapter, although
there are further links between the two classes of manifolds that transcend the
definitions. For example, we shall see that any QK manifold with positive scalar
curvature can be realized as a type of quotient of an HK manifold of 4 dimensions
greater. This is disconcerting as it implies that the theory of QK manifolds can
logically (at least in the s > 0 regime) be subsumed into the theory of HK ones!
(iv) One cannot restrict to the case of non-zero scalar curvature by demanding that
the holonomy group should equal Sp(n)Sp(1). For this would exclude most of the
symmetric space examples, which have holonomy of the form K Sp(1) where K is
a subgroup of Sp(n). We study these in the next section.
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On a compact Kahler manifold, wedging with the fundamental 2-form w in-
duces a non-singular map on cohomology in appropriate dimensions; this is the
well-known Lefschetz property that relates to formality properties of the de Rham
algebra of a Kéhler manifold. One of the earliest results for a compact QK manifold
M of dimension 4n was the analogous result found by Kraines [73]. With a slight
improvement of Fujiki [44], this states that wedging with the 4-form Q determines
an injection

HY(M,R) — H**(M,R), kE<n-1.

Refinements were also made in [21]. Of course, given that Q is a closed 4-form,
with Q™ # 0, it is also true that bgy; > 0 for 0 < i < n.

Much more can be said when the scalar curvature is positive. A complete
quaternion-Kéhler manifold with s > 0 is called a ‘positive QK manifold’, and
because of the Einstein condition, completeness is equivalent to compactness. The
author proved that a positive QK manifold has vanishing ‘odd’ Betti numbers
b2i+1 = 0 [102]. Building on this, one can show that the differences

(1.6) B2i = ba; — baj_4, 1< n,

are all non-negative [44]. They are in fact the Betti numbers of an associated
3-Sasakian manifold defined in §5, and feature again after Theorem 8.2(ii).

To conclude this section we quote a result that is relevant to the remarks in
(ii) above. Its proof exploits Theorem 5.5(ii) below, and the well-known fact that
there is no almost complex structure on HP' = S*.

THEOREM 1.3. [5] No positive QK manifold admits a compatible almost com-
plex structure.

An almost-complex structure is said to be compatible if it is a section of V', so that
it can be expressed locally as al; + bl; + cIs with the relations (1.1) and a,b,c
functions satisfying a? + b2 + ¢ = 1.

2. Symmetric Spaces and Grassmannian Geometry

The essence of quaternion-K&hler geometry is captured by the 1964 paper of
Wolf [119]. In it, he characterizes the quaternionic structure of a class of symmetric
spaces, and discusses what is now known as their twistor fibrations. In a paper
[2] which coined the term ‘Wolf space’, Alekseevsky went on to show that any
homogeneous QK manifold with s > 0 must in fact be one of these symmetric
spaces. In this section we begin by listing the spaces in question, and then explain
how their existence is related to the theory of 3-dimensional subalgebras.

By a ‘Wolf space’ we mean a quaternion-Kahler symmetric space with s > 0.
There are two Wolf spaces of real dimension 4, namely

G _S0B) pr__ SUB)
SO(4)’ S(U(2) x U(1))
The curvature of both of these spaces is self-dual and Einstein, in accordance with
the revised definition in 4 dimensions.

In general, there is a Wolf space corresponding to each simple compact Lie
algebra. In dimension 4n, there are three families
HP™ — Sp(n + 1) U(n+2)

= Sp(n)x Sp(1)’ Gry(C™2) = T <U(0)’ Gra(R4) =

SO(n + 4)
SO(n)xSO(4)
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There are coincidences HP' = S* = Gr4(R®) and Gr(C?) = CP? for n = 1, and
Gry(C*) = Gry(R®) for n = 2. In addition, there are the exceptional spaces
G2 Fy
SO4)”  Sp(3)Sp(1)’
Eg Er Es
SU(6)Sp(1)’ Spin(12)Sp(1)’ E.Sp(1)’
corresponding to n = 2,7, 10, 16, 28 respectively.

Needless to say, these homogeneous spaces arise as orbits for the action of the
isometry group G on a suitable linear space. Any adjoint orbit of G on its Lie
algebra g is a complex homogeneous space, and the only Wolf space that arises in
this way is the complex Grassmannian. Indeed, if we identify su(n + 2) with the
space Ay (C**?) of primitive (1,1)-forms on C**? then the orbit of an element
aAp (with {a, 8) = 0) is isomorphic to Grz(C**2). In the same vein, HP™ arises as
the Sp(n+1)-orbit of a suitable element in A3(C?>"+2), and the Pliicker embedding
exhibits Gry(R"**) as a SO(n + 4)-orbit of a simple 4-form inside A*(R***).

Remark. The following topological properties of the Wolf spaces reflect general
results on QK manifolds that we shall discuss below:

(i) The list consists of exactly those irreducible Riemannian symmetric spaces for
which H%(M,Z) & Z2, together with HP™ and Gra(C"*2) (which of course have
H?(M,Z) equal to 0 and Z respectively) [31].

(ii) The only Wolf spaces with 4th Betti number by > 1 are the Grassmannians
Gra2(C**?) (n > 2) and Gry(R™**) (n > 2). The only space with by > 2 is
Gr4(R®), which has two distinct quaternion-Kéhler structures related by an outer
automorphism of SO(8), and by = 3 [96].

(iii) Those with isometry group of type 4, D, E have
(21) dim G = 2X + bap_2 + ban,

where X denotes the Euler characteristic.

It is conjectured that any positive QK manifold is a Wolf space. The following
compilation of results in this direction represents the state of play at the time this
article was written.

THEOREM 2.1. A positive QK manifold M of dimension 4n is necessarily sym-
metric if one of the following is true:
(i) n<2,
(i) n <4 and by =1,
(i) the isometry group of M has rank at least n+ 1.

Part (i) for n = 1 is Hitchin’s theorem asserting that S* and CP? are the only
two compact 4-manifolds with a metric which is self-dual, Einstein, with positive
scalar curvature [55, 17]. The corresponding result for n = 2 was proved in [98],
and by a different method in [80]. A key starting point is the existence of a space
of Killing vector fields of sufficiently positive dimension.

The biggest gap in a potential proof of the conjecture is the unknown answer
to the conundrum of whether a QK manifold of dimension greater than 16 has any
non-zero Killing vector fields. Estimates on the size of the isometry group G are
known for n = 3 or n = 4, and in these cases it is proved in [49] that if by = 1
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then M is isometric to HP™, whence (ii). The author is confident that a complete
analysis will soon be possible in dimension 16 and less.

A valuable bound is that the rank of G cannot exceed n + 1 [98]. Part (iii) is
a recent result of Bielawski that is proved by reconstructing the spaces in question
as quotients using the techniques hinted at in §7. The only positive QK manifolds
with an isometry group of rank n + 1 are in fact HP™ and Gro(C"*2).

The special nature of the isotropy groups of the Wolf spaces is emphasized by
the next result. To formulate it, suppose that M is a QK manifold with isometry
group G, and let z € M. If g, denotes the Lie algebra of the isotropy subgroup
at z, then g, C sp(n) +sp(1), and

PROPOSITION 2.2. If g, contains the summand sp(1) of sp(n) + sp(1) for all
x, then M is locally symmetric.

This follows because VR lies in a space (S°E ® ¥! in notation below) that has no
non-zero elements invariant by Sp(1).

A non-trivial isotropy subgroup at a single point can even impose quite severe
constraints on the curvature tensor [98], and an algebraic classification of curvature
jets is feasible in certain circumstances. The study of possible isotropy subgroups is
important in the classification of QK manifolds with a cohomomogeneity-one group
action, that is in progress by the authors of [36, 18, 6].

Remark. The symmetric spaces listed above have non-compact duals with s < 0,
and the embedding of these in their compact partners is discussed in [119]. By a
theorem of Borel [22], the dual of any compact QK symmetric space admits compact
quotients. Constraints on the fundamental group of such a quotient arise from
work of Corlette [34]. He proved that any Riemannian metric with non-positive
curvature operator on a compact quotient of quaternionic hyperbolic space HH™,
n > 2, is the induced one. In this connection, it is known that the homogeneous
non-symmetric spaces of [3] do not admit compact quotients, and the only known
compact examples of QK manifolds with s < 0 are locally symmetric.

The tangent space at any point to a Riemannian symmetric space M = G/H
can be identified with an orthogonal complement m of the Lie algebra b in g. The
holonomy group of M then coincides with the linear isotropy group, that is the
image of the natural homomorphism £: H — Aut(m), and is isomorphic to H if
G has trivial centre. For each of the Wolf spaces, it is easy to check explicitly that
¢(H) has the form K xZ7, Sp(1) where K C Sp(n), in accordance with (1.3). In
fact, H is the normalizer of a 3-dimensional subgroup of G that is generated by a
highest root vector of the Lie algegra g [119]. It follows that G/H parameterizes
a ‘conjugacy class’ of 3-dimensional subalgebras of g, a fact that we now proceed
to generalize.

Let G be a compact semisimple Lie group of dimension d, with Lie algebra g,
and let su(2) denote the Lie algebra generated by the matrices

v a=(§ %) m=(3 ) m=(0)

over R, with Lie bracket given by [A1, A2] = A1 A2 — A2 A; = —2A3 etc. A non-
zero homomorphism of Lie algebras p: su(2) — g is necessarily injective, and we
may regard p(su(2)) is an element of the Grassmannian Grs(g) of real oriented
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3-dimensional subspaces of g. There is a canonical 3-form on the Lie algebra g
that defines a real-valued G-invariant function 1 on Gr3(g) defined by setting

Y(V) = — (v, [v2,v3])

where V € Gr3(g) is a subspace with an oriented basis {v;,vs,v3}, orthonormal
relative to the Killing form of g.

LEMMA 2.3. V is a critical point of v with ¥(V) > 0 if and only if V =
p(su(2)) for some homomorphism p.

To understand this result, recall that the tangent space Ty Grsz(g) can be iden-
tified with

(2.3) Hom(V,VYH) =2V* Vi,

where V1 is the orthogonal complement of V in g; if @ € Hom(V, V<), then the
corresponding vector is the one tangent to the curve t — V; = span{v + ta(v) :
v € V} in Gr3(g) at t = 0. The gradient of 3 at V € Grs(g) is the linear mapping
characterized by

(24) v — — [’112,'[}3] — '(/J(V)’U1 (S VJ',

whenever {v1,vz,v3} is an oriented orthonormal basis of V.
The orbit of p(su(2)) under the adjoint action of G forms the critical manifold
L,, and

LP EG/va

where N, denotes the normalizer of p(su(2)). A trajectory or flow line of the vector
field grady is a curve in Grs(g) satisfying

(2.5) V'(t) = grad p(V (¢)).

It was verified by Burstall that the Hessian of 9 is non-degenerate in normal direc-
tions to the critical submanifolds L,, which means that Morse-Bott theory can be
applied to the flow lines as in [66]. The union of L, and those points on trajectories
V(t) with t_l’il_noo V(t) € L, is the so-called unstable manifold M, associated to L,.

There are inclusions
L, € M, C Grs(g),

and M, is G-equivariantly diffeomorphic to the total space of the normal bundle
to L, in M,. In this way, M, parametrizes a distinguished family of 3-dimensional
subspaces of g including the subalgebras conjugate to p(su(2)).

THEOREM 2.4. [114] Let p: su(2) — g be any non-zero Lie algebra homomor-
phism. Then M, has a G -invariant QK metric with s > 0.

This theorem was proved by Swann by relating (2.5) to Nahm’s equations, and then
via twistor theory to complex nilpotent codajoint orbits and work of Kronheimer
[75]. We shall explain in §6 that if V' € M, then the isotropic elements of its
complexification V. are nilpotent, a property that generalizes that enjoyed by 3-
dimensional subalgebras. Indeed, the theorem belongs to a select class of results
in which a Morse flow is used to classify a family of objects, the most obvious of
which correspond to critical points. An analogous example of this in an infinite-
dimensional setting appears in the paper [30] on harmonic maps.
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The infinitesimal quaternionic structure is readily identified at points of L,,
and this will help to introduce the algebraic structure of the tangent space of an
arbitrary QK manifold. Let us denote the complexification p(su(2)). by sl(2,C).
The latter has a complex (k + 1)-dimensional irreducible representation that we
denote by £*, isomorphic to S*C? and the space of homogeneous polynomials of
degree k in two variables. There is a decomposition

(2.6) g 2sl(2,0) @ P =t = n. & P me=",

k>0 k>0
where pxX* denotes ©¥ @ --- @ ©*, with px > 0 summands, and n is the Lie
algebra of N,. The adjoint representation s((2,C) is itself isomorphic to the space

%2 of homogeneous quadratic polynomials.
Fix V € L,,sothat V1 = @ u;X*. Using (2.3) and the isomorphism $2® Xk

k>0

~ yk-2 g 3k @ k42 (with k > 0 and £~! = {0} ), we obtain
TvGrs(g) = T+ @ To o T-,

where

(Ty)e = @ pp 52

k>2

(To)e = EPmz*
k>1

(T2)e = Pustt? @ X
E>1

Then Ty coincides with the tangent space Ty L, to the orbit through V', and
To & T+ is the tangent space to M,. It has complexification

(2.7) (To®Ty) 2 E®: T,

where E = @ prX*'. The quaternionic structure of E originates from each
k>1

summand ©* when k is odd, and pairs S¥*@X* when k is even. Therefore the action
of SU(2) on Ty & Ty factors through Sp(n)Sp(1), where 2n = dimCE = Y kpk.
£>1

Any root space g, generates such a subalgebra p(su(2)), but a general ho-
momorphism p is determined up to conjugacy by assigning an integer in the set
{0,1,2} to each simple root of g according to rules prescribed by Dynkin (this is
explained by [67] in a useful context). The dimension of N, is as small as possible
when su(2) is the span of an orthonormal basis {vi,v2,v3} of g where v; + ivy
belongs to a highest root space g, of g.. We shall call such a subalgebra minimal.
The functional 9 attains its maximum value on the Wolf space G/N,, where p
arises from a highest root. In this case Ty = 0 (equivalently u; = 0 for all k¥ > 2).

3. Representations and the Dirac Operator

The representation of the structure group Sp(n)Sp(1) on the complexified tan-
gent space (T;). of an arbitrary QK manifold is determined by (1.3) and coincides
with the right-hand side of (2.7). The structure group of a QK manifold lifts glob-
ally to Sp(n) x Sp(1) if and only if € = 0, where € € H2(M, Z») is the class induced
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by the short exact sequence
1> Zs — Sp(n) x Sp(1) = Sp(n)Sp(1) — 1,

and introduced explicitly in [84]. The significance of this lifting condition was first
realized by Sakamoto [101], in a study of sectional curvature and pinching.

Over an open set on which the obstruction € vanishes, it is conventional to
write

(3.1) T.=E®H,

where E and H now represent complex vector bundles of rank 2n and 2 respec-
tively, underlying the standard representations of Sp(n) and Sp(1) on H* and H
respectively. Since the latter are self-dual, one can also replace T' by T* in (3.1)
without affecting its validity.

Given the well-known isomorphism Sp(1) x Sp(1) = Spin(4) over an oriented
Riemannian 4-manifold, £ and H are in this case the same as the spin bundles,
denoted V, and V_ in [8]. Thus E and H exist globally over S*, and indeed over
HP" for all n > 1 since H2(HP",Zs) = 0. Regarded as a quaternionic line bundle,
H is simply the tautological bundle whose fibre H, at a point z € HIP™ is the line
represented by that point, and E, can be identified with the complement H~ in
H*+! . The resulting decomposition

H**! = E, @ H,
characterizes the action of the isotropy group Sp(n) x Sp(1) on H**!.
Example. The algebra underlying the 4-dimensional situation is also relevant when
one examines the 8-dimensional space G3/S0O(4). Identifying SO(4) = Sp(1)Sp(1),
its inclusion in G is described by the decomposition C" = S2V_ & (V_ ® V) of

the standard representation of G3. This equation provides the well-known link
between self-duality in dimension 4 and G2-structures in 7. Furthermore,

(92)c = S*V_@& S2V+ S (S3V_ V),

and the last summand is effectively the isotropy representation m. So we may take
E = S3V, and H = V_; these are not globally defined bundles as H2(G2/SO(4),Z)
= Z, is generated by €.

The use of the locally-defined bundles E and H is a very convenient tool in
describing exterior forms and other natural tensors on a QK manifold. For example,
anticipating the notation below, the bundle of 2-forms can be written

NT? N(E® H)

(S’ E® N°H)® (N\*E ® S*H)

S’E & S?H @ (A2E ® S?H)

Al T2 6 (A} @ X2).

It has three irreducible real components, corresponding to h = sp(n) @ sp(1) and
h1. This generalizes the celebrated decomposition

(3.3) NT* =N, & N =sp(1)+ ®sp(1)-
on an oriented Riemannian 4-manifold, and leads to extensions of Yang-Mills theory
(see §4).

It is natural to ask how the standard representation A of Spin(4n) of dimension
22" decomposes relative to the natural homomorphism Sp(n) x Sp(1) — Spin(4n)

IR

1%

(3.2)

IR

IR
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for n > 2. To proceed, one needs to distinguish certain representations of Sp(n).
Choosing standard coordinates on the Lie algebra of a maximal torus, we may
identify irreducible Sp(n)-modules with n-tuples of integers

(a1,a2,...,an), a1 >a22>-->a,>0,
corresponding to dominant weights (this is explained in [106]). In particular,
E corresponds to (1,0,...,0), and the symmetric power S™E corresponds to
(m,0,...,0) and is irreducible.
We shall be more interested in the summands
(3.4) AP =(2,...,2,1,...,1,0...,0), 0<g<|m/2].
N e’ N
q m—2q

of the m-fold tensor product @™E. The space AT is isomorphic to the so-called
primitive or effective summand of A™E, and the representations (3.4) all arise
from tensor products of primitive ones:

min(m,n)
LEmMMA 3.1. AT @ AT € APt
k=0

Recall that the irreducible complex representations of Sp(1) are merely the
symmetric powers S7H which we denote by X7. The spin representation of M is
given by combining the primitive summands with these symmetric powers.

n
PROPOSITION 3.2. [10, 116] A = (P AF @ X7,
q=0

The summands of A arise from representations of Sp(n)Sp(1) (rather than
just Sp(n) x Sp(1)) if and only if n is even, and in this case they determine vector
bundles defined globally on M. (We usually denote these associated bundles by
the same symbol as the representation, relying on the context to make the meaning
clear.) In the case in which M is hyper-Kahler, ¥ becomes a trivial bundle of
dimension g+ 1. Moreover, the vector bundle E exists globally and is isomorphic to
the holomorphic tangent bundle T relative to any compatible complex structure.
(T'° is also isomorphic to its dual A by means of the appropriate holomorphic
symplectic form.) It is well known that in this case A is the full exterior algebra
on E, and this is consistent with the above proposition.

COROLLARIES 3.3. (i) A QK manifold of even quaternionic dimension n is
always spin.
(i) An HK manifold of quaternionic dimension n has a complezx (n+1) -dimensional
space of harmonic spinors.

On an HK manifold, the Dirac operator can be identified with 5+8 acting on
the full exterior algebra of E, and the relevant operators can be ‘strung out’ into
the usual Dolbeault complex. A similar phenomenon occurs on a QK 4n-manifold
for which n is even or ¢ = 0. Namely there is an elliptic complex of the form

(3.5) 0 AP B A @ B AP 2052 5. 5 X% 50

(of course, to make sense of the notation, the objects between the arrows are now
sheaves or sections of the corresponding vector bundles). This complex has the re-
markable property that it can be coupled to any vector bundle V with a connection
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whose curvature lies in the space h = sp(n) @ sp(1) without destroying the property
that D? = 0. This fact leads to one possible generalization of the Sieberg-Witten
equations to a quaternionic context.

Analogues of the Dirac complex (3.5) that do not require a Riemannian metric
for their definition are studied in [105, 11]. The most obvious such complexes are
those obtained by tensoring (3.5) by **” and rearranging the pieces to give

(36) 0ﬁ2k2§E®Ek+l—)/\2E®Ek+2—)---—)/\”E@Ek"'n_)o_

The reappearance of full exterior powers of E ensures that they can indeed be
defined relative to the G-structure used in the definition of a quaternionic manifold
(see §4). A recent application of (3.6) for k = 0 is in the definition of a quaternionic
version of analytic torsion [81].

For k > 1, the D, are ‘twistor operators’; each is overdetermined and has
locally a finite-dimensional space of solutions that have special geometrical signif-
icance. For example, a solution of D;{ = 0 determines a hypercomplex structure,
and a solution of Dy¢ = 0 a ‘quaternionic complex structure’ [60).

Remark. The work of Friedrich and others [15] on eigenvalues of the Dirac operator
on a compact spin manifold has motivated work on the problem of finding a lower
bound A of the Dirac operator on a QK manifold of dimension 4n with n even
(54, 74]. The result is that

g N+3s
> —
“n+24’°
with equality occurs if and only if M = HP™ and the eigenvector lies in the sum-

mand AZ®(A}'®X'). An analogous sharp lower bound is known for the Laplacian
acting on functions on a QK manifold {79, 4].

The ‘Fueter complex’
(3.7) 0HB3EANESNMNE®S - 5 A"BE@E" 50

is a version of (3.6) for k = —3, and incorporates a natural analogue D of the
O-operator in complex analysis. All the operators in this complex are first order,
except for A which is second order. Local sections of H solving the equation
Df = 0 in flat space H" are the so-called quaternionic regular functions defined
by Fueter, and twistor theory can be used to show that (3.7) is a resolution of
the associated sheaf, so that for example g = Df is locally solvable if and only
if Ag = 0. Explicit expressions for the operators can be found in [1]. Much of
what can be done in flat space extends to the class of hypercomplex manifolds,
and Joyce has developed an extensive programme aimed, amongst other things, at
reconstructing HK metrics from their function theory [63, 99].

A decomposition of the exterior forms on a QK manifold can in theory be
determined by the formula

4n
Ao A= PNT.
k=0

Lemma 3.1 implies that each summand has the form A? ® X". To illustrate this,
we quote without proof that

NT = (Ao AeR) @ (AT A A)) @) & (Mg e Af o R) @ T4).
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On the other hand, for § = sp(n) + sp(1),
S?h = S*(S°E) @ (S’E®¥?) @ 5% (%?)
> (S‘EoAloANoRoANMeX?)astoR

All these summands occur in A*T* apart from a trivial summand and W = S*E,
and this can be used to justify the remarks before Corollary 1.2.

COROLLARY 3.4. The curvature tensor of a QK manifold equals Rg + sp1,
where Rg takes values in S*E and p;, is Sp(n)Sp(1)-invariant.

On a HK manifold, the space of curvature tensors is isomorphic to S*E. A
choice of complex structure on an HK manifold yields an identification between
E and the holomorphic cotangent bundle T, so we may regard R as a smooth
section of T* ® S3E. The second Bianchi identity can be used show that R actually
determines an element of the sheaf cohomology group H!(M,O(S3T*)). This last
result is relevant to theory resulting from the so-called Witten-Rosansky invariants
[100, 64], and some of the relevant representation theory appears in [50].

Corollary 3.4 leads to the idea due originally to Rocek that, in certain circum-
stances, HK metrics can be constructed as the limit of a sequence of QK metrics with
scalar curvature tending to zero. Although no general theory for such a phenome-
non as yet exists, this idea has led to the whole programme relating hyper-Kahler
to quaternion-Kahler described later in this chapter.

4. Quaternionic Manifolds and Bundles

The inability to choose a global basis of complex structures on a quaternion-
Ké&hler manifold M can be overcome by passing to the total space of an associated
bundle. This approach is however best viewed within the wider context of quater-
nionic manifolds, which we now describe.

DEFINITION 4.1. A quaternionic manifold is a smooth manifold of dimension
4n > 8 admitting a G-structure and a torsion-free G'-connection, where G denotes
the subgroup GL(n,H)GL(1,H) of GL(4n,R).

The group G is defined as in (1.3), but without reference to an inner product on
R*". Thus, GL(n,H) is the commutator of the group GL(1,H) of transformations
v +— vq*, ¢ a non-zero quaternion, and

G = GL(n,H)Sp(1) = GL(n, H) x7, Sp(1).

To complete the definition, it is logical to define a quaternionic manifold of real
dimension 4 to be one with a self-dual conformal structure.
Let M be a quaternionic manifold. The homomorphism

G — Sp(1)/Zy = SO(3)

given by projection to the second factor allows one to define bundles over M asso-
ciated to various representations of SO(3). First, let SO(V') denote the principal
SO(3) bundle parametrizing triples {I;, I, I3} of almost-complex structures satis-
fying (1.1), whose existence does not require a Riemannian metric.

Let F be any space (linear or otherwise) on which SO(3) acts, and let F
denote the fibre bundle associated to SO(V') with fibre F'. Here are some obvious
candidates for F':

(i) SO(3), acted on by itself by left translation;
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(ii) the standard representations R3 and C3;
(iii) the 2-sphere S? in R3;

(iv) (C? \ {0})/Z2, where C? is the standard representation of Sp(1);

(v) 83/Zy = RP®, where S® is the set of unit vectors in the above C2.

In each case the bundle F has been well studied. In (i) it is simply SO(V) itself,
and in (ii) we recover the bundle V' of endomorphisms defining the quaternionic
structure and its complexification V. In (iii) F is the subset of unit vectorsin V; it
is denoted by Z and called the twistor space of M. In (iv) we shall see that F can
be identified with the total space, minus its zero section, of a complex line bundle
L* over Z. Finally, (v) coincides with (i) as SO(V) may be also be identified with
the set of ‘unit’ vectors in L*.

The geometry of M is simplified to a greater or lesser extent when passing
to the total space of each of the above bundles, and there are pros and cons to
focussing on each case. However, it is Z that encodes the underlying quaternionic
structure of M most directly into complex geometry. We shall always denote the
projection Z — M by =, and a fibre 771(z) by Z,. Then each point z € Z, is an
almost-complex structure on T, M of the form a; ) +aslz +a3ls, where {I1, I, Is}
is a local orthonormal basis of V. Thus, a section s of Z over an open set M' of
M can itself be regarded as an almost-complex structure Iy on M'. Let 0: Z — Z
denote the ‘antipodal mapping’ I — — I defined on each S? fibre, and with no
fixed points.

THEOREM 4.2. [17, 104] Over a quaternionic manifold M, the total space Z
admits a complex structure with the property that (i) its fibres are rational curves
with normal bundle 2nO(1), (i1) o is anti-holomorphic, and (iii) a local section
s(M'") is a complex submanifold if and only if I; is an integrable complez structure.

Here, 2nO(1) is short for O(1) ® C?>", where O(1) denotes the hyperplane line
bundle; more generally O(k) will denote the tensor power O(1)®*. It is a corollary
that the quaternionic structure of M is always generated locally by a complex
structure I; and an almost-complex structure I, anti-commuting with I;. If I is
also integrable then the resulting structure is hypercomplex (see below).

We shall often call the fibres of Z over M the ‘twistor lines’. By identifying a
vector I; € Z, with the projective class of Iy + i3, one may also regard C = Z,
as the conic of null lines in the projective plane P((V).). In many situations the
vector spaces V, are explicitly realized as subspaces of a ‘universal’ vector space
V. In any case, since

(4.1) H°(C,2n0O(1)) = C*™, H'(C,2n0(1)) = {0},

Kodaira’s theory implies that C' belongs to a complex 4n-dimensional family of
rational curves. The existence of such a curve C' with the given normal bundle
thus captures the essential geometry of a twistor space.

The complex structure J on Z characterized by Theorem 4.2(iii) may be de-
fined by first identifying Z locally with the complex projective bundle

(4.2) P(H) = P(H ® 4%),
where A is the real line bundle arising from the standard representation of the
centre R* of G. The point is that the the twistor operator D; defined in (3.6)

is only invariantly defined if ©! is replaced by H = H ® A* for an appropriate
value of the ‘weight’ A (computed in [95] to equal n/(n + 1)). The integrability



98 S.M. SALAMON

of J may then be deduced by applying the proof of [8, Theorem 4.1] and results
on the curvature of quaternionic manifolds from [105]. Because Z is now complex
analytically a projective bundle, it is a corollary of this approach that there exists
a holomorphic line bundle L over Z which restricts to O(2) on each fibre. The
existence of a torsion-free connection is precisely the condition that guarantees the
integrability of (Z,J).

A special case of a quaternionic manifold is a manifold with a torsion-free
connection V preserving a GL(n, H)-structure. In this case V is trivial and there
exist globally-defined triples of parallel complex structures {I3,fz,I3}. Such a
manifold is called hypercomplex, and bears the same relationship to quaternionic
that hyper-Kéhler bears to quaternion-Kéhler (see [106] and references therein). In
fact, a hypercomplex structure is uniquely specified by two anti-commuting complex
structures I, I, for in this case I3 = I;I; is also complex, and the (‘Obata’)
connection V is uniquely determined.

If M is a hypercomplex manifold then the twistor space Z is trivial as a smooth
bundle, and the projection Z — CP' is holomorphic. Points of M correspond to
sections of 7 with normal bundle 2n(O(1). This point of view has proved par-
ticularly valuable in the construction of non-compact HK manifolds [17], and in
classifying deformations of hypercomplex manifolds [94].

One reason for including Definition 4.1 in this chapter is that curvature can be
defined in this more general context.

PRrROPOSITION 4.3. [105] (i) A quaternionic manifold has a tensor Rg that is
the component of the curvature of a torsion-free G-connection V independent of
the choice of V. -

(i1) On a hypercomplex manifold, the curvature of V equals Rg + R, where R, €
A? represents the curvature 2-form of k = N\>™0.

The canonical bundle « in (ii) is the complexification of a real bundle arising from
a homomorphism GL(n,H) — R*, and is therefore independent of the complex
structure chosen to define A2™°. Observe that A? = S?E is a subspace of A?T*M
defined by (3.2) by the G-structure. It can be identified with the intersection of
the spaces Al of (1,1)-forms relative to each almost-complex structure I € Z,.
A 2-form is called self-dual if it takes values in this subspace, which coincides with
A% when n=1.

As the notation implies, on a QK manifold R¢g can be identified with the non-
trivial component of the Riemann tensor defined by Corollary 3.4, and in 4 dimen-
sions, it would just be the non-vanishing half W, of the Weyl tensor. A compact
simply-connected quaternionic manifold with Rg = 0 is necessarily isomorphic to
HP™.

A hypercomplex manifold for which Rg = 0 = R, is covered by coordinate
charts with constant quaternionic linear transition functions. This class of man-
ifolds was considered by Sommese in the paper [109], which contains one of the
earliest references to the concept of the twistor space. Such affine flat examples
include $%"~! x S, and the abelian hypercomplex nilmanifolds considered in [40]
which are quotients of H". The tensor R, is a type of skew-symmetric Ricci ten-
sor, and less trivial examples with R, = 0 include metrics which are conformally
HK. A compact hypercomplex 4-manifold M necessarily has R, = 0, and Boyer
effectively used this to show that either M admits a HK metric (and is therefore a
torus or K3 surface), or else is diffeomorphic to a Hopf surface [25, 65].



QUATERNION-KAHLER GEOMETRY 99

Example. Suppose that M is a QK manifold with a compatible hypercomplex
structure. Let V represent its Levi-Civita connection, R the Riemann tensor, and
R the curvature of V. The difference V — V may be regarded as a 1-form o with
the property that a; = I;a in (1.2), and

S=R-R=Va+iaAa.

Since Rg must coincide with that component of R in S*E, it follows that the
symmetric part of S is proportional to the Riemannian metric g, and its skew
part da a self-dual 2-form. This approach is used in [5] to show that with certain
additional assumptions M must be quaternionic hyperbolic space.

Let F' be a complex vector bundle over a quaternionic manifold M , and suppose
that V is a connection on F'. The curvature Ry of V is a 2-form with values in
EndF, and referring to (3.2) we record the

DEFINITION 4.4. [105, 82, 90, 48] The connection V is called quaternionic,
of type Bs or cp-self-dual if Ry is self-dual as a 2-form so that Ry € EndF ® A2.

These connections satisfy the Yang-Mills equations. Although their moduli spaces
are known in some special cases with dim M > 8 [82, 88], ‘quaternionic Yang-
Mills theory’ is still in its infancy. The self-duality condition on the curvature of V
enables the complexes of differential operators described in §3 to be extended by
tensoring by F', and a number of cohomological results are known [89].

On a hypercomplex manifold, the connection V induces covariant derivatives
on all vector bundles associated (even locally) to the GL(n,H)-structure. The
same is true on a QK manifold equipped with its Levi-Civita connection V. The
following result is related to Proposition 4.3(ii).

LEMMA 4.5. On a hypercomplex or QK manifold, the connection induced on E
1s ¢z -self-dual.

Now suppose that M is a quaternionic manifold with £ = 0, and that V is
self-dual. Then there exists a twistor operator

D,:FeH—-»F®E®S*H,
where the tildes represent appropriate weights. If F has complex rank 2r and V

preserves a GL(r,H)-structure on F then D; is an operator between real vector
bundles of rank 4r and 12nr respectively.

THEOREM 4.6. [105] With the above hypotheses, the real (4n+4r) -dimensional
total space Mr of F ® H is a quaternionic manifold.

The twistor space of Mr can be identified with the total space of the complex

vector bundle (7='F) ® L'/? over Z, where L'/? is a holomorphic square root of
L determined by the smooth splitting 7~ H = L/2 @ L!/2. Indeed, the fact that
71 F is a holomorphic vector bundle over Z follows from the fact that the curvature
of the pulled-back connection 77!V has no (0,2)-component, and a celebrated
integrability theorem of Atiyah [8, 39]. For example, if M is hypercomplex, then
V is cg-self-dual if and only if V is ‘triholomorphic’.
Example. Let M be a QK manifold. Lemma 4.5 implies that the total space Mg
of the tangent bundle TM of a QK manifold is itself quaternionic. This applies in
particular to §* and CP2. In the latter case E = k1/2@%~'/? where « denotes the
canonical line bundle whose curvature is a multiple of the Kahler-form w € AT.
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Over an arbitrary quaternionic manifold one can take F = C> = H, and V
the trivial connection. Then Mp can be identified with the total space of the
quaternionic line bundle H. Let H* denote H with its zero section removed; this
may be regarded as a principal H*-bundle over M. The proof of Theorem 4.2
implies that H* admits a complex structure J, and the orbit of J under H* is a
2-sphere {al + bJ + cK : a®> +b? + ¢? = 1} of complex structures satisfying (1.1).
This endows H* and

with a hypercomplex structure. Natural though the definition of the twistor space
Z is, there is a sense in which it involves the choice of a complex structure, and the
construction of U overcomes this objection.

Example. The homogeneous space SU(n + 2)/SU(n) that fibres over the Wolf
space M = Gro(C"T2) is closely related to U, although of course one has compact
fibre and the other not. Let U’ = U/Z denote the bundle associated to U with
fibre U(1) x SO(3). Then there is a principal U(1)-bundle P over M such that
SU(n + 2)/SU(n) double covers the quotient of U’ x P by the diagonal action of
U(1). This action preserves the hypercomplex structure, and the latter persists
because P has a c¢;-self-dual connection which enables its complexififcation to be
viewed as a holomorphic bundle over the twistor space Z [60, 12]. The case n =1
relates to the fact that SU(3) is itself hypercomplex.

There are many ways in which the last example can be generalized to con-
struct compact hypercomplex structures on Stiefel manifolds [23], and Lie groups
[110, 61]. We conclude this section by summarizing the latter, which proceeds by
extending the decomposition (2.6) by a sequence of minimal 3-dimensional subal-
gebras.

Given a 3-dimensional subalgebra sp(l) = sp(1); of g = ho generated by a
highest root, one may regard its centralizer h = b; as a Lie algebra in its own right.
If this is not abelian it will contain a minimal 3-dimensional subalgebra sp(1)2 (see
the end of §2), and we may write h;_; = sp(1); ® h; ® m; for i > 1. Hence,

k
g = b & Pep(1); & my),
=1

where m; = C>™ @ X!, as an sp(1);-module, but lies in the centralizer of sp(1);
when j > i. The subalgebra §; is the centralizer of sp(1); in h;—1, and the
process can be continued unless b is abelian. Whether or not this is the case,
U(1)* x (G/Hy) has a hypercomplex structure with tangent space isomorphic to

k
R* & (g/bx) = DR & ImH & H™).

i=1

One can also replace H; by its semisimple part by adjusting the number of extra
U(1) factors required. Taking k£ maximal then yields a hypercomplex structure on
U(1)* x G for some integer k no greater than the rank of G (or 3 if G has rank
2).
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5. Fano Twistor Spaces

The Levi-Civita connection on M determines a horizontal distribution on all
the associated bundles considered in the last section. By general principles [17, 117]
that are discussed elsewhere in this volume, all these total spaces admit families of
Einstein metrics. The situation is particularly important when the scalar curvature
is positive.

THEOREM 5.1. [26, 102, 113] If M is a QK manifold with s > 0 then
(i) Z has a Kihler-Einstein metric,
(i) U has an HK metric, and distinct QK metrics, and
(i) SO(V) has a 3-Sasakian metric.

We might add that a Ricci-flat metric can be defined on V' using the techniques
of [29]. This metric will be irreducible and (it almost follows) will have holonomy
group equal to SO(4n+3), a fact that is significant as there are few known examples
of Ricci-flat metrics without reduced holonomy.

We shall now comment on additional structures that exist on these manifolds,
spending most time on Z. The horizontal space at a point 2z € Z, can be identified
with T, M and therefore has a natural complex structure determined by z. We
let D denote the corresponding bundle of complexified horizontal vectors of type
(1,0). The isomorphism (4.2) leads to an interpretation of the relevant structures
in terms of the ‘ EH’ formalism. The almost-complex structure determined by the
projective line [h] with h € H has E ® [h] as its subspace of (1,0)-vectors in
(T:M).. The quotient TZ/D can be identified with the holomorphic line bundle
L introduced after (4.2). It follows that

D~r*E®LY/?,

and this bundle acquires a holomorphic structure over Z, by Proposition 4.5, re-
flecting the Einstein curvature of M.

The following result appears in [102] (though what is here called L is there
called L?).

PROPOSITION 5.2. If s £ 0, D is a holomorphic contact distribution on Z.

To explain this, observe that the exact sequence
(5.1) 0-D->TZ—-L—-0

determines a holomorphic 1-form 6 € H*(Z,O(T*Z ® L)) with values in L. Al-
though df itself can only be calculated by choosing a local section of L, its re-
striction to A2D is independent of this choice and gives rise to an element of
H°(A?D* ® L) that is non-degenerate provided s # 0. This is the contact condi-
tion, and corresponds to the distribution D being ‘maximally non-integrable’.

Theorem 4.2 with Proposition 5.2 combine to give a powerful encryption of
QK metrics. LeBrun has shown that a complex contact manifold (Z, D) with a
fixed-point free anti-involution ¢ and a family of rational curves transverse to D
with normal bundle 2n(O(1) is the twistor space of a pseudo-Riemannian metric
with holonomy in Sp(p,n — p)Sp(1) for some p [77]. This inversion theorem also
led him to prove that the moduli space of complete such metrics on R*" is infinite-
dimensional [78]. We shall exemplify a family of rational curves with the stated
properties in §6.
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If Kk = A?"*1T*Z denotes the canonical bundle of Z, the well-defined section
6 A (d8)" € HO(Z,0(x @ L")

yields an isomorphism x* & L"*1. If s > 0, the 2-form defining the Kihler-Einstein
metric of Z is proportional to the curvature of a natural connection on L [102],
and L is an ample line bundle. Since the same is true of the anticanonical bundle
k*, Z is by definition a Fano manifold. The algebraic geometry of Fano 3-folds
from the twistor space point of view can be found in [56] and [92].

It is an open problem to determine conditions on a contact Fano manifold to
ensure that it is the twistor space of a positive QK manifold. In this direction,

THEOREM 5.3. [79, 86] If Z is a compact Kdhler-Einstein manifold with a
holomorphic contact structure then Z is the twistor space of some QK manifold
M.

The space U of (4.3) can be identified with the total space of L* over Z with
its zero section removed. The contact form @ pulls back (and then evaluates) to a
genuine 1-form on U. The contact condition ensures that the exterior derivative

(5.2) w=df

is in fact a holomorphic symplectic form on U. Indeed, any contact manifold has
a ‘symplectification’, and given Z, U is it. In the case in which s > 0, the total
space of L* has a natural K&hler metric, and the HK structure on U is generated
by an action of Sp(1)/Z, = SO(3).

Conversely, suppose that N is a hyper-Kahler manifold with a free action of
S0O(3) inducing a transitive action on the 2-sphere S? of complex structures. If,
furthermore, I X is independent of I € S? (where X is the vector field generated
by the circle subgroup preserving I') then N is locally isometric to the bundle U
of some QK manifold. This fact allows one to construct the join of QK manifolds.
If M; and M; are both QK, then the product U; x Us has a HK structure. It
follows that the manifold M7 x* My = (U; x Uz)/H* (locally isomorphic to an open
set of the quaternionic projective bundle P(H; & Hs)) is quaternion-Kahler. Taking
M = M; to have s > 0 and M, = {z} to be a point establishes the existence of
a QK metric on M x {z} = U with positive scalar curvature. More details, as well
as a related discussion of HK potentials, can be found in [113].

The bundle U can also be viewed as a cone over SO(V), and its HK structure
reflects the 3-Sasakian structure of SO(V) in accordance with the theory of Killing
spinors [9]. When M is a self-dual Einstein 4-manifold then SO(V') actually carries
an Einstein metric with so-called ‘weak holonomy G5’, and the quaternionic line
bundle H associated metrics with holonomy Spin(7) [43, 49]. The great signifi-
cance of the bundle SO(V) is that it may be a manifold even in situations in which
M has orbifold singularities; this has led to some surprisingly rich classification
questions [27], that are presented elsewhere in this volume. The manifold SO(V)
also has an underlying ‘quaternionic contact structure’, a notion exploited in [19]
for the local construction of QK metrics.

There are many general results that apply to a Fano contact manifold Z
without the assumption that it fibres over a QK manifold. The exterior powers
of the ‘DTL’ sequence (5.1) provide important information. Associated long ex-
act sequences relate the Dolbeault cohomology spaces H?(Z, O(A\PD ® LP)) and
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H?1(Z,0). This allows one to deduce that the Hodge numbers hP? of Z vanish
if p # q, and derive the following formula for holomorphic Euler characteristics.

0, 1<r<n-p,
(=1)PRPP, 7 =0.

The index of a Fano manifold is by definition the largest root of x that can be
extracted, and it follows from a well-known characterization of Kobayashi-Ochiai
[69] that if the index 2n + 2, the Fano manifold is biholomorphically equivalent to
CP?"*!. The index of a twistor space is n+1 unless L itself has a square root which
occurs if and only if € = 0. Two simply-connected complex contact manifolds are
contact-isomorphic if and only if they are biholomorphic [80]. A fuller discussion of
automorphism groups will be postponed until §7, but part (i) of the next theorem
now follows.

THEOREM 5.5. [102, 80] Let M be a positive QK manifold of dimension 4n.
(i) If e = 0 then M is isometric to HP™.
(ii) If by(M) > 0 then M is isometric to Gro(C**2).

As first pointed out by LeBrun, the characterization of QK manifolds with
by > 1 is a spin-off of results of Wisniewski [118] within the context of Mori’s
programme. The crucial property of the twistor space Z of such a manifold is
the existence of a rational curve C with C'- L = 1 whose homology class is not
proportional to that of a fibre of w. Through each point the family of such rational
curves actually spans out a projective space and Z can be identified with the total
space of the projectivization of a vector bundle over a variety X. The mapping
f: Z — X is a so-called Fano contraction, and its fibres are tangent to the contact
distribution. The key point here is that if C' is any rational curve satisfying L-C =
1, then the pullback of § to C is zero since H'(CP!, O(Q'(1))) = 0. It turns
out that the existence of a contact structure on Z allows one to deduce that X is
isomorphic to CP™"*! | and Z = P(T*CP™*!).

A study of Fano manifolds Z with b2(Z) = 1 (corresponding to by(M) = 0)
is accomplished in the papers [70, 87]. A key theorem asserts that in each fixed
dimension, the top power of ¢;(Z) is bounded, and this implies that there are only
finitely many deformation types. On the other hand, under appropriate hypotheses,
a Fano contact structure is rigid under defomation, whence

LEMMA 5.4. [102] X(Z,O(A*D ® L™P7")) = {

THEOREM 5.6. [80] Up to homothety, there are only finitely many positive
QK manifolds of dimension 4n.

The general theory of polarized varieties, as described by Fujita [45], is espe-
cially relevant to the study of low-dimensional Fano manifolds. We set
(5.3) Ry = H°(Z,0(L*)), ry = dim Ry,
and omit the subscripts when k£ = 1. The fact that L is ample implies that the
natural map
vp: Z = P(RZ)

is an embedding for k sufficiently large. However, we shall be more concerned with
v = vp, which is a well-defined mapping only if the base locus B of the linear
system |L| is empty. Relative to the ‘polarization’ defined by L, the A-genus is
defined by

A(Z) =deg(Z) —r+2n+1,
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where deg(Z) = (¢*"*1,[Z]) and ¢ = ¢;(L). Then

(5.4) A(Z) >dimB+1
(with the convention that dim ) = —1), and this equation limits the size of B.
Given that ¢;(T'Z) = (n + 1)¢, the Riemann-Roch theorem implies that
(5.5) re = (Ftd(Z),[2]) = <ef<"+1+2k>/2/i(2), [Z]> ,
where A(Z) is defined by (8.4). It follows that there exists a polynomial
2n+1
P(k) = deg(Z)(Zn—-l-l)! + lower powers of k,

such that 7, = P(k) for k > 0. This is the so-called Hilbert polynomial of the po-
larized variety (Z, L). Geometrical properties of u are encapsulated in the natural
homomorphism

(5.6) é SR - é Ry,
k=0 k=0

of coordinate rings. The space Ry is spanned by the pullbacks of homogeneous
polynomials of degree k to Z. We shall see in §6 that, for a twistor space, R = R;
is isomorphic to the complexification g. of the Lie algebra of the isometry group
G of M. Indeed, the individual linear mappings sx: S*R — Ry of (5.6) are G-
equivariant, and an understanding of the resulting representations leads to models
for twistor spaces.
The dimension of the space of polynomials of degree k in N +1 variables equals
( k X,N ) , and the Hilbert polynomial of (CPN, (1)) is
< t+N

. ):Nli(t+N)(t+N—1)~-~(t+1).

If X is an embedded hypersurface of CPY of degree h, then the kernel of (5.6)
is generated by the element of S*R whose zero set defines Z. It follows that the
Hilbert polynomial of X is

(W)-(75")

A dual situation occurs when Y is a covering of CP" of degree d branched over
a hypersurface of degree dh. In this case, the cokernel of (5.6) is generated by an
element of Ry, and the Hilbert polynomial of Y is

(W) (5")

Example. These situations are combined when Z is a branched covering of a hy-
persurface of CP"V. An analysis of the representations Ry for n = 4 shows that
one of the many potential twistor spaces Z of a real 16-dimensional QK manifold
has

4¢°
P(t) = ( t—i1-010 ) - ( tii—og ) + ( troﬁ‘ ) - < ti'-O4 ) =E+lowerterms,
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and the values of r, = P(k) for k > 1 are
(5.7) 11, 65, 275, 936, 2728, 7072, 16720, 36685, ... .

This is consistent with Z being the double-covering of a hyperquadric H in CP*°,
branched over the intersection of H with an octic, although a positive identification
of this sort requires more explicit knowledge of (5.6).

6. Isometry Groups and Moment Mappings

Let M be a manifold with a symplectic 2-form w, and a vector field X which
is an infinitesimal automorphism of w. Thus,

0=Lxw=Xldv+dX]1w)=dX1w),

and there exists a real-valued function f (defined on at least an open set of M) such
that X ] w = df. This basic observation underlies much of this section, though we
shall see in due course that analogues of f can be constructed on manifolds with
geometrical structures that are not obviously ‘symplectic’.

Next, suppose that M is a hyper-Kahler manifold, so that we can choose sym-
plectic 2-forms w;,ws,ws associated to a standard triple of complex structures. If
X is a Killing vector field on M whose corresponding 1-parameter group of isome-
tries preserves the HK structure, then the above observation shows that, locally,
there exist functions fi, fa, f3 such that df; = X J w;. These functions constitute
the ‘hyper-Kahler moment mapping’ for the 1-dimensional group action, but it is

3

convenient to represent them by means of the 2-form ¢ = 3 fiwi, so that
i=1

3
d¢ =Y dfiAwi=3X10Q
=1
in terms of (1.4).
This process generalizes to the QK case as follows. First we identify V with
the subbundle of A27T*M with fibre isomorphic to sp(1). A section ¢ of the bundle
V is called a ‘twistor function’ if

(6.1) d¢ = 1Xc1 0,

for some vector field X . The terminology is taken from [60], and the equation (6.1)
is equivalent to the assertion that Dy = 0, where D, is the operator described in
(3.6) using the Levi-Civita connection.

LEMMA 6.1. [102] Let M be a QK manifold of dimension 4n > 8 with non-
zero scalar curvature. The mapping ¢ +— X establishes a bijective correspondence
between the space of twistor functions and the space of Killing vector fields.

The inverse mapping is obtained as follows. If X is a Killing vector field then at
each point VX belongs to the subspace of End T determined by the holonomy
algebra sp(n) @ sp(1) [71]. Then, up to a universal constant, (VX)V = s(, where
the left-hand side is the component of VX in V. This works because the relevant
component of the derivative of (VX)V is proportional to X, thanks to the Ricci
identity and Einstein condition.
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Remark. It follows that, given a Killing vector field X on a QK 8-manifold,
Vs X)e?p A C A

is an eigenvector for the Dirac operator. Other eigensections of A are generated
by vector fields X for which VX belongs to the subspace of End T isomorphic
to A2E C gl(2,H). Such vector fields are non-isometric automorphisms of the
quaternionic structure, and in the compact case exist only on HP? [4, 79].

The fibre of V at z € M is naturally isomorphic to the space H°(Z,,(0(2))
of holomorphic sections of the restriction of the holomorphic line bundle L to the
twistor line Z,. In this way we obtain a mapping f from sections of V' to sections
of L over Z, and the following is a well-known example of the ‘twistor transform’:

LEMMA 6.2. [102] The mapping f induces an isomorphism between the space
of twistor functions and the space H°(Z,O(L))° of o -invariant holomorphic sec-
tions of L over Z.

Consider the beginning of the long exact sequence
(6.2) 0— H%(Z,0(D)) = H°(Z,0(TZ)) S H*(Z,0(L)) — ...

associated to (5.1). It is known that map ¥ Y J 6 induces an isomorphism
between the space of infinitesimal automorphisms of the contact structure and
H°(Z,0(L)), and it follows that any o-invariant automorphism of the contact
structure arises from an isometry of M [91]. Such an isometry will, in turn, induce
a holomorphic vector field on Z, and this process provides the indicated splitting
of the sequence (6.2).

Let Y be a holomorphic vector field on Z preserving the contact structure,
and let s =Y _1 6 be the corresponding section of L. The latter defines a genuine
function on U, and the equation

0=Lyf=dY10)+YI1dd=ds+Ylw

allows us to interpret —s as a holomorphic moment mapping on U. More invari-
antly, given s € g., a moment mapping

p:U — gg

is defined by p(u)(s) = s(u) for u € U and s € g..
The mapping

v: Z = P(H°(Z,0(L))*) = P(g%)

discussed in §5 may now be regarded as the projectivization of u. The image v(Z,)
of each fibre is determined by the restriction

ix: H(Z,0(L)) = H°(Z:,0(2)),
which corresponds (after complexification) to the mapping
Y18 (VY)Y eV

Suppose that the image of i, is 3-dimensional for every ¢ € M, so that v maps
the conic Z, to a conic in P(g}). After dualizing, one then obtains a mapping
M — Grs(g), and the situation may be summarized schematically:
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v 4 g
! |

(6.3) Z -5 Pg)
|

M ——— Grs(g)

Dotted arrows indicate mappings whose domain of definition may be a subset of
that indicated.

We are now in a position to explain the fundamental link between quaternion-
Kahler geometry and complex nilpotent orbits. Let G, denote a complex semisim-
ple Lie group and let G be a compact subgroup of G, corresponding to a real form
g of its Lie algebra g. = g + ig. An element of g. is nilpotent if and only if it lies
in the intersection of all invariant polynomials on g., and the set of such elements
forms the ‘nilpotent variety’ N'. Suppose that M admits a group of isometries G
that does not preserve any almost-complex structure that arises as a local section
of Z. Roughly speaking this is a ‘fullness’ assumption for the way the group inter-
acts with the quaternionic structure. In this case, L* cannot have any G-invariant
divisors for any k, and so H°(Z,O(LF)) cannot contain any G-invariant elements.
If follows that v(Z) C N/C*.

The fullness condition is certainly satisfied if v is an embedding (i.e. L is very
ample), or more generally if dim v(Z) = 2n+ 1. In these cases, it follows that v(Z)
is a nilpotent, coadjoint orbit, and this leads to

THEOREM 6.3. [16] If Z is a compact Fano twistor space and v(Z) has the
same dimension as Z, then M must be a Wolf space.

Let us now consider the general nilpotent orbit. The algebra of invariant poly-
nomials on g is generated by a finite set p; € S*g* with degrees ki,... ,k,, and
we may take k; = 2 and p; to be the Killing form. Thus, any nilpotent element
of ‘g, must be isotropic or ‘null’ relative to the Killing form, and if g = su(2)
this condition is of course sufficient. More generally, fix a non-zero homomorphism
p: su(2) = g. Then for any V € L,,, it is easy to see that isotropic elements of V.
are nilpotent not just in V, = s{(2,C), but also in g.. Thus, isotropic elements of
V. belong to the G.-orbit

(6.4) Up = {Ad(9)(§) : g € Ge},

where £ = p(A; + i42) in the notation of (2.2). Conversely, any nilpotent orbit
in g, may be written in the form (6.4) for some element £ arising from a real
homomorphism su(2) — g [72].

The fact that £ € U, if and only if A( € U, for any non-zero complex num-
ber A (infinitesimally, it is actually true that £ € (ad(e))?g.) ensures that the
projectivized nilpotent orbit

Z,=U,/C"
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is defined as a submanifold of P(g.). Now, U, is equipped with the Kostant-Kirillov
(holomorphic) symplectic form w, and has even complex dimension. A contact 1-
form 6 is induced on Z, for which the quotient line bundle L over Z is the pullback
of O(1) on P(g,).

Consider the quadric

Q@ = {[v] € P(gc) : =0}
of isotropic elements, itself isomorphic to the Grassmannian Grao(g). Given V €
Grs(g), we let Cy denote the conic P(V,) N Q. Recall Theorem 2.4. We have
already shown that if V € L, then Cy C Z,, and this is also valid for V € M,
for the following reasons. Let { = v; + 4ivp be an isotropic vector in V € M, \ L,,
where {v1,v2,v3} is an oriented orthonormal basis of V. It follows that
Vil (€) = (=[vz,v3] = p(V)or) +i(=[vs,v1] = $(V)A4,)
= i[v1 + i’Ug,’U3] — ’l/)(V)(’Ul + ivg),

belongs to T¢U,. This means that tangent vectors to the flow lines of ¢ preserve
the nilpotency property to first order at all points of M, \ L,. It is also easy to
check that for all a € Ty Gr3(g), we have a € To @ Ty if and only if a(£) € ad(é)g.
for all isotropic elements £ € V.

Let Z, denote the tautological bundle over M, whose fibre at a point V € M,
is the conic Cy, so that there is a natural mapping f: Zp — Z,. Since C' = Cy
satisfies (4.1), it belongs to a complex 4n-dimensional family of projective lines all
of the form Cy with V € Grs(g). We may restrict to a family of real dimension
4n by considering only those lines which are invariant by the real structure o of g,
which preserves Z,. It follows that f(Z,) is an open subset of Z,. On the other
hand, the Morse theory implies that f(Z,) is closed, since if {V,} is a sequence in
M, converging to Vo € Grsz(g), then the flow line containing V. emanates from
a critical manifold L), with ¢|L}, > 9|L. It is now easy to show that f is bijective,
and this analysis leads to the following characterization of Z, as a twistor space.

THEOREM 6.4. [114] Let p: su(2) — g be a non-zero homomorphism. There
is a fibration w: Z, — M, such that
(i) 7 (V) =Cv;
(i) Cv has normal bundle Ny = 2n0O(1) where 2n is its rank;
(i) Cy is transverse to the contact distribution.

The only known proof of (ii) relies on Kronheimer’s analysis of the nilpotent
orbit U, [75], though it is instructive to indicate its validity for V € L,. Suppose
that Z, has complex dimension 2n + 1. The fibre of Ny at [¢] € Cy is obtained
by applying ¢ to the right-hand side of (2.6). Decomposing each space ad(¢)XF in
(2.6) into weights, it follows that

deg(Nv) = >k = 2n,
k>1

and we may write Ny = EB O(k;) with E k; = 2n. The existence of holomorphic

vector fields pointing in all dlrectlons at each point of Z, implies that k; > 0. Since
Cv is a conic,

TP(gQ

TR0 =vi®0(2),

¥4
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and this vector bundle contains Ny as a subbundle. Because O(—k; +2) contains
no non-zero holomorphic sections if —k; + 2 < 0, it follows that k; < 2. Moreover
k; = 2 for some i if and only if Ny has a constant section determined by a non-zero

element in (| ad(£)g., but this intersection is easily seen to be zero.
[€]leCv

Remark. Given p, there exists a complex flag manifold F, = G./P and a ‘canonical
fibration’

fo: Z,=U,/C" = F,

with the property that the fibres of f are tangent to the contact distribution of Z,.
This mapping gives rise to a contact map U,/C* — P(T*F) that was exploited by
Kobak [67] in the study of harmonic maps. This construction is closely related to
the Springer resolution of the nilpotent variety of g..

7. Divisors and Quotients

To begin this section, let M be a (not necessarily compact) 4-dimensional
manifold with an anti-self-dual conformal structure, so W, = 0. This is equivalent
to saying that M is a 1-dimensional quaternionic manifold, as the assumption
imples that the twistor space Z is a complex manifold with a holomorphic line
bundle L satisfying L? = k*.

Suppose that M has a complex structure I, and let Dy denote the divisor of
Z formed from the disjoint union of the sections I and —1I.

THEOREM 7.1. [97] Dy € |L| if and only if the conformal class contains a
Kdhler metric.

Such a metric has zero scalar curvature by standard curvature properties, and is
therefore ‘scalar-flat Kahler’ (SFK). This theorem leads to a characterization of
anti-self-dual Hermitian surfaces [24].

Now suppose that M is a QK manifold of dimension 4n > 4. From the point
of view of §6, the relevance of Theorem 7.1 is that a non-zero Killing vector field
X gives rise to a such a divisor of L. The corresponding complex structure I is
the one whose 2-form is (/|¢|, and is defined away from the zero set

Mo ={z e M :((z) =0}

If x € M\ My then D intersects Z, in two points corresponding to +I.. To check
explicitly that I; is integrable, extend I, = I; to an orthonormal basis {I, I2, I3}
of V. In terms of (1.2), the condition (6.1) tells us that a; = [;a for ¢ = 1,2 and
some 1-form «. This implies that

Vix = IVxI,

which is indeed the condition that I, be a complex structure.

Suppose that M is a QK manifold with an action by S* preserving the quater-
nionic structure. Let X = X, denote the corresponding Killing vector field, and let
f denote the S!-equivariant function ||¢||?>. It follows from (6.1) that df =2 X J ¢,
or

(7.1) Elfkgradf =I.X.
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The various moment equations can be neatly encapsulated in the statement that,
if t is a formal variable that behaves like a closed 2-form with X J ¢ =0, then

0 =0-2t+ ft?

satisfies d{2+(X J Q)t = 0. This means that {2 is an equivariantly closed extension
of €1, and the situation is analogous to that of K&hler geometry [14, 7].

From (7.1), the set of critical points of f consists of the union of the zero set
My and the set

MS' ={zeM:X(z)=0}

of fixed points of the S!-action. If Mo N M5 = 0, so that S! acts freely on Moy,
then the result of Galicki-Lawson (Theorem 7.3 below) implies that Q = My/S! is
a QK manifold. The gradient flow therefore determines a diagram

(7.2) Q« M./S* + M5,

where M. = f~!(c), c is less than the first critical value of f, and every connected
component of the fixed point set M*° " is a Kéhler submanifold of M. The Hermitian
manifold (M \ Mo, g,I.) has been studied in [5], and M./S' may be regarded as
a Kahler quotient of it. The correspondence (7.2) realizes M as a ‘vehicle’ for the
abstract geometry associated to the quotient (), and can also be used to compute
the topology of () using the methods of [66]. This and other applications of Morse
theory to quaternion-Kéhler geometry discussed in this section, are due to Battaglia
[14].

Example. The only complete example of this construction arises from the action of
S on H*t! by left multiplication by e* which we now examine in some detail. The
commutator of S! in Sp(n + 1) is U(n + 1), and we may regard H"*! is the real
vector space underlying C**! ® C? by writing a quaternionic vector as a + bj with
a,b € C**1. The action of H* on C? extends to an action of GL(2,C) commuting
with U(n + 1), and this action is free outside the set S of simple elements (those
with rank less than 2) in the tensor product. The mapping a+bj +— (a,b) defines
an isomorphism

(H"\ $)/GL(2,C) = Gra(C™H),

and it follows that HP™ \ CP" is the total space of a bundle over Gry(C**!) with
fibres isomorphic to GL(2,C)/H* = HP!\ CP'. The 2-form ¢ on HP” can be
identified with the mapping

a+bj s (a+0bj)i(a+bj) = (|la||* - ||8]|*)i + 2abk,

and the fibre over a 2-plane IT € Gro(C**1) intersects My in the circle U(2)/Sp(1)
each point of which is represented by a unitary basis of II. Thus My/S? is also
isomorphic to Gro(C*t1).

This example illustrates the way in which a quotient by a non-compact group
may be replaced by a compact quotient. If X is the Killing vector field correspond-
ing to the S' action on HIP", then the tangent vectors I; X, X, I3 X defined at
any given point arise from a basis of sI(2,C)/su(2), and are always orthogonal
to My. In general one does not have the luxury of an SL(2,C) action, though
lifting to the twistor space does enable one to complexify an S' action. In the
example above, M $' = CP™ and M, /S! can be identified with the flag manifold
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U(n+1)/(U1) x U(1) x U(n)). In general one might conjecture that M./S? is
isomorphic to the twistor space of Q.

THEOREM 7.2. [14] If S! acts on a positive QK manifold M and the action
is free on My, then M is isometric to HP™.

Moreover, it is effectively a consequence of Theorem 5.5(ii) that Gry(C"t2) is the
only positive QK manifold that can be obtained as a QK quotient by a circle action
[13].

Passing to the more general case of a group action, suppose that G is a con-
nected Lie group acting on a QK manifold M as a group of isometries. For each
point x € M we obtain a mapping g — V. This gives rise to a ‘moment section’
v € I'(M,g* ® V) which is G-equivariant.

THEOREM 7.3. [47] If G acts freely on the zero set My of v then Q = My /G
is a QK manifold.

This quotient construction commutes with the hyper-Kahler quotient construction
on U, in the sense that the bundle associated to @ with fibre H* /Z5 can be realized
as an HK quotient of U [113]. There is also a corresponding notion of ‘contact’
quotient construction on Z, enabling one to extend the commutativity of (6.3) to
quotients as well as embeddings. Incidentally, the paper [52] describes an example
of a holomorphic contact orbifold obtained as a Kahler S!-quotient, and used to
compactify a moduli space of Higgs bundles.

Remark. The quaternionic quotient construction arises naturally in relation to the
decomposition of a tensor product into irreducible components. Let G be a compact
Lie group with complexification G.. Suppose that W is a complex (2n + 2)-
dimensional vector space upon which G acts linearly, commuting with an antilinear
involution j: W — W and an identification W* = W. The action g W —» W
induces a G-equivariant mapping

p: WeW - g%,
which is best regarded as projection to a summand of the tensor product. Let
Wo={weW:p(wew)=0=p(w jw)}
(the notation is taken from [103]). Then the quotient by G of the flat hyper-Kahler
structure on W is Wy /G, and the QK quotient of P(W) = HP" is Wy /(G x H*).
In this set-up, the function f(w) = ip(w ® jw) is a real-valued moment mapping
for the action of G on the Kéhler submanifold Wj = {w € W : p(w ® w) = 0},
and the curves exp(itA), with A € g, are trajéctories the gradient flow of || f||?. It

follows from the theory of [66] that W /G = f~1(0)/G can be identified with the
geometrical invariant theory quotient of W{.

Less standard actions of S! give rise to a host of quaternion-Kihler orbifolds.
Starting from HIP?, an analogous but more general procedure produces self-dual
Einstein metrics, for example on the weighted projective planes

2 CS\{O} AEC*

ik = Gy v O,y M2

This orbifold has (0,0,1) as a unique singular point, and may be viewed as a 1-
point compactification of the total space of the line bundle L=* over CP!. In [60],
Joyce shows that it admits a U(2)-invariant twistor function characterizing the SFK
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metric constructed by LeBrun in [76]. He also shows that formal combinations of
such metrics can be then deformed to self-dual metrics on connected sums nCP2.

Although complete metrics with negative scalar curvature exist [78], singular-
ities seem inevitable in the positive case. From the quotient point of view, these
arise when G does not act freely on My. An exhaustive study of the resulting
singularities has been given in [37].

Example. The action of S on the Wolf space M = Gr4(R") arising from inclusions
S C U(3) € SO(7) has been described in [68]. The fixed point set M $* consists
of two copies of CP?, one of which lies in My. In fact, the quotient My/S! can
be identified with the locally-symmetric singular space Z3\G2/S0O(4)/Z3 which is
itself an H* -quotient of the nilpotent variety {A € sl(3,C) : A3 = 0}.

Let M be an arbitrary QK manifold. The subgroup S! of SO(3) fixing the
complex structure I; on the associated bundle U gives rise to a moment mapping

p1: U — R which equals the square of radial distance measured on the fibres of U
over M. Then

Z= ' (1)/8"

may be regarded as a Kéahler quotient of U. The Kahler form of Z can be used
to construct a Kéhler quotient of Z, which provides an unexplored link between
quaternion-Kéhler and Kahler geometry. For example the action of S' on an open
set of a QK manifold M gives rise to a Kihler metric on a space of the same real
dimension.

One can always define a ‘quadratic moment mapping’

F: M — S%g*

by F(z)(A,B) = (Ca(z),(B(z)), for A,B € g. This is the generalization of the
function f defined for an S! action above, and can also be regarded as the Sp(1)-
invariant component of the hyper-Kahler moment mapping on the associated bundle
U. A computation of the derivative of F' shows that it will be an immersion if,
at each point z, v has rank 3 and the quaternionic span of the tangent space to
the orbit G(z) equals T, M. In general, S?g* will decompose into a number of
irreducible G-modules U;, and we may write F(z) = Y F;(z), with F;(z) € U;.
One of the U; is the 1-dimensional space spanned by the Killing form of g, and
there will be other trivial summands if and only if G is not simple. The orbit G(z)
will then fibre over each of the orbits G(F;(z)) with F;(z) # 0. For example, if G
is not simple, a component of F' determines a G-equivariant mapping M — g*,
and the orbits of G will all fibre over coadjoint ones.

Example. Let M = Gry(R"**) and G = SO(n +4). If g = so(n + 4) then the
decomposition of S2g is well known from the theory of curvature tensors; we may
write

Slg=WaoAN o©SEaoR

The component of F' in R is the norm of the moment mapping, and must be
constant given that G acts transitively on M. Since the stabilizer of F/(m) must
contain the stabilizer of m, we may deduce that F(M) C A*® R, and ignoring the
R-component, F is a Pliicker embedding.
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We remarked in §2 that the Wolf space Gry(R®) has some special properties.
Each point of the twistor space Z of its non-compact dual defines a null line in the
complex quadric @* (in CP®), which is a compactification and complexification of
Minkowski space. This is the basic example of a phenomenon discovered in [77]
that associates to any real analytic conformal manifold N of signature (3,n — 1)
a QK 4n-manifold M with s < 0. The twistor space of M is an open set of the
space of null geodesics of a complexification of N.

8. Characteristic Classes and Constraints

Suppose that M is a QK manifold for which (partly for convenience of expo-
sition) € = 0, so that M has a distinguished principal G-bundle P with G =
Sp(n) x Sp(1). Then P may be regarded as the pullback of the universal bun-
dle Eg by a suitable map f to the classifying space Bg = Eg/G. Characteristic
classes on M arise by pulling back elements of the cohomology ring H*(Bg), which
is identified with the subspace of W -invariant elements of H*(Br) where T is a
maximal torus of G and W = N(T)/T is the Weyl group.

If z1,... ,z, are coordinates on the Lie algebra sp(n) and y is a coordinate
on sp(1), then W permutes the former and changes an arbitrary number of signs,
so that |W| = 2"+1n!. We may interpret the symbols zi,... ,Z,,y as cohomol-

ogy classes on Br by means of the natural isomorphism H!(T) = H?(Br), and
H*(Bg) is generated by the elementary polynomials

2. 2 2
Cok = Z Try Ty = Try k=17-"7n7
r1<re<- - <rg
u=—y2
Then f*cs,...,f*con are the Chern classes of the vector bundle E, and f*u is

minus the 2nd Chern class of H. Moreover, these classes are well defined as elements
of H*(M,Q) even when the structure of M does not lift to G. For example, 4f*u
is always integral and represented in de Rham cohomology by a constant multiple
of the 4-form . In practice it is often convenient to replace the Chern classes of
E by the Pontrjagin classes of M. The kth such class equals f*py (for 1 <k <n)
where p;, is the polynomial of degree 2k defined by

2n 2n
S (-Dkp = [I (1 - X2).
k=1 r=1

An irreducible G-module V decomposes under T as the direct sum of 1-
dimensional spaces V), where the weight A € t* describes the eigenvalues of
(e®1,... ,e'®1 eW). The representation ring R[T] is thus the polynomial algebra
generated by et®1,... e*® eV and restriction to T defines an injective ring
homomorphism

ch: R[G] = C[[z1,... ,zn,y]],

whose image is contained in the space of W -invariant formal power series. The
usual Chern character of the vector bundle P xg V is simply f*ch(V).
As an illustration, first consider

ch(E®H) = (2n-c+ &(c® —2c) +--)2+u+ Hu? +--)
= 4n+2(nu - c) + g(c2® — 2¢c4 — bcou + nu?) + - - -
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and it follows that
= 2(nu-—c),
P2 = c22+2c4+ (6 —4n)cou + (2n — 1)nu?.
The Euler class of the oriented real vector bundle T'M is the pullback of the class

2n n n
(8.1) e= H X, = H($T2 —-y%) = Z@ﬂt"""

r=1 r=1 r=0
on Bg. The last term coincides with the Chern class ¢y, of the virtual vector
bundle E — H. In this sense, the lemma is analogous to the fact that the Euler
class e underlying a complex vector bundle V is its top Chern class.

Example. Over the projective space HIP", the direct sum E @& H can be identified
with the trivial bundle with fibre H**! with H the tautological line bundle and E
its complement. Hence

(I+ce+ecs+--+co)(l—u)=1,

cor, = u* and e = (n + 1)u™. Since X (HP™) = n + 1, we deduce that u® = 1. On
an arbitrary compact QK manifold, with our choice of orientation, all one knows is
that the ‘quaternionic volume’

v(M) = ((4w)", [M])

is a positive integer, and deg(Z) = 2v(M). A known estimate for the Chern number
™! on the twistor space Z [80] implies that v(M) < 2v(HP™) = 2-4". It is also
known that the integer

(82) v'(M) = (n - 1)u(M) - 2 (p1(4u)" ", [M])

is non-negative, with equality if and only if M is HP™ [102].
Let

(8.3) D:T(M,A;) > T(M,AL)

denote the Dirac operator described in §3. If V € R[G], the Dirac operator may
be coupled to the corresponding virtual vector bundle in order to define the index

ind(V') = dimker D — dim coker D.
The Atiyah-Singer index theorem implies that

ind(V) = (ch(V)A(TM) ),

where angular brackets indicate the evaluation or ‘integration’ of a cohomology
class on the fundamental cycle [M]. The A class is defined by

1
A —_— 2n _XT —_— A A e
(8.4) A=Ilagiay, = trhtdd
= 1—gqp + ot Tm® —4p2) + -+
To present the results of this section in a more general context, we shall first

consider the case of a compact oriented 8-dimensional Riemannian 8-manifold M
with a holonomy group K of rank less than 4. If M is neither locally reducible
nor symmetric, then K has to be one of the groups

K | $p(2)Sp(1) | Spin(7) | SU(4) | Sp(2)

k | 0 | 1 | 2 | 3
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In all cases M is a spin manifold. The last three groups correspond to Ricci-flat
geometries, and the integer k is the dimension of the space of parallel spinors [117],
which we may arrange to equal dimker D in (8.3).

The existence of the * operator on 4-forms allows one to decompose by =
bt — b~ , where

bt = dim{o € y(M, N'T*M) : x0 = %0, do = 0}.
The Hirzebruch signature theorem implies that
br—b = %(7102 -pi®),

and the Atiyah-Singer index theorem asserts that k is equal to the A genus Ay
given in (8.4). Using the extra equation

4p; — pr® = 8X
that follows merely from the topological reduction (see for example (8.1)), we obtain
PROPOSITION 8.1. [62] k = ﬁ (bt —2b~ + b3 —by+b —1).

It follows that the Betti numbers are ‘relatively large’ in the Ricci-flat cases.
Indeed, if M is an irreducible HK manifold so that H = Sp(2) then b; = 0 and
Hodge theory implies that b~ = 3h(1)’1 = 3(by — 3). It follows that

(85) bz + by = 10by + 46,

and the right-hand side is at least 76. By contrast, if H = Sp(2)Sp(1) and s > 0,
then by,b3, b~ all vanish, and

(8.6) by =1+ by.

This equation plays a crucial role in proofs that M must in fact be one of the
symmetric spaces Gra(C*), Go/SO(4), HP? (recall Theorem 2.1). If M is not
the complex Grassmannian, then by = 1 which gives an extra relation between
characteristic classes.

It is rather surprising that the equations (8.5),(8.6) have non-trivial general-
izations to higher dimensions:

THEOREM 8.2. [108, 80] Let M be a compact Riemannian manifold of dimen-
sion 4n with holonomy group K and scalar curvature s.

2n
(i) If K C Sp(n) (so that s =0) then nX =6 3 (—1)"*byn—;.

i=1

(i) If K C Sp(n)Sp(1) and s > 0 then nZ_:l[Gi(n —1-i)—(n—-1)(n - 3)]by =
=0
—é—n(n — )by,

The more attractive form of the first equation reflects the fact that products
of HK manifolds remain HK. Quaternion-kahler manifolds enjoy no such functorial
properties, though the second equation can be expressed in the more memorable
form

[m/2]
(8.7) > i(m—i)(m - 2i)y; =0,
=1

by setting m =n+1, v; = B2i — Bom—2i and Ba; = baj — bzi—4 (see (1.6) and [49]).
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Remark. Fix k£ with 1 < k < n. There is a non-trivial action of Z, on HP" induced
by changing signs of k of the coordinates of H**!. Work on other manifolds
with exceptional holonomy suggest that in assessing the relevance of topological
constraints to orbifolds like N = HP"/Z, it is more relevant to consider the ‘string-
theoretic’ Poincaré polynomial Py (t) formed by adding contributions for the fixed
point set. The latter is a disjoint union HP*~! U HP"t1~* g0

Pyy(t) = Qn + 2 Qo + > 2Q 4,

n .
where Q, = 3" t*. It follows that, in the above notation, N has
=0

B; = 1, i=korn+1-k,
z 0, otherwise.

and 72; = 0 for all ¢. This provides some justification for the symmetry in (8.7).

The complicated nature of Ay, for k > 2 leads one to seek virtual representa-
tions V for which ch(V') has only terms of near top dimension. To make this pre-
cise, let Fj denote the space spanned by virtual representations V of Sp(n)Sp(1)
such that ch(V) has no terms of degree less than 2k. The sequence of ideals
coo D Fr D Fg+1 D --- is an example of the y-filtration that is used to derive
the graded structure of cohomology from K-theory [46]. It is easy to describe the
restriction of this filtration to R[Sp(1)]. Since ch is a ring homomorphism and
F;Fr C Fjt+k, we have (X2 — 3)* € F, for any k, and in fact (X2 — 3)* generates
Fi N R[Sp(1)]. Expanding both sides of the equation

ch((2? - 3)"*F) = (du + Fu® + .- )"H*
and recalling (5.5) and (8.2) yields

PROPOSITION 8.3. [53] Let M be a compact QK manifold of dimension 8m.
Then

%(v’ +3(n—-1)w), k=-1,

m+k

[ 4m +2k+1
Z(—l)’( m+ik+ )Tm+k—i= v, k=0,
=0 0, k> 1.

An analogous result holds when M has odd quaternionic dimension.

Example. Let n = 2m = 4. The Hilbert polynomial is completely determined
by the dimension r = r; of the isometry group and the quaternionic volume v.
Combining the formula for k¥ = —1 with (5.4) gives

T+3v<r<2v+9.

For example, 7 = 11 and v = 2 gives the values (5.7) in §5, though the resulting
polarized variety with A = 2 must be smooth and has topology inconsistent with
that of a twistor space.

A deeper analysis of the filtration F}, is used in the proof of Theorem 8.2. This
relies on the existence of W,, € R[G] such that

ch(W,) = y(1+ 5p1),

where y has degree 4n —4, ensuring that ind(W,,) vanishes [107]. The element W,
is generated from representations of the form RP? = Al ® £, and the associated
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vector bundles may be coupled to the Dirac operator provided p + ¢ + n is even.
The associated indices

1?9 = ind D(RP*?)
play a fundamental role.

The index of the Dirac operator on M coupled to ¥? is equal to that of the
Dolbeault complex on Z coupled to the line bundle O(q — n), whence

P = X(Z,0(r*Ab(q — n)).

Using h?P(Z) = bap—2 + bap (with b_p = 0), Lemma 5.5 implies that on a positive
QK manifold of dimension 4n,

0, n=p+q+2r, r>0,
ip’q = (—1)p(b2p—2 + b2p)7 n=p + q,
T(g-n)/2; p=0,g2n

Observe that {%"*2 = r; is the dimension of the isometry group. The next result
is the generalization of (2.1) to the case of an abstract QK manifold, and is proved
in the same way as Theorem 8.3:

n
PROPOSITION 8.4. [41] 37 (=1)PiP" 2P = 2X + boy_ + boy,.
p=0

It follows from [79] that ¢%"+! = 0 unless M = HP". It is an interesting problem
to understand the indices i»"~P*! for p > 2, and identify the cohomology spaces
that might contribute to their non-vanishing.
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