Lectures on Einstein Manifolds

Compact Riemannian Manifolds with Exceptional Holonomy

Dominic Joyce

Suppose that M is an orientable n-dimensional manifold, and g a Riemannian
metric on M. Then the holonomy group Hol(g) of g is an important invariant of
g. It is a subgroup of SO(n). For generic metrics g on M the holonomy group
Hol(g) is SO(n), but for some special g the holonomy group may be a proper Lie
subgroup of SO(n). When this happens the metric g is compatible with some extra
geometric structure on M, such as a complex structure.

The possibilities for Hol(g) were classified in 1955 by Berger. Under conditions
on M and g given in §1, Berger found that Hol(g) must be one of SO(n), U(m),
SU(m), Sp(m), Sp(m)Sp(1), G2 or Spin(7). His methods showed that Hol(g) is
intimately related to the Riemann curvature R of g. One consequence of this is
that metrics with holonomy Sp(m)Sp(1) for m > 1 are automatically Einstein, and
metrics with holonomy SU{m), Sp(m), G2 or Spin(7) are Ricci-flat.

Now, people have found many different ways of producing examples of metrics
with these holonomy groups, by exploiting the extra geometric structure — for exam-
ple, quotient constructions, twistor geometry, homogeneous and cohomogeneity one
examples, and analytic approaches such as Yau’s solution of the Calabi conjecture.
Naturally, these methods yield examples of Einstein and Ricci-flat manifolds. In
fact, metrics with special holonomy groups provide the only examples of compact,
Ricci-flat Riemannian manifolds that are known (or known to the author).

The holonomy groups G2 and Spin(7) are known as the ezceptional holonomy
groups, since they are the exceptional cases in Berger’s classification. Here G is a
holonomy group in dimension 7, and Spin(7) is a holonomy group in dimension 8.
Thus, metrics with holonomy G» and Spin(7) are examples of Ricci-flat metrics on
7- and 8-manifolds. The exceptional holonomy groups are the most mysterious of
the groups on Berger’s list, and have taken longest to reveal their secrets — it was
not even known until 1985 that metrics with these holonomy groups existed.

The purpose of this chapter is to describe the construction of compact Riemann-
ian manifolds with holonomy G2 and Spin(7). These constructions were found in
1994-5 by the present author, and appear in [16, 17] for the case of G2, and in [15]
for the case of Spin(7). They are also summarized in a short survey paper [18],
and will be discussed at much greater length in the author’s forthcoming book [19].

These constructions are interesting because they provide new examples of Ricci-
flat 7- and 8-manifolds — in fact, the G5 case provides the only known examples of
compact, simply-connected Ricci-flat manifolds of odd dimension. They are also
important to physicists working in String Theory, who need compact 7-manifolds

©1999 (International Press)
39



40 DOMINIC JOYCE

with holonomy G2 to explain why the universe apparently has only 4 dimensions,
rather than the 11 dimensions it really ought to have.

We begin in §1 with an introduction to holonomy groups of Riemannian metrics,
and Berger’s classification. Sections 2 and 3 define the holonomy groups G2 and
Spin(7), and give the background material we shall need. Section 4 is an aside on
metrics with holonomy SU(2), and the Kummer construction for such metrics on
the K3 surface. The G2 and Spin(7) constructions are in fact motivated by and
modelled on the Kummer construction, so we describe this first as a simple model.

Sections 5-9 explain the construction of metrics of holonomy G2 and Spin(7) on
compact 7- and 8-manifolds. The ideas are first summarized in §5, which divides
the proof into four steps. These steps are then covered in more detail in §6-§9
respectively. The most difficult part is Step 3, which uses analysis to construct
a solution of a nonlinear elliptic partial differential equation. Finally, in §10 we
suggest some areas for future research.

1. Riemannian Holonomy Groups

Section 1.1 introduces the theory of Riemannian holonomy groups, §1.2 dis-
cusses G-structures and their torsion, and §1.3 describes the classification of possi-
ble holonomy groups of Riemannian metrics. Some good references on this material
are Salamon [30], Joyce [19], and Kobayashi and Nomizu [20, Chapters 2-4].

1.1. Basic Notions. Throughout this section, let M be a connected manifold
of dimension n and g a Riemannian metric on M, and let V be the Levi-Civita
connection of g, regarded as a connection on the tangent bundle T M of M. Suppose
that v : [0,1] — M is a smooth path, with v(0) = p and (1) = ¢q. Let s be a
smooth section of yv*(T'M), so that s : [0,1] = T'M with s(t) € T, M for each
t € [0,1]. Then we say that s is parallel if V5 )s(t) = 0 for all ¢ € [0, 1], where ¥(2)
is %’Y(t) € pr(t)M.

It turns out that for each v € T, M, there is a unique parallel section s of
y*(T'M) with s(0) = v. Define a map P, : T,M — T,M by P,(v) = s(1). Then
P, is well-defined and linear, and is called the parallel transport map along . This
definition easily generalizes to piecewise-smooth paths . Since V is the Levi-Civita
connection of g, we have Vg = 0. Using this one can show that P, : T,M — T,M
is orthogonal with respect to the metric g on T, M and T, M.

Here is the definition of holonomy group.

DEFINITION 1.1. Fix a point p € M. We say that v is a loop based at p if
v :[0,1) = M is a piecewise-smooth path with v(0) = y(1) = p. If v is a loop based
at p, then the parallel transport map P, lies in O(T,M), the group of orthogonal
linear transformations of T, M. Define the (Riemannian) holonomy group Hol,(g)
of g based at p to be

(1.1) Hol,(g) = {P, : v is a loop based at p} C O(T, M).

A loop « based at p is called null-homotopic if it can be deformed to the constant
loop at p. Define the restricted (Riemannian) holonomy group Holg(g) of g to be

(1.2) Hol%(g) = { Py : v is a null-homotopic loop based at p}.

The following properties are elementary, and easy to prove.
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PROPOSITION 1.2. Both Hol,(g) and Holg(g) are subgroups of O(T,M). Sup-
pose that p,q € M. Since M is connected, we can find a piecewise-smooth path
v :[0,1] = M with v(0) = p and v(1) = g, so that P, : TyM — T,M. Then

(1.3) P,Hol,(g) P;* =Holy(9) and  P,Hol)(g) P;" = Hol)(g).

By choosing an orthonormal basis for T,M we can identify O(T, M) with the
Lie group O(n). Thus we may regard Hol,(g) and Holg(g) as subgroups of O(n).
Changing the choice of basis changes the subgroups by conjugation by an element
of O(n). Thus, Hol,(g) and Holg (9) may be regarded as subgroups of O(n) defined
up to conjugation. Moreover, equation (1.3) shows that in this sense, Holy(g) and
Holg(g) are independent of the base point p. Therefore, we omit the subscript p,
and write Hol(g) for the holonomy group of g and Hol’(g) for the reduced holonomy
group of g, both of which are subgroups of O(n) defined up to conjugation.

Our next result, taken from [20, p. 73, p. 186), is rather more difficult.

THEOREM 1.3. The reduced holonomy group Holo(g) is a closed, connected, Lie
subgroup of SO(n). It is the connected component of Hol(g) containing the identity,
and is normal in Hol(g). There is a surjective group homomorphism ¢ : (M) —
Hol(g)/Hol%(g). Thus Hol(g)/Hol’(g) is countable, and if M is simply-connected
then Hol(g) = Hol(g).

Because Hol%(g) is a Lie group, it has a Lie algebra. We define the holonomy
algebra hol(g) of g to be the Lie algebra of Hol’(g). Then hol(g) is a Lie subalgebra
of o(n), defined up to the adjoint action of O(n). Similarly, define hol,(g) to be the
Lie algebra of Holg (9), which is a Lie subalgebra of o(T,,M). Using g we may identify
o(T,M) with A>Ty M, so that hol,(g) becomes a vector subspace of A>Ty M.

Now the holonomy algebra hol(g) is intimately connected with the Riemann
curvature tensor R, , of g. Actually, we find it more convenient to lower the index
a and work with the tensor Rgpcq = goeRS;.4, Which we also call the Riemann
curvature. Here are two results relating Rgpca and hol,(g).

THEOREM 1.4. The Riemann curvature tensor Rypeq lies in S? hol,(g) at p,

where hol,(g) is regarded as a subspace of A2T;M . It also satisfies the first and
second Bianchi identities

(14) Rabcd + Radbc + Racdb - 07
(15) and VtE-Rabcd + chabde + vdfzabec =0.

The second result is the Ambrose-Singer Holonomy Theorem [2].

THEOREM 1.5. Let p and g be points in M, let v : [0,1] = M be piecewise-
smooth with y(0) = p and v(1) = q, and let P, : T,M — T,M be the parallel
transport map. Write tensors at p using the tensor indices a,b, and tensors at q
using the tensor indices i, j, k,l. Let v,w € T,M, so that

(1.6) (PA,)Z(PW){;Rijkwkwl lies in A2T;M,

where R;ji is the Riemann curvature at q. Then hol,(g) is the vector subspace of
AQTI;“M spanned by all elements of the form (1.6), for all g € M.
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Let (M1,g:1) and (M2,g2) be Riemannian manifolds, of positive dimension.
Then the product M; x M, has tangent spaces T(p,q)(Ml x Ma) 2 T,My, @ Ty M,.
Thus we may define the product metric g1 X g2 to be g1|p + g2|5 at each (p,q) in
My x M,. This makes M; x M, into a Riemannian manifold (M; x Ms, g1 X g2),
called a Riemannian product. The holonomy group of a product metric is the
product of the corresponding holonomy groups.

PROPOSITION 1.6. Let (M1,g91) and (Mas,gs) be Riemannian manifolds, with
Riemannian product (M; x My, g1 X g2). Then Hol(g; X g2) = Hol(g1) x Hol(gs).

We call a Riemannian manifold (M, g) reducible if every point has an open
neighbourhood isometric to a Riemannian product, and irreducible if it is not re-
ducible. Here is a kind of converse to Proposition 1.6.

THEOREM 1.7. Let (M, g) be an irreducible Riemannian manifold of dimension
n. Then the natural representation of Hol(g) on R™ is irreducible.

There is a class of Riemannian manifolds called the Riemannian symmetric
spaces which are important in the theory of Riemannian holonomy groups. A Rie-
mannian symmetric space is a special kind of Riemannian manifold with a transitive
isometry group. The theory of symmetric spaces was worked out by Elie Cartan
in the 1920’s, who classified them completely, using his own classification of Lie
groups and their representations.

A Riemannian metric g is called locally symmetric if VR = 0, and nonsym-
metric if it is not locally symmetric. It turns out that every locally symmetric
metric is locally isometric to a Riemannian symmetric space. The relevance of
symmetric spaces to holonomy groups is that many possible holonomy groups are
the holonomy group of a Riemannian symmetric space, but are not realized by any
nonsymmetric metric. Therefore, by restricting attention to nonsymmetric metrics
one considerably reduces the number of possible Riemannian holonomy groups. For
more information about symmetric spaces, see Kobayashi and Nomizu [21, §XI] or
Helgason [14].

1.2. Holonomy Groups and Torsion-Free G-Structures. Now we ex-
plain a useful mathematical tool for studying holonomy groups.

DEFINITION 1.8. Let M be a manifold of dimension n, and F' the frame bundle
of M. Then F is a principal bundle over M with fibre GL(n,R). Let G be a Lie
subgroup of GL(n,R). Then a G-structure on M is a principal subbundle P of F,
with fibre G.

Let (M, g) be a riemannian n-manifold, with frame bundle F. Then each point
of F is a basis (e1, ..., ey) for one of the tangent spaces T, M of M. Define P to be
the subset of F of bases (ey, ..., e,) which are orthonormal with respect to g. Then
P is a principal subbundle of F' with fibre O(n), and so P is an O(n)-structure
on M. This gives a 1-1 correspondence between O(n)-structures and Riemannian
metrics on M.

Now let M be an n-manifold, G a Lie subgroup of O(n), and @ a G-structure on
M. Then P = O(n)-Q is an O(n)-structure on M containing @, which corresponds
to a Riemannian metric g on M. Let V be the Levi-Civita connection of g. Then
V is a connection on P. We say that @ is torsion-free if V preserves the subbundle
Q of P. To each G-structure @ on M we can associate a tensor T'(Q) called the



COMPACT RIEMANNIAN MANIFOLDS WITH EXCEPTIONAL HOLONOMY 43

torsion of ), which measures the failure of V to preserve @), and @ is torsion-free
if and only if T(Q) = 0.

The relationship between torsion-free G-structures and holonomy groups is
given by the following Proposition.

PROPOSITION 1.9. Let (M, g) be a manifold of dimension n, and let P be the
O(n)-structure on M associated to g. Suppose G is a Lie subgroup of O(n). Then
there exists a torsion-free G-structure @ contained in P if and only if Hol(g) C G.
More generally, there is a 1-1 correspondence between the set of torsion-free G-
structures on M contained in P, and the homogeneous space

(1.7 {a € O(n) : a™'Hol(g)a C G}/G.

Let @ be a G-structure on M. Then G is a subgroup of GL(n, R), and so it has
a natural representation on R", and therefore also on Vi; = @*R* ® Q' (R")*
Now the tensor bundle ®k TM ® ®l T*M over M is canonically isomorphic to
@ Xg Vi,i. This has two important consequences. Firstly, if the representation
Vi of G splits into a direct sum of subrepresentations, then the tensor bundle

®"TM ® ® T*M on M has a corresponding splitting into subbundles. Thus, a
G-structure decomposes tensors into components.
Secondly, if an element t € Vi, is fixed by the action of G, there is a corre-

sponding tensor T in C°°(®k TM® ®l T*M). Moreover, if @) is torsion-free, then
we have VT = 0, where V is the Levi-Civita connection of the metric g associated
to Q. Thus, to each torsion-free G-structure we can associate a number of constant
tensors, that is, tensors T on M with VT = 0.

PropOSITION 1.10. Let M be a manifold, g a Riemannian metric on M, and
V the Levi-Civita connection of g. Then there is a 1-1 correspondence between ele-

ments t of Vi fized by Hol(g), and constant tensors T € C®(QF TM Q' T*M).

1.3. Classification of Riemannian Holonomies. The following very im-
portant result was proved by Berger [5, Thm. 3, p. 318] in 1955.

THEOREM 1.11 (Berger). Suppose that M is a simply-connected manifold of
dimension n, and that g is a Riemannian metric on M, that is irreducible and
nonsymmetric. Then exactly one of the following seven cases holds.

(1) Hol(g) = SO(n),
(#3) n = 2m with m > 2, and Hol(g) =
(¢43) n = 2m with m > 2, and Hol(g) = SU(m) in SO(2m),
(tv) n =4m with m > 2, and Hol(g) = Sp(m) in SO(4m),
(v) n=4m with m > 2, and Hol(g) = Sp(m)Sp(1) in SO(4m),
(vi) n =7 and Hol(g) = G5 in SO(7), or
(vii) n = 8 and Hol(g) = Spin(7) in SO(8).

( ) in SO(2m),

In fact, Berger also included the possibility n = 16 and Hol(g) = Spin(9), but
this was shown not to occur by Alekseevskii 1] and Brown and Gray [8]. To simplify
the classification, Berger made three assumptions: that M is simply-connected, that
g is irreducible, and that g is nonsymmetric. If we work with Hol(g) instead of
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Hol(g), then we need not suppose M is simply-connected. The holonomy group of
a reducible metric is a product of holonomy groups of irreducible metrics, and the
holonomy groups of locally symmetric metrics follow from Cartan’s classification
of Riemannian symmetric spaces. Thus, these three assumptions can easily be
removed.

Here is a sketch of Berger’s proof of Theorem 1.11. As M is simply-connected,
Theorem 1.3 shows that Hol(g) is a closed, connected Lie subgroup of SO(n),
and since g is irreducible, Theorem 1.7 shows that the representation of Hol(g) on
R" is irreducible. So, suppose that H is a closed, connected subgroup of SO(n)
with irreducible representation on R", and Lie algebra . The classification of all
such groups H follows from the classification of Lie groups (and is of considerable
complexity). Berger’s method was to take the list of all such groups H, and to
apply two tests to each possibility to find out if it could be a holonomy group. The
only groups H which passed both tests are those in the Theorem.

Berger’s tests are algebraic and involve the curvature tensor. Suppose that
Rpeq is the Riemann curvature of a metric g with Hol(g) = H. Then Theorem 1.4
shows that Rgscq € S?h, and the first Bianchi identity (1.4) applies. But if b has
large codimension in o(n), then the vector space R¥ of elements of S2} satisfying
(1.4) will be small, or even zero. However, Theorem 1.5 shows that R must be
big enough to generate h. For many of the candidate groups H this does not hold,
and so H cannot be a holonomy group. This is the first test.

Now V. Rapcq lies in (R*)* @ ¥ and also satisfies the second Bianchi identity
(1.5). Frequently these imply that VR = 0, so that g is locally symmetric. There-
fore we may exclude such H, and this is Berger’s second test. Later, Simons [31]
found a rather shorter proof of Theorem 1.11 based on showing that Hol(g) must
act transitively on the unit sphere in R?.

The holonomy groups G2 and Spin(7), cases (vi) and (vii) of Theorem 1.11,
are known as the exceptional holonomy groups because they are the exceptional
cases in the classification. The existence of metrics with holonomy G2 and Spin(7)
was first shown in 1985 by Bryant [9], using the theory of exterior differential
systems. Explicit examples of complete metrics with holonomy G» and Spin(7) on
noncompact manifolds were found in 1989 by Bryant and Salamon [10]. Then in
1994-5, the present author constructed examples of metrics with holonomy G2 on
compact 7-manifolds [16], [17], and of metrics with holonomy Spin(7) on compact
8-manifolds [15]. In the rest of this chapter we will explain these examples and the
methods used to contruct them.

2. The Holonomy Group G-

In this section we give a brief introduction to the geometry of metrics with
holonomy G5, beginning with their local properties, and then moving on to discuss
the topology of compact Riemannian manifolds with holonomy G». All the results
below can be found in Salamon [30, Chapter 11], or Joyce {16, 17]. Here is a
definition of G5 as a subgroup of GL(7,R).

DEFINITION 2.1. Let (xy,...,27) be coordinates on R7. Write w;jx for the 3-
form dz; Adz; A dxy on R7, and wijkt for the 4-form dz; A dz; A dzy A dxy. Define
a 3-form ¢y on R? by

(2.1) Po = wiar +Wi3e + wias + Wae3s — Waae + w347 + Wse7-
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The subgroup of GL(7,R) preserving o is called the exceptional Lie group G3. It
is a compact, connected, simply-connected, semisimple, 14-dimensional Lie group.
It also preserves the Euclidean metric

(2.2) go = da} + - + da?
on R7, the orientation on R”, and the 4-form

(2.3) *(P) = W1234 + W1256 — W1357 + W1467 + W2367 + Wa457 + W3456-

Since G» is a subgroup of SO(7), a G2 structure on a 7-manifold M induces
a metric g and an orientation on M. Combining g and the orientation gives the
Hodge star, a linear map * : A¥T*M — A7~*T*M. The forms @y and *¢p of (2.1)
and (2.3) are related by the Hodge star on R”, which is why we use this notation.

Let M be a 7-manifold, and ¢ a 3-form on M. We call ¢ a positive 3-form if
for every p € M, there exists an isomorphism between T, M and R that identifies
¢|p and the 3-form g of (2.1). Since G is the subgroup of GL(7,R) preserving
o, it follows that there is a 1-1 correspondence between positive 3-forms ¢ on M,
and Gs-structures @@ on M. Moreover, as in §1.2, to each Ga-structure @Q on M
we may associate a 3-form ¢, a metric g, and a 4-form *y, corresponding to the
tensors (2.1), (2.2) and (2.3) on R".

Thus, to each Ga-structure @ on M there corresponds a unique pair (g, g),
where @ is a positive 3-form and g a compatible Riemannian metric. For the rest
of this chapter, we will adopt the following abuse of notation: we shall refer to the
pair (p,g) as a Ga-structure. Of course it is not, exactly, a Ga-structure, but it
does at least define a unique G2-structure.

PROPOSITION 2.2. Let M be a 7-manifold and (p,g) a Ga-structure on M.
Then the following are equivalent:
(2) Hol(g) C G2, and ¢ is the induced 3-form,
(#3) Vo =0 on M, where V is the Levi-Civita connection of g, and
(71) dp=d*¢ =0 on M.

The tensor Vy is called the torsion of the Ga-structure (p,g). If Vo = 0 then
the G-structure is called torsion-free. In §1.2 we explained that a G-structure on
M induces a splitting of the bundles of tensors on M into irreducible components.
Here is the decomposition of the exterior forms on a 7-manifold with a Gs-structure.

PROPOSITION 2.3. Let M be a 7-manifold and (p,g) a Ga-structure on M.
Then A¥T*M splits orthogonally into components as follows, where AF is a vector
subbundle of dimension | corresponding to an irreducible representation of Gs:

(i) AT*M = Al (i) A2T*M = AZ& A2,
(i43) APT*M = A3 @ A3 @ A}, (iv) AT*M = A} @ Al AL,
(v) AT*M = A3 @ A3, and (vi) AST*M = AS.

The Hodge star x of g gives an isometry between AF and Al7_k.

Let the orthogonal projection from A*T*M to AF be denoted ;. So, for in-
stance, if £ € C®°(A2T* M), then & = m7(€) +m14(€). We saw from Theorem 1.4 that
the holonomy group of a Riemannian metric g constrains its Riemann curvature.
Using this one can show:
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PROPOSITION 2.4. Let g be a Riemannian metric on a 7-manifold. If Hol(g) C
G5, then g is Ricci-flat.

Now suppose that M is a compact manifold, and that g is a Riemannian metric
on M with Hol(g) = G2. Then, from the Proposition, g is Ricci-flat. Consider the
de Rham cohomology group H!(M,R). By Hodge theory, each class in H'(M,R)
is represented by a unique 1-form a with da = d*a = 0. However, since M is
compact and g is Ricci-flat, one can prove by a well-known argument of Bochner
[7] that any such 1-form satisfies Va = 0.

But by Proposition 1.10, since Hol(g) = G2 fixes no nonzero vectors in (R”)*,
there are no nonzero constant 1-forms on M. Thus H!(M,R) = 0. One can
then use the Cheeger-Gromoll splitting Theorem [6, Cor. 6.67] to show that the
fundamental group 71 (M) of M is finite. Thus we prove the following result, which
is [17, Prop. 1.1.1].

PROPOSITION 2.5. Let M be a compact 7-manifold, and suppose that (p,g) is
a torsion-free Go-structure on M. Then Hol(g) = G if and only if w1 (M) is finite.

The next result is deduced from [16, Theorem C].

THEOREM 2.6. Let M be a compact 7-manifold, let X be the set of torsion-free
Ga-structures on M, and let D be the group of diffeomorphisms of M isotopic to
the identity. Then X /D is a smooth manifold of dimension b3(M). Moreover, the
map from X /D to H3(M,R) taking (p,g) to the cohomology class [¢] of ¢ is a
local diffeomorphism.

This Theorem is proved by studying small deformations of a fixed torsion-free
Go-structure, and is in that sense a purely local result. In fact, at present we know
very little about the global geometry of the moduli space of metrics with holonomy
G- on any 7-manifold.

3. The Holonomy Group Spin(7)

We shall now give a very similar treatment of the holonomy group Spin(7).
The material in this section can be found in Salamon [30, Chap. 12] or Joyce [15].
First we define Spin(7) as a subgroup of GL(8, R).

DEFINITION 3.1. Let R® have coordinates (z1,...,zs). Write w;jr for the 4-
form dz;Adz;jAdziAdz; on RE. Define a 4-form € on R® by
3.1) Qo = wi2s6 + w1278 + w3456 + W3478 + W1357 — W1368 — W2457
) + wa468 — Wi4s8 — W1467 — W2358 — W2367 + W1234 + Ws678-
The subgroup of GL(8,R) preserving (g is the holonomy group Spin(7). It is
a compact, connected, simply-connected, semisimple, 21-dimensional Lie group,
which is isomorphic as a Lie group to the double cover of SO(7). This group also
preserves the orientation on R® and the Euclidean metric go = dz? + --- + dz2
on R8,

Let M be an 8-manifold and Q a 4-form on M. We call 2 an admissible 4-form
if for every p € M, there is an isomorphism between T, M and R® that identifies |,
and the 4-form Qg of (3.1). Then there is a 1-1 correspondence between Spin(7)-
structures @ and admissible 4-forms 2 on M. Each Spin(7)-structure ) induces a
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4-form © on M and a metric g on M, corresponding to o and go on R®. As with
G, we shall abuse notation by referring to the pair (2, g) as a Spin(7)-structure.
The next three results correspond to Propositions 2.2-2.4.

PROPOSITION 3.2. Let M be a compact 8-manifold and (2, g) a Spin(7)-structure
on M. Then the following are equivalent:

(7) Hol(g) C Spin(7), and Q is the induced 4-form,
(13) V=0 on M, where V is the Levi-Civita connection of g, and
(791) dQ2 =0 on M.

Again, VQ is the torsion of the Spin(7)-structure (€, g), and (R, g) is torsion-
free if VQ = 0. Since Spin(7) lies in SO(8), a Spin(7)-structure on an 8-manifold
M induces a natural orientation on M, and so we have the Hodge star x : A*T*M —
AB—kT* M.

PROPOSITION 3.3. Let M be an 8-manifold and (2, g) a Spin(7)-structure on
M. Then A*T*M splits orthogonally into components as follows, where A} is
a vector subbundle of dimension | corresponding to an irreducible representation

of Spin(7):
(6) A'T*M = A}, (43) A°T*M = A2 ® A2, (i33) A3T*M = A3 @ A3,
(iv) A*T*M = AAT*M @ A T*M, ALT*M = At ® AT @ AS;, ALT*M = A,
(v) AST*M = Aj @ A%, (vi) AST*M = AS @ AS,, (vii) ATT*M = Al

The Hodge star * gives an isometry between AF and A?_k. In part (iv), AST*M
and A*T*M are the +1- and —1- eigenspaces of * on A*T*M respectively.

The orthogonal projection from A¥T*M to Af will be written ;.

PROPOSITION 3.4. Let g be a Riemannian metric on a 8-manifold. If Hol(g) C
Spin(7), then g is Ricci-flat.

Now suppose that M is a compact 8-manifold, and (2, g) a torsion-free Spin(7)-
structure on M. Since Spin(7) is simply-connected, we deduce that M is spin.
Therefore there are positive and negative spin bundles S, S_ over M, with fibre
R8, and the Dirac operator D acts by D : C®(S4) = C®(S_). As M is Ricci-flat,
it has zero scalar curvature. Thus, by a well-known argument of Lichnerowicz [26],
all the spinors in Ker D and Ker D* are constant.

However, as for the case of tensors in Proposition 1.10, the constant spinors on
a spin Riemannian manifold (M, g) are determined entirely by the holonomy group
Hol(g). Therefore, Hol(g) determines Ker D and Ker D*, and thus it determines
the index ind D = dimKer D — dimKer D*. But D is an elliptic operator, so
the Atiyah-Singer Index Theorem shows [3, Thm. 5.3] that ind D is a topological
invariant of M known as the A-genus A(M) of M.

In this way, the holonomy group Hol(g) determines a topological invariant
A(M) of M, which can be written as a linear combination of Betti numbers of M.
Conversely, if we know the Betti numbers of M, we can determine A(M) and hence
Hol(g). Thus we prove the following result, which is [15, Thm. C].

THEOREM 3.5. Suppose that M is a compact, simply-connected 8-manifold and
that (R, 9) is a torsion-free Spin(7)-structure on M. Then M is spin, and the
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volume form L A Q gives a natural orientation on M. Define the A-genus A(M )
of M by

3.2 24AM) = -1+b" —b>+0° + b1 — 2%,
+

where bt are the Betti numbers of M, and by are the dimensions of the spaces of
self-dual and anti-self-dual 4-forms in H*(M,R). Then /i(AM) is equal to 1,2,3 or
4, and the holonomy group Hol(g) of g is determined by A(M) as follows:
(i) Hol(g) = Spin(7) if and only if A(M) =1,

(i1) Hol(g) = SU(4) if and only if A(M) =2,

(ii7) Hol(g) = Sp(2) if and only if A(M) =3, and

(iv) Hol(g) = SU(2) x SU(2) if and only if A(M) = 4.
Every compact, Riemannian 8-manifold with holonomy group Spin(7) is simply-
connected.

Finally, here is [15, Thm. D], which describes the moduli space of torsion-free
Spin(7)-structures on a compact 8-manifold.

THEOREM 3.6. Let M be a simply-connected, compact 8-manifold admitting
torsion-free Spin(7)-structures, let X be the set of torsion-free Spin(7)-structures
on M, and let D be the group of diffeomorphisms of M isotopic to the identity.
Then X /D is a smooth manifold of dimension A(M) +b* (M).

4. Metrics with Holonomy SU(2) on the K3 surface

Before discussing the construction of metrics with holonomy G2 and Spin(7) on
compact 7- and 8-manifolds, we will first explain a simpler construction of the same
type: that of metrics of holonomy SU(2) on a particular compact 4-manifold, the
K3 surface. This is a good illustration of the general plan used for G2 and Spin(7),
but the details are easier because the dimension is lower. Section §4.1 describes
the Eguchi-Hanson space, an explicit Riemannian manifold with holonony SU(2).
Then §4.2 covers the Kummer construction for metrics with holonomy SU(2) on the
K3 surface, in which the Eguchi-Hanson space appears as an important ingredient.

Let (z1,...,74) be the usual coordinates on R*. Then SU(2) acts on R* pre-
serving the Euclidean metric go = dz? + dr? + dz3 + dr} and the three 2-forms

wé = dri Adzs + drsAdzxy, wé = dzi Adxs — droAdzy

4.1
(4.1) and wi = dzi Adzg + dzo Ndzs.

Moreover, the subgroup of GL(4, R) that preserves w{,wg and wf is exactly SU(2).
Therefore, if X is a 4-manifold, there is a 1-1 correspondence between SU(2)-
structures on X and triples (w',w”,w*) of 2-forms on X, such that for each point
p € X there exists an isomorphism T, X = R* that identifies w’,w’ and w* with
wj,wd and w§ respectively.

By an abuse of notation, we shall refer to a triple (w!,w’,w®) of 2-forms
on X with this property as an SU(2)-structure on X. To each SU(2)-structure
(w',w’,w¥) on X, we may associate a Riemannian metric ¢ and almost com-
plex structures I,J, K on X in a natural way, which satisfy the quaternion re-
lations IJ = —JI = K.

It can be shown that an SU(2)-structure (w’,w’,wX) is torsion-free if and only
if w',w’ and w* are closed 2-forms. If (w',w’,w™) is torsion-free, then Hol(g) C
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SU(2), the almost complex structures I, J and K are integrable, the metric g is
Kéahler with respect to each of I,J and K, and the Kahler forms of the Kéhler
structures (I, g), (J,g) and (K, g) are w’,w’ and w* respectively.

As all of this structure shows, Riemannian manifolds with holonomy SU(2)
have a very rich and interesting geometry. In particular, metrics with holonomy
SU(2) are Kdhler metrics, in three different ways. Given a complex manifold M,
it is often easy to write down a large number of explicit Kéhler metrics on M using
Kahler potentials, and other devices from Kéhler geometry. If g is a Kadhler metric
on a simply-connected complex surface, then Hol(g) C SU(2) if and only if g is
Ricci-flat. Thus, one method of constructing metrics with holonomy SU(2) is to
find solutions to the equation Ric(g) = 0 for a K&hler metric g. This can be done
explicitly in examples with symmetry, or using analysis as in Yau’s solution to the
Calabi conjecture [34].

4.1. The Eguchi-Hanson Space. The simplest nontrivial example of a Rie-
mannian manifold with holonomy SU(2) is the Eguchi-Hanson space [11], which
is a family of complete metrics on the noncompact 4-manifold T*CP!. We will
write down this metric explicitly in coordinates. Let C? be equipped with com-
plex coordinates (z1, 22), and the standard flat Kihler metric go = |dz;|? + |d22|?.
The involution —1 : (z1,22) + (—21,—22) acts on C?, preserving go and fixing 0.
Thus C? /{+£1} is a singular complex manifold with one singular point at 0, and the
metric go pushes down to C? /{£1}.

Let X be the blow-up of C2/{+1} at 0, and let 7 : X — C?/{%1} be the
blow-down map. Then X is a nonsingular complex manifold biholomorphic to
T*CP', with m;(X) = {1} and H?(X,R) = R. The radius function r given by
72 = |21/|? + |22/ on C? pushes down to C? /{£1}, and so lifts to X. Let t > 0, and
define a function f; on X by

(4.2) fe=Vrt+t4 4+ 2t% logr — t?log (\/1‘4 +t4 + t2) .

This is the Kahler potential for the Eguchi-Hanson metric, and is taken from [24,
p. 593]. For each t > 0, define 2-forms w},w; and wy on X by

(4.3) wy = 2i00f;, w] =Re(dz; Adz), and wf =Im(de; Adz).

Then (wf,wy,wf) is a torsion-free SU(2)-structure on X. The associated metric g;
is the Eguchi-Hanson metric, and has holonomy SU(2).
From (4.2) we find that the asymptotic behaviour of g; near infinity in X is

(4.4) gt =" (g0) + O(t*r™*).

Thus, the Eguchi-Hanson metric is asymptotic to the flat metric go on C? /{£1} at
infinity. Metrics with this property are called Asymptotically Locally Euclidean, or
ALE for short. Similarly, the 2-forms w},w; and wf have the asymptotic behaviour

wi = (W) + O™, Wi =" (wg) + Ol

4.5
(4) and  wf =7 (WE) + Ot r™).

4.2. The Kummer Construction. The K3 surface is a compact 4-manifold
which has a family of complex structures, each making the K3 into a complex
surface. These complex surfaces are of particular interest to algebraic geometers.
From Yau’s proof of the Calabi conjecture [34], it is known that the K3 surface
possesses a 58-parameter family of metrics of holonomy SU(2). An approximate
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description of some of these metrics was given by Page [28], which employs an idea
known as the Kummer construction.

Proofs of the existence of metrics of holonomy SU(2) on K3 using Page’s idea
have been given by Topiwala [33] and LeBrun and Singer [25] using twistor theory,
and by the author [17, Ex. 1] using analysis. Here is a brief sketch of the Kummer
construction for the K3 surface, and the metrics of holonomy SU(2) upon it.

Let C? have complex coordinates (z1,22) and metric gy as above. Define a
subset A of C* by A = {(a +ib,c+id) : a,b,c,d € Z}. Then A is a lattice in C?,
and C? /A is the 4-torus T%. It is a complex manifold, with flat Kéhler metric go.
Define an involution o : T* — T* by

(4.6) o:(21,22) + A v (~21, —22) +A.

Then o has 16 fixed points, the points (21, z2) + A with z; € {0,1, i, 2+ 24}, Thus
T*/{o) is a singular complex manifold with a flat Kihler metric g, and 16 singular
points, s1,..., 16 say, modelled on 0 in C? /{£1}.

Let Y be the blow-up of T*/(o) at each singular point s;. Then Y is a com-
pact, nonsingular complex surface called a K3 surface. The blow-ups replace each
singular point with a complex curve CP!. These blow-ups are modelled on the
construction of the Eguchi-Hanson space X. Hence, we may regard Y as the result
of gluing 16 copies of X into the orbifold T*/(c).

Define subsets A; = {y € Y : d(n(y),s;) < £} in Y for j = 1,...,16, and
let B={y €Y :d(n(y),s;) > § for j=1,...,16}, where d(, ) is the metric on
T*/{o) induced by go. Then Y is the union of the A; and B. The intersections
A; N Ay, are empty for j # k, but A; N B is an ‘annulus’ diffeomorphic to (}, 1) x
S3/(o).

Now A, is naturally isomorphic to an open subset of the Eguchi-Hanson space
X. Therefore on each A; we have a family (w{,w],wf) of torsion-free SU(2)-
structures, depending on ¢ > 0. Similarly, B is naturally isomorphic to an open
subset of T*/(0), so on B we have the flat SU(2)-structure (wf,wd,w&). On the
overlap A; N B, we can compare these two SU(2)-structures using (4.5). Since
r € (%,%) on A;N B, we have r~* < 6%, and so

(4.7) Wl =wi+ 0@, W =wd+O0(tY), and w¥ = wE + O(t*) on 4; N B.

This equation shows that when ¢ > 0 is small, the SU(2)-structures (wj,w;,wf)
defined on A;, and (wj,wy,wq ) defined on B, are close to each other on A;NB. We
can exploit this fact to construct torsion-free SU (2)-structures on Y. The argument
runs as follows. First one uses a partition of unity to write down an SU(2)-structure
(@, @ ,&f) on Y, that equals (w{,w;j,wf) on A;\ B and (wg,w3,w§) on B\U, 4;,
and interpolates smoothly between the two on the overlaps 4; N B.

Then (&f,d,&f) is torsion-free on A; \ B and B\ J; 4;, but on 4; N B it
has nonzero torsion. However, using (4.7) one can ensure that the torsion is O(¢*),
and so when ¢ is small, the torsion is also small. Finally, using analysis one proves
that an SU(2)-structure on Y with sufficiently small torsion, can be deformed to
a nearby, torsion-free SU(2)-structure. Therefore, for all small enough ¢t > 0 we
construct a new, torsion-free SU(2)-structure (@}, ®],@{) on Y that is close to
(wi,wi,wf) on Aj, and close to (w§,wd,w§ ) on B. The metric §; associated to this
SU(2)-structure is a metric on the K3 surface with holonomy SU(2).
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5. Compact Manifolds with Holonomy G, and Spin(7)

In the rest of this chapter we will describe a construction for compact Riemann-
ian 7-manifolds with holonomy Gs, and a very similar construction for compact Rie-
mannian 8-manifolds with holonomy Spin(7). Both constructions are motivated by
and modelled on the Kummer construction of §4 for metrics of holonomy SU(2)
on the K3 surface. They can be divided into four steps. Here is a summary of
each. For simplicity we will describe the G case only, but the Spin(7) case is very
similar.

Step 1. Let T be the 7-torus. Let (o, go) be a flat Go-structure on T7. Choose
a finite group I of isometries of T7 preserving (o, go). Then the quo-
tient 77/T is a singular, compact 7-manifold.

For certain special groups I" there is a method to resolve the singu-
larities of 77 /T in a natural way, using complex geometry. We get a non-
singular, compact 7-manifold M, together with a map = : M — T7/T,
the resolving map.

Step 2. On M, we explicitly write down a 1-parameter family of G3-structures
(¢, 9t) depending on a real variable t € (0,e). These Ga-structures
are not torsion-free, but when ¢ is small, they have small torsion. As
t — 0, the Ga-structure (i, g¢) converges to the singular Go-structure
(0, 90)-

Step 3. We prove using analysis that for all sufficiently small ¢, the G3-structure
(¢t,9t) on M, with small torsion, can be deformed to a Gy-structure
(@¢, gt), with zero torsion.

Step 4. Finally, we show that §; is a metric with holonomy G5 on the compact
7-manifold M, using topological invariants of M.

We shall explain Steps 1-4 at much greater length in sections 6-9 respectively.
By considering different groups I" acting on 77 and T8, we are able to find metrics
with holonomy G2 and Spin(7) on many topologically distinct 7- and 8-manifolds.
It also happens that the same orbifold 7% /T can admit several topologically distinct
resolutions, and this increases the number of examples.

In [17], the author gave examples of 68 distinct, compact 7-manifolds with
holonomy Gs, and in [15], examples of 95 distinct, compact 8-manifolds with ho-
lonomy Spin(7). The forthcoming book [19] will provide many more examples, by
using more powerful mathematical tools to resolve singularities, and by studying
the possibilities for the finite group I' in a systematic way.

6. Orbifolds and Resolutions

This section explains Step 1 of §5 in greater detail. For simplicity, we will
mostly confine our attention to the case of 7-manifolds and holonomy G,, but the
case of 8-manifolds with holonomy Spin(7) is very similar. Section 6.1 introduces
orbifolds 77 /T" with flat G»-structures, and their singular points. Then §6.2 dis-
cusses resolutions of 77 /T, and describes a special way of resolving orbifolds 77 /T
using complex geometry. We shall see later that a resolution constructed in this
way admits a family of torsion-free Gs-structures. Section 6.3 gives a simple exam-
ple of an orbifold 77 /T, and how to resolve it, and §6.4 gives a similar example in
8 dimensions.
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6.1. Orbifolds of T7 with Flat G,-Structures. Let (o, go) be the stan-
dard, flat Go-structure on R”, given in Definition 2.1. Let A be a lattice in R7, so
that A = Z7. Then A acts as a group of translations on R, and the quotient R” /A
is the 7-torus T7. Moreover, this action of A on R’ preserves @y and go, and thus
there is a flat Ga-structure (o, go) on T7.

Now the group of linear transformations of R? preserving (o, go) is G2 C
GL(7,R), and the group of linear transformations of R” preserving A is GL(7,Z) C
GL(7,R). Thus, the subgroup of GL(7,R) preserving both (9o, g0) and A is F =
G2 NGL(7,Z). Here F is a finite group, as it is both discrete and compact. Note
that the embedding of GL(7,Z) in GL(7,R), and thus the finite group F, is not
fixed but depends on the choice of lattice A in R”. The group F acts on T7
preserving the Ga-structure (o, go). But T'7 acts on itself by translations, and this
action also preserves (o, go). Together, these actions of F' and T7 on T7 generate
a group F x T, which turns out to be the full group of automorphisms of 77 that
preserve (o, go)-

Let T be a finite subgroup of F x T7. Then I acts on T7 preserving (o, go),
and thus T7/T is an orbifold, equipped with a flat Ga-structure (po,go). The
singular points of 77 /T" are easy to describe. Let x € T7, so that zI" € T7/T. Let
T, = {y € T : y(z) = z} be the stabilizer of z. If T, = {1} then zT is a nonsingular
point of T7/T. If ', # {1} then zT is a singular point of T7 /T". Moreover, ', acts
naturally on R?, and the singularity at zI' is modelled on the singularity at 0 of
R? /T,. This action of T'; on R” makes I, into a subgroup of Gs.

Thus, zT is a singular point of T7/T if and only if z is fixed by some nonidentity
element of I". It is convenient to adopt the following notation: for each nonidentity
element v € T, define S, to be the set of points 2" € T7/T for z € T7 with
v(z) = z. Define S to be the set of singular points of 77/T. Then S is the union
(not necessarily a disjoint union) of the S, for v # 1 in I'. Suppose that o # 1 is
an element of G5. Then the subset of R” fixed by a is either R or R3. Therefore, if
v # 1lies in ' then S, is either empty, or has dimension 1 or 3. Hence the singular
set S is a finite union of (singular) 1-manifolds and 3-manifolds in 77 /T.

6.2. Resolutions of 77/ with Torsion-Free G5-Structures. Our goal is
to resolve the singularities of the orbifold 77 /T to get a compact 7-manifold M, and
to construct a family of torsion-free G2-structures on M that are in some sense close
to the singular G-structure (g, go) on T7/T. By a resolution of T7/T', we mean
a pair (M, ), where M is a compact 7-manifold and 7 : M — T7/T a continuous
map, such that the restriction 7 : M \ 771(S) — (T7/T) \ S is a diffeomorphism,
and for each s € S, the subset m~1(s) is a finite union of compact submanifolds
of M.

In general T7 /T has not just one, but infinitely many resolutions (M, 7). How-
ever, nearly all of these resolutions are unsuitable for our purposes, and most of
them do not even admit Ga-structures. To be able to construct torsion-free Ga-
structures on M, we must restrict our attention to orbifolds 77 /T with a particular
kind of singularity, and then resolve these singularities in a special way.

Let zT" be a generic point of S. Then the singularity of T7/T at zT" is modelled
on that of R7 /T, at 0. Now we saw above that the singular set S of T7/T is a finite
union of (singular) 1-manifolds and 3-manifolds. As zI' is generic, near zI" we see
that S is nonsingular and of dimension 1 or 3. Suppose first that .S is of dimension
1 near zI'. Then there is a natural splitting R” = R @ R® preserved by I';;, and T,
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acts trivially on R and freely on R® \ {0}. As I, preserves the Gx-structure (o, go)
on R7, it follows that ', is a subgroup of G. But the subgroup of G2 fixing a
subspace R C R is SU(3), so that ', is a subgroup of SU(3).

Similarly, if S has dimension 3 near zI', we can show that I'; lies in a subgroup
SU(2) of Gy. Thus, if zI" is a generic singular point of 77 /T, then one of two
possibilities holds:

(i) There is a natural splitting R” = R® @ C?, and SU(2) acts trivially on
R3 and in the usual way on C?. The group I'; is a finite subgroup of
SU(2) which acts freely on C? \ {0}, and R7 /T, 2 R3 x (C?/T,).

(i) There is a natural splitting R” = R® C?, and SU(3) acts trivially on R
and in the usual way on C3. The group I'; is a finite subgroup of SU(3)
which acts freely on C* \ {0}, and R" /T, = R x (C3/T,).

The key observation is that the singularities C? /T, and C? /T, occurring here
are complex singularities. Now in the field of complex algebraic geometry, the
problem of resolving singularities of complex manifolds has been studied for many
years, and is very well understood in complex dimensions 2 and 3. In particular, if
F is a nontrivial finite subgroup of SU(2), it is known that the quotient singularity
C%/F can be resolved in a unique way to give a complex manifold X, which has
a family of ALE metrics with holonomy SU(2). These metrics were explicitly
constructed and classified by Kronheimer [22, 23]. In the simplest case F' = {+1},
we get the Eguchi-Hanson space of §4.1.

Similar results are known for the case of SU(3). If F' is any finite subgroup of
SU(3), Roan [29] has shown that C*/I" admits a suitable complex resolution Y.
The family of ALE metrics with holonomy SU(3) on Y are not known explicitly
except in special cases, but the author [19] has proved that such metrics exist in
every case, by following Yau’s proof of the Calabi conjecture. Tian and Yau [32]
have also proved some related results."

Suppose X is a resolution of C?/F, and gy is an ALE metric on X with
holonomy SU(2). Let g.s be a flat metric on R3. Then g = g;s x gx is a metric
on R® x X which has holonomy Hol(g) = {1} x SU(2). Since {1} x SU(2) C Ga,
the metric g extends to a torsion-free Ga-structure (p,g) on R® x X, which is
asymptotic to the flat Ga-structure (o, go) on R” /F as one approaches infinity in
X. In the same way, if Y is a resolution of C* /F and g, an ALE metric on Y with
holonomy SU(3), we may construct torsion-free Ga-structures (¢, g) on Rx Y that
are asymptotic to (o, go) on R7 /F.

Thus, if 2T is a singular point of 77/T" and T, lies in some subgroup of G
conjugate to SU(2) or SU(3), then one can resolve the quotient singularity R? /T,
using complex geometry, in such a way that the resolution carries a family of torsion-
free Go-structures (i, g) asymptotic to (o, go)-

For our construction, we first choose an orbifold 77 /T for which T, lies in SU(2)
or SU(3) for every singular point zI" of 77 /T. Next, we build a resolution (M, )
of T7/T, which is modelled at each singular point on the resolution from complex
geometry described above. Then, by gluing together torsion-free G2-structures on
the different regions of M, we can write down a family of Gs-structures on M
with small torsion. This will be explained in §7, but first we will give examples of
orbifolds 77 /T and T®/T, and how to resolve them.

6.3. An Example of an Orbifold 77/T and its Resolution. We begin
with an example of a suitable group I'. Let (z,...,27) be coordinates on T7 =
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R" /Z7, where z; € R/Z. Let (@o,90) be the flat Ga-structure on T7 defined by
(2.1) and (2.2). Let o, and 7 be the involutions of 77 defined by

(61) a((.’El, R 7377)) = (—.’171, —Z2, —T3, —.'134,275,236,177),
(6‘2) ﬂ((mla s ,1,‘7)) = (_1'17 % — Z2,T3,T4, —Ts, "‘176,:177),
(6.3) ’7((331,~--,937)) = (% — Z1,Z2, % — T3,T4,—Ts5,Te, —T7).

By inspection, a, 8 and v preserve (o, go), because of the careful choice of exactly
which signs to change. Also, a? = 32 = 42 =1, and @, 3 and v commute. Thus
they generate a group I' = (o, 3,7) = Z3 of isometries of T7 preserving the flat
G2-structure (g, go). The following Lemma is proved in [16, §2.1].

LEMMA 6.1. The only nonidentity elements of T' with fized points are a, 3 and
7. Each of Sa,Ss and S., are 4 copies of T3, so that the singular set S of T7T is

a disjoint union of 12 copies of T2. Every component of S is a singularity modelled
on that of T® x C?/{%1}.

Now the natural resolution of the complex singularity C? /{£1} is the Eguchi-
Hanson space X of §4.1, with its resolving map = : X — C?/{£1}. Therefore,
T3 x X is a resolution of the singularity T3 x C?/{£1}, with resolving map = :
T3x X — T3 x C? /{£1} . Each component of S is modelled on 7° x C? /{£1}, and
we resolve T7 /T by replacing this with 72 x X, using the resolving map 7. In this
way we construct a compact, nonsingular 7-manifold M with amap 7 : M — T7/T,
making (M, ) into a resolution of 77 /T'. Later we will construct a family of metrics
with holonomy G2 on M.

6.4. An Example of an Orbifold 78 /T and Its Resolution. Let (z1,...,s)
be coordinates on T® = R®/Z® where z; € R/Z. Define a flat Spin(7)-structure
(R0, go) on T? as in Definition 3.1. Let a, 3, and & be the involutions of T® defined
by

(6.4) a((z1,...,28)) = (—x1, —T2, —T3, — T4, T5, T6, T7, Tg),

(6.5) 5((171,~-,938)) (z1,22, 73,24, —T5, —T6, —T7, —T8),

(6.6) 7((371, 7558)) = (% —wl,% —$2,$3,$4,'12- —Zs,% — Zg,T7,T8),
(6.7) 6((z1,...,28)) = (—1,%2, 3 — T3,24, 5 — T5,T6, 5 — T7,Ts).

By inspection, a, 3, and & preserve Qg and go. It is easy to see that a? = 8% =
4? = §2 = 1, and that , 3,7, all commute. Define I to be the group (a, 3,7, ).
Then I' = (Z,)* is a group of automorphisms of T® preserving (€0, go)-

The following Lemma is proved in [15, §3.2].

LEMMA 6.2. The only nonidentity elements of T' with fized points in T® are
a,B,7,0 and afB. The corresponding singular sets are as follows:
(i) Sa is 4 copies of T*/{%1},
(ii) Sg is 4 copies of T*/{%£1},
(i4i) Sy is 2 copies of T*,
(iv) Ss is 2 copies of T4, and
(v) Sap is 64 points.

Here S, and Sp intersect in Sap. Fach point zI' € Syp has stabilizer I'y =
{laaa/@, aﬂ}
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Thus, the singular set of 78 /T is rather more complex than that of the previous
example. However, we can still resolve T8/T to get a compact 8-manifold M, using
only the Eguchi-Hanson space X. First consider S,, which is two disjoint copies
of T*, each modelled on the singularity of 7% x C?/{£1}. The resolution of this
singularity is 7% x X, and we may use this to resolve both S, and S;.

Now the singular sets S, and Sg are not disjoint, but rather, each component
T*/{£1} in S, meets each component T*/{%1} in Sp in 4 points, which lie in Sug.
The singularity at each point in S,g is modelled on C?/{+1} x C?/{+1}. Here
S corresponds locally to the subset C? /{£1} x {0}, and Sg corresponds locally to
the subset {0} x C?/{+1}. Now the natural resolution of C? /{£1} x C? /{+£1} is
X x X, and this is how we resolve near each point in S,g.

Each component T*#/{£1} of S, and Sg is modelled locally on T*/{+1} x
C? /{£1}, and the resolution of this is K3 x X, where T*/{+£1} is resolved to give
the K3 surface using the Eguchi-Hanson space X, as in §4.2. Combining these
resolutions gives a compact 8-manifold M with a map m : M — T8/T', making
(M, ) a resolution of T8 /T". In [15], the author constructs a family of metrics with
holonomy Spin(7) on M.

7. G»- and Spin(7)-Structures with Small Torsion

Now we will explain Step 2 of §5, concentrating on the G case. Suppose that
we are given an orbifold T7 /T equipped with a flat Ga-structure (o, go), and a
resolution (M, ) of T7 /T, constructed in the way explained in §6.2. Let S be the
singular set of T7/T, and let Si,...,S; be the connected components of S. Now,
for simplicity, and in order to be as explicit as possible, we shall suppose that each
component S; is a copy of T°, and the corresponding singularity is modelled on
T3 x C? /T'j, where T'; is a finite subgroup of SU(2). Then each S; is desingularized
using T° x X, where X; is a complex resolution of C? /T';. This is the case in the
example of §6.3. However, the methods we use also work with more complicated
singularities, as explained in [17, §2.2].

Let ¢ be a positive constant, and define 4; = {m € M : d(r(m), S;) < 2¢} for
i=1,...,1,and B={m € M :d(n(m),S;) > ( for j =1,...,1}, where d(, ) is
the metric on T7/T induced by go. Let ¢ be chosen sufficiently small that the A4;
are all disjoint, and each A; is of the form A; = T3 x Y;, where Y} is an open subset
in X; with boundary S3/T';. Then, as in §4.2, our manifold M is the union of open
sets A; and B, where the A; are disjoint, but A; N B is an ‘annulus’ diffeomorphic
to the product T° x (¢,2¢) x S®/T;.

The subset B is naturally isomorphic to an open subset of 77 /T, and therefore it
carries a flat G-structure (oo, go). Consider the restriction of (o, go) to A;NB. We
may identify A;NB with an open subset of T x C? /T;, and under this identification,
o has the form

(7.1) wo =V Awy+ v Awg + v Awg + v AV AVE,

where v7, v? and v¥ are constant, linearly independent 1-forms on T3, and (w§, wg, w&)
is the flat SU(2)-structure on C?/Tj, as in §4.

Now, as we explained in §6.2, it is known that the manifold X; admits a family
of ALE metrics with holonomy SU(2). Therefore, as in §4.1, for each ¢t > 0 we can
find a torsion-free SU(2)-structure (w{,wi,wf) on X;, satisfying the asymptotic
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conditions

(7.2) wf=wl+0(t'r™), w =wl+0@t*'r™*) and wf =wf +0@t'r™*)
near infinity in X;. Motivated by (7.1), define a 3-form ¢} on A; by

(7.3) pp =V AW + V) Aw] + VS Awf + v AV AVE

Then it turns out that ¢} induces a torsion-free Go-structure (¢}, g;) on A;. More-
over, since r € ((,2¢) on A; N B, equations (7.1) and (7.2) imply that

(7.4) @) = o + O(t*) on A; N B.

Thus, on the subset A; of M we have a torsion-free G-structure (yj, g;) for
each t > 0, and on the subset B of M we have a torsion-free G2-structure (o, go)-
On the overlaps A; N B, the difference between the Ga-structures is O(t*) by (7.4),
and so when ¢ is small, the two G2-structures are close together. It is easy to use a
partition of unity to write down a Ga-structure (¢, g:) on M, which equals (¢}, g;)
on A; \ B and equals (¢o, go) on B\ |J; 4;, and interpolates smoothly between the
two on the intersections A; N B. This G2-structure will be torsion-free on A; \ B
and B\ |J; 4;, but will have nonzero torsion on A; N B.

Now, for the purposes of the analysis in the next section, we need to estimate
three geometric invariants of this Ga-structure (¢, g:). These are the torsion Vi,
the injectivity radius 6(g;) of g;, and the Riemann curvature R(g;) of g;. Using (7.4),
one can ensure that | Ve[, = O(t*), and this is an estimate for the torsion. Let
gj,t be the ALE metric with holonomy SU(2) on X used in the construction. One
can choose the metrics g;: to be homothetic for all ¢, so that after applying an
automorphism of X; depending on ¢, we may choose g;: to be isometric to t2g;
for each t > 0.

It immediately follows that 6(g;.:) = ¢ 8(g;,1) and ||R(gj,¢) HCO =t? “R(gjvl)“CO'
When ¢t is small, it is easy to see that the injectivity radius and curvature of the
ALE metrics g;; make the dominant contribution to the injectivity radius and cur-
vature of the g, on M. Therefore, we expect §(g;) to be O(t), and ||R(g:)|| ;o to be
O(t~2) for small ¢t. Arguing in this way, one may estimate d(g;) and ]|R(gt)|| co-

We state the existence and some important estimates for the Ga-structures
(¢, g¢) in the following Theorem, which summarizes the results of this stage of the
construction.

THEOREM 7.1. On the compact 7-manifold M described in §6.3, and on many
other compact 7-manifolds constructed in a similar fashion, one can write down the
following data explicitly in coordinates:

e Positive constants Ay, Az, As and e,
o A Gs-structure (¢, 9:) on M with dpy = 0 for each t € (0,¢€), and
o A 3-form iy on M with d*vpy = d*p; for each t € (0,¢).

These satisfy the three conditions:
() llelle < Art?* and ||d*|pre < Art?,
(1) the injectivity radius §(g:) satisfies 6(gs) > Ast, and
(731) the Riemann curvature R(g:) satisfies ”R(gt)”co < Ast™2.
Here the operator d* and the norms || .||z, || .||z« and ||.||co depend on g;.

For a proof of this result, see [16, §2.2] and [17, §2.2]. Here is a brief expla-
nation. From Proposition 2.2 we see that Vo, = 0 if and only if dp; = d*¢; = 0.
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It turns out to be more convenient to work with dp; and d*¢;, rather than V.
Also, it is possible to choose the Ga-structure (¢:,g:) on M to satisfy dy; = 0,
which means that the only nonzero component of the torsion left is d* ;.

The 3-form v, appearing in Theorem 7.1 should be interpreted as a first integral
of d*p;. Since d*p; = d*yy, part (i) of the Theorem implies that ||d*p;||p14 < Agtt.
Thus, part (i) gives an O(t*) estimate on the torsion Vy; of (¢4, g:). The reasons
for choosing ¢, closed, and introducing v; in the way we have, will become clear in
the next section.

For the Spin(7) construction, the result corresponding to Theorem 7.1 is the
following, which is proved in [15, §4].

THEOREM 7.2. On the compact 8-manifold M given in §6.4, and on many
other compact 8-manifolds, one can write down the following data explicitly in co-
ordinates:

o Positive constants Ay, As, A3 and e,

o A Spin(7)-structure (Q, gt) on M for each t € (0,¢), and

o A J-form ¢; on M for each t € (0,¢) satisfying dQ0y + d¢p¢ = 0.

These satisfy the three conditions:

(@) llgellzz < Art®/? and ||deellpro < Ast,

(#@) the injectivity radius 6(g:) of g: satisfies §(g:) > Aat, and

(7i1) the Riemann curvature R(g:) of g: satisfies ”R(gt)“co < Ast™2,
Here all norms are taken w.r.t. the metric g on M.

8. Deforming to Torsion-Free G- and Spin(7)-Structures

Now we explain Step 3 of §5, which in the G2 case is accomplished by the
following Theorem.

THEOREM 8.1. In the situation of Theorem 7.1, there are positive constants
k, K depending only on Ay, Az, A3 and €, such that for everyt with 0 < t < k, there
exists a smooth, torsion-free Go-structure ($¢, §s) on M with ||@s — p¢|lco < Kt1/2.

This result is proved in [16, §3]. The proof is not easy, and it represents most
of the hard work in [16]. Note that the proof given there also involves estimates
on the volume and diameter of the Riemannian manifold (M, g;), but it turns out
that these are unnecessary and can be removed. An improved proof will be given
in [19].

The rest of this section gives a sketch of the proof of Theorem 8.1, ignoring
several technical points. The treatment follows that given in [19], which differs
a little from that of [16]. We begin in §8.1 with an aside on Gs-structures and
exterior forms, which leads in §8.2 to a way to write the deformation problem as
a nonlinear elliptic partial differential equation. Section 8.3 then explains how to
construct a smooth solution using analytic methods.

8.1. G2-Structures and Forms on 7-Manifolds. Let ¢ and *pg be the 3-
and 4-forms defined on R” in (2.1) and (2.3). Now GL(7,R) acts linearly on R?, and
this induces an action of GL(7,R) on A3(R")*. Let P* be the orbit of g in A3(R7)*
under this action. From §2, the stabilizer of ¢g in GL(7,R) is G2, and therefore
P3 is isomorphic to GL(7,R)/G2. Since dim GL(7,R) = 49 and dim G, = 14, it
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follows that dim P3 = 49 — 14 = 35. But dim A3(R")* is also (}) = 35. Thus, P? is
an open setin A3(R7)*. This means that the 3-form g used to define Ga-structures
is a generic 3-form on R.

In the same way, let P* be the orbit of the 4-form xpy under the action of
GL(7,R) on A*(R")*. The stabilizer of xpg is G2 x {£1}, giving dimP* = 35 =
dim A*(R")*, and so P* is an open set in A*(R7)*. Now each element ¢ of P?
determines a unique Ga-structure (¢, g) on R, and this in turn determines a 4-
form ¢ in P*%. Define a map O : P2 — P* by ©(yp) = *p. It is important to note
that © is a nonlinear map. This is because the Hodge star x used to define ¢
depends on the metric g, but g itself depends on ¢.

Next, we extend these ideas from R’ to a general 7-manifold M. Let F be
the frame bundle of M, which is a principal bundle with fibre GL(7,R). Then
we may write A’T*M = F xgrz,R A*(R7)*. Now P3 is a subset of A3(R")*
invariant under GL(7,R). Therefore we may define P?M = F x gz Ry P?, which
is a subbundle of A3T*M with fibre P3. Similarly, define P*M = F xgr 7R P*,
which is a subbundle of A*T*M with fibre P4. And as © : P® — P* commutes
with the GL(7, R)-actions, it induces a map of bundles © : P3M — P4 M.

A 3-form ¢ on M which lies in P3M at every point is called positive. Clearly,
there is a 1-1 correspondence between G3-structures on M, and positive 3-forms. By
Proposition 2.2, if ¢ is a positive 3-form and (¢, g) the corresponding G»-structure,
then (yp,g) is torsion-free if and only if dp = d*p = 0. But d*p = 0 if and only
if d(xp) = 0, and *p = O(p). Thus, (¢, g) is torsion-free if and only if dp = 0
and dO(yp) = 0.

Therefore, to construct torsion-free Gs-structures on a 7-manifold, we must
look for sections ¢ of P3M satisfying the equations dp = d©(p) = 0. Because © is
nonlinear, we have to solve a nonlinear partial differential equation on the 3-form .
The reason it helps to write the equations in this form is that the nonlinearity of the
equations is obvious: it is packaged up in the nonlinear function ©. If, instead, we
wrote the condition as Vi = 0 or dp = d*¢ = 0, it would still be nonlinear, because
the operators V and d* depend on ¢ in a nontrivial way, but the nonlinearity would
be hidden.

8.2. Reformulating the Problem as a Non-Linear Elliptic PDE. Now
consider the situation of Theorem 7.1. We are given a 7-manifold M, a family of
positive 3-forms ¢; and a family of 3-forms 1; for t € (0, €), which satisfy dyp; = 0
and d ©(y:) = d(*1:). We regard t as being small and fixed. Our goal is to deform
@t to a positive 3-form @; satisfying dp; = 0 and d©O(¢;) = 0. Let n be a 2-form
on M, and put @; = ¢; + dn. Since P3M is an open subset of A3T*M, it follows
that if dn is small in C°, then @; is a positive 3-form, and defines a G-structure
on M. Also, dg; = 0 holds automatically.

Thus, the condition for @; to define a torsion-free Ga-structure is that dn should
be small in C°, and d ©(p; + dn) = 0. The function © can be expanded about ¢;
to give

(8.1) O(pt + dn) = *p; + T * mi(dn) + 2 * 77 (dn) — *dn — F(dn).

Here F : A3T*M — A*T*M is a smooth function, such that F(x) is defined when
|x| is small, and satisfies F(x) = O(|x|?). Also, in (8.1) and in the rest of the
section, the Hodge star *, the projections m; and the operator d* depend on the
Go-structure (o4, gt)-
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Equation (8.1) expresses ©(p; + dn) as the sum of a constant term *y;, a term
% * 1 (dn) + 2 x w7(dn) — *dn that is linear in dn, and a remainder F'(dn) that is at
least quadratic in dr. We shall use (8.1) to rewrite the equation d ©(p; + dn) = 0
in a form that we are able to solve. Here is the first stage in this.

LEMMA 8.2. Let 5 be a 2-form on M, and define a real function f on M by

(82) m1(dn) = for.

Then the following two equations are equivalent:

(8.3) dO(p: + dn) = Ldf A (x@p — xiy) + 2d(xm7(dn)),
(8.4) and d*dn = d*y + Ld*(fr) + xdF (dn).

PROOF. Substituting (8.2) into (8.1) and applying d, we find that
(8.5) dO(p; +dn) = d* @ + Ld(f * ;) + 2d x m7(dn) — d * dn — dF (dn).

Now dx @y = d*1y, and thus df A (xp; — *xh;) = d(f * ;) — d(f * ;). Putting these
into (8.5) and rearranging gives

dO(p; + dn) =Ldf A (xpr — *ty) + 2d x 77 (dn)
—dxdn+dxy + Ld(f * ) — dF (dn).
Therefore (8.3) holds if and only if

(8.6)

(8.7) dxdn =dx*y + Zd(f x ;) — dF (dn).
Applying the Hodge star to this equation and using the fact that *dx = —d* on
3-forms gives (8.4), as we have to prove. O

Next, one proves the following Proposition.

PROPOSITION 8.3. Suppose that 1 is a smooth 2-form on M with |dy| small,
that f is a real function on M, and that (8.3) holds. Then @1 = @i +dn is a closed,
positive 3-form and

(8.8) dO(¢) =0, df=0 and  d(xm7(dn)) =0.
Thus, @¢; defines a torsion-free G3-structure on M.

This rather curious result is proved using the special geometry of G3-structures,
and it shows that if (8.3) holds, then all three terms in the equation must actually
be zero. Combining the Proposition and the previous Lemma, we arrive at the
following formulation of the problem.

PROPOSITION 8.4. Suppose 1 is a smooth 2-form on M with |dn| small, and f
a real function on M, that satisfy

(8.9) (dd* + d*d)n = d*¢y + Zd*(fir) + *dF(dn)

(8.10) and for = mi(dn).
Then ¢y = ¢ + dn defines a torsion-free Go-structure on M.
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PROOF. Since M is compact, the subsets Imd and Imd* in C®(A%2T*M) are
L?-orthogonal, and so have zero intersection. Now the Lh.s. of (8.9) is the sum
of dd*n € Imd and d*dnp € Imd*, but the r.h.s. lies wholly in Imd*. Therefore
dd*n = 0, implying that d*n = 0 by integration by parts. Thus, (8.9) implies (8.4),
and any solutions 7, f of (8.9) and (8.10) also satisfy (8.2) and (8.4). But Lemma
8.2 then shows that (8.3) holds, and finally Proposition 8.3 proves that if in addition
|dn| is small, then @; defines a torsion-free Go-structure, as we want. O

The operator dd* + d*d appearing on the left hand side of (8.9) is a second
order linear elliptic operator. Of course, the terms d*(fi:) and *dF(dn) on the
right hand side are also of second order in 7, since f is a component of dn. But
when ¢ is small, ¢; is small, and thus d*(f1;) is small compared to f. Also, since
F(x) = O(|x|?), if dn is small, then F(dn) is even smaller.

Therefore, when 1; and dn are both small, the second and third terms on the
right hand side of (8.9) are small compared to the left hand side. In this case,
since ellipticity is an open condition, (8.9) is a nonlinear elliptic partial differential
equation for . Now, a great deal is known about the properties of linear and
nonlinear elliptic equations, and there is a body of well understood techniques for
studying their solutions. For an introduction to this area, see Aubin [4], or Gilbarg
and Triidinger [12]. We shall use these techniques to show that (8.9) and (8.10)
have a smooth solution.

8.3. Constructing a Solution to the Equation. Theorem 8.1 now follows
from Proposition 8.4 and the next Theorem.

THEOREM 8.5. There exist positive constants k, K depending on the constants
A1, Az, Az and € of Theorem 7.1, such that for each t with 0 < t < k, there ezists
a smooth 2-form 1 on M with ||dn||co < Kt'/? satisfying (8.9) and (8.10).

Here is a brief sketch of the proof of this result. We solve (8.9) by iteration, in-
troducing sequences {n;}2, and {f;}32, with o = fo = 0, satisfying the inductive
relations

(8.11) (dd* + d*d)nj+1 =d* Y + %d*(fj’(/)t) + *dF(d'I’)j)
(8.12) and fiv1pt = m(dnjs1)-
Suppose by induction that smooth ng,...,n and fo,..., fr exist and satisfy (8.11)

and (8.12) for j < k. Now, provided F(dny) is well-defined, which happens if |dn|
is small, the r.h.s. of (8.11) for j = k is well-defined and lies in Im d*. Therefore, by
Hodge theory, there exists a smooth 2-form 7,41 satisfying (8.11). If in addition we
ask that m,41 be L2-orthogonal to the Hodge forms representing H?(M, R), then
Nk+1 is unique. The function fyy; is then defined uniquely by (8.12) for j = k.

Thus by induction, provided |dn;| remains sufficiently small for F'(dn;) to be
well-defined, the sequences {n;}?2, and {f;}32, exist and can even be chosen
uniquely. If these sequences converge to limits n and f, then taking limits in
(8.11) and (8.12) shows that 7 and f satisfy (8.9) and (8.10), giving us the solution
we want. The key to proving this is an inductive estimate: one shows that there
are positive constants C;,Cy, K and k depending only on the constants A;, Az, Az
and € of Theorem 7.1, such that if n;,n;41, f; and fj41 satisfy (8.11) and (8.12)
and the inequalities

(813)  lldmllzs < Cit*,  [[Vdnillpe <Co and  ldnglice < K2,
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and if ¢t < k, then

(8.14)  |ldnjp1llzz < Cit', |[Vdnpallps <Co and  [ldnjpalleo < Kt/2.

Here is how the inductive estimates (8.14) are proved. For the first one, we take
the L2-inner product of (8.11) with 7,41 and integrate by parts. A short calculation
shows that

(8.15) lldns+1llze < lellzz + Fllwellzelldnjlice + Cslidn;liczlldn;lice,

where Cj3 is a constant such that |F(x)| < Cs|x|?, for small 3-forms .

Equation (8.15) gives an a priori estimate for ||dn;41||z2 in terms of ||dn;|| L2
and ||dn;||co, which are bounded by (8.13), and ||¢¢||12, which is bounded by
A;t*. When t is small enough (depending on C;, K,Cs and A;), we can show
that ||dnj+1]lz2 < Cit!, as we have to prove. The 3-form 1; was introduced solely
to achieve this inequality.

Next we prove the second inequality of (8.14). Using parts (i¢) and (iii) of
Theorem 7.1 we may show that if x is a closed 3-form on M then

(8.16) IVxllzis < Ca(lld*xllzse + ¢4 lIxlIz2),

where Cj is a positive constant depending on A, and Az. This is an elliptic regular-
ity result for the elliptic operator d+d* acting on exterior forms on M. We substitute
X = dnj41 in (8.16). The term ||/d*x||f14 can be estimated in terms of norms of
¥ and dn; using (8.11), and the term ||x||z2 is ||dnjt+1||z2, which we have already
bounded. Again, when ¢ is small enough we can show that ||Vdn;t1||f14 < Co, as
we want.

Lastly, we prove the third inequality of (8.14). If x is a 3-form on M, then one
can use parts (i¢) and (i4i) of Theorem 7.1 to show that

(8.17) lIxllco < Cs (/2| VxllL1s + t~72| x|l 2),

where Cs depends on A; and Az. This is a Sobolev embedding result. The third
inequality of (8.14) follows from the first two and (8.17), provided we take K =
Cs (CQ + Cl)

The remainder of the proof is comparatively straightforward. By induction on
J, the estimates (8.13) hold for all j. It soon follows that the sequences {n;}32,
and {f; }]9‘;0 exist, and converge in the appropriate Sobolev spaces to limits 7, f, for
which (8.9) and (8.10) hold. Taking the limit in (8.13) shows that ||dn||co < Kt1/2.
Since (8.9) is elliptic for small ¢ and |dn|, one can then show that 7 is smooth using
standard analytic techniques, and the proof of Theorem 8.1 is complete.

For the Spin(7) case, the result corresponding to Theorem 8.1 is the following.

THEOREM 8.6. In the situation of Theorem 7.2, there are positive constants
Kk, K depending only on Ay, A3, A3 and €, such that for every t with 0 <t < &, there
ezists a smooth, torsion-free Spin(7)-structure (4, gr) on M with || — Ql|co <
Kt'/2,

The proof of this Theorem is given in [15, §5]. It is somewhat different to the
G2 case above.
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9. Finishing the Proof

Having proved Theorem 8.1, we have found examples of compact 7-manifolds M
admitting torsion-free Ga-structures. Now if (i, g) is a torsion-free Gs-structure,
then the holonomy group Hol(g) must be a subgroup of G3. The final part of
the construction, Step 4 of §5, is to show that Hol(g) = G», rather than some
proper subgroup. From Proposition 2.5, we see that Hol(g) = G5 if and only if
the fundamental group m;1(M) of M is finite. Therefore, to show that there exist
metrics with holonomy G2 on M, we just have to compute 7;(M) and verify that
it is finite.

EXAMPLE 9.1. We shall calculate the Betti numbers b* (M) and the fundamen-
tal group of the compact 7-manifold M of §6.3. Since M is compact and connected,
we have b°(M) = 1 and b¥(M) = "~%(M) by Poincaré duality. Thus, it is enough
to work out b!(M), b*(M) and b*(M). Now, the cohomology H*(T7/T) is simply
the T-invariant part of H*(T7). Thus we can easily work out the Betti numbers of
T7 /T, which are

(9.1) BYT7/T) =0, bXT7/T)=0 and b*(T7/T)=T.

To make M we glue in 12 patches of the form T x X, where X is the Eguchi-
Hanson space. Each of these patches increases b* by b* (T3 x X) —b*(T% x C? /{£1}).
Using the Kiinneth theorem and the Betti numbers b'(7%) = 3, b'(X) = 0 and
b%(X) = 1, one can show that each patch adds 0 to b', 1 to b% and 3 to b°. Together
with (9.1) this gives

(9.2) bI(M)=0, b (M)=12 and b3 (M) =43.

The fundamental group of M is also easy to work out: it turns out that 77 /T
is simply-connected, and the process of resolving does not change the fundamental
group, and so M is also simply-connected. Now, Theorem 8.1 constructs torsion-free
G-structures on M. But the fundamental group of M is finite, so by Proposition
2.5, these torsion-free Go-structures come from metrics on M with holonomy Gs.
Thus, M admits metrics with holonomy G». By (9.2) and Theorem 2.6, the moduli
space of metrics with holonomy G2 on M is a smooth, 43-dimensional manifold.

In the case of compact 8manifolds M with torsion-free Spin(7)-structures
(9, g), the topological test is more complicated: by Theorem 3.5, we have Hol(g) =
Spin(7) if and only if M is simply-connected and A(M) = 1, where A(M) is a
linear combination of the Betti numbers b*(M) and b4 (M). Thus, to prove that
Hol(g) = Spin(7), we evaluate the fundamental group and Betti numbers of M and
verify they satisfy the right conditions. Here is an example.

EXAMPLE 9.2. We shall work out the Betti numbers and fundamental group
of the compact 8-manifold M of §6.4. Since M is compact and connected we have
(M) = 1 and b* (M) = b¥%(M), so it is enough to find b' (M), b?(M),b3(M)
and b*(M). But M is oriented, and thus b*(M) splits into the sum of b4 (M) and
b* (M). Working out the I-invariant part of H*(T®) shows that

(9.3) BH(T®/T) =b*(T¥/T) =b*(T®/T) =0 and b4 (T®/T) =0 (T®/T)=".

To find the Betti numbers of the resolution M, we must add contributions from
the resolution of each component of the singular set. These are more difficult to
work out than in the previous example. In brief, each copy of T*/{+1} in S, and
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S fixes b and b%, adds 1 to b%, and adds 3 to each of b4 and b% . Each copy of T*
in S, and Ss fixes b' and adds 1 to b%, 4 to b® and 3 to each of b} and b%. Each
point in S, fixes b*,b?,b% and b%, and adds 1 to b%. Combining these with (9.3),
we find that M has Betti numbers

(94) b(M)=0, b*(M)=12, b (M)=16, bi(M)=107, b*(M)=43.

As in Example 9.1, it turns out that T8/T is simply-connected, and the res-
olution does not change the fundamental group, and so M is simply-connected.
From (9.4) and the definition (3.2) of A(M), we see that A(M) = 1. Therefore
Theorem 3.5 applies, so M admits metrics with holonomy Spin(7). By (9.4) and
Theorem 3.6, the moduli space of metrics of holonomy Spin(7) on M is a smooth,
44-dimensional manifold.

10. Interesting Questions

We finish by suggesting some questions and open problems for future research.
Here is our first question.

e Which compact 7- and 8-manifolds M admit metrics with holonomy G5 and
Spin(7)?

The construction described above yields many examples of compact manifolds
with holonomy G2 and Spin(7) metrics. The construction described above yields
many examples of compact manifolds with holonomy G2 and Spin(7) metrics. How-
ever, there may be many compact manifolds with holonomy G5 and Spin(7) that
cannot be constructed by this method, and we know almost nothing about them.
It is not even sure whether there are finitely or infinitely many compact manifolds
admitting metrics with holonomy G» and Spin(7). The author guesses that there
are only finitely many.

Our second group of questions concerns the moduli space of metrics.

e On a given 7- or 8-manifold M, what does the moduli space of metrics with
holonomy G or Spin(7) look like?

e Can this moduli space be compactified by adding extra ‘ideal’ points, cor-
responding to singular metrics?

e What kinds of singularities occur in these ‘ideal’ singular manifolds, and
how are they resolved?

These seem to be difficult problems, but ones on which some progress can be
made. The simplest sort of singularities to consider are orbifold singularities. When
the orbifold group locally lies in some SU(m) in Gy or Spin(7), we have a good
theory of when and how the singularities can be resolved, which will be explained
in [19]. Some things can also be proved for more general orbifold groups.

Thirdly, we discuss special submanifolds of G2 and Spin(7) manifolds. There is
a beautiful theory called calibrated geometry, which was introduced by Harvey and
Lawson [13]. The idea is that in a Riemannian manifold with an extra geometric
structure such as a Kahler structure, there is a special type of minimal submani-
fold called a calibrated submanifold. For example, complex submanifolds of Kahler
manifolds are calibrated submanifolds.

Riemannian 7-manifolds with holonomy G5 have two types of calibrated sub-
manifold, associative 3-manifolds, and coassociative 4-manifolds. Riemannian 8-
manifolds with holonomy Spin(7) have just one type, Cayley 4-manifolds. The
deformation theory of all three was worked out by McLean [27]. Examples of
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compact associative and coassociative submanifolds in compact 7-manifolds with
holonomy G, are given in [17, §4.2], and similar methods yield examples of Cayley
4-manifolds in Spin(7)-manifolds. Calibrated submanifolds seem to play a similar
role in exceptional geometry to holomorphic curves in complex manifolds.

e Describe the calibrated submanifolds N in a given compact Riemannian
manifold M with exceptional holonomy.

o Both coassociative 4-manifolds and Cayley 4-manifolds can occur in families
of positive dimension. What do the singular elements of these families look
like?

e What happens to the calibrated submanifolds in M as we deform the metric
on M?

e One can define invariants of compact manifolds with exceptional holonomy,
by counting calibrated submanifolds with a fixed homology class, as the
Gromov invariant counts pseudo-holomorphic curves in a symplectic man-
ifold. What is the theory of these invariants? Are there any connections
with physics?

Finally, we note that compact manifolds with holonomy G2 (and to a lesser
extent Spin(7)) are arousing interest in the branch of theoretical physics known as
‘string theory’. The most popular version of string theory predicts that the universe
should have 10 dimensions. But we can only see four dimensions, including time.

To account for the discrepancy, it is supposed that the universe is locally a
product of 4-dimensional Minkowski space with a compact 6-manifold with very
small radius, of order 10~33cm. The metric on this 6-manifold must have holonomy
SU(3), that is, it is a Calabi-Yau 3-fold. So string theorists have studied Calabi-Yau
3-folds from their own point of view, and have come up with some extraordinary
mathematical predictions, known as Mirror Symmetry.

However, a new theoretical model called M-theory predicts that the universe
should actually have 11 dimensions. To get from 4 dimensions to 11 dimensions
we take the product with a compact 7-manifold with very small radius, and at
the classical level this 7-manifold must have holonomy G,. It seems very likely
that string theory will throw new light on the geometry of compact manifolds with
holonomy G and Spin(7), and their calibrated submanifolds.
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