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A Riemannian manifold (M, g) is hyper-Kahler if it possesses complex struc-
tures I and J such that

(i) the metric g is Kdhler with respect to both I and J; and
(ii) the given complex structures anti-commute: [J = —JI

Defining K = IJ, it then follows that g is also K&hler with respect to K. More-
over, I, J, and K automatically satisfy the usual quaternionic multiplication table.
Each tangent space of M therefore becomes a quaternionic vector space, and the
dimension of M is therefore 4n for some integer n. Condition (i) implies that
parallel transport commutes with I and J, and hence with K. Thus the holonomy
group is contained in O(4n)NGL(n,H) = Sp(n). Hyper-Kéhler manifolds therefore
correspond to one of the possibilities on Berger’s list of holonomy groups.

In fact al +bJ +cK is also a Kihler structure on M whenever a? +b%+¢c? =1,
so a hyper-Kéahler manifold actually carries a two-sphere of K&hler structures. It is
this fact which lies at the heart of the twistor approach to hyper-Kéahler geometry,
outlined later in the article. Note in particular that a hyper-K&éhler manifold is a
symplectic manifold in many different ways.

The existence of this large family of parallel two-forms gives us more rigid-
ity than in the Kahler case. For example, any Kahler metric admits an infinite-
dimensional space of Kahler perturbations, for we can just add 89 f to w, where f is
a function with 80 f sufficiently small. There is no analogue of this in hyper-Kzhler
geometry. Another contrast with the Kihler situation is that for a hyper-Kahler
manifold the complex structures, and hence the metric, are determined by knowl-
edge of the triple of two-forms wy,wys,wk. For, viewing these forms as living in
Hom(TM,T*M), we find that K = —w;'w; et cetera.

It is often useful to know that if, for some metric, I, J, K are almost-Hermitian
structures satisfying (ii), and if the associated two-forms are all closed, then I, J, K
are in fact integrable and we have a hyper-Kéhler structure. Again, the analogous
result for Kahler manifolds is false.
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Let I be an arbitrary element of the two-sphere of complex structures, and
let J, K be complex structures such that IJ = K etc. Then the closed 2-form
w = wy + iwg is holomorphic with respect to I, and nondegenerate. That is, w
defines a complex-symplectic structure on (M, I).

Taking the 2nth power of w gives a trivialisation of the canonical bundle, so
a hyper-Kahler manifold has ¢; = 0 (for any one of the two-sphere of complex
structures). Moreover w is parallel, so in fact we obtain a parallel trivialisation of
the canonical bundle, and the Ricci tensor of M is zero. Alternatively, one may view
this in terms of holonomy groups and observe that Sp(n) is contained in SU(2n).
Note that in real dimension four, the hyper-Kahler condition is equivalent to Ricci-
flat K&hler, as Sp(1) = SU(2). In higher dimensions, however, the hyper-K&hler
property is much stronger.

If a compact complex manifold M is complex-symplectic and Kahler, then it is
hyper-Kéahler [4]. For the complex-symplectic structure implies, as above, that c;
vanishes, and so Yau’s theorem [91, 92] tells us that M admits a Ricci-flat Kahler
metric. A Bochner argument now shows that the holomorphic symplectic form is
actually parallel with respect to the Yau metric. The Kéhler form, together with
the real and imaginary parts of the holomorphic symplectic form, spans the space
of parallel two-forms which reduces the holonomy to Sp(n).

It is still unclear in general when a complex-symplectic manifold admits a
compatible hyper-Kéhler structure. There are examples [33, 34] in all dimensions
of compact complex-symplectic manifolds which do not support any hyper-Kahler
metric (see §6). However, in this article we shall encounter many cases which are
known to be hyper-Kahler; examples include coadjoint orbits of complex semsimple
groups, spaces of representations of fundamental groups of surfaces into complex
semisimple groups, and open subsets of cotangent bundles of Kihler manifolds.
Looking for complex-symplectic manifolds and attempting to find a compatible
hyper-Kahler structure has proved a very fruitful way of producing examples of
hyper-Kahler manifolds.

1. Early Examples

In 1978 Eguchi and Hanson [25] found an example of a four-dimensional com-
plete Ricci-flat metric which was of Bianchi IX type; that is, it admitted an isometric
action of SU(2) with generically three-dimensional orbits. In fact, their example is
hyper-Kahler. Explicitly, the metric is

1
(1.1) Wldr? + Zrz (03 + 03 +Woa3),
where .
a
W =1~ ;Z’

01,02, 03 are left-invariant one-forms, and a is a parameter.

If we denote by X; the vector fields dual to o;, then one of the complex struc-
tures, I say, maps X; to X5, and sends the normal 8/0r to %Xg. We can pick
an anticommuting complex structure J which maps the normal to :\}—WX 1 and X
to \/;WX3

If a is zero then (1.1) is just the Euclidean metric on R*. For nonzero a we obtain
a smooth complete metric by letting r range over [a,00). The apparent degeneracy
at r = a is just a coordinate singularity, where the three-dimensional orbits of SU(2)
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collapse down to a special orbit which is a two-sphere. The underlying manifold of
the Eguchi-Hanson metric is the cotangent bundle of this sphere, so the principal
orbits are copies of RP? rather than S®. As the coefficients of 62 and o3 are equal,
the full isometry group of the metric is actually U(2)/{£1}, acting on T*S? in the
natural way. With respect to the complex structure I, the manifold is biholomorphic
to the cotangent bundle of CP!, but for the other complex structures it is an affine
algebraic variety, the nonsingular quadric in C2>. We shall see a similar phenomenon
for many other hyper-Kahler manifolds. Note that I is the only complex structure
preserved by the full isometry group-the other complex structures are preserved by
SU(2) but rotated by the U(2) action.

The Eguchi-Hanson metric was soon generalised in several ways. Calabi [15]
constructed hyper-Kéhler metrics on the cotangent bundle of CP™ for any n. One of
the complex structures is just that induced from complex projective space. Indeed,
Calabi proceeds by explicitly calculating a Kahler potential on this complex mani-
fold such that the associated Kahler form and the natural complex-symplectic form
on the cotangent bundle together define a hyper-Kéahler structure. With respect to
the other complex structures, however, M is biholomorphic to an affine variety, the
coadjoint orbit SL(n+ 1,C)/GL(n,C). Of course, this complex manifold has com-
pletely different properties from T*CP". For example, it has no compact complex
submanifolds.

On another front, Belinskii, Gibbons, Page and Pope [5] found the general
Bianchi IX hyper-K&hler metric in the case when the SU(2) action preserves each
Kaébhler structure. The metric may be written as

1.2 abe)? dt? + a?0? + b?02 4?02,
1 2 3

where a, b, ¢ must satisfy

!

(1.3) 25;- =5+ ¢ ~ a?

and the two equations obtained from (1.3) by cyclically permuting a,b,c. These
equations are equivalent, after making the change of variables fi = bc, fo = ac, f3 =
ab, to the spinning top equations f; = f;fi, where (ijk) ranges over cyclic permu-
tations of (123). These may be solved in terms of Jacobi elliptic functions, and the
metric written down explicitly. The resulting metrics are generically triazial, that
is, the coefficients of o7 are all distinct so the isometry group is SU(2) rather then
U(2). However the triaxial metrics are never complete. In fact, the only complete
examples in the family considered by Belinskii et al. are Eguchi-Hanson and flat

space. The former corresponds to the solution f; = —cotht, fo = fs = —cscht,
while the latter comes from the solution fi = f» = f3 = —t~!. The other non-
triaxial solution, corresponding to f; = —csct, fo = f3 = —cott, gives an incom-

plete metric.
Also in four dimensions, Gibbons and Hawking [29] found the family of multi-

instanton metrics. These admit a circle action preserving the hyper-Kéahler struc-
ture, and can be written as

(1.4) Vde.dz + V=1 (d6 + w.dz)?.

Here 6 is a coordinate on the circle fiber, £ a coordinate on the three-dimensional
quotient, w is the connexion form, and V' is a real-valued function on the quotient.
In order to obtain a hyper-Kahler metric we need dV = *dw, so V is harmonic.
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The multi-instanton metrics are obtained by setting

m
(1.5) Vi)=Y lz-p|™,
i=1
for some points pi, ... ,pm in R®. With this choice of V we get a complete metric,

provided the p; are all distinct.

The underlying manifold fibres over R® with generic fiber S*, but at the points
p; the circle collapses to a point (metrically these are the points where V=1, the
length of the circle, is zero). The topology of the manifold is generated by the m—1
two-spheres which fiber over the closed line segment from p; to pi+1. If m =1 we
just get Euclidean space, and if m = 2 we recover the Eguchi-Hanson metric. The
multi-instanton metrics were also obtained, using twistor methods, by Hitchin [41].

At about the same time, progress was made in a different, less explicit direction.
Yau'’s proof of the Calabi conjecture [91, 92] showed that the K3 surface admitted
a hyper-Kihler metric. This was the first compact hyper-Kahler manifold known,
except for flat tori. We shall discuss the compact case further in the last section of
this article.

2. Hyper-Kiahler Quotients

The hyper-Kahler quotient construction, due to Hitchin, Karlhede, Lindstrém
and Rocek [45], is at present the most useful method of constructing complete
hyper-Kihler manifolds. The beauty of the technique is that, starting from flat
quaternionic space, it produces highly nontrivial manifolds. We shall see, for ex-
ample, that the Calabi and multi-instanton spaces can be produced in this way.

The construction is inspired by the symplectic quotient of Marsden and We-
instein, a good account of which is given in the book of Guillemin and Sternberg
[36]. If a group G acts on a symplectic manifold M preserving the symplectic form,
then in good cases (for example, if G is semisimple), one obtains a moment map
p: M — g*. The moment map is a G-equivariant map such that

(2.1) dp(v)(X) = w(X*,v)

for all tangent vectors v to M and all elements X of g. Here X™* denotes the vector
field on M associated to X by the group action.

The equivariance of u shows that if A lies in the center of g* then G acts on
the level set u~!()\). The key result is that if X is in addition a regular value of u
and G acts freely and properly on the level set, then the quotient u=1(\)/G is a
symplectic manifold.

The starting point for the hyper-Kahler quotient is a hyper-Kéhler manifold
M admitting an action of a Lie group G preserving the hyper-Kéhler structure.
This means that the action of G is isometric and holomorphic with respect to all
the complex structures. In particular, the action of G preserves the Kahler forms
wr,wy,wgk. If the associated three symplectic moment maps exist, then we can
combine them into a single hyper-Kahler moment map u : M — R ® g*. It is
useful to observe that if IJ = K etc. then pjy + ipk is holomorphic with respect
to the complex structure I. The level sets of this map are therefore Kahler with
respect to I.

The main theorem of [45] says that if we pick A; in the center of g*, and if
A = (A1, A2, A3) is a regular value of u and G acts freely and properly on p~*(}),
then the quotient 4~*())/G is hyper-Kahler. To see this, observe that the quotient
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can be viewed as the symplectic quotient by G of (us + ipx) (A2 +i)3). Now,
the symplectic quotient of a Kahler manifold by an action preserving the Kahler
structure is in fact Kahler, so 4~!())/G has a Kéhler structure induced by I. The
other Kéhler structures are produced in the same way, by considering different
combinations of pr, ps, pk-

Before we mention some examples, let us make a few remarks about the con-
struction.

(i) It is sufficient that G should be semisimple for the moment maps to exist.
This condition is definitely not necessary, as some of our later examples will
show.

(ii) If the action of G on pu~1(]) is free, then ) is automatically a regular value
of the moment map. The dimension of the quotient in this case is dim M —
4dimG.

(iii) If M is complete and G is compact, then the quotient, when smooth, is also
complete.

(iv) If G has a nontrivial center, then, typically, the action of G on the level set
is free for generic values of A\. At special values, we get singularities.

(v) Although the quotient construction is a powerful method for showing exis-
tence of hyper-Kahler metrics, finding the metric ezplicitly may be difficult.

The hyper-Kéhler quotient procedure is well-adapted to finding complex struc-
tures on hyper-Kahler manifolds. The tool used is the equivalence between Kahler
and algebro-geometric quotients [52]. More precisely, if N is a Kahler manifold
with an action of G preserving the K&hler structure, then the symplectic quotient
of N by G can be identified with the quotient by GCof the set of stable points—those
points whose G orbits meet the zero set of the moment map for the G action.

In many concrete situations this notion of stability coincides with some more
natural notion, for example Mumford stability of vector bundles. In any event, the
crucial point is always to ascertain which orbits of the complex group meet the zero
set of the moment map.

In the hyper-Kahler case, we just observe, as above, that the hyper-Kahler
quotient p~1(0, A2, A3)/G is the symplectic quotient by G of the variety (uj +
ik )~ (A2 +iX3) and apply the previous discussion.

As an example of the construction, let M = H* = C* x C*, and let G = U(1)
act by e.(z,w) = (e"z,e""w). The moment map is p : (z,w) — (3(|2|* -
|w|?), Re(z,w), Im(z,w)). Taking A = (0, Re7,Im ), we find that the hyper-Kahler
quotient is biholomorphic to the algebro-geometric quotient {(z,w) : (z,w) =
7}//C*, where C* acts by s.(z,w) = (sz,s 'w). If we take 7 to be nonzero then
all points (z,w) with (z,w) = 7 are stable for this action. The quotient can be
identified as a complex manifold with the cotangent bundle of CP"~!, and the
hyper-K&ahler metric is that found by Calabi.

There are soyﬁe particularly interesting four-dimensional examples of hyper-
Kahler quotients. The best understood case is that of asymptotically locally Eu-
clidean (ALE) hyper-Kéahler four-manifolds, studied by Kronheimer [57, 58]. The
ALE condition means that the metric is asymptotically a quotient by a finite group
of the Euclidean metric

(2.2) dr® +r*(0? + 03 + 02),
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on R*. More precisely, we require that the metric should agree with the quotient
of the Euclidean metric modulo terms whose p*" derivatives decay at least as fast
as r~47P,

The construction is begun by choosing a finite subgroup I' of SU(2). There
are two infinite families, the cyclic and binary dihedral groups, together with the
binary tetrahedral, octahedral and icosahedral groups. We can rephrase this by
saying that the finite subgroups of SU(2) have an A-D-E classification, that is,
they correspond to the simply-laced Dynkin diagrams. Moreover the nodes of the
extended Dynkin diagram correspond to the irreducible representations of T'.

For each such T, let V' denote the regular representation of I and let M be the
[-invariant part of End(V) ® C?, where I acts on C? via inclusion into SU(2). Let
G be the subgroup of PU(V) commuting with the action of T on End(V). Then
the hyper-Kahler quotient of M by G is, for generic choices of level set, a smooth
ALE hyper-Kéahler four-manifold.

The zero level set yields the Kleinian singular space C? /T, with the flat metric,
and the smooth quotients are desingularisations of this space. Their topology is
generated by embedded two-spheres of self-intersection —2, intersecting according
to the non-extended Dynkin diagram corresponding to I'.

Asymptotically, the metric approaches the flat metric on R*/T’. The analysis
of the asymptotics relies on the homogeneity of the moment map with respect to
dilations of M. Roughly speaking, this means that going out to infinity in the
hyper-Kahler manifold corresponds to scaling the level set A\ towards zero. The
flatness of the space corresponding to the zero level set, together with the flatness
of the connexion controlling the first variation of the metric about A = 0, yields the
ALE property.

As explained in [57], one can use the work of McKay [70] to give a more
concrete description of the quotient construction. Let A be the extended Dynkin
diagram of I, with vertices v1,... ,vn, and when ¢ < j and v; is adjacent to v;, let
pi;j denote the edge of A from v; to v;. To each vertex v; we attach an integer n;,
the dimension of the irreducible representation of I' corresponding to v;. Then M
is the direct sum over the edges of H™ ", while G is the product over the vertices
of U(n;), factored out by the circle subgroup which acts trivially on M. To define
the action, for each edge p;; we view H* "™ as Hom(C™ ,C" ) @ Hom(C" ,C") and
let U(n;) and U(n;) act in the natural way. In this picture the relation A+C = 2I
between the adjacency and Cartan matrices of the Dynkin diagram shows that the
real dimension of M is 4|T'|. On the other hand, the dimension of G is (3" n?) — 1,
which is |I'|—1 from elementary representation theory, so the hyper-Kéhler quotients
are four-dimensional, as required.

In the A, case, corresponding to I' = Z, 41, all the n; are equal to 1, since I' is
abelian. Hence M is just H**! and G = U(1)". The resulting hyper-Kahler metrics
are the Gibbons-Hawking multi-instanton series. Note that the description of the
topology of the ALE spaces above agrees with our discussion of the multi-instanton
spaces in the preceding section.

The multi-instanton metrics may be written down explicitly as in (1.4) because
they admit a circle action preserving each Kahler structure. In terms of the algo-
rithm for constructing the ALE spaces as a quotient, this is due to the fact that in
the A, case there are as many edges as vertices in the extended Dynkin diagram.
This means that there is still a residual circle action after we perform the quotient.
In the other cases the number of vertices is one greater than the number of edges,
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and we do not obtain a hyper-K&hler action on the quotient. No explicit form of
the metric is known in these cases.

For each choice of I" we get a family of hyper-Kahler metrics, depending on
the choice of level set. The action of the isometry group of M means that certain
choices of level set will give equivalent quotients, so not all these parameters are
effective. For A,, we can parametrise the metrics by the locations of the points
Di,--- ,Pn+1 of (1.5), modulo translations and rotations of R*. The points must be
distinct if we are to obtain a smooth metric. For n = 1 (the Eguchi-Hanson metric)
we have a single parameter. Another way of viewing the parametrisation is via
the periods, the numbers obtained by pairing the cohomology classes of the three
Kihler forms with the homology classes represented by the embedded two-spheres.
The periods determine the hyper-Kéhler metric [58].

In fact, Kronheimer shows that these examples are the only ALE hyper-Kahler
four-manifolds. His proof exploits the fact that ALE metrics admit an orbifold
compactification. Hyper-Kéhler metrics in dimension four are always anti-self-
dual, so this compactification carries an anti-self-dual conformal structure and the
methods of Penrose’s twistor theory [78] may be applied. If the ALE condition is
dropped, one may get other examples, the simplest of which are the multi Taub-
NUT metrics. This family, discovered by Hawking [39], is given as in (1.4), but
now we have V. =14+%", |z —p; | 7%

If m = 1, we obtain a U(2)-invariant metric, the celebrated Taub-NUT metric.
This may be written in SU(2)-invariant form as

r+1 r
; dr? +r(r +1)(o} +03) + H_—lag,
where 7 € [0,00). At r = 0 the SU(2) orbit collapses to a point (a nut in the
terminology of general relativity). The change of variables r = s? shows that
the metric extends smoothly over the nut, and we obtain a metric defined on R*.
Although complete, the Taub-NUT metric is not ALE, because the coefficient of o2
approaches a constant as r tends to infinity rather than growing like r2. This kind
of asymptotic behaviour, which is shared by the other multi-Taub-NUT metrics,
is called Asymptotically Locally Flat (ALF). There is a detailed discussion of the
Taub-NUT metric by LeBrun [62], who shows that all the complex structures are
equivalent to that of C2. There is a circle subgroup of U(2) preserving each complex
structure, but the action of SU(2) permutes them, making it hard to write them
down explicitly in the coordinates of (2.3). The Taub-NUT example shows that a
complex manifold (C? in this case) may admit non-homothetic complete Ricci-flat
Kéhler metrics, in contrast to the situation for negative Einstein constant [17, 93].

One can also produce the multi-Taub-NUT metrics by replacing an H factor
in the Kronheimer construction by an R® x S'. It is interesting to note that these
metrics may also be obtained as hyper-Kihler quotients by a noncompact group.
For example, if R acts on C2 x C? by t.(21, 22, w1, w2) = (e®21,e %29, w1 + ¢, w2),
then the hyper-Kahler quotient is the Taub-NUT metric [6].

There are many higher-dimensional examples produced as hyper-Kéhler quo-
tients of H® by subgroups of Sp(n). For example, Lindstrom and Ro¢ek found
hyper-Kahler metrics defined on the cotangent bundles of Grassmannians SU(m +
n)/S(U(m) x U(n)) by taking a hyper-Kahler quotient of HI™("*™) by U(m). The
case m = 1 corresponds to the Calabi metric. We shall see later that cotangent
bundles of arbitrary generalised flag manifolds also carry a hyper-Kéhler structure.

(2.3)



22 ANDREW S. DANCER

One class of quotients whose properties can be calculated in detail is motivated
by Delzant’s construction of compact Kahler toric varieties as Kéhler quotients
[22, 35]. The starting point for Delzant’s work is a polytope A in R" defined by
inequalities (z,ux) > Ax for vectors uy,...,uq and scalars Aq,...,Aq. Here d is the
number of faces of A. This data defines a subtorus N of T'¢, for we can take the Lie
algebra of N to be the kernel of the map from R? to R” given by sending the kth
element of the standard basis to uj. Delzant now considers the K&hler quotient of
C? by N, using the scalars A to fix the level set. If the polytope satisfies certain
constraints, then the resulting Kahler quotient is a smooth compact toric variety
X of real dimension 2n. Moreover X admits a Kéhler action of 7" 2 T¢/N, and
the image of the associated moment map is just A.

By performing a hyper-Kihler quotient of H? by N in an analogous fashion,
one obtains [30, 8] families of hyper-Kahler manifolds associated to hyperplane
arrangements in R™. (We do not necessarily assume these define a polytope). The
hyper-Kahler manifolds have real dimension 4n and have an action of T" = T¢/N
preserving the hyper-Kéhler structure. The methods of [45, 77] may therefore be
applied to give rather explicit formulae for the metric and Kahler form. The mani-
folds are noncompact, but their topology is generated by a union of compact toric
varieties. The Calabi spaces correspond to the hyperplanes defining the standard
n-simplex, while the multi-instanton metrics correspond to a set of points in R.
There are many other complete examples given by more complicated hyperplane
arrangments. One also obtains, by restriction, hyper-Kéhler metrics on the cotan-
gent bundles of toric varieties, but these metrics are usually incomplete. Taking the
zero level set yields a singular quotient, but, in good cases, this is a cone over one of
the smooth 3-Sasakian manifolds of [12]. Bielawski has investigated the interesting
topological properties of these examples [7].

This may be a good point to mention a difference between symplectic and hyper-
Kéhler quotients. When performing symplectic quotients by a group with nontrivial
center Z, the usual picture is that the set of critical values of the moment map is of
real codimension one in 3*. We therefore have a wall-crossing phenomenon; as the
level set crosses a critical value the symplectic quotient can change topology by a
sequence of symplectic blowups and blowdowns. This situation has been extensively
analysed in the beautiful paper of Guillemin and Sternberg [38].

In the hyper-Kahler case, the set of critical values is typically of codimension
three or more in R3 ®3*, so one expects the smooth quotients to all be diffeomorphic
(although not isometric). For example, the ALE spaces of [57] are, when smooth,
all diffeomorphic to the minimal resolution of the appropriate Kleinian singularity.

3. Moduli Spaces

One of the most important features about hyper-Kéhler structures is that there
are many naturally occurring examples. In particular, the moduli spaces arising
in gauge theory often carry a hyper-Kahler metric. The key fact is that such
moduli spaces may often be viewed as finite-dimensional hyper-K&hler quotients of
an infinite-dimensional space of connexions by an infinite-dimensional gauge group,

As an example, let us consider connexions on a principal G-bundle over R*. The
space A of connexions is an infinite-dimensional affine space modelled on Q! (R?, g).
We put a quaternionic structure on A by writing connexions as (8p + Ao) + (61 +
A1) + 5(82 + Az) + k(33 + A3z), where J, denotes the a'! partial derivative and
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22=0 Audz, is a g-valued one-form. The gauge group G may be identified with
C>(R*,QG).

If we restrict to a space Ag of connexions which are standardised at infinity,
in some suitable sense, then we can put an L? metric on .4p which makes it into
an infinite-dimensional hyper-Kahler manifold. Furthermore, if we consider the
subgroup Gp of gauge transformations tending to the identity at infinity, then the
action preserves the hyper-Kahler structure and admits a moment map. An inte-
gration by parts argument, together with the conditions at infinity, shows that the
equations for the vanishing of the moment map are

(3.1) [60 + A0,6,~ + A,] = [61 + A]',ak + Ak],

where (ijk) ranges over cyclic permutations of (123). The commutator terms are
of course components of the curvature form of the connexion, and (3.1) is the self-
dual Yang-Mills equation. Hence the moduli space of based instantons on R* is a
hyper-Kahler quotient of A9 by Go. Although Ag and Gy are infinite-dimensional,
M is finite-dimensional, as alluded to above.

There are many variations on this theme. For example, one may replace Eu-
clidean R* by some other hyper-Kihler base manifold. Itoh [48] has considered
moduli spaces of instantons on the two compact hyper-Kahler four-manifolds, the
four-torus and the K3 surface. Instantons on ALE hyper-Kahler four-manifolds
have been studied by Kronheimer and Nakajima [61]. In subsequent work, Naka-
jima has shown that the middle cohomology of these moduli spaces provides weight
spaces for representations of affine Kac-Moody algebras [74].

Another modification, which has proved extremely fruitful, is to consider self-
dual connexions invariant under some group of transformations of R* preserving
the hyper-Kéahler structure. Some examples follow.

3.1. Nahm’s Equations. These are the self-duality equations with R® transla-
tion-invariance imposed. The equations then become the system of ordinary differ-
ential equations

dT;
dt
for quadruples (To,T1,T2,Ts) of g-valued functions. As in (3.1), the triple (ijk)
ranges over cyclic permutations of (123).

The simplest case is when T; are smooth maps defined on a finite interval,

say [0,1]. The group of maps from [0, 1] to G acts on solutions to (3.2) by gauge
transformations

(3.2) + [To, T3] = [T}, Tk),

(3.3) To — Ad(9)To — %i—g—l, T;—~ Ad(9)T; (i=1,2,3).

The quotient of the space of solutions by the group of gauge transformations van-
ishing at the endpoints is hyper-Kahler. We may see this by viewing the equations
as the vanishing of a moment map for the action of this group on the space of maps
[0,1] — g*.

There are many modifications of this construction. One can have the Nahm
matrices defined on a union of intervals, and impose boundary conditions at the
endpoints. In particular, one often requires the Nahm matrices to have poles of
prescribed residues at the endpoints of the intervals. In this case it is necessary to
fix the residues for there to be a finite L2 hyper-Kéhler metric on the moduli space.
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3.2. Self-Duality Equations on a Riemann Surface. If we look at self-
dual G-connexions with R? translation invariance, we get a system of equations
involving a connexion A and a complex Higgs field ® on R?. The Higgs field is
regarded as a (1, 0)-form taking values in the complex adjoint bundle associated to
the principal G-bundle. These equations are conformally invariant, so also make
sense on an arbitrary Riemann surface ¥. Hitchin [43] has carried out an intensive
study of the resulting moduli space for G = SU(2). If g is the genus of the Riemann
surface, the moduli space M is a hyper-Ké&hler manifold of real dimension 12(g —1).
For a special choice of complex structure, I say, M can be identified with a moduli
space of stable Higgs pairs (V, ®). Here V is a rank two holomorphic vector bundle
on ¥, and @ is a holomorphic section of End(V)® K, where K denotes the canonical
bundle. The stability condition for such pairs is that the degree of any ®-invariant
rank one subbundle L of V should be less than half the degree of V. The cotangent
bundle of the moduli space N of stable rank two bundles on X sits inside M as
an open dense subset. We can regard N itself as the subset of M consisting of
configurations with zero Higgs field. The stability condition for pairs reduces at
such configurations to the ordinary stability condition for bundles.

There is an isometric circle action preserving I, defined by scalar multiplication
of the Higgs field. The moment map for this action is just the L? norm squared
of the Higgs field, and is a perfect Morse function on M. Hitchin uses this to get
formulae for the Betti numbers of the moduli space. Note that the critical points
for the Morse function, or equivalently, fixed points for the circle action, need not
occur only when the Higgs field is zero. This is because we get a fixed point on the
moduli space whenever (A, ®) is gauge equivalent to (A, e ®) for all §. The upshot
is that as well as the critical submanifold NV we also get critical submanifolds of
higher index, and the Poincaré polynomial of M becomes quite complicated.

As with the Calabi examples, the other complex structures, which are all equiv-
alent, make M into a Stein manifold. With respect to such a complex structure, the
moduli space may be regarded as a space of representations of a central extension
of m1(X) into GC, modulo conjugation. This is an example of a space with a natural
complex-symplectic structure turning out to admit a hyper-K&hler metric.

Several authors have generalised these results to moduli spaces of parabolic
Higgs bundles on Riemann surfaces (or equivalently orbifold Higgs bundles on orb-
ifold Riemann surfaces) [55, 75, 11]. The dimension of the hyper-K&hler moduli
spaces depends not just on the genus but also on the marked points and the par-
abolic data there. One obtains, by judicious choice of the various pieces of data,
hyper-Kahler manifolds of dimension 4n for every n. In particular, taking ¥ to be
the Riemann sphere with four marked points gives a hyper-Kéhler four-manifold
fibering over C. The generic fiber is an elliptic curve, and the fiber over the origin
is the union of five rational curves intersecting like the extended Dynkin diagram
of Dy4. Hitchin has also constructed this manifold by twistor methods [42].

3.3. Monopoles. If instead we require R-translation invariance, we obtain
from the self-dual Yang-Mills equations the Bogomolny equations
(34) xFqg =Duy®,

for a connexion A and Higgs field ® on R®. The Higgs field is a section of the
real adjoint bundle associated to the principal G-bundle on which the connexion
lives. Solutions to (3.4) with appropriate behaviour at infinity are called monopoles,
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and as with instantons we can study moduli spaces of these objects. Monopole
moduli spaces are hyper-Kiahler and admit an action of SO(3), induced from spatial
rotation in R3, which permutes the complex structures. Each complex structure
identifies the moduli space with a space of based rational maps from the Riemann
sphere into some flag manifold [23, 47].

In all these cases the moduli space has a nice description as a complex manifold.
Formally, this is shown by the same kind of argument as in the finite-dimensional
case, discussed in §2. One splits up the equations defining the moduli space into a
real and a complex equation; in terms of the moment maps these are just uy = 0
and py + iux = 0. The real equation is invariant under the action of the gauge
group, but the complex equation is preserved by the action of the complexified
gauge group. Then one shows that, subject to a stability condition, every orbit
of the complexified gauge group in the set of solutions to the complex equations
contains a solution to the real equations, unique up to the action of the real gauge
group. The moduli space is thus identified with the quotient of (us + ipx)~*(0)
by the action of the complexified gauge group. In this infinite-dimensional setting,
establishing the existence of a solution to the real equation in each orbit of stable
points involves some analytical work.

For example, in the case of Nahm moduli spaces we may introduce the complex
Nahm matrices

a:To—iTl, ﬂ=T2+iT3.

Then the Nahm equations are equivalent to the real equation

d
(3.5) E(a +a*) + [a,a%] + [3,8%] =0,
together with the complex equation
ds
(3.6) P + [o, 8] =

In the case G = SU(2) Donaldson showed by a variational argument that every
solution to (3.6) can be transformed by a complex gauge transformation, unique
up to the action of the real gauge group, into a configuration which also solves the
real equation.

The next step, therefore, is to describe the solutions to the complex equation
modulo (complex) gauge equivalence. Now, on the set where the Nahm matrices
are smooth the complex equation may be trivialised in the sense that o may be
gauged to zero, and hence § is gauged to a constant element of gC The moduli
space is in fact parametrised by an element of gC and some further data which
describes how the transformation gaugeing « to zero behaves at an endpoint of the
interval. Donaldson uses this parametrisation to describe the moduli space as a set

of rational maps. This result has been generalised to other groups by Hurtubise
[47].

Moduli spaces of instantons on R* are isometric, via the ADHM transform
[2, 66], to moduli spaces of solutions to a system of matrix equations satisfying
certain nondegeneracy conditions. These equations are in fact obtained by imposing
R*-translation invariance on the self-dual Yang-Mills equations (3.1). Alternatively,
they can be interpreted as the vanishing of a hyper-Kahler moment map for the
action of a finite-dimensional group on a finite-dimensional vector space.
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Similarly, the Nahm transform relates moduli spaces of monopoles and solutions
to Nahm’s equations [72, 73]. Given a monopole (A, ®), one defines a family of
Dirac operators coupled to (A, ®), parametrised by a real number. This gives
rise to an index bundle over a subset of R, and projection from the trivial bundle
defines a connexion which, written out in components, gives a solution to the Nahm
equations. A similar procedure allows one to go in the reverse direction and build
a monopole from Nahm matrices. The intervals on which the Nahm matrices are
defined, and the boundary conditions, determine the gauge group and charge of
the monopole. For example, in the case of SU(2) monopoles the Nahm matrices
are defined on a single interval and take values in u(k), where k is the charge
of the monopole. Moreover T7,T5,T3 should have poles at the endpoints of the
interval and their residues at each endpoint define the irreducible k-dimensional
representation of SU(2). Unlike the situation with instantons, as yet no finite-
dimensional procedure for obtaining monopole spaces is known.

Monopole moduli spaces have been the focus of particular attention, because of
the Manton programme for deducing information about monopole dynamics from
geodesic flow on the moduli spaces [67]. In the simplest case, when G = SU(2), the
moduli space of charge k£ monopoles is 4k-dimensional and is biholomorphic to the
space of based rational maps of degree k from the Riemann sphere to itself. If k = 1
we just get the flat hyper-Kahler manifold R® x S, but for higher k the metric is
nontrivial. After taking a cover, the moduli space splits as a product of R® x S! and
a (4k — 4)-dimensional hyper-Kahler manifold MY which is the universal cover of
the moduli space M} of monopoles with fixed centre. Of course, this factor contains
the interesting geometry.

Atiyah and Hitchin [3] studied the k¥ = 2 case in detail. This example is
particularly interesting because the metric can be found completely explicitly. This
is possible because MY is now four-dimensional and, as mentioned earlier, admits
an isometric action of SO(3) permuting the Kéahler structures. The orbits are
generically three-dimensional, so the metric is of Bianchi IX type. Writing the
metric as

(3.7 (abc)?dt? + a’o? + b%02 + ol

it turns out that the coefficients a, b, c must satisfy the equation

!

(3.8) 2% =(b—c)? - a?

and its cyclic permutations. (We can compare this with the equations (1.3) con-
sidered by Belinskii, Gibbons, Page and Pope [5] in their study of Bianchi IX
hyper-Kahler metrics where the action preserves each complex structure individu-
ally).

The equations (3.8) are more difficult than those of [5], but they can be solved
in terms of elliptic functions. There are three solutions corresponding to complete
metrics; one gives flat space, one the Taub-NUT metric (2.3), and the last and most
complicated gives the Atiyah-Hitchin moduli space metric. This metric is triaxial,
but in the asymptotic region of MY approaches a U(2)-invariant metric. This is the
so-called negative-mass version of the Taub-NUT metric. Although well-behaved
in the asymptotic region, negative-mass Taub-NUT becomes singular in the core
region, in contrast both to the Atiyah-Hitchin metric and the version of Taub-NUT
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given in (2.3). Of course, in the core region, negative mass Taub-NUT is no longer
a good approximation to the Atiyah-Hitchin metric, which is smooth and complete.

In fact, Manton has shown that the asymptotic behaviour of the Atiyah-Hitchin
metric can be deduced from the dynamics of well-separated monopoles [68]. This is
a reversal of the usual procedure, in which geometric information is used to study
the dynamics.

The underlying manifold of the Atiyah-Hitchin metric is diffeomorphic to S* —
RP2. In fact, this identification can be made SO(3)-equivariant. We regard S* as
the sphere in the real irreducible five-dimensional representation of SO(3), which
we can take concretely to be the set of traceless symmetric real three-by-three
matrices with SO(3) acting by conjugation. The generic stabiliser of the induced
SO(3) action on S* is just conjugate to the viergruppe of diagonal matrices in
SO(3), but there are two special orbits, obtained by considering matrices with two
equal positive or two equal negative eigenvalues. Each special orbit is a copy of
RP2. One of these is the RP? we remove to obtain the Atiyah-Hitchin manifold,
while the other is the unique special orbit in the Atiyah-Hitchin space. Physically,
this orbit represents the set of axisymmetric monopoles; there is a unique such
monopole for each choice of axis in R3.

Many other examples of hyper-Kahler manifolds may be obtained by consid-
ering Nahm or monopole moduli spaces. A particularly useful example is found
by considering g-valued Nahm matrices smooth on a closed interval. Then, as
observed by Kronheimer, the hyper-Kéhler moduli space is biholomorphic to the
cotangent bundle of GG The complex description is especially simple here, be-
cause the smoothness of the Nahm matrices on the whole interval means that we
can globally trivialise the complex Nahm equation—after a gauge transformation,
its solutions are constant. The moduli space admits two commuting actions of G,
obtained by considering gauge transformations which are the identity at one end of
the interval but not the other. The moment maps are just evaluation of the Nahm
matrices at the respective ends of the interval. Taking hyper-K&hler quotients of
T*GC by a subgroup H of one copy of G leads [20] to a complete hyper-Kahler
metric on a neighbourhood of the zero section in the vector bundle G x jy (m* ® R%)
over G/H, where m is an Ad H-invariant complement for § in g. These metrics
are hyper-Kéhler analogues of the symplectic examples of Guillemin and Sternberg
[37].

One can obtain a one-parameter family of deformations of the double cover MY
of the Atiyah-Hitchin space by taking a hyper-Kahler quotient of a moduli space
of SU(3) monopoles by a circle action [19]. Making the deformation breaks the
SO(3) symmetry of ]\7!8 down to a circle action. This action, although isometric,
does not preserve all the complex structures, so the metric is not one of the Gibbons-
Hawking family. The infinitesimal variation of the Kahler forms of the deformation
is controlled by an SO(3)-invariant anti-self-dual two-form on M. This two-form
can also be regarded as the curvature form on the pullback to M? of the index
bundle on MY, whose fiber over a monopole is the kernel of the Dirac operator
associated to that monopole as in the Nahm transform [72]. The index bundle plays
a key role in the study by Manton and Schroers of monopoles coupled to fermions
[69]. In their work on the quantum dynamics of such particles, the wavefunction is
interpreted as a section of the index bundle.
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One can also construct a series of metrics on deformations of the Kleinian
singularity corresponding to the dihedral group D,, for n > 2. R. Kobayashi showed
the existence of such metrics by analytical methods [54]. Alternatively [18], one
may replace an H* factor in Kronheimer’s construction for dihedral ALE spaces by
a copy of T*GL(2,C) with the hyper-Kahler structure mentioned above. This is
analogous to obtaining the multi-Taub-NUT family by replacing an H factor by an
R3 x S! in the construction of the multi-instanton series. This dihedral series has
been further studied by Houghton [46], from the Nahm viewpoint, and by Chalmers
[16], using twistor methods.

In dimension four, one may also mention examples of infinite topological type
constructed in [1, 31] and [32]. These may be viewed as A, and Dy, limits of
the ALE spaces, but, although complete, are not themselves ALE. They can be
obtained using an infinite-dimensional hyper-K&hler quotient, or, in the A, case,
by a modification of the Gibbons-Hawking method to allow infinitely many points p;
in (1.5). In order to obtain a smooth, complete metric, the sequence of points must
go off to infinity fast enough to ensure that the series _ | z —p; | ! converges. The
D, examples can be realised as desingularisations of the quotient of the A, spaces
by an involution. The examples of [1] were the first examples of complete Ricci-flat
Ké&hler manifolds of infinite topological type. The last property means that they
cannot live on the complement of a divisor in a projective variety, answering in the
negative a question posed by Yau.

As a final illustration of gauge theory methods, let us mention an example in-
volving loop spaces. The space 2G of based loops in a compact Lie group can be
made into an infinite-dimensional symplectic (in fact K&hler) manifold [79]. Don-
aldson has shown that the corresponding complex-symplectic structure on QGCin
fact comes from a hyper-Kéahler structure on this infinite-dimensional space. The
proof relies on interpreting G as a hyper-Kéhler quotient of the space of GC con-
nexions on the trivial GC+bundle over the Poincaré disc by G-valued gauge trans-
formations equal to the identity on the boundary. There is a detailed discussion in
Hitchin’s survey article [44].

4. Coadjoint Orbits

One particularly interesting family of higher-dimensional hyper-Kahler spaces
is that of coadjoint orbits for complex semisimple Lie groups. It is well known
that a coadjoint orbit of a compact Lie group G carries a symplectic structure.
Explicitly, this is defined by the Kirillov-Kostant-Souriau form, given at 8 € g* by

(4.1) w(X™(8),Y*(8)) = B(X,Y])

where X*,Y™* are the vector fields on the orbit associated by the action to X,Y € g.
Similarly, a coadjoint orbit of the complexification G'C carries a complex-symplectic
form. But more is true, it in fact admits a compatible hyper-K&hler metric.

The first work on this subject was done by Kronheimer [59, 60]. The central
idea is to realise the coadjoint orbit as a moduli space of solutions to Nahm’s
equations. This space carries a hyper-Kahler structure via an infinite-dimensional
quotient construction, as discussed in the preceding section.

As an example, let us consider the case of regular semsimple orbits. Let
(11, T2, 73) be a triple of elements in a Cartan subalgebra t of g, and suppose that the
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intersection of their stabilisers is precisely the corresponding maximal torus. Kro-
nheimer considers the Nahm equations for quadruples (To,T,72,T3) of functions
from (—o0,0] to g. The gauge group of functions from (—o0, 0] to G acts on solutions
as in (3.3). Clearly (0,71,72,73) is a constant solution to the equations. We can
obtain other constant solutions by applying the action of a constant element of G to
this configuration. Kronheimer now looks at a moduli space M of solutions which,
after conjugation by a constant element of G, approach (0, 71, 72, 73) exponentially
fast as t =& —oo. The group by which we quotient consists of gauge transformations
which are the identity at 0 and have suitable decay at —oo. The equations can then
be interpreted, as usual, as the vanishing condition for the hyper-Kéhler moment
map for this gauge group. The analysis by Donaldson of the Nahm equations, as
discussed in §3, carries over to give a description of a complex structure on the
moduli space. It turns out that for a suitable choice of 72, 73, the moduli space M
is biholomorphic (for some complex structure) to the orbit of GC through 7 + i73.
This orbit may be viewed as a homogeneous space GC/T(, and the subset of con-
stant Nahm matrices forms a copy of G/T inside the orbit. The Eguchi-Hanson
space is the special case G = SU(2). Burns [14], using twistor methods, had earlier
shown the existence of a hyper-Kéahler metric on a neighbourhood of G/T inside
GC/TC, but Kronheimer’s method also tells us the metric is complete.

Kronheimer also showed that nilpotent orbits admit a hyper-K&hler structure.
More recently, Biquard and Kovalev [9, 56] have independently shown that any
coadjoint orbit of G is hyper-Ké&hler. The basic strategy is the same as before-to
identify the orbit with a suitable Nahm moduli space. One now considers triples
(11, 72,73) in the Cartan algebra t such that the Lie algebra b of their common
centraliser is allowed to strictly include t. The correct moduli space to work with
consists of solutions to the Nahm equations with T; asymptotic (possibly after
applying the action of G) to 7; + p(e;)t™! for i = 1,2,3. Here e;,ez,e3 form a
standard basis for su(2), and p is a homomorphism from su(2) to h. If p is zero
we get a semisimple orbit. The nilpotent orbits, on the other hand, are obtained
by setting each 7; to zero. In this case the orbit we get is the one containing
p(es + ie3), where we have extended p to a homomorphism defined on sl(2,C).
This illustrates the principle that nilpotent orbits in gC correspond to conjugacy
classes of homomorphisms p : su(2) — g.

The hyper-K&hler metrics obtained are complete if and only if the orbit is
semisimple. These orbits are diffeomorphic to the cotangent bundles of flag mani-
folds for G. In fact for a suitable choice of 7; they are even biholomorphic, though of
course the complex structure here is not the same as that which comes from viewing
the manifold as a GC orbit. Donaldson and Kronheimer have an alternative con-
struction of these hyper-Kahler structures, using gauge theory in two dimensions.
In the special case when the flag manifold is a hermitian symmetric space, it is
possible to construct the metric more explicitly without the use of gauge-theoretic
or twistor methods [10, 21]. One also obtains in this way an incomplete hyper-
Kahler metric on a neighbourhood of the zero section in the cotangent bundle of
noncompact hermitian symmetric spaces. v

If G is a classical group, the nilpotent orbits of GC may also be obtained by a
finite-dimensional hyper-Kéhler quotient construction [53]. The relevant quotients
are singular, but they have a smooth open dense set, which may be identified with
a nilpotent orbit.
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Nilpotent orbits have a particularly nice interpretation in terms of quaternionic
Kahler geometry. Swann [82] has shown that given a quaternionic K&hler manifold
N with positive scalar curvature, one can define a hyper-Kahler manifold U (N)
whose underlying space is the total space of a H*- or (H*/Zs)-bundle over N.
Now U(N) admits a free isometric action of Sp(1) or SO(3) permuting the com-
plex structures. Moreover, if A is a complex structure and X4 the Killing field
of the circle subgroup of Sp(1) or SO(3) fixing A, then AX,4 is independent of
A. Conversely, any hyper-Kéhler manifold with such an action is U () for some
quaternionic Kahler space N. As well as the Sp(1) action, U(N) also admits a ho-
mothetic action of R* whose conformal Killing field is AX 4. The manifolds U/(N)
may also be characterised as the hyper-Kahler manifolds which admit a hyper-
Kahler potential, that is, a function f : M — R which is a K&hler potential for
each Kahler structure simultaneously.

It turns out that all nilpotent orbits are associated to a quaternionic Kahler
manifold via the Swann construction. In terms of the Nahm data description of the
nilpotent orbit, the Sp(1) action is just the natural action on triples (T3,T%,T3),
while the homothetic action is the rescaling which replaces T;(t) by cT;(ct). Note
that the boundary conditions at —oo prevent such actions from occurring in the
non-nilpotent case. We can partially order the nontrivial nilpotent orbits of GC
by saying O; < O, if and only if O; is contained in the closure of O;. There
is a unique nontrivial nilpotent orbit minimal with respect to this ordering, and
it may be identified with &(N) where N is the Wolf space [90] associated to G.
In general, the quaternionic Kahler manifold associated to a nilpotent orbit has
a description due to Kobak and Swann [53], [83]. They define a functional on
the Grassmannian Grs(g) of oriented 3-planes in g by ¥(V) = (e, [e2, €3]), where
ej,es,e3 is an oriented orthonormal basis for V. As mentioned above, a nilpotent
orbit in gC corresponds to a conjugacy class in G of homomorphisms p : su(2) — g.
The associated quaternionic Kahler manifold can then be identified with the stable
manifold for 1 of the critical set containing the image of p.

Monopole moduli spaces, even though they have a Nahm description and hence
admit an Sp(1) action permuting the complex structures, do not fit into the above
picture. In fact they do not admit the homothetic R*-action, as the intervals on
which the Nahm matrices are defined are now finite. However, moduli spaces of
instantons on R* do arise from the Swann construction [66].

5. Twistors

The Penrose twistor construction [78] has been very successful in translating
problems concerning self-dual four-manifolds into questions about the complex ge-
ometry of the twistor space. More recently it was realised [80] that the twistor
construction could be generalised to higher dimensions for manifolds with a quater-
nionic structure.

A manifold M is quaternionic if there is a rank three subbundle G of End(T' M),
preserved by a torsion-free connexion, and locally spanned by sections I, J, K sat-
isfying the relations I?2 = J? = K2 = —1, IJ = K etc. The twistor space is now
the sphere bundle of G. This space is a complex manifold in a natural way, and the
fibers of the twistor projection 7 : Z — M (the twistor lines) are rational curves
with normal bundle 2nO(1), where 4n is the real dimension of M. There is also
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a real structure T, an antiholomorphic involution defined by taking the antipodal
map on the twistor lines.

If M is hyper-Kéhler, then the almost complex structures exist globally, and are
integrable. This means that the twistor fibration « is trivial, and that I, J, K define
divisors in Z. We may regard Z as the smooth manifold M x CP!, with complex
structure given at (m,a, b, ¢) by (al +bJ+cK, Iy) where Iy is the standard complex
structure on S2. As well as the twistor fibration, we have a holomorphic fibration
p: Z — CP!, whose fiber over (a,b,c) € CP! is just M endowed with the complex
structure al + bJ + cK. Each point of M defines a section of this fibration.

Of course this picture will arise even if we just have a hyperhermitian structure,
that is, a triple of integrable hermitian structures multiplying like the quaternions.
The extra information of a hyper-Kahler metric is encoded in a holomorphic section
of the second exterior power of the cotangent bundle to the fibers of p, twisted by
p*O(2). Explicitly, this is given by

w=wy +iwg — 20wy — % (wy — iwk),
where ( is an affine coordinate on CP!.

THEOREM 5.1. [45] Let Z be the twistor space of a hyper-Kdhler 4n-manifold
M. Then
(i) there is a holomorphic fibration p: Z — CP!;
(ii) the fibration has a family of rational sections with normal bundle 2nO(1);
(iii) there is a holomorphic section w of AT ®p*(O(2), defining a symplectic form
on each fiber (Tr denotes the tangent bundle to the fibers); and
(iv) there is an antiholomorphic involution T of Z, compatible with (i-iii) and
inducing the antipodal map on CP!.
Conversely any such Z is the twistor space of a hyper-Kdhler 4n-manifold M.
This manifold may be identified with the set of real sections of the fibration p.

The procedure for recovering the hyper-Kahler metric from the twistor data
goes as follows. Elements of the complexified tangent space to M at m may be
regarded as sections of the normal bundle to the twistor line P, over m. But
H°(P,,,N) can be identified with H°(P,,,Tr), which in turn may be identified
with HO(P,,, Tr(-1)) ® H(Py,, O(1)), since Tr = 2n0O(1). The O(2)-valued form
w defines a symplectic structure on the first factor, while we define a symplectic
form on the second by (a1 + b1{,as + b2{) = a1bs — azb;. The upshot is that we
have a symmetric complex bilinear form on T, M ® C, and using the real structure
we obtain a positive definite inner product on the real tangent space.

The twistor construction is compatible with the hyper-K&hler quotient in the
following way. If G acts on M preserving the hyper-Kahler structure, then we can
lift to a holomorphic action of G on Z preserving the twisted complex-symplectic
form w. In good cases, this action extends to a global action of the complexified
group GC, and we obtain a moment map p, which is a section of O(2) ® g¢y The
quotient p~1(0)/G(C is the twistor space of the hyper-Kéhler quotient of M by G.

The simplest example of a twistor space is when M = H®. Then Z is the
total space of 2n(0(1) = CP!'. Many other examples, including the twistor space of
the Taub-NUT metric, are worked out in [42, 6, 45]. As twistor spaces of hyper-
Kihler manifolds fiber over CP!, they may locally be constructed by patching
together copies of C2" x U and C?" x U, where U, U are the standard patches on
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the Riemann sphere. Often it is convenient to work with a Hamiltonian function
for a vector field which exponentiates to give the patching diffeomorphism. A
particularly nice case is that of hyper-Kahler 4n-manifolds with an isometric action
of T™ preserving each Kahler structure. The metric is then determined by a solution
to a system of linear equations on R3", and these functions are given in terms of a
contour integral involving the Hamiltonian function. Alternatively, one can express
the Kahler potential of the metric in terms of this integral. The Gibbons-Hawking
metrics are the n = 1 case of this theory. As mentioned in §2, the toric hyper-Kéahler
manifolds considered in [8] provide a large class of complete examples where these
techniques may be applied.

The twistor method is more general than that of hyper-Kéhler quotients, al-
though it has the disadvantage that global properties of the metric are difficult to
check in the twistor picture. A recent use of twistor techniques is the result of
B. Feix [26] that, given a real-analytic K&hler manifold N, a hyper-Kahler metric
will exist on some neighbourhood of the zero section in 7*N. This has also been
proved independently by Kaledin, using different methods [51]. The metric is com-
patible with the standard complex-symplectic structure on 7*N, and is preserved
by the natural circle action obtained by scalar multiplication in each cotangent
space. Again, we have an example of an obviously complex-symplectic manifold in
fact admitting a hyper-Kéahler structure. This metric will not, however, always be
complete. Indeed, the Milnor-Wolf theorem shows that a necessary condition for
completeness is that finitely generated subgroups of m; (V) must have polynomial
growth.

6. Compact Examples

The preceding techniques have usually lead to non-compact manifolds. In this
section, we shall consider the compact case, where fewer examples are known.

The two basic examples are the four-torus with a flat metric and a K3 surface
with the Yau metric. These are, in fact, the only compact four-dimensional hyper-
Ké&hler manifolds. Note that any such manifold is Ricci-flat and anti-sei-dual, so
gives equality in the Hitchin-Thorpe inequality 3|7| < 2x for compact Einstein four-
manifolds [40]. Hitchin’ s list of examples where equality is attained also includes
quotients of the above examples, but these are only locally hyper-K&hler.

Of course, the existence of a hyper-Kahler metric on K3 follows from Yau’s
proof of the Calabi conjecture, together with the fact that in dimension four a Ricci-
flat K&hler metric is hyper-Kahler. There are other interesting ways of viewing this
hyper-Kahler metric, however.

The basic idea goes back to Page’s 1978 article [76]. A classical construction
due to Kummer shows that some K3 surfaces may be obtained by quotienting
the four-torus by an involution and resolving the singularities. Each of the 16
singularities gives rise to a (—2) curve in the K3. Page suggested that this picture
could be made to work on the Riemannian level. The idea was to glue copies of
the Eguchi-Hanson metric on T*CP! to the flat metric on the complement of the
singularities in T*/Z», and then smooth out so as to obtain a hyper-Kéhler metric
on K3.

More recently LeBrun and Singer [64] gave a rigorous treatment of this idea
(see also [84]). They use a generalisation to the orbifold case of the Donaldson-
Friedman technique for producing self-dual metrics on connected sums [24]. In the
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case of the K3 the orbifolds are T*/Z, and 16 copies of the one-point compactifi-
cation of Eguchi-Hanson, and the resulting singular twistor space can be deformed
to a smooth twistor space corresponding to a hyper-Kahler metric on the K3. Ge-
ometrically, one obtains sequences of K3 metrics which converge on an open dense
set to the flat metric on 7% /Z4. Suitable rescalings of the metric at the fixed points
converge to Eguchi-Hanson in a bubbling-off phenomenon.

A Kummer-type construction was used by Joyce to construct compact mani-
folds with exceptional holonomy in dimension 7 and 8 (see [49, 50] and the article
in this volume). In this case twistor arguments are replaced by direct analyti-
cal methods. Joyce has also given a proof along these lines of the existence of a
hyper-Kéhler metric on the K3 surface.

Compact hyper-Kéhler manifolds cannot arise from a finite-dimensional hyper-
Kéhler quotient [44]. It remains an open question whether the K3 surface can be
produced as a quotient in an infinite-dimensional setting, for example as a gauge
theory moduli space. In this connection, it is interesting to note that Braam,
Maciocia and Todorov [13] have shown that some hyper-Kahler structures on K3
surfaces may be obtained by realising K3 as a desingularisation of a compactifica-
tion of a moduli space of instantons on the four-torus. More precisely, they consider
the moduli space of SO(3)-instantons with p; = —4 and (w2)? = 0mod 4. This is
an eight-dimensional space, but it admits an action of the four-torus induced by
translations on the base manifold. The four-dimensional quotient M has some Z,
orbifold singularities arising from finite stabilisers of the action. There may also be
orbifold singularities due to reducible instantons. Finally, compactifying M intro-
duces a further orbifold singularity corresponding to the quaternion group of order
eight. Resolving these singularities yields a K3 surface, which is not in general the
Kummer surface of the torus.

Higher dimensional irreducible hyper-K&hler manifolds have been constructed
from the four-dimensional examples by Fujiki [27] in dimension 8, and later in all
dimensions by Mukai [71] and Beauville [4]. We describe Beauville’s method here.

If S is a compact complex manifold, we let S} denote the Hilbert scheme whose
points are finite analytic subschemes of S of length r. There is a birational map
between SI"l and the 7" symmetric product of S. If S has dimension one, the sym-
metric powers are nonsingular, and the map is an isomorphism. If S has dimension
two, the symmetric powers are no longer smooth, but S} is a desingularisation.
We shall take S to be two-dimensional from now on.

Beauville shows that if S admits a complex-symplectic form, so does SI"l. The
corresponding statement is also true for Kéhler structures, so, as S is assumed to
be compact, it follows that whenever S is hyper-Kahler, so is S{"). Applying this
construction to the K3 surface, Beauville obtains compact simply-connected irre-
ducible hyper-Kéhler manifolds of dimension 4r for each r. The case r = 2 was
also found by Fujiki, who obtained it as a quotient by an involution of the manifold
obtained by blowing up the diagonal in a product of two copies of K3. If instead
we start with the four-torus, we get a family of spaces which are locally reducible.
However, they admit a map onto the four-torus, defined by the group law, and the
fiber is a compact, simply-connected irreducible hyper-Kahler manifold of dimen-
sion 4r — 4. If r = 2 this is a K3 surface. There are also hyper-Kahler deformations
of the members of these two families of irreducible hyper-Kéhler manifolds.

It is interesting to note that the moduli space of charge r SU(2) monopoles may
be viewed as Sl where S is the flat noncompact hyper-Kahler manifold R? x S?,
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the charge one moduli space. The physical interpretation is that monopoles are not
pure point particles, so the charge r moduli space is not the rt" symmetric power
of the charge one moduli space, but rather a smoothed out version of this space.

Guan’s construction of compact complex-symplectic manifolds admitting no
hyper-Kahler metric starts by applying Beauville’s method to a Kodaira surface
[33]. The resulting manifolds inherit their complex-symplectic structure from the
Kodaira surface, but, like this surface, have odd first Betti number so admit no
Kéahler metric. Guan constructs further examples by resolving singularities of
complex-symplectic quotients of his initial examples, and by taking deformations
[34].

A fair amount is now known about the topology of compact hyper-Kahler
manifolds. One early observation [4] was that compact hyper-Kéahler manifolds of
dimension 4n with holonomy equal to Sp(n) are simply connected. Ricci-flatness,
and an argument involving the Cheeger-Gromoll splitting theorem, implies that the
universal cover is compact. The Bochner argument shows that every holomorphic
form on M is parallel, so the holonomy assumption implies that the only holo-
morphic forms are scalar multiples of powers of the complex-symplectic form w.
The same assertion holds on M, so M and M have the same holomorphic Euler
characteristic. As this quantity is multiplicative under covers, the assertion follows.

Wakakuwa and Fujiki studied the Hodge and Betti numbers of compact hyper-
Kahler manifolds [89, 28]. In particular, Fujiki observed that the Hodge numbers
satisfy the relation h?? = A2™~P4 (0 < p,q < 2m), where 2m is the complex
dimension of the manifold. In fact, wedging with the (m — p)*" power of the
complex-symplectic form provides an isomorphism between the relevant spaces.

Recently Salamon [81] has discovered some interesting relations between the
Betti numbers of a compact hyper-Kahler manifold. Riemann-Roch techniques
yield identities relating Hodge and Chern numbers on a compact Kéhler manifold
[65], and in the Ricci-flat case we have ¢; = 0 so a relation on the Hodge numbers
follows. For hyper-Kéhler manifolds, Fujiki’s result allows this to be rewritten as
the following equation satisfied by the Betti numbers of M:

2m

23" (-1)7(352 = m)bam—; = mbam.

J=1

Salamon deduces that the Euler characteristic, signature and middle Betti number
are even unless the real dimension of M is divisible by 32. Another consequence
is that m times the Euler characteristic is divisible by 24. A familiar illustration
of these relations is the K3 surface, when m = 1, by = 0, b = 22, x = 24
and 7 = 16. As an example in higher dimensions, we may consider the eight-
dimensional manifold with holonomy Sp(2) obtained from the four-torus by the
Beauville construction. The Poincaré polynomial of this space is 1 + 7t2 + 8t3 +
108t + 8t° + 7t® + t8, and the signature is 84.

Verbitsky has also studied the cohomology of compact hyper-Kéhler manifolds
(85, 86, 87, 88]. As the complex structures are parallel they define an action of
su(2) on H*(M), which one may integrate to an action of SU(2). Classes which
are invariant under this action are of particular importance. If N is a complex sub-
manifold of M with respect to one complex structure I, and if the class represented
by the Poincaré dual of (N, I) is invariant, then in fact N is a hyper-Kéahler sub-
manifold. Verbitsky uses this to show that for generic elements I of the two-sphere
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of complex structures, any I-complex submanifold is hyper-K&hler. An interesting
consequence is that for such a complex structure M has no divisors, so (M, I) is
not projective algebraic,

It is interesting to contrast compact hyper-Kéhler manifolds with compact
quaternionic Kahler manifolds of positive scalar curvature. In the latter case con-
siderable progress has been made in classification using twistor methods, exploiting
the Fano property of the twistor space [63]. For hyper-Kahler manifolds, whose
twistor spaces do not have such nice properties, much less is currently known about
the classification problem.
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