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ABSTRACT. In this paper we survey recent results and conjectures concerning
enumeration problems on irrational surfaces.
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1. Introduction

Problems in enumerative algebraic geometry associated to counting curves on
projective varieties have been heavily influenced in recent years by the introduction
of stable maps, Gromov-Witten invariants, and quantum cohomology. Using these
new ideas as well as classical methods, much progress has been made for many
enumeration problems on rational surfaces.

In this survey paper, we focus on the situation for irrational surfaces. The
first breakthrough in this direction was the work of Yau and Zaslow [91] in 1995
which gave a formula for the number of rational curves on a K3 surface. Their
formula expresses a generating function for the number of curves as a modular
form. Their method is motivated from mirror symmetry considerations and it is
strikingly different both the “classical” algebro-geometric approach and the methods
using quantum cohomology or Gromov-Witten invariants.

Methods from quantum cohomology and Gromov-Witten theory are not very
useful in solving enumeration problems on most irrational surfaces. For instance, a
generic K 3 surface has no curves at all and so its ordinary Gromov-Witten invariants
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are zero. Nevertheless, some modifications of Gromov-Witten theory can be made
and have been recently applied with success in the case of K3 and Abelian surfaces.

In [34], Géttsche gave an intriguing generalization of the Yau-Zaslow formula
which conjecturally applies to any surface and any genus. The Gottsche-Yau-
Zaslow formula has been verified to order eight by the work of Vainsencher [82]
and Kleiman-Piene [51] and it has also been proved in the case of K3 and Abelian
surfaces [15][17]. The conjecture is also consistant with various recursive computa-
tions on rational surfaces [18]{83]. The Gottsche-Yau-Zaslow formula conjecturally
provides a very nice answer to a fairly general set of enumeration problems.

Our survey is organized as follows.

We begin in Section 2 by describing the method of counting rational curves due
to Yau and Zaslow which led to their discovery of the presence of modular forms in
enumeration problems on surfaces.

In Section 3 we formulate the various kinds of enumeration problems on surfaces
and then we focus on the primary problem of interest: counting curves in a linear
system passing through a fixed number of points. We describe in detail Géttsche’s
generalization of the Yau-Zaslow formula.

In Section 4 we start with a short general exposition of the Gromov-Witten
invariants including a general enough version to include families of symplectic struc-
tures. We then discuss the problems with the Gromov-Witten invariants on sur-
faces whose geometric genus and/or irregularity is non-zero. We discuss Taubes’
“Seiberg-Witten equals Gromov-Witten” theorem and describe its relation to enu-
merative geometry. Finally, we discuss when the Gromov-Witten invariants are
“enumerative”.

In Section 5 we give an expository account of our computation of modified
Gromov-Witten invariants to prove the Gottsche-Yau-Zaslow formula for K3 and
Abelian surfaces. We include a description of how to use a “matching technique”
to compute the contribution of multiple covers of nodal rational curves to the in-
variants. We end the section with a brief description of recent work of Behrend and
Fantechi who give a purely algebraic modification of the Gromov-Witten invari-
ants that generalize the (non-algebraic) modifications used in the K3 and Abelian
surface case.

2. Counting curves via the method of Yau and Zaslow

The first big breakthrough for counting curves on irrational surfaces came in
the 1995 paper of Yau and Zaslow [91] who discovered the unexpected link between
modular forms and enumerating curves. In [91], Yau and Zaslow describe a method
to count rational curves on K3 surfaces (for an exposition see Beauville [8]). They
found that the numbers are given by the coefficients of the series

7 T iy
(1) m—}l(l—q )74,

They prove this formula under the assumption that all the rational curves are
reduced, irreducible, and nodal. More generally, if the curves are all irreducible
and reduced (but possibly having complicated singularities), their argument counts
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curves with multiplicities that are shown by Fantechi-Géttsche-van Straten [26] to
be related to Gromov-Witten multiplicities (see also Chen [19]).

The formula was later generalized by Gottsche [34] to a conjectural formula
that applies to all surfaces and any genus (see Section 3).

Although it is not clear if Yau and Zaslow’s argument can be generalized to other
situations, it is so beautiful and strikingly different that we feel it is worthwhile to
describe it here.

Let P™ be an r-dimensional linear system on a surface X with a finite number
of rational curves (for example P™ could be the sublinear system of a complete
linear system |C| obtained by imposing the appropriate number of point conditions).
Consider the compactified family of Jacobians:

mr:J > P

so that 7~!(p) is Jac(C) if p is a point representing a smooth divisor C and if C
is singular then 7~1(p) is Jac(C), a compactification of the Jacobian of C (such a
family exists by [4][3], c.f. [1][2]). Yau and Zaslow show that if we assume all the
rational curves in the linear system are nodal, then

# of rational curves in the linear system P” = Euler characteristic(J7).

The crucial observation is that the fibers Jac(C) have Euler characteristic zero unless
C isrational!. We denote the Euler characteristic of a space M by e(M). Recall that
the Euler characteristic of a fiber bundle is the product of the Euler characteristics
of the fiber and the base and if X = UUU¥¢ is a disjoint union of an algebraic space
X into a Zariski open set U and its compliment, then e(X) = e(U) + e(U¢). The
linear system P7 has a natural stratification given by the geometric genus of the
corresponding divisor. The map 7 : J — PT is a fiber bundle restricted to each
strata so that e(J) is given as the sum over all the strata of the product of the
Euler characteristic of the fiber times the Euler characteristic of the corresponding
strata.

We see that only the strata corresponding to rational curves contribute to the
Euler characteristic. Consequently, we get

e(J) = 3 e(Tac(C)).

rational curves C in P"
If C is a nodal rational curve, then e(Jac(C)) = 1 and so e(.J) is exactly the number
of rational curves. In general, e(J) counts the rational curves with multiplicities
given by e(Jac(C)). Fantechi-Géttsche-van Straten [26] show that if C is irreducible,
then e(Jac(C)) coincides with the length of the (zero dimensional) moduli space of
genus 0 stable maps with image C and so the Yau-Zaslow multiplicities agree with
the multiplicities arising in Gromov-Witten theory (in the language of Subsection
4.4 we can thus say e(J) is weakly enumerative).

In general, there is no easy way to compute e(J), but for K3 surfaces we
can utilize some very special properties of J. A r-dimensional complete linear
system |C| on a K3 surface X has a finite number of rational curves. If we assume
that the linear system consists of only reduced and irreducible curves (for example,
if O(C) generates Pic(X)), then the associated family of compactified Jacobians

'Thig is because Jac(C) fibers over Jac(C), the Jacobian of the normalization and e(Jac(C)) =
0 if g(C) #0, i.e. C is not rational (see section 2 in Beauville [8]).
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J — |C] is a smooth hyperkéhler manifold (see Mukai [68)] ex. 0.5). Furthermore,
it is birational? to X!, The Hilbert scheme of r points on X. X! is also a
smooth hyperkéhler manifold and by a result of Batyrev (7], the Betti numbers (and
hence the Euler characteristics) of two birationally equivalent, smooth hyperkahler
manifolds agree.

The Euler characteristic of the Hilbert scheme X[l was determined in [35] by
Géttsche using Deligne’s proof of the Weil conjectures. Equation 1 then follows
from his calculation.

3. Problems and conjectures

In this section we describe the general set up for enumeration problems on
surfaces and we explain the Gottsche-Yau-Zaslow formula which conjecturally gives
the answer to a very general set of enumerative problems. The discussion of this
section for the most part applies equally well to rational surfaces as well as irrational.

3.1. Formulation of the problem. Since the only interesting subvarieties of
a fixed algebraic surface X are curves, the general enumeration problem for X is to
count the number of curves on X satisfying some set of prescribed properties. It is
natural to begin by fixing the geometric genus g of the curves to be counted and
to fix the homology class [C] € Hz(X,Z) of their image?. The set of curves with
fixed geometric genus and homology class will in general form a positive dimen-
sional family and so to get a well defined counting problem one imposes additional
conditions. Some typical conditions on a curve C are given below:

Point: Require C to pass through a prescribed set of fixed points. The condition
that a curve pass through a single fixed point is a codimension one condition
on the family of all curves.

FLS: Require C to lie in a fixed linear system (FLS), by considering C as a divisor.
Equivalently, fix the holomorphic structure on the line bundle O(C). For
irregular surfaces (H'(X,O) # 0), this imposes a non-trivial constraint of
codimension equal to dim H'(X, 0).

Loop: Require C to pass through fixed loops in X representing non-trivial elements
in H*(X;Z) (this also is a non-trivial constraint only on irregular surfaces).
Each loop imposes a real codimension one condition on the family of curves.
In Section 4 we will show that these loop constraints are directly related to
the FLS constraint (see Theorem 4.1).

Multi-point: Require C' to pass through a fixed set of points with a prescribed set of
multiplicities. This can be reformulated as a homological condition on the
blown-up manifold; i.e. curves on X in the class [C] passing through fixed

2The birational morphism between 7 and XIr) can be seen as follows. The generic point
of J corresponds to a smooth genus r curve C C X and an element of Jac(C). Since Jac(C)
is generically isomorphic to Sym™(C) the generic point in J gives us r (unordered) points on C
and hence r points in X. Conversely, r generic points in X are contained in a unique smooth
genus r curve C in |C|; the points on C then further determine an element of Jac(C) via the map
SymT™(C) — Jac(C).

3Notation: if C is a curve in X, then we denote its homology class in Ha2(X, Z) by [C], its
Poincaré dual in H2(X,Z) by [C]V, the corresponding line bundle O(C), and the linear system
IC| := P(H®(X, ©(C))). We will also use the shorthand C? := [C] - [C] and KC := ¢; (T X)([C)).
In subscripts for moduli spaces and invariants we will just write C for the homology class, e.g.
Mg,c(X) = Mg c)(X).
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points z;,...,x; with prescribed multiplicities ; are in one-to-one corre-
spondence with curves on Bl(,,, . ;,}X in the class [C]— Z£=1 a;(E;] where
Bls,,... z,}(X) is the blow-up of X at the points z1,... ,2; and E,,... , B
are the the exceptional divisors.

Tangency: Fix an auxiliary smooth curve D and require that C meet D with a pre-
scribed degree of tangency. This can be reformulated in terms of curves on
a certain family of blow-ups (see [16]). See also [24][25] where the problem
was considered on P? and attacked using certain stable maps to the incidence
variety.

CX structure: One can also impose conditions on the complex structure of C itself. For ex-
ample, one can count only curves with a fixed complex structure; for g > 2,
this imposes 3¢9 —3 constraints (for example see [42],[69]). For another exam-
ple, one can count only those curves that are hyper-elliptic. The expected
number of constraints this imposes is g — 2 since the codimension of the
hyper-elliptic locus in the moduli space of curves is g — 2 (for example see
[37]).

For the most part, we will focus on the most straight forward problem: counting
genus g curves in a fixed linear system passing through a fixed set of points (with
multiplicity one), although we will comment on the other kinds of constraints as
they come up. We formalize the problem below:

Let C be a curve on a surface X and let |C| denote the corresponding complete
linear system and let K denote the canonical class. We assume that O(C — K) is
ample so that the dimension of |C| is determined by the Riemann-Roch formula.

Define the Severi variety V,(C) to be the closure of the set of curves in [C|
with geometric genus g. The condition that a divisor passes through a fixed point
imposes a linear condition on |C|. We can thus interpret the degree of V,(C) C |C|
as the number of genus g curves in |C| passing through r points where r is the
expected dimension of V,(C). The expected dimension of V,(C) is given by

T
= ~KC+g-2+x(0x)

where p, = dim H%(X,0), ¢ = dimH'(X,0), and x(Ox) = 1 - q + p, is the
holomorphic Euler characteristic of Ox.

Main Enumeration Problem: The main problem we consider is computing
Ny(X, C) which is defined to be the number (when finite) of genus g curves in the
linear system |C| passing through r = — KC + g — 1+ p, — q generic points. Equiva-
lently, N, (X, C) is the degree of Vy(C) (when V4 (C) is of the expected dimension).

dim V,(C)

3.2. The Gottsche-Yau-Zaslow formula. A priori, Ng(X,C) depends heav-
ily on the complex structure of X and the choice of the linear system |C|. Under
sufficient ampleness conditions on C it is conjectured (essentially in Vainsencher
[82]) that N,(X,C) only depends on the numbers g, C?, CK, K?, and cz(X),
where co(X) is the Euler characteristic of X.

Gottsche has found a remarkable generalization of the Yau-Zaslow formula. The
formula is a generating function for the numbers N, (X, C) in terms of five universal
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power series and the numbers g, C?, CK, K?, and c3(X). Three of the five universal
power series are describes explicitly as (quasi-)modular forms while the remaining
two series have coefficients that can be determined recursively.

CONJECTURE 1 ([34]). Let C be a sufficiently ample! divisor on X. Then
Ny(X,C), the number of genus g curves in |C| passing through

r=-KC+g—-2+x(Ox)
points, is given as the coefficient of g¥C(C—K) in the following power series in q:
D?G,
(A(Dng))X(OX)/2
where D = g4, Gy is the Eisenstein series:

Gala) = 57+ (X d)et,

E>0 dlk

2) B’ BY¥(DG,)"

A is the discriminant:

Ag)=qJJ(1-¢"*,

k>0
and B;(q) are universal power series whose first terms are
Bi\(q) = 1-g—5¢%+39¢° —345¢* + - -+
By(q) = 1+5¢+2¢°+35¢° —140¢* +---

(see [34] for the coefficients of B; to order 20).

Note that when K is numerically trivial (X is a K'3, Abelian, Enriques, or hyper-
elliptic surface), then the power series (2) does not depend on B; or B; and so is
given by an explicit (quasi-)modular form. In the case when X is a K3 or Abelian
surface, the conjecture was proved in [15] and [17] to hold for all C representing
a primitive homology class (using a slightly modified definition of Ny(X,C), see
section 5).

The impetus for Gottsche’s generalization stemmed largely from two sources:
the work of Vainsencher [82] (and its subsequent generalization by Kleiman and
Piene [51]), and the formula of Yau and Zaslow [91].

In [82], Vainsencher gives universal polynomials that count the number of curves
with 6 or fewer nodes, passing through the appropriate number of points, in a
sufficiently ample linear system on any surface. In other words, he computes
Ny(X,C) for any g, X, and C provided that C is sufficiently ample and

%C(C+K)—g§5.

Kleiman and Piene have refine the methods of Vainsencher to extend his results up
to eight nodes. They also provide explicit bounds for the power of the ample class
required to guarantee that the formulas hold. The methods used to obtain these
results are classical in the sense that they do not use physics, quantum cohomology,
or even stable maps. They also provide precise enumerative information as oppose to

4For the precise formulation of the ampleness condition see [34]. Depending on X, the
conjecture is expected to hold under weaker assumptions on C.
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the “virtual” or “weakly enumerative” count sometimes determined by the Gromov-
Witten invariants (c.f. subsection 4.4), in particular, they show that when the
ampleness conditions are satisfied, all the curves passing through a generic choice
of points are nodal. We refer the reader to [82] and [51] for more details.

Gottsche’s crucial observation is that if there exist universal polynomial for-
mulas for N,(X,C) that apply to any surface, then they must satisfy very strong
multiplicative properties. The reason is that they should also apply to disconnected
surfaces, and Gottsche shows that the obvious relationship

NyXaJ[Xa i JIC) = D No(X1,Ci)Ngu (X, Co)

91+92=9g

forces the formulas to take on a very special form. In particular, the polynomials
for Ny(X, C) must be determined by five universal power series.

On the other hand, it was the work of Yau and Zaslow that suggested that the
universal power series may be related to modular forms. Using ideas from physics,
Yau and Zaslow gave predictions for the number of rational curves with n nodes
on a K3 surface (see Section 2). The numbers appear as the coefficients of the
Fourier expansion of a well known modular form, the discriminant. This work is
in a sense complimentary to the Vainsencher work; while Vainsencher’s formulas
* apply to any surface but for only a small number of nodes, the Yau-Zaslow formula
applies to only genus 0 and a K3 surface, but to any number of nodes. Thus, while
Vainsencher’s formulas determine the first few coefficients of each of the five power
series, the Yau-Zaslow formula provides a closed form for a certain product of three
of the power series.

By building on this knowledge along with other known results (particularly the
recursive formulas of Caporaso-Harris [18] and Vakil [83]) and using some remark-
able pattern recognition, Géttsche arrived at Conjecture 1 and verified it to a fairly
high degree of redundancy. Closed formulas for the series B; and B; are unknown,
but a recursive scheme for the coefficients can be derived from the Caporaso-Harris
or Vakil formulas.

One intriguing aspect of the conjecture is the appearance of modular forms.
The underlying “reason” for the modularity is currently a mystery.

4. Gromov-Witten invariants

In this section we begin with a short general exposition of the Gromov-Witten
invariants including a general enough version to include families of symplectic struc-
tures. We then discuss the problems with the Gromov-Witten invariants on sur-
faces whose geometric genus and/or irregularity is non-zero. We discuss Taubes’
“Seiberg-Witten equals Gromov-Witten” theorem and describe its relation to enu-
merative geometry. Finally, we discuss when the Gromov-Witten invariants are
“enumerative”.

Many papers have been written on Gromov-Witten theory, for the reader’s
convenience we give an extensive list in the bibliography: [63] [61] [62] [43] [12] [6]
(73] [85] [69] [50] [52] [87] [67] [40] [30] [11] [65] [27] [89] [49] [21] [9] [33] [66]
[39] (86] [14] [57] [48] [46] [70] [54] [32] [29] [74] [23] [76] (58] [56] [38] [31] [75]
[20] [13] [47] [45] [41] [53] [64] [72] [71] [55].
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4.1. Gromov-Witten invariants. Gromov-Witten invariants have their ori-
gins in symplectic geometry and conformal field theory but have been recently de-
fined purely algebro-geometrically {11][62]. The basic object of study is the moduli
space My n c(X) of stable maps of n-marked, genus g curves to X in the class C.
In general, Gromov-Witten invariants are certain intersection numbers of cycles on
Mg n,c(X) which are shown to be invariant under deformations of the (almost)
Kahler structure of X.

We briefly outline the framework of the Gromov-Witten invariants in order
to fix notations and we refer the reader to (for example) [5] or {28] for complete
accounts. We include here a straight forward generalization of the usual framework
to include families of (almost) Kéhler structures (see [15][17]).

Let (X,w) be any compact (almost) Kahler manifold. Recall that an n-marked,
genus g stable map of degree [C] € Hy(X,Z) is a (pseudo)-holomorphic map f :
¥ — X from an n-marked nodal curve (%,z;,...,z,) of geometric genus g to
X with f,([Z]) = [C] that has no infinitesimal automorphisms. Two stable maps
f:Z - X and f': ¥ - X are equivalent if there is a biholomorphism h: ¥ — %’
such that f = f' o h. We write My, c(X,w) for the moduli space of equivalence
classes of genus g, n-marked, stable maps of degree [C] to X. We will often drop
the w or X from the notation if they are understood and we sometimes will drop
the n from the notation when it is 0. If B is a family of almost Kahler structures,
we denote parameterized version of the moduli space:

Mglnlc(X7B) = H Mg,n‘C(X, Wt).
teB

If B is a compact, connected, oriented manifold then Mgy ,, ¢(X, B) has a fidu-
ciary cycle [My n c(X, B)]""" called the virtual fundamental cycle (see [15] and the
fundamental papers of Li and Tian [62][59][60], or alternatively Behrend-Fantechi
and Siebert {11][77]). The dimension of the cycle is

dimg[M, n.c(X, B)]""" = —2KC + (6 ~ dimg X)(g — 1) + 2n + dimg B.

The invariants are defined by evaluating cohomology classes of M, , ¢ on the
virtual fundamental cycle. The cohomology classes are defined via incidence re-
lations of the maps with cycles in X. The framework is as follows. There are
maps

Mg,l,C 2, X

[
Mgc
called the evaluation and forgetful maps defined by ev({f : (£,z1) = X}) = f(z1)
and ft({f: (X,z1) & X}) = {f : £ = X}.5 The diagram should be regarded as
the universal map over M, c.
Given geometric cycles ay,...,a; in X representing classes [a4],...,[a] €
H.(X,Z) with Poincaré duals [@,;]Y,...,[a]V, we can define the Gromov-Witten

5There is some subtlety to making this definition rigorous since forgetting the point may
make a stable map unstable, but it can be done.
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invariant

® 0= [ fteev*([oa]) U U ftaev* (fou]).
(Mg,c(X,B)]*ir

@;ﬁm (ay, ..., ) counts the number of genus g, degree [C] maps which are pseudo-
holomorphic with respect to some almost Kahler structure in B and such that the
image of the map intersects each of the cycles ai,...,a;.5 The Gromov-Witten
invariants are multi-linear in the a’s and they are symmetric for a’s of even degree
and skew symmetric for a’s of odd degree. If p;,...,p; are points in a path-
connected X, we will use the shorthand

@;{gm(pt.",akﬂ, cee Q) = @;%B)(pl,... s Dky Q1,5 Q).

Now suppose that X is a Kahler surface. The only non-trivial constraints aris-
ing from intersecting with cycles are those coming from zero and one dimensional
cycles, i.e. points and loops. The constraints imposed by intersecting two dimen-
sional cycles (divisors) are determined purely homologically (the so-called “divisor
equation”) and cycles of dimension three and four impose no constraints.

The loop constraints (C passes through a fixed set of loops) are related to the
FLS constraint (fixing the linear system of C) by the following:

THEOREM 4.1 (Thm. 2.1 of [17]). Let v1,...,7, be loops representing an ori-
ented basis of H)(X,Z). Then the invariant:

Q_(;,C'(’Yl»' . 1’Yb11pt'l)

counts the number of genus g maps whose image lies in the fized linear system |C|
and passes through | points.

We can formulate a more precise version of this. In order to count curves in a
fixed linear system |C| one would like to restrict the integral of Equation 3 to the
cycle defined by \I'E; (0) where Py, is the map

Us, : M,y c(X,w) = Pic’(X)
given by
f = O(Im(f) - %)
where Lo € |C] is a fixed divisor. Dually, one can add the pullback by ¥, of the
volume form on Pic®(X) to the integrand defining the invariant:

/ Py, ([pt- 1)U fteev* ([a1]¥V) U - - U ftoev* ((ai]Y).
(Mg.c(x)]ulr

The class ¥5, ([pt.]Y) can be expressed in terms of classes arising from the
constraints imposed by loops:

THEOREM 4.2. Let X be a Kdihler surface and let [y] € H,(X,Z) and let 7 be
the corresponding class in H'(Pic®(X), Z) induced by the identification Pic®(X) =
HY(X,R)/HY(X,Z). Then

U5, (%) = fteev* (1))
COROLLARY 4.3. U3, ([pt.]V) = ftiev*(Im]V)U -+ U fteev* ([w,]Y).

6The integral is defined to be 0 if the integrand is not a form of the correct degree.
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ProoF: Theorem 4.2 is proved in the appendix of [17]. Roughly the idea
is this: We view classes in H'(M, c(X);Z) as homotopy classes of circle valued
functions on My c(X). The values of a certain circle valued function on M, c(X)
representing the class ft.ev*([y]") are given as integrals of a form representing [y]V
over 3-cycles that are obtained by sweeping out a path of curves in X. On the other
hand, it is shown that the values of a circle valued function representing 3, (7) are
given by an integral over X of a certain 1-form wedged with [y]Y. The equality of the
two circle valued functions is then established with essentially a residue calculation.

The corollary follows immediately and is essentially a restatement of Theorem
4.1.

4.2. Difficulties with ordinary Gromov-Witten invariants. Gromov-Witten
invariants have been remarkably effective in answering many questions in enumer-
ative geometry for rational surfaces (see for example [84][83][36][56][24][37] and
many others). Rational surfaces all have p, = ¢ = 0; however, the ordinary Gromov-
Witten invariants are not very effective for counting curves when p, or g are not
zero’. One basic reason is that the moduli space of stable maps fails to be a good
model for a linear system (and the corresponding Severi varieties) for dimensional
reasons: For an effective divisor C such that C — K is ample, the dimension of
the Severi variety V,(C) (the closure of the set of geometric genus g curves in the
complete linear system |C|) is

dimc Vo(C)=-KC +g—1+p; —q.

On the other hand, the virtual dimension of the moduli space M, c(X) of stable
maps of genus g in the class [C] is

virdimgc My c(X)=-KC+g - 1.

If the virtual dimension of the stable maps doesn’t match the number of con-
straints required for N,(X,C), the corresponding Gromov-Witten invariant must
be zero.

The discrepancy p, — ¢ arises from two sources. Since the image of maps
in Mg c(X) are divisors not only in |C| but also potentially in every linear sys-
tem in PiclCl(X ), one would expect dim M, c(X) to exceed dimV,(C) by ¢ =
dim Picl®)(X).2 As we discussed in the previous section, this discrepancy can be
accounted for within the framework of the usual Gromov-Witten invariants using
loop constraints (see Theorem 4.1).

However, even if we consider My c as a model for the parameterized Severi

varieties
viiens  II  ven,
O(C')€PiclCH(X)
there is still a 159 dimensional discrepancy (Donaldson also discusses this in detail
[22)).

"Not much is known about the enumerative geometry of irrational surfaces with pg=qg=0
even with quantum cohomology and the usual Gromov-Witten invariants at our disposal. However,
it may be possible to adapt the methods of Subsections 5.1 and 5.2 to the case of the Enriques
surface (which is irrational and has py = ¢ = 0).

8we use PiclCl(X) to denote the component of Pic(X) corresponding to line bundles with
first Chern class [C]V.
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The reason is the following. The virtual dimension of M, c(X) is the di-
mension of the space of curves that persist as pseudo-holomorphic curves when we
perturb the Kéahler structure to a generic almost Kihler structure. The difference
of py in the dimensions of My,c and V,([C]) means that only a codimension p,
subspace of V,([C]) persists as pseudo-holomorphic curves when we perturb the
Kéhler structure. Algebraically, this arises as the obstruction to those infinitesi-
mal deformations of the map that deform the image of the map in the H%2(X)
direction (see Subsection 5.3). One way to rectify this situation is to find a com-
pact py-dimensional® family of almost Kéhler structures that has the property that
the only almost Kéhler structure in the family that supports pseudo-holomorphic
curves in the class [C] is the original Kéhler structure. If T is such a family, then the
moduli space Mg c(X,T) of stable maps for the family T is a better model for the
space V4 ([C]) in the sense that its dimension is stable under generic perturbations
of the family T' — T".

Given the existence of a p,-dimensional family as described above, these invari-
ants can be used to answer enumerative geometry questions for the corresponding
surface and linear system. In general, it is not clear when such a family will exist;
however, if X has a hyperkidhler metric g (i.e. X is an Abelian or K3 surface),
then there is a natural candidate for T, namely the hyperkihler family of Kahler
. structures. We call this family the twistor family associated to the metric g and
we denote it Ty. It is parameterized by a 2-sphere and so dimp T, = 2 = 2p, as
it should. Furthermore, the property that all the curves in My c(X,T,) are holo-
morphic for the original complex structure can be proved with Hodge theory (of
course this need no longer be the case for a perturbation of T, to a generic family
of almost Kéhler structure.

We will discuss this case in further detail in Section 5 and in Subsection 5.3
we discuss recent work of Behrend and Fantechi that in many cases fixes the “p,
discrepancy” purely algebraically.

4.3. Relationship between the Seiberg-Witten
and Gromov-Witten invariants. In a series of papers [78][79](80][81] in 1994
and 1995, Taubes proved that the Seiberg-Witten invariants of a symplectic 4-
manifold are given by a certain set of Gromov-Witten invariants. This work has
had a profound impact on symplectic and smooth topology and has found numerous
applications; however, from the point of view of enumerative algebraic geometry, it
gives us no information. The Seiberg-Witten invariants are topological invariants
only when b5 (X) > 1; for a Kéhler surface this is equivalent to p,(X) > 0. As
we explained in the last section, the Gromov-Witten invariants are zero in any
class [C] with O(C — K) ample, so there is only a small range of possible classes
with non-zero invariants. In fact, in the Kihler case Taubes’ theorem reduced to a
fact already explained in Witten's original paper {88]: the Seiberg-Witten invariants
only “count” connected components of the canonical divisor. That is, the only spin®
structures with non-zero solutions to the Seiberg-Witten equations correspond to
the classes in Hy(X, Z) that are the various sums of the components of the canonical

9By this we really mean a real 2p, dimensional family; the parameter space for the family
need not have a complex structure or even an almost complex structure.
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divisor'®. In particular, on a minimal surface of general type, the Seiberg-Witten
and Gromov-Witten invariants are non-trivial only for the canonical class (and the
zero class).

Taubes shows in general that the Seiberg-Witten invariants count pseudo-
holomorphic curves that are always smoothly embedded (though possibly discon-
nected). From the point of view of enumerative geometry, smoothly embedded
curves are uninteresting (the corresponding Severi variety is a linear system and so
Ny(X,C) = 1, i.e. there is exactly one smooth curve in |C| passing through the
appropriate number of points).

It is worth noting here that although the enumerative information in the Seiberg-
Witten/Gromov-Witten invariants is trivial, the actual Seiberg-Witten/Gromov-
Witten multiplicities can be somewhat subtle. Non-trivial multiplicities for curves
with a smooth image occur when the curve is a multiple of a square-zero curve of
genus one. Multiplicities for the ordinary Gromov-Witten invariants arise because
of the possibility of many different maps multiply covering the same image. Taubes’
defines his own version of Gromov-Witten invariants which count embedded curves
(rather than maps) and allow for the possibility of many components. His multiplic-
ities are defined using the spectral flow of a certain operator that arises naturally in
the Seiberg-Witten context. The exact relationship between the two definitions of
Gromov-Witten invariants was clarified by Ionel and Parker [43] who showed that
the invariants contain equivalent information.

4.4. When are Gromov-Witten invariants “enumerative”? By count-
ing maps to X rather than subvarieties of X, the Gromov-Witten invariants acquire
many advantageous properties such as deformation invariance and numerous rela-
tions. The disadvantage to enumerative applications is that the maps may contract
or multiply-cover some of their components. Thus Gromov-Witten invariants may
count genus g maps whose image does not have geometric genus g. Furthermore, a
given curve in X may be the image of many different maps, possibly even a family
of maps. Thus the Gromov-Witten invariants may count a given isolated curve with
a non-trivial multiplicity that may be negative and/or non-integral.

For these reasons, the Gromov-Witten invariants are said to give a virtual count
of curves. When the count defined by a Gromov-Witten invariant coincides with the
actual number of curves, the invariant is said to be enumerative. Here we introduce
an intermediate notion:

DEFINITION 4.4. A Gromov- Witten invariant is said to be weakly enumerative
if it counts only curves with geometric genus g each with positive, integral multi-
plicity that is one for curves with (at worst) nodal singularities.

This notion is particularly applicable to surfaces where one can often rule out
maps that collapse or multiply-cover components by dimensional arguments. The

190n a symplectic manifold there are two different ways to identify spin® structures with
elements of H2(X,Z). One can always take the dual to the first Chern class of the bundle of
positive spinors, i.e. c1(W+)Y € Ha(X, Z); alternatively, on a symplectic 4-manifold every spin®
structure can be obtained by twisting the canonical spin® structure Wd" by a line bundle L and so
we can consider the class ¢ (L)Y € Hz(X,Z). The latter correspondence is more natural from the
point of view of Gromov-Witten theory since on a Kihler surface, a smooth curve C corresponds
to a solution of the Seiberg-Witten equations for the spin® structure O(C) ® W‘;" .
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basic reason for this is the dependence of the dimension of the space of stable maps
on dim X and g. When X is complex dimension 2 or less, the dimension of the
space of stable maps grows linearly with g.

For surfaces, a Gromov-Witten invariant will be weakly invariant if all the
maps counted by the invariant are birational isomorphisms onto their image. For
example, Gottsche and Pandharipande [36] show that all the genus 0 Gromov-
Witten invariants of P2 blown-up at n generic points are enumerative for n < 10
but their arguments also imply that the invariants are weakly enumerative for all
n. If the location of the blow-up points are not generic, then the invariants may
fail to even be weakly enumerative (c.f. Subsection 5.2). Other examples include
the modified Gromov-Witten invariants for K3 and Abelian surfaces discussed in
Section 5 which are weakly enumerative for generic choices of the K3 or Abelian
surface.

If a genus 0 Gromov-Witten invariant on a surface is weakly enumerative, then
the work of Fantechi-Gottsche-Van Staten [26] shows that the multiplicities of the
irreducible curves are determined solely by the type and number of singularities
(see also Section 2).

5. Modified invariants and the case of K3 and Abelian surfaces

In this section we give an expository account of our use of modified Gromov-
Witten invariants to prove the Gottsche-Yau-Zaslow formula for K3 and Abelian
surfaces. We include a description of how to use a “matching technique” to compute
the contribution of multiple covers of nodal rational curves to the invariants. We end
the section with a brief description of recent work of Behrend and Fantechi who give
a purely algebraic modification of the Gromov-Witten invariants that generalizes
the (non-algebraic) modifications used in the case of K3 and Abelian surfaces.

5.1. The K3 and Abelian surface case. In this section we explain the proof
of the Gottsche-Yau-Zaslow formula for primitive classes in K3 and Abelian surfaces
[15][17]. Let X be a K3 or Abelian surface and let C C X be a curve representing
a primitive homology class. To verify the conjecture we need to show first that the
numbers N, (X, C) only depend on g and [C]? (and whether X is a K3 or Abelian
surface) and then show the numbers are given as the coefficients of the predicted
modular forms.

Since p,(X) = 1, there are difficulties with the ordinary Gromov-Witten invari-
ants (see Subsection 4.2). In fact, it is easy to see the following:

LemMA 5.1. All the (ordinary) Gromov- Witten invariants of X are zero.

ProOOF: Gromov-Witten invariants are invariant under deformations of the
(almost) Kéahler structure. Any K3 or Abelian surface can be deformed to a (non-
algebraic) Kahler surface that has no holomorphic curves at all. g.e.d.

However, this problem can be rectified and a proof of the Gé6ttsche-Yau-Zaslow
formula can be obtained. The following two theorems are the main theorems:
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THEOREM 5.2. There ezists a family Gromov- Witten invariant that computes
Ny(X,C). Furthermore, the invariant only depends on C? and g (and possibly the
divisibility of [C]). The invariant is weakly enumerative for generic X .11

The following theorem computes the invariant of Theorem 5.2 thus verifying
the Gottsche-Yau-Zaslow formula:

THEOREM 5.3. The Géttsche-Yau-Zaslow formula holds for all C C X repre-
senting a primitive homology class. That is, if X is a K3 surface then Ny(X,C) is

the coefficient of qi‘cz in the series

o] 00 9
o [ -am™ (Z ko(k)q")

m=1 k=1
= A™YDG,)*
and if X is an Abelian surface then Ny(X,C) is the coefficient of q*cz in the series

[ 00 92
(Z kza(k)q"> (Z ka(k)q")
k=1 k=1

= D?G,(DG;y)*?
where g (k) = Y4, d is the sum of the divisors of k.

REMARK 5.4. There is also a formula for the number of genus g curves on an
Abelian surface passing through g points (without imposing the FLS condition).
The numbers are the coefficients of the series g(DG3)9~! (see [17]).

We first outline the proof of Theorem 5.2. The family of Kahler structures used
in Theorem 5.2 is provided by the existence of hyperkahler metrics on X. Since
c1(T'X) = 0, Yau’s proof of the Calabi conjecture [90] provides a Ricci flat Kahler
Einstein metric, which for surfaces is a hyperkéhler metric.

A hyperkihler metric is characterized by a 2-sphere’s worth of Kihler structures
awr + bwy + cwg where

5% = {(a,b,c) eR?:a? + b+ % =1}

and the associated complex structures I, J, and K satisfy the algebra of the imagi-
nary quaternions. We call this family the twistor family associated to a hyperkahler
metric. The following theorem lists the key properties of the twistor family which
allow us to use it with the family version of Gromov-Witten invariants to compute
Ny(X,C).

THEOREM 5.5. Denote the twistor family associated to a hyperkdihler metric h
by Tn. Then,
1. For any two hyperkdhler metrics h and h', T}, is deformation equivalent to
Th. We denote the deformation equivalence class by simply T.
2. For any orientation preserving diffeomorphism f the family f*(T) is defor-
mation equivalent to T.

11By generic in this setting we mean that X is generic among those K3 surfaces that admit
a curve in the class [C]. See subsection 4.4 for the definition of weakly enumerative.
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3. For any class [C] € Hy(X;Z) with [C)? > -2, there is ezactly one member
of the family Ty, which edmits holomorphic curves in the class [C].

If C ¢ X is a curve on a K3 surface, choose a hyperkihler metric h on X
and consider the invariant Qgi‘.ﬂ‘) (pt.?). Property 1 of the previous theorem shows
that this invariant is independent of the chosen hyperkihler structure on X. The
orientation preserving diffeomorphisms act transitively on elements of Hy(X;Z)
with the same square and divisibility and so by property 2, the invariant QS‘T(CLT) (pt.9)
is a universal number that only depends on g, C2, and the divisibility of [C]. Finally,

property 3 shows that tIJ!(,?é.T) (pt.9) only counts curves that are holomorphic with
respect to a single complex structure on X.

With a little further work, one can show that ‘}gng) (pt.9) is weakly enumerative
for generic X. That is, for a generic K3 surface X,

Ny(X,C) = 857 (pt.9)

as long as we understand that curves should be counted with certain positive integral
multiplicities if the singularities are other than nodes.

A similar discussion applies to an Abelian surface X with the addition com-
plication due to non-trivial ¢ = dim H1(X, Ox). Since we wish to count curves in
a fixed linear system passing through g — 2 points, we combine Theorem 4.1 and
Theorem 5.2 to show that for a generic X and loops 71,...,74 giving an oriented
basis of H,(X,Z),

(4) No(X,0) = 85 (m, ..., 3, pt.572)

(again, in the weakly enumerative sense).

This explains the proof of Theorem 5.2. Then with the invariants in hand, it
suffices to compute the invariant for some particular choice of X and C to prove
Theorem 5.3. We choose X to be elliptically fibered with a section and we take the
class [C] to be the section class plus a multiple of the fiber class. This is a primitive
homology class and so our computation will give us a proof of the Gottsche-Yau-
Zaslow formula for all primitive classes (Theorem 5.3). We do not know how to make
the analogous computation for multiples of this class (or any other non-primitive
class), but we make a brief remark about this case below:

REMARK 5.6. To even formulate the enumeration problem for non-primitive
classes on a K3 or Abelian surface, one must always deal with non-reduced curves.
On these surfaces, there is a curve in a class d[C] if and only if there is a curve in the
class [C]. So for example, when counting rational curves in the class d[C] one must
decide how to count those rational curves in the class [C] with their non-reduced
structure. Our definition of Ng(X,dC) using the family Gromov-Witten invariant
applies in the non-primitive case as well, but its enumerative significance is less
clear. When we show that our Gromov-Witten invariant is weakly enumerative for
generic X and primitive [C] we use the fact that all the curves will be irreducible
and reduced. A priori, the family Gromov-Witten invariant may assign a negative
and/or non-integral multiplicity to non-reduced curves.
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We illustrate the computation of Theorem 5.3 with the K3 case and afterwards
we discuss the new issues involved for the Abelian surface calculation. A elliptically
fibered K3 surface with a section generically has 24 singular fibers consisting of
nodal rational curves Np,...,Ngs and a section S which is a rational curve of
square —2. We choose our g points z,... ,z, away from the section and lying on
g distinct, generic, smooth fibers F,... , F,:

noL Fy N Nag

Pl

Fix n > 0 and let [Cp] = [S] + (n + g)[F]. Note that [Cn]? = 29 — 2+ 2n and
so to verify the Gottsche-Yau-Zaslow formula we need to show:

[o¢]

00 9
3 80D o)+ =1 [ (- g™ (Zka(w) :
k=1

n=0 m=1

The advantage of our choice of X and C, is that we can really see all the curves
in the linear system |Cp|. They are all reducible and their components consists of
the section S along with n + g fiber curves (possibly non-reduced). In order for
a curve in |Cy,| to pass through the points z,,... ,z, and have geometric genus
no more than g (as it must in order to be the image of a genus g map) it must
consist of the section, the g fibers Fy,... ,F, (possibly with multiplicities), and

some number of the rational fibers Vi, ... , No4 (again possibly with multiplicities).
In other words, the curve must be
) 24
S+ bF+ Y a;N,

i=1 j=1
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where the g-tuple b = (b;, ... ,by) and the 24-tuple a = (a1, ... ,a24) satisfy b; > 1,
aj >0,and 3y 7_, b; + E?;l aj=n+g.

To compute the invariant @gf(éf) (pt.?) we must compute the number of maps
with the various images determined by a and b. What we mean by this, strictly
speaking, is that we must compute the virtual fundamental class of the moduli space
of stable maps with image given by a and b. The virtual dimension of the moduli
space is zero and so the virtual fundamental class is a number, but the moduli space
may actually be higher dimensional. In the case at hand, we show that the moduli
space splits as a product of other moduli spaces and the virtual fundamental class
splits into a product of virtual classes coming from each of the factors. The factors
in this product can be identified with the moduli spaces of maps whose images
multiple cover a single fiber F; or N; and the corresponding factor of the virtual
class is (essentially’?) the usual virtual class of each factor.

In this way we show that the contribution to the invariant from maps with
image corresponding to a and b is a product of “local” contributions from multiple
covers of the fibers Fy,...,Fy and Ny,...,Nas. The invariant is thus of the form

316D (pt.9) = 3 Hr(b )Hpm,)
(a,b):
E,’ a;+3; bi=ntg

where r(b) and p(a) are the “local contributions” of b-fold covers of a smooth fiber
and a-fold covers of a nodal rational fiber respectively. Multiplying both sides of
the equation by ¢¢~—!*™ we get

9 24
Xx,T .
3% (pt.9)gs 1+ = ¢ > [T 7®:)g* [ plas)e*
(a,b): i=1 i=1
3 05 +%, bi=ntyg
and then summing over n:

[>2]

S oKD (pro)g 1+ = g1 Y Hr (b:)q" Hp(a])q“’

n=0 (a,b)i=1

g! (g b)q) (;}p(a)q)

To prove the theorem then, it remains to be shown (which we will do in the next
subsection) that
1. the local contribution 7(b) of b-fold covers of a smooth fiber is given by bo (b),
and
2. the local contribution p(a) of a-fold covers of a nodal fiber is given by the
number of partitions of a since the generating function for the number of

1l

12The only difference is the role that the section plays. It turns out that the obstruction
to deforming the section is one dimensional and exactly cancels the obstruction to deforming the
complex structure on X in the direction of the twistor family. The end result is the same as if we
pretend the section is a square —1 curve and there is no family.
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partitions is given by

00

[Ta-™"

m=1

The computation for an Abelian surface follows by similar methods by again
assuming that the Abelian surface is elliptically fibered, i.e. it is a product of two
elliptic curves E; x E;. The only new complication is the use of loops as geometric
constraints (see Equation 4). Using a careful choice of loops, all the possible images
of the genus g maps satisfying the geometric constraints are easily identified. The
invariant is then again computed by calculating the contribution of the various
multiple covers of a given image.

5.2. Local contributions. In this subsection we compute the local contribu-
tions r(b) and p(a) of multiple covers of smooth and nodal fibers.

The contribution r(b) is easy to understand. It is the virtual fundamental class
of the moduli space of genus 1, 2-marked, degree b maps to a fixed smooth genus
1, 2-marked curve that send the marked points to the marked points. The two
marked points correspond to the intersection with the section and the point z;. By
declaring one of the marked points to be the origin, we give the domain and range
the structure of elliptic curves and then the map must be a homomorphism. Thus
7(b) is the number of elliptic curves with a non-zero marked point that admit a
degree b homomorphism onto a fixed elliptic curve with a non-zero marked point
mapping the marked point to the marked point. The number of elliptic curves
admitting a degree b homomorphism to a fixed elliptic curve is the number of index
b sublattices of Z & Z which is classically known to be o(b). The number of choices
for the location of the marked point in the domain is then just b and so the moduli
space of b-fold covers of a smooth fiber is a discrete space consisting of bo(b) points.

It is more difficult to directly see the contribution p(a) of a-fold covers of a
nodal fiber. This moduli space does not have the expected dimension zero so we
need to compute its virtual fundamental class.

Define M(S + aN) to be the moduli space of genus O maps to X in the class
[S] + a[N] with image S + aN; for some fixed N; (it doesn’t matter which one—
their neighborhoods are all biholomorphic). Denote its virtual fundamental class
by [M(S + aN)]"*. The moduli space M(S + aN) has a number of different
path components arising from the possible “jumping” behavior of the map at the
node. The basic phenomenon is illustrated below for degree two maps. The moduli
space M(S + 2N) has different components depending on whether the map factors
through the normalization or not. In the figure below, points labeled by A and B
are mapped to corresponding points labeled A and B and the normalization map
identifies A and B to the nodal point. Notice that the bottom map cannot be
factored through the normalization (the dashed map doesn’t exist) even though the
map to the nodal curve is well defined.



Counting curves on irrational surfaces 331
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In fact, the space M(S + 2N) has three connected components: one for maps
that factor through the normalization and the two maps that consist of the bottom
map in the figure along with the section attached (it can attach to either of the
components).

For higher degree, maps that factor through the bottom map of the figure will lie
in a different component from maps that factor through the normalization. In gen-
eral, the components of M(S+aN) are labeled by sequences ... ,s5_2,5_1, So, 81, - - -
of non-negative integers with > s; = a. This can be seen as follows. Consider the
nodal rational curve ¥ whose dual graph is:

® S
®e—e@—@e - &—o .. ——o0—@
E—a E—c1.+l E0 El 2::l.—l Ea

The curve ¥ maps to S + N by sending the component .S isomorphically to .S
and each component ¥; by a degree one map to N in such a way that the nodes
connecting ¥; to ¥;4; are mapped by a local isomorphism onto the node of N. It
can be shown that every map in M(S + aN) factors uniquely through a map to .
The components of M(S+aN) are determined by the various ways the degree of the
map can distribute among the ¥; components of £. We denote by M(S+ 3", 5:%;)
the moduli space of genus 0 maps to £ in the class [S] + Y, 5:[Z;).
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The preceding discussion leads to
pla) = [M(S+aN)""

= ) IMS+Y T
{8:}:X; si=a i

where by [M(S + ¥, s;%;)]""" we mean the virtual fundamental class pulled back

from M(S + aN). This fundamental class is induced by assigning normal bundles

O(-2) to the I; components and O(—1) to the S component.

We can now compute [M(S + ¥, s:X;)]"*" indirectly by identifying it with
another moduli-obstruction problem arising from certain blow-ups of P2, It will
turn out that [M(S + )_; 8:X:)]”"" is always zero or one depending on whether the
sequence {s;} satisfies a certain property or not.

To identify the moduli-obstruction problem with one coming from a blow-up of
P2, we must blow-up P2 in such a way that it contains a configuration of rational
curves isomorphic to £ with normal bundles O@(—2) on the ¥; curves and O(-1)
on the S curve. To see that this can be done, begin by blowing up a line at three
points. Its proper transform is a —2 curve which we identify with Xo; it meets three
—1 curves, one of which we identify with S. The remaining two —1 curves can be
made into —2 curves by blowing up a point on each of them. We identify their
proper transforms with ¥_; and I; and we repeat this process with the new —1
curves, continuing until we have the configuration X.

We then consider the Gromov-Witten invariants of this blow-up of P2 in the
class corresponding to S + ), 8;X;. Assuming that all the rational curves in the
blown up P? in the class [S] + Y, s;[Z;] actually lie in the configuration £,'? the
number [M(S + Y, 5:¥;)]*"" is given by the corresponding invariant on the blown
up P2

Genus 0 Gromov-Witten invariants of blow ups of P? have been thoroughly
studied in general by Géttsche and Pandharipande [36] but the particular invari-
ants arising in this moduli-obstruction problem can be computed from elementary
properties. The key property we use is the invariance of the Gromov-Witten invari-
ants under Cremona transformations. By successive applications of the Cremona
transformation, one shows that the invariant corresponding to [M(S + Y, s:;)]"""
is either zero or equivalent to the number of lines in the plane through two points,
i.e. one. The latter case occurs if and only if the sequence {s;} is such that for
each ¢ > 0, s;4; is either s; or s; — 1 and for each i <0, s;_; is either s; or s; — 1.
Following [15] we call a sequence with this property 1-admissible.

By the preceding arguments we conclude that

p(a) = # of 1-admissable sequences {s;} with Z si=a

and we simply need to see that 1-admissible sequences of total sum a are in one-to-
one correspondence with partitions of a. This is achieved by exhibiting a bijection
between 1-admissible sequences of total sum a and Young diagrams of size a (which

1350me extra work is required to justify this assumption. One can perform the blow-ups in
such a way that the resulting surface has an action of C* preserving the configuration . This
action provides the tool needed to show that there are no curves outside X in the relevant homology
class. One assumes that such a curve exists and studies its limits under the C* action; the desired
contradiction is then arrived at by a homological argument.
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are well known to correspond bijectively to partitions). Given a Young diagram
define a 1-admissible sequence {s;} by setting so equal to the number of blocks on
the diagonal, s; equal to the number of blocks on the first lower diagonal, sy equal
to the number of blocks on the second lower diagonal, and so on, doing the same for
8_1,8-2,... with the upper diagonals. It is easily seen that this defines a bijection
and thus concludes the proof of Theorem 5.3.

5.3. Other modifications via algebraic means. Although the results of
the previous section are purely algebraic, the use of the twistor family to modify
the usual Gromov-Witten invariants is a non-algebraic tool. Behrend and Fantechi
have recently announced [10] a purely algebraic modification of the Gromov-Witten
invariants that apply to any smooth algebraic variety with H%?(X) > 0, and in par-
ticular to surfaces with p; > 0. For K3 and Abelian surfaces, their modification is
equivalent to the twistor family invariant. In this section we outline their modifica-
tion for surfaces in general.

In the usual algebraic definition of Gromov-Witten invariants, one defines a
virtual fundamental class on the space of stable maps that is invariant under de-
formations. The ingredients in Behrend and Fantechi’s approach to this [11] are
the intrinsic normal cone and the obstruction complex of the moduli space of stable
. maps Mgy n,c(X). Behrend and Fantechi modify the usual obstruction complex so
that the resulting virtual fundamental class has its dimension larger than the usual
dimension by p, and is invariant under deformations of X preserving the (1,1) type
of [C).

The tangent-obstruction complex for M, , c(X) is built from the tangent-
obstruction complex of the Deligne-Mumford moduli space of stable curves Hg,n
and the relative tangent-obstruction complex of

Mg,n'C(X) — m—gln.

The relative tangent and obstruction spaces at the map {f : C — X} can
be identified with H°(C, f*TX) and H(C, f*TX) respectively. An infinitesimal
deformation of X together with f is automatically obstructed unless the class [Im f]
remains type (1,1). For such deformations, the obstructions always lie in the kernel
of

HY(C, f*TX) = H*(X,0).
We can define this map via its dual map
H(X,0%) - H(C, f* Q% ® wc)

which is induced by the composition of H%(X,0%) — H°(C, f*Q%) and the map
induced by
9% o ok e 0% - F Ok ®0L - 0% ®uwe.

Behrend and Fantechi modify the usual tangent-obstruction complex by replac-
ing the relative obstruction space by the kernel of H'(C, f*TX) - H%(X,0). In
order for their machinery to work, the obstruction complex must be “perfect”, that
is, equivalent in the derived category to a two term complex of vector bundles.

Thus, if HY(C, f*TX) — H?*(X,0) is surjective (or of constant rank) for all f,
then the modification leads to an invariant. The theorem is as follows:
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THEOREM 5.7. Let X be a surface and [C] a class of type (1,1). There is a
(modified) virtual class [My ]2, of dimension ~KC + g — 1+ p,. If the map

mod
HY(C, f'TX) - H*(X,0)
is surjective for every {f : C = X} in My, then [My Ui, defines modified
Gromov- Witten invariants that are invariant under deformations of X preserving
the (1,1) type of [C].
The hypotheses of the theorem can be shown to hold for K3 and Abelian

surfaces and also for more general surfaces with appropriate ampleness conditions
onC.

REMARK 5.8. Using these invariants and Theorem 4.2, one can define N, (X, C)
using Gromov-Witten theory and perhaps use them to devise a proof of the Gottsche-
Yau-Zaslow formula.

REMARK 5.9. As with the families version of Gromov-Witten invariants, it is
not clear what the analogues of the composition law and quantum cohomology
should be.

REMARK 5.10. Except for the cases where X admits a hyperkihler structure,
it is not clear if there is a symplectic version of Behrend and Fantechi’s modified
invariants.

The computations for K3 and Abelian surfaces described in section 5 easily
extend to compute the modified invariants of any elliptic surface with a section in
the class [C,] = [S] + n[F] where S is the section and [F] is the class of the fiber.
For example, let E(m) be a generic elliptic surface over P! with a section and Euler
characteristic 12m.!* With this convention, E(1) is a rational elliptic surface, E(2)
is a K3 surface, and etcetera so that p,(E(m)) = m ~ 1. Let & be the modified
invariants of Behrend-Fantechi. Then the methods of Subsections 5.1 and 5.2 can
be used to compute @Eg")(pt.g ):

Blm) (p.9)q9+m = a\"/? 9
(5) go F& et = (5) (DG
There are a few remarks worth making about this formula.

REMARK 5.11. The formula is different from the Géttsche-Yau-Zaslow formula
except in the case m = 2 (the K3 case). In general, the classes [S] + n[F] do
not satisfy Gottsche’s ampleness conditions so there is no contradiction with the
conjecture. It does show that the ampleness conditions cannot be removed.

REMARK 5.12. The invariants <I> (m) only have enumerative significance for
E(1) and E(2). For m > 2, one cannst deform away the elliptic fibration and
S0 Qi( ") always gives the virtual count done in the computation of Subsections
5.1 and 5.2. For E(1) and E(2) (i.e. P? blown up at nine points and K3) a
generic deformation will no longer be elliptically fibered and @igﬁ) will be weakly
enumerative. In fact, for E(1), <I>E(1) is just the ordinary Gromov-Witten invariants
for P? blown-up at nine points. For genus zero they are determined recursively from

'4The classes [Cn] are exactly characterized as those classes [C] such that [C] - K =m — 2.
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the quantum cohomology and are enumerative in the strong sense (for a generic
choice of blow-up points). Furthermore, in [15] it is shown that the Gromov-Witten
invariant of E(1) for any class C with CK = —1 is equivalent to the invariant for
some C,,.

The fact that there is a closed formula (different from the Gottsche-Yau-Zaslow
formulal!) for these invariants of E(1) in terms of modular forms is somewhat of
a surprise. Although the genus zero numbers are determined recursively, it is not
clear how to obtain the closed formula from the recursion or how the modularity is
reflected in the structure of the quantum cohomology. Ionel and Parker [44] have
recently outlined a new proof of the genus zero formula for E(1) that is perhaps the
most transparent. They use a formula for the invariants of a fiber sum along with a
topological recursion relation to show that the left hand side of Equation 5 satisfies
a differential equation that is solved by the modular form on the right hand side.
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