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Symplectic Geometry and the Verlinde formulas
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ABSTRACT. The purpose of this paper is to give a proof of the Verlinde formu-
las by applying the Riemann-Roch-Kawasaki theorem to the moduli space of
flat G-bundles on a Riemann surface X with marked points, when G is a con-
nected simply connected compact Lie group G. Conditions are given for the
moduli space to be an orbifold, and the strata are described as moduli spaces
for semisimple centralizers in G. The contribution of the strata are evaluated
using the formulas of Witten for the symplectic volume, methods of symplectic
geometry, including formulas of Witten-Jeffrey-Kirwan, and residue formulas.
Our paper extends prior work by Szenes on SU(3) and Jeffrey-Kirwan for
SU(n) to general groups G.
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Introduction

The Verlinde formula [62], [3] computes the dimension of spaces of holomorphic
sections of canonical line bundles over the moduli space M of semistable G-
bundles on a Riemann surface ¥ with marked points, with G a connected and
simply connected compact Lie group. For a given “level” p, the Verlinde formula
is a sum over the finite collection of weights parametrizing the representations of
the central extension of the loop group LG at level p. This formula, discovered by
Verlinde in the context of quantum field theory, has received a number of rigorous
proofs first for G = SU(2) by Thaddeus [57], Bertram and Szenes [7] and Szenes
[62) (see also Donaldson [17] and Jeffrey-Weitsman [31] for related questions),
and for more general groups by Tsuchiya-Ueno-Yamada [59], Beauville-Laszlo [4]
(for G = SU(n)), Faltings [20], Kumar, Narasimhan, Ramanathan [38] for general
groups G. A common feature of many of these proofs is that establishing the fusion
rules for the Verlinde numbers is an essential step in the proof, a second step being
the description of the fusion algebra.

The purpose of this paper is to give a proof of the Verlinde formula for connected
simply connected compact Lie groups, by methods of symplectic geometry. This
program has been already carried out by Szenes [53] for SU(3), and Jeffrey-Kirwan
[30] in the case of SU(n). The main point of the paper is to extend their approach
a to general groups. More precisely, we will obtain the Verlinde formula by an
application of Riemann-Roch.

The theorem of Narasimhan-Sheshadri [46] asserts that M can be identified
with the set of representations of m1(X) with values in G, with given conjugacy
classes of holonomies at the marked points. For generic choices of holonomies, this
last space is a symplectic orbifold (M/G,w), which carries an orbifold Hermitian
line bundle with connection (AP, V*"), such that ¢;()\?, V**) = pw. In particular
the orbifold M/G is complex. This orbifold carries a canonical Dirac operator
D, 4, unique up to homotopy. Its index Ind(D5,+ ) is the Euler characteristic of A?.
We will compute the index Ind(Dp 4 ) using the formula of Riemann-Roch-Kawasaki
[32, 33]. We show that, for p large, it is given by the Verlinde formula. The fact that
p has to be large may be related to the fact that a priori, higher cohomology may
well not vanish for small p. In fact, the Verlinde formula computes dim H°(M, AP),
while Ind(D, ;) is the corresponding Euler characteristic (we will come back to
this point at the end of the introduction in connection with results by Teleman
[55, 58]). For non generic holonomies, we also show that small perturbations of
the holonomies still produce an orbifold moduli space. For suitable perturbations,
we show that for any p, the index of the corresponding Dirac operator D, 4 is
still given by the Verlinde formula. The typical case where such a perturbation is
needed is when £ does not have marked points.

Our proof contains various interrelated steps.

e A first step is the description of the strata of the orbifold moduli space M/G.
These strata are in fact moduli spaces for the semisimple centralizers in G.
Up to conjugacy, there is only a finite family of such centralizers. In general,
they are non simply connected. The strata split into a union of substrata
indexed by the fundamental group of the centralizers. The description of the
geometry of M /G involves results contained in Sections 1, 4, 5, 6. Observe
that if G = SU(n), there are no non trivial semisimple centralizers, which
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explains the smoothness of the moduli space M/G (this case which was
already considered by Jeffrey-Kirwan [30)).

o A second step consists in reproving Witten’s formula [63) for the symplectic
volume of the moduli spaces.

o Another step is the detailed construction of the orbifold line bundle AP. Also
we have to compute the action of the finite stabilizers of elements of M on
AP, This is done in Sections 4 and 5.

o In Section 5, we show that the formalism of the moment map can be applied
to each stratum of the moduli space. In Section 6, we use a formula of Witten
[64] , Jeffrey-Kirwan [28] (see Vergne [61]) and Liu [39, 40] to express the
contribution of each stratum as the action of a differential operator on a
locally polynomial function on a maximal torus T. This locally polynomial
function is just the symplectic volume of a deformation of the moduli space
M/G. Our treatment of these formulas is very close in spirit to Liu {39, 40].

e Witten's formula [63] for the deformed symplectic volume of each stratum
is a Fourier series on T. In order to calculate the contribution of each
stratum explicitly, it is of critical importance to express Witten’s formula
using residues techniques, which will make obvious the fact that the given
Fourier series is indeed a local polynomial on T. These residue techniques
are developed in Section 2.

o In Section 7, we give a residue formula for the index of the Dirac operator
on M/G, by putting together the contribution of all strata.

e Another step is to express the Verlinde sums as residues. This step, which
is carried out of Section 7, has many formal similarities with what is done
in Section 2 for the Fourier series on T'.

¢ In Section 8, a comparison of the results of Sections 6 and 7 leads us to our
main result.

We now review our techniques in more detail.

1. The residue techniques

Residue techniques play an important role in the whole paper, in order to con-
vert the Witten Fourier series [63] for the symplectic volumes into expressions which
make them local polynomials in an “obvious” way, so that differential operators can
be applied to these polynomials. Similar residue techniques are also applied to the
Verlinde sums.

Szenes [53, 54] initiated the use of residue techniques to treat Verlinde for-
mulas. In [53], Szenes applied such residue techniques to the case of SU(3) and
obtained the corresponding Verlinde formulas. In [54], Szenes developed a cohomo-
logical approach in terms of arrangement of hyperplanes to treat the Witten sums
for any group G.

In [30], Jeffrey and Kirwan gave a proof of the Verlinde formulas for SU(n)
using residue techniques from a point of view which is very different from ours. In
fact they use non abelian localization formulas [64], [28] applied to an extended
moduli space. In the spirit of the formula of Duistermaat-Heckman [19], they use
residue techniques to evaluate the Fourier transform of the contribution of the fixed
points. In particular they reobtain Witten’s formulas {63] for the symplectic volume
of the moduli space of G = SU(n).
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The strategy used in the present paper goes in some sense in an opposite direc-
tion. First, as in Liu [39, 40], our computations are local, and only use the action
of differential operators on the symplectic volumes of the moduli spaces. Then, we
express the symplectic volumes as residues in order to evaluate explicitly the action
of certain differential operators on the symplectic volumes .

In the present paper, multidimensional residues are used in a rather “naive”
way. The Witten sums are expressed as sums over a lattice identified to Z”. We
compute the given sums by summing in succession in the variables &1, ... , k. € Z,
and by applying standard residue techniques to these one dimensijonal sums. Han-
dling the recursion requires the development of a trivial, but heavy linear algebra.
We believe that Szenes’s techniques [54] can put put to fruitful use to give a more
conceptual approach to this part of our work.

2. A combinatorial description of the moduli spaces
Let Oy,...,0, be s adjoint orbits in G. Put X = G?9 x H‘]'.=1 O;. Let
¢ : X = G be given by

] ]
(01) ¢(U1,’Ul, ceeyUgyUg, W, ... ’wg) = H[u,-,v,'] H wj.
i= j=1

Put M = ¢~1(1). Under a genericity assumption on the 0;,1 < j < s, the
condition (A) of Definition 5.17, which requires that s > 1, in Theorem 5.18, we
show that M is a smooth manifold on which G acts locally freely. The moduli space
is the orbifold M/G.

To prove Witten’s formula [63], we show in Theorem 5.45 that the image by
¢ of the Haar measure on X has a density with respect to the Haar measure on
G, which is essentially given by the symplectic volume of the quotient fibres of ¢,
which are themselves moduli spaces with an extra marked point. This approach
was initiated by Liu [39, 40], who showed in particular that the differential of ¢
can be expressed in terms of the combinatorial complexes which compute the co-
homology of the flat adjoint vector bundle E. Liu then obtains the intersection
numbers of the moduli spaces by applying certain differential operators to the sym-
plectic volumes. Inspired by Witten [63, 64], Liu gave a special role to the heat
kernel on the group G to establish Witten’s formula, while in our approach, we
do not use any heat kernel. Needless to say, the heat kernel on G remains crucial
in understanding connections with 2-dimensional Yang-Mills theory, and also with
Witten’s non Abelian localization [64].

3.Moment maps and the quantization conjecture

In Section 5.10, under genericity assumptions, we show that a G-invariant
neighborhood X of M in X can be equipped with a symplectic form, that G acts on
X with a moment map, and that the standard symplectic structure on the quotients
on the fibres of ¢ included in X come from the symplectic structure on X. We can
then use directly the formulas of Witten [64] and Jeffrey-Kirwan [28] to express the
integrals of certain characteristic classes in terms of differential operators acting on
the symplectic volume of the fibres.

When the genericity assumptions are not verified, we replace the given moduli
space by a generic perturbation, which still carries a Dirac operator to which the
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Riemann-Roch-Kawasaki theorem {32, 33] can be applied. We then show that the
above index results still hold.

We will now put our results in perspective from the point of view of geomet-
ric quantization, especially in connection with the Guillemin-Sternberg conjecture
[23]. By Atiyah-Bott {2, Section 9], we know that when there is one marked point
with central holonomy, M/G is a symplectic reduction of the affine space A of G-
connections with respect to the action of the gauge group LG, which acts on 4 with
a moment map g, which is the curvature, so that M/G = p~1(0)/ZG. Similarly
the line bundle AP is itself the reduction of a universal line bundle L? on A. This
theory can be extended to the case with marked points (this we do in part in Sec-
tions 4 and 5). If A was instead a compact manifold, and £G a compact connected
Lie group, the Guillemin-Sternberg conjecture [23] asserts that the Riemann-Roch
number of (M /G, AP) is equal to the multiplicity of the trivial representation in the
action of £G on the cohomology of LP. The Guillemin-Sternberg conjecture has
been proved in various stages, the most general result being given by Meinrenken
[41],(42] (for a more analytic proof, see Tian and Zhang [58]). In Meinrenken’s
formalism, when the considered group does not act locally freely on p~1(0) , one
replaces 0 by any regular value of u close to 0 , and one still gets a corresponding
version of Guillemin-Sternberg’s conjecture.

Chang [16] initiated the study of Verlinde formulas in the context of geometric
quantization. A new twist was introduced to the story of the proof of the Verlinde
formula in work by Meinrenken and Woodward [43], [44], Alekseev, Malkin, Mein-
renken [1], and later work by these authors. In [43, 44], Meinrenken and Woodward
gave a symplectic proof of the fusion rules for the Verlinde numbers. In [1], the
authors develop a theory of group actions with moment maps taking their values
in the given Lie group G. This theory is in fact a theory of the standard moment
map for an action of a central extension of the loop group LG. The space X is the
prototype of such a manifold, the moment map being just ¢. These authors then
develop a localization formula in equivariant cohomology, which is an analogue of
the formula of Duistermaat-Heckman [19], Berline-Vergne [5]. By using the the-
ory of symplectic cuts and the previous results by Meinrenken [41, 42] on the
Guillemin-Sternberg conjecture, they announce a proof of the Verlinde formulas.

In some way, our paper represents a direct attempt to prove Verlinde formulas
directly, by a method which resembles the proof given by Jeffrey-Kirwan {29] of
the Guillemin-Sternberg conjecture. The proof of [29] consists in extracting the
Riemann-Roch number of p~1(0)/ZG from the Lefschetz formulas.

In (55, 56], Teleman gave a proof of the vanishing of the higher cohomology
groups of AP for a small perturbation of the moduli space M/G. As a consequence,
one should always have Ind(D,, +) = dim H°(M, X?). As explained before, we only
prove such an equality for large p, and otherwise, we have to perturb the moduli
space by a perturbation which can be ‘large’ for small p, so that there could be
a wall-crossing discrepancy between Ind(Dp, ;) and dim H°(M). Inspection of the
proof shows that this discrepancy also vanishes for g large enough, but Teleman’s
results indicate that the perturbation described above should never be needed to
get the above equality.
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Our paper is organized as follows. In Section 1, we establish basic simple facts
on compact simply connected simple Lie groups and their semisimple centraliz-
ers. In Section 2, we develop our basic residue techniques in several variables. In
particular, we express certain Fourier series on T', which are local polynomials, as
residues. In Section 3, we reestablish well-known results on symplectic actions with
moment maps, and we give a proof of the formula of Witten and Jeffrey-Kirwan.
In Section 4, we construct the canonical line bundle L on the moduli space of G-
connections on the Riemann surface ¥ with fixed holonomy at the given marked
points. We show that a suitable central extension of the gauge group TG acts
on L, and we compute the action of certain stabilizers on L and on a related line
bundle A;. In Section 5, we describe the moduli space M/G. We show that the
formalism of the moment map can be applied to the action of G on M. We apply
the formula of Witten [64] and Jeffrey-Kirwan [28] to the moduli spaces associated
to semisimple centralizers. Also we give a formula for ¢; (T'M/G). In Section 6, we
apply the theorem of Riemann-Roch-Kawasaki to the orbifold M /G, and we give a
residue formula for the index Ind(D, 4 ). In Section 7, we give a residue formula for
the Verlinde sums. Finally in Section 8, we compare Ind(D, ;) and the Verlinde
formula, and give a number of conditions under which they coincide.

The results contained in this paper were announced in [12].
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1. Simple Lie groups and their centralizers

Let G be a connected and simply connected compact simple Lie group. The
purpose of this Section is to give the basic facts which will be needed in the de-
scription of the strata of the moduli space of flat G-bundles on a Riemann surface
Y. This involves in particular a complete description of the semisimple centralizers
in G.

This Section is organized as follows. In Section 1.1, we recall elementary prop-
erties of roots and coroots. In Section 1.2, we construct the basic scalar product on
the Lie algebra g of G. In Section 1.3, we compute the volume of a maximal torus
T. In Section 1.4, we relate the quadratic form attached to a representation to the
basic quadratic form. In Section 1.5, we introduce the dual Coxeter number. In
Section 1.6, we construct an embedding of the center Z(G) in the Weyl group W.
In Section 1.7, we give simple properties of the element p/c € T', in particular in its
relations with the center Z(G). In Section 1.8, we review elementary properties of
the characters of G. In Sections 1.9-1.12, we describe the semisimple centralizers,
and give some of their properties. In Section 1.13, we consider the intersection of
an adjoint orbit with such a centralizer. Finally in Section 1.14, we recall vari-
ous properties of the stabilizers of elements of g, and we construct the symplectic

structure on the coadjoint orbits, and the corresponding line bundles.

1.1. Roots and coroots. Let G be a connected simply connected simple
compact Lie group of rank r. Let g be its Lie algebra, let g* be its dual. Let T
be a maximal torus in G, let t be its Lie algebra, let t* be its dual. Let W be the
corresponding Weyl group.

We will denote the composition law multiplicatively in G, but often additively
inT.

Let I’ C t be the lattice of integral elements in ¢, i.e.

(1.1) F={tet,exp(t)=1inT}.
Let A =T C t* be the lattice of weights in t*, sothat if he ', A € A,
(1.2) (A\hYEZ.

Let R = {a} C A be the root system of G. Then R is a finite family of elements
of A, which span t*. Let B C A be the lattice generated by R, let B O T be the
lattice dual to R.

Let CR = {ha} C t be the family of coroots attached to R. Let CR C t be the
lattice generated by CR, let CR’ C t* be the corresponding dual lattice. Since G
is simply connected, by [15, Theorem V.7.1],

(1.3) I'=CR,

A=CR".
Let Z(G) be the center of G. By [15, Proposition V.7.16],
(1.4) R /CR = Z2(G).

Let R;, R; and CR,,CR, be the short, long roots and coroots. Note that R,
corresponds to CR; and R, to CR,. Recall that G is said to be simply laced if
all the roots (or coroots) have the same length. In this case, all the roots will be
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considered as long, and the coroots as short, so that
(1.5) R, =10,
CR,=0.

In the sequel, when G is simply laced, any statement concerning R, or CR, should
be disregarded.

Let Ry, R,, CRy, CR, be the lattices generated by R, R,, CRy, CR,. It follows
from the classification of Lie groups that

(1.6) CR, = CR,
R,=R.
Note that when G is simply laced, the second equality in (1.6) is empty.
1.2. The basic scalar product on the Lie algebra.

DEFINITION 1.1. Let (, ) be the G-invariant scalar product on g such that if
Il-|| is the corresponding norm, if h, € CR,,

(L.7) hall® =2.

If G is not simply laced, there is one m € N (equal to 2 or 3) such that if
hy € CR(,

(1.8) half? = 2m.
By [15], if f,f' € CR,
(1.9) (f,feZ.

Using (, ), we may and we will identify t and ¢*. By [15, V, eq. (2.14)], under
this identification, if o € R, if by € CR corresponds to a, then

2

(1.10) a= Wha.
By (1.10) , we find that
(1.11) CRCRNE".
Also, by (1.6), (1.8), (1.10),
(1.12) CR =Ry,
CR; =mR
By (1.12),
(1.13) mRC R, CR,
mCR C C__t- cCR

From (1.12),(1.13),

(1.14) mCR =mR; C CRy=mRCCR
=R, -C;Sl =RC —Ti—i = %

Also
(1.15) '=CRcRENE cCR =A.
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Observe that the Weyl group W preserves all the objects which have been
constructed above. Also note that

(1.16) T =t/CR.
Moreover T' = /R’ is a maximal torus in the adjoint group G' = G /1Z(Q).
1.3. The volume of T. Let Vol(T') be the volume of T for the metric (,).

PROPOSITION 1.2. The following identity holds

(1.17) Vol(T)? = [CR’/CR)|.
Proor. Consider the exact sequence of lattices
(1.18) 0-CR-CR - CR /CR—0,
which induces the exact sequence
(1.19) 0+ CR /CR— t/CR—- t/CR 0.
From (1.19), we obtain
(1.20) Vol(t/CR) = |CR /CR|Vol(t/CR").
Now t/CR and ¢ /CR =~ t/CR’ are dual tori. Therefore
(1.21) Vol(t/CR)Vol(t/CR ) = 1.

By (1.20), (1.21), we obtain (1.17). The proof of our Proposition is completed. O

ProrosiTION 1.3. The following identity holds

(1.22) Vol(T)? = |Z(G)| |R/Ry.

In particular, if G is simply laced,

(1.23) Vol(T)? = |Z(G)] .
Proor. Clearly

(1.24) |CR'/CR| = |CE /R |R/CR).

Also by (1.4),

(1.25) (CE'/R)*=R'/CR=2(G).

From (1.12), (1.17 ), (1.24), (1.25), we get (1.22) . The identity (1.23) follows. O

1.4. The quadratic form attached to a representation. Assume tem-
porarily that G is a compact connected semisimple Lie group, which is not neces-
sarily simply connected. Otherwise, we use the notation of Sections 1.1-1.3.

Let 0 : G — Aut(V) be a finite dimensional representation of G.

DEFINITION 1.4. If A, B € g, put
o _ __1_ \'
(1.26) (A,B)’ = 41r2".[¥ [e(A)o(B)].

Then (, ) is an ad-invariant symmetric bilinear form on g.
Let z € R — [z] € [0,1] be the periodic function of period 1 such that for
z €[0,1, [z] = z.
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PROPOSITION 1.5. Ifu € R, h €T, then

(1.27) {u,h)” € Z.
PROOF. Let M C A be the set of T-weights in the representation ¢. Then
(1.28) (k) ==Y (A u)h).
AeM
Also for A € M, (A, h) € Z. Therefore, mod(Z),
(1.29) (w,h)” = = 3 (L u)l(A h)
AEM

=— > (> Ah.

AEM
sE[0.I[ | 2SN,

Also theimageof uin T = t/T' liesin Z (G).Therefpre the representation o splits into
a sum of representations on which u acts like €2*"* 0 < s < 1. The corresponding
T-weights are given by {A € M, [()\,u)] = s}. Since G is semisimple

(1.30) > =0

AeM
(A, u)]=e

From (1.29), (1.30), we get (1.27) . The proof of our Proposition is completed. [

1.5. The dual Coxeter number. Again we assume that G is a connected
and simply connected simple compact Lie group. Also we use the assumptions and
notation of Sections 1.1-1.3.

Let K C t be a Weyl chamber. Let R, be the corresponding system of positive
roots, so that

(1.31) R=R,UR_.

Then

(1.32) K = {tet, for anya € Ry, (a,t) > 0}.
Let P C t be the alcove in K whose closure contains 0. Then
(1.33) P={tet, forany a € Ry, 0 < (a,t) < 1}.

Since G is simple, the adjoint representation of G’ on g is irreducible. The cor-
responding T-weights are given by {0}UR. Let ag € R4 N R, be the corresponding
highest root. Then

(1.34) P={te K, {oo,t) <1}.
DEFINITION 1.6. Let p € t* be given by
1
a€ERy

By [15, Proposition V.4.12], if @ € R, is a simple root, (p,h,) = 1. In
particular p€ CR , and p € K.

DEFINITION 1.7. Let ¢ € N be the dual Coxeter number, given by
(1.36) ¢ = (p,hag) + 1.
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Let 7 : G’ — Aut(g) be the adjoint representation. Then by [47, p 285], [22,
eq. (1.6.45)],

(137) (’)T = —20(,).
PROPOSITION 1.8. Ift € ¢,
(1.38) ct = Z {a, t)a.
aERy

In particular
(1.39) ¢cR" CcR

PROOF. Since {0} U R are the T-weights of , if t,t' € ¢,

(1.40) ) ==2 Y (a,t)a,t').
a€ERy
Using (1.37), (1.40), we get (1.38). From (1.38), (1.39) follows. O

. Recall that we have identified t and t* by (,). Then ag = hy,. In particular,
foranya € R,

(1.41) 0 < {a,pfec) <1,
ie. pfce P.

DEFINITION 1.9. For ¢t € t, put

(142) oft) = H (et emimlat)y
QER+
Equivalently,
(1.43) g(t) = 32"7’(P-t) H (1- e—2i1r(a,t)).
Q€R+

By (1.43), we find that o(t) descends to a function defined on T = t/CR.
Recall that W is the Weyl group of G . If w € W, set

(1.44) €w = det(w]).
Then by (15, Theorem VL1.7], if w € W,t € ¢,

(1.45) o(wt) = eu,o(t).
Put
(1.46) £=|Ry].

Now we recall a result stated in (3, Lemma 9.17].

PROPOSITION 1.10. The following identity holds
(1.47) (ito(e/€))? = |CR" /cCR).
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1.6. An embedding of the center in the Weyl group. By [15, Theorem
V4.1, wKNK # 0 if and only if w = 1.
Take ¢ € Z*. Then ey w(gP N CR’) is a disjoint union of finite sets.

PROPOSITION 1.11. The set J,cw w(gP NCR') embeds naturally as a subset
of CR" /qCR. More precisely,

(1.48) |J w(@PNnCE") = {» e CR"/qCR,0*(\/q) # 0}.
weW
Also
(1.49) ¢cPNCR = {p}.

PROOF. Let Wog = W x CR be the affine Weyl group. By [15, Proposition
V.7.10], Wag acts freely and effectively on the set of alcoves in t. Thus we get
(1.48). f A€ cPNCR’, then A € CR N K. By [15, Note V.4.14],

(1.50) A-peCR, =CR nK.
Also, by (1.36),
(1.51) (pyhag) =c—1.
Since ag = hq,, by (1.34), since A € ¢P,
(1.52) (A hag) < C.
By (1.50)-(1.52), we obtain
(1.53) 0< (A=p,ha,) <1.
Since (A — p, hqa,) € N, from (1.53), we obtain
(1.54) A=p.
The proof of our Proposition is completed. O

PROPOSITION 1.12. Let f be a W-invariant function on ﬁ*/qﬁ. Then

(1.55) Yo o=l Y
2€CR*/qCR A€gPNCR"
o3(2/q)#0
Proor. This is a trivial consequence of Proposition 1.11. 0

PROPOSITION 1.13. The set gPNCR embeds naturally into {) € ﬁ‘/qﬁ‘,az(/\/q) #
0}.

PROOF. By (1.33), (1.42), if A € gP, then 02(\/q) #0. Let \,\' € gPNCR",
and assume there is u € B such that

(1.56) A=) =qu

By (1.33), for « € Ry,

(1.57) —-g<{a,A-X)<yq,
and so

(1.58) ~1<{a,p) < 1.
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Since p € R, for a € Ry, (a, u) € Z. By (1.58), we get
(1.59) 4= 0.

The proof of our Proposition is completed. ]

PROPOSITION 1.14. If A € CR', 02(\/q) # 0, there isw € W, ' € qPNCR
such that wA — X' € qR".

ProoF. Take ) € CR’. Then by [15, Proposition V.7.10}, there exists w € W,
he P, f € CR, such that

(1.60) 2—=wh+f.

Clearly gf € qCR. Also by (1.45),

(1.61) o%(M\q) = o(h).

So if 02(A\/q) # 0, then o?(h) # 0, so that h € P. The proof of our Proposition is
completed. a

Recall that Z(G) = R /CR. Also W acts trivially on Z(G) C G. Equivalently
ffeR ,weW

(1.62) wf - feCR.

If g € G, let Z(g) C G be the centralizer of g, let 3(g) be its Lie algebra. By (14,
Corollaire 5.3.1] , since G is simply connected, Z(g) is a connected Lie subgroup of
G.

An element ¢t € T is said to be regular (resp. very regular) if 3(t) = t (resp.
Z(t) = T). By the above, t € T is regular if and only if t is very regular. Let
Treg C T be the set of regular elements in T. By [15, Proposition V.7.10] , P
embeds into Tre;. More precisely,

(1.63) Teg = |J wP
weW
and the union in (1.63) is disjoint.
Let u € Z(G). Then u+ P C T is another alcove in Treg. Therefore there is a
well-defined w,, € W such that

(1.64) u+P=w,P.

PROPOSITION 1.15. The map u € Z(G) — w, € W embeds Z(G) as a commu-
tative subgroup of W. In particular |Z(G)| divides |W|.

Proor. If u € Z(G), wy, = 1, then u+ P = P in T. Therefore thereis v € R
mapping into u € R'/CR such that v+ P = P in T. By proceeding as in (1.57),
(1.58), we find that v =0, ie u=1.

If u,v' € Z(G), then

(1.65) u+u +P=u +w,P=w,{v' + P) =wywyy PinT.
From (1.65) , we get
(1.66) Wyt = WylWy' -

The proof of our Theorem is completed. O
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By Proposition 1.13 , we can view gP N CR. as a subset of CR" /qﬁ*, which
itself is stable by W. In particular if A € gP N CR ,we W, wX will be vielved as
an element of CR /qR. So the equality wA = X says here that w\ — A € qR".

PROPOSITION 1.16. If A\ € gPNCR C CR /qR', w € W, then w\ € gP N
CR’ C CR"/qR’ if and only if there is u € Z(G) such that w = w,,.

PROOF. Take A € gP N C’-R', u € R representing an element of Z(G) =
R’ /CR. Since \/q € P, by (1.64) , there is p € P such that

(1.67) wyA/g—pu—u€CR.
Therefore
(1.68) wyA —qu € qR .

Then X' = qu € gPNCR, and wy A — X’ €qR.
Conversely, if \,\' € gPNCR, u € R’ are such that

(1.69) wA ~- A = qu,
then
(1.70) wA/g=XN/q+u.
From (1.70) , since A/q,)’'/q € P, we get w = w,,. The proof of our Proposition is
completed. O
Put
_ ¥
(1.71) h= Tz

Let w!,... ,w* € W be distinct representatives in W of the classes of W/Z(G).

THEOREM 1.17. The set Uwi(qP NCR’) is a disjoint union, which embeds
1
into CR /qR . More precisely

(1.72) (JwiePNCTR") = (A e TR /qR" , *(M/q) # 0}.
1
PROOF. Our Theorem follows from Propositions 1.14 and 1.16. a
THEOREM 1.18. Let f o W-invariant function on CR JaR". Then
w
(173) Y = s s,
o iz, 2
reTR*/q €9PNCR
72(3/g)so0
PROOF. Our identity follows from Theorem 1.17. a

REMARK 1.19. Our Theorem is also a consequence of Proposition 1.12. In fact,
if f is a W-invariant function on CR / gR’,

p—

R
(1.74) > W= 55| X ™.
AeCR" /¢CR AECR* /qR*
e3(7/q)#0 o3(x/q)#0

Now F/E‘ﬁ: Z(G), and so using Proposition 1.12 , we finally obtain (1.73).
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1.7. The element p/c.
ProroSITION 1.20. Ifs€t,t € P, then
(1.75) Z (a, 8)[{a,t)] = 2(ct — p, s).

a€ER
Proor. By (1.35),(1.38),

(1'76) Z(a’s)[(avt)] Z ((a"q)(a:t) - <ass>(1 - (a, t)))

a€ER a€R4
= 2<a13)(aat) - (2P,S>
aER
= 2(ct-p,s).
The proof of our Proposition is completed. ()

Let t € Tieg. Then t determines a Weyl chamber K and an alcove P of the
above type. In the sequel, we consider ¢ as an element of P C T. The element p is
still given by (1.35 ). Of course p depends implicitly on t € Tie;.

THEOREM 1.21. The following identity holds

(1.77) ct—p= % 3l t)a.
a€R

In particular the map t € Treg — ct—p € t descends to a map Ty,p = Treg /Z2(G) — ¢,

PROOF. By Proposition 1.20 , we get (1.77) . Also if u € Z(G), if t € Treg
is replaced by t + u € Treg, [(a,t)] is unchanged. By (1.77) , we find that t €
Treg > ct — p € t descends to a map from Tj,; into t. The proof of our Theorem is

completed. a
Observe that since p € CR and 2p € R, then u € Z(G) = R /JCR ~
exp(2im(p,u)) = *1 is a character of Z(G).

Recall that K is a Weyl chamber, and that Z(G) has been embedded in W, by
an embedding which depends explicitly on K.

THEOREM 1.22. Ifw € W, then wp/c — p/c € CR if and only if w = 1. Also
ifweW, thenwpfc—plc=u€ R if and only if w = w,, so that w € Z(G).
The mep w € Z(G) = wp/c—p/c € R /JCR = Z(G) is a group isomorphism. Also
ifue Z(G),

(1.78) exp(2in{p, u)) = €y,

ProoF. By (1.41), p/c € P. Using (15, Proposition V.7.10] , we find that if

wp/c — p/c € TR, then w = 1. By Theorem 1.21 ,if u € Z(G) = R /CR,

(1.79) p/c+u=wy,(p/c) in t/CR.
By (1.79) , we find that wy(p/c) — p/c € R". Conversely let w € W be such that
(1.80) u=w(p/c) —plceR .

By (1.79), (1.80), we get
(1.81) wy(p/c) = w(p/c) in T =+t/CR,
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so that w = w,. Clearly if u € Z(G), by (1.45),

(1.82) o(wye?’c) = e, 0(e"/¢).

Also by (1.79) and by the above,

(1.83) o(wue?’®) = o(eP/ctv) = 2Pl g (ef/¢)

Since o(e?/¢) # 0, from (1.82), (1.83), we get (1.78) . The proof of our Theorem is
completed. N |

Let P be the closure of the alcove P. By (1.33),
(1.84) P={tet, forany a € Ry, 0< (a,t) < 1}.
PROPOSITION 1.23. For h € CR, then PN (P + h) # 0 if and only if h = 0.

PROOF. Recall that Wag = W x CR. By [15, Lemma V.4.3,if f € P, v €
Waa, then vf € P if and only if vf = f. In particular, if f € P, h € CR, then
f 4+ h € Pif and only if h = 0. The proof of our Proposition is completed. 0

PROPOSITION 1.24. The center Z(G) = R /CR embeds as a finite subset of P.

PROOF. If u € Z(G) = R’ /CR, there is an alcove Q containing 0 such that u is
represented in t by an element v € Q. By [15, Theorem V.4.1], there is w € W such
that wQ = P. Also since u € R /CR, then wv — v € CR. Therefore wv € P still
represents u. So any element u € Z(G) has a representative in P. By Proposition
1.23, this representative is unique. The proof of our Proposition is completed. [1

REMARK 1.25. If u € Z(G), we still denote by u the corresponding represen-
tative in P. Then if w € W, wu € wP is the unique representative of u in wP. Of
course, if wu € P, the above implies that wu = u. However this also follows from
{15, Theorem V.4.1].

Let w, € W be the unique element of the Weyl group such that w, K = —-K.

THEOREM 1.26. Let u € P be the unique representative in P of an element of
Z(G). Then ift € P, if [t + u] € w, P representst + u € T', then

(1.85) [t +u] =t +wyu.
Also
(1.86) Wyt = Wol.

In particular

(1.87) wy P = wyu + P.
Moreover
(1.88) u=plc—wyp/cint.

In particular, ift € P,
(1.89) wyp—cft+ul=p—ctint



SYMPLECTIC GEOMETRY AND THE VERLINDE FORMULAS 113

PRrOOF. Clearly w,(—u) lies in P, and so it is the unique representative in P of
u"l € T. If t € P, by (1.84), it is clear that t + w,u lies in some alcove containing
0. Also t + wou represents t + u € T. From the above, we get

(1.90) [t +u] =+ wou.

The alcove which contains t + w,u is necessarily equal to w, P. Therefore w,u and
w,u both lie in w, P, and represent u € Z(G). By Proposition 1.24, we get (1.86).
By (1.86) and (1.90), we obtain (1.85) and (1.87).

Using Theorem 1.21 and (1.85), if t € P,

(1.91) c(t + wyu) —wyp=ct—pint.

From (1.91), we get (1.88) and (1.89). The proof of our Theorem is completed. O
1.8. Some properties of the characters of G. Put

(1.92) CR, =CR nK.

Ifxe —C—'I—Z:_, let xx be the character of G which is the character of the irreducible

representation of G with highest weight A\. By the Weyl character formula, if
te Tregi

e2im(wA,t)
) () wze;" II (1 _ ezm(wa,t))
GGR+
Equivalently
1 )
1.94 X t) = — Ewez""(w(P+A)!t) .

Recall that by [15, LemmaVI.1.2), if € CR’ is not included in a Weyl cham-
ber,

(1.95) Z epeli™unt) = .
weW

If o € CR lies in K, then by [15, Note V.4.14], there is A € CR, such that
p=p+Ax. _

If A € CR, there exists a Weyl chamber K such that A € K. In general K is
not unique.

PROPOSITION 1.27. The character x) does not depend on K.

PROOF. Assume that A € K, A € K. Then by [15, Lemma V.4.2), there is
w' € W such that w'K = K'. Let Ry, R/ be the system of positive roots attached
to K, K'. Clearly

Also since A € Fﬂ?, and w'K = 7’, then A € K,w'~'A e K. By [15, Theorem
V.4.1), it follows that
(1.97) wTA= A
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Let xX(t), xf' (t) be the characters attached to K, K’, of highest weight .
Using (1.93), (1.97) , we get

(1.98) XX =xX .
Our Proposition follows. 0O

For A € CR’, we can then write x(t) without explicitly mentioning a Weyl
chamber K.

PROPOSITION 1.28. If A€ CR ,we W,
(1.99) Xwx = X -

PROOF. We may and we will assume that A € CR, = CR NK. Then w) €
CR™ nwK. Equation (1.99) now follows from (1.93). O

Recall that if A € CR , w € W, then wA - € R. It follows that if 8;,... ,0, €
CR’, then Zoj € R if and only if, given (w?,...,w?) € W*, then ijﬁj €R.

=1 j=1

8 8
PRoOPOSITION 1.29. If Zﬂj € R, then H Xo; descends to a function on the
j=1 j=1

adjoint group G' = G/Z'(G).

Proor. By Proposition 1.27 , we may and will assume that the §;’s lie in
CR, =CR NK. By (1.93) , for t € Treg,

s
21'1r(z wk6;, t)
k=1

a0y  [[wo= ¥ :

s .
i=1 (wl,... ,.w)ew? H (1- e—2i1r(wja,t))
j=1 QER.'.

3 8 L]
If Z 8; € R, then z w?8; € R, and so by (1.100), H Xs, (t) descends to a function

ji=1 j=1 i=1
on the adjoint torus T = t/ﬁ'. The proof of our Proposition is completed. (]

PROPOSITION 1.30. If Y 6; ¢ R, then

=1
8
(1.101) > IIxes(ett*) =0.
uweR* /CRI=1
Proor. This follows from (1.100). a

PROPOSITION 1.31. If A€ CR', A€ R, then
(1.102) xa(e”’¢) =0.
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PROOF. We may and we will assume that X € —C'__R-; If we W, then

(1.103) xa(e/®) = xa(e*?/?).
Take u € R*. Then by Theorem 1.22,

(1.104) wypfc~pfc=uinT.
By (1.103), (1.104),

(1.105) xa(e?/°) = xa(e?/°t").

Now since the representation associated to A is irreducible, the central element e*
acts in the ) representation like e2"¢}%), From (1.105) , we get

(1.106) xa(eP/€) = eimhuy , (ep/ey
If A ¢ R, it is then clear that (1.102) holds. The proof of our Proposition is
completed. O

Now we have the result of Kostant [36].

THEOREM 1.32. If X € R, then
(1.107) xA(€?¢) =0, +1 or —1.
Take now p € N* and A € pP, so that A € CR,,. Take u € Z(G) = R /CR.

Then A\/p+u € T is represented uniquely by an element [\/p+u] € w,P. Observe
that by ((1.85),

(1.108) Mp+ul=A/p+wyuint.
Also
(1.109) p[A/p+u] - (A +pu) € pCR.
THEOREM 1.33. If p € CR /(p+ ¢)CR, o(u/(p+c)) # 0, then
(1.110) pr\/p_l_u](eu/(pw)) = £y, €2 (M), (B (PHO))
In perticular
(1.111) xpu(e“/(”“)) = €y, €2 WK
PRrooOF. By (1.94),
(1.112) (et Py = ;@71(?:)7 wezvvewe%r(w()‘+p),;i—c-)
= a—@/‘l@?«cﬁ WZ;V £y, €2 (WA/Pk)

eziw (w(p—cA/p) i 42) .

Also p[A/p+u] € wyP N CR’. When replacing P by wy P, p is replaced by wyp.
When replacing A by p[A/p + u], using (1.109), we find that e27(w>/P) s replaced
by e?in(wA/pm)g2im(wu) - Also by equation (1.89) in Theorem 1.26, we find that
when replacing A by p[A/p + u],p — cA/p € t is unchanged. Finally o(e*/(P+)) is
changed into e, a(e#/(P+)). Equation (1.110) follows from the above arguments.
Equation (1.111) is a consequence of (1.110). a



116 JEAN-MICHEL BISMUT AND FRANCOIS LABOURIE

REMARK 1.34. If we use (1.110) with p =0, and u = p, we get
(1.113) 1 = €y, €208
which is precisely equation (1.78).

Theorem 1.33 will be used in Remark 8.4 as a consistency check on our index
theoretic computations.

1.9. The elements whose centralizer is semisimple. We still assume that
G is a connected and simply connected simple compact Lie group.

DEFINITION 1.35. Let C C t be the set of u € t such that {a € R;(a,u) € Z}
spans t*.

Clearly
(1.114) R cc.
Since by (1.6), (1.12), CR = CR, = Ry, then
(1.115) R cCR ccC.

In particular R’ C C acts by translations on C. Also the Weyl group W acts on
C.

PROPOSITION 1.36. The set C/R" is a finite subset of the adjoint torus T' =
t/R’, which contains CR /R‘. Also W acts on C/R".

PROOF. Let R’ C R be such that the elements of R’ span t*, and let B be the
associated lattice. Clearly B/R is a finite set. Then

(1.116) C/R =|JE*/R".

Hl
From (1.116) , its follows that C/R" is finite. The proof of our Proposition is
completed. a

Let now K be a Weyl chamber in t. Let Ry be the corresponding system of
positive roots so that

(1.117) R=R,U(-Ry).

DEFINITION 1.37. If u € G' = G/Z(G), let Z(u) C G be the centralizer of u.

Recall that by [14, Corollaire 5.3.1], since G is connected and simply connected,
Z(u) is a connected Lie subgroup of G. Clearly if u € T' = t/R’, T is a maximal
torus in Z(u).

Also W acts like the identity on Z(G) = R'/CR. Therefore, if u € T' =
t/R ,w € W, then wu — u is well-defined in T = t/CR. Put

(1.118) W,,:{wEW;wu——u:OinT:t/ﬁ'}.
THEOREM 1.38. Ifue T' = t/TZ*, the root system R, of Z(u) is given by
(1.119) R, ={a € R,{(a,u) € Z}.

Also R, + = R, N R is a system of positive roots for Z(u). If Z(Z(u)) C Z(u) is
the center of Z(u), its Lie algebra 3(Z(u)) is given by

(1.120) 3(Z(w)) = {f€t, for any a € R, , (o, f) = 0}.
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Also the Weyl group Wz, of Z(u) is given by

(1.121) Wz = Wa.
Finally
(1.122) C/R ={ueT',Z(u) is semisimple} .
PROOF. Let 3(u) C g be the Lie algebra of Z(u). Then
(1.123) dw)={fe€gu f=f}.
As a T-space, g ®g C splits as
(1.124) 9®rC=(t8rC)® (P 9a) -
a€R

From (1.124), we get
(1.125) 3w)@rC=(t®rC)®( P 5a).

a€R
(ax,u)EZ

From (1.125), it is clear that (1.119) holds.

Since the forms a in R do not vanish on K, the same is true for elements in
. R,,ie. K is included in a Z(u) Weyl chamber K,. If R, ; is the corresponding
system of positive roots, then

(1.126) Ru+=R,NR,.
The identity (1.120) is trivial. Let N(T") C G be the normalizer of T. Then

(1.127) W = N(T)/T.

Similarly let N,(T) be the normalizer of T in Z(u). Then

(1.128) Wz = Nu(T)/T.

Clearly

(1.129) Nu(T)=N(T)N Z(u).

Therefore Wy(y,) is a subgroup of W. Since u € Z(Z(u))/Z(G), if w € Wg(y),

(1.130) wu—u=0in T.

Conversely if w € W, let w' € N(T') represent w. If wu —u =0in T, then
(1.131) wuw '=uinT,

i.e. w' € Z(u). Therefore w' € No(T), and w lies in W(y).

By definition, Z(u) is semisimple if and only if 3(Z(u)) = 0. From (1.120), we
get (1.122).

The proof of our Theorem is completed. a

REMARK 1.39. Clearly, if we identify u to a corresponding element in t, then
(1.132) W, = {w € W,wu — u € CR}.

By Theorem 1.38, W, = Wyz(,). Let CR, be the lattice generated by the coroots
of Z(u). Since u € Z(Z(u)), if w € Wz(y), wu — u € CR,. Therefore

(1.133) W, = {w e W,wu —u € CR,}.
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PROPOSITION 1.40. Ifn > 2 end G = SU(n), then

(1.134) C=TF.
PrOOF. By [15, Proposition_\_’.6.3], it is clear that if a;,...,a, is a basis of
t* over R, then ay,...,a, spans R. Equation (1.134) follows. |

1.10. Some properties of semisimple centralizers. We still assume that
G is a connected simply connected simple compact Lie group of rank r. Also we
use the notation of Sections 1.1-1.3 and 1.9.

Take u € C/R’. To the Lie group Z(u), we can associate the objects we
considered in Section 1.1 for G, with the reservation that since the action of W, on
t may be reducible, Z(u) is semisimple and in general not simple.

However, we equip 3(u) with the scalar product induced from the scalar prod-
uct of g,( , ). Therefore t is equipped with the scalar product {( , ) , and the
identification t ~ t* will still be the one we used for G.

The objects we considered before which are attached to Z(u) will be denoted
with the index u. The lattices I'y, C t,A, =TI}, C t* are given by

(1.135) I,=CR, A,=CR .

The roots R, have already been described in Theorem 1.38 . Clearly
(1.136) CR, = {ha,a € R,}.

Note that in general

(1.137) 71(Z(u)) = CR/CR,,

and so Z(u) is in general not simply connected.
Ifue C/R, put as in (1.35),

1
(1.138) Pu=73 E a.
a€R, +

Then p, € CR,, .
THEOREM 1.41. For anyu € C,

(1.139) 2cu € R,
2p, € R.
Ifh € R*/CR,, then 2c(u,h) € Z, 2(p — pu, h) € Z, and moreover
(1.140) c(u, h) = (p — pu, h) mod(Z).
In particular, if h € m1(Z(u)) = CR/CR, , then 2c(u,h) € Z, 2(py, h) € Z, and
(1.141) c(u, h) = (pu, h) mod(Z).

PROOF. Let 7: G’ - End(g) be the adjoint representation. Then by (1.37), if
A,Beg

(1.142) (A,B)” = —2¢(A,B).
Also 7 induces a representation Z(u)/Z(G) — End(g). Then R° C t is exactly the

lattice of integral elements in t with respect to Z (v)/Z(G). By Proposition 1.5 and
by (1.142), we then find that 2cu € R. Also 2p, € R, C R.
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I heR, it follows that 2c(u, h) € Z, 2(pu, h) € Z. Also since CR,, C Ry, and
u € 1_2:,, if h € CR,, (u,h) € Z, and, since p, € E—R;, then (p,, h) € Z. Therefore
mod (Z), if h € R", ¢(u, h) and (py, h) only depend on the class of h in R*/CR,,.

Now we establish (1.141). By [15, Proposition V.7.10], we may suppose that
u € C is such that fora € R

(1.143) e, u)| < 1.

Take h € R'. Since Z(u) is semisimple, and since the a € R are the weights of the
restriction of 7 to Z(u), then by proceeding as in (1.29),

(1.144) D lawlehy= 37 s( 3 a,h)=0.
a€R s€(0,1] 1(;.,5;}:;
Also,
(1145) Y [eul@eh) = Y [e,u)a,h)
a€R aGR\Ru
= Y ((eu)a,h) - (1 - (a,u))a,h))
a€ER\Ry, +
= z (a,u)(a,h) - ( Z a’h) .
a€R\R., a€R\Ru, 4+

If a € Ry, (a,u) € Z, and (a,h) € Z. Since roots in R, come by pairs,by
(1.40),(1.142), (1.144), (1.145),

(1.146) 2c(u,hy=( >  ah) mod (2Z),
a€RL\Ry +

which is equivalent to (1.140).
If h € CR, then (p,h) € Z. From (1.140), we get (1.141). The proof of our
Theorem is completed. a

REMARK 1.42. Needless to say, the class of p, in t/R does not depend on the
choice of R,4. This fact fits with (1.141).

1.11. The first homotopy group in a semisimple centralizer. Take u €
C/R’. Then Z(u) is a connected semisimple subgroup of G. Also by (1.135),
(1.137) and by (15, Theorem V.7.1],

(1.147) m(Z(u)) = CR/CR.,

By (1.147),

(1.148)

Let 7, : Z(u) — Z(u) be the universal cover of Z(u). Then by [15, Proposition
V.7.16),

(1.149) 2(Z(v)) =R, /CR.,
and m,(Z(u)) is a subgroup of Z(Z(u)).
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Clearly

2(Z(u))
Z(G)
Take v € Z(Z(u))/Z(G). Then Z(v) > Z(u), CR, D CR,. Therefore
m(Z(u)) = CR/CR, surjects on m (Z(v)) = CR/CR,. Let 7., : CR/CR, -
CR/CR, be this surjection. Clearly R, JR" maps into CR,,/R".
Let h € m(Z(u)) = CR/CR,. Then h defines a character 8 of Z(Z(u))/Z(G)
given by

(1.151) 0n v € Z(2(w)/Z(G) — exp(2im{h,v)).

(1.150) =R./R cC/R .

Recall that by Proposition 1.36, CR /R c C/R’.

PRoOPOSITION 1.43. The element u € C'/F‘ is such that for any h € CR/CR,,
Sn(u) =1 if and only ifu € CR /R".

PROOF. This is trivial. 0
PROPOSITION 1.44. Foranyu € C/R ,v € —Z—(Zg(z(;—;)—) =R,/R,hem(Zu)=
CR/CR,,
(1.152) exp(2im(h,v)) = exp(2in(7y,,h,v)) .
PROOF. We have the exact sequence
(1.153) 0 -+ CR,/CR, » CR/CR, s CR/CR, —» 0.
Also if ' € CR,/CR,, exp(2im(h',v)) = 1. Our Proposition follows. a

REMARK 1.45. Proposition 1.44 will be used in Remark 4.40.

1.12. Centralizers in a connected and non simply connected semisim-
ple Lie group. Let G be a compact connected semisimple Lie group. We use
otherwise the same notation as in Sections 1.1-1.3 and 1.11.

Let m;(G) be the first homotopy group of G. Let G be the universal cover of
G. Then G is a compact connected and simply connected semisimple Lie group,
m1(G) is a subgroup of of Z(G) and

(1.154) G =G/m(G)

Let T be a maximal torusin G. Let u € T' = t/R". Let Z(u) C G be the centralizer
of u.By [14, Corollaire 5.3.1], if G is simply connected, then Z(u) is connected. Let
Z(u), be the connected component of the identity in Z(u). Then Z(u), is a normal
subgroup of Z(u), and so Z(u),\Z(u) is a finite group. Moreover T C Z(u),, s0
that u € Z(u),.

Ifg € Z(u), let § € G be alift of g, let @ € G be a lift of u. Then [§, 4] € m (G)
does not depend on g, i.

PROPOSITION 1.46. The map g € Z(u) — [§,4] € m(G) induces an embedding
of Z(u)o\Z(u) into m (G). In particular Z(u),\Z(u) is commutative.
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Proor. The Lie group Z(it) C G is connected. Therefore Z(i)/m1(G) is a
connected subgoup of Z(u).Since Z(#)/m;(G) and Z(u), have the same Lie algebra,
it follows that

(1.155) Z(u)o = Z(@)/71(G).
Let g,¢' € Z(u), let §,g' € G lift g,g'. Let h,h' € m(G) be such that

gug~t = wh,
(1.156) giag ™ = k.
Then
(1.157) Jgag-le'” = g'ihg™t = g'ag " h=uk'h.
If g € Z(u),, if § € Z(@) lifts g, then
(1.158) [§,4) = 1.
Conversely if ( 1.158) holds, then § € Z(@) and g € Z(u),. The proof of our
Proposition is completed. (]

Let N(T') C G be the normalizer of T in G. Then W = N (T)/T is the Weyl
group. Put

(1.159) We={weWuwu—-u=0inT=t/T}.
PROPOSITION 1.47. The following identity holds
(1.160) Wy = (N(T)N Z(u))/T.

PROOF. The proof of our Proposition is the same as in (1.128)-(1.131). a

Let Wz(y), be the Weyl group of Z (u)o. Then Wy, = Wz(m). Also Wy(y),
is a normal subgroup of W,,. Then Wz(y), \W, is a finite group.

Let CR C t be the lattice in t spanned by the coroots of G. Let I C t be the
lattice of integrals elements in t, i.e. whose exponential in T C G is equal to 1.
Then CRCT, and

(1.161) T/CR = m(G)
We define R, R as in Section 1.1 . Let @ € t represent u € T' = /R .Then
w € W — wi—T € I'/CR = m(G) is a well-defined map.

Recall that Z(G) = -ﬁ'/ﬁ, and that m,(G) = ['/CR is a subgroup of Z(é).
In particular, by Proposition 1.15, 71 (G) embeds as a commutative subgroup of W.

THEOREM 1.48. The map w € W, ~ wt — 7 € I'/CR = m(G) induces an
embedding of Wz(u),\Wy into m(G). In particular Wz(y), \Wy is commutative. If
w € Wz (), \Wu is identified to the corresponding element w' € m(G) C 2 (G), the
image of w' in W lies in W, and represents w in Wz(u), \Wa-

PROOF. Let w,w’ € W,,. Let h,h’ € I" be such that
(1.162) wi-u=hwa-T=h.
Then
(1.163) wwz—-a=wh+h.
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NowI'CR’, and so

(1.164) w'h—h € CR.

Therefore by (1.163), (1.164)

(1.165) w'wi~T=h+h'inT/CR.
If w € Wy(y),, since u € Z(u), is in the center of Z(u),, then

(1.166) wid —%=0inT['/CR.

Conversely let w € W be such that

(1.167) wi - u € CR.

Let § € G represent w.By (1.167),

(1.168) 9,4 =1,

so that § maps into an element of Z(u),. Ir'x particular w € Wyz(y),. The proof of

our Proposition is completed. O
Observe that

(1.169) Wz, \Wu = (N(T) N Z(u)o)\(N(T) N Z(u)).

Therefore Wz(y), \W, embeds naturally into Z(u),\Z(u).
THEOREM 1.49. We have the identity
(1.170) Wz \Wa = Z(w)o\Z(u).
This identity is compatible with the embeddings of both groups into m,(G) = I'/CR.

PROOF. Let g € Z(u). Then gTg~? is a maximal torus in Z (u)o.‘i‘herefore
there is h € Z(u), such that

(1.171) (hg)T(hg)™' =T,

so that hg € N(T') N Z(u). Therefore the embedding Wz(u), \Wu — Z(u)o\Z(u) is
in fact one to one. It is trivial to verify that the above identification is compatible
with the given embeddings into m; (G). The proof of our Theorem is completed. [

1.13. The intersection of an adjoint orbit with a centralizer. We make
the same assumptions as in Section 1.12.
Let t € T. Let O, be the adjoint orbit of t in G. By [15, Lemma IV.2.5],

(1.172) O:NT = {wtlyew

More generally, if H is a Lie subgroup of G, and t € H, let Oy(t) be the adjoint
orbit of t in H. In particular O, = Og(2).

THEOREM 1.50. If G is simply connected, if u € T, then

(1.173) OnZw)= |J Ozuwt).
weW, \W

If t is regular, the above union is disjoint.
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If G is not necessarily simply connected, if t € T is very regular,

(1.174) O:NZu) = U 0z, ),
wewz(")n\w
ONZ(u) = U Oz(w)(wt),
weW,\W

and the above unions are disjoint.

Proor. If G is simply connected, then Z(u) is connected, and T is a maximal
torus in Z(u). Let g € Oy N Z(u). There is g’ € Z(u) such that g'gg'~! € O, NT.
By [15, Lemma IV.2.5), there is w € W such that

(1.175) g'g9 "1 = wt,
so that
(1.176) 9 € Oz(y)(wt).

Therefore (1.173) holds. If ¢t € T is regular, since G is simply connected, t is very
regular. Therefore the {wt} are distinct in T. Moreover two elements in T lie in
the same Z(u)-orbit if and only if they lie in the same W,-orbit. Using Theorem
1.38, it follows that when t € T is regular, the union in (1.173) is disjoint.

If G is non necessarily simply connected, if g € O; N Z(u), then u € Z(g). If
t is very regular, Z(g) is a maximal torus, which is included in Z(u),. Therefore
g € Z(u),. The above argument shows that there is ¢' € Z(u),, and w € W such
that

(1.177) g'g9 ! = wt,
which is equivalent to
(1.178) 9 € Oz(u), (wt).

So we have proved the first identity in (1.174). Since ¢t is very regular in G, it is
very regular in Z(u),. So the union in the first identity of (1.174) is disjoint.
Clearly

(1.179) U 0Ozwwt) c0:nZw),
weW.\W
and also
(1.180) U Ozw.wt)c |J Ozw(wt)
WEWz(u),\W weEW,\W

Therefore the second identity in (1.174) holds.

If g € Z(u),w € W are such that gtg~! = wt, if ¢’ € N(T) represents w, then
g ~lgt(g'~1g)~! =t. Since t is very regular, g ~'g € T, so that g € Z(u) N N(T).It
follows that w € W,,. Therefore the second union in (1.174) is also disjoint.

The proof of our Theorem is completed. O
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1.14. The stabilizer of an element of the Lie algebra, and coadjoint
orbits. Let G be a compact connected semisimple Lie group. We use otherwise the
notation of Section 1.1. Recall that 7 : G — Aut(g) is the adjoint representation.

DEFINITION 1.51. If p € ¢, put
(1.181) Z(p)={9€G; t(9)-p=p}.

By [15, Theorem IV.2.3], Z(p) is a connected Lie subgroup of G. Then T is a
maximal torus in Z(p). Let 3(p) be the Lie algebra of Z(p).

THEOREM 1.52. If p € t, then
(1.182) iPWORC=t® P ga-

a€R
(a.p)=0
Also the root system R, of Z(p) is given by
(1.183) R,={a€R; (a,p) =0}.
If Z(Z(p)) C Z(p) is the center of Z(p), its Lie algebra 3{Z(p)) is given by
(1.184) 3(Z(@) ={fet, foranyae€ R, (a,f)=0}.

PRrOOF. The proof of these results is left to the reader. It is essentially the
same as the proof of Theorem 1.38. O

DEFINITION 1.53. Let w : t ®g C = C be the monomial
(1.185) ()= [] (2ima,t).
a€R,
By [15, Corollary V.4.6 and Lemma V.4.10], if w € W
(1.186) w(wt) = eym(t).
Also if t € t, one has the obvious
(1.187) det Ad(t)g/e = 72 (t/1).

By (1.187), we find that 72(t/i) does not depend on K, and lifts to a G-invariant
function on g.

DEFINITION 1.54. Set

(1.188) greg = {P€ 9, Z(p)isamaximaltorus},
teg = {t€t; Z(t)=T}.
Clearly
(1.189) treg = Breg N t.
PROPOSITION 1.55. The following identity holds
(1.190) geg = {P€g, n(pfi) #0},

teg = {t €t 772(t/i) # 0} :
PROOF. Take t € t. Since Z(t) is connected, t € t¢g if and only if
(1.191) 3t) =t.

Using Theorem 1.52, we get the second identity in (1.190). Also by [15, Theorem
IV.1.6), any G-orbit in g intersects t. Our Proposition follows. a
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By (1.190), t € t;¢g if and only if ¢ lies in a Weyl chamber. The G-orbit of ¢ in
g intersects t at |W| distinct elements, which form the W-orbit of ¢.
If p € g, let O, be the G-orbit of p. Clearly,

(1.192) mp: g€ G/Z(p)— gpg™! € O,

is a one to one map. Also by [6, Lemma 7.22), O, is equipped with a canonical
symplectic form gp,. In fact G acts on the left on O,. If X € g, let X% be the
corresponding vector field on Op. Then if X,Y € g, g € Op,

(1.193) 00,,4(X%,Y%) = (q,[X,Y]).
Let f, be the left invariant 1-form on G
(1.194) fo=(p,g7"dg).

Let m, be the projection G —= G/Z(p) ~ Oy.
PROPOSITION 1.56. The following identity holds

(1.195) dfy = —mp0p.

In particular the restriction of f, to Z(p) is a closed 1-form.
ProoF. Clearly

(1.196) df, = (p, —%lg“dy,y‘ldyl)

from which (1.195) follows. Since m, maps Z(p) to a constant in G/Z(p), our
Proposition follows. O

PROPOSITION 1.57. Ifp€ CR, f, is an integral closed 1-form on Z(p).

PRroOF. Clearly T is a maximal torus in Z(p). Then by [15, Proposition V.7.6],
Z(p)/T is simply connected. Therefore w1 (T) surjects on m(Z(p)). To verify that
fp is an integral 1-form, we only need to check that if s € S; = g; € T is smooth,

the integral of f, on this loop lies in Z. Since p € CR’, this is obvious. The proof
of our Proposition is completed. O

Now we assume that p € CR . Take g € Z(p). Let s € [0,1] = g, € Z(p) be a
smooth path such that go = 1,91 = g.
PROPOSITION 1.58. The map g — exp (2z'1r / 1 gs f,,ds) € S defines a repre-
sentation p, of Z(p). ’
PRrRoOF. This follows from Proposition 1.57. O
DEFINITION 1.59. Let L, be the Hermitian line bundle on O,
(1.197) L, =G xz4) C.
Clearly the connection
(1.198) d+2inf,
descends to a connection VL» on L.
PROPOSITION 1.60. The following identity holds
(1.199) c1(Lp, VE?) =0,
Proor. This is obvious by (1.195). O
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2. Fourier analysis on the centralizers of semisimple Lie groups

The purpose of this Section is to express certain Fourier series on T' (which
will later turn out to be the symplectic volumes of the stratas of the moduli space
of flat G-bundles on the Riemann surface X, first computed by Witten [63, 64]
) as residues of certain holomorphic functions in several complex variables. The
main point is that it is then possible to compute explicitly the action of certain
differential operators on these Fourier series. The results of this Section will be
used in Sections 5, 6 and 7.

This Section is organized as follows. In Section 2.1, we make elementary con-
structions in linear algebra. In Section 2.2, we apply these constructions to the
root system of G. In Section 2.3, given u € C/R’ and the corresponding semisim-
ple centralizer Z{u), we consider an associated Fourier series @, (t, ), which we
express as a simple integral along the fibre of a torus fibration. In Section 2.4,
we express Q,(t, z) in terms of iterated residues. In Sections 2.5-2.8, we introduce
other related Fourier series, which are related in particular to the universal cover of
semisimple centralizers. In Sections 2.9-2.11, we introduce our symplectic volume
Fourier series, which are local polynomials on T. We express these Fourier series
as residues. Finally, in Section 2.12, we compute the action of any power series of
differential operators on these local polynomials.

As explained in the Introduction, residue techniques have been developed by
Szenes [53)], [54] to handle the Witten Fourier series [63, 64]. The methods of
Szenes are more conceptual than ours, which only usesimple linear algebra. It is
probable that the results of this Section can be rephrased using Szenes’s formalism.

2.1. Some linear algebra. Let V be a real vector space of dimension r. Let
e1,...,e, be a basis of V, let €l,... ,e" be the dual basis of V*.
For1<i<r, ifuy,...,u; €V, put

(2.1) (g, ..., w) =(ur A...Auj et AL AEY.

Equivalently

Ui A...uiNejp1 N...Née,
(2.2) (u1y... u5) = = s

egiN...Ner

Let fi1,..., fr be another basis of V, let f!,..., f* be the corresponding dual
basis of V*.
Let E,E', F, F' be the flags in V,
(2.3) E : 0c{e}c{e,er}...C{er,... e} =V,
E' : V={e,...,es.} D{ea-...,er}... 2 {es} D0,
F OC{fl}C{fl,fz}...C{fl,...,f,-}=V,
F'o {fh. i} D {fes o i} D Afr} D0

We assume that F' lies in the orbit of £. Equivalently for i, 1 <i<r, fi,...,fi,
€i+1,-.- ,€r is a basis of E, i.e.

(2'4) (flv"'r.fi)#o'

Let A be the (r,r) matrix expressing f1,... , f» on the basis ey,... ,e,. Then (2.4)
says that the principal minors of A do not vanish.
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On V*, we can define the flags E*, E'*, F'*, F'* associated to the basis e!,... ,e”
and f!,..., f7. Now E* lies in the orbit of F*,i.e. foranyi,el,... e, fitl, ... fr
is a basis of V'*.

For 0 < ¢ < r~1, let p; be the projection from V on {ej41,... ,e.} with kernel

{fly e 7.fi}- Clearly
(2:5) Pi+1 = Di+1Di -

Alsofor 0 <i <r—1, p;fiv1,... ,pifr is a basis of {e;+1,... ,er}. More precisely
for 0 <j <7 —i, pifitr,... ,Pifirjs€itj+1,--. € is a basis of {ei41,... , €}
Clearly, if t € V,

(t,e")

2.6 t=t-—
(26) =t ey
By the above, there are similar formulas for ps,...,p.. In particular, by (2.5),
(2.6),for1<i<r,andteV,

(pz—lt € )
2.7 t= t— -
( ) Di Di-1 (Pt—lfn ) Pi-1fi-
From (2.7), we get

t,e’)

2.8 pit=1- = 7Pi-1f
e ;}—;:(PJ 1f5,€7) T

Using (2.8) with ¢ = r, we obtain

(2.9) hZﬁi%:m

For 0 < i < r —1, let g; be the projection from V* on {f**!,..., f'} with
kernel {e',...,e‘}. Then g; is the transpose of p;, i.e.

(2.10) g = Pi.
Also, as in (2.6), if z € V*,

(IE, fl) el
(el ) fl)
Moreover the results which hold for the p;’s also hold for the g;’s.

(2.11) Qr=zc-—

THEOREM 2.1. For1<i<r,

(2.12) Z ZEULINI ST

=1 (Pj-1fjq5-187)

In particular,

(2.13) i (pi—1t, e)(qi—12, f) = (t,1).

(Pi-1fi, gi-1€%)
PRrooF. Equation (2.12) follows from (2.8), and equation (2.13) from (2.9). O
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PROPOSITION 2.2. IfteV,zeV*, for0<i<r,

Ny (i A /\fg 1/\t/\f3+1/\ A fi et AL e')
(1-pjt = Z A Afi el A... A€ fi»
T . .
. (i .../\f;/\t,ell\.../\e‘/\eJ)m
B pt = :i=§i-_:+1 (finh...Afi,el A A€ i
= Z (<t7ej)—z
j=i+1 k=1
(AN Afi,et AL AeF" T AT AeFTE AL A€, eF) .
(AA...Afi,et A A€ 7
N (A Afi,e A ATTAZAETI AL AEY)
Ql-g)z = Z (fL A .../\f,f,el/\.../\e") o
& (A AfAfi e A AeAT)
weo= j=,z+l (AN...Afi,el AL Aet) f
r i
= Z((f_ﬂm)-z
j=i+1 k=1

(fl/\.../\fk-l/\fj/\fk.H/\.../\fhel/\”_l\ei)(fk’z) fj
(fih...Afi,el A...Aéd) )

ProoF. Clearly we only need to prove the first two series of identities in (2.14).
The first identity and the first part of the second identity are standard linear alge-
bra. Alsofor j > i+ 1,

(AN Afint,e! Ao AN =(FiA...Afi,el A . Ae)(t,e)
—i(—l)k_i(fl/\.../\f,-,elA.../\ek_ll\ek“ A...NE NN, eR)
(2.15) = (f1 A fi et AL AE) L, €)
"'Z(fl/\.../\f.-,el/\.../\e"'lAejAe"+1A...Aei)(t,ek).

The proof of our Proposition is completed. O

PROPOSITION 2.3. Forany j, 1<j<r

(2.16) (firgj—12) =

1 (fiA...A AfepaA . Afi-1, i-1
(f5,2) - T} bl hclicpe ) ()

ProoF. This is a consequence of the last equality in (2.14). a

REMARK 2.4. From (2.16), we find that {f;,¢;—1z) = (p;-1f;,z) depends only
on the (.f’hx) 1 < k < .7
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2.2. The linear algebra of the basis of a root system. Let G be a com-
pact connected and simply connected simple Lie group of rank r. Let T be a
maximal torus in G. Let t be the Lie algebra of T. Let K be a Weyl chamber in t.
Otherwise, we use the notation of Section 1.1.

We will also use the notation of Section 2.1, with V' = {*. We identify t and t*
by the scalar product (, ) of Section 1.2. Then

(2.17) r = dim¢.

Let e;,... ,e; C Ry be the simple basis of t* associated to K [15, Proposition
V.4.5]. Any a € R, is a linear combination with non negative integral coefficients

ofej,...,er. Theney,...,e, generate R. Lete!,... e” be the corresponding dual
basis of B~ C t.

Let {c4,...,a} be an ordering of R4, such that
(2.18) a;=e; for 1<i<r.

Recall that we use the notation of Section 2.1 . Clearly all the (a;,,...,a;;)
lie in Z.

If G is not simply laced, m was defined in (1.8) and is equal to 2 or to 3. By
convention, if G is simply laced, we take m = 1. By (1.12),

(2.19) mR c CR.

DEFINITION 2.5. Let d € N* be a common multiple of the m|{a;, A...Aa;)]|.

Observe that since e;,... ,e, € Ry, for any j, 1 < j < r, d is a multiple of
m{ai,, ... ,a;;) € Z. Also by (2.19),
(2.20) dR c CR.

Recall that C C t was defined in Definition 1.35.

PROPOSITION 2.6. The following identity holds

(2.21) dCcR.
Proor. Let u € C, let ay,,...,0;, € Ry bga basis of t* such that for 1 <
j £, {ai;,u) € Z. Since ey, ... ,e, is a basis of R, we find that if H is the lattice
generated by a;,,... ,a;,,
(2.22) dRC H,
which is equivalent to
(2.23) dH* CR.
Since u € H*, from (2.23) , we get (2.21). The proof of our Proposition is completed.
O

REMARK 2.7. Take n > 2. Since SU(n) is simply laced, mm = 1. Also by (15,
Proposition V.6.3], all the |(a,, ... ,ai;)| are equal to 1. Therefore, for G = SU(n),
we can take d = 1. Using (1.114) and (2.21), we recover Proposition 1.40.

DEFINITION 2.8. A family I = (iy,...,%,) of distinct indices in {1,...,€} is
said to be generic if

(2.24) (aﬁ,...,a.-j)#Oforlng_r.
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Given a generic family I = (i3, ... ,i,), we now use the notation in Section 2.1
associated to the given basis e;,... ,e, and a;,,... ,a;, of t* ~t. In particular the
operators which appear in Section 2.1 will be denoted with the superscript I, to
mark their dependence on I.

Let o*,... ,a’ be the basis of t* ~ t which is dual to a;,, ... ,;,.

Recall that (2.18) holds.

DEFINITION 2.9. A family I = (iy,...,4j~1) of j — 1 distinct elements of
{1,...,£} is said to be generic if I;—; = {i1,... ,4j—1,4, +1,... ,7} is generic.

If I = (4y,...,4,) is generic, I;_; = (41,...,i;—1) is also generic, and by
construction (or by (2.14)),
I;
(225) p] -1 —p; 1l )
I
q] 1 =9 -

DEFINITION 2.10. If z € C!, and if I = (34, ... ,i,) is generic, put

T
(2.26) ol = Zz,-,. a ettt
1
By (2.25),
(2.27) q] ! —qJJ Sl
Also by Proposition 2.3,
(2.28) (i, 9f_12") = ,’ 105;,77) =

. Z au) ey Qg Ay Oy gy e ,aij-l).'l,'
- i -
(Qiy,...,0;_,)

Note that the right hand snde of (2.28) only depends on z;,,... ,T;;.
Assume that I = (4y,... ,1,) is generic. Then by Proposition 2.2, ift € t, y € t*

(aiw--' ;a‘i,‘)

(2.29) (PJI'~1°“:"eJ) = {Qiy,. .. 06;_,)"
, i A Aoy e AL NETE AR
1@, t) = (Qiy, - ;) ’
(Pl_1y, %) = B aBic

(ailv s 1a‘i,‘_1)
In particular, by (2.29), we find that
d

2.30 —C 7.
( ) (p§~1ai,~,51)
Also by (2.28), (2.29), if z € Z¢,
<.p_1 10;,, )
(-p_{ lazjle )

DEFINITION 2.11. For u € C/R’, let I, C {1,... ,£} be given by
(2.32) I,={i,1<i<fla;€R,+}.

(2.31) €Z.
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Put
(2.33) £, = L.
2.3. Fourier series and integration along the fibre.

DEFINITION 2.12. For u € C/R’, let R’ C R’ be given by

(2.34) Riv={s=(s',...,8Y) eRl, s' =0 fori ¢ I,}.
Let a, : R’ — t* ~ ¢ be given by
(2.35) au(s) = Y sl
i€l

The transpose @, : t =~ t* = R’ is given by

(2.36) au(t) = (@i, t))ier, -
Set

(2.37) Vu = kera,.

Then we have the exact sequence

(2.38) 02 Vy—»RM——t20.
We define Z+ C Z¢, (R/Z)!« c (R/Z)! as before. Then

(2.39) ay(Z™)=R,.

Also a,, induces a surjection (R/Z)"* — t/R . Set

(2.40) K, = kera, C (R/Z)"™.

We have the exact sequence

(2.41) 0— K, - (R/Z) —t/R—>0 .
Set

(2.42) Y =ZMNV,.

Then K, is a union of |R/R,| tori V, /v .
DEFINITION 2.13. For u € C/R’, let H, C t/R be given by

(243) Hy, = {t € t/R,t = Z t'a;, and {aj,j € J} does not span t* ~ t}.

Then H, is a finite union of hypertori in T'. Put

(2.44) H=H,.
Clearly,
(2.45)
H={tet/Rt= Z t'a;, and {a;,j € J} does not span t* ~ t}.
JjEJC{1,....¢8}

For any u € C/R’,
(2.46) H,CH.
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PROPOSITION 2.14. Let I = (i1,...,i,) C I, be generic. Then ift € (t/R)\ H
is represented by f € t,

(2.47) I ife?) g Z.
Proor. By (2.29),

I 5 5\ (a,—l,..‘ ,a,-j_,,f)
(248) (pj_lt’ej) h (ail"“ ;aij—1> '
Now for f = e;, the expression (2.48) is equal to 1. Also (a,,...,qs;_,,t) vanishes
if and only if % is a linear combination of a;,, ..., ai;_;,€j41,-.. ,er. Therefore the
condition
(2.49) (pj_ L) e Z
is equivalent to
j—1 r
(2.50) ?=Za”a,~,‘+be,~+ Z cter , a¥,cFeR,be Z.
k=1 k=j+1
Then,
Jj-1 r
(2.51) = Za"a;,, + Z cfer in t/R,
k=1 k=j+1
so that t € H.
The proof of our Proposition is completed. O

Let dt be the Lebesgue measure on t associated with ( , }. We still denote
by dt the Lebesgue measure on t/R. We map L'(t/R) into D'(t/R) by the map

dt
Vol(t/R)
Clearly a,, induces a map a,. from D'((R/Z)") into D'(t/R).

PROPOSITION 2.15. Ifg € L'((R/Z)"*), then ay.g € L'(t/R). More precisely,
ds
(2.52) ausg(t) = /K.. g(t+ S)VM :

Also if k € Z™, then
(2.53) au.[ezi“("")] = gZim(Mt) if there is )\ € R" such that k; = (\ai),i€l,,
=0 otherwise .

We use the same convention for other tori.

PROOF. The proof of this result is trivial. O
DEFINITION 2.16. For u € C/R , z € (C\ 2inZ), t € t/R, set

(2.54) Qu(t,z) = Z exp(2im(\, t))

2= Ty, @imGac N -2

Clearly as a function of t, Q. (t, z) is a well-defined distribution on t/R.
For M € N, we also consider the partial sums

M 3 exp(2im{),t))
(2.55) Qu (tz)= A; ics, Qim{ai, ) — z)

Ixj<m
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Note that Q,(t,z) depends only on the projection of z on C+.

THEOREM 2.17. For anyn € N*, u € C/F, v € —i;l;, t € t/R, the following
identity holds

(2.56) nt& " 3 exp(2i1r(v,t+h))Qu(

heR/nR

PROOF. Clearly,if \e R, ve F/n,

t+h

;1) = Qu(t, 7 + 2ind,v).

1 . A . A D S
(2.57) o Z_exp(Zm(; +v,t+h)) = exp(ZzTr(; +u,t)) if - +veER,
heR/nR
=0 otherwise.
From (2.54),(2.57) , we get

(2.58) nbT Z exp(2im(v,t + h))Qu(t + h, nz)
- = n
heR/nR
_ Z exp(2im(A, t))
o T @i, X) = (i + 2im({s, v))
i€l

= Qu(t,z + 2ima,v).

The proof of our Theorem is completed. O

THEOREM 2.18. The partial sums QM (¢, z) converge uniformly together with
their derivatives to Q,(t,z) on compact subsets of (t/R) \ H, x (C\ 2inZ)*. The
following identity of distributions holds

1
et (exp(z,-) -1

In particular for x € (C\2ixZ)¢, Qu(t,z) is a distribution in L°(t/R). Also (2.59)
is an identity of smooth functions on (t/R) \ Hy x (C\ 2irZ)*.

(2.59)  Qu(t,z) = (-1)*a,.

)exp((z,s)) in D'(t/R).

Proor. For z € C )\ 2inZ, the Fourier series for e*® (s € [0,1]) is given by
e2i7rks

T8 __ (T _
(2-60) e** = (e 1)’%———_%””.

Since e** is smooth on [0, 1], the partial sums in (2.60) converge uniformly together
with their derivatives to e** on compact subsets of R/Z \ {0} x C\ 2irZ.
From Proposition 2.15 and from (2.60) , we get

2.61 u* (z.8)] = -1 '
( ) ay.[et™*] l[II‘.(E ) ,\é‘ ]:I[ (—2im (i, N) + )
i€l

e2i1r(A,t)

which coincides with (2.59).
Also for x # 0, the wave front set of the distribution e® on S !is just {0} x R*.
By [26, Theorem 8.2.13], we see that (t,p) € t/R x R« \ {0} lies in the wave front
set of Qu(¢,z) only if ¢t = Z t'a;, and (p, ;) = 0 when t* ¢ Z. Therefore Q4(t,z)
i€ly
is smooth on (t/R) \ Hy.
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The proof of our Theorem if completed. (|

2.4. Iterated residues and the series Q,(t,z). Recall that by Theorem
2.18, for generic values of z, Q. (¢, ) is smooth on (t/R)\ H,. Therefore by (2.46),
Q.(t, z) is smooth on (t/R) \ H.

Let z € R — [z] € [0, 1] be the periodic function of period 1, such that [z] =z
on [0, 1[.

In the sequel, if ¢ € t/R, we represent t by a given element in t, which we also
denote by t.

Also the map (f,...,f") € {0,1,...,d=1}" = f = Y f'e; € E defines a

1
one to one map into R/dR. In the sequel, we will always identify f € R/dR to the
corresponding element in {0,1,...,d - 1}".

THEOREM 2.19. For any u € C/F, for generic values of x € (C\ 2inZ)*, for
t € (t/R) \ H, if we still denote by t a representative in t,

Q) =(-y ¥ -

I=(iy,... ir)Clu (ail L ’a"")

I generic, !E

(2.62) exp {dz (Pj—laz,,x ) [d @+ 1), e’)]}

p] l’azJ ’eJ
ﬁ 1
- d(p;_, @, z7) .
H ((an J~1 exp (W) -1

i€l \1

Proor. Take 1 < j < r, I = (i1,...,%;-1) C I, such that (a;,) #0,...,
T

(@iy, - a5;_,) # 0. Fork = (kjya,... , kr) € 2779, we identify k with Y kie' €
i=j-+1

t ~ t*. In the sequel, pJ’-_1 denotes the projection t — {e;,... ,e,} with kernel

{aiy,...,ai;_,}. In view of (2.28), for i € I, i ¢ I, we will use the abusive

notation

(2.63) (p;_lai,xf) =

j—1
__JX: (... 3 Qg g Oy Qi gy 1aij—x)
(Q,‘“... ,(11"._1)

Ty -

Equation (2.63) will in fact be a definition for the left-hand side. For s € R, if
1<j<r,set

2.64 = _ )
(264 o ,,Z.:; H ({p]_1 i, 2im(ke’ + k) — z'))

HI AV

ekaa

We claim that for at least one i € I, \ I,
(2.65) (Pl ju,€7) #£0.
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y
- A
N 2(n + 1/2)i%t r
n,+
5 >x
An
>
2(n+1/2)in ol
FiGURE 2.1
In fact by (2.29),
(2.66) (o], efy = Qe 1 @i )
J-17 (ail,...,aij_i)

Since the elements of R, 4 span t* ~ t, for at least one i € I, \ I, (2.66) does not
vanish.
Clearly

exp(2inL(s + f))

, ik = )
okeZ, H (2z7r(p§_1a,-,e’)2+(pJI-_1a,',2z7rk—z1))
i€I\I

™

(2.67) Qr=

Then for generic z € C¢, we can write (2.67) in the form

2689 Q=3 3 ¥

0<f<d keZ
e“['—}L]
Resa—2ink oo e)a .
( H (ﬁ'_l_d’_’_ + (pJI-_la,-,2'i7r’IE - m’))) (e -1)
i€l \I
Assume that s ¢ Z. Then for f € N,0< f <d,
(2.69) o<[s;f]<1.

Also by (2.29) , if (a,,... ,i;_,,q;) # 0, then

d

2.70 S —-y
( ) (pg—laivej)
d(p‘;—-lai’%)

(P]I'_lai; ej)

For n € N, consider the contour I, = ', 4 UL, — given in Figure 2.1, and its

€Z.
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interior A,. For f € N, 0< f < d, put

el
Q1) grle)= it .
( I (‘LITJ'——'_ + (pl_ya, 2imk — z’))) (e® — 1)
i€L\I
By (2.69), as a € A, |a| = +00,
(2.72) grla) = 0.

Also the integral / gs(a)da converges. We can then use the residue theorem to
Fn

evaluate / gf(a)da. Finally by (2.65), (2.71), as n = +o00, / gs(a)da — 0.
r

n

Then we ﬁn:i that for generic z € C¢,

(2.73) Z Resags(a) =0.
a€eC

Now for generic z € C¢, the poles of g¢(a) other than {2imk}scz are simple
(this follows in particular from (2.63)), and given by

(010, 2ink — ')
@5-1‘1:',- ) ej)

In the sequel, we use the notation

(2.75) (I,%;) = (41,.-. ,45).

(2.74) a=—d

’ij GI“\I’ (aiu"- !aij)#o.

Observe that if (i1,... ,%;) is generic, ify e t* for 1 < k < j—1,

(2.76) (- - 1 Qg 1y Yy Mgy qye s ;ai_,-) _

(aiu'-- ’ai,‘)

1
m((aiu-~- Qg1 r Yy Qliggyy e e v 5 Qi_y)

(ail yere 9y Qip s Qs Qi gy et 7a|'5_1>
- (a"“”',aij) (au’-'-,au—ny))-
In fact if y lies the vector space spanned by a,,..., a4, _;, @i\ ;... iy, Qi
€j+1,- .- ,er both sides of (2.76) vanish, and if y = a;, both sides are equal to 1.
So by (2.6), (2.63), (2.66), (2.68), (2.70), (2.73) and (2.76) with y = a4, ¢ & (I,%;),
we get

277 Qr=- 3

i€ N\T

(@ig.mhei; )#0,0< s <d
L ELLL G+ )+ dpj_,0;,3") [s+ f
(pl'—]ai,'iej) _g—lai,- :ej) d

1

. - oo
[, o) (o (0)
Pj_1ij.e7)

i€l \(1,i5)

(aill"' 1al'j—1)
(a,-,,... ,C!,'j)

exp <——2i7r
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Now by (2.7), for §' > j + 1,
I g
(pj—-lai; l eJ )

(1,35) 'y —
(278) iene) == i@, ed)
Using (2.77), (2.78), we obtain
(279)  Qr=- 3 LIEAELURY)

ijE€Iu\I (aiu--- ,a,-j)

{agy s @ )40,0< S <d

o (2”( s + e B) + (”f ) [3”])

_10ij,€e7) d

1

137

. ~ I .
[T (6 2ink-a) | (exp (Sizus))
i€l \(1.i;) J—ilj,

Clearly

_ (2.80) Qult, ) = 3 exp(2im E._ it e)
k= (ke ko) €27 H (2in {0y, Z kiei) - ;)

i€l, i=1

Also with the notation in (2.63),

(2.81) (phai,z’) = z;.
So using (2.79) with I = @, s = (t,e!), we find that for (t,e!) ¢ Z,

Wen=- ¥ o

Gl = ke
0<fixd
. le, ol
(282) exp (2i7r<p§ll)(t+f1€1) k) +d( ) [ t+f el) )])
11

1

_1)'

( H ((pgi‘)a,-,%vrk - a:’))) (exp(%) - 1)

ielu\i}

Clearly, if t € (¢t/R) \ H, then (t,e') ¢ Z, and so (2.82) holds. More generally,

if t € (¢/R)\ H, f € R, by Proposition 2.14, (pf_l(t+f),e,-) g Z.

Therefore

using (2.79), (2.82), we can iterate the procedure. Finally observe that by (2.63),

if I =(iy,...,ir) is generic, for i ¢ I,

r
08  (plansl) = 3 QG0 0),
(ain"' 7aiv-)

= z; — (i, 1‘!) .

Using (2.83), we get (2.62).
The proof of our Theorem is completed.

ik
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REMARK 2.20. If we had assumed instead that e;,... ,e, is a simple basis of
R..+, we would have obtained a better equality in (2.62) , with t € (t/R) \ H,.
However, it is essential here that we have use the same simple basis e;,... ,e, of
R, for all the u € C/F simultaneously. Finally observe that Theorem 2.19 can
possibly be reformulated using the formalism of Szenes [54].

REMARK 2.21. Take n € N*. Then we have the exact sequence
(2.84) 0 - R/dR ?E/dﬂﬁ—p‘*ﬁ/nﬁ —+0.

In (2.84), the map = is just multiplication by n, and p is the obvious projection.
Now in (2.62), we may replace d by nd. We get

(2.85) Qu(t,z) = nb"(-1)" )

I=(iy,... yip)CJIy,I generic
fe’it‘/dﬁ heR/nE

1 a;,,nz!
exp d Z ’ ~1%i;, 12 )
(oz11 yeee 2 ) = 10‘1, ,ed)

h
[Ewg—l ((t - ¥ f) )] } H.’el,,\l((anlnﬂi') - nz;)
1

d(p!_,ai,,nzl) )
HJ_ (EXP( (p?_lla_.j 5] > - 1)

Comparing (2.62) and (2.85) gives the identity (2.56), with v = 0.

By definition, Q,(t,z) is well-defined on t/R. However it is not entirely clear
that the right-hand side of (2.62) is indeed well-defined on t/R. We will now check
this fact directly.

THEOREM 2.22. As a function of t € t, the right-hand side of (2.62) descends
to a function on t/R.

PROOF. By Proposition 2.2, (a;,,... ,a;, )piex is an integral linear combina-
tion of the (ep),>k+1. Therefore for k < j — 1, dp]’-_lek is an integral linear com-
bination of the (p]_;e,)p>k+1. So for k < j — 1, d(p]_,ex,e’) is an integral linear
combination of the (p]_jex,e)(k +1 < k' < j).

To prove that the right-hand side of (2.62) is well-defined on (t/R)\ H, we only
need to show that if we add to ¢ an element of dR, the total expression does not

change.
Take f € R/dR. Then f is uniquely represented by an element we also note f,

(2.86) f=) frex ,0< fi<d.
1
Clearly

(2.87) @I+ £)e?) = (PI_1(t+ ) frex), €l).
1
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Put

(2.88) Aj= [3 ;_I(Hf),ef)} )

Since p!_,e; = e;, (pI_,e;,e7) = 1. Therefore if we add to f7 an integral multiple
of d, A; is unchanged.

By the above, if we add to f" an integral multiple of d, the right-hand side of
(2.62) is unchanged. If we add to ™! an integral multiple of d, then only the term
A, is possibly affected. However as we saw before, d(p{_ler_l,e’) is an integral

multiple of (p!_,e,,e") =1, i.e.
(2.89) d(p!_jer—1,e") = q(p!_,e,,e") ,q€Z.

Therefore adding to f7~! an integral multiple of d is equivalent to adding to f7 an
integer. This show the right-hand side of (2.62) is invariant under this change.

A trivial downward recursion procedure shows that @,(t,z) is indeed well-
defined on t/R.

The proof of our Theorem is completed. a

2.5. The Fourier transform on quotient of lattices. Let A, A’ be lattices
in t, with A C A’. Then there is a projection t/A — t/A’. Let f € D'(t/A). For
p € A* /A" put

(2.90) fut)= 3 3 e TR f(t 4 k).
if keA' /A
Then f, € D'(t/A). Moreover if k € A'/A,
(2.91) Fult + k) = exp(2im(, k) fu(t) .
Also
(2.92) =Y L.
nED* A
By (2.90)
(2.93) fE+k)y= 3 exp(im(u, k) fu(t).
BEA*JA'

Equation (2.93) is just an aspect of Fourier transform. Note here that if A C t/A
is such that f is C* on (t/A)\ A, then f, is C* on (t/A)\ U (A+k). Then
keA'/A
formula (2.93) only expresses f as a function which is smooth on (t/A)\ U (A+
k€A’ /A
k), i.e. there is a loss of regularity in (2.93).

2.6. Fourier series on T. In the constructions of Section 2.3 , we may as
will replace R by CR, R by CR, R by CR'. For u € C/R’, we still define I,
R as in (2.32), (2.34). However in (2.36), a, : R» - t* ~ t is replaced by
by : R+ = t ~ t* given by

(2.94) bu(t) =Y thay .

i€l
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Clearly
(2.95) b,(2™)=CR, c CR.

Therefore there is a a surjection b, : (R/Z)’» = T = t/CR. Then we have an
exact sequence

(2.96) 0 Ly = (R/Z) ——T >0 .

DEFINITION 2.23. For u € C’/ﬁ', let S, C T = t/CR be given by
(297) S,={tet/CR, t= Z t’ha;, and {ha,;,j € J} do not span t}.

jegcl,

Put
(2.98) S=5.
Then
(2.99)

S={teT=t/CR,t= Z t'ha;, and {ha,;,j € J} do not span t}.
Jj€ETC{1,...,£}

As in (2.46) , for any u € C/R’,
(2.100) S.CS.

By (1.12) , it is clear that if A€ CR', a € Ry, B € R,
(2.101) (\a)€Z,

m(\,B)€EZ.

In the sequel, when G is simply laced, we will make m = 1.
DEFINITION 2.24. Foru € C/R’, z € (C\ (2irZ)!, t € T = t/CR, put

(2.102) Ru(t,z) = exp(2im(,t))

AeTR H;’ej., (2im{ai, A) — ;)

Clearly, by (1.8), (1.10),
exp(2im(A,t))

. s 2 .
AeCR" I-Iielu (2im(ha,, A) — M—;—"—z;)

(2.103) Ru(t,z) = miRe+nRil

2
Of course in (2.103) , 1L = 1 or m. From (2.103) , it should now be clear

that Theorem 2.18 can be applied to Ry(t,z). In particular on compact subsets of
T\ Sy x (C\ #ZZ)¢, R,(t,z) is a smooth function of (¢, z).

If G is simply laced, the objects we just constructed are the ones we already
obtained in Section 2.3.

Now we use the notation in (2.35). Put

(2.104) a=ag.
Then if s € RY,

¢
(2.105) as = Z sta; .

i=1
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Let @:t~t* - R’ be the transpose of a. Then
(2.106) at = ((a1,t), ... , (@, t),

and @ maps K into Z*. s

Now we will use (2.90)-(2.93), with A = CR, A’ = R. In the sequel, we view
Ru(t,z) as an element of D'(t/CR). If p € CR /R, we define (R,),(t,z) as in
(2.90).

PROPOSITION 2.25. If u€ CR /R, if Ay € CR represents u, then

(2.107) (Ru)u(t, z) = exp(2im(A, 1)) Qu(t, T — 2imGA,) .

PRrOOF. If A € CR’, then

(2.108) exp(m, t)). = exp(2im(A,t)) if X € CR mapstopu€CR /R,
= 0 otherwise .

Then
(2.100) (Bu)a(t7) = Z exp(2im (A + Ay, 1)) ‘
. R H (2im(as, A) — (z; — 2im{aq, Au))
i€l
From (2.109) , we get (2.107). The proof of our Proposition is completed. a

REMARK 2.26. By Proposition 2.25 , we get the otherwise obvious fact that
the right-hand side of (2.107) only depends on g and not on A,.
For any u € CR' /R", we choose Ay € CR representing p.

THEOREM 2.27. The following identity holds

(2.110) R,(t,x) = E exp(2im{A,, 1))Qu(t, T — 2imaN,) .
weCR' /R”
PRrROOF. This follows from (2.92) and (2.107). 0

2.7. Iterated residues and the series R,(¢,z). Let 7: t/CR — t/R be the
obvious projection. For u € C/F, put

(2111) Su =171 (Hau),
S =r"Y(H).

Clearly 7 maps S, into Hy, S into H. Therefore

(2.112) Su C Su,
ScS.

If G is simply laced

(2.113) Sy = Su,
§=85.

Recall that by (2.20), dR C CR.
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THEOREM 2.28. For anyu € C/R’,t € T\ S, then

r 1
(—1) Z (ain"' :a‘ir)

(2.114)  Ry(t,z) = .%
I=(is,... ir)Clu

I ge;neric_
feCR/dR
1 (pl_jou;,2") 1
dS " sl t+f), e
H ((ai,xj)—:l:;) { Z 710, €7) [ i hel)
i€ L, \I
J 1

P, 1%6,,T ))

j=1 exP(—r——’W
PROOF. We use Theorems 2.19 and 2.27 . Also, if h € t,

(2.115) (@h)" =h.
So we deduce from (2.115) that if ¢ € I, \ I,
(2.116) (o, (a’\n)l) - (o, Au) =0.

By (2.19), (2.28), if A€ CR’,
d(p;__l a,;,.,&))
(p_;_laij )ej)

From (2.13), (2.62), (2.110), (2.116), (2.117), we get (2.114). The proof of our
Theorem is completed. O

(2.117) €Z

2.8. Fourier series for the universal cover of a semisimple centralizer.
Take u € C/R". Recall that by

(2.118) m1(Z(u)) = CR/CR,.
Also
(2.119) CRCR,.
Let Z(u) be the universal cover of Z(u). Then by [15, Theorem V.7.1},
(2.120) Z(Z(v)) = R,/CR..

Therefore m1(Z(u)) = CR/CR,, is a subgroup of Z (Z(u)). Also CR,, is the lattice
of weights of Z(u).

— _ RV
DEFINITION 2.29. Forue C/R ,t € t/CR,, z € (C\ 31,;’—,"1) » put

(2.121) Rutr)= Y ——2 (2im\t)
AT T @in(x, a0) — 22)
i€l
Clearly
(2.122) m(Z(u))* =CR,/CR .
R,nCR’

Also R, /R’ maps into CR,, /CR’, with kernel _u—f‘_— In particular u € C/R

maps to an element of m;(Z(u))*.
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DEFINITION 2.30. Forue C/R’,q€ Z,t € T = t/CR, put

1 ~
(2.123) Rug(t,z) = —= 3 exp(2in(qu,h))Ru(t +h,3).
CR. he ZE

PROPOSITION 2.31. If u € C, the following identity holds

(2.124) Ry 4(t,z) = Ry(t, T + 2ingau) exp(—2im{qu,t)).
PROOF. Since u € CR,, our identity follows from (2.123). O

THEOREM 2.32. For any u € C/F, g€ Z,teT\S, then

(0 X ey e in(au, )

(2125) Ruqlt,2) = 'i
CR ]=(i1,...,ir)clu

I generic
feCR/dR
1 (Pg 144 » T )
. (P t+ )¢
H ((a“xl)_a:i) { J}; p] lazl,eJ) J— 1( )
1€l \I
. 1

d(P,—lo‘u »T ))

j=1 exp(———r————-—la_ =

PROOF. We use Theorem 2.28 and Proposition 2.31. Since for i € I, {(u,a;) €
Z, by (2.13), (2.29), (2.116), we get (2.125). The proof of our Theorem is completed.
O

2.9. Bernouilli polynomials and the Fourier series P,(t).

DEFINITION 2.33. Forne N,t € T = t/CR, put

(2.126) Pty=— Y 3’59%;)(]’\%)—)

m(A)#0

For M € N*, we will consider the partial sums

2%im(A, 1))
2.127 PM(t) = - exp(2im (. 8))
(2127 O== 2 o
€CR
w(X)#0
A<M
Clearly P,(t) is a well-defined distribution on T' = t/CR. Recall that
(2.128) K ={tet, fora in Ry, (a,t) >0}.
Then by [15, Note V.4.14] and (1.186),
£w exp(Zim(w(X + p), 1))
2.129 P,(t) = - for n odd,
(2:129) A Ve ek
AeCR'NK
weWw
- Z exp(2im(w(X + p), 1)) n even .
seomor O

weEW
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By (1.186), (2.126), for w € W,

(2.130) P, (wt) =€} P(t).

. . . ajet\ . . .
Since 7(t) is a polynomial, 7 i is a differential operator. Then we have the
identity of distributions on T = t/CR,
(2.131) T (%i—t) Po(t) = Po_1(t) for n>1.

DEFINITION 2.34. For t € [0,1], n > 0, put

5 e2i7rkt

(2.132) Pa(t) ==Y T

k£0

If G = SU(2), then T ~ S; ~ R/Z. One verifies easily that the p,(t)’s
are exactly the P,’s associated to G = SU(2). Then (2.131) is the equation of
distribution on S

(2.133) Pa(t) =pna(t) , n 2 1.
Also
(2.134) po(t) =1 - 60},
So by (2.133), (2.134), we get
d n
(2.135) (d—t) pa(t) =1- 6(0} .

By (2.135) , it is clear that the p,(t)’s are polynomials on S \ {0}. Also for n > 2,
the series in (2.132) is absolutely convergent on [0,1]. For n > 1, the series in
(2.132) converges uniformly together with its derivatives on compact sets of S;, not
containing 0.

By [45, Appendix B] , the p,’s are exactly the Bernouilli polynomials. In the
sequel, we will consider the p,’s as polynomials on R, whose restriction to ]0, 1 is
given by (2.132).

Recall that
(2.136) Td(@) = ; _ze-, .
Then
(2.137) Td(z) — Td(-z) =1.
Finally by [51, p147] , if the By, k > 1, are the Bernoulli numbers,
T z2k
(2.138) Td(z) =1+ + :‘::(—l)mBk Ik

PROPOSITION 2.35. Forn>0,t€ R,

(2-139) pn(t) = Resg—o [e‘a 1 } .

a™ et —~1



SYMPLECTIC GEOMETRY AND THE VERLINDE FORMULAS 145

Proor. For 0 <t <1, put

|
(2.140) fin(a) = pryrad

Clearly fi n(a) has simple poles at a = 2ink,k € Z*, and a pole of order n + 1 at
a =0. Then, for k € Z*
eZt‘wkt
(2ink)n
Now we use the Cauchy residue theorem inside a circle of centre 0 and radius

2nr(M +1/2),a8 M — +o0. For n > 2, or for n = 1, t €]0, 1], the integral of f; n(a)
on the circle tends to 0 as M — +o00. So we find that

(2.142) Z Resg=2ink ft,n(a) = 0.
k€z

From (2.142) , we get (2.139) for n > 2, 0orn =1, 0 < ¢t < 1. Then since p,(t) is a
polynomial, (2.139) holds for any t € R. For n = 0, {2.139) is trivial. The proof of
our Proposition is completed. O

(2-141) Reso=2ink ft,n(a) =

PROPOSITION 2.36. Forn>0,t e R,

(2.143) palt) = Td(-8/0t) -,

t
Prt1(t +1) = pnti(t) = g

PRrOOF. Clearly,

(2.144) g—te’" = ae®.
By (2.144) , we find that for |a| < 2,
(2.145) Td(-8/8t)e® = Td(~a)e®*.
Using (2.139), (2.145), we get
(2.146) Pn(t) = Resq=o [E;t:—le(—a)] = Td(—-8/8t)Resa=0 [a—f;:—l]

= Td(-a/at)% .
By (2.139)

ets n

(2.147 Poss(t +1) = pasat) = Res | ] = .
The proof of our Proposition is completed. a

Recall that R, ; denote the set of short positive roots.

THEOREM 2.37. Forn > 1, as M — +oo, the partial sums PM(t) converge
to Pn(t) uniformly on the compact subsets of T\'S. The following identity of
distributions holds on T = t/CR,

[4
(2.148) P (t) = (-1)H1mrRatlp, [H pn(t")] .

i=1
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In particular P,(t) € Loo(T). Also (2.148) is an identity of smooth functions on
T\ S. Finally P,(t) is a polynomial on T\ S.

PROOF. By proceeding as in the proof of Theorem 2.18 , we get (2.148). By the
same argument as in Theorem 2.18 , we find that P,(t) is smooth on T'\ S. Also the
uniform convergence results for the pM(t)’s and (2.148) imply the corresponding
uniform convergence for PM (t).

Now, we will show that P,(t) is a polynomial on T'\ S. In fact we will prove
that for 1 < ¢ < ¢, for p large enough,

(2.149) ht P,(t)=00onT\S.
Clearly b,.8/8t; = hqy,. Then using (2.135) , we obtain
(2.150) B2 b pa(t)) ... Pa(t))] = bu[pn(t?) ... pa(tH)]
= bu[dt,=0Pn(t?) ... pa(t))] .
Clearly
(2.151) By ba[pa(t?) ... pn(tY)] = 0.

Let Vi be the vector space in t spanned by hg,,. .. ,hqs,. If V; is not equal to t, the
support of b.[8t, =0Pn (t2) . .. pn(t%)] is included in S. From (2.150) , we then get

(2.152) R0, [pa(t) ... pn(tY)) =00n T\ S.

If V1 = t, we can express hg, in the form

£
(2.153) hay = Y alha; .
j=2
By (2.135),
(2.154) h2 [0, =000 (t) . .. Pn(th)] = bu[dt,=0Pa(t?) .. . pn(t%))]

- bt[£h=0.t2=0pn(ts) . 'pﬂ(tl)] .

Let V; be the vector space spanned by hgy,, ... , ha,. If V2 # t, then by the analogue
of (2.152),

(2.155) BB qu[bs,=0Pn(t?) .. .Pa(t!)) =0onT\ S.

Now using (2.155) , and iterating the above argument, it should be clear that
for p € N large enough,
(2.156) hE P,(t)=0 onT\S.

In (2.156), we may as well replace the index 1 by the index i, 1 < ¢ < £. Therefore
we have established (2.149).
The proof of our Theorem is completed. O
2.10. The Fourier series P, ,(t). Take u € C/R". Recall that Z(u) is the
universal cover of Z(u). Then VA (u) is connected and simply connected. Therefore
to Z (u), we can associate the objects we just constructed for G. Observe that
t/CR, is a maximal torus in Z(u), and t is its Lie algebra.

DEFINITION 2.38. Let m,(t) be the function on t

(2.157) ma(t) = J[ (2ima,t).

a€Ry, ¢+
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Then 7, (t) is the analogue of ().

DEFINITION 2.39. For u € C/R’, n € N, t € t/CR,, put

Z exp(2im (A, t))

(2.158) Pun(t) =~ OO

AeCR,
mu(A)F£0
Then ﬁu,n(t) is the analogue of P,(t) for Z (u). Take w € W. We identify w
with a representative in N(T)/T. Then if u € C/R’,
(2.159) Z(wu) = w Z(uww™?,
CRyy, = wCR,,
RZ(wu) = wRy,
’UJRu N R+ .

RZ(um),+
By (2.159), we get

(2.160) Twu(t) = (1) B+Me(=Ru i)y (3)=13)
PROPOSITION 2.40. Ifue C/R',ne N, w € W, then
(2.161) Pyun(t) = (-D)MB+MCRa)I B (t) .

Proor. Clearly by (2.159), (2.160),
e2i1r(A,wt)

(2.162) Pual® = = Y mmnp

AeTTL,
nu(w=1a)#0

e2im (A wt)

—(—1\*R+nw(-Ru,4)| -
( 1) Z [Twu(A)]™

A€ECR,,,
mwu(X)#0

= (-1)"|R+ﬂW(—Ru.+)|]3wu a(wt),

which coincides with (2.161). O

Let S, C t/CR, be the analogue of S C t/CR. Of course S, projects into S,.

Then by Theorem 2.37 , P, ,(t) is polynomial on (t/CR,) \ Sy
Let i1,... iz, be the elements of I, = {i € {1,...,£},0; € R, ;} arranged in
increasing order, ie. 13 <ip...<1g,.

If f(z) = f(zi,,... , i, ) is a meromorphic function of z € R'+, we denote by
Res! ; f the expression
(2.163) Resi‘;of =Resz;, —0... Resz; =of(Tiy, -, Tip,) -

It will be of fundamental importance that the order in (2.163) is fixed once and for
all.

THEOREM 2.41. Forue C/R,n > 1,

(2.164) Pun(t) = Resz_o —— —Ru(t,z).

H z:)"

i€l
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PRoOOF. Clearly
1 1

1 .
(2.165) Res"=°a:_;‘_2i1r(a.-, Nz - @ina if {a;, A) # 0,
=0 if(a,—,)\)=0.
Using (2.165) , we get (2.164). The proof of our Theorem is completed. O

REMARK 2.42. The identity (2.164) can be viewed as an identity of distribu-
tions on t/CR,, of smooth functions on (¢/CR,) \ Sy, of elements of L*°(t/CR,,).
Also for the moment, the ordering in (2.164) is still irrelevant.

2.11. The function P, 4(t). If t € t, we still denote by t the corresponding
element in T = t/CR.

DEFINITION 2.43. Forue C/R*, g€ Z,ne N, t € t/CR, put

Z exp(2im(qu, h)) P, n(t + h).

(2.166) Pung(t) =

P

Observe that t_h_e_function exp(2im(qu, t)) Py n,q(t) descends to a well defined
function on T = t/CR. Equivalently, we may consider P, 4(t) as a section of the
flat line bundle L, on T, associated to u € t*/CR .

PROPOSITION 2.44. Ifu € C/ﬁ‘, g€Z,neN,weW, then

(2.167) Pung(t) = (-1)"1B+mw=Ruidlp o a(wt).
Proor. Clearly w : ol — C'fR is one to one. Then (2.167) follows from
Proposition 2.40. * e a

THEOREM 2.45. The section Py, 5 4(t) is a polynomial on T\ S,,.

PRrROOF. Since ﬁu_n(t) is polynomial on (t/CR,) \ S, it is clear from (2.166)
that P, ,, 4 is polynomial on T'\ S,. a

THEOREM 2.46. Foru € C/R°,n €N, q € Z, t € t/CR, the following identity
holds
1

(2.168) Py q(t) = —Resle j—————= R, ,(t,2).
icl,
PROOF. This follows from (2.123), (2.164), (2.166) . 0

DEFINITION 2.47. Foru € C/}_T, let I, be the set of generic I = (41,... ,ir) C
I, such that if o/ € &, is defined by i,1(1) < ipr(z) < ... < Ggr(r), if j € I\ I,
either j < o7(1), or if p; is defined by the condition

(2.169) tor(1) <.oo <igi(p)) <J <igr(pi41) < -0
then
(2170) a,-,,m /\...Aa.-’,('j) /\a,— #0
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Condition (2.170) is equivalent to

(2.171) a; ¢ {ai,f(x)’ the aiw’(p,‘)} ’
If I € T, we define Res!_; by the formula
(2.172) Resi:o = Res’l’,(.-)=o T ReSzi’“)=0 )

TIE:OREM 2.48. Foru € C/F', n>1, q€N, ift €1t represents an element
of T\ S, then

(2173) Punqlt) = C%](—l)'“ > exp(2in((qu, /1))

I=(i1.... ir)ETu (Qiy, -y ir)
1eCH/dR
n
1 (p_‘) lal a
Res; g .| &*P dz — -
H (aix ) j=1 (.P lal‘,,e )
a€Ry, +

[% g—l(t'f'f)aej)]} H d{p! _ll- ,z1)

j=1 exP(_ij."FT) -1
PROOF. By Theorems 2.32 and 2.46, for t € T'\ S, we get
Puna(t) = |&| (-0 30 exp(2im((qu, f)))

I=(iy,... ip)Clu CORRRPRL)
Igeneric

1€CR/4R

(P,-xat ')

2.174)  Reslty—= 1 d IR
CAM) R Tz 1T Ganeh -9 exp{ Tiet G )

iel, HIAY
I'I 1
11 3
[E j—l(t+f)1e )]} d{pT_ a;,,zT)
. j=1 exp (_i_(pj_:ai:’e,_)_) -1.
Now z! depends only on z;,,... ,z;,. Therefore in (2.174), the dependence on the
- 1
(%i)ier,\1 is only via the term .
II =f(ei,z’)y - =)

i€l \I
Take ¢ > 0. Let v € C, |v]| € ¢, w € C, |w| > e. Then by the theorem of
residues, for n > 1,

(2.175) L / ds; !

2mi Jesec £ (v +w ~ ;) (v+w)" !
=5

1 / de

— —_—l=.

2mi ) =s€¢ 2% (v — ;)
lzjl=1

Take j € I, \I. If

(2.176) oj = Za"a,-',(k) ,
k=1
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then
T
(2.177) (oj,27) = Za"zia,(k) .
k=1

Put

Pj r

- k.. — k..

(2.178) v = Za Tty » W= }: a Ti -

k=1 =p;j+1
Observe that w is identically 0 if and only if a* = 0 for k > p; + 1, i.e. if a; €
{ai’,(‘), ‘e ,a,-,,(pj)}.

To evaluate (2.174), we will use (2.175). Namely take a sequence ¢;,... ,€, in
R, with0<e, <...<e€,. Thenif f(z;,...,;, ) is a meromorphic function,
by definition,

dz; dz;
L f= I Yo W/
(2179) R'eszzof - /I.t =ei; f(xln 13:1.1,‘) 2% e %
1<1(lu
If the sequencee,, ... , €, is enough decreasing, when taking the z;; as in (2.179),
if aj ¢ {a,-’,m, ' g, }, in (2.178), then |w| > ¢;.

Using (2.175), (2. 179), we find easily that for j € I, \ I,

1 .

(2.180) Resz’:ozg‘((a,«,z’) — :L‘j) =0 if aj € {a.—a,m,. .. ,C!,",(pj)} ,
1 .

=W ifa; & {ai, - ,a,-,,(m}.

A related argument is as follows. Define v, w by (2.178). If w = 0, then since
the z; , )’ k < p; have been made nearly equal to 0 before z;,

1 ook
(2.181) vt w—z, LR
] k=0 Tj
From (2.181) , we get
(2.182) Res ! ! =0
' 73 =0 tvtw-z;|
If w #0, then
+oo
(2.183) P —— z; g Ic+1
By (2.183) , we get
1 1 s C;:—l(_,v)k—n+1 1
(2.184) Resz; =0 ;J;m = = wFH1 T (v+w)r’

which gives another proof of (2.180). Finally observe that if j € I,
(2185) (a,-,z’) =Zj-

From (2.174), (2.180), (2.185), we get (2.173). The proof of our Theorem is com-
pleted. O
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By Theorem 2.22, we already know that, as a section of a line bundle, P, 4 (t)

is polynomial on T\ §. By Theorem 2.22, the right-hand side of (2.173) descends to
a section of the same line bunlde . We will give a direct proof that the right-hand
side of (2.173) is polynomial on T\ S.

THEOREM 2.49. The right-hand side of (2.173) is a polynomial on T\ S.
PRrOOF. In the right-hand side of (2.173), up to a locally constant factor on
- 1 .

T\ S, we may and will take off the brackets in [E(pf_l (t+ f),e’)]. By (2.13),

° ! lall’ ) Jy —
(2.186) ;WJ—)—( i~ Lt + f),e) =(t+ f,z).
Then
(2.187) {t+ frah) =) Fi)z,),
1

and the F7(t) are affine functions of ¢ € t. Therefore

. (2.188) exp((t + f,2 H (Z (Ff(t)z,zu)) ) '

]_ =0

Moreover
—d{p}_,@i;,z")
1 Td( (p}ila.’,-,e")

(2.189) prTE— = — e

exp ( (p,f.‘__:a.-j,ei) ) -1 (p_,l_laij ,ed)
Also by (2.28), (2.29),

AR 1
(2.190) (p’, 12,7 )
(pj—laij’e]) (aiU'-- ’ai,')
((Oti1 PRI * 7 P .'1:1’ Z(a", R s £ TR ,a,-j 1 Qg gy ,a,-j_,):z,-k) .
Finally the (o, z') are linear combinations of z;,, ... ,=;,.
Freeze now Tigrgyre 1 Tigr gy and consider one of the terms in (2.173) as a

function of z; , .. Then it is clear that this term is a meromorphic function of
Ti with a pole of finite order at Ti gy =0- When taking the residue at 0 in the
variable z;_, P the above, it is clear this will introduce a finite power F(t)¥,
i.e. a polynomial function of ¢.

It is now clear that the procedure can be iterated. The proof of our Theorem
is completed. O

2.12. The action of a differential operator on P, ,4(t). Let s € t*
F(s) € C[s] be a power series, which converges on a neighborhood of 0. Then
F(0/8t) is a formal power series of differential operators. Since P, (t) is a poly-
nomial on T'\ Sy, F(8/8t)P,,.(t) is a well-defined polynomial on T'\ S,,.

Recall that we have identified t and t*. Then if I = (44,...,i,) is generic, if
z € C, then zf € t ~ ¢*.
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THEOREM 2.50. For u € C/R’,ne N* g€ N, ift € t represents an element
of T\ S, then

1
r+1
(2.191) F(6/6t)Pu,,q(t)—' l( 1) Z CTRTR)
I=(i1,... ,ir)EL,
feCR/dR

exp (2ir((qu, £)) Rest—o (F(w’) (—ﬁ—(;l‘T))—

JjelL

exp{d——l—ﬁ”—’ﬁ[ (ol 1(t+f),e’)]}

(P:_laa, ) eJ)
1
. (P:l—lai;’z') - .
I (o () )

PROOF. Fory # 0, [y] -y is locally constant. Using (2.186), if s € t is identified
with the corresponding vector field, then

(2.192) s{exp(dz (P} 115:,»5;)[ P (t+f)e )])}

i=1
= (s, z’)exp(dz%[ (pJ l(t+f),e)]>
j= —175

From (2.173), (2.192), we get (2.191).
The proof of our Theorem is completed. ]
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3. Symplectic manifolds and moment maps

In this Section, we recall known results on symplectic manifolds and moment
maps. In particular we prove a form of the formula of Witten [64] Jeffrey-Kirwan
[28)], which expresses the integral of certain characteristic classes on symplectic
reductions in terms of the action of differential operators on the symplectic volume.
The results of this Section will be used in Section 5, where we will give a formula
for the integral of certain characteristic classes on the strata of the moduli space.

This Section is organized as follows. In Section 3.1, we recall elementary facts
on orbifolds. In Section 3.2-3.4, we give elementary properties of moment maps. In
Section 3.5, we give a direct simple proof that the image of the symplectic volume
measure by the moment map can be evaluated in terms of the symplectic volume of
the symplectic reductions. In Section 3.6, when 0 is a regular value of the moment
map u, we recall Jeffrey-Kirwan’s expression of the volume of the neighbouring
fibres in terms of integrals of characteristic classes on the symplectic reduction of
1~1(0). In-Section 3.7, we prove the formula of Witten-Jeffrey-Kirwan. Finally in
Section 3.8, we apply the above to the symplectic coadjoint orbits of G.

3.1. Orbifolds. Let X be a smooth compact manifold. Let G be a compact
connected Lie group, and let g be its Lie algebra. We assume that G acts on X on
the right. If Y € g, let YX € Vect(X) be the corresponding vector field.

We assume that G acts locally freely on X, i.e. for any non zero Y € g, YX is
a non vanishing vector field on X.

Let gX be the subvector bundle of TX which is the image of g by ¥ — VX,
Then we have an exact sequence of G vector bundles

(3.1) 0+ gX 2TX 5> TX/gX = 0.

The above data define an orbifold X/G, and the G-bundle TX/GX is also called
the tangent bundle TX/G to X/G. If the G-bundle T X/gX is orientable (or equiv-
alently if TX is orientable), we will say that the orbifold X/G is orientable.
If G acts freely on X, then X/G is just the standard quotient.
If y € X, let Z(y) = {g € G;yg = y} be the stabilizer of y. Then Z(y) is a
finite subgroup of G. By [24, Proposition 27.4] , there are finitely many conjugacy
classes of finite subgroups of G, which occur as stabilizers.
Inclusion induces a partial ordering on the set of conjugacy classes of finite
subgroup of G. On each connected component of X, there is a unique minimal
conjugacy class of stabilizers S, called the generic conjugacy class of stabilizers.
This minimal conjugacy class then acts as the identity on the considered connected
component. The order |S| of a generic stabilizer is locally constant on X.
Let X,eg be the set of y € X such that Z(y) lies in the minimal conjugacy class.
Then X,.g is open in X, and Xreg /G is a smooth manifold included in the orbifold
X/G.
DEFINITION 3.1. A 1-form 6 : TX — g is said to be a connection form on
m: X = X/Gif
e ForY €g,

(3.2) oY) =v.
e Forge G,Y €y,

(3.3) g'0 =0.g.
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One verifies trivially that G-connections exist. Then the curvature © of @ is
defined by

(3.4) do = —%[a, 6]+ 0.
Alsoif Y € 9,9 € G,

(3.5) iyx©® =0,9"0 = O.g.
Put

(3.6) THX = {U e TX,8(U) = 0}.
Then TH X is a G-invariant subbundle of T'X such that
(3.7 TX =THX @ g*.

A G-invariant form a on X is said to be basic if for Y € g, iyxa = 0. From
now on, we suppose that X/G is an oriented orbifold. Then Xeg/G is an oriented
manifold. By definition

(3.8) /X/Ga= ]xn‘/ca.

Let Ey,... , E, be a basis of g, let E',... , E" be the corresponding dual basis
of g*. We write the connection @ in the form

(3.9) 9 = TrYE; .

Then E* A ... A E™ defines a volume form on G. Let Vol(G) be the corresponding
volume of G.

We equip gX with the orientation induced by the orientation of g. Then T'X ~
TX/gX @ g¥ is naturally oriented. If a is a G-invariant basic form on X,

S| 1
3.10 / a=——— [ aANO A...AO".
( ) X/G Vol(G) Jx

If a is a G-invariant basic form on X, da is also G-invariant and basic. Then
since (X/G) \ (Xieg/G) is a union of submanifolds of codimension > 2,

(3.11) da=0.
X/G
In fact note that
(3.12) / daAG' A.. A" = (—1)de8(a+]) / aAd@ A...A0").
X X
By (3.4),
(3.13)

/aAd(ﬁ‘A.../\G"):/aAZ(—l)"‘lalA...AG“‘/\G"/\.../\O":O,
X X i=1

which provides another proof of (3.11).

Let £ — X be a complex G-vector bundle on E. Let VE be a G-invariant
horizontal connection on X. Namely suppose first that G acts freely on X. Then
V¥E is just a connection on the vector bundle X xg E over X/G. More generally, if
G only acts locally freely on X, the above construction still makes sense. Let FF =
VE:2 be the curvature of VE. Then FP is a G-invariant basic 2 form on X with
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E

values in g. Let P be an ad-invariant function on g. Then P(E, VE) = P( i ) is

a G-invariant basic closed form on X. If X/G is an oriented orbifold, the integral
Jx)e P(F,V¥) is well-defined and does not depend on V*.

3.2. Symplectic manifolds and moment maps. Let (X, o) be a symplectic
manifold, so that ¢ is a nondegenerate closed 2-form. Let H : X — R be a smooth
function. The corresponding hamiltonian vector field Yy is defined by the equation

(3.14) dH = iy,o,
which we rewrite in the form
(3.15) (d—iy,)(H+0)=0.
From (3.15), we get
(3.16) Ly,o0=0.
If H, H' are two smooth functions, put
(3.17) {H,H'} = -Yup.H=Yy.H = —o(Yy,Yn).
Then
" (3.18) Yiuuy = [Yu, Y]

Let G be a compact connected Lie group acting on the right on X, and pre-
serving o. Let g be the Lie algebra of G. Let n: G = Aut(g*) be the coadjoint
representation. If Y € g,p € g*, let {Y,p} € g* be the infinitesimal (left) action of
Y onp.

We say that u: X — g* is a moment map if

e Forz e X,g €@,
(3.19) u(zg) = p(z).g.

e If Y € g, if YX is the corresponding vector field on X, then (u,Y) is a
Hamiltonian for YX.

In particular, by (3.17),(3.19),

(3.20) [V, Y']) = —o(Y*,Y'X).
Also by (3.19),
(3.21) Y¥u=—{Y,u}.

Assume now that G acts locally freely on X. Of course, this never occurs if X
is compact. Let 8 be a G-connection form on 7w : X - X/G.

PROPOSITION 3.2. There is a unique closed 2-form n on X /G such that

(3.22) o=7"n—-d(u,b).
PRrooOF. By (3.3) , ( 3.19) , the 1-form (g, 6) is G-invariant, so that if Y € g,
(3.23) Lyx{u,0) =0.

Also by (3.16),
(3.24) Lyxo =0.
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Then by (3.14), (3.23),

(3.25) iyx(o +d{u,8)) =iyxo + Lyx(p,0) — diyx{p,0) =0
By (3.25), we find that the G-invariant 2-form o + d{u, 8) is basic. Therefore it is
of the form n*n. The proof of our Proposition is completed. 0

Let off be the restriction of o to THX. Since ¥ is G-invariant, it descends
to a 2-form on X/G. The same is true for the 2-form (u, ©).

THEOREM 3.3. The following identity of 2-forms holds on X/G,

(3.26) ol =7x*p— (u,0).
PrOOF. By (3.4),

(3.27) d{u,0) = (du,0) + (u ——[9 6) + 0).

From (3.27), we get

(3.28) [d(p, )% = (4, ©).

From (3.22) , (3.28), we get (3.26). O
REMARK 3.4. If X € g, by (3.15),

(3.29) (d—iyx)(oc+ (1Y) =0

Classically [61], (3.29) shows that o + (1, ©) descends to a closed 2-form on X/G.
Of course this also follows from Proposition 3.2 and Theorem 3.3.

REMARK 3.5. Let {,) be a G- invariant scalar product on g. Then g and g* can
be identified. Let H C G be a Lie subgroup of G, and let h C g be the corresponding
Lie algebra. Let h* be the orthogonal space to h in g. Then g = h® h+ is a H-
invariant splitting. Let PY : g — b be the corresponding projection. Put
(3.30) g" = PY9, v = ph’g.

Then 6Y is a connection on X — X/H, whose curvature ©" is given by

(3.31) b = Phe — %Ph[eh*,ah‘].
Take p € g*, and suppose that Z(u) = H. Then
1
(3.32) ( 2[9 6) = (u, 5[9"* ")) = (u, P17, 67,
Therefore by (3.31), (3.32),
1
(3.33) (1, =516, 6] + ©) = (u, ©").
So by (3.4), (3.22),(3.27), (3.33), if Z(u) =
(3.34) o =m"n— (du,0) - (4,0").

Equation (3.34) is of special interest when € t* ~t,and H = T.
Put
(3.35) E=Xxqgg"

Then E is an orbifold vector bundle over X/G. Moreover (3.19) says that u descends
to a section of E over X/G.
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3.3. Symplectic reduction. We make the same assumptions as in Section
3.2. We do no longer assume that G acts locally freely on X. If p € g*, put

(3.36) X, = u™\(p).

Let Z(p) = {g € G,g.p = p} be the stabilizer of p in G, and let 3(p) = {X €
g, {X,p} = 0} be its Lie algebra. By [15, Theorem IV.2.3], Z(p) is a connected Lie
subgroup of G. Clearly Z(p) acts on X,.

PROPOSITION 3.6. The element p € g* is a regular value of p if and only if for
T € Xp,Y € g YX(3) € T, X is injective, or equivalently if and only if Z(p) acts
locally freely on X,.

PROOF. By (3.29) if z € X, Y € g lies in coker(du(z)) if and only if Y X (z) =
0. Also by (3.21), if u(z) = p,Y*(z) = 0, then {Y,p} =0, i.e. Y € 3(p). The proof
of our Proposition is completed. 0

Assume now that p is a regular value of p, and that X, # 0. Then X, is a
smooth submanifold of X, on which Z(p) acts locally freely, so that X,/Z(p) is a
Z(p)-orbifold.

Let i, be the embedding X, — X. Then by (3.21), (3.29), for Y € 3(p),

(3.37) iyxito = 0.

By (3.37) , we find that the Z(p) -invariant closed 2-form ;o descends to a closed
2-form o, on X,/Z(p). Then (X,/Z(p),0p) is a symplectic orbifold.

Ifp € g* g € Gmaps Xp into Xpy. Also p € g* is regular if and only
if p.g is regular, and there is an obvious symplectomorphism (X,/Z(p),0,) —
(Xp.9/Z(p-9),0p.9)-

Let O C g* be a coadjoint orbit. If p € O,Y,Z € g, put

(3.38) oo(Y,2) = (p,[¥, Z]).

By (1.193), 00 is a G-invariant symplectic form on O. Moreover po : p € O
—p € g* is a moment map for the right action of G on O.
Put

(339) Xo = ;1,_1(0).

Then G acts on the right on Xo C X.

Let p1, p2 be the projections X xO = X, X xO — O. Then (X xO, pio+p300)
is a symplectic manifold on which G acts symplectically on the right, with moment
map piu + p3uo-Then

(3.40) (X x O)o = {(z,p) € X x O, u(z) — p = 0}.
So,if p€ O,
(3.41) (X X O,,)o >~ XO,,:

(X X Op)o/G ~ Xy/Z(p).

Moreover p € g* is a regular value of p if and only if 0 is a regular value of
p}p + pipo. Then one finds easily that (3.41) identifies the symplectic forms on
the corresponding orbifolds.
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3.4. Symplectic reduction with respect to a fixed stabilizer. Let G be
a compact connected semisimple Lie group. We use the same notation as in Section
1.14.

Let (,) be a G-invariant scalar product on g. So we can identify g and g*, t
and t*. Let n : G = Aut(g*) be the coadjoint representation. Of course we can
now identify the representations 7 and 7.

Take po € g*. Put

(3.42) Z = Z(po),
3 = 3(po).
DEFINITION 3.7. Put
(3.43) R={pet, Z(p) = Z}.
Since the Z(p) are connected,
(3.44) R={pet’ip) =3}

By (1.182), (3.44), R is the complement of a finite union of hyperplanes in {p €

t*, if (po, ha) = 0, (p, he) = 0}.
Now we make the same assumptions as in Section 3.2. Suppose that G acts
locally freely on X. Then by Proposition 3.6 , any p € g* is a regular value of p.

DEFINITION 3.8. Put
(3.45) S = u"l(R).

Then & is a submanifold of X, on which Z acts locally freely. Let og be the
restriction of o to S. Then og is a closed 2-form on &, which in general is not
symplectic. Let j : g* — 3* be the obvious projection. Then ju : & — 3* is a
moment map for the action of Z on & with respect to os. Finally 8/Z embeds
into X/G.

Let P be the orthogonal projection g — 3. Let § be a connection form on
X - X/G. Put

(3.46) é = Pe.

Then  defines a Z-connection on X — X/Z. Let © be the curvature of 6. Clearly,
over &, since u € 3,

(3.47) (1,0) = (u,6).

By (3.34), over S,

(3.48) o =7 - ((d,9) + (1, 6)).
In particular, if p € R,

(3.49) iso =iy(n'n — (u, ©)).

Recall that the vector bundle E was defined in (3.35). Let VE be the connection
on Eg/z induced by 6. Then over X,/Z,

(3.50) VEu=0.

Equation (3.50) explains why over X, o given by (3.49) is closed. In fact it is the
pull-back of the symplectic form o, on X, /Z(p).
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PROPOSITION 3.9. Locally, over G, the cohomology class of o, depends linearly
onpé€R.

Proor. This is obvious by (3.49). a

3.5. The image of the symplectic volume by the moment map. Let G
be a compact connected semisimple Lie group. We use otherwise the notation of
Section 1. Let (X, o) be a compact symplectic manifold, on which G acts symplec-
tically, with moment map u: X — g*.

We make the assumption that

(3.51) Z(z)=1for ae.z € X.

Then a.e., G acts locally freely on X. By Proposition 3.6, a.e., du(z) surjects on
g*. By Sard’s theorem, a.e. p € g* is a regular value of p.
Let dp,dt be the Lebesgue measures on g, t with respect to {,). Let dg be the
Lebesgue measure on G. If p € g, let dg, be the Lebesgue measure on Z(p).
Clearly

max a.dim X/2
(352) {e"} = @EX—/Z)—' .

dim X/2 . . .
Then (g—7zy is a dim X form on X, which does not vanish, and so defines an

orientation of X. If f: X — R is a bounded measurable function, put
(3:53) [ 1@l = [ s@e,
X b'¢

The notation (3.53) emphasizes the fact that the left-hand side is an integral with
respect to a nonnegative measure. We will use a similar notation over X,/Z(p).
Now we will compute the disintegration of the symplectic volume on X with
respect to the moment map u. The point of this proof is that it is parallel to a
corresponding for moduli spaces given in Theorem 5.45.
Recall that the monomial 7 : t & C was defined in Definition 1.53.

THEOREM 3.10. Let f : X — R be a bounded measurable function. Then

(3.54) /X f(@)le”) /VW (@)t /X e /G f(z.9)dg,
f f@)le] / g _ ool [ f(z.0)dgs-
X g )

1) Jx,/2(0) 2(p
PRrOOF. Since du(z) is a.e. surjective, it is clear that p_ﬁ'%"%%—! is absolutely
continuous with respect to dp. Also for a.e. z, du(x) is surjective and p(z) € greg-
Let K C t be a Weyl chamber. Let g be the projection greg — treg/W =~ K. If
z € X is such that u(x) € greg, We have a G-equivariant complex

i

(3.55) (CL,8):0 > g— T, X %o,

where the map g = T X is just Y = YX(x). If du(z) is surjective, by Proposition
3.6, the cohomology of the complex (C.,d) is concentrated in degree 1. More
precisely, one finds easily that in this case,

(356) H' (C;’a) = T‘lr(:)Xqu(:l:) /Z(QM(I))
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In particular, by [35] and by (3.55), (3.56), we have a canonical isomorphism of
real lines

(357) (det C':::)_1 = det(Tw(z)qu(w) /Z(QP(Z)))

Now det(T;X) is equipped with the volume form associated to o..Also g and t
are equipped with the volume forms dp and dt. Therefore det(C.) is equipped
with a natural metric. Let dvx_,,,/z(qu(z)) be the corresponding volume form on
Tr(z)Xqu(z)/Z(qu(z)) via the isomorphism (3.57).

By the formula of change of variables,we get

6s9) [ s@el=[ af duwro [ feods
b'e teg/W X T G
Take t € treg,z € X such that u(z) = t. Consider the double complex

(3.59) 0 0 0
0 g T, x — ) t >0
0—>9 —> T, X ®ImAd(2) .y 0

In (3.59) , the map g = Im Ad(t) is just f — —Ad(¢)f = —[t, f], themap T, X - g
is du(z). Also the columns and the lowest row are acyclic. In particular the
cohomology groups of the two upper rows are isomorphic. Therefore they are
concentrated in degree 1 and equal to H(CJ,9).

In the second column of (3.59), we equip Im Ad(t) ~ T;0; with the 2-form
oo, given in (3.38). In the third column of (3.59), we equip Im Ad(t) ~ T.O, with
the metric induced by the metric of g. By (3.22), (3.27), the volume induced by

gdim(Xe /T)/2
the second row on its determinant is just the symplectic volume WWV on

det HY(C.,8). On the other hand, let R be the lowest row in (3.59). Since it is
acyclic, det R ~ R has a canonical section 7. Clearly

(3.60) Inl = |=(2)].

Therefore
adlm(Xg /T)/2'

dux, /T = |m( t)lm

By (3.58), (3.61), we get the first identity in (3.54) .
By [14, Proposition 6.3.4), if b : g = R is a bounded measurable function,

(3.62) / h(p)dp = Vol(T) f n(t) dt / h(t.g)dg.

(3.61)
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From the first identity in (3.54) and from (3.62), we obtain

(3.69) /X f(@)le’| = /t/w | (£)]dt /X e[ a0 /T flat! 9)dt' =

dp
. le””l f(z.9)dgp,
7O x sz 2 (=-9)dsp

which is the second identity in (3.54). The proof of our Theorem is completed. O

DEFINITION 3.11. If t € t is a regular value of pu, let |V (¢)] be the absolute
value of the symplectic volume of X;/Z(t) with respect to a;.

THEOREM 3.12. Let f: g* = R be a bounded measurable function. Then

eo) [ el /W [ i f(t.g)dg] @IV (Blde,

IV(P)I
z))le’l = Vol(T
ProOF. Our Theorem follows from Theorem 3.10. (|

Clearly, if 0 is a regular value of u, p.|e”| has a smooth density with respect
to dp near p = 0. In particular

IV (p)|

3.65 i
(3.69) reores |m(p)|

exists and is the value of the above density at p = 0. A more precise statement is
as follows.

PRrROPOSITION 3.13. If 0 € g* is a regular value of u, and if

(3.66) Z(z) = la.e.on X,
then
a7 V(@) _ Vol(G)

i e~ Va@) " O
PROOF. By 3.12, one gets (3.67) easily. O
3.6. The symplectic volume as a polynomial near the origin. In the
sequel, we will assume that 0 is a regular value of 4, and also that
(3.68) Z(z) = la.e.on Xj.

Let U be a W-invariant open neighborhood of 0 in t* consisting of regular
values of p. Let gf; C g* be the corresponding union of coadjoint orbits. Then g,
is an open neighborhood of 0 in g.

Classically, U is small enough, there is a G-invariant open neighborhood V' of
Xp in X such that we have the identification of G-spaces

(3.69) V ~ Xo % gy,

80 that in the right hand-side of (3.69), p is just the projection M x gy, - g7;.
By (3.69),ifp € U,

(3.70) Xo, ~ Xox Op,
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so that
(3.71) Xo,/G = Xo xc Op = Xo/Z(p)
is a Op-fibre bundle over the orbifold X, /G.
Now we construct an orientation over Xo/T. In fact if ¢ € Treg, then Oy ~ G/T,
and so
(3.72) Xo/T = X, xg G/T.

Let K C t be a Weyl chamber, and let t € K. Then the symplectic form oo,
orients G/T =~ Oy, and the corresponding orientation on G/T does not depend on
t € K. Also Xo/G carries the symplectic form og. Therefore once K is fixed, Xo/T
carries a canonical orientation.

Take t € U. Let i; : X; = X be the obvious embedding. Then by (3.37), ifo
descends to a closed 2-form on X,/T, which we denote ;. Note that if ¢ € treg,
0 =3¢ If t ¢ treg, T C Z(t),T # Z(t), and G, is in general not symplectic.

By (3.69),

(3.73) X: ~ Xp x {t}.
We equip X;/T ~ Xo/T with the given fixed orientation.

DEFINITION 3.14. Put
(3.74) P(t) = / e,
X:/T

Then P(t) is a smooth function on U.

THEOREM 3.15. One has the identity

(3.75) [PE)| = |V(©)|ift€ treg,
= 0ift ¢ treg-

IfweWteU,

(3.76) P(wt) = €, P(2).

Also, near 0, P(t) is a polynomial. More precisely, if 6 is a connection form on
n: Xo = Xo/G, and if © is its curvature,

(3.77) P(t) =/x o exp (ﬂ*ao —(t,0) + (t, %[9, 0])) .

Near 0, P(t) and w(t/i) either vanish together or are nonzero, and then they have
the same sign. In particular

(3.78) #w(t/i)P(t) > 0 near 0.
PROOF. By the considerations we made after (3.72), (3.75) holds. If w € W,

let g € N(T') represent w € W = N(T')/T. Since G is connected, it acts on Xp, g, 9"
by orientation preserving maps. Clearly

(3.79) TXo =7 (TXo/G) @ g*.

Also

(3.80) g®rC=t®rCO® (EB%),
a€ER
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so that

(3.81) (/) ®r C = @ fa-
a€R

Then (g/t) ®r C descends to the complexified tangent space to the fibre G/T over
Xo/G. Since g € N(T), g preserves t and its orthogonal t* in g. Since g changes
the orientation of t by the factor €,,, it changes the orientation of g/t by the same
factor.

So g changes the orientation of Xy /T by the factor €,. Since o is G-invariant,
and g acts on Xo/T,

(3.82) G = Gy
From the above, we get (3.76).
By (3.22),(3.27),
. 1
(383) o=m1n- (dl"v 0) - (#, 0 - E[o,e])

Clearly i} 7*n is cohomologous to i§m*n = w*0g. So by (3.83), we get (3.77). From
(38.77), it is clear that P(t) is a polynomial near 0.

If t € U\treg, by the considerations after (3.72), 5, is an everywhere degenerate
2-form on X, /T. Therefore

(3.84) P(t) = 0onU\treg-
For t € U N t,eq, Gy is a symplectic 2-form on X; /T, so that
(3.85) P(t) #0onU N treq.

By (1.190), (3.85), P(t) and 7(t/%) have the same zeroes on U.

By (3.38), on Xo/T, the form (t, 1[6,6]) is just the symplectic 2-form along the
fibre G/T ~ O,. If t € KN U is close to 0, by (3.72), (3.77), P(t) > 0. Therefore,
on K NU, P(t) and 7(t/i) have the same sign. Using (1.186) and (3.76), we get
the end of our Theorem, the proof of which is now completed. O

REMARK 3.16. Recall that we have a fibration Xo/T LT Xo/G. Then we can
rewrite (3.77) in the form

(3.86) P(t) = / e’ / e~ (OB
Xo/G G/T
In (3.86), [, /T is an integral along the fibre. In Remark 3.26, we will reinterpret

identity (3.86).

3.7. A formula of Witten-Jeffrey-Kirwan. We make the same assump-
tions as in Section 3.6. Also we suppose the set U to be bounded. Let {,) be a
G-invariant scalar product on g. If f : g* — R is a bounded measurable function,
let M f:g* — R be given by

(387) MI0) = s . Fpo)ds.

Recall that g and g* have been identified by (,), so that (3.87) also makes sense
when f: g = R is bounded and measurable.



164 JEAN-MICHEL BISMUT AND FRANCOIS LABOURIE

DEFINITION 3.17. If f : g* — R is a bounded measurable function with sup-
port in g, for u € g, put

(3.88) faw = [ s@erap
"
Clearly
(3.89) Mf, = Mf,.

Also f;,(u) is an analytic function of u.
If f:t* - R is a bounded measurable function with support in U, for ¢ € t,
set

(390) fo) = [ rwetrap

If f is W-invariant, then ﬁ is also W-invariant.

The maps f — f; and f — f; are injective.

Also by Rossmann’s formula [50], [60], if f : g* — R is taken as before and is
G-invariant, then,

(3.91) mhe=n()s.

In the sequel, we orient X by the symplectic form o¢. Now we prove a formula
related to a formula of Jeffrey-Kirwan [28] in a work where they prove a formula
by Witten [64]. Our approach is closely related to Vergne [61] and especially to
Liu 39, 40] who worked out similar formulas in the context of moduli spaces.

THEOREM 3.18. Let f : g* = R be a bounded measurable function with support
ingy. Let 6 be a connection form on Xo — Xo/G, and let © be its curvature. Then

(3.92) /X f(w)e” = Vol(G) /X BRACORS
PRrooF. By Theorem 3.12,

(3.93) / f(p)e’ = Vol(G) / Mf ()| (@)I|V (2)|dt.
X /W

By Theorem 3.15,

(3.94) x|V (t)] = =(t/i)P(2).

So (3.93) can be rewritten in the form

(3.95) / F(w)e” = Vol(G) / (M F)@)r(t/i)P(t)dt.
X t/W

By (3.77),

(3.96) P(t) = / g™ oo (t.m 40.61+6)

Xo/T

It follows from the above that we may as well assume that over Xy x g*, o is given
by

(3.97) o =m"ge — d(p,0).
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Equivalently,

(3.98) o =7"00 — (dp,0) — (p, —%[0,0] + ).

Then

(3.99) / flp)e® = / F(p)e™ o= (PO~ (dp.O)+}(p0.6))
X Xoxg*

Since only the term of top degree in A(g*) contributes to the integral in the right
hand-side of (3.99), we can rewrite (3.99) in the form

(3.100) ./Xf(p,)ea =A f(p)en‘ag—(l’ne)"<dpn9)_
oXg*

Now recall that X is oriented by o, and X¢/G by g¢. In particular, near Xy C
Xo x g*, Xo x g* is oriented by o. Also © is G-equivariant. From (3.100), we get

g [ jwe= [ e e [ tp0)ds] ap,

which coincides with (3.92). The proof of our Theorem is completed. O

REMARK 3.19. In [28], Jeffrey-Kirwan use instead the coisotropic embedding
- theorem [Theorem 39.2] [24], which asserts there is a G-equivariant identification
V ~ Xy x gi;, so that o is exactly given by
(3.102) o = plog — d(p,0).

Recall that by Theorem 3.15, P(t) is a polynomial near t = 0. Therefore P(%)
is a differential operator.

THEOREM 3.20. If f : t = R is a bounded measurable W -invariant function
with support in U, then

(3.103) /X flue” = V;’vll(,cl;) [P(gt—)w(/t/ﬁf“(t)]

|t=0

ProoOF. By (3.95),

Vol(G)
(3.104) / f(pe? = IW(’I / f(&)m(t/i)P(t)dt.
From (3.90), (3.104), we get (3.103). The proof of our Theorem is completed. 0O

Let 8 be a G-connection form on X, — X,/G, and let © be its curvature. Let
Q be a G- invariant C* function defined on g with values in R. We define Q(-0)
by its Taylor expansion, which only contains a finite number of terms. Then Q(—©)
is a closed form on Xy/G, and fxo/G Q(—0)e’® does not depend on 6.

Similarly, we define the differential operator Q( —(%) as the formal power se-
ries a.ssoc1ated to the Taylor expansion of . When applying the power series
Q% 3t)7r( T ) to the polynomial P(t), only a finite number of terms in the Taylor

expansion contribute, so that Q( az)“( = 5t) P(t) is a well-defined polynomial.

THEOREM 3.21. The following 1dentzty holds,

s [ /GQ(—Q)e”“—l 7 [2@/o0 (%% )

|t=0
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ProoF. Let f: g* = R be a G- invariant bounded measurable function with
support in gf;. By Theorems 3.18 and 3.20,

(3.106) [ o = w7 [P/ /on,] 0.

By Rossmann’s formula (3.91) and by (3.106), we obtain

(3.107) /x Fi(~©)e “rv17|[ (0/60m(; )fa(t)] ().

Equivalently

~ 0/0
G [ F(-een = o7 | Fooronm (%2

2)P()] 0

Then (3.108) is exactly (3.105) when @ = fg.

Clearly, it is enough to verify (3.105) when @ is a polynomial. Then Q is the
Fourier transform of a distribution whose support is {0}. Using (3.108) for f with
support in g7, and a simple limit procedure, we get (3.105) when Q is a polynomial.
The proof of our Theorem is completed. 0

3.8. The volume of symplectic coadjoint orbits. Let ¢t € t, and let O, C
g = g* be the G-orbit of t. Recall that o, is the canonical symplectic form on O,
given in 1.193.

Let p; : G/T — O, be given by

(3.109) peg = g.t.
Then p; is one to one if and only if ¢ € treg. If t ¢ trgg,
(3.110) dim(G/T) > dim O;.

We fix a positive Weyl chamber K C t. This defines an orientation on G/T,
which is fixed once and for all.

DEFINITION 3.22. Ift€ t, X € g, put
(3.111) H(t,X) =/ ePez.X)+ploo,
G/T

Then since G acts on the right on O; and preserves op,, H(t,X) is a G-
invariant function of X € g*.

Let K C t be a Weyl chamber, and let 7(t) be the corresponding function on ¢
defined in (1.185).

PROPOSITION 3.23. Ift ¢ treq,

(3.112) H(t,X)=
Ifte K,X € teg, then

(wt, X)
(3.113) H(t,X) = - X/ /2m) 2 €we

Proor. Using (3.110), we get (3.112). Recall that G acts on the right on O,.
Also if X € g,

(3.114) d(, X) +ixo.00, =0
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Then when ¢ € K, we get (3.113) from the localization formula in equivariant coho-
mology of Duistermaat-Heckman[19], Berline-Vergne (5], (6, Theorem 7.11]. This
equality obviously extends to the case where t € K. The proof of our Proposition
is completed. 0

REMARK 3.24. From (3.112), (3.113), we recover the well-known fact [15, Lemma
VL1.2] that if ¢ ¢ treg,

(3.115) 3 ewelvt) = 0.

wew
Recall that H(t,X) is a G- invariant function of X € g*. Also the function
P(t) was defined in Definition 3.14.

PROPOSITION 3.25. Fortgo e UNK,
1 a/6t
(3.116) Pl = g7 |H0 0100 (57 P)]

PROOF. By (3.113), if X € treg,

(3.117) H(to, x),r(__) = Z e elvtoX)
weW

Of course the identity extends to arbitrary X € t. In particular, by (3.117), we
have the identity of formal power series of differential operators,

(3.118) H(t,0/00m (%% = T cyetmtocron,
weW

Now in view of (3.76),

(3.119) D ewe 0P P(t),_o = |W|P(to).
wew
From (3.118), (3.119), we get (3.116). The proof of our Proposition is completed.

a
REMARK 3.26. In view of (3.105), (3.116), we get

(3.120) P(ty) = H(ty, —©)e”
Xo/G

One then verifies that (3.120) is just a reformulation of (3.77).

Recall that we have identified g and g*, t and t* by the scalar product (, ). For
t € t ~ t*, the orbit O; is equipped with the symplectic form oo, .

THEOREM 3.27. The following identity holds

‘oo, | — VO].(G)
(3121) /G/T €7 = Sory T O
Vol(G) 1 6/87.‘) W -1

Vol(T) W] m(
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PROOF. If t € treq, then Oy = G/T. So the first identity in (3.121) is trivial.

Let T*G be the cotangent bundle of G. We identify X = T*G to G x g* via the
left action of G on T*G. If @ is the canonical left-invariant 1-form on G with values
in g, if p € g*, (p,0) is the canonical real 1-form on T*G ~ G x g*, and —d(p,6)
is the canonical symplectic form o on T*G. Also G acts on the right on T*G and
preserves . Then (g,p) € G x g* — p € g* is a moment map for this action.

Now we use the notation of Section 3.7. Take ¢t € t. Then

(3.122) X, =G x {1},
and X;/Z(t) ~ G/Z(t) can be identified with O; by g € G/Z(t) — g.(t) € O..

Then one verifies easily that the symplectic form o; on X;/Z(t) is just o0p,. By the
first identity in (3.121), we get

s _ Vol(G) :
(3.123) /)Q/Te = Yol(T) w(t/),
so that

_ Vol(G)
(3.124) P(t) = T/El(—ﬂ"(t/ )

Finally observe that the moment map u : (g,p) € G X g* — p € g* is regular, that
G acts freely on Xg ~ G, and Xo/G = 1. We apply Theorem 3.21 with @ = 1, use
(3.124), and we get

Vol(G) 1 [ 8/0t ~
(8.125) Vol(T) |W|[‘ )(/)]u:o—L

Also m(2/2t e %)m(t/) is constant. It is now clear that the second equation in 3.121)
follows from (3.125). The proof of our Theorem is completed. O

REMARK 3.28. It is of some interest to verify that as should be the case, the
right-hand side in the second equation in (3.121) is positive. In fact

a/0t, , .
@126) (Lt = @n) T (ens0) - (e,
oES,
Put
(3.127) (1®...Qar)’ = il Z 05(1) ® ... € S,
0ES,

Then (3.126) can be written as

3/

(3.128) (5 (E/i) = @m)if(a ®...®a) k.,

which is indeed posmve.

Recall that p € K, so that n(p/i¢) > 0. We now recover a well-known formula
for Vol(G/T) [6, Corollary 7.27].

THEOREM 3.29. The following identity holds

Vol(G) 1

(3.129) Vol(T) ~ (/i)
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PROOF. We proceed as in [6]. Let A € ANK. Let x» be the character of
highest weight A. Then by Kirillov’s formula [34], (5], [6, Theorem 8.4], for t € ¢, |t|
small enough,

) .
3.130 ty=T0 [ ainwiteo,,,
( ) xx(€") o Jo,.,
In particular
(3.131) xa(1) =/ e7Ontx

Op4r
By Theorem 3.27,

’ Vol(G) ,

3.132 / Oppr = - + A) /).
(3.132) . VI "0 + V1)
Also by Weyl’s dimension formula [15, Theorem VI.1.7],

m(p+A)
3.133 1) = _
( ) xa(1) 7(p)

From (3.131)-(3.133), we get (3.129). The proof of our Theorem is completed. [
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4. The affine space of connections

In this Section, we construct a canonical line bundle L on the affine space of
connections on the trivial G-bundle on a Riemann surface ¥ with marked points,
and an action of a central extension of the gauge group £¥G on L. We compute
the action of the stabilizers of certain connections on the line bundle L. We also
construct a line bundle Ay, which, as we shall see in Section 6.3, will descend to the
moduli space of flat G-bundles. The main purpose of this Section is to evaluate the
angles of the action of the stabilizers on the line bundle Ay, in order to apply the
theorem of Riemann-Roch-Kawasaki [32, 33] to this moduli space, which we will
do in Section 6.

Our Section is organized as follows. In Section 4.1, we briefly recall the con-
struction of the central extension LG of the loop space LG. In Section 4.2, we
consider the coadjoint orbits of LG, their symplectic form, and the corresponding
line bundles. In Section 4.3, we construct a central extension of (LG)*. In Sec-
tion 4.4, we give a formula for the holonomy of the canonical connection on the
Sl.bundle LG élv LG. In Section 4.5, we describe the symplectic affine manifold
A of G-connections on X, and a symplectic action of a central extension £G of
the gauge group LG. In Section 4.6, we construct the line bundle L on A, and an
action of ¥G on L. In Section 4.7, when G is not simply connected, we classify the
G-bundles on X. In Section 4.8, we specialize the results of Section 4.7 when H is
a connected subgroup of a simply ’_ggnnected group G. In Section 4.9, we compute
the action of certain elements of XG on L. Finally, in Section 4.10, we define the

line bundle A, , on which £G acts, and we compute the action of certain elements
of £G on Ap.

4.1. The central extension of the loop group LG. Let G be a compact
connected and simply connected simple Lie group. We will use the notation of
Section 1. In particular (,) denotes the basic scalar product on g.

Let T be a maximal torus in G, let t C g be its Lie algebra. Let W be the
corresponding Weyl group. Then W acts on CR. Let Wag be the affine Weyl group

(4-1) Waﬂ' = W X -CTE.

Let S! ~ R/Z, and let ¢ € [0, 1] be the canonical coordinate on S*. Then 8/8¢
trivalizes T'S? and dt trivializes T*S.

Let LG be the loop group of G, i.e. the group of smooth maps s € St — g, € G.
Let Lg be the Lie algebra of LG, i.e. the set of smooth maps s € S! = f, € g.

If a,b € Lg, put

(42) o) = [ (@db).

Then by [47, Section 4.2],  is a cocycle on Lg. By [47, Theorem 4.4.1), there is a

unique central extension p : ic —L LG associated to . The Lie algebra of e
is Lg=Lg®R. If (a,a),(a',a') € Lg = Lg® R,

4.3) (e,a), (o, a')] = ([a,a'], /S 1(a,da’)) .
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Observe that the Lie group G x S embeds as a Lie subgroup of LG, and that
the Lie algebra of G x S!, g@® R (equipped with its standard Lie algebra structure)
embeds correspondingly as a Lie subalgebra of Lg ® R.

Clearly s € S! acts on LG by g € LG v kg = g5 € LG. We can then
form the semidirect product IG = S! x LG. The Lie algebra zg of LG is given
by Lg = R @ Lg, and can be identified to the Lie algebra of differential operators
a;‘—t+a, a€ R, ace Lg, so that

] SRR SN SR
ag taad— ta -[a,a]+adta o —a.

By [47, Theorem 4.4.1}, the action of §! on LG lifts to LG, so that we can form
the semidirect product LG = S! x LG. Its Lie algebra Lg is given by

(4.4)

(4.5) Ig = RoLgoR
= R@fg
= ig@R.

The Lie bracket in Lg is given by

J
(46) [(a,a,b),(d',d, b)) = (0, [@, 0] +aéCi - a'd—oi,/ (a,do’) } .
dt dt /s
Also S! x G x S! embed as a Lie subgroup of Lg, and R® g® R (with its standard
structure of Lie algebra) embeds correspondingly as a Lie subalgebra of R& LgoR.
Observe that we can reverse the orientation of S1. Namely let ¢ : LG — LG

be the morphism g, — g_,. Then ¥ lifts to a morphism LG — LG, so that if
(z,y) € §* x &%,

(4.7) ¥(z,y) = (=71 y™).

By [47, Section 4.9}, on Lg, there is a LG-invariant symmetric bilinear form
(4.8) ((a,a,b),(a',a',b')) = / (a,a')dt — ab' — ba’ .

S

By (4.8), we have the embedding
(4.9) RaoLgc (Lgd R)*.
Equivalently
(4.10) Ly c (Lg)*.

4.2. The coadjoint orbits of LG. The group LG has a coadjoint action on
the right on (Lg)*. If we restrict this action to Lg C (Lg)*, for g € LG, we get

d _.d ~1dg -1
(4.11) (GE-*-Q) g=ag + ag 2t +9 ag.

Let P = S! x G be the trivial G-bundle on S*. Let A% be the affine space of
G-connections on S!. A connection in AS' can be written as

(4.12) d+A, AeQ'(Sl,p).
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In the sequel, we identify d+ A € A ' with the differential operator 4 + A(8/8t) €
dt

Lg. So AS' is an affine subspace of Lg.
Clearly LG acts on the right on AS', so that if g € LG,

(4.13) d+A-g=g '(d+ A)g
ie.
(4.14) A-g=g 'dg+gtAg.

By (4.11), (4.14), AS" embeds as an affine suspace of (f,g)‘ = Eg and the action of
LG on (Lg)* induces the corresponding action of LG on .Asl.N
Now we briefly develop the theory of coadjoint orbits for LG.

DEFINITION 4.1. If A € Lg, let w € G be the holonomy of the operator :—t + A
on 81, i.e. if g; is the solution of

dgt —1
(4.15) dt +A; =0,
then
(4.16) w=g9q.

Then Floquet’s theory of differential equations (Frenkel [21, Section 3.2], Segal
[47, Proposition 4.3.6]) shows that the orbits of #t4 m Lg can be expressed
in terms of the adjoint orbits in G. Namely £ ztA and 7 + A lie in the same
LG-orbit if and only if the corresponding holonomies w and w’ lie in the same G-
orbit. In particular the LG orbits of the differential operator a"; + A always contain
representatives of the form j‘; + A, A € ¢, and two 3“; + A lie in the same LG-orbit
if and only if A and X lie in the same Wyg-orbit.

If XA €t,let Z(d/dt + A) C LG be the stabilizer of d/dt + ).

PROPOSITION 4.2. If A € t,
(4.17) Z(d/dt + )) ~ Z(e™).

Namely if g € Z(e™?), the corresponding element of Z(d/dt + \) is t € S*
e trge!* € G. If e € Tieg, then

(4.18) Z(d/dt+A) =T C LG.
PROOF. The proof of this simple result is left to the reader. a

Let O/ar4x C Lg be the LG orbit of d/dt + \. Clearly the map

(4.19) g€ LG g(d/dt+N)g~' € Lg
induces the identification

(4.20) LG/Z(d/dt + A) = Og/dqp4x -
In particular if A € P,

(4.21) LG|T ~ Ogygs4 -

Also the theory of coadjoint orbits developed in Section 1.14 tells us that
Odyae+» is equipped with a symplectic form og,,,,,,. Namely let dfdt + A =
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DA € Oyjaryr. Recall that LG acts on the right on Og/grr. If @ € Lg, let
a©4/4:+x be the corresponding vector field on Oy /dt+a- Clearly

(4.22) aJd4+> = DAy

Then formula (1.193) for the symplectic form oo,,,,, is

(4.23) o(D*a, DAB) = (d/dt + A,[a, B]) .

By (4.3), (4.8), (4.23), we get

(4.24) o(DAa, DAG) = / (DAa, B) .
St

Finally LG acts symplectically on the left and on the right O4/4;1», and d/dt+ A +»
(d/dt + A) € (Lg)* is a moment map for the left action of LG on Odjdt+a-

Ifpe R \et, if pd/dt + A € Opgjarsa, then d/dt + A/lp = DA/? is a
connection, and

(4.25) 00,402 (D4, DAB) =p /S 1 (DA/Pa, B) .

Recall that T x S! C LG.

DEFINITION 4.3. If (\,p) € CR’ x Z*, if p(»,—p) is the one dimensional repre-
sentation of T'x S* of weight (A, —p), let H, ;) be the line bundle on LG/(TxSY) =
LG/T,

(4.26) Hpp) = La Xp(r,-p C-

In the same way as the Weyl group W acts on the right on G/T, the affine
Weyl group Wog ~ W » CR acts on the right LG/T. In fact if w € W, w acts on
LG/T by g = gw and u € CR acts on LG/T by g — ge*t. Then W,g acts on the
left on CR x Z* by the formula

(4.27) w(A,p) = (wAp)
(A, p) (A+pp,p).

We can then restrict (A, p) to vary in a fundamental domain of the action of Wag.
This just says that

i

(4.28) peZ*, A€ |pP.

Equivalently if p € Z*,

(4.29) fora€ Ry, 0<{a, ) <{ag, ) <p.
Let nowp€ Z*, A € IplPﬂUR_‘. Then by (4.18), (4.20),

(4.30) Opajatir = LG/T.

Therefore, the line bundle H(y p) is well defined on O,4/4:42- Also by proceeding
as in Section 1.14, the Hermitian line bundle H(, ;) is equipped with a unitary
connection VHx.» and

(43]_) C1 (H(,\,p),VH(A.p)) = 00,47d04x -

Ifpe 2, Ae |p|Fﬂ€R—‘, but A € pP, the theory is slightly more involved.
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Now, we will just assume that A € CR_ and explain the construction of the
line bundle Hi, ;) on Opg/ge4a in full generality.
By (4.17),

(4.32) Z(pd/dt + )) = Z(e~*?).
DEFINITION 4.4. Let Z(pd/dt + A) be the stabilizer of pd/dt + X in LG.

Then Z(pd/dt+)) is a central extension of Z(pd/dt+A). Let a(e>/?), 3 (pd/dt+
) be the Lie algebras of Z(e~*/?), Z(pd/dt + \). Then

(4.33) 3(pd/dt + ) ~ 3(e M) B R.
PROPOSITION 4.5. If (X,a),(Y,b) € 3(pd/dt + A) ~ 3(e~*/?) ® R, then
(439) (6,2, (%, = (X, Y1, 20 1, ¥D)

PRrOOF. Clearly, if X € 3(e~*/P), the corresponding element in the Lie algebra
3(pd/dt + \) of Z(pd/dt + \) is just e~t»/P XetMP. In view of (4.3),

(4.35) [(e—u/p XetM? 0), (e-“/we‘*/ﬂ,o)]
(e—u/p[X,Y]et,\/p , (X,-—[A/p,Y])) .

Also
The proof of our Proposition is completed. a

PROPOSITION 4.6. For any A € CR.,
(4.37) (X,a) € 3(eP) @ R > (X, ( ;‘—’, X) +a) € 5(pd/dt + \)
is an isomorphism of Lie algebras.
Proor. This is clear by (4.34). a

REMARK 4.7. If A € pPN TR, 50 that e™*? € Treq, then 3(e~>/7) = t. In
this case, in (4.34), (\,[X,Y]) = 0. Therefore (\,a) € 3(e™*?) ® R — (X,a) €
3(pd/dt + X) is also an isomorphism of Lie algebras.

Observe that T is a maximal torus in Z(e~*/?) . By [14, Corollaire 5.3.1],
Z(e~*/?)/T is simply connected.

DEFINITION 4.8. Put
(4.38) R, x;» ={a€R; (a,A/p) € Z}.
We define CR,-»/» as in (1.136). Let CR,-x/» C t be the lattice spanned b)"

CR, /5.

By {15, Theorem V.7.1},
CR
4.39 Z(eMP) = — .
(439) m(2(e™7) = g

Put
(4.40) R.-ap={tet;if a€ R,osss ,{a,t) € Z}.
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By [15, Proposition V.7.16),

puu——

RQ—A/P
CR

(4.41) Z(Z(e™?)) =

In particular

E‘—-A/p
4.42 -Ap€e =
(4.42) /p o3

Now “e52lz ==/% maps into the group m;(Z(e~*/?))*. In particular the map

(4.43) Y(pd/dt + A) : h € m(Z(e~*P)) ms 2TV € ©

is well-defined. Since A € CR’, e2i"(A/P:k) jg a pth root of unity.

Recall that pd/dt is identified to the 1-forma € R+ —pa € R. Also A€ CR’
is a left invariant 1-form on LG. 5

By Proposition 1.56, pd/dt + ) is a closed 1-form on Z(pd/dt + A).

Let Z(e=*/?) be the universal cover of Z(e~*?). Then pd/dt is a closed form
on Z(e~*/?) Xyp(pd/dt+)) St

THEOREM 4.9. We have the identity of Lie groups

- (4.44) Z(pd/dt + \) ~ Z(e~*P) st

In particular Z (pd/dt+)) contains a p** cover of Z(e~*/P). Under the identification
(4-44),

(4.45) pd/dt + \ ~ pd/dt,

and the forms in (4.45) are closed and integral.

X Y(pdsaeta)

PRroOOF. Clearly by (4.37), Z (pd/dt + ) is a locally trivial central extension of
Z(e~*P). Let s € S! +» t, € T be a smooth loop. The corresponding loop with
values in Z(pd/dt + )) is given by s € S — (e~**Pt,et)/?) € LG, i.e. by

(4.46) seS'mt,eGCLG.
Now recall that G € LG, so that we have a loop
(4.47) se 8 mt, € GNZ(pd/dt + ).

By (4.37), the horizontal lift of s € S* ~— t, € G C LG in Z(pd/dt+ \) with respect
to the flat connection on Z(pd/dt + \) = Z(e~*/P) is given by

(4.48) s € S t,exp (2i1r/ (,\/p,t;ldt,)) .
St

From (4.48), we get (4.44). _
If S; denotes the group of p™ roots of unity in C, Z(e™/?) Xy, 44, Sh is 2
subgroup of Z(pd/dt + ), which is a p-covering of Z(e=*/P).
Observe that
A
(4.49) (pd/dt + A, (X, (;, X) + a)) = —pa = (pd/dt,a).

From (4.49) we get (4.45). _
By Proposition 1.56, the 1-form pd/dt + ) is closed on Z(pd/dt + A). It is even
easier to see that pd/dt is closed on Z(e™*/P) Xy, 44x, S*- Finally it is trivial to
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verify that pd/dt is integral on z (e=>/7) X y(pd/dt+x) S*. The proof of our Theorem
is completed. 0

By Theorem 4.94 as in Proposition 1.58, the integral l—form pd/dt + X defines a
representation p; : Z(pg + A) = S*. Also py : (9,7) € Z(e=>/?) X pipasarsny S
z~P € S! is also a representation.

ProposITION 4.10. Under the isomorphism (4.44),

(4.50) p1L = pa.
PROOF. By (4.45), we get (4.50). o
REMARK 4.11. Assume that A € pPNCR, so that Z(e~*/P) ~ T. Then
(4.51) Z(e™M?) ~ t.
Also the map
(4.52) (f,a) € tx S* v (f, ™ M/PSg) € ¢ x §?

descends to an isomorphism
(4.53) T xS >t Xyg a0 S

Then the 1-form pd/dt + A on T x S' corresponds to pd/dt on t Xy, 4., S*-
In fact in this case,

(4.54) Z(pd/dt + \) =T x S*,
and (4.53) is a special case of (4.44).
Clearly
I 16
Z(pd/dt + )  Z(pd/dt+X) — ~PY/AA:
DEFINITION 4.12. Let H(, ) be the line bundle on Opajdt+as

(4.56) Hppy = LG x,, St

(4.55)

Then H(, p) is a Hermitian line bundle. As in (1.198), we can equip H, p) with
a unitary connection V#.». By proceeding as in (1.199), we get

(4.57) cr(Hopy, VEOR) = 50
4.3. A central extension of (LG)*.

pd/dt+x *

DEFINITION 4.13. Put

(4.58) P, = {(a1,... ,as) € (§Y)*, Ha,:l}_
=1
Then P, is a Lie subgroup of (S)?, and its Lie algebra p, is given by
(4.59) p,:{(bl,...,b,)eRs,ijzo},
i=1

Clearly P, C (S')? is a Lie subgroup of (LG)®.
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DEFINITION 4.14. Put

(4.60) (LG = (L6)/P,
(Zo)* = (La)"/ps.
Then (fé)" is a central extension of (LG)* and (Lg)* is its Lie algebra. Clearly
(4.61) (Lp)* = (Lg)" ®R.
Also if (1, ... ,as,0),(al,... ,a),a') € (Lg)*, then
(4.62)

[(al,... ,a,,a),(a'l,... ,af,,a')] = ([alya;])"' ,[a,,a;] ) Z/ (ajida_’j)) .
j=1"5"

Also G* x il embeds as a subgroup of (fé)’, and g* ® R embeds as a Lie
subalgebra of (Lg)®. Finally recall that in Section 4.1, we defined an action of S!
on LG. Therefore S* acts on (LG)®.

DEFINITION 4.15. Put
(4.63) (IG)* S' x (LG)®,
(Lg) = Ro(Lg).
Then (Lg)* is the Lie algebra of (LG)®. If we embed S*,R into (S')*, R® by

the diagonal embeddings, then (f@)’ C (EG)' , and (I/JE)‘ is a Lie subalgebra of
(Lg)®. Also by (4.10),

(4.64) (Lg)* C (T9)".

4.4. The holonomy of LG. Let & be the closed left invariant 3-form on G,

1
(4.65) KXY, 2) = 5(X, 1Y, 2)).
Then by [47, Proposition 4.4.5],
(4.66) k€ H3(G,Z).
Recall that 7 is the left-invariant 2-form on LG,
1 -1 6 -1
. = - - dt.

(4.67) n=3 [ (oo, 507 do

Put
(4.68) A={zeC, |2|<1}.

Let g(s,t) : S* x S* — G be a smooth map. We identify g(s,t) with the smooth
loop in LG s € S — g, = g(s,-) € LG.
Clearly

(4.69) ar=S".

Since m;(G) =0, 0 < i < 2, g(s,t) extends to a smooth map g(z,t) : A x §* = G.
Therefore we get amap §: z € A — g(z,.) € LG.
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THEOREM 4.16. The following identity holds

1 199 _,09
2 Slxsly ot 9 s

—/ g"re+/ 7'n=0.
AxS!? A

PROOF. Let h be the left-invariant 1-form on LG,

(4.70)

1, a0
(4.71) h=j | (07 G o7 dehet.
A straightforward computation shows that

1 109 1. _ -
4.72) dh=-n+= / (9 laf 5 [97 dg, g7 dg])dt .
Using (4.72), we get (4.70). a
Clearly

(4.73) Lg=LgoR.

1
The splitting (4.73) defines a connection on the S! bundle Fg 2> 1G. Let
s € S! = g, € LG be a horizontal lift of s € §! ~ g, € LG. Since go = g1, then

(4.74) G193, € S*.
THEOREM 4.17. The following identity holds

(4.75) G199 1 = exp (2i1r /A §‘17)

= exp (2z7r (—-—/ (g7! ag,g"lag)dsdt+/ g*n)) .
ot o AxS?

PrOOF. The first identity is a straightforward consequence of (4.2), (4.67).

The second identity follows from Theorem 4.16. O

4.5. The symplectic space of connections on Z. Let X be a compact
Riemann surface of genus g. Let z,...,z, be s distinct elements of X. Let
Ai,...,4A, be small non intersecting small open disks of center z,... ,z;.

Put

8§
(4.76) =x\{Ja;.
i=1

Then X is a compact Riemann surface with boundary X. Also ¥ being oriented,
0% is also naturally oriented.
Let G be a compact connected and simply connected compact simple Lie group.
We use otherwise the same notation as in Section 1. In particular g denotes the Lie
algebra of G, and (,) denotes the basic scalar product on g defined in Section 1.2.
Let P = ¥ x G be the trivial G-bundle on ¥. Observe that since G is simply
connected, a G-bundle on X is necessarily trivial.

DEFINITION 4.18. Let A be the affine space of G-connections on P.
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Any element in A can be written in the form d+ A, with A € Q' (X, g). Therefore
A is an affine space with underlying vector space )!(X, g). Also

(4.77) TA=AxQ\Z,g).

Let £G, Xg be the sets of smooth maps ¥ -+ G, ¥ = g. The Xg is a Lie
algebra, which will be considered as the Lie algebra of £G.

DEFINITION 4.19. If U,V € Q}(Z, g), put
(4.78) o(U,V) = / —(UAV).
>

Then o is a symplectic form on A.
Observe that £G acts on the right on A, so that if g € LG,

(4.79) d+A-g=g7Y(d+ A)g,
i.e.
(4.80) A-g=g'Ag+g7ldg.

Clearly XG preserves the symplectic form o.
DEFINITION 4.20. If a € Xg, let a® be the corresponding vector field on A.
Let V4 be the covariant derivative associated to the connection A € A. Then
(4.81) ai = Via.

For simplicity, we now fix an oriented parametrization of the s circles in 9%,
so that

(4.82) ox = (S§Y)*.
DEFINITION 4.21. Let r be the restriction map
(4.83) gEXG 9oz € (LG)*,

a€Xg — oz € (Lg)°,
d+A€A + (d+A)px € (A5).

All these maps are equivariant. By (4.83), we get a map

(4.84) d+ A (%+A(%))m e (Lg)*.

We still denote by p the projection (fé)’ - (LG)°.
DEFINITION 4.22. Put
(4.85) G = {(9.9") € G x (LG)* ; gjox = pg’ in (LG)'},
S = {(a,') € Sgx(Lg)*; aox == po’ in (Lg)°}.
Then fﬁ is the Lie algebra of the Lie group £G. More precisely
(4.86) Tg=ZgoR.
Let 7 be the projection £g = Lg® R = R. If (a,a), (¢’,a') € fl-g:, then

(4.87) (e, a), (¢,a")] = ([a,a'],/az(cz, da’)) .
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Also G x S! embeds as a subgroup of £G by the map (g,t) — (g, (g-.. ,9),t) C

£G x (LG)*.
Clearly the restriction map r extend to a map
(4.88) %G - (LG)*,
Ts ~ (Lg)’.
In particular, there is a dual map
(4.89) (Lg)™ — (Sg)".
If A € A, then by (4.64),
d —
(4.90) zt A(0/06t) € (Lg)™ .

So by (4.89), (4.90), we may view (d + A)|s5 as an element of (E’g)‘
As we just saw, XG acts on A and preserves the symp]ectlc form o. Therefore

G also acts symplectically on A. Of course S; C £G acts trivially on A. If
ac Eg, let @A be the associated vector field on A. If a = pa,

(4.91) a* = o? = V4a
Clearly

(4.92) Lg=0%%,9).

Also

(4.93) 0*(2,9) C N°(Z,9)" = (Zg)" .

DEFINITION 4.23. If A € A, let F4 = dA+1[A, A] € Q%(Z, g) be the curvature
of A.

By (4.93),if A € A, F4 C (Sg)* C (Zg)*. Also by (4.89), (4.90) if 4 € A,
(d+ A)jox € (Zg)"

Recall that in Section 3.2, moment maps were defined with respect to symplectic
actions of compact Lie groups on symplectic manifolds. Here we will use the same
definition with respect to an action of XG on A. We now state an extension of a
result of Atiyah-Bott [2, Section 9].

THEOREM 4.24. The map
(4.94) A€ A p(A) = FA — (d+ A)jpx € (Tg)*
is a moment map for the action of £G on A.
PRroor. First we will prove that if a € 533,
(4.95) d(FA - (d + A)jox, @) =iza0 .
Clegfly ifa = (a,a1,... ,a,) € )EQGBR’ is identified with the corresponding element
in Lg,

A _ &\ A _ . )
(4.96) (FA ~ (d+ A),&) /E(F Q) /BE(A,aH;a,.
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f BeTA~N(T,g), then

A a)) = AB,a) — o
(497)  (B.d(F* — (d + A)ox, &) /E (DAB, a) /az(B'>

= - / (VAC!, B)
n
= ’iaA G'(B) .
By (4.97), (FA — (d + A))sx, @) is a Hamiltonian for the vector field &@4. Also by

—

definition, if ¢ € £G,
(4.98) FA9—(d+A-g)ioz = (FA = (d+ A)psx) - 9.
We have completed the proof of our Theorem. a

4.6. The canonical line bundle on A. Now we describe the construction of
the canonical line bundle L on A. In the case where there are no marked points, our
construction follows closely earlier work by Ramadas, Singer and Weitsman [48].

DEFINITION 4.25. Let (L,|| ||L) be the trivial Hermitian line bundle on A. Let
VL be the unitary connection (L, || ||z) :

(4.99) Vi=d- iw/z(.,A).
PROPOSITION 4.26. The following identity holds
(4.100) a(l,Vh) =o.
PRrooF. This follows from (4.99). (|
DEFINITION 4.27. If & € Ig, put
(4.101) Lz = Vi, - 2in(u(A), &).
Clearly for @ € g, Lz acts on C®°(A, L).
PROPOSITION 4.28. If @ € Lg, then

(4.102) [Ls,VE]=0.
Also if&,B € )55,
(4.103) [La,Lg] =Lgz-
Proor. The identities (4.102) and (4.103) are trivial consequences of (3.120)
and of Theorem 4.24. a

ProprosiTION 4.29. If& = (a,a) € fﬁ =XYg® R, then
(4.104) Lz =Vaa — iw/(A, da) — 2ira.
b))
ProoF. By (4.99), (4.101), we get

(4.105) Ly =V — im / (VAa, A) — 2ir / (FA,a)
p p

+2'i7r/ (A,a) — 2ira.
a%
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Also
A
(4.106) /E (VA4a, A)

L4

- /E (A, da) - /E (4, 4], 0,
[ @4+ 314,40
) 2
1
[ a0+ [[(4,da) + 514, 4)00).

From (4.100), (4.106), we get (4.104). The proof of our Theorem is completed. O
REMARK 4.30. By (4.104), if o, 8 € Xg,

(4.107) Loy Lg] = Lio )  2i / (@, dB) .
)3
In view of (4.87), (4.104), (4.107) fits with (4.103).

Now we will show that the action of fﬁ on L lifts to an action of £G. This
result has been proved by Ramadas, Singer and Weitsman [48] in the case where

there are no marked points, so that TG is just £G.

THEOREM 4.3’1‘.’ The action of )'ja on L defined in ({.101) lifts uniquely to a
unitary action of G on L which preserves V. In particular if (g,t) € G x S' C
%G, (g,t) acts on L by
(4.108) fe€Lam f-(gt) =¥ f€La,.

PROOF. Let g € £G. Since 7;(G) = 0, 0 < i < 2, there is a smooth path
8 €[0,1] = g, € XG such that

(4.109) g0 = 1,
9 = 9.

Recall that

(4.110) Sg=goR.

The splitting (4.110) defines a left-invariant connection on the S*-bundle ¥ s, IG.
Let s € [0,1] — §, be the horizontal lift of s € [0,1) = g, € £G with respect to
this connection, with go = 1. Put

-1 dg,

(4.111) @ = g, —-¢€ Ly,
g = Gi.
Then
w_1dg a
-129 _
(4.112) 9, 5, = €Xg.
Now we will show that if A € A, f € Lg4,
1
(4.113) f-g=exp (iw/ ds [/ (A-g,,das)]) f€Lag,
0 b

is an unambigous formula for the action of G on L. Clearly we may assume that
fnn=go=1,sothat s€ S} =R/Z — g, € TG is a loop in £G.
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Recall that by(4.61),
(4.114) (Lg)® = (Lg)* ®R.

The splitting (4.114) defines a connection on the S! bundle (ZE)’ — (LG)®. Then
by definition s € [0,1] = G,ox € (fé)‘ is the horizontal lift of s € S! — g, €
(LG)*. In particular gy)p5 € S*.

By (4.104), we only need to verify that in this case,

(4.115) exp (iw/olds [/;:(A-g,,da,)]) =3

Observe that

(4.116) A-g, =g, Ag, + g7 ' dg, .

Let 69,64 be the g-valued left and right invariant forms on G, i.e.
(4.117) 09 = g7'dg,0% = dgg~!.

Then

(4.118) a8 = ~116°,6%) ap* = {6%,0°).

From (4.111), (4.118), we get

0
"—gsog + [augaa ]

(4.119) da, = P
= 9, 5,(9:69
Therefore
(4.120) (951 Ags, da,) = (A 9;6%).
Since go = g1 = 1, by (4.120), we obtain
(4.121) /01 ds/E(g;lAg,,da,) =0.
By (4.121),
(4.122) /: ds/z(A-g,,da,) = /S1 ds[z(ga’ldg,,da,)

and so (4.122) does not depend on A. Observe that this last fact follows from
general principles, and that the right-hand side of (4.122) is just the left-hand side
evaluated at A = 0.

Also

wiz) [ danda) = [ (@00 - 5 [ (ailor,0% 0.

In view of (4.65), (4.123), we get

(4.124) / ds/ 9, dg,, da,) = ——/ / (9:60%, as) —/ g'k.
st i) rxS!
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Recall that X is obtained from the Riemann surface X by deleting s disks
Ay,...,A, centered at z;,...,z,. Since m;(G) =0, 0 < ¢ < 2, the smooth map
g: 8! x T~ G extends to a smooth map g: S x X = G such that

(4.125) g=1near S' x {z;},1<j<s.
From (4.124), we get
(4.126)

1 8
3| @ [tdgndey =3[ s [ oo+ [ gn- [ g
2Jo £ 251 Jox = Jsixa, SixA,
Since k € H3(G, Z),

(4.127) / g*k € Z.
StxX
For 0<r <1,t€ S thenrt € A. If (2,t) € A x S}, put
, 121t
P |z]t).
By (4.125), h is a smooth map from A x S} into G. Let h: A = (LG)* be the

smooth map defined the way we did after (4.69).
If we orient .S'} as a component of 9%, we get

1 B _16h L0k
(4.129) 2/Slds/az 99 a,) = Z/lxsl o s

Also for 1 < j < s, by orienting S} as before,

(4.128) h(z,t) = o

(4.130) / gk =/ h*k.
SIXAJ' A)(SJl
Using Theorem 4.16 and (4.129)-(4.130), we get
1
(4.131) —5/81 ds /BE (956%,00) + Loy Ssixa, 95
= [ h'n.

Using now Theorem 4.17 and (4.122), (4.126), (4.127), (4.131), we get (4.115). So
formula (4.113) for f -g is unambiguous. Also by (4.102), G preserves VL.
Assume now that g € G. Let a € g be such that g = exp(a). Put

(4.132) gs = exp(sa).
Recall that G C £G. Then for s € [0,1], g, € ZG. By (4.113),if f € Ly,

(4.133) f-g=f€Lay.
Finally, by (4.104), if t € S?,
(4.134) f-t=g¥mtf,

The proof of our Theorem is completed. ]
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REMARK 4.32. By (4.120), in (4.124), we get

1
(4.135) : / ds / (A-go,day) = - / (A, dgigr™)

-~/ d ld,-lg
1), o [ lor
-/Z‘.x[OI}

So (4.135) makes more explicit the dependence of (4.113) on A. Also if f €
C>®(A,L),g € G, let gf € C°(A, L) be given by

(4.136) §f(A)=g""f(A-7).

Then (4.136) defines a representation of £G on C(A,L). In this representation
t € S acts like e~2'"t, Also if & € £G,

(4.137) 4 s, f=1Lzaf.
dt

4.7. The non simply connected case. Assume now that G is a connected
semisimple compact Lie group, which is not necessarily simply connected. Let G
be the universal cover of G. Then m,(G) C Z(G) and G = G/ (G).

Let Py s be a 4g + 3s polygon covering X. The edges of P, ; are denoted
a1, by, a7t b7, .. ,a;l,bg‘l,cl,dl,cfl,... ,Cs,ds,dyt. For 1 < j < s, set w; =
cjd]-c]-'l. Let ¢ be an element of ¥ which is a common point to the a;,b;, w;.
Then m1(g, X) is generated by the circles ay,b1,... ,aq,by,w1,... ,ws. The case
g = 1,8 =1 is represented in Figure 5.1.

Let P—%>3 beaG-bundle on ¥. Take z € ¥ \ (OZYUL,(a; Ub;)). Then
T\{z} retracts on (U{_,a; Ub;) |J(US~,w;). Since G is connected, the restriction of
P to the 1-skeleton (Uj_,a; U b;) | J(U}-,w;) is trivial. Therefore Py\(;) is trivial,
ie.

(4.138) Pz 2\ {z} xG.

Let A be a small disk in ¥ centered at z. We orient A as part of (X \ A).
Then

(4.139) Pa~AxG.
Let o : A\ {z} = G be the transition map describing the G-bundle P on Z, i.e.
(4.140) (y,9) € Pa ~ (y,09) € Pn\{z} ,¥ € A\ {z}.

Then the homotopy classes of G-bundles are classified by the homotopy classes of
maps : A\ {z} = G. Since A \ {z} retracts on A ~ §', the homotopy classes of
G bundles are specified by the element [P] of 7 (G) associated to ojpa : S* =+ G.

Clearly [o] does not depend on the trivialization of 7 on A.

The map = — [P] € m(G) depends explicitly on the trivialization of P on
¥\ {z}. More precisely the homotopy classes of trivializations of P on the 1-
skeleton are given by m;(G)?9*%. This just says that if a trivialization of P on
T\ {z} is given, all the other trivializations are given by the action of 71 (G)?9**
on this trivialization.
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Let p be the map :

L]
(4.141) p:(a,bi,...,ag,bg,c1,...,¢5) € m(G)9 ch € m(G).
i=1

Then if given ¢ € 7, (G)?9*#, we replace the given trivialization of P on I\ {z} by
the action of ¢, [P) is changed into [P) — p(c).

Finally, with the above provisos, the map P — [P] € 71 (G) does not depend
on the choice of z.

Clearly,if P £, 3. is trivial, P lifts to a G-bundle. Conversely, if P A )Y

lifts to a G-bundle Q &, ¥, since Q is trivial, and P = Q/m(G), P is also triv-
ial. Therefore [P] € 71(G) describes the obstruction to a lifting of the G-bundle P
to a G-bundle Q.

As before we fix a trivialization of P on X \ {z}.

Let VP be a connection on the G-bundle P —S> ¥ . Since
(4.142) Ps\(z} 2 X\ {z} x G,
Bx\{z) lifts to the trivial G-bundle.
(4.143) Q==2\{z} xG.

The connection V7 lifts to a connection V® on Q. Clearly, this construction of Q
depends on the choice of the trivialization of P on I\ {z}.

We will write that a family of circles A of center z tends to z if their radius
tends to 0. Clearly as A = z, the holonomy of V¥ around z tends to 1.

PROPOSITION 4.33. As A — z, the holonomy of V? around 8A C (T \ A)
tends to [P] € m (G) C Z(G). In particular if VF if flat, for A small enough, the
holonomy of V9 around 8% \ A is equal to [P).

PROOF. We fix an origin in S ~ 8A. Let t € [0,1] » 7 € G, o =1bea
horizontal lift of S* C (T \ A) in P,aA with respect to V7, in the trivialization
Pa~AxG. Thent € [0,1] = ay7:05" € G denotes the corresponding horizontal
hft of §! in the trivialization Ps\(z} ~ X \ {2} x G.

Let t € [0,1[~ & € G, tG{OI]HTtEGbellftSOftG[OI[HO’gGG
t € [0,1}» 7 € G, with % = 1. Then t € [0,1] = &75;" € G is a horizontal
lift of S* ~ OA in Qg4 in the trivialization Qiz\(z} = T\ {z} x G, with respect
to V9. In particular, parallel transport along S* =~ dA is given by &7 Go ! Now
recall that by definition

(4.144) 51 = [P]go , [P] € m(G) C Z(G).

Therefore the above parallel transport is just [P]go7:5; .

Now as A — z, 1 — 1. Therefore 7j — 1, and the parallel transport tends to
[P].

The proof of our Proposition is completed. a
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4.8. The case of a connected subgroup of a simply connected group.
Let now G be a connected and simply connected compact simple Lie group. Let
H C G be a connected compact semisimple Lie subgroup of G.

Let P L Y be a G-bundle on . Then

(4.145) P~Y¥xG.

Reducing the G-bundle P to a H-bundle Q is equivalent to finding a section of
PxgG/H ~XxG/H. Let 1 € G/H be the image of 1 € G. Then if n € X(G/H),
the corresponding H-bundle @ is given by

(4.146) Q={v.9€ExG, g7 ln=1}.
Therefore homotopy classes of H-reductions of P are just homotopy classes in
Y(G/H).
Since m;(G) = 0,0 <7 < 2, we get
(4.147) m2(G/H) =~ m(H),
m(G/H) = 0,0<i<1.

Take z € T\ (YUY, (a; Ub;)) as in Section 4.7. Recall that ¥\ {z} is
homotopy equivalent to Uj_; (a; U b;) UUj=,w;. Since m;(G/H) =0,0<i <1,
there is only one homotopy class of sections ¥ \ {z} = G/H.

If 7 is a section of ¥ x G/H, we may and we will assume that n = ionZ\A.
In this case

(4.148) Qima = £ x H,

and @ has a canonical section over I \ A.

Therefore homotopy classes of H-reductions of P are classified by homotopy
classes of maps 1 : A = G/H such that nsa = 1,i.e. by m(G/H) ~ m (H).

Take z € m(G/H) ~ w1 (H). Let Q. be the H-reduction of P associated to z.

By the above, Qx\({c} has been canonically trivialized on ¥ \ {z}. Since @ is
a H-bundle, the class [@.] € m(H) is well-defined.

PROPOSITION 4.34. The following identity holds
(4.149) [@:] = z in m(H)}.

PRrROOF. Let y € A — h(y) € G/H be a smooth map such that higa = i,
representing z in m; (H) ~ mo(G/H). Then

(4.150) Q.1a ={(y,9) EZ xG; g7 h(y) = 1}.

To trivialize Q, on A, we fix a connection V?* on Q,. If (z,g) € Q.,z, we parallel
transport g along radial lines in A. This way, we obtain g; : A — H. By definition

{4.151) [g1] = z in m (H).

Also ¢ = g; exactly defines the H-bundle Q. on ¥ in the sense of (4.140). From
(4.151), we get (4.149). The proof of our Proposition is completed. O
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4.9. The action of stabilizers on the line bundle L. Now we use the
notation of Section 1, and more especially of Section 1.9.

Let u € C/CR. We will specialize the results of Section 4.8 to the case H =
Z(u). Clearly the map

(4.152) 9€G/Z(u) - gug™l € O, C G

is one to one. It maps 1 into u.
If 77 is a section of X x O, over I, the corresponding Z(u)-bundle @Q is given
by

(4.153) Q={(z,9) € xG, g'ng=u}.

Since Qiz\{z} ~ X \ {7} X Z(u), Q has a section over T \ {z}. Equivalently, there
is g € T\ {z} x G such that

(4.154) n=gug 'onZ\{z}.

Homotopy classes of trivializations of @ on X \ {z} are just homotopy classes of
g € T\ {z} such that (4.154) holds. We have already classified these homotopy
classes by 71 (Z(u))29+*. By (4.147), we know that 75\ (.} is homotopy equivalent
to the constant 9 = 1 ~ u.

In the sequel, we will assume that 7 =« on £\ A which corresponds to 5 = 1

onL\A.
Similarly
(4.155) Qa ~ A x Z(u)
i.e. Q)a has a section. Therefore there exists g € AG such that
(4.156) n=gug lon A.

In particular by (4.156), gjaa takes its values in Z(u), so that gjsa € LZ(u). Also
there is only one homotopy class of g € AG such that (4.156) holds.

Then o = gjga € LZ(u) is exactly the o in (4.140) defining the Z(u)-bundle Q
on X.

Recall that [0] € m1(Z(u)) ~ CR/CR,. We identify [o] to a given element
[0) € CR. Let s € S* = b, € T be a loop which represents [o] in m;(Z(u)). Put

(4.157) "= (bg7V)oa € LZ(u).

Then gfe » is homotopic to 0. Equivalently g?a » defines an element of LZ(u). Since

7i(Z(u)) = 0,0 < i <2, g° extends to ¢g° € £Z(u).
By conjugation of 7 by g° € ¥Z(u), we may and we will assume in the sequel
that

(4.158) n=uonX\A4,
n=gug'onA,
g € AG, 904 € LT.
Clearly / g~ 'dg € CR is the homotopy class of g € LT.
8E\A

\
Let now 5 € £G. Put
(4.159) A"={Ae€e A; A-n=A}.
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Assume that

(4.160) AT #0.
Put

(4.161) u=r1)(z).
In the sequel we assume that

(4.162) u€ C/CR.

Then by (4.159), (4.160), it is clear that 5 is a section of the orbit O = O,. In
the sequel we assume that the conditions in (4.158) hold.
Let B € t be such that

(4.163) u = exp(B).
For s € [0,1], z € X\ A, put
(4.164) (z, 8) = exp(sB).

Then since m;(G) = 0,0 <1 <2, the map 7: £\ A x [0,1] & G extends to a map
7: L x [0,1] = G such that
(4.165) * Ms\axfo1] = exp(sB),
* Nex{1y =1-
For s € [0,1], put
(4.166) 1s(z) = 7(z,5) .
Then s € [0,1] = 1, € IG is a smooth path. Let s € [0,1] € 7), € ¥G be the

corresponding horizontal lift in £G.

THEOREM 4.35. The following identity holds
(4.167) ftlLjan = exp (—2i7r(/ 9~ 'dg, B)) :
aT\A

PRrOOF. We consider the splitting
(4.168) T=E\AUA.
Now both £\ A and A are objects like X. They carry the trivial G-bundles Fz\a
and Pa. Therefore to £\ A and A, we associate the spaces of G-connections AT\4
and A8, the line bundles L¥/A and LA, equipped with the actions of (E//\A/)G and

AG.
Clearly A embeds into AZ\A x A2 and TG embeds into (£\ A)G x AG. First
we claim that

(4.169) L=(L"\ @ L%

and the isomorphism (4.169) identifies the metrics and the connections. In fact this
is clear by (4.99).
Put

(4.170) e={(z,y) € 8 x S', zy =1}.

Then ((ZTA/)G x AG)/e acts naturally on L%\2 ® LA.
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We claim that £G embeds as a subgroup of ((EWG x AG)/e. In fact recall
that we orient 8L \ A as the boundary of ¥ \ A. Also in Section 4.1, we defined

the morphism f € LG — of € LG. So if f € £G, let § € LG be such that

p§ = fiz\a- Then to f € G, we associate ((fip\ac, 9, (fac, ¥3)) € (Z\ A)G x
AG’)/e Since as we saw in (4.7), if s € S, ¥s = s71, we find that this element of
((Z \A)G X AG) /€ does not depend on the choice of g.

Now TG acts on L. Similarly, by the above embedding, TG also acts on
(LP\A ® LA)| 4. We claim that both actions coincide. In fact this is obvious by the
explicit formula in (4.113).

Let nE\A and 72 be the restrictions of 7, to X\ A and A. Let s € [0,1] —

"E\A €X \ AG,s€[0,1]» 78 € AG be the corresponding horizontal lifts. By
the above, we get the equahty in S,

(4.171) ML = ﬁﬁ}‘émﬁﬁm :

Now we will compute both terms in (4.171). By (4.165),

(4.172) nE/4 = exp(sB).

Using (4.113), we obtain

(4.173) ﬁﬁ}ﬁm =1.
Consider the path s € [0,1} » 6, € AG, with

(4.174) 6, = gexp(sB)g™".

Clearly by (4.158), (4.165), (4.174),

(4.175) P =6,.

Moreover since gjpa takes its values in T,

(4.176) Taloa = Osjon -

Let s € [0,1) — 8, € AG be the horizontal lift of s € [0,1] — 6, € AG. By (4.175),
(4.176), we get

~

(4.177) 72 =0,.
Set
(4.178) ks = exp(sB) € AG.

Let s € [0,1] — %, € AG be the horizontal lift of s € [0,1] = &, € AG.
Recall that

(4.179) Lg=LgoR.

By [47, Proposition 4.3.2], we get

(4.180) 9(B,0)g™! = (¢Bg™!, - / (97'dg, B
A

Using (4.180), we obtain

(4.181) ghig™l = 61 exp (—21'77/ (g‘ldg,B)) .
aA
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Clearly

(4.182) K =u,

and so

(4.183) 6, =grig™t.

If Ae A29 then A-g € A1, By (4.181), we get

(4.184) KyLa = §1|LA exp (—Ziﬂ‘/ (g~ 'dg, B)) .

LY

Finally using (4.113) again, we find

(4.185) Rypa =1.

From (4.177), (4.184), (4.185), we obtain

(4.186) ﬁﬁLA = exp (2i7r/ (g'ldg,B))
TN

exp —2i1r/ (g7'dg,B) | .
aT\A

By (4.171), (4.173), (4.186), we get (4.167). The proof of our Theorem is completed.
a

4.10. The action of stabilizers on the line bundle ),. Takenow,,...,6; €
CR". Takep € Z*. Let L, ... , L, be the canonical line bundles constructed in Sec-
tions 1.14 and 4.2, which are associated to the LG orbits of (—%‘} +6,...,— %’ + 0,).

DEFINITION 4.36. Put

d
(4.187) Ap(oly-.. ’09) = {AE A) _p(E'FA)(S: € o_pai'._'_gl,-.- )
d
_p(Et_ + A)lS} E O_Pﬂ!?"'en .

8
Let vy : Ap(61,...,05) — || O_, 4, begiven by
14 P pa-;+0,
j=1
d d
7 TAisth ,—P(EE+A|S}))-

Equivalently, A, (61, ... ,8s) is the set of A € A such that the holonomy of Aon S}
lies in the G-orbit of €?*/P, . .. the holonomy of A on S? lies in the G-orbit of /7.

(4.188) A vy(4) = (-

DEFINITION 4.37. Let A, be the line bundle on Ay (61, ... ,05),
(4.189) Yo =LP @y (8 L)

Clearly £G acts on the right on Ap(61, ... ,6,). By Theorem 4.31, this action
lifts to an action on the right of £G on Ap.

PROPOSITION 4.38. The action of £G on A, descends to an action of XG on
Ap.
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PROOF. We only must show that S! C £G acts trivially on A,. However by
(4.108), if t € S, ¢ acts on the right on LP like e2"P*. Also ¢ acts on the right on
®?%-1L; like e7%7Pt, Our Proposition follows. a

Let n € £G. Assume that

(4.190) ATOV Ay(B, ... 6, £ 0.
Put
(4.191) U= 7)(1;) .

By conjugating 7 by g € G, we may and we will assume that u € T. We identify
u to a corresponding element in t, which we still denote by u. In the sequel, we
assume that

(4.192) u € C/CR,

so that Z(u) is semisimple.
Now if A € A", the G-bundle P on X reduces to a Z(u)-bundle Q on T.
Recall that by (4.138),

(4.193) QIE\{:} ~ 3 \ {:c} X Z(u) .
Put
(4.194) Qin\izp = =\ {2} x Z(u).

Then the connection A lifts to a Z (u) connection on Qp;\{,}. Still two different

trivializations of Qx\ () produce two distinct Z(u) bundles ij\{,}.
Recall that by (1.173),

(4.195) OuppN2w) = |J Ozwy(w;/p).
weW, \W
To normalize Q)5\{;}, we impose that the holonomy of the connection A along S}
be conjugate in Z(u) to e¥’%/? e_z(u), with wi € W,\W.
Let then [Q] € m1(Z(u)) ~ -C%?— be defined in Sections 4.7-4.9.

THEOREM 4.39. The following identity holds

i=1

(4.196) Mrplarn 4, (01, - .. ,0,) = exp (—21!%(2 w’8; + p[Q], U)) :

PROOF. As we saw in (4.158), by conjugating 1 by an element of G, we may
and we will assume that

(4.197) n = uonI\A,

= gug~'on A with g€ AG, gpa €T
Then
(4.198) QIE\A =X \ A x Z(u) .

Let VF be a connection on P which preserves n. Then V¥ induces a connection
V@, which, in the trivialization associated to (4.198), is given by

(4.199) Ve=d+A, Ac QY(Z\ A, 3u).
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The connection V@ lifts to a connection V@ given by
(4.200) ve=d+4A.

By our choice of é, we may and we will assume that the holonomy of v? on S}
lies in the Z (u) conjugacy class of e¥'i/?,

By [21, Section 3.2], [47, Proposition 4.3.6] for 1 < j < s, there is h; € LZ(u)
such that

~ d = d 0;
-1 _ 3
(4.201) hj (E-t- + AIS,‘) hj = i wj; .
Since Z (u) is simply connected, there is h € $Z(u) such that
(4.202) hsr=h;, 1<j<s.

Let h € £Z(u) be the image of . Then hjsa € LZ(u) is homotopic to the constant
loop 1. By proceeding as in (4.157), we may and we will assume that hjsa € LT is
homotopic to the constant loop 1 in Z(u).

Now we may as well replace n by h~lnph and A € A" by A-h € A" 'k, By
(4.197),
(4.203) hlnha = R7'gug 'hia,

h_1g|aA € T

Finally the homotopy class of h~} g1 € LZ(u) is the same as the homotopy class
of gist € LZ(u),1<j<s.

So basically, we may and we will assume that 7 verifies the assumptions in
(4.197), but we also have the extra assumptions

d d .0
. —_ . B § <91 <L .
(4.204) (dt +A)|5! =5 v , 1<j<s

Now by definition, the right action of u € LG on L _pasat+wie; is given by
exp(—2im(u, w?6;)) € S'. Using (4.167), we see that

(4.205) M, = €xp (21’71'(-— ijﬂj - p/ g_ldg,u)) .
aT\A

i=1
By Proposition 4.34,

(4.206) [, o7de= @l e m(z(w).
8T\A
From (4.205), (4.206), we get (4.196).
The proof of our Theorem is completed. (]

REMARK 4.40. It should be pointed out that the expression (4.196) is natural.
In fact it only depends on the w/ € W, \W. Also as we saw after (4.141), we know
how [Q] changes if we change the trivialization of Q|z\a. One verifies easily that
(4.196) is compatible with this formula.

Also by Proposition 1.44, one verifies easily that (4.196) is compatible with the
fact that G acts as a group on A,.
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5. The moduli space of flat bundles on a Riemann surface

The purpose of this Section is to construct the moduli space M/G of flat G-
bundles over a Riemann surface ¥ with marked points. We establish the Witten
formula [63, 64] for the symplectic volume of M/G. Also we show that the formula
of Witten [64] and Jeffrey-Kirwan [28] can be applied to M/G. In particular, we
express the integrals of certain characteristic classes over M/G in terms of the
action of certain differential operators on local polynomials over the maximal torus
T. Also we give a formula for ¢; (TTM/G) . All these results will be needed in Section
6, when we apply the Theorem of Riemann-Roch-Kawasaki [32, 33] to M/G .

As explained in the introduction , our derivation of the Witten formula is closely
related to earlier work by Liu {39, 40].

This Section is organized as follows. In Section 5.1, we give the standard
combinatorial description of ¥. In Section 5.2, we introduce the corresponding
combinatorial complexes, which compute the absolute and relative cohomology of
flat vector bundles over ¥. In Section 5.3, we introduce the G-equivariant map
¢: X =G? x []; O; = G, such that M = {z € X, ¢(z) = 1}. Also we relate the
differential of ¢ to the combinatorial complexes on ¥ which compute the absolute
and relative cohomology of the flat adjoint vector bundle E. In Section 5.4, we
give natural conditions on the orbits O; under which 1 is a regular value of ¢, so
that M/G is an orbifold. In Section 5.5, we give conditions under which the set of
elements in the fibres of ¢ or in X with non trivial stabilisers are of codimension
> 2. In Section 5.6, we describe TM /G and the symplectic form w. In Section 5.7,
we show that the symplectic volume form on M/G can be evaluated in terms of
the corresponding combinatorial complexes. In Section 5.8, using the results of the
previous subsections, we prove Witten'’s formula [63, 64] for the symplectic volume
of the reductions of M/G.

In Section 5.9, we define logarithms from certain subsets of G into g. In Section
5.10, we show that the invariant open sets of X where G acts locally freely are
naturally equipped with a symplectic form, and that the action of G on these
sets has a moment map. In Section 5.11, we compute the integrals of certain
characteristic classes on the moduli spaces associated to the centralizers Z(u),u €
C/R". As we will see in Section 6.4, these moduli spaces correspond to the strata of
M/G. In Section 5.12, we compute certain Euler characteristics. Finally, in Section
5.13, we give a formula for ¢; (TM/G).

5.1. Combinatorial description of the Riemann surface X. If a,b lie in
a group I, put

(5.1) [a,b] = aba~ b7,
Let g€ N, s € N, g+ s > 0. Let I" be the discrete group generated by 1,
U3, V1,... U, Vg, W1,... ,Ws, and the relation

9 3
(5.2) H[U,‘, 'U,‘) H w; = 1.
j=1

i=1

Let X be an oriented connected compact surface of genus g. Let z;,... ,z5 be
s distinct elements of X. Put

(5.3) X'=X\{z1,...,%,}.
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r12

c1-1

q4 aq1-1 ,q3
FIGURE 5.1
Let Ay,...,A, be small non intersecting open disks in X, centered at z;,... ,z,.
Let ¥ be the surface with boundary
(5.4) T =X\ U Aj.
j=1

Let ¢ € . Then I can be canonically identified with m1(g, X) = m1 (g, X'). Let
Py s be a 4g+3s polygon covering ¥. The edges of P ; are denoted a1, b1, al‘l, bt ..,
a;l,b_;l,cl,dl,cl_l, ... Cs,ds,c;t. Then P, , induces a cell decomposition of £
with one two-cell, 2g + 2s one-cells, 1 + s zero-cells. The two-cell is the interior
o
Py s of P,,. The 2g + 2s one-cells are the circles ay,b1,...,a4,by,di,... ,ds, and
the segments ci,...,cs;. The 1+ s zero-cells consist of ¢ which lies in the a;, b;,
and is a boundary point for the ¢;, and also 7q,...,7, which lie respectively in
¢1,-..,Cs and in d;,... ,ds. The case ¢ = 1,s = 1 is represented in Figure 5.1,
where ¢, ... , ¢° represent g, and r}, 72 represent r;. In the description given above,
the group 71 (q, X) is generated by the circles u; = a3,v1 = b1, ... , 4y = a,,v, = by,
wy = adicrl, ... ,ws = cgdscy L

Also the above decomposition induces a cell decomposition of X, with s 1-cells
dy,...,ds, and s O-cells rq,... ,7s.

To the above cell-decompositions of ¥, we associate the corresponding com-
plexes over Z, (CZ, 8), (C%%, 8) which calculate the homology groups H.(X, Z), H (0%, Z).
Let (C*7,8) be the quotient complex defined by the exact sequence

(5.5) 0 - (C%%,8) = (CF,8) -» (C*7,8) = 0.

Then the homology of (C*7,8) is the relative homology H((%,9%),Z).

o
Note in particular that Cf " is generated by P, C’f "™ by the 2g + s one-cells
a1,bi,...,a4,bg,¢1,... ,Cs, C’,f" by the zero-cell q.

5.2. The combinatorial complexes on X. Let V be a finite dimensional
complex vector space. Let 7 : I' =& Aut(V) be a represention of I'. Equivalently let
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u,v; (1 <i<g), wj (1 <j<s)in Aut(V) such that

(5.6) [Hfws, v [T wi =1

i=1 j=1
Let 7: & — ¥ be the universal cover of X. Put
(5.7) F=%xpV.

Then F is a flat complex vector bundle on . Let V¥ be the flat connection on F.

To the above cell decompositions of ¥,0%, we associate the corresponding
combinatorial complexes (CZ(F), ), (CP%(F),8), (CE"(F),d), whose homologies
are respectively H (X, F), H (0%, F), H ((£,0%), F), and which fit in the exact se-
quence of complexes

(5.8) 0 — (CO%(F),8) = (C*(F),8) » (C*"(F),0) = 0.
For s > 0, we have the associated long exact sequence

(5.9) 0 = Hy((Z,8%), F) - H, (9%, F) - H\(%,F) » H,((Z,0%), F)
— Ho(8%, F) - Ho(T, F) = 0

(in (5.9), we used the fact that if s > 0, Ho(%, F) = 0, Hg((Z,8%), F) = 0).

o

Let p be the barycenter of the 2-cell P, let ¢',... ,¢¥*Y, 7l 72 ... 7l r? be
the vertices of P (see Figure 5.1 for the case g = 1,5 = 1).

Then C3(F) is the space of flat sections of 7*F on 1'3’ and can be identified
to Fp. Similarly CE(F) is the space of flat sections of F in the “interior” of the
corresponding one-cells. We identify (7*F),, to 7*F, by parallel transport with
respect to 7* V¥ along a radial line connecting p to ¢'. Along P , we identify n*F
to (7*F),, by clockwise parallel transport with respect to m* V¥,

Then we identify CF(F)
over a;, with (7*F)g .
over by, with (7*F)g2 .
over az, with (7*F)gs .
over by, with (7*F) s .

over ¢, with (7*F)gep+41 .
e over di, with (7*F),,

Of course ultimately, (7*F)g, (7*F)g2, (7*F)gs,... are identified to m* F, as indi-
cated before.

Finally C¥(F) is identified to (7" F), @ (@;=1 F,J;), which itself is identified
to a sum of 1+ s copies of (7*F),.

So CF(F) is just (n*F)p,, CL(F) is a sum of 2g + 3s copies of (7*F)p, and
CF(F) a sum of 1 + s copies of (1*F),.
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Then one verifies easily that if f € CY (F) ~ (* F),,
0f = (1 = wvy ' uy™) fia, + (1 = vywao7 Yug* fip, +
(1 = ugv5 tuz Vv, w)fla, + (1 — v2uzvy Dug o, w) fip, + ... +
(5.10) (1 —wi vy, ug)... [v1,u1lfle, + [vg, ). . - [U1, u1] fja,
+(1 - wz‘l)wl_l[vg,ug] e [Ulaullfl‘:z + wl_l[”yv“g] e [vlsUI]f[dz +...
Similarly 8 : C}(F) — C3(F) is such that if f € (n*F),,
(6.11) (fia) = (I—vNfja,
fp:) = A-vDfig,
fie;) = fig = firts
fig;) = (1 *wj—l)fh;-

In view of (5.6), (5.10), (5.11) one verifies that, as should be the case, 8% = 0.
By restriction to 8%, we obtain the chain map 8 : CI¥(F) — C8*(F) given by

(5.12) fia; = (1= w;") i -

The complex (CZ"(F),d) is obtained by making formally f,r,x, =0, flg; =0in
(5.10), (5.11).
Note that for s > 0, we recover the fact that

(5.13) Hy(Z,F) =0, Hyo((%,0%),F)=0.
PROPOSITION 5.1. The following identity holds
(5.14) Hy((%,0%),F)~{f € (@ F)p,(u1 - 1)f =0,(v1 - 1)f =0,...,
(ug=1)f=0,(v, -1)f =0,
(wp —1)f=0,...,(ws —1)f =0}.
Proor. By (5.10),if f € CQZ’T(F), the condition 8f = 0, can be written as
(5.15) worluil f = f,
[vi,wlf =u'f,
ugvy tug [or, w1)f = [or, wlf,

(2, wa)fvr, ua]f = u [v1,walf,

(1 - wl_l)[vg’uy] . '[vlrul]f =0,

Q1 —wz_l)wi'l[vg,uy]...[vl,ul]f =0.

From the first two equalities in (5.15),

(5.16) [, wmlf =uf =ui'f,
so that

(5.17) vluflf=f.



198 JEAN-MICHEL BISMUT AND FRANCOIS LABOURIE

From (5.16), (5.17), we find that the first two equalities in (5.15) are equivalent to

(5.18) wf=uf=Ff.

By proceeding as before, we get from (5.15),

(5.19) wuf=f,wuf=f,1<i<yg,

so that

(5.20) wif=f,1€j<s.

The proof of our Proposition is completed. a

Let F* be the flat vector bundle on X, which is dual to F. Then if V* is dual
to V, F* is the flat bundle on ¥ associated to the dual representation 7* : T' —
Aut(V*).

Let (CE(F),8), (C%%(F),0), (CEr(F),8) be the complexes dual to (CE(F*), ),
(CPE(F*),8), (CE(F*),d). Then we have the exact sequence of complexes
(5.21) 0 = (C®™(F),8) - (C*(F),8) = (C%%(F),8) - 0.

The associated cohomology groups are respectively H'((X,9%), F), (H (%, F), H(0%, F).
For s > 0, the corresponding long exact sequence
(5.22) 0 - H°(Z, F) - HY(8%, F) - H'((,8%), F) - H'(S,F) -
H'(8%,F) - H*((%,0%),F) - 0
is dual to the exact sequence (5.9) for F*.
Now we describe the chain map 8 in the complexes (5.21). We trivialize the
flat vector bundle F as indicated above. In particular the complexes in (5.21) are

now direct sums of copies of (7*F),. By (5.10), (5.11), we find that if f € n*F},
8 : CEO(F) — CE1(F) is such that

g K]
(5.23) a(flg") = (1 - wi)flas + (1 - v)flb)) + 3 Fles,

i=1 j=1
A(fIr}) = —flej + (1 — w;) fldj,
and 9 : CZ1(F) = CT?(F) by

(5.24) 0(fla;) = [ui,v1]...[ei—1,vim1](1 - u,-viui_l)f ,
6(f|b,) = ['ul,vl] e [u,-_l,'u,-_l]u,'(l - v,-uflv,»_l)f ,
0(fle;) = [ui,n]... [ug,vglwy ... w;1(1 —w;)f,

B(fld,) = [ul,'vl]...[ug,vg]wl...'wj_lf.

The complex (C*™(F),d) is obtained formally from (5.23), (5.24) by making
the components indexed by d; or r} equal to 0. Finally 8 : C®9%(F) - C19%(F)
is given by

(5.25) 8(fIrj) = (1 — w;) fld; .
Observe that by (5.23), (5.24), it is clear that for s > 0,
(5.26) H*(Z,F)=0, H((%,8%),F) =0.
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PROPOSITION 5.2. The following identity holds,

(527)  H°(Z,F)={flg"+ ) flrj , with f € n"F, such that

=1
1-w)f=0,(1-v)f=0(1<i<g), 1-wj)f=0(1<j<s)}.
PRrooF. Our identity follows from (5.23). a

REMARK 5.3. By Poincaré duality
(5.28) H;((%,0%),F) ~ H(Z, F).

Using Propositions 5.1 and 5.2, the identification (5.28) has been made explicit.
Another interpretation is to view the complex (C*'(F),d) as the relative homology
complex associated to the dual cell decomposition of .

Suppose that s > 1. Let (K, ) be the trivial complex concentrated in degree 1,

(5.29) K' = @Pker(1 - w;)le; ~ H'(OL, F).
Jj=1

Then by (5.24), (K", d) is a subcomplex of (C= " (F), ).

We have the obvious exact sequences

(5.30) 0 —ker(1 — w;) — 7" Fp — Im(1 — w;) —0 .

j=1—w;
The exact sequences (5.30) induce an exact sequence of complexes
(5.31) 0 — (K+,8) — (CE"(F),8) — (C%(F),0) —>0 .
By (5.23), (5.24),
(532) C®*(F) = CE®"*(F),k=0o0r2,

9 s
P F,.. @1 F,,, @ PIm(1 —w))y; k=1.

i=1 j=1

By (5.23), (5.24), if f € n*F,, 8 : C=0(F) — C*1(F) is given by

g s
(5.33) af = (1 = u)fias + (L= v) fo,) + D (L= wy)fic,
1 j=1

and 8 : CE1(F) —» CZ2(F) by

(534) 6(f|al) = [ul,m] . [u,-_l,'ui-l](l - u,-viui"l)f s
O(f1b:) [ur, 0] ... iz, Vi1 Jus(1 — viu] o7 ) S,

8(f|c,) [ul,vl]...[ug,vg]wl ...w]'_1f.
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Let H'(Z, F) be the cohomology of (C-(F),8). By (5.31), for s > 0, we have
the long exact sequence

(5.35)
0 HO(Z, F) — K! = H*(3%, F) — H((Z,0%), F)
— (%, F) >0 H*((2,0%), F) HY(Z,F) 0.

THEOREM 5.4. For s > 0, the following identities hold,
(5.36) H(Z,F) = HY (X, F),
H%*(Z,F) = H*((Z,0%), F).
Also H\(Z, F) is the image of H'((Z,0%),F) in H'(Z,F). In (5.95), the map
H%(E,F) - K is just the map H*(X, F) — H%(8X, F), the map K — ngz,az),F)
is minus the map H°(8%, F) - H'((X,0%), F), and T : H*((Z,9%), F) - H'(Z, F)
is induced by the map H'((Z,0%), F) - H(Z, F).
Proor. By (5.33),
(5.37) HYZ,F)={fenF,,(1-u)f=0,(1<i<yg)
(1-v)f=0,(1-w;)f =0,1<5 < s}
Using Proposition 5.2, and (5.37), we get the first equality in (5.36). The second
equality in (5.36) follows from (5.24), (5.34). R
Inspection of (5.23), (5.24), (5.37) shows that the map H°(Z, F) — K! is the
canonical H°(X, F) - H°(8%,F). Take f € ker(1 — w;). By (5.23), if flr} is
viewed as lying in C°(Z, F), then
(5.38) OflIr; = —flej .
Therefore the map K* —+ H'((%, %), F) is minus the map H°(9%, F) —+ HY((%,8%), F).
By (5.35), we have the canonical isomorphism

H'((%,0%), F)

it ~ e MTHTH) )
(5.39) H' (%, F) ~ fm HO(3S, F)
By (5.22), (5.39), we find that H!(Z, F) is exactly the image of H((Z, 8%), F) in
HY(Z,F).
The proof of our Theorem is completed. a

REMARK 5.5. Assume that F' and F* are naturally isomorphic as flat bundles.
This is the case when F is real and carries a flat scalar product. Then H°(Z, F) and
H?*((%,0%), F) are Poincaré dual, and the image of H((Z,8%), F) in H!(X, F) is
equipped with a non degenerate 2-form, the intersection product. The conclusion
is that in this case, the cohomology of (C-(F),8) exhibits Poincaré duality.

5.3. The map ¢. Let G be a compact connected semisimple Lie group. Let
Z(G) be the center of G. Then Z(G) is a finite subgroup of G. Let G' = G/Z(G)
be the adjoint group. Then G’ acts naturally on G by conjugation. If v € G’,
v € G, we will write

(5.40) u-v=uvu"l.
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Similarly G’ acts on G*9** by conjugation. We will use the same notation for the
action of G on G or on G?9** by conjugation.
Take g,s € N, with g +s5 > 0.

DEFINITION 5.6. Let ¢ : G29%* — G be the map
9 s
(5.41) D(11,V1,. .. ,Ug, Vg, Wy, ..., W,) = H[u,-,'u,-] ij .
i=1 j=1

Then ¢ is G'-equivariant, i.e. if g € G', € G¥*2,
(5.42) ¢(g-z) =g ¢(z).

Let g be the Lie algebra of G. If g € G, we identify T,G to g = T.G via the
right multiplication operator R,.. Then if z € G292,

(5.43) T,G%9+s = g29+s

DEFINITION 5.7. Take £ € G29%*. Let 6 : g — g?9t* be the derivative at g = 1
of the map g € G+ g -z € G29+5, Similarly let § : g29+% — g be the derivative at
T € G¥* of o' = G+ > §(2') € G.

Clearly G acts on g by the adjoint action.

PROPOSITION 5.8. Take T = (u1,v1,... ,Uq, Vg, W1, ... ,Ws) € G292, Then if
f€g,
(5.44) 0f =((1=u)f,(A—=v)f,...,(1—uy)f,(1 —v,)f,

(1 "'wl)fa--- ,(l—w,)f)-
Similarly, if (fi,-.. , fag+s) € 8297,
9
(545) é(fl, N ,f2g+a) = Z[ul,'vl] v [ui_l,vi_l]
i=1
(1 = waviu; ') faic1 +ui(1 - Uiui_lvi_l)fw)

]
+ Z[ul,vl] cen [ug,vg]uu .. .wj_1f29+,- .
i=1

PRrROOF. This is a trivial computation, which is left to the reader. a

Let O C G be an orbit in G. More precisely, take g € G, and put

(5.46) O={d 9,9 €G}.
Of course g € O. If Z(g) C G is the centralizer of g,
(5.47) 0~G/Z(yg).

Clearly the tangent space T,O C T,G ~ g is given by
(5.48) T,0y =Im(1-g).
Also T.Z(g) C g is given by
(5.49) T.Z(g) = ker(1 — g).

Then the exact sequence
(5.50) 0-T.Z2(9) > TG - T,0, >0
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corresponds to the obvious

(5.51) 0—>ker(l-g)—>9 gure Im(1 - g) —>0 .
Let O1,...,0, be s adjoint orbits of G in G. Put
(5.52) xX=6"x]]o;.
Jj=1
If £ = (u1,V1,--. ,Ug, Vg, Wi,...,Ws) € X, 6:9 — g?97* is in effect a linear map :

g—2g¥o @;zl Im(1 — w;). By restriction we obtain the linear maps
(5.53) (D,6):0 —>8 —— g% & @j-, Im(1 -~ w;) —>9g—>0 .

Note that in general
(5.54) 62#£0.
Also observe that if g € G', g maps (D, ), into (D, 0)4;.

DEFINITION 5.9. If ¢ € X, let Z(z) C G, Z'(z) C G' be the stabilizers of z,
and let 3(z) be the Lie algebra of Z(z) and Z'(z).

Of course Z'(z) = Z(z)/Z(G).
PROPOSITION 5.10. For z € X, then
(5.55) {feg,6f =0} =35(z).
Proo¥r. This is obvious by (5.44). a

Let (, ) be a G-invariant scalar product on g. If h is a vector subspace of g,
let h* be the orthogonal space to b in g.

PROPOSITION 5.11. For z € X, then

1
(5.56) [5(929 @ @ Im(1 - wj))] =j(z).
j=1
PROOF. Let §* : g = g% @ @;=1 Im(1 — wj) be the adjoint of § : g%? &
@;=1 Im(1 — w;) = g. Clearly

(5.57) gY@ é Im(1 — w;))t = kerd*.

i=1
Let P'™(-w;) be the orthogonal projection operator g — Im(1 — w;). Then
(5.58) (1 —wjH)P™0=%3) = (1 —wj!),

and 1 — w;! is one to one from Im(1 — w;) into itself. Using 5.45, we obtain a

formula for §* involving the projection P™(1~wi) By (5.58), to calculate ker 6*,
we may replace PI™(1~w;) py (1 - w;). By proceeding as in Proposition 5.1, we get
(5.56). (]

Recall that ¢ : X — G is said to be regular at z € X if dg(z) : To X — Ty()G

is surjective.
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THEOREM 5.12. The map ¢ : X — G is regular at z € X if and only if
3(z) =0.
PROOF. Our Theorem is a trivial consequence of Proposition 5.11. O
DEFINITION 5.13. Put
(5.59) M={ze X, ¢(z) =1}.

If z = (u,...,ws) € M, then z defines a morphism I' -+ G. Also G acts
on g via the adjoint representation. Let E be the flat real vector bundle on ¥
constructed as in (5.7), i.e.

(5.60) E=Sxrg.
The following result was first obtained by Liu {39, 40].

THEOREM 5.14. If z € M, then in (5.53), 62 = 0, i.e. (D,8). is a complez.
The complez (D, 8), can then be canonically identified to the complez (C* (E), 8),.

PrOOF. By (5.42),ifz € M,

(5.61) d(gz) = 1.
- By (5.61), we find that 62 = 0. Comparing (5.33), (5.34) and (5.44), (5.45), our
Theorem follows. O

REMARK 5.15. By Theorem 5.4, if £ € M,
(5.62) H°(Z,E) H°(Z,E)
H*(%,E) = H*(%,0%),E).
In view of Propositions 5.1 and 5.10, we find that if z € M,
(5.63) H(Z,E) = (),
HYZ,E) = 3(2)".
So when £ € M, Proposition 5.11 follows from (5.63).

5.4. The set of regular values of the map ¢. Recall that G and G' act
by the adjoint action on g. Then one verifies easily that if x € M,g € G,

(5.64) (CZ(E),0) —— (CE,(E),0)
is an isomorphism of complexes. In particular the induced map
(5.65) AE(B) —5> H},(E)

is an isomorphism.

Let T be a maximal torus in G, let t be the Lie algebra of T. Let W be the
Weyl group of G with respect to T. Let R = {a} C t* be the root system of G, let
CR = {hq} C t be the corresponding coroots.

Now we recall the definition of S C T given in Definition 2.23.

DEFINITION 5.16. Let S C T be given by
(5.66) S={teT;t= Z t*he ; the h, for which t* # 0 do not span t}.

a€ER
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Let ,...,t, € T. Let O1,...,0; be the orbits of ¢,... ,t, in G. By [15,
Lemma IV.2.5],

(5.67) O;NT=Wt;,1<j<s.

DEFINITION 5.17. We will say that (t,,... ,t,) verify (A) if for any (w!,... ,w®) €
we,

(5.68) > wit; ¢ 8.
1

THEOREM 5.18. For g > 1, the map ¢ : X — G is surjective. Forg>1,t€ T
is a reguler value of ¢ if and only if (t1,t3,... ,t;,—t) € T+ verify (A).
For g =0, t € T is a regular value of ¢ in the following two cases :

(5.69) ot & o(X).
et€ ¢(X), and (t1,...,t,,—t) verify (4).

PROOF. By [14, Corollaire 4.5], since G is semisimple, the map (u,v) € G2 —
[u,v] € G is surjective. Therefore, for g > 1, the map ¢ is surjective.

First we will prove the remainder of our Theorem for ¢ = 1. By Theorem 5.12,
1 € G is a non regular value of ¢ if and only if there exists £ € M such that
3(z) # 0. Equivalently there exists p € g, p # 0 and = = (uy,... ,w,) € M such
that € Z(p)?9**. By [15, Theorem IV.2.3], Z(p) is a connected Lie subgroup of
G, which is not semisimple, since Rp is contained in the Lie algebra of its center.
Let To = Zo(Z(p)) be the connected component of the identity in Z(Z(p)). Then
we have the exact sequence

(5.70) 1 =+To = Z(p) > Z(p)/To — 1,
and Z(p)/T, is semisimple. Put
(5.71) v =m(Z(p)/To),
and let Z(/p\)_//To be the universal cover of Z(p)/To. Then (5.70) fits in the diagram
(5.72) 1 1 1
1 -1 —-7 > >1
1—> T — Z(p) —> Z(p)/ Ty — 1
1—> Ty —> 2(p) —> Z(p)/To — 1
|
1 1 1

In (5.72), A (p) = Z(p) is the obvious v covering of Z(p).
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Since Z(p)/Ty is semisimple and simply connected, any central extension of
Z(p)/To by a torus is trivial, so that

(5.73) Z(p) = To x Z(p)/ To.

Therefore v C 265-/71’0 embeds as a finite subgroup of T x Z(/p\)_//To.

Let T(p) be a maximal torus in Z(p)/To. Then Ty x T(p) is a maximal torus
in Z(p). From (5.72), (5.73), we get the complex

(5.74) 1 1 1
l
1—>1 >y ¥ > 1
1 —> Ty — T x T{(p) T(p) —1
1 To >T —T/Ty 1
1 1 1

Now we use the notation of Theorem 1.52. Let t; = 3(Z(p)) be the Lie algebra
of To. Let t; C t be the vector subspace of t spanned by the {hqa}acr,. Clearly

(5.75) t=tydt;.
Also t,; is the Lie algebra of T'/Tj or of T(p).

Let [2 (p), Z (p)] be the commutator subgroup z (p), i.e. the group spanned by
commutators in Z (p). By (5.73), since Z(p)/Tp is semisimple,

(5.76) [Z(), Z(p)] = Z(0)To.-

Clearly [Z(p), Z(p)] maps onto [Z(p), Z(p)]. Therefore [Z(p), Z(p)] is a compact
connected subgroup of Z(p), and so it is a connected Lie subgroup of Z(p).

Let now t € TN{Z(p), Z(p)]. By the above, thereis a € Z(p)/To, b= (bo,b1) €
Ty x T(p) which map to t. Therefore, if ¢ = ab™!, then c € . Clearly

(5.77) c= (b5, ab7Y).
By (5.74), (5.77),

(5.78) abiteycC T(p).
From (5.77), we get

(5.79) a€T(p).

We thus find that if ¢ € T N [Z(p), Z(p)], ¢ is the projection of an element of T(p).
Equivalently t can be represented by f € t;.
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Recall that
9 8
(580) H[uh 'U‘i] H wj = 1 )
i=1 Jj=1
and u;,v; € Z(p), 1 <i < g,w; € Z(p), 1 <j <s. Clearly T is a maximal torus

in Z(p). So there is g € Z(p) such that gw;jg~* € T. Since gw;g~* € TN Oy, by
(5.67), there is w? € W such that

(581) ng'g—l = ’U)jtj .
Therefore
(5.82) w; = w’t; in Z(p)/[2(p), Z(p)]-
So by (5.80), (5.82), we get
(5.83) > wit; € Tn[Z(p), Z(p)]-
ij=1
By the above, we find that
8
(5.84) Y witi= Y s*hainT.
j=1 a€R,

Now since p # 0, {hq, @ € R,} does not span t,i.e. (t1,... ,t,) does not verify (A).

Conversely, suppose that g > 1, and (¢,...,t;) does not verify (A). Then
there is (w!,...,w*) € W?, such that 37;_, wit; can be expressed as a linear
combination of {hy} which do not span t. Let p € t, p # 0 be orthogonal to the
corresponding {a}. By the above,

(5.85) . > _wt; € [Z(p), Z(p)].
j=1

Using the fact that in a compact semisimple Lie group, any element is a commutator
{14, Corollaire 4.5], and also the considerations after (5.76), by (5.85), there is
ug, vy € Z(p) such that

s
(5.86) [ug, vg] [] wit; = 1.
Jj=1

Ifz=(1,...,1,uq,vg,w'ty,... ,w’t,), then € M, and p € 3(z), so that 3(z) #
{0}. By Theorem 5.12, we find that 1 is not a regular value of ¢.
Let t = t,__:l € T. Let Oy41 C G be the G-orbit of t541. Put X3 = G2 x

;:} Oj. More generally we denote with the index +1 the objects we constructed

above, which are associated to X ;. Clearly

(5.87) Xi1=X x Og41.
Also if (z,ws4+1) € X1,

(5.88) $+1(z, Ws11) = S(T)Wst1 -
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Clearly ¢(z) = t if and only if (z,%,41) € M4+,. By (5.88), if ¢ is regular at z,
¢+ is regular at (z,t,41). Conversely, suppose that ¢.1 is regular at (z,t,41). By
(5.88),

(5.89) Im(dgy1)(x, ter1) = Im(dg ")z + (ta1 — 1)(g) -
By (5.42), we find that
(5.90) (ts+1 —1)(g) C Im(dgpg™"), .

From (5.89), (5.90), we find that ¢ is regular at t if and only if ¢4 is regular at
(z,ts+1)- Now we use our Theorem for t = 1 and we obtain the stated result in full
generality. O

REMARK 5.19. Instead of studying the case ¢t = 1 first, we could as well have
used Theorem 5.12 and proceeded directly.

5.5. The stabilizers Z'(z).

THEOREM 5.20. If G is simply connected, under one of the following three con-
ditions, if t € T is a reqular value of ¢, {z € ¢~ {t}, Z'(z) # 1} is included in a
union of submanifolds of {z € ¢~1(t)} of codimension > 2 :

e Forg>2.

o For g =1, if one of the t;’s or t is regular.

e For g = 0, s = 1, in which case ¢~{t} is empty, or if at least 3 of the

elements {t1,... ,ts,t} are regular.

If G is only connected, ifty,... ,ts are very regular, ift € T is a regular value of
#, {x € ¢71(t), Z'(z) # 1} is included in a union of submanifolds of {z € ¢~1(t)}
of codimension > 2 :

e Forg> 2.

o Forg=1, if s > 1 or ift is very regular.

e For g =0, s = 1, in which case ¢~1(t) is emptly, if s = 2 and t is very

regular, or if s > 3.

PRrRoOF. We will prove our Theorem in various stages.
o The case where G is simply connected and t = 1.

If 1 is a regular value of ¢, either M = ¢~1{1} is empty, or it is a smooth
submanifold of X.

By Theorem 5.12, when M is non empty, the group G acts locally freely on
M. Therefore M /G is an orbifold. If dim(M/G) is the dimension of the maximal
statum of M/G, then

§
(5.91) dim M/G = (2g — 2) dim(g) + Y _ dim(0;).
i=1

Of course the same observation applies to the action of G’ on M. Clearly
M/G ~ M/G". In the sequel we will use the notation M/G or M/G' indifferently.
However in Section 6.3, we will construct an orbifold G-line bundle on M/G, which
may well not be an orbifold G'-line bundle.

Take now z € M such that Z'(z) # 1. Letu € Z'(z), v # 1. If z =
(u1,...,w,), then us,... ,w, € Z(u). By conjugation, we may as well assume that
u € T' = T/Z(G). Since G acts locally freely on M, the group Z(u) is semisimple.
By Theorem 1.38, u € C/R‘. Of course here u # 0.
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Since G is simply connected, Z(u) is connected. By Theorem 1.50, for any
teT,

(5.92) ONZuy= |J Ozwlwt).
weW,\W

For 1< j < s, let w/ € W such that

(5.93) w; € OZ(u) (wjtj)v 1<j<s.
Put
s .
(5.94) X4 = Zw)?? x [] Oz t;).
j=1

We define ¢, : X* — Z(u) as in (5.41). Let M* = ¢;1{1}. Then z € M*.
Moreover Z(u) acts locally freely on M*. Therefore, by Theorem 5.12, 1 is a
regular value of ¢, i.e. M™ is a smooth submanifold of M. Note that this also
follows from the fact that M is a smooth manifold, G acts on M, and M* is a
component of the fixed point set of u in M. Then

(5.95) dim MY /Z(u) = (29 — 2) dim 3(u) + i:dim Oz(u)(wt;).

j=1
Now by Theorem 1.52,
(5.96) dim 3(u) < dim(g) — 2.
Also
(5.97) dim Oz, (w’t;) < dim O;.

Now we consider 3 cases :
e If g > 2 by (5.91), (5.95)-(5.97),

(5.98) dim M*/Z(u) < diim M/G - 2.

By (5.98), M*/Z(u) maps to a submanifold of codimension > 2 in M/G. Therefore
the G-orbit of M* in M is a submanifold of codimension > 2 in M.
e If g =1, assume that ¢; € T is regular. Then
(5.99) dim O,, = dim(g) — dim(t),
dim Oz(y) (wltl) = dim 3(u) — dim(t) .

By (5.91), (5.95), (5.96), (5.97), (5.99), we find again that

(5.100) dim M*/Z(u) < dimM/G - 2.

o Ifg=0,if s =2, then

(5.101) dim O;; < dim(g) —dim(t); s = 1,2,
8o that using (5.91),

(5.102) dim M/G <0,

ie. M =0.
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If s > 3, assume that t,,t3,t3 are regular. Then

(5.103) dim M /G = dim(g) — 3dim(t) + i dim(0O;),
j=4

dim M*/Z(u) = dim3(u) — 3dim(t) + Y _ dim Oz, (w't;).
j=4

By (5.96), (5.97), (5.103)
(5.104) dim M*/Z(u) < diim M/G ~ 2.

So we have proved our Theorem in this case.
e The case where G is non simply connected and t = 1.

First we proceed as above. In this case for u € C/R’, u # 1, Z(u) is in general
non connected. However by (1.174), since ¢1,... ,t, are very regular,

(5.105) O;NZ(u) = U 0zw.@ty).
‘IU"EWZ(,‘)O\W

For 1 < j<s,let w € W be such that
(5.106) w; € Oz(u)o(‘wjtj) .

Again we define X* by (5.94), and we define ¢, as before. Put M* = ¢;1{1}. By
the same argument as before, 1 is a regular value of ¢,. Then (5.95) still holds. If
g > 2, (5.104) is still true. If g = 1, since ¢, is very regular in G, then ¢; lies in
Z(u)o and is very regular in Z(u), so that (5.100) still holds.

If g = 0, under the stated assumptions, the argument in the proof above can
still be reproduced.

The proof of our Theorem is completed in this case.

e The case where t € T is an arbitrary regular value of ¢.

Let t = t;}}; € T. We use the notation in the proof of Theorem 5.18. Then ¢
is a regular value of ¢ if and only if 1 is a regular value of ¢+;. By the above, we
obtain our Theorem in full generality.

The proof of our Theorem is completed. O

THEOREM 5.21. If G is simply connected, under one of the following condi-
tions, {z € X;Z'(z) # 1} is included in a union of submanifolds of codimension
> 2

e g2>1

e g=0, 8> 2, and at least 2 of the t;’s are regular.

If G is non necessarily simply connected, if all the t;’s are very regular, then
{z € X,Z'(z) # 1} is included in o union of submanifolds of codimension > 2 if

eg>1l

e g=0, 5> 2, and at least 2 of the t;’s are very regular.

PROOF. By [24, Proposition 27.4], the set of conjugacy classes of stabilizers
Z'(x) is finite. Take z € X and assume that Z'(z) # e. Let G'(z) be the orbit of
G' through z. Then

(5.107) G'(z)~G')Z'(z).
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Let N; be the normal bundle to G'(z) at z. Then Z'(z) acts on N,. By {24,
Proposition 27.2], there is a G'-invariant open neighborhood of G'(z) in X which can
be identified as a G-space to a neighborhood of the zero section in N = G’ X z:(3) N.

Let N/ be the invariant part of N, under Z'(x). Then N/ extends to a vector
subbundle of the vector bundle N on G'/Z'(z), of the form G'/Z'(z) x N.

If y € Ng, then Z'(y) C Z'(z) and Z'(y) = Z'(z) if and only if y € Nf.
In particular Z'(y) is conjugate to Z'(z) if and only if y € Nf, in which case
Z'(y) = Z'(x). It follows that near G'(z), the elements of X whose stabilizer is
conjugate to Z’'(z) form a neighborhood of the zero section of N7.

Let u € Z'(z), u # 1. We may and we will assume that u € T. Let (G'/Z'(z))*
be the fixed point set of u in G'/Z'(z). Let codim(G'/Z'(z))*,G'/Z'(z)) be the
codimension of (G'/Z'(z))* in G'/Z'(z). Clearly

(5.108) codim(G'/Z(z))*, G' [ Z'(z)) < dim(g) — dim(3(u)).

Let N* be the vector subspace of N, fixed under u. Then Nf c N®. If N*
is the fixed point set of V under u, then N* is a vector bundle over (G'/Z'(x))*,
with fibre modelled on N'.

Let dim(N¥) = dim(G'/Z'(z)) + dim N/ be the dimension of the total space of
N{. Similarly let dim(N*) be the dimension of the total space of N,. By (5.108),
we get

(5.109) dim(N¥) < dim(N*) + dim(g) — dim 3(u) .
Clearly
]
(5.110) dim X = 2gdim(g) + Y _ dim(0;).
j=1

Let X be the fixed point set of X under u. Then

(5.111) X% = Z(u)? x fI(o,- N Z(u)),
=1
so that
(5.112) dim(X") = 2gdim3(u) + }a: dim(0; N Z(u)) .
j=1

By (5.109), (5.112),
(5.113) dim(N7) < (29 — 1) dim 3(u) + dimg + i dim(O; N Z(u)) .
j=1
If g > 1, using (5.96), (5.110), (5.113),
(5.114) dim(N/) < dim(X) - 2.

Assume now that g = 0, that s > 2, that G is simply connected and ¢;,%; are
regular, or more generally that t,,ts are very regular. By Theorem 1.50,

(5.115) dim@; = dim(g) - dim(t),
dimO; N Z(u) = dimj(u)—dimt.
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So if g = 0, using (5.96), (5.110), (5.113), (5.115), we get

(5.116) dim(N’) < dim3(u) + dimg — 2dim(t) + i dim(O0; N Z(u))

7=3

IA

dim(X) - 2.
From (5.114), (5.116), our Theorem follows. a

5.6. The tangent bundle to the moduli space and its symplectic form.
We make the same assumptions as in Sections 5.1-5.4.

If z € X, let G'(z) be the orbit of G’ at , and let T,G'(z) be the tangent
space to G'(z) at z. Recall that T, X C g%9%%, so that T, G'(z) C g29+°.

PROPOSITION 5.22. Ifz € M,

(5.117) T.G'(z) = 8(CE°(E)) c CE1(E).
If ¢ is regular at x € M, then M is a submanifold of X near z, and
(5.118) T-M =ker8|5,_‘,l(E)_*az,2(E).

PRrOOF. By Theorem 5.14, the first part of our Proposition is clear. If ¢ is
regular at z € M,

(5.119) T. M = kerd¢(z).
Using Theorem 5.14 and (5.119), we get (5.118). O

REMARK 5.23. Of course, if ¢ is regular at z, then T,G'(z) C T, M. This fits
with (5.117), (5.118), because > = 0. By Proposition 5.10 and Theorem 5.12,
T.G'(z) has dimension dim g.

Let 7 : M - M/G be the obvious projection. If ¢ is regular at z € M, Z'(z)
is a finite group.

THEOREM 5.24. If ¢ is regular at z € M, M is smooth near z, and M/G is
an orbifold near w(x). More precisely, near n(z) € M/G,

(5.120) TM/G = M xg H>'(E).
Also near n(z),
(5.121) M/G ~ H\(S, E)/Z' (z).

Proor. These are classical facts from the theory of orbifolds (see [?, Proposi-
tion 27.7).

REMARK 5.25. By Theorems 5.4 and 5.24, TM/G is the image of H!((XZ, %), E)
into H(X, E). This fact was also observed in Guruprasad, Huebschamnn,Jeffrey
and Weinstein [25].

Now we assume temporarily that G is simply connected. We use the notation
of Section 4.

DEFINITION 5.26. Put

d .
(5122) Aﬁat(tlv' .- 1ta) = {A € A’FA = Oa _(E'FA)S} € O—j‘T+t,'}’1 <j<s
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Equivalently, Af2t(¢,,...,t,) is the set of flat connections A such that for
1 < j < s, the holonomy w; of A along S} lies in the orbit O;.

Clearly £G acts on the right on A%2¢(¢;,... ,t,).

DEFINITION 5.27. Let £,G be the group of smooth maps g : ¥ — G such that
gq=1.

It is easy to see that £,G acts freely on Af(t;,... ,t,) . Also there is

an obvious continuous map f : Afet(t;,...,t,) = M which, to A, associates
(ul,vl,...wl,... y
w, ), the holonomies of 4 along the circles ay, by, ... ,cldlcl'l, .o sCsdgcyt.

We equip Af%2t(¢y,... ,t,)/Z,G with the quotient topology.

PROPOSITION 5.28. The map f induces an identification of compact spaces
(5.123) At (¢ .t} /2 G = M.

Proor. Clearly f descends to a one to one map Af8t(¢,, ... 1 E5)/XqG =~ M.
This map is continuous. By [18, Proposition 2.2.3], f is a pointwise identification.
The fact that the topologies coincide follow for instance from the techniques of [18,
Section 4.2, in a much simpler context. O

Assume now that (¢,... ,t,) verify (A). Then by Theorem 5.18, M is a smooth
manifold, possibly empty if g = 0. Using the techniques of [18, Section 4.2], we find
that Af2¢(¢;,... ,t,) is a smooth manifold. Note that here, we use explicitly the fact
that for any z € M, H2(Z, E) = 0. By [18, Proposition 4.2.23), A%(t,,...t,)/5G
is a smooth manifold. Also M — M/G is a G-orbifold. By the above, £G acts
locally freely on A%2t(t,,...t,).

PROPOSITION 5.29. We have the identification of orbifolds,
(5.124) At t,)/2G ~ M/G.
PROOF. By proceeding as in [18, Proposition 4.2.23), we find easily that the

identification f in Proposition 5.28 is an identification of smooth manifolds. Our
Proposition follows. 0

We do no longer assume G to be simply connected.

Let (,) be a G-invariant bilinear symmetric form on g. Then E is equipped
with the corresponding flat bilinear symmetric form. Recall that by Theorem 5.4,
H(Z, E) is the image of H'((Z, %), E) into H!(Z, E).

DEFINITION 5.30. If z € M, e, o' € HI(E, E), put
(5.125) wala, o) = / —(a, ).
>

Then w; is an intersection form, so that it is non degenerate.

THEOREM 5.31. The 2-form w is G-invariant. It descends to a symplectic 2-
form on the orbifold M/G.

PROOF. Suppose first that G is simply connected. By Proposition 5.28, the
space Af12t(¢,),...t,) /=G is an orbifold. Then the results of Section 4.1 and Theo-
rem 4.24 show that Af2t(¢;,...t,)/EG is a symplectic reduction of the symplectic
manifold A. Since it is a symplectic reduction of the symplectic affine space A4, it
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carries a symplectic form. One verifies easily that w is just this form. Therefore w
is closed.

If G is not simply connected, the homotopy types of G-bundles have been
classified in Section 4.7. Let G be the universal cover of G. By introducing an
extra holonomy h € Z(G), we can then replace G by G. The fact that w is closed
is now a consequence of the corresponding result for G.

The proof of our Theorem is completed. a

Recall that G acts on the right and on the left on X. If € M,a € T, then
z(a) € G. We define a right action of I' on X by the formula

(5.126) za==z(a)z,z € M,a €l
Thenifa€el',ge G,z € M,
(5.127) (z.9).a = (z.9)(a).(z.9) = (z.a).g,

i.e. the actions of I' and G on M commute. R
Also I' x G acts on the right on ¥ (of course, the factor G acts trivially on X).
Therefore I' x G acts on the right on M x $. Also T x G acts locally freely on M,
and I acts freely on >}
Let V be a complex vector space. Let p: G = Aut(V) be a representation of
G. Then p induces a representation I' x G — Aut(V). Put

(5.128) F=(MxE)xpxg V.
Then F is an orbifold vector bundle on M/G x X. It is obtained via the identification
(5.129) (z,0,f) ~ (z.9,0.0,9 " z(a) " ), (z,0,f) e M xEx V ,(a,9) e x G.

For a given £ € M, the restriction of F to the fibre ¥ is exactly the flat vector
bundle considered in Section 5.2.

If o € X, then o*F is an orbifold vector bundle on M/G. If 0,0’ € I, if
t € [0,1] — o, € T is a smooth path, with 0p = 0,01 = ¢’, parallel transport with
respect to the flat connection identifies ¢* F' and o'*F.

Over I, there are two distinguished points p and ¢g. Recall that G actson g
by conjugation. When V = g, let E be the corresponding real vector bundle on
M/G x Z.

DEFINITION 5.32. Let £ be the vector bundle on M /G,

(5.130) £ =p'E.
Also G acts by conjugation on G and on the O;’s. Put
(5.131) G=MxgG,0; =M xg 0.

Then G - M/G is a G-bundle, and O; - M/G is a Oj-bundle. Also uy, ... ,v,
are sections of G and wy,... ,w, are sections of 51, e ,6,.
Elements of G act naturally on £ As explained in Section 5.2, u; can be
considered as the parallel transport operator along the closed curve a; ... R
For1<j<s,let Ty, @j /(M/G) be the relative tangent bundle to the fibre O;
. As we saw in (5.48),

(5.132) Ty, 0;/M = Im(1 - w;) C €.
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As explained in Theorem 5.14, on M /G, we have the bundle of complexes
(5.133) 0 — CZ%E) » CEYE) - CZ2(E) = 0,

which, by (5.53), (5.132) can also be written as

(5.134) 0-EE¥g (é Ty, (0;/(M/G))) - € - 0.

Jj=1
THEOREM 5.33. On M /G, we have the identity

(5.135) TM/G = £¥ @ (é T,,0;/(M/G)) © E2in K(M/G).

j=1

Proor. By (5.120),
(5.136) TM/G = H'(S, E).
Also over M, by (5.63),
(5.137) Hi(Z,E)=0,j=0,2.
Hence, over M/G, by (5.134), (5.136), (5.137),
(5.138) B'(3,E) = % ¢ (P T.;0,/(M/G)) © £* in K(M/G).

j=1

From (5.137), (5.138), we get (5.135). 0

THEOREM 5.34. If the orbits O,... ,O, are very regular (resp. regular), then
(5.139) TM/G = £26-D+s g R*Iimtin K(M/G) (resp.in K(M/G) ®q Z.)

PROOF. Let t € T be very regular, let O be the orbit of t in G. Then Z(t) =T.
Ifgegq,

(5.140) Z(g.t) =9.T, 3(g.t) = g.t.
If w € O, we have the splitting

(5.141) g =Im(1 — w) & ker(1 — w),
which corresponds to the splitting

(5.142) E=T,08 Noye.

By (5.140), the vector bundle 3(w) = ker(1 — w) is trivial on O. The action of G on
the orbit O lifts to an action on the vector bundle 3(w). From (5.141), (5.142), we
find that the normal bundle Ng/¢ is equivariantly trivial. From (5.135), (5.142),
we get (5.139).

If t € T is only regular, then 3(t) = t. Also O = G/Z(t). Then if w = g.t,
g € G — g.3(t) = 3(w) induces a G-invariant flat connection on 3(w) ~ Np/q,.
Consider the splitting of vector bundles

(5.143) £ =Ty, (0;/(M/G)) & ker(1 — w;).

If the orbit O; is very regular, ker(1 — w;) is a trivial vector bundle on M/G.
Therefore

(5.144) T.;0,;/(M/G) = £ 6 R¥™'in K(M/G).
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If the orbit O; is only regular, then one finds easily by the above that ker(1 —w;) is
equipped over M/G with a flat connection. We thus get (5.139) in this case. The
proof of our Theorem is completed. 0

5.7. A metric on the determinant of TM/G. If X is a line, let A~! be the
dual line. If E is a vector space, set

(5.145) det(E) = A™(E).
If E=@, Ei is a Z graded vector space, set
m .
(5.146) det(E) = (Q)(det E;)~1)" .
i=0

Let G be a compact connected semisimple Lie group.
DEFINITION 5.35. If z € M, let Az be the real line
(5.147) Az = (det B, (T, E))~L.

Let {,) be a G-invariant scalar product on g. Then E is equipped with a
fibrewise flat scalar product. By Theorem 5.4 and Remark 5.5,

(5.148) H%(S,E) ~ (H(3, E))*, H\(Z, E) ~ (H'(Z, E))".

Observe that in (5.148), the identifications depend explicitly on (,). By (5.148),
forz e M,

(5.149) A2 ~R.
Now R carries a canonical metric || ||g such that ||1||r = 1.

DEFINITION 5.36. Let || ||», be the metric on A; such that the identification
(5.149) is an isometry.

In the sequel, we assume that (t,,...,t,) verify (A).

PROPOSITION 5.37. If ¢ € M, the metric || ||», defines a volume element on
A™eXT (M /QG), which is exactly the volume associated to the symplectic form w;.

PROOF. If z € M, then HY(S,E) =0, H(S, E) = 0, so that

(5.150) A: =det H(S, E).

By (5.120),

(5.151) T.M)G = H:(S, E).

Finally in (5.148), the identification H!(Z, E) ~ (H(E, E))* is done via the sym-

plectic form w;. Our Proposition follows. a
Now recall that H,(Z, E) is the cohomology of the complex (CZ(E), 8). Put

(5.152) Xz = (det(CE(E))) L.

Then by [35], there is a canonical isomorphism

(5.153) Az = Ag.

Also, since E is equipped with a flat scalar product, Xz isAalso naturally equipped
with a metric || ||5_, which also depends on (,). Let i }l5, be the corresponding
metric on \; via the canonical isomorphism (5.153). .
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DEFINITION 5.38. For 1 < j < s, put
(5.154) loo;| = |det(1 - wj)“m(l_w’.)ll/z, w; € O0j.

As the notation indicates, |0p,| is a constant on O;. We make the convention
that if Im(1 — w;) C g is reduced to 0,
(5.155) loo,| =1

REMARK 5.39. Recall that the function o : G - C was defined in (1.42). If
O; is regular, if w; € O;,
(5.156) loo;| = |o(w;)].

The following result has been proved by Witten [63, Section 4], who exhibited
the role of the Reidemeister torsion [49] in this context.

THEOREM 5.40. For enyz € M,

(5.157) I, = I loo; ll-lin.-
j=1
Proor. By (5.31),
(5.158) det(CE(E)) ~ det(C®" (E)) ® (det(K))™?,
which can also be written in the form,
(5.159) det(CE(E)) ~ det(C™"(E)) ® det(H (%, E)).
By (5.29),
(5.160) H°(8%, E) = @ ker(1 — wy).
Jj=1

Let ||.||laet z0(65, &) be the metric on det H(AE, E) induced by the scalar prod-
uct of E. By (5.31) , we find that under the isomorphism (5.159),

(5.161) W llaes o=y =l laescmr gyl et oo, By
-1
H det(1 — wj)jim(1-w;) .
i=1

Also by (5.21), there is a canonical isomorphism
(5.162) det CE(E) ~ det C*"(E) ® det C°%(E) .
If || |laet c=(&) denote the obvious metric on det(C¥(E)), by (5.21), (5.162), we get

(5.163) I laerc=(g) = Il llaes c=r (&)l llaet oz (i) -
Also, we have a canonical isomorphism

(5.164) det(C%%(E)) ~ det(H(OZ, E)) .

By Poincaré duality,

(5.165) H}(0%,E) = (H°(0%, E))*,

so that by (5.164), (5.165),
(5.166) det(C%%(E)) ~ det(H°(8%, E))?.
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By (5.25), (5.166),

Jj=1

s -1
(5.167) Il laercom(my) = Nl Nies mogom,my | 1 detl = widpma—wy)| -

Using (5.159)-(5.166),we get
(5.168) (det CZ(E))? ~ det CE(E) ® det C="(E).

Also under the isomorphism (5.168),

(5.169) I e amgey =l laecz@ll llaetomon(my
s -1
H det(l — w;)jm(1-w;) .
j=1

Now recall that by [35], there are canonical isomorphisms

det(H(Z, E)),
det(H((T, 8%), E) .

(5.170) det(CE(E))
det(CT"(E))

1

R

By Poincaré duality,

(5.171) det H(Z, E) ® det H((Z,8%),E) ~R.
So by (5.170), (5.171),

(5.172) det CE(E) ® det C*"(E) ~R.

Let || ||r be the trivial metric on R, such that ||1{|g = 1. We claim that under
the Poincaré duality isomorphism (5.172),

(5.173) Il laet c2 (&)l llaet o=y = 1l IR -

In fact (5.173) is a simple consequence of the existence of the Reidemeister torsion
[49], or more precisely of the Reidemeister metric [13, Section 1] on det H(X, E))
and det H((X,0%), E). In fact given any cell decomposition of the manifold with
boundary %, one can construct Reidemeister metrics on det H(Z, E) and det H((Z,8%), E)
by the procedure indicated in [13]. The basic fact is that these metrics do not de-
pend on the choice of the cell decomposition. By applying this argument to a cell
decomposition and the corresponding dual decomposition, one deduces immediately
that the Reidemeister metrics on det H(X, E) and det H((X, 8%), E) correspond by
Poincaré duality. As a consequence, (5.173) follows.
From (5.169), (5.173), we get (5.157). The proof of our Theorem is completed.
a

From (5.156), (5.157), it follows that if O;,... ,O, are regular, if r € B,

(5.174) I, = H lo(ws)ll 1. -
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5.8. The Witten formula for the symplectic volume distribution. Let
G be a compact connected semisimple Lie group. Let ( , } be a G-invariant scalar
product on g. Let dg be the Haar measure on G associated to {, ). We us otherwise
the same notation as in Section 5.7. In particular T C G is a maximal torus in G.

Let Oy,...,0, be s adjoint orbits of G in G. Take w; € O;. Let Z(w;) be the
centralizer of w;. Then the map

(5.175) ac G’/Z(wj) —a-w; € Oj

is an identification of smooth manifolds.
The scalar product ( , ) induces a volume form dvp; on O; C G.

DEFINITION 5.41. Let dux be the volume form on X = G?8 x l’[;=l 0j,
29 s
(5:176) dux (u1,v1,... ,Ug, Vg, Wy,... ,W,) = Hduid'ui Hdvo,. (wy) .
i=1 j=1

Let dt be the Lebesgue measure on t induced by (,).

DEFINITION 5.42. If g € G, let Xo, C G* x [[_; O; x O, be the set M in
(5.59) associated to the orbits Oy, ... ,0,,0,.

More precisely

8
(5.177) Xo, = {(ul,vl,... Ju,...we,w) € G% x [[0; x 0,
j=1
9 8
(5.178) H[u,-,v,-] H wjw = 1} .
i=1 j=1
Clearly, Xp, can be identified with {z € X, ¢(z) € O,-1}. Set
(5.179) X,={z€X;¢(z)=9""}.
Now G acts naturally on Xo,, and Z(g) acts on X,. Then one has the obvious
(5.180) Xo,/G~Xy4[Z(g).

Clearly, if z € X, [; f(z - g)dg depends only on 7z € X/G.

Let Gyreg (resp. Greg ) be the set of very regular (resp. regular) elements in
G. If g € Gyreg, let dt, be the Haar measure on the maximal torus Z(g), which is
associated to (, ).

By Sard’s theorem, a.e. every g € G is a regular value of ¢. For such a g € G,
Xo, is smooth, and G acts locally freely on Xp,. Also by Theorem 5.31, the
orbifold X¢o,/G is equipped with a symplectic 2 form w,. Let dvxo' /G be the
corresponding volume element on Xo, /G. Since Xo, /G = X,/Z(g), let dvx,/z(y)
be the associated volume on X;/Z(g). Observe here that dvx, g is unsensitive to
orientation. In particular the integral of a nonnegative function with respect to
dvx,, /G i8 nonnegative.

In the sequel, we make the following assumptions:

e @ is simply connected, and one of the following assumptions is verified :

e g>2.

e g>1,3>1and at least one of the ¢;’s is regular.

e g=0, s >3, and at least 3 of the ¢;’s are regular.
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or
e G is connected, the t;’s are very regular , and either
°g922.
eg>1s8>1.
e g=0,52>3.
Now we will get an analogue of Theorem 3.10.
THEOREM 5.43. Let f : X — R be a bounded measurable function. Then
Hs'—l loo;|
(5.181 /f:vdvx:c = L= atdt/ dvx, ;r(z
) x ( ) ( ) IZ(G)I T/WI ()' X./T X/T( )
|10,
G
[Tj=1 loo;| dg
z)dvx(z) = =2 2 dv z
/Mf( Jdvx (<) 1Z(G)| c lo(9)l X,/2(9) x’/z(g)( )
f(z - t)dt,.
Z(g)

ProoF. By Theorem 5.21, we know that a.e., Z'(z) = 1. By Theorem 5.12,
for a.e. T € X,d¢(zx) is surjective. Therefore the image ¢.dvy of dux by ¢ is
absolutely continuous with respect to dg. Also on the set {z € X, ¢ is regular at
z, Z'(z) = 1}, which has full measure and is stable by G, we can use the implicit
function theorem, and also integrate along the fibres of the action of G , which are
diffeomorphic to G.

Let p : Gyreg = Tyreg/W be the obvious projection. Since ¢.dvx is absolutely
continuous with respect to dg, $~!(Gyreg) is an open set in X, whose complement
is dvx negligible. Then z € ¢~1(Gyreg) — PP(Z) € Tyreg/W is a smooth map. Also
ifze Qb—l(Gvreg)’ g€QG,

(5.182) pg(z - g9) = pé(z) .

By (5.182), if z € ¢~1(Gyreg), the obvious analogue of (D,6) in (5.53) is the
complex

(5.183) (C',,8):0—>g — 9 D @ Im(1 — w;) pro t 0.
i=1 )

By Proposition 5.10 and Theorem 5.12, if z € G is such that Z'(z) = 1, the coho-
mology of the complex (5.183) is concentrated in degree 1, and the first cohomology
group of (5.183) is isomorphic to T (z) Xpg(z)/T- In particular,

(5.184) (det C;)_l o~ det(Tw(:)Xptt(z) /T).
Now the complex C; is equipped with a scalar product. Let || ||get(c:) be the

obvious metric on det(C7), and let || [|det(T, 5) X,4(»)/7) D€ the corresponding metric
on det(Tr(z)Xpp(z)/T)- Then || |laet(Ty(ayX,6(e)/7) defines a smooth volume form

on (Xp4(z)/T)reg, which will be denoted dvx_, ,, /7. Then the formula of change of
variable asserts that

1 —~
(5.185) /X f(@)dvx(z) = 2@ Jryw dt /X '/Tdvx./'r(fb‘) /G f(z-g)dg.
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If z € 7 (Tureg), Put t = [¢(2)]~ € Tureg. Then we have the double complex
(5.186)

0 (1) 0
> 029 @ Im(1 — w; t
0 s: g ,@1 (1 -w;) s 0
8
0—>9—> 0 @ P Im(1 - w;) ®Im(1 - ¢t) g >0
j=1
0 0 Im(1 —¢) po= Im(1 —t) —=0
0 0 0

Let z € X\0X, and let A be a small disk of center z. Put £4; = X\A. In (5.186),
starting from below, the first row is trivial. The second row is just the complex

(5@";) (E), D) we constructed in (5.31) (with s replaced by s+ 1). The third row is

the complex (C.,8). Also the columns are acyclic.

Let us now explain why the diagram commutes. By (5.34),ifz = (u3,v1,... ,w,),
g
(5187) a(fl, ey f29+,+1) = Z([ul,m] e [Ui~1,v-i-1](1 - uiviui_-l)fZi—l
i=1

8
+ui(1 - viuivfl)fzi') + Z[Ul,'vl] o [ug,vglwy . wig fagqs +
i=1

9 3
H[ui, ’U,’] II wjf2g+s+1 .
i=1

J=1

By construction,

I} 8
(5.188) [T, wi] [ ws =272
i=1 J=1
So in (5.187),
(5.189) O(fagrst1) =t fagrat1 -

So from (5.189), we find the diagram (5.186) commutes.

We equip the vector spaces which appear in (5.186) with the scalar products
induced by the scalar product of g. The determinants of the columns of (5.186)
are canonically trivial, and the norms of the associated canonical sections are equal
to 1. Also since the first row is acyclic, the cohomology groups of the second and
third rows are canonically identified, using the obvious long exact sequence. Finally
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the first row is acyclic, and the norm of the canonical section of the determinant of
the first row is equal to 1.

By an obvious extension of [11, Theorem 1.10], it follows that if £ € ¢! (Tyreg)
is regular, then the metric on det(H(Z41, E)) (where H!(Z,1, E) is the first coho-

mology group of the complexes (CL,8) or (5(2;;)(E),6)) induced by the complexes

-~

(CL,8) or (C(E;t‘)(E), 8) are identical. Using now (5.156) and Theorem 5.40, we get

8
(5.190) dvx,/r = [[ loo;llo()ldvx, /T -
j=1
By (5.185), (5.190), we obtain the first equality in (5.181).
The scalar product ( , ) induces a scalar product on g/t = t*. Let dg be the
corresponding volume element on T/G. Tautologically if k : G = R is bounded
and measurable

(5.191) /k(g)dg:/ dg/lc(tg)dt.
G ™G JT
Also Weyl’s integration formula [15, Theorem IV.1.11] asserts that
1
5.192 /k d=-———/ aztdt/ t-g)dg.
(5.192) [ Ko)s =gy [, o0 [ 16¢-9)dg
Using the first identity in (5.181) and (5.191), (5.192), we obtain
H,‘—x loo,|
5.193 / T)dvy (z) = = —— a(t)|dt
6199 | S@dx@)=a [ o)
[ dvep@ [ di [ sa-torae
X /T NG JT

i loo,l [ dg /
= = J dv T zt)dt, .
Z©@)] Jo (@) Jx,ja(p) X720 @ [, S @)

The proof of our Theorem is completed. a

DEFINITION 5.44. Ift € T, let |V (t)| be the absolute value of volume of X;/Z(t)
with respect to wy.

Then V(t) is a W-invariant function on T, which extends to a central function
on G.
Now we prove a result which was already essentially proved by Liu [39, 40].

THEOREM 5.45. Let f : G = R be a bounded measurable function. Then

- _ H"zl Iaojl
6190 [ 67 @inx) = =Za [ [ 10 ad]lotolV ol
o _ Vol(T) [T;-1 loo,| [ F(9)IV(9)l
[ 6 @) = s [ S
PRrROOF. Our formula follows from Theorem 5.43. a

REMARK 5.46. In [39, 40], Liu uses an essentially similar argument in his proof
of the Witten formula [63, 64). In fact let p;(g) be the convolution heat kernel
on G. Liu considers the quantity [, p;(¢~(z))dvx, and following Witten [63], he
studies its limit as ¢ — 0. The arguments he uses to evaluate the limit as being (up
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to a normalization constant) the absolute value of the symplectic volume of M/G
are essentially the ones which are used in the proofs of Theorems 5.43 and 5.45.

Let A be the set of regular values of ¢~} in G. Then A is an open dense set,
such that €A is negligible. Also on A, ¢.dvx has a smooth density with respect to
dg. By Theorem 5.45, it follows that JF"igl%'l' is smooth on AN Gyyeg.

Assume temporarily that (t;, ... ,t,) verify (4). By Theorem 5.18, 1is a regular
value of ¢. By Theorem 5.20, Z'(z) = 1 a.e. on M = X;. Using Theorem 5.45,
and proceeding as in the proof of Theorem 3.13, we get

o IVl Vol(G) )
n%é_l;;e. lo(9)] ~ Vol(T) V.

(5.195)

Using (5.195) we find that

V (G) [];=1 loo;
(5.196) Jim / pe(¢7™ (z))dv ( I)Zr(lé)ll 2 V(1),

which is a formula obtained by Liu [39, 40] by arguments essentially similar to the
ones we gave in our proof of Theorems 5.43 and 5.45.

Let K be a positive Weyl chamber in t. Let A, = AN K be the set of non-
negative weights. Then the irreducible representations of G are indexed by A,. If
A€ Ay, let x\ be the character of the corresponding representation of G.

By Theorem 5. 45, e defines a L; G-invariant function on G. Therefore, it
defines an invariant distribution on G, which can be expanded as a linear combi-
nation of the characters y, of G.

Let w; € O;. Then O; ~ G/Z(w;). Also Vol(Z(w;)) does not depend on the
choice of w;. Finally x» takes the complex value xx(t;) on the orbit ;.

Now we prove a result of Witten [63, 64].

THEOREM 5.47. The following identity of G-invariant distributions holds on
G,
L0 RPN () i
lo(9)l IT}=1 loo;]| Vol(T) [T;-; Vol(2(t)))
Z HJ—-1 XA tJ)X)\(g

Xa\(1)29+"1

(5.197)

AEA

ProoFr. By Theorem5.45, we get

Vel

(8198 V@ Jo O o] g)l
12(G)

Vol(G) Vol(T") HJ 1 la

To evaluate the integral in the right-hand side of (5.198), we follow Witten [63].
By [15, Theorem 11.4.5], if a,b € G,

- / x($(z))dvx (z).

(5.199) [ xoteate™ydp = Y29 ey,
[ o) g™ = VoG 28
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Finally, if h : O; = R is a bounded measurable function, we have the easy formula
(5.200) . oo, (0) = o2l [ oty
o Vol(Z(t;))

By (5.199), (5.200), we obtain

Vol(G)* [T5_; loo; I* xa(ta) ... xa(ts)

(5.201) /X 32 ($(@))dvx () =

ITj=1 Vol(Z(t5)) x2e-1(1)
So by (5.198), (5.201), we get
V(g) I
622 gy RO g
=tz<anv"'( T

Vol(T) i Vol(Z(tJ-)) x(t) (1 )2g+s 1"

Now (5.202) is exactly the A-Fourier coefficient of the invariant distribution H—%‘l
The proof of our Theorem is completed.

Clearly the distribution J'}V—ég%‘[ in C™ at the regular values of the function ¢.
Now we will make a crude analysis of the Sobolev regularity of |V (g)|.

PROPOSITION 5.48. If p < 2g — 1 — dim(t)/2, the invariant distribution in the
right-hand side of (5.197) lies in HP(G). If 2g — 2 — dim(t) > 0, this distribution
is continuous.

PRrROOF. Let p be the half-sum of the positive roots. By Weyl’s dimension
formula [15, Theorem VI.1.7], if R, is the set of positive roots,
A+ p,a
(5.203) o= ] Atpa)

QER+ (pya}

By [15, Proposition V.4.12], if @ € Ry, (p,0) > 0. Therefore there is ¢ > 0 such
thatif a € Ry, A€ Ay,

(5.204) (A + p,a) > sup(c, (A, a)) .

By (5.203), (5.204), we find that since the a € R, form a basis of t*, there is C > 0
such that

(5.205) xx(1) > C||Al}.
Also
(5.206) Ixal < xx(1).

Let Ag be the Casimir operator on G [47, Section 9.4]. By [47, Proposition
9.4.2],

1
(5.207) Acxr = (A +pll* = llel*)xe -
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Using (5.207), we get

IT;=1 xa(t5)xa(9)
Gyp/2 Z 1 )
(5.208) (a7 T e (]X,\(l))”"""'1

_ 1 )3 (A + ol = el v
~ 9p/2
AE€A

4 ()% (9) -
oEeT - LLXEIXN

By (5.205), (5.206),
A+ 21 = B2 T X gy 4 y=Cam1-0)

(5.209) NN
Also
d)
(5.210) /1(1 VPR < 400

ifandonlyif p<2g—-1-— ‘-’iﬂz@l. From (5.209), (5.210), we get the first part of our
Proposition. Also,

dx
(5.211) [W < 400
if and only if 29 — 2 — dim(t) > 0. By (5.210), we obtain the second part of our
Proposition. 0

5.9. Logarithms. Let U be a nonempty open set in G, stable by the adjoint
action of G. We assume that there is a well-defined logarithm log : U — g, i.e. a
smooth function U — g such that if g € U, ¢' € G,

(5.212) g = exp(log(g)) ,
log(g'9g'™") = g’ - log(g) -
In particular by (5.212), log(g) is Z(g)-invariant.

EXAMPLE 5.49. If U is a small ad-invariant open neighborhood of a central
element in G, a logarithm is well-defined on U.

EXAMPLE 5.50. Let O C G be a very regular orbit. Then O N T consists of
|W| distinct elements. Let £ € ONT, and let h € t such that exp(h) = t. Then
t — h extends into a well defined logarithm O — G.

ExAMPLE 5.51. Suppose that G is simply connected. Let K be a Weyl Cham-
ber in t, let P be the alcove in K whose closure contains 0. Then by [15, Proposition
V.7.10]

(5.213) W\Teg = P.
Also by (15, Proposition V.7.11], the map
(5.214) (9,t) € G/T x P gexp(t)g~" € Greq

is one to one. Let log : Greg — g be the G-invariant function on Gieg such that if
te P,

(5.215) log(exp(t)) =t € P.
Then log : Greg — g is a logarithm.
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We still assume that G is simply connected and simple. Let u € C/_R-' Let
Z(u) C G be the centralizer of u. Let Z(u)yreg be the set of very regular elements
in Z(u). Clearly

(5.216) Z(u)NGreg C Z(u)vreg .

Also the function log maps Z(u) NG'reg into 3(u), and gives a logarithm on Z () yreg-

Let By be the set of connections on the trivial G bundle over S;, whose holo-
nomy w lies in U. Needless to say, in a given trivialization, any element of B, can
be written in the form

D d
(5.217) E = dft' +a;, a; € Lg; .
Let 70 be the parallel transport operator along s € [0, ¢}, so that w = 7. Set
(5.218) wy = 707 (1)) 7L

Then w; is just w under translation of the origin in S; by t.
Clearly log(w;) is well-defined, and

(5.219) log(w) = 77 log(w)(72) ™! .
Also
D
(5.220) Elog(wt) =0.
By (5.219),
(5.221) etloa(ws) = r0ptlog(w)(70y-1
Put
°D D
L — p—tlog(we)  tlog(we)
(5.222) i = ¢ Dit .
By (5.220), (5.222),
% D
(5.223) D= Di + log(w;) .
From (5.220), (5.223), we get
°D
The parallel transport operator % for Lﬂt is given by
(5.225) 00 = etloa(wd D,
so that
(5.226) 0 =1.

By (5.226), the parallel transport trivialization with respect to OD% is globally
defined on S, and in this trivialization,
°D

D_4d
Dt~ dt’

(5.227)
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5.10. A symplectic structure on an open set in X. In the sequel, we
assume that the assumptions before Theorem 5.43 are in force, and also that
(t1,... ,ts) verify (A).

Let Uy, ... ,U, be ad-invariant open subsets of G on which a logarithm is well
defined. Then G acts on the right on G?¢ x [}_, U

Recall that z € G*97* — ¢(z) € G was defined in (5 41). Letz € G¥ x[];_, U,
be such that ¢(z) = 1, and that G acts locally freely at . Let U be an open
neighbhorhood of 1 in G, such that a logarithm is still well-defined on U.

Let V be an open neighbhorhood of z in G?9 x ﬂ;=1 U; such that h(V) C U.
Then we can find an open neighborhood A C G*¢ x [[j_, U; of z, which is G-
invariant, such that h(4) C U, and on which G acts locally freely.

Let ¢41 : G2+t 5 G be given as in (5.41), with s replaced by s + 1. Set

(5.228) A ={z' € G (') =1}

Clearly z € G?***  (z,¢7!(z)) € A’ is a one to one G-equivariant map. Let
A C A’ be the image of A by this map.

Let X4, be the Riemann surface ¥ with s + 1 small disks deleted. Equiv-
alently £, is obtained from T by deleting an extra small disk. Let £, be
the universal cover of ¥;. Put 'ty = m(X41). Then Iy, is generated by

UL, Vi,-.. ,Ug, Vg, W1,... ,Wst1, and the relation
s+1
(5.229) H[u.,v,] [[wi=1.
i=1 Jj=1

Asin (5.126), we find that I';; and G both act on the right on A, and these actions
commute. Also I'y; x G acts on the right on E+1 (and the action of G on E.H is
trivial). Then I'y; x G acts on the rlght on A x 2+1 Since I'y; acts freely on 2_,_1,
T4 x G acts locally freely on A x £,;.

Set

(5.230) C=(AxE4)/T41.
Then C is a fibre bundle over £, with fibre 4. Also G acts locally freely on A and
this action descends to a locally free action on C. We can then form the orbifolds
A/G and C/G = A/G X 2+1.

Let V be a complex vector space. Let p: G — Aut(V) be a representation of

G. We still denote by p the corresponding representation of ['y; x G in Aut(V).
Put

(5.231) F=AxEi xr,xaV.

Then F is a vector bundle on X/G x ¥4;. Also,verifies easily that
(5.232) F=CxgV.

Moreover F' is obained by the identification in (5.129), i.e.

(5.233) (z,0.f) =~ (zg,00,97'z(a"1)f), z€ 4,
0€§+1 y fEV, geG, a€P+1.
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Recall that rq,...,7,4; are the origin in S,...,S1,,. For 1 <j <s+1, put
D; D
234 D;_D oy
(5.234) Dt = Dp +loswie)

Then %’Jt'- is a connection on the G-bundle P on S;, with holonomy 1.

For 1< j < s+1,let V; be a connection on the G-bundle A Z/G. Consider
the G-bundle 4 x £, -y /G x £, . Along the fibres $.1, we can equip this
G-bundle with the trivial connection. This connection is I'; invariant. Therefore it
descends to a G-connection on (A x £,,)/T41 —> A/G x 5, along the fibres
E.+1. This connection along X, is exactly the flat G-connection associated to the
given element of A.

Along S}, 1 < j < s+1, we trivialize the G-bundle (4 x £,;)/T 4, < A/Gx T4

0 : -~ . .
with respect to —gg—. Then over A/G x S]‘-, 1 € j € 8+ 1, the connection V;

induces a G-connection on (A x £,,)/Ty, G—»Z/G x T, along 4/G. Since
the A x S} are disjoint, we can extend this connection to a G-connection on
(A x $41)/T41 ——> A/G x £, along A/G.

Ultimately the G-bundle (4 x £,,)/T'y, £, A/G x £, is equipped with
a G-connection V. Let F be the curvature of this connection. Then F is a G-
equivariant basic 2-form on (4 x X4+,;)/T'41 with values in g.

Let E be the orbifold vector bundle on A /G x X4, associated to the adjoint
representation G — Aut(g). Let VZ be the induced connection on E. Then F
descends to a 2-form on Z/G x X1 with values in E. Set

(5-235) Ej=riE;1<{j<s+1l

Then E; is a vector bundle on A/G. Let VZi be the connection induced by VZ
(or V;) on E;. Observe that for 1 < j < s+ 1, log(wj) is a section of E;.

Recall that C/G = A/G x £4;. Then

(5.236) A(T*C/G) = A(T*A/G)BA(T*E41) .
If w € A(T*C), we can write w in the form
(5.237) w=SwP? P e AP(T*A/G)RAI(T*T41).

Let k be the embedding A/G x 8%4; — C/G. Let ©; be the curvature of V;.
THEOREM 5.52. The following identities hold
(5.238) F©2 0,
k'F = ©,; - VP log(w;)dton A/G xS}, 1<j<s+1.

PROOF. By construction the first identity holds in (5.238). Also on Z/G X S},
0

2,(1,1)
(5.239) K'F=Fk (VE" + ; - 108(“’.1‘))) = ©; — V4 log(w;)dt

The proof of our Theorem is completed. (]
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Let (, ) be a G-invariant bilinear symmetric form on g. Clearly F? € A*(T*C)®
g ®g. Then (F?) € AY(T*C).

Let m, 7' be the projections A/G x 41 = A/G, A)G x 854, — A/G’ Let p
be the projection A — A/G’

For 1 < j < s+1, let §; be the connection 1-form on the G-bundle Ao Z/G
associated to the connection V;. Then 6; is a 1 form with values in g*.

DEFINITION 5.53. Let a be the 2-form on A,
(Fz) s+1 s+1
G a=p |m S >_(og(0;),,) | - 3. dlog(w;) 5.
i=1

THEOREM 5.54. The 2-form a is G-invariant and closed. It does not depend
on the choices made in its construction.

PRroOF. By Chern-Weil theory, the form iFTQL is closed on Z/G x L4y. Using
Stokes formula, we get

2 * 2
(5.241) dr, [L‘;._)] - ["—if—)] .
By (5.238), (5.241), we get
s+1
(5.242) dm, [<F 2)] }:(VE: log(w;), ©;) .
j=1

Also by Bianchi’s identity,
(5.243) d(log(wy), ©;)) = (V5 log(w;), ;).

By (5.242), (5.243), we find that the form a is closed.

Now we replace E.H by 2+1 x R. We still denote by = the projection A x
$41 x R = A/G x R with fibre £,;. The G- bundle A - A/G is replaced
by AxR = Z/G’ x R. We consider a smooth family of data, which are used
to construct the form a,. In particular the connections V; depends on £. We
extend these fibrewise connections: V; A = A/G to a connection df % + VY, on
AxR - Z/G x R. We will denote with a ~ the analogue of the above objects
over A x §+1 x R. This way, we obtain a form & on A x R such that

(5.244) a=ar+dlApfy,

where f; is a 1-form on ,Z/G By the above arguments, & is closed.
Now we will show that

(5.245) B, =0.
This will imply that
Bat

(5.246) -7 =0

So we will have established our clalm that ay does not depend on £.
Recall that along the fibres 2+1, the connection on the considered G-bundle

does not depend on £ € R, and is flat. It then follows easily that =, [Sf—l] does
not contain d¢.
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Also the connection form 5,- does not contain d/, i.e. it is of the form

(5.247) 6; =6;,.
Then

~ o
(5.248) 0; =0+ deaee ‘-
Therefore

(5.249) (log(w;), ©;)
d(log(w;),8;) = (dlog(w;),8;.) + (log(w;),dd;.e),
+(log(w;), dé o 0 £) -

From (5.142), we find the sum of the last terms in (5.240) does not contain d¢
either.

~ )
(log(wj), OM + de—a-zo_,',¢>,

The proof of our Theorem is completed. a
Now we fix t; € TNUy,...,t, e TNU,. For1 < j <s,let O; C G be the
orbit of t;.
Put
(5.250) X={zcAw; €0;,1<j<s}.

Then X C X is stable under G. Let m be one of the embeddings X4 X /G -
A/G.

For1<j<s,let 5,- C g be the G-orbit of log(t;). Since there is a well-defined
logarithm on Uj;, O; and 5,- are in one to one correspondance.

For 1 < j < s, let o; be the canonical symplectic form on the orbit 5, If
Y eg,let Y9; be the corresponding vector field associated to the right action of
G on (’), Thenif VY €g,p€ 0], as in (1.193),

(5.251) a;ipY,Y') = (p[V,Y').
DEFINITION 5.55. Put
8
(5.252) oc=m*a+ Z log(w;)*o; .
i=1

Clearly o is a G-invariant closed 2-form on X. We will calculate o.
For 1 < j < s, the G-bundle X — X /G can be reduced to the Z(t;)-bundle
{z € X, wj=ti} = {z€ X, w; =t;}/Z(t;). Let V; be a Z(t,) -connection on this
last bundle. This connection lifts to a G-connection on X — X/G. We will make
this choice of V; in our construction of . Then for 1 < j <s,
(5.253) Viw; =0,
V;log(w;) =0.

THEOREM 5.56. The following identity holds
F2
(5.254) g=m*p" (1r.<—2—>-) + (log(w,+1),@,+1))
~d(log(ws+1),0s+1) -
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PRrooF. The second identity in (5.253) can be written in the form

(5.255) dlog(w;) + [0;,1log(w;)] =0

By (5.251), we get

(5.256) log(uw;)*o; = (log(u;), 3105, 6.

Also

(5.257) d8; = -%[oj, 0]+ ©;.

From (5.255)-(5.257), we obtain for 1 < j < s,

(5.258) p* (log(w;), ©;) — d(log(w;),8;) + log(w;)*o;

= —(dlog(w;), 6;) + (log w;, [6;,6;]) = 0

The proof of our Theorem is completed. 0
Set

(5.259) M={z€X, w1 =1}.

Our notation in (5.259) is compatible with (5.59). By Propositions 5.10 and 5.11,
we know that M is a submanifold of X , and that G acts locally freely on M. Let
Mo XM /G = X /G be the obvious embeddings.

By Theorem 5.31, M /G carries a symplectic form w. Recall that g is equipped
with the scalar product (,). We identify g and g* by this scalar product.

THEOREM 5.57. If U is small enough, o is a symplectic form on X. Also
T = (u,v1,... U Vg, W1,... ,Wet1) € X > log(ws41) € g 18 a moment map for
the action of G on X with respect to the 2-form o. The associated symplectic form
on the symplectic reduction M /G coincides with i‘w.(‘%zl) and with w.

ProoF. By (5.254),

)

Let VH, VY be the components of V along A/G,E,;. Since V is flat along
2-f'].)

(5.261) F =V [vH V)
From (5.261) we get

(5.260) i'o =1i"p*m. (

2 H
(5.262) w.((F >) .([V A ])
Moreover by (5.238), (5.253),
(5.263) k*FY =0,
From (5.261)-(5.263), we get easily
2
(5.264) . ( (F2 )) = pLw.

From (5.260), (5.264), we obtain
(5.265) i*o = p'w.
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Now by Theorem 5.31, w is a symplectic form. Therefore by (5.254), (5.265), if U
is small enough, o is also a symplectic form.
If Y € g, let YX be the corresponding vector field on X. Then by (5.254),

(5.266) iyxo = —iyzd(log(wst1),0s+1)
diy % (log(ws+1),0s+1)
= d(log(ws+1),Y).

From (5.266), we find that x € X — log(w,+1) € g ~ g* is a moment map for the

action of G on X.
The proof of our Theorem is completed. a

By Theorem 5.12, since G acts locally freely on X, the derivativeof z € X
w;}, € G is surjective.
Take t € U close enough to 0. Put

(5.267) X, ={z€ X, w1 =t}.

Then Z(t) acts locally freely on X; . So X;/Z(t) can be equipped with the symplec-
tic form o, the reduction of the symplectic form o. Also recall that by Theorem
5.31, M/Z(t) is equipped with a symplectic form w;.

THEOREM 5.58. Forte U,
(5.268) or = Wt .

PROOF. Clearly the G-bundle A — A/G reduces to X; — X;/Z(t). Let V,4,
be a Z(t) connection on this last bundle. Then V,,; lifts to a G-connection on

A Z/G. We will use V,4; to calculate the restriction of o to X;. On X,
(5.269) VE+1 log(w,y1) =0,
dlog(wet1) + [0s+1,l0g(ws+1)] = 0.
Over log{w,4+1) = —log(t), we get
(5.270) [05+1,log(ws+1)] = 0.
Then over log(w,+1) = — log(t), using (5.257), (5.269), (5.270),

(5.271(log(we+1),0s41) (log(ws41), Os41) — (log(ws41), ‘;'[9a+1,9s+1])
(log(ws+1), Os1) -

From (5.254), (5.271), we find that over X},

F2
(5.272) o=p'm. (<——2-l) .
Using (5.272) and proceeding as in the proof of Theorem 5.57, our Theorem follows.
a
Take j,1 < j <s. Put
(5.273) X; = {z € A;wj € 0j,5' # j,wj € Uj,wey1 = 1}.

Let n; be the embedding X ;= A
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DEFINITION 5.59. Put
8

(5.274) kj=nja+ Y log(w;)o;.
3'=1, 5'#j
We will choose the connection Vj, 1 < j < s,5' # j as in (5.253). Then by
proceeding as in the proof of Theorem 5.56, we get

. (F?)
(5.275) Kj = njp" (M| —5 | + (log(w;), ©;)
~d(log(w;), ;) .
THEOREM 5.60. If U; is small enough, k; is a symplectic form on )?J-. Also
z = (u,v1,... ,Ug, Vg, W1,... ,Ws) € X; - log(w;) € g is a moment map for the
action of G on X; with respect to ;. Finally for t; € U;, the symplectic form on

the symplectic reduction {z € )?j,’ll)j =t;}/Z(t;) is the symplectic form defined in
Theorem 5.31.

PRrooOF. The proof of our Theorem is the same as the proof of Theorems 5.57
and 5.58. ]

REMARK 5.61. If t;,... ,t, are restricted to be very regular, we may and will
assume that 6,,... ,0, are T-connections. By Theorems 5.58 and 5.60, we find that
w.(‘-’;—zz) restricts to the symplectic form of Theorem 5.31. Also by (5.275), the
cohomology class of

(5.276) w+ i_:(log(wj), 9;)
Jj=1

is locally constant, which is a consequence of the theory of the moment map for
torus actions obtained by Duistermaat-HeckmanDH.

5.11. The integral of certain characteristic classes on the strata of
M/G. Let G be a compact connected and simply connected simple Lie group. We
use the notation of Section 1. In particular, {,) denotes the basic scalar product on
g-

Let t;,...,t, be regular elements in T'. Then ¢;,... ,t, are very regular.

We assume that s > 1, and that

o (t1,...,t,) verify (A).

e If g =0, then 3 > 3.

In particular
(5.277) 29-2+s2>1

Let u € C/R’. Recall that m, : Z(u) = Z(u) is the universal cover of Z(u),
with fibre 7, (Z(u)) ~ CR/CR, C Z(Z(u)). Also T, = t/CR, is a maximal torus
in Z(u).

Remember that T;eg is the set of regular elements in T with respect to G. Let
t € Treg. Then Z(t) =T, t is very regular in Z(u), and Oz(y)(t) =~ Z(u)/T.

Let £ € T, be a lift of ¢ in Z(u) Then £ is still regular in Z(u) Since
Z(t) = T, the centralizer Z(f) of  in Z(u) is just Z(f) = t/CR,. Then Oz (@) =
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Z(u)/(t/ﬁu) ~ Z(u)/T. Equivalently the projection (95(“)(5) — Ogz(y)(t) is one
to one.

As before, we identify ¢;,... ,t, with corresponding elsments of G-alcoves in
t whose closure contains 0. This way, we get elements of T,, = t/CR,, which lift
t1,...,t; unambiguously in Z(u). We still denote these elements by t;,... ,t,.
Clearly
(5.278) Z'(u) = Z'(u).
Set
§
(5.279) Xu = 2w x [] Oz,
j=1
- - L]
Xu = Zw® x [ 0z,).
=1

Then Z(u) acts on X, and on )Z'u___ Moreover (CR/CR.)?* acts freely on X,.
Namely if f = (e, 81, ... g, 8y) € (CR/CRy)*, ifx = (11,11, . - g, By, W1, ... Ws) €
Xu,, put

. (5280) f.’l} = (ﬁlal,ﬁlﬁl, e ,ﬁgag,f;gﬂg,u“jl, . .‘!I),).

The actions of Z(u) and of (CR/CR,)* commute. Also the map my, : Z(u) —
Z(u) extends to a map X, — X,. Clearly m, is Z(u)-equivariant. Also if f €
(CR/CR,)%s,

(5.281) Tuf = T

More precisely 7, is a (CR/CR,)*® cover.

DEFINITION 5.62. Let ¢, : )?u - Z(u) and ¢, : X, — Z(u) be the analogues
of ¢ defined in (5.41).

Clearly
(5.282) GuTy = 71'uq.g'u-

Also ¢, and ¢, are Z(u)- equivariant . B

Clearly (t1,...,t;) verify (A) with respect to Z(u) or Z(u). Therefore by
Theorem 5.18, 1 is a regular value of ¢,. Equivalently, by Theorem 5.18, 1 is a
regular value of ¢. By Theorem 5.12, G acts locally freely on M = ¢~1(1), and so
by Theorem 5.12, 1 is a regular value of ¢,,.

PROPOSITION 5.63. Any h € CR/CR,, is a regular value of ¢,.
PROOF. Since 1 is a regular value of ¢,, any h € w71(1) is a regular value of

Pu- a

Recall that the Lie algebra 3(u) is equipped with the scalar product induced
by the scalar product {,) on g.

Let U be a G- invariant open neighborhood of 1 in G, such that a logarithm
log : U — g is defined, with

(5.283) log(1) = 0.
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Put
(5.284) U, =UnN2Z@w), U, = 771 (Uy).

Clearly log maps U, into 3(u). Then U, is an open neighborhood of CR/CR, in
(u), which only consists of regular values of ¢,.
In the sequel, we will view exp(log(¢.(z)) as an element of Z(u). Observe that
if € X, is such that # € ¢;1(U,),

(5.285) Ty [¢u(a‘=) exp(—log(wru(i)))] =
Therefore
(5.286) ¢u(E) exp (- log(¢um,)(2))) € CR/CR,.

Finally note that if z € ¢, L(U), if & is such that m,(Z) = z, then @, (Z) does not
depend on #. Therefore ¢, (%) exp (— log(¢uu(%))) € CR/CR, does not depend
on Z.

DEFINITION 5.64. If h € CR/CRy, let ¢ (Uu)n C ¢31(U) be given by
(5.287)

¢;1 (Uun={z € ¢;1(Uu): if 7, (%) = z, pu (%) exp (— log(¢umu(Z))) h = 1}.

Similarly, let ¢ Y(Uy)s € 651 (T,) be given by

(5.288) $21(Tun = {% € $71(U), bu(Z) exp (~ log(pumu (£))) h = 1}.
Then we have the disjoint union
(5.289) o U= | 42t U,
heCR/CR.
S0y =U
he

ﬁ/ﬁuégl(ﬁu)hvand for any h € ﬁ/_c_}iu:"'u : 43.71((7.‘):: = ¢ (Uu)n
isa (ﬁ/C_Ru)zg-cover. Moreover Z(u) preserves ¢ (Uy,)s and @7 (Uy)s, and
(ﬁ/m)zg acts freely on ¢71(T, ).

If U is small enough, there is an open neignborhood VooflinZ (u) such that

: (V,) = U, is one to one. Also if t € U, and i € V, is the lift of ¢, then =, is
one to one from (’)z(u)(t) into Oz(y)(t).

DEFINITION 5.65. If h € CR/CRy,t € Uy, € V,, withm,(f) = ¢, put
(5-290)M¢(Z (1), Oz(u)(t1), .- - » Oz(u)(ts), h) = {z € 3 (Uu)n, du(z) = t7'},
Mt(z(u),oi(u)(tl)’- .- ,Oz(u)(t,),h) ={Ze€ &;l(ﬁu)ha‘gu(i) = E—lh—l}'

Then m, : My(Z(u), O3, (t1), . - , Oz¢y) (ts), ) = Me(Z(w), Oz (tr), - - , Oz(w)
(ts),h) is a |CR/CRy|* cover. If Z,(t) is the centralizer of t in Z(u), m, is a Z,(t)
equivariant map. _

By Theorem 5.12 and Proposition 5.63, Z,(t) acts locally freely on M(Z(u), O Z(w)
(t1), . OZ(u)(t')' h) and on Mt(Z(u), OZ(u)(tl), ceey OZ(u) (ts), h)
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~

PROPOSITION 5.66. The map my, : Mt(Z(u),OZ(u)(tl), e ,Oz(u)(t,),h)/zu(t) -
My(Z(u), Oz (t1),. . LOZ(u)(t,),h)/Zu(t) is a |[CR/CR,|* cover on the regular
part of the orbifold Mg(Z(u),Oz(u)(tl), e ’OZ(u) (ts), h)/Z.u(2).

PROOF. Let & € My(Z(u), Oz (t1); - Oz (ts), h), and let f € (’C‘E’/E"R.,)29 ,g €
Z,(t) be such that

(5.291) {3 =%g.
Then by (5.281), (5.291),
(5.292) Tu(E) = 1u(%).9.

i z = my(z) is in the regular part of My(Z(u), Oz(y)(t1),... ,Oz(w)(ts), h), from
(5.292), we get

(5.293) g=1

So by (5.291), (5.293),

(5.294) f=1

The proof of our Proposition is completed. a

Fort € U,, let o} be the symplectic form on M;(Z(u), Oz(u)(t1), ... , Oz (ts),
h)/Z,(t), and let G¥ be the symplectic form on My(Z(u), OZ(u) (t1),... ’OZ(u) (ts),
h)[Z.(t).

DEFINITION 5.67. For u € C/R’,t € Uy, put

(5295) Vu(tly . -tﬂ’ tr h’) =

-/M,(Z(u),Oz(“)(tl),... ,OZ(“)(t.),h)/za(t)

Vu(tl,...t,,t,h)=/ _ ey,
Me(Z(u),05,)(t1),-.. ,Og,)(t.)h) /2] (2)

Z(u)

PROPOSITION 5.68. The following identity holds

(5.296) gy =m0},
Moreover
1 ~
( ) ' u|( 1 8 ) |C'R/C'Ru|29l ul( 1 8 )
ProoF. Equation (5.296) is trivial. Using (5.296), we get (5.297). (]

Let K C t be a Weyl chamber for G which is fixed once and for all. Then if
u € C/ﬁ', K is included in a unique Weyl chamber K, for Z(u) or Z(u). Put

(5.298) CR,,=CR,nK..
Then the irreducible representations of Z (u) are parametrized by ﬁ; + €

CR, ,, let XAZ(") be the representation of Z(u) with highest weight A. Fort € T,, =
t/CR,, put

(5.299) oz = H (eiﬂ(a.t)_e—in(a,t))'

a€Ry,+

Then |oz(y)(t)| is well defined on /R, and so is well defined on T = t/CR.
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THEOREM 5.69. For any u € C/R’,h € CR/CR,, the following identity of
Z(u)-invariant distributions in the variable t € U holds,
Vul(t1, .. te, B, )
ozt + h) [Tj=1 lo2qu) (25)]

~ 29+8-~1 u
Vol(Z(w)|” T2, x 2 ) (4 h)
Vol(T,) Z(“)(1)2g+s 1

(5.300) = |Z(Z(u))|Vol(t/CR,)|*~>

AeCR]

PROOF. Recall that ¢t € U is identified to the corresponding element in V. C

Z(u). Since t; € Z(u) is very regular, the centralizer of ¢; in Z (u) is equal to Ty,.
Then by (5.156) and by Theorem 5.47, we get (5.300) . The proof of our Theorem
is completed. O

REMARK 5.70. Note _tllg.t _CF NK, is egactly the set of nonnegative weights
for Z(u). Also since h € CR/CR,, lies in Z(Z(u)),

(5.301) Xf(") (t+h) = eZiw(A,h)Xf(u)(t).
From (5.300), (5.301), we get easily,

1 Y _heTR/CR. \ACTREN X)) _

5.302 — .
G302 CRICE. Ioaw®I = o2
~ 29+s-—1
\2(Z(w)|[Vol(t/CR,) 92 [CR/CR.|' ™~ |YoUZw)
Vol(T,)
5 T G )i ™ ()
- .
©TRAR, X (e
Clearly
(5.303) Z(Z(w)) = Z(Z(v))/(CR/CR,),
Vol(t/CR,) = Vol(T)|CR/CR,|,
Vol(Z(u)) _ Vol(Z(u))
Vol(T,,) Vol(T)
From (5.302), (5.303), we get
ar/em Valtsy ... tey byt

(5.304) __ 1 XneOm[eR, ';( Loateht)

'CR/CRng |aZ(u) (t)” Hj:l |UZ(u) (tj)l

mga_g | VOI(Z () |29
29-—-2
|Z(Z(u))|Vol(t/CR) ol(T)
5 Mo s )X ™ @)
D) e :

\TRAR, X (1)2Fet

Identity (5.304) fits with (5.197) and with (5.297).
Since ty,... ,ts are very regular in ? (u), there are Z(u)-invariant open neigh-

borhoods U}, ... ,U¥ of t1,... ,ts in Z(u) on which a logarithm is well defined.
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Since Z(u) acts locally freely on MO(Z(u),OZ(u) (t1);-- -, Oz(y(ts), ), all the re-
sults of Section 5.10 can be used in this situation.

In particglar, by Theorem 5.57, there is a Z (E)-invaria.nt open neighborhood
Xun of Mo(Z(u),(')E(u)(tl),... ,Og(u)(t,),h) in X,, equipped with a symplectic
form 6%, such that the 63 are the symplectic reductions of o%. So we may use the
results of Sectiori:’li in this situation.

Let T, = t/R, be the obvious maximal torus in Z'(u) = Z(v)/Z(Z(u)). Now
we will use the notation in Section 3.6. As in Section 3.6, the choice of a Weyl
chamberK and of the corresponding Weyl chamber K, for Z(u) defines an orien-
tation on the M;(Z(u), Oz(u)(tl), . ,Oz(u)(t,), h)/T,, fort € TNU,.

DEFINITION 5.71. For t € T NU,, put
(5.305) Hewguo)(t1s- . 0 8) = / eft
M. (

Z(u)voi(u) (tl)v--' ,Oz(")(t,),h)/T,:

Using Theorems 3.15, 5.57 and 5.60 , we know that H(,, 4 4) (1, - - - ts, 1) is locally
a polynomial in ti,... ,%s,¢. Also recall that Py 2g+4s—1(t), ¢ € T, was defined in

Definition 2.39. By Theorem 2.37, ﬁu,zg.,.s_l(t) is a polynomial on fu\g,,. Finally
. remember that in (2.33) , we set £, = |Ry 4|

THEOREM 5.72. The following identity of local polynomials in (t1,...,t,,t)
holds

(5.306) Heugs)(tr, - s ta, by t) = (-1)5 0D+ Z(Z(w))|
s
[Vol(t/CR)Po~* [T sen((=i)* 02 (t5)e~ >

j=1
8 - s .
Z Hew’iPu,29+s—l(t+h+Zw]tj).
(w'l,... ,w'o)ews 5=1 j=1

PROOF. Clearly, if t € U, N Treg, then Z'(t) = T', so that Z,(t) = T,. By
(5.295), (5.305),

(5.307) |Huga)(t1s- - stoshot)] = Vulte, .. .t by t) onUy N Treg.
Also

(5.308) |0z (8)] = sgn((—8)* 020 (1)) (—6)** 52(u) (1)-
Moreover, by (1.43), if h € CR/CR,,,

(5.309) 0z(u)(t + h) = X et (8),

By Theorem 1.41,

(5.310) e2imlpuih) = 41,

Moreover for t close enough to 0, (—i)*0z(,)(t) and m,(t/i) have the same sign.
Also by (3.129), (3.133),

A ORI )

Vol(Z(uw))/Vol(T,) = @ )

(5.311)
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Finally by Theorem 3.15, for ¢ close enough to 0, Hy g.5)(t) and m,(t/?) either
vanish together, or they are nonzero, and then they have the same sign. Using
(5.300), (5.310), (5.311) , we get the identity of distributions

(8312)  Heugun (b, st 1) = (=)D Z(Z(u))||Vol(t/CR,) %~

f[ sgn((—i)* oz(u)(t;)) €72 pu b

j=1

5 I3 (0200 XS (43) 0200y (6 + WIXE™ (2 + B

AeOR.,, (mu(pu + ,\))2g+a T

By (1.94), Theorem 1.38 and by (5.312), we obtain
Hiug) (b1, ste hyt) = (=1)%0D|Z(Z(u))|Vol(t/TR,)[?~2

(5.313) i=1 980 ((—1) o7y (t;)) e~ 2mpuh)

PSS

XEER: + (w't,... . w'*w)e

Wt iz s €7 ap@in(wOTO It A B wOt) 0y () 186), i w € W,
u * ’ Uy

(retrarn) ™
(5.314) Tu(w(py + A)) = €uu(pu + A).

Also by using in particular [15, Note V.4.14],

(5.315) {w(pu + A) } wew,. = {A € CR,,m,()) # 0}.

Using (2.158), ((5.313)-(5.315), we get the identity of distributions on U,
Hiyga)(t1, ... te,hyt) = (=)D Z(Z(4))||Vol(t/TR,) |22

H Sgn((_i)‘“f’z(u) (tj))e—ﬁ"(pu.h)
j=1

(5.316) Z 1'[ €0's Puzgra—1(t+h+ Zw it;).

(.w’l I)GWJ j=1
Now by Theorems 2.37, 3.15, 5.57, 5.60, we know that both sides of (5.316) are
local polynomials of (¢4,... ,t,,t). Therefore (5.316) extends to an identity of local
polynomials. The proof of our Theorem is completed. O

Put
(5.317)

M(Z(u), Oz(u)(t1), ..., Ozu)(ts), h) = Mo(Z (1), Oz(u)(t1),. .. , Oz (ts), h).
Then M(Z(u), Oz(u)(t1),..- ,Oz)(ts),h) C M, and Z(u) acts locally freely on
M(Z(u), Oz@u)(t1),-- - , Oz(u)(ts), h).

Let 0 be a Z(u) connectlon form on the Z(u)-bundle M(Z(u), 0z, (t1),

yOz(u)(ts),h) = M(Z(u),Oz(u)(t1),... ,0z)(ts),h)/Z(u), and let © be its
curvature Let 6,,...,0, be connection forms taken as in Section 5.10, and such
that (5.253) holds, a.nd let ©1,...,0, be their curvatures. Then ©,,...,0, take

their values in t.
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Let @ be a Z(u)-invariant C*® function on 3(u), let Q1,. .. ,Q, be C™ functions
on t. Recall that w is the canonical symplectic form on M/G which is associated
to the basic scalar product (,) on g.

PROPOSITION 5.73. If p € R*, the following identity holds

(5.318) Q(-0) [T, Q;(—6y)er =

/M(Z(u),Oz(u)(tl).--- 10z (u)(ta),h)/Z(u)
1 pl9—1) dima(u)+§ dim(3(u)/t)

|CR/CRq|? Wl
Q2L 1T @i B2y B2 By gyt 1),
P P

Proor. Clearly

8
(5.319) / Q(-0)e™ [[Qi(-8;) =
M(Z(u),oz(u)(h),--..Oz(u)(t-),h)/z(u) 1

p(dim M(Z(u),0zu)(t1),- \Oz(u)(t.),h)/Z(u))/2

8
/ a(-6/p I] s(-0s/pe".
M(Z(u),0z ) (1), ,0zw)(ts) 1) /Z(u) 1

Also by Theorem 5.57 and Proposition 5.66,

6320 [ Q-6/p)e” =
M(Z(u),0z(u)(t1),..,Oz(u)(ta),h)/Z(n)

1

|CR/CR,|%* / M(Z(4),0 50 (t1)- O30, (t2).1)/Z(w) Z (w)
Finally our assumptions on the t;’s, Theorems 5.20 and 5.21 guarantee that Z,(z) =
1ae. on M(Z(u),OZ(u)(tl),. Z(u (ts),h). We can then apply Theorem 3.21
0 (5.320) and get (5.318). The proof of our Theorem is completed. 0

REMARK 5.74. In [39, 40}, Liu derived the above formulas for the intersection
numbers of the corresponding moduli spaces.

Q(-9/p)e’s.

5.12. An evaluation of certain Euler characteristics. Recall that z €
R ~ [z] € [0, 1] is the periodic function of period 1 such that for z € [0, 1], [z] = z.

PROPOSITION 5.75. Let m € N. Put z = e . Then for L€ Z,

1= 2* 1 ¢ 1
(5.321) agm—i‘[a]‘ﬁ

PRrOOF. Take p €] —1,+1], and £ with 0 < £ < m. Then

m-—1 z_kl 400 m—1 +o0 m—1
(5.322) Z T pzk Z Z Pz k(n—-£) _ an (Z k(=8 _ 1)
k=1 k=0

n=0 k=1 n=0
g L
- mij\n—
n=0 1- o
mpt 1
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By making p — 1 in (5.322), we get

|
(5.323) D — = —— -,
k=1

which is equivalent to
1’ &~ M 1 [¢ 1
(5.324) - g =2~ [E] -
(5.3

21) for 0 < ¢ < m. Similarly if —m < £ < 0, using

So we have established
(5.324), we obtain

1T ke 1 e Zkm+e) g ¢ 1
(5.325) e e A | B R
m 1-2 m 1-z 2 m 2m
k=1 k=1
1_le)_ L
2 m 2m
The proof of our Proposition is completed. a
Let ¥, be a Riemann surface of genus g. Here, we have fixed a complex
structure on X,. Let z1,...,T; be s distinct points in X,. Let D be the divisor
8
(5.326) D=Y"gz;.
Jj=1

Let [D] be the corresponding holomorphic line bundle on X,. Let op be the canon-
ical section of [D]. Clearly

(5.327) [ eoh =
Let m € N such that m divides s. Let A be a holomorphic line bundle on %,
such that

(5.328) A™ = [D].
Put
(5.329) Ty ={teX, op =t"}.
Then p = Eg — X, is a branched covering of order m, with branching points
zi,... ,Ts. Also by Hurwitz’s formula, the genus g’ of 2'; is given by
1
(5.330) g =mg+ -2-(m -1)(s-2).

If £ € Z/mZ,t € T, put
(5.331) £(t) = et

Then (5.331) defines an action of Z/mZ over £ such that pf = p. Alsoif£ € Z/mZ,
1 #0, then x,... ,z, € £ are the only fixed points of £.

Let £ be the Riemann surface with boundary, which is obtained from XL, by
deleting s small disks centered at z;,... ,z5. Set

(5.332) ot =ply.
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Then XY is also a Riemann surface with boundary, obtained from )3; by deleting s
small disks A;,...,A, centered at z1,... ,T;.
Let G be a compact connected and simply connected simple Lie group.

DEFINITION 5.76. We will say that ¢ € G is of order m if g™ = 1. More
generally if O C G is an adjoint orbit, O will be said to be of order m if for one (or
any) element g€ O, g™ = 1.

In the sequel, we assume that O,... O, are of order m.

Let £ € M. Then the trivial G-bundle P over X is equipped with the corre-
sponding flat G-connection. Therefore the G-bundle p*P — X is equipped with
the corresponding flat connection. Moreover Z/mZ acts naturally on this G-bundle
and preserves the flat connection.

Observe that for 1 < j < s, the holonomy of the flat connection over the circle
p~'(Sj) —which is a m cover of S;— is w}* = 1, i.e. 7*P has trivial holonomy
around 7~ !(S;). Therefore the flat connection on £ extends to a flat connection
on the trivial G-bundle p*P — %J.

We claim the action of Z/mZ extends to the bundle p*P — E;. To define
the flat bundle p*P near z;, we use the identification by parallel transport along
the circle S}. In fact recall that for 1 < j < s, w; is the holonomy of the flat
connection along S} considered as lying in 0X. The holonomy along S; considered
as the boundary of the disk A; is w].‘l. IfeeZ/mZ,te X, f € P, then

(5.333) o, f) = (e“‘m"‘t, f) .

However using the trivialization of parallel transport along p‘S}-, in this trivializa-
tion

(5.334) o, f) = (e“m’—’t,w; f) .

In particular the action of £ on p* P, is given by f € P — wf feP.
Let V be a complex vector space. Let p : G — Aut(V) be a representation of
G. Let F be the flat vector bundle on

(5.335) F=PxgV.

Then by the above construction, p* F' extends to a flat vector bundle on Zg, on which
Z/mZ acts. In particular Z/mZ acts on H-(E%,p*F). Let [H(Z},p* F)]2/™Z be
the invariant part of H(X?,p* F') under the action of Z/mZ.

Let (, ) be a G-invariant bilinear symmetric form on V. Let (, )i (g ) and

(» )i (s p+ ) be the coresponding intersection forms on HY(%,F) and H*(Z%,p*F).
PROPOSITION 5.77. The following identity holds
7 _ (b Z/mZ
(5.336) H/(%,F) = [H (Z},p" F)?/™2,
Under the identification (5.336), if a,a' € HY(%, F),
1
(5337) (Cl, a,)ﬁl (=, F) = E(a’ a’>H1 (E: p*F) -

PROOF. Clearly, [H(Z}, p* F)|2/™Z consists of flat Z/mZ-invariant sections
of p*F on 23. In particular by for 1 < j < 8, W;fiz; = fis;- Therefore these
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sections descend to flat sections of F' on X. Using (5.27) and (5.36), (5.336) holds
in degree 0. By Theorem 5.4, using Poincaré duality, (5.336) holds in degree 2.

Let a be a Z/mZ-invariant closed form in Q!(X},p*F) representing [a] €
[H (%,
p*F)|%2/™2. We may and will assume that o vanish near zi,...,z,. Then a de-
scends to a smooth closed 1 form on I, which vanishes on X. Also a is defined up
to the coboundary of a Z/mZ-invariant form in Q"(E;, p*F). Using Theorem 5.4,
we find there is a well-defined map [H'(X},p* F)|%/™% — HY(Z,F). Conservely,
if B is closed in Q!(Z, F) and vanishes near 8%, then p*B is a smooth Z/mZ-
invariant closed 1 form in Q!(X},p*F) . So we have defined a map 2, F) »
[H'(Z},p* F)]?/™%. It is now easy to verify these two maps are inverse to each
other. The identity (5.337) follows trivially.

The proof of our Theorem is completed. a

Let X(F) be the Euler characteristic of the complex (CZ(F),8). Then

(5.338) x(F)

2
> (-1)idim(H (%, F))

=0

2
Y (-1) dim(CEi(F)) .

i=0

So by (5.32), (5.338),
(5.339) X(F) =(2~2g)dim F - idim(l - w;)(F)).
j=1
Let x%/™Z(p*F) be the invariant Euler characteric of p*F on Eg, ie.
(5.340) X2/™2(p*F) = i(q)‘ dim[H*(E!, p* F))%/m2.

i=0

By Proposition 5.77,
(5.341) X(F) = xz/"‘z(p‘F) .

We will prove (5.341) again using the Theorem of Riemann-Roch-Kawasaki
[32, 33], stated in Theorem 6.8. We get

8 m-—1
(5.342) et ry = L [dim(F) / e(Tzh) + Y TF [ > w;‘H :
m E: j=1 k=1

Now using (5.330), we get

(5.343) /E [e(TZ}) =2-2¢' = m(2 - 2) ~ (m — 1)s.
Moreover
1 m—1 L 1 m-—1 . 1

k=1 k=0
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Now L1 m-l w} is a projection on {f € F,w;f = f}. So by (5.344),
| . dim F

(5.345) —Tx® [21: w;] = dimker((w; — 1)) — %

By (5.342)-(5.345),

(5.346) xZ/™%(p*F) = (2 — 29)dim F — Zdlm(l—wj)(F)),
j=1

which fits with (5.339), (5.341).

Now we assume that p : G — Aut(V) is a real representation of G. We will
now give another proof of (5.346). Let x*2/™Z(p*F) be the holomorphic invariant
Euler characteristic

1
(5.347) Xh,Z/mZ(p-F) = Zdim [H(),i(zg,p.F)] Z/mZ '
i=0
By Hodge theory,
(5.348) X%/m%(p* F) = 22/ 2 (p" F).
Also by the Riemann-Roch-Kawasaki theorem [32, 33],
1 1
34 hZ/mZ( =* = —1di / - b
(5.349) X ("F) = ~ [dlm(F) 3 (TZD) +
8 m-—1
Fr, k
Z Z 1-—- —2wrlc/mTr [wj] :
i=1 k=1
By (5.343),
(5.350) / —cl(TEb) =1-g- l(1 - —l—)s
m 2 m’

The eigenvalues of w;|y have absolute value 1. Since V' is real, they are either +1,
or they come as complex conjugate pairs. By Proposition 5.75, we get

1= 1
(5351) Z I_L_e:m V[ ;‘] = ———d1mF+ 2 dlmker(wJ - 1)“7

By (5.349)-(5.351), we obtain
. 1
(5.352) x"#/m2(p'F) = (1~ g)dim F = 5 3 dim((1 - w;)(F)),
1
which fits with (5.346).

5.13. Evaluation of ¢;(TM/G). In the sequel, we assume that G is a con-
nected simply connected compact simple Lie group. Otherwise we use the notation
in Section 1. In particular ( , ) denotes the basic scalar product on g defined in
Section 1.2.
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As in Section 5.10, we construct a connection on the G-bundle
MTxg S, M /G x ¥, such that the assumptions after (5.252) hold. In particular,
for1<j<s,
(5.353) Vijw; = 0,
V. log(w,) 0.
Also since t; lies in an alcove P, it determines p; € CR’ N P by formula (1.35).
Over M/G, t;, p; descend to sections of E;. By (5.353),for 1 < j <s,
(5.354) Vip; =0.

Let 8; be the connection form on associated to V;, let ©; be its curvature.
Then 6; can be considered as a t-connection, and ©); is a t-valued 2 form on M/G.

Recall that TM/G is a symplectic vector bundle. Let JTM/G be any almost
complex structure polarizing o, i.e. o is JTM/G invariant, and U,V € TM/G
o(JTM/GY, V) is a scalar product. Such JTM/G exist and are homotopic. Therefore
c1(TM/G) is a well-defined element of H2(M /G, Q).

Recall that ¢ is the dual Coxeter number defined in Definition 1.7.

THEOREM 5.78. The following identity hold,

(5.355) a(TM/G) = 2(cw + Z - 0;,0;)).

Proor. First we assume that me€ N, that t;,...,%, are of order m, and s|m.

Then the G-bundle (M x £)/T —> M/G x £ lifts to a G-bundle @ —S> M/G x £
on which Z/mZ acts naturally. In fact, we only need to make the lifting construc-
tions of Section 5.12 fibrewise.

Recall that a complex structure has been fixed on £, and Eg, and that Z/mZ

acts holomorphically on .
By (5.120), we have the identity

(5.356) TaM/G = H\(S,E).
Using Proposition 5.77 and (5.356), we get
. Z/mZ
(5.357) TeM/G = [H'(3},p°E)) .
Now
(5.358) HY(SS,p"E) 8r C = HOO (5}, p°E) @ HOV(2Y, p"B),

and the splitting (5.358) is Z/mZ invariant. By (5.356)-(5.359), we get
~ Z/mz Z/mZ
(5359) H'(Z,B)erC=[HIO(EhpB)| @ [HOV(SE,pB)] /

Let J be the complex structure on H!(E?, p*E) which is i on H10)(Z!, p*E),
-ion H (0’1)(23, p*E). We claim that J polarizes the symplectic form w on
ﬁl(E,E) = TrM/G. In fact by if a,a' € ﬁl(E,E) are represented by the forms
7,1 € Q' (T}, p* E) which are closed and Z/mZ invariant, then by Proposition 5.7,

(5.360) wlaa) == [ ).
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It is now trivial to verify that J polarizes w.
So by (5.356), (5.359),

Z/mZ
(5.361) e1(TM/G) = ¢, ([H<1-°)(zg,p*E)] " > ,
which is equivalent to

Z/mZ
(5.362) c(TM/G) = —¢; ([H(D'l)(zg,p"E)] " ) .

Let 8 be a Z/mZ invariant connection on the G-bundle @ < T x M/G .

Observe that ({z;} x M/G)i1<j<s are exactly the fixed point of the action of Z/mZ
over Ez x M/G. Since the connection 8 is Z/mZ-invariant, and since, for 1 < j < s,
1€ Z/mZ acts on E;; like w;, we find that over M/G

(5.363) Vuw;, =0.
By (5.63),
(5.364) H°(Z,E) =0.
By (5.336), (5.364),
(5.365) [HO(Z},p*E)J2/™2 = 0.

Now we will use an equivariant version of the curvature theorem of Bismut
and Freed {10]. Namely we equip T)'JZ with a Z/mZ-invariant metric. Recall
that p*E is also equipped with a Z/mZ-invariant metric. Since Z/mZ is a finite
group, the construction sof [9, Definition 2.2] provide us with a like metric on the
line bundle det([H®) (X%, p* E)|?/™Z). By proceeding as in [10], we also obtain a
unitary connection on this line bundle. Incidently, observe that since all our data
are holomorphic, we could instead use the holomorphic constructions of [11] in an
equivariant context. The curvature of the connection on det([H®) (!, p* E)]%/m%)
is obtained by applying the techniques of [10] or {11]. An important technical point
is to prove an equivariant version of the local families index theorem of [8]. A large
part of the steps which are needed in extending the results of [8] is already done
in [9]). By mixing the techniques used in Lefschetz fixed point theory and in the
prooof of the local families index theorem as in [8], [6], [9], one finds easily that the
curvature is given by a differential form version of the theorem of Riemann-Roch-
Kawasaki {32, 33).

Using (5.365) and the above considerations, we obtain

(5.366) ([H(D'l)(E;,E)]z/mz) = —%( /E | Td(TEb)ch(p* E, VP"F)

s m-—1 (2)
1 E|,k 0;
22X e e (32)] )

By (1.37) and by Theorems 5.55 and 5.56,

@)
(5.367) 1 Td(TEL)ch(p*E, VP B) | = 2cw.
m > d
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Recall that
(5.368) g®RC=t® (EB ga) .
a€ER
Let S; be the operator acting on g ®r C,
3 S. = 1 1 k
(5 69) J—r—nzl—;—ﬁﬁ/—mT(tj)
k=1
By Proposition 5.75, we find that
1 1
(5.370) Sit = 55—
1
Silga == oy t5)] = m’ a€R.

By conjugation by an element G, we may and we will assume that w; = t;.
Then '

(2)
E |,k _8; -TY? |S; 9’
(5.371) (Z 1- -—2:1rk/mTr [wj exP( 2im =T 2”r

Also because w; = t;, ij"" is a 2 form on M /G with values in t. From (5.370), we
get easily

(5.372) —Ty? [S,-% = -y (— ~[(a t,)]) (@,0;)
aER
= Z[(a’ tj)](ar ei) .
a€R

Now by Proposition 1.20, and by (5.372), we get

E,2
(5.373) ~Ty¥ [s,- m ] = 2ct; — pj, ©;).
From (5.362), (5.366), (5.367), (5.371)-(5.373), we get
(5.374) er(TM/G) = 2(cw + Y _{ct; - p;,0;)) .
i=1

We claim now that in the special case when the orbits Oy, ... ,0,, are of order
m, (5.374) is exactly (5.355). In spite of the formal simultanities, the objects
introduced in both equation are not exactly of the same kind. However we leave to
the reader the verification that they indeed coincide .

Now we establish (5.355) in full generality. Clearly if (¢;,... ,t,) are regular and
verify (A), they can be approximated by a sequence of regular elements (tT*,. .. ,tT*)
which verify (A) and are of order m. Let s, > s be such that m|s,,. Then we
consider the above situation, with s replaced by s,,. At x,,...,T,, we assume that
the holonomies are wy,... ,w, and at Z,41,...,%,,,, they are 1. Needless to say,
since 1 is far from being regular, we do not impose any restriction on the connection
Vj,j =3+ 1. Since for j > s+ 1, Tr®[{8,] = 0, it is clear that in the final formula,
the j > s+1 do not contribute, so that (5.374) still hold. Then by the above (5.355)
holds. A trivial limit procedyre shows that (5.355) still holds in full generality. O
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REMARK 5.79. By Remark 5.66, the cohomology class of w+_7_, (log(w;), ©;)
is locally constant. Observe that in (5.355), (p;,©;) is a closed form on M /G whose
cohomology class does not depend locally on t;,...,t5. So Theorem 5.78 fits with
the above considerations.

Assume temporarily that some t; lie in Z(G) = R /CR. By (5.372), we find
that such ¢; do not contribute to formula (5.355) for ¢;(TM/G). In other words
if the t; are either regular or central, formula (5.355) still holds, where in the
right-hand side, the summation is limited to a sum over the regular orbits.
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6. The Riemann-Roch-Kawasaki formula on the moduli space of flat
bundles

The purpose of this Section is to give formula for the index of a Dirac oper-
ator on the moduli space M/Q@ of flat vector G bundles, by using the theorem of
Riemann-Roch-Kawasaki [32, 33]. To do this, we describe the strata of M/G and
we express the contribution of each stratum as a residue in several variables, using
the results of Sections 2 and 5. The results of this Section were already obtained by
Szenes [563] for G = SU(3) and Jeffrey-Kirwan [30] in the case G = SU(n),s =1,
with a central holonomy at the marked point for which M /G is smooth.

This Section is organized as follows. In Section 6.1, we describe the strata of
a general orbifold, and we introduce various associated characteristic classes. In
Section 6.2, we state the theorem of Riemann-Roch-Kawasaki for almost complex
orbifolds. In Section 6.3, we construct the orbifold line bundle A? on the orbifold
M/G. In Section 6.4, we describe the strata of the moduli space M/G as moduli
spaces associated to semisimple centralizers in G. In Section 6.5, we compute the
Atiyah-Bott-Lefschetz-Todd class of a given stratum. In Section 6.6, we compute
the dimension of certain vector spaces which appear naturally in the evaluation of
the Atiyah-Bott-Lefschetz class.

Then we make a number of genericity assumptions on the t;’s. In Section 6.7,
we compute the contribution of a stratum to the Riemann-Roch-Kawasaki formula
in terms of differential operators acting on symplectic volumes. In Section 6.8, we
briefly show that under an obvious condition on the holonomies t;,1 < j < s, the
index of the considered Dirac operator vanishes identically. In Section 6.9, we give
a residue formula for the index. In Section 6.10, we give another related asymptotic
formula for |p| large.

Then we drop the genericity assumptions. In Section 6.11, we compute the
index of a Dirac operator on a perturbed moduli space, for which the genericity
assumptions hold. The point is that, as we shall see in Section 7, the index of
the Dirac operator for the perturbed moduli space is exactly given by the Verlinde
formula. Under genericity assumptions, this is only true asymptotically for the
given moduli space M/G.

6.1. Almost complex orbifolds. Let M be a smooth compact manifold. Let
G be a compact connected Lie group, and let g be its Lie algebra. We assume that
G acts on M on the left. If X € g, let XM € Vect(M) be the corresponding vector
field.

We assume that G acts locally freely on M, i.e. for any non zero X € g, XM
is a non vanishing vector field on M.

We will use here the notation of Section 3.1, with X replaced by M. Then
M /G is an orbifold.

DEFINITION 6.1. If g € G, put

(6.1) MI={z e M, gz =z}
Set
(6.2) H={g€G;M? #4¢}.

Then H is a finite union of conjugacy classes in G. Let (H) be the corresponding
finite set of conjugacy classes.
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If g € G, then Z(g) acts locally freely on M9. We can then apply the above
constructions to M¢. Let Hy, C Z(g) be the generic stabilizer of M9.

Observe that if g¢' € G is conjugate to g, the above constructions correspond
by conjugation.

Take g € H. Let Npo/py ~ TM/TM? be the normal bundle to M9 in M.
Then we have the complex of Z(g) vector bundles over M,

(6.3) 0 0 0

0 — gM /3™ (g) —> Nmsym ——> Nuoym/ (8™ /3™ (9)) — 0
A

0 > gM ™ >TM/gM ——— 0
)

0 ™M (g) TM? TM9/3M(g) ——0
0 0 0

and the rows and columns in (6.3) are acyclic.
Clearly if ¢’ € G, g' maps M? into M9'99'~". Also g’ acts on the complex (6.3).
Put

(6.4) N? = Nyosm /(8™ /3™ (9))-
Then the third column in (6.3) is the exact sequence of Z(g) vector bundles on M9,
(6.5) 0-TMI/Z(g) > TM/G - N? 0.

Equivalently N9 is the “normal bundle” to TM9/Z(g) into M/G.

Clearly g acts on each of the vector bundles in (6.3). Then g acts like 1 on
3M(g), TM9 and TM?/Z(g). In particular , there are locally constants §,0 < 6 < w
on MY such that

(6.6) Nuoym @R C = D (Nio/m © Nijo /) ON" -

0<f<m
In (6.6), the @’s are distinct, g acts on the left on N, M N /n by multiplication
by €*?,e=%, and on N™ by multiplication by —1. Therefore N9 ®g C splits as

(6.7) N @rC= P (NP @ N @ N,

o<o<m

DEFINITION 6.2. The orbifold M /G will be said to be almost complex if TM/G =
TM /g™ is equipped with a G-invariant almost complex structure J7M/C.

Since in (6.5), TM9/Z(g) is the +1 eigenspace of g on TM /G, we find that for
any g € G, M9/Z(g) is an almost complex orbifold. Therefore N9 is also equipped
with an almost complex structure.
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Now we denote with the superscript (1,0) the +i eigenspace of the given com-
plex structure. In particular 79 M9 /Z(g) is well defined, and N9:(1.9) splits as

(6.8) NoUO = NoLOY,
o€)-=,71\{0}
In the sequel, we will assume that the orbifold M/G is almost complex.
6.2. The Theorem of Riemann-Roch-Kawasaki. Let V7" Ms/2(9) |
VNP e Z(g) invariant horizontal connections on T19 M, /Z(g), No1.0).8,
Let E be a complex G-vector bundle on M, equipped with a G-invariant hor-

izontal connection VE. Let FF be the curvature of VE. Then (E,VE), is a
Z(g)-vector bundle equipped with a Z(g) invariant connection.

DEFINITION 6.3. Let ch,(E, V) be the closed form on M9/Z(g)
_FE
Ey _
(6.9) chy(E,V®) =Tr [gexp (——2i7r )J .

In (6.9), g denotes the left action of the given element of G on on E. Let chy(E)
be the cohomology class associated to the form chy(E, VE).

DEFINITION 6.4. If B is a square matrix, put

B

det (1—_;—3) ’
1

det (1_—3) '

~ B

(6.10) Td(B)

Td(B)

Il

Observe that
(6.11) Td(B) = A(B)ei™Bl
DEFINITION 6.5. Put

Tu.o)M /Z

2

- — N9:(1,0),0
TaNoeO, g¥ = T Td (ie—————F , )
20
o€]-m.1\{0}

Then the forms in (6.12) are closed on M, /Z(g). Let Td(TMOM,/Z,), Td(N9 (1))
be the corresponding cohomology classes.

DEFINITION 6.6. Put
(6.13) L(g, E) = Td(TO 0 M,/ Z,)Td(N919)ch, (E) .

Then / L(g, E) depends only on the conjugacy class of g in G.
Ms/Z(g)

Let hT"”M hE be G-invariant metrics on T(WO M, E. Let VT M/G YE pe
G-invariant unitary horizontal connections on 79 M, E. Then AT*00 M /GRE is
naturally equipped with a G-invariant unitary horizontal connection VA7 M/G®E
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Recall that by [6, p 135] , AT*09M/G ® E is a TM/G Clifford module. If
X € TM(G), let ¢(X) be the corresponding Clifford multiplication operator.

Let dv be the volume element on M;e; /G associated to BT M/G

Let K = K, ®K_ be the vector space of G-invariant C* sections of A(T*®VM/G)®
E = (A2 (T*©®)M/G) ® E) & (A°4(T*OVM/G) ® E). We equip H with the
Hermitian product

(6.14) s,8' € Hs (5,8) = / (5, 8V (0.0 G 050 -
M.eg/G
Let e1,...,e, be an orthonormal basis of TM/G.

DEFINITION 6.7. Let DM be the Dirac operator acting on K
n
(6.15) DM =¥ c(e;) VAT M/G)OE
1

Then DM is a formally self-adjoint operator which exchanges K and K_. Let
DM be the restriction of DM to K. Then we write DM in matrix form as

mMm_[0 DM
(6.16) DY = [Df 0 ]
Then by [32, 33], DY is a Fredholm operator. Its index Ind(D¥) is given by
(6.17) Ind(D¥) = dimker DY — dimker DM .

If v € (H), let gy € 7 be any representative in G of the conjugacy class v. Now
we state the theorem of Riemann-Roch-Kawasaki [32, 33].

THEOREM 6.8. The following identity holds

(6.18) Ind(D¥) = ) /

YE(H)

L(g E).
o1 /Z(3,) |Hg7 K

6.3. The line bundle ). From now on, we suppose that all the assumptions
of Section 5.11 are in force. Also we fix once and for all a positive Weyl chamber
K and the corresponding alcove P C K whose closure contains 0. Finally we may
and we will assume that

(6.19) tje P,1<j<s.
DEFINITION 6.9. Let M € Z be given by
(6.20) M={peZpt,...,pts; eCR }.

In the sequel we assume that M is not reduced to 0. Then there is pg € N*
such that

(6.21) M = poZ.
Let p € M. Put
(6.22) 6; =ptj, 1 <j<s.
Recall that the set of connections Ay (61, ... ,85) was defined in Definition 4.36. Also
the Hermitian line bundle with unitary connection (A, V*#) on A,(6y,... ,60,) was

defined in Definition 4.37. By Proposition 4.38, £G acts on the right on A, and
preserves V*». Finally Af%t(t,,... ,t,) was defined in Definition 5.26.
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Clearly if p € M, if 6y,...0, are given by (6.22), then

(6.23) Aty t,) € Ap(By,. .. ,0,).

Therefore the line bundle ), restricts to A%t (¢y,... ,t,). Also £G actson A%(ty,... ,t,).
Finally by Proposition 5.28,

(6.24) Afet(g, L 1,)/8,G = M.

DEFINITION 6.10. Let A\?, V** be the Hermitian line bundle with unitary con-
nection over M of the £,G-invariant sections of A, on A%t(ty,... ,1,).

The notation for M7 is justified by the fact that if p € M, p’ € Z, then
(6.25) NP = ()P)®P

It is then clear that the action of G on M lifts to A?. Recall that w is the
canonical symplectic form on M/G which was defined in Definition 5.30, which is
associated to the basic scalar product (,) on g.

PROPOSITION 6.11. The following identity of closed 2-forms holds on M,
(6.26) a (W, V) = pw.

PrOOF. Let 4 € At(t;,... ,t,). Let a,a' be 2 closed forms in Q(Z, E),
which are exact on 9%, ie.. there are 8,8 € Q%(8%,E) such that apy =
V4B, ajss = VAG'. By (4.24),(4.78), (4.100), (4.189),

(6.27) a (¥, V¥ )(e,a) = p /E ~(a,a') +p /a (8,949

If [a], [@] are the classes of @, o’ in H!(Z, E), from (6.27), we get
(6.28) c1(X?, V¥) (@, 0') = pw([a], [@])-
The proof of our Theorem is completed. (]

Since w is a symplectic form, there is an almost complex structure J on TM/G
which polarizes w, i.e. w(JX,Y) is a Riemannian metric on TM/G. Also J is
unique up to homotopy. In the sequel, we will always equip TM/G with such a
complex structure.

Then we will apply the theorem of Riemann-Roch-Kawasaki [32, 33] the orb-
ifold M/G and the orbifold line bundle AP. Up to now, we have made G act on M
or on AP on the right. However to fit with the formalism of Sections 6.1 and 6.2 ,
we will now make G act on the left by setting gz = zg~!.

6.4. The Theorem of Riemann-Roch-Kawasaki on the moduli space
of flat bundles. Recall that

8
(6.29) M={zeG¥x [[0;,h(z) =1}.
=1
We will use the notation
(6.30) M=MG,0,,...,0,).

Let 7 be projection T = t/CE — T' = t/R .
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THEOREM 6.12. The following identity holds

(6.31) (H) = W\C/CR.
Also ifve C/CR, ifu=1v € C/F, MY = M*. Moreover
6.32) M= U M(Z(u), Og(uy(w'ts), ... , Oz (w’ts)),

(wl,..., w*)e(W,\W)*
and the union in (6.32) is disjoint. Finally, if v € C/CR,
(6.33) H, =Z(Z(v)).

ProOF. Clearly, if u € G, then ugu™! = g if and only if g € Z(u). It is then
clear that if u € G,

(6.34) M® = {z € Zw)* x [[(0;n Z(u)), Mz) =1}.
=1
Since G acts locally freely on M, if M* #, Z(u) is semisimple. By Theorem 1.38,

we get (6.31). If u € C/CR, using Theorem 1.50 and (6.34), we get (6.32). Finally
by Theorem 5.20, we obtain (6.33). The proof of our Theorem is completed. [

REMARK 6.13. By Proposition 1.40, if G = SU(n), n > 2, if u € C, then
u € R . From Theorem 6.12, it follows that G acts freely on M, so that M/G is a
smooth manifold.

Clearly Z(G) = R'/CR C T is fixed by W. Therefore if v € T, W, depends
onlyonu=r71v € t/F We will then write W, instead of W,,.

We use the notation of Section 1. In particular 7, : Z(u) — Z(u) is the
universal cover of Z(u).

Let u € C/R, let t € T = t/CR be regular. Then Z(t) = T, and Oz (t) ~
Z(u)/T. ~

Let 7 € t/CR,, be a lift of t in Z(u). Then ? is still regular in Z(u). Since
Z(t) = T, the centralizer Z(t) in Z(u) is just Z(t) = t/CR,. Then OZM(?) ~

Z(u) / (¢/CR,) ~ Z(u)/T. Equivalently the projection Og(u) ® — Oz(w)(t) is one
to one.

Take u € C/F, (wl,...,w*) € W*° Recall that here t;,... ,t, are also con-
sidered as elements of t, so that wlt;,... ,w*t, € t. Ultimately, we may consider
wlty,... ,w’t, as element of Z(u). Then by the above, OZ(u) (w'ty),... ,Oz(u)(w’t,)
lift Oz(u)(w'ty),...,Oz)(wt,), and the projection , identifies the correspond-
ing orbits.

Let £ = (u1,v1,. .. ,Ug, Vg, W1,... ,Ws) € M(Z(u), Oz(u)(w'ts),. .., 0z (w'ts)).
Let t1,1,... ,Uy,Ug € Z(u) be lifts of uy,v1,... ,ug,vy € Z(u). Alsow,,... ,w, €
OZ(u) (wltl), ceey Oz(u) (w®ty) lift uniquely to Wy ..., W, €
Oz W't1), ..., Oz, (w'ts).

9 8
PROPOSITION 6.14. The element H[t‘i.-,%',-] Hﬁj € Z(u) does not depend on
i=1 j=1

Uy,...,U,. It lies in m(Z(u)) = CR/CR,.
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PROOF. Since m(Z(u)) C Z(Z(u)), the first part of the Proposition is trivial.
Also,

9 8 9 8
(6.35) Ty H[ﬁ,‘,ﬁ,‘] H Tﬂj = H[u,-,vi] II w; = 1.
i=1 i=1 i=1 Jj=1
From (6.35), we get the second part of the Proposition. O

Using Proposition 6.14 , we can now define:
DEFINITION 6.15. Ifu € C/CR, (w?,... ,w®) € W*, h € m1(Z(u)) = CR/CR,
put
(6.36) M(Z(u), Oz(u)(w'ty),. .. ,Ozw)(w’t,),h) =

o= ugvgwr,. . w) € M(Z@), Oz Wity), ..., Oz (w't,)),

T8 s, 6] [T @h =1}
Clearly, we have the disjoint union
(6.37) M(Z(u), Oz (w'ty),... , Oz (w'ts)) =
Uneor/or. M(Z2(u), Oz (w't1),... , Oz (w'ts), h).

Also since CR/CR, C Z2(Z(u)), Z'(u) preserves each M(Z(u), Oz (w'ts),
eoo s Oz(uy(W'ts), h).

By Definition 6.10, if p € M, there is a well-defined G-orbifold line bundle \?
on M/G. Let D, be the corresponding Dirac operator acting on smooth sections
of A(T*(®YM/G) ® N over M/G.

THEOREM 6.16. For p € M, the following identity holds

[Wal 1
(638)  Ind(Dp) = Bel Lu, ).
» ..eg/:a'ﬁ Wl 1Z(Z)| Jmnyz(0)

PRroor. By Theorems 6.8 and 6.12,
1
(6.39) Id(Dp4)= Y.z L(u, AP)
’ zZ(Z u
CW\G/OR 1Z(Z(w)| Jrw/z(u)
from which (6.38) follows. The proof of our Theorem is completed. O

6.5. Evaluation of the Atiyah-Bott-Lefschetz Todd class on a stratum
of the moduli space. Now we take u € C/F, z € M*. Then u descends to a flat
section of the G bundle G, which acts naturally on the left on the vector bundie E
as a flat section of Aut(E). In particular, on M*, the vector bundle £ ®g C splits
as a direct sum of vector bundles
(6.40) E@nC= P o t)aem

0<b<n
In (6.40), for —m < @ < 7, u acts on £? like e.
For 0 < § < m, £% is a complex vector bundle on M*/Z'(u). Let ]‘[(e= =

e =H* ) (€9 be the corresponding characteristic class. Also £ is a real vector bun-

dle on M*/Z'(u). Moreover 2icosh(%) is an even function of z. Let ]'[(eﬂi"l -~
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e‘ﬂii_")(é'") = []2icosh($)(£™) be the corresponding Pontryagin class of £7.
Needless to say, if £ has a complex structure , then this class is exactly
[T 2i cosh(&)(E™(19).

THEOREM 6.17. For u € C/R‘, the following identity of characteristic classes
holds on M*/Z'(u),

(6.41) Td(T(l.O)Mu/ZI(u)) - 22g—2+s(50)e%h(T("")M“/Z' (u) ,
2g—-2+s
1

Mocren T (5 o759 )

31 (N0 9) o3 Toei— a0y SlmN*EOO) ()T g o dim(NHO:)

ﬁ(}vu(l,o)) =

PRrooOF. Using Theorem 5.34 and (6.11), we get the first identity in (6.41).
Clearly

— ) i -1
(6.42) Td(Nu(1.9)) = [Hee]_m\{o} (e%(wo) - e—%(zw)) (Nu(lm,e)]

C%CI(N“("O))'*'% ZOE]—R.W]\{O} 0dim(Nu(l.0).a) )

Also, for -7 < 6 <0,

(6.43) Nu(1,0),6 _ Nu(0.1),-¢
From (6.43), we get
(6.44) H (e%(zﬂ'@) _ e—%(t+i0)) (N#(:0).9)
0€]-m,x]\{0}
= H (e%(z+i9) - e—%(z+i0)) (Nu(l,o),e)
0<8<n
H (e_%(l-‘-‘io) - e%($+i0)) (Nu(O,l),B)
o<f<n
= 11 (8%(““6) - e'§(”+ia)) (V) T (Ge=/2 + ie=2/2) (N0
0<d <n

(_1)2_n<a<0 dim(N“(l,O)_g) .

Also one finds easily that over M*/Z(u), equality (5.139) of Theorem 5.34 can be
split according to the values of 8. So we find that for 0 < § < =,

(6.45) II (e%(z+i0) _ e—g(zﬂo)) (N®9)
- [1'[ (e;(z+io) _ e—§(=+i9)) (€9
Also 2i cosh(z/2) is an even function of z. Then
(6.46) [1(se*/2 + ie==/2)(N*(1:0)-7) = T](2i cosh(z/2)) (N™™)
= [M@icosh(3)™ 7 (67 = [T (5% — e~ =¥2)7 " " (7).

By (6.42)-(6.46), we get the second identity in (6.41). The proof of our Theorem is
completed. O

]29—2+a
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6.6. The dimensions of the splitting of the normal bundle to the
strata. Let J be a G-invariant almost complex structure on TM/G which polarizes
the symplectic form w. We know that J is unique up to homotopy.

Take u € C/R". Let £ € M*. Then by (5.120),

(6.47) TM/G = H\(Z,E).
Recall that u defines a flat section of the bundle & —C, 5. Clearly
(6.48) 98rC=(u)erC)O( P 6a)-

a€R\R,
Let z € R — [z]' €] — 1/2,+1/2] be the function periodic of period 1, such
that
(6.49) [z) =z for x €] - 1/2,+1/2].

Clearly u acts on the left on 3(u) like the identity and on g, like e?7{®¥)  For
-1 <6 <, put

(6.50) = P e,
a€R\Ry

(e w)) =o

with the convention that if § = 0, g = 3(u).
Then (6.48) can be written as

(6.51) gorC= P ¢
~n<f<n

Also (6.51) is a Z(u)-invariant splitting. It induces a corresponding flat splitting of
the flat bundle E of the form

(6.52) E= @ E°.
—nr<f<n
In (6.52), E° is just the analogue of E when replacing G by Z(u).
By (6.52), we get

(6.53) H\(z,E)enC= P H'(S,E%).
—-n<f<n

Also TM/G = H'(X,E), and J acts on H!(3,E). Since J is G-invariant, J
commutes with u. In particular J acts on each H!(Z, E%). Let H(10(Z, E%),
H©OY)(%, E%) be the +i, —i eigenspaces of J, so that

(6.54) HY(%, E®) = A9 (%, E®) @ BV (S, E?).

Observe that since H 1(Z, E%) is equipped with the u-invariant symplectic form w,
then
(6.55) [H®O (2, E%))* = HOV (s, E%), if 6 =0,m,

[BCO(Z, %) = HOV(Z,B™Y) , 6 €] - m,x[.

Since J is unique up to homology, the dimensions of the vector spaces which appear
in (6.55) do not depend on J.
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Since Z(u) is semisimple, for —7 < 8 <,

(6.56) > a=o.
a€R
Hau))=o
Therefore for any t € t,
(6.57) Y [at)ez.
(aw))'=4

THEOREM 6.18. For —r < 0 < 7, over MY,

(6.58) dim HOV(2, E%) = (g — 1)dimg? + Z 3 ety
i=1 a€R

Kaw)l'=o

PROOF. First assume that m € N, that ¢;,...,t; are of order m, and m|s.
Then we make the construction in Section 5.12. In particular u lifts to a Z/mZ-
invariant parallel section over 23. Then we have the Z/mZ invariant splitting

(6.59) H'(2},E)®r C = HO(2t E)e HOV(ZY, E).

* By arguing as in the proof of Theorem 5.78, when taking the Z/mZ invariant part
of (6.59), we get a complex structure on H'(X, E) which polarizes o. It is then
feasible to take

(6.60) A5, E%) = ([HON (S, E%)|2/m2Z
By construction,

(6.61) [H(Z,E®)] = 0.

Therefore

(6.62) dim[H* (5, E)[*/m? = —x"2/m2 (5}, p*EY).

Using (5.321) and the theorem of Riemann-Roch-Kawasaki [32, 33] as in (5.349),
(5.350), and also (6.62), we get (6.58).

Let us now consider the general case. As in the proof of Theorem 5.78, we
approximate (¢,...,ts) by regular (t%,...,tT*) which are of order m and such
that (A) holds. Recall that over 5, we still have a Z(u) bundle, so that we may
and we will assume that at z; (j > s+ 1), we have in fact a Z(u) connection. Since
Z(u) is semisimple, for j > s + 1,

(6.63) [0, = 0.
Again the extra points Zs41,. .. ,Zs, do not contribute to the computation, so that
(6.58) still holds. Since for 1 < j < s, [(e, t]*)] = [(@,t;)], we get (6.58) in full

generality.
The proof of our Theorem is completed. a

THEOREM 6.19. For 8 €] — m, 7],

(6.64) dim H19(%, E?) = (¢ -~ 1) dim g’ + i S (1= [outy)])-
=1 a€ER

o u))' = o
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PRrOOF. By (6.55), for 8 €] — =, |,
(6.65) dim H°(Z, E?) = dim H*}(Z, E~°).

So by Theorem 6.18, we get

(6.66) dim H°(Z, E%) = (g — 1) dimg~® + }s: Z Ko, t)].

= uc-.:ﬁ'ig,,i
Now for 8 €] — =, x|,
(6.67) dimg? = dimg~’.
Also since for 1 € j < s, a € R, then {(a,t;) ¢ Z,
(6.68) Yo Katdl= Y [-et)]=
a€R a€R
Waw) =32 e =o
Y (=[entidD.
a€R
Ha,u))=£

From (6.66), (6.68), we get (6.64) when & €] — 7, w[.
Also ET is a real vector bundle. Then

(6.69) dim H1O)(%, E™) = dim H®1)(%, E™).

By Theorem 6.18, we get

8§
(6.70) dim HOO(5,E™) = (g~ 1)dimg™ + > Y [{a1;)].
=t [<n:§ﬁ=}
Observe that if a € R, then [(a,u))’ = } if and only if [~(a,u)] = ;. Also when
changing a into —a, [{a, t;)] is changed into 1 — [{a, t;)}. So for § = m, we find that
(6.70) is still equivalent to (6.64).
The proof of our Theorem is completed. a

THEOREM 6.20. Foru € C/R’, 0, 8 €] — =, 7]\{0},

(6.71) dim N* 000 = (g - 1)dimg? + > Y (1-[(at;)])-
=t ua.:)e)'i,ﬁ;

PRrooF. Recall that
(6.72) TM/G = B(Z,E).

Also (6.72) is an identification of u-spaces. Then our Theorem is just another
formulation of Theorem 6.19. O
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6.7. The contribution of a stratum of the moduli space. Recall that
by Theorem 1.41,

(6.73) h € CR/CR, v exp(2im(py,h)) € S)

is a character with values in %1.

By Theorem 5.18 and by Proposition 5.63, for g > 1, M(Z(u), Oz (w't1),. ..,
Oz(u)(w’ts), h) is a non empty smooth manifold, and for g = 0, M(Z(u), Oz
(w'ty),... ,Oz(y)(wt,), h) is either non empty and smooth, or it is empty.

In the sequel, it will be understood that any geometric statement about the
empty set is empty.

Recall that by [34], [6, Lemma 7.22] and (1.193), the orbits O(w’t;) carry a nat-
ural complex structure, which polarizes the canonical symplectic form OO(wit;) ON

O(wjtj?. Let Nc()lz'?.)., (wit;)/O(wit;) D€ the holomorphic normal bundle to Oy (w’t;)
in O(w’t;).
As we saw after (5.305), Hy g,5(t1,... ,ts,1) is locally a polynomial of (t1,. .. ,s,1).
THEOREM 6.21. For u € C/CR, p € M,p # —c¢, (w',... ,w’) € W%, h €
CR
CR.’

Q

/ L(u’/\p) = (p+ C)(g—l)dimg(u)+§ dim 3(u)/t
M(Z(1),0 2wy (W't1),... Oz (uy(w?t2),h) /Z ()

(—1) 7 (@im(e) —dim(3(w)) s
IW.|

eiﬂ Zaeﬂ+ [(w? a,u)]+2in (w’ pt; +ph,u)

Jj=1

(6.74)[ IT 4 ((a,;—?%))

a€R, +

1
11 i

2g—2+s8
a€R4\Ry 4+ 2sinh (%((a! pFe ) + 217[[(0,11)])) ]

ki
[ er=to-etnorotz, (@) L by st it b t).

=1 2mi |%|2’
Also
_ ©
(6.75) {Td(Nu(l'o))IM(Z(u).Oz(u)(Wlh)y---.Oz(u)(w"-))/z'(“)} =

H 1 9-1 na 1
a€R4\Ru,+ \ Tsin?(n{a,u)) 7=1 det(1-u=1) t10)

Oz(u) (w7 t5)/Owity) 5,

PRrOOF. First we consider the case where g = 0, and M(Z(u), Oz(y)(w't1),.. .,
Oz)(wts), h) = 0. By definition, the left-hand side of (6.74) is 0. Also fort € T
close enough to 1, My(Z(u),Oz()(w'ty,... ,0zw)(w’ts),h) is also empty. By
(5.305), it follows that Hy g,(t1,... ,ts,t) vanishes identically near t = 1. Then
(6.74) is just the identity 0 = 0.

Now we assume that M(Z(u), Oz(u)(w't1),... , Oz (w'ts), h) is non empty.
If w=(w,...,w*) € W? put

(6.76) My, = M(Z(u),Oz(u)(wltl), oo, Ozuy(w'ts), h) .
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We use the notation of Section 4.7. If z € M2 s the corresponding flat connection
reduces the G-bundle P to a Z(u)-bundle we still denote by P. This Z(u)-bundle
lifts toa Z (u)-bundle Q. By Proposition 4.33, and by (6.36),

(6.77) [P} = e,
By Theorem 4.39, the right action of u on AP over M} , is given by e —2imp(T5, witjthiu)

The corresponding left action is then given by e2i1rp():,=, witj+hu), By (6.41) , and
by the above result,we get
29-2+s

u L u, AP) = u IZ 80 =41 L ati
Jaag 120 LX) = fygy sz |AE°) I (-
0<9<n
(6.78) o1 (T1OM/G)+pwet Tocl-nxi\(0) odim(N (1:0:0)
(_1)2_,<,<° dim(N*(1:0).9) H;—l e2i1r(w’ptj,u)e2i1r(pu,h) )
Now we use Theorem 5.78, which gives us a formula for ¢, (TM/G). By Propo-
sition 5.73 and by (6.78),

(679) / L(’U,Ap) = Nu(1,0).6)
My . /2Z(u)

1 lei" Yo)-n,m]\ {03 & dim(

u

(= 1) -rcocodimN= 0 1) 4 o) (g=1) ditm(u)+ § dimmls(w)/9 H 2(( 6/6t))
a€Ry, + p+ ¢

. ) 29—2+8
g 2sinh(% ((a, %%)+2i7r[(a,u)])) a!‘l 2i cosh (%( p+c))]

o<[(a,u)]<} Uaw))=}

s s
H e;h(P““i-D/a‘;‘).,ru(aZ{’rait) —E o Hu,g,s('wltl, e Wi, h,t) II e2i1r(w5pt,-,u)e2i1r(ph.u) )
i1 I CR j=1

Observe that if « € R\R,, when changing « into —a, 2sinh (%((a, e b+
2'i7r[(a,u)])) is unchanged. Therefore

©80) JI 1 II

H 1
o (e T we) A
1 1

2icosh ((a, e )) aeR}—\IR.,,+ 2sinh (% ((a, e ty + 2in{a, u)]))
By Theorem 6.20,

(6.81) exp(i/2 Z gdim(Nu(l.O),O)) —
g€)—n,n]\{0}
exp( Y b(dimg’(g-1)+ Z Z (1- [(a,wftj)])))) i
f€)—-n,x]

((u u))'=8/2n
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Now the 6 €] — w, 7[\{0} come by opposite pairs. Therefore

(6.82) Y 6dimg’ = ndimg",
ge}—n,xj\{0}

and so

(6.83) e5Z8dimg’(9-1) _ (_l)é_i%ﬂ(g_l) .

For1<j<s, put
(6.84) t;- = wl t;
Rj+ =wiRy
Then R, is the positive root system associated to t;.. For1<j<s,

Lioel-1/21/2) ¢ Z[(a:’v&)?m (1 - [ t5)])
(6.85) = Ea&R[(“:“)]'(l _ [(a,t;)])
= Yaen,, (w1 - (@) +[~(a,u)]'(a,£))

=~ Yaerlles W (@, t)) + 3 sep; , [(o,uw)].
Clearly,

(6.86) D leuenty) =3 s 3 auth).

R 8 x€R
a€ (o) =s

Now for a given s, the {a € R, [(a,u)]’ = s} are exactly the weights of the repre-
sentation of Z(u) on {f € g ®r C,uf = ¥ f}. Since Z(u) is semisimple,

(6.87) Y a=o0.

a€R
[{a,u)) =4

From (6.81)-(6.87) , we get
(6.88)

) . . '
exp(-% Z 8dim(N(1:0):8)) = (—-l)d‘ 7 (9-1) 1:[ exp(in Z [(wa,u)]).
6€]-m,n]\{0} j=1 a€Ry
Also by Theorem 6.20, using (6.87) , we get
(6.89) S <peo ImNE(10))
=(@-D L rcsco dimg? + Z;=1 X —1/2<H <0 a
=(g-1|{a € R,-} < [(a,u)] <0}|

= [(a, t5)])

+ Z;=1 (—‘ 2—1/2<s<0(2“ «€R O, t;) + ‘{C! € R, _% < [(a’u)]’ <0, (a7t9) > O}l

a,u)li=s
=(9-)Ha € R,-3 <[a,u)] <O}
+35- {a € R,—; < [{@,u)]) <0,(a,t}) > 0}

=(9-D{e € R, ~§ < [(x,u)] <0} + X}, [{a € Ry, -3 < [(wa,u)]' <0}

)
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So by (6.88),(6.89),

(6.90) exp(%’ Z 9dim(N"(l’O)’o))(-—1)2-"<‘<° dim(N(1.0).0y) _
g€]—n,x]\{0}
(—1)le-D({a€RO< (o)) <3} 1+ FH{a€RO<au)l'=1})

[T;= explin ) [(wia,u))).

aERy

Moreover

(6.91)
e € B,0 < @ u] < 3} + gl € R {au] = 5}| = 3(dim(s) - dima(u)) .

From (6.79), (6.80), (6.90), (6.91) , we get (6.74).
Using (6.74) , or by proceeding directly, we get

—~ (0) . . ) :
{Td(Nu(l'O))lM:,.h/Z’(u)} = (=1){s~1)(dimg—dims(v))/2 H;=1 exp(im Z [(wa,u)])
aERy

29—2+s
(6.92) (Ha€R+\Ru,+ Temh(inl(a )

Using the invariance of sinh(ir[{a,u)]) when a € R\R, is changed into ~a, from
(6.92), we get

o~ 0 g-1
(693) {Td(Nu(l'o))]M‘:,h/Z'(u)} = (HaeR+\Ru,+ 4sin’(1lr(a.u”)
s eiw[(a.(wi)_l“)l _
Hj:l I1 *€Rt  Fsinh(in[{a,(w?)-Tw)])

+
agu; lp

u

1
-1l ] Tims Tleesyns. e =
— lla€R{\Ru ¢+ {4sin?(n(a,u) j=1 °i"é;;lﬂ+- T—e=din({a,u) —
u

~1
=11 1 g b 1
= llaeR4\R,,+ | Tsin?(x{a,u)) j=1 det(l"u'l)mu.o) )

Oz(..)(wft,')lo(w"'j)lw,-,j

which is just (6.75). The proof of our Theorem is completed. a

Recall that

(6.94) L = |R+|
b, = |Ru,+| ’
r = dimt.

Our assumptions on g, s guarantee that 2¢g — 2 + s > 1. Also by (2.100) and by
Theorem 2.45, the function Py pic29-2+3(t) is a polynomial on T'\ S.
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THEOREM 6.22. Foru € C/CR, p€ M,p # —c, then
fMu/Z(u) L(u, \P) = Vol(T)?9-2 Jil(vz_vgyllll(p + ¢){9=1)dim(3(u))+5dim(3(u)/0)

(6.95) (=)D o, ,
29—2+4s
i (e, a/6t) ’
[ ( pte HaeR+\R“'+ 2sinh (% (("’9‘;@?)“”[(‘1'")1))

R ; i(p—ct;),2L0t
Tut,... wyews [j=i |s80((=i) 070 (wit;))e 0=et) 55+

+im Eaen+[(wja, u)] + 2i7r(wjptj,u) Pu,2y—2+s.p+c(t)]t=zj; wit;

PRrOOF. By (6.32), (6.37),
(6.96) fMu/Z(u) L(u, N?) =
Lt e Ju(2(0),050) Wit Oz et /20w LX)

We use Theorem 6.21 to calculate the term in the right-hand side of (6.96) . Also
by (2.131) and by Theorem 5.72,

(6.97) - (aﬁft) Hygo(wity, ..., w'ty, hyt) = (—1)a(s-)+1
|Z(Z(w))IVol(t/CR)IPI™2 Xy, wisyews
[T=: ewssgn((—i) o z(u) (wit;))e 2™ Pw PPy 5o a1s(t+ b + 305, w'inity).

Clearly

(6.98) Z(Z(u)) = %5%—);

and so

(699 12E W) = 122w | o]
Moreover

(6.100) Vol(t/CR.) = Vol(f/m)lg =V°1(T>’$, '

By (6.97)-(6.100) , we get
(6101)  m (%) Petgr(u'ty,. .. wty, hyt) = (<1004
LE

CRy

]Z(Z(u))|V01(T)2g_2 Z(w'l oo ,w")GW' (u) H;’:l €' ((_i)tuaz(u))(wjtj)

exp(—2im(pu, h)) 2 2= (¢ + b+ Yl wiwlty).
TRy

Also by Theorem 1.41 , for h € CR/CR,,
(6.102) exp(—2im{py, h)) = exp(2im{cu, h)).
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Now observe that if w'i € W,,, by (1.45),

o w'lwit;
(6.103) sw,,-=—za‘;%f)(—w7j—)’-)-,1gjgs.
Therefore
(6.104) sgn (=)™ 02(u) (W't;)) €yi = sgn ((—1)* 070 (W wit))) .
Also
(6.105) £, + (dim(g) — dim(3(u))) /2= ¢.
From (2.166), (6.74), (6.96), (6.101)-(6.105), we get (6.95). The proof of our The-
orem is completed. a

REMARK 6.23. As shown in Section 2.11, the function exp(2im(qu, t)) Py 2g—2+s,p+¢(t)
descends to a function which is well-defined on T' = t/CR. Ultimately, this explains
why equation (6.95) is unambiguous.

¢
Recall that the function o(t) = H (emlt) — e"”(“")) is well-defined on T =

i=1
e2‘i1l’(p,t)

_— - 4 - —‘_
o) is well-defined on T’ = t/R

t/CR, and the function

PROPOSITION 6.24. For anyu € C/R, for any s € treg, € P, w € W,

. 1
(6106) Sgn((—'l)a'Z(u) (wx)) ag+ 2 sinh(%—((a, S) + 2'!:7([((1, U)]))
. _ 1 in(wp,u,
exp(im a§+[(wa, W) =€w ag+ 2sinh(}(a, s + 2inu)) et

PROOF. As we just saw, both sides are unchanged when replacing u by u + v,
v € CR. By [15, Proposition V.7.10], we may as well assume that for any a € R,

(6.107) {a,u)] < 1.

If o € R\Ry, sinh(3({a, 8) + 2in[(a,u)])) is unchanged when « is replaced by —a.
Therefore using (1.45), we get

(6.108) 1R+ w1 (= Ru,4)}

1 —
HGER+ 2sinh({({a,8)+2in[(a,u)])) — (—1)

1 —
HGGWR+ 2sinh({((o,8)+2in[{a,u)])) —
(=1)IR+Nw™ (= Ru )+ {a€R4, -1 <(wa,u) <O} +{a€Ry (wau)=41}|

1 —
HGGR+ 2sinh(I{a,w=1(s+2imwu)))
£w(—1)1B+00 T (—Ru)l+{o€R ~1<(wau) <OH+ {a€ Ry (war,u)=21}]

1
HaER+ 2sinh( ;(a,a+2i1ru)) )

Moreover, for z € P,

(6.109) sgn((—i)% 02w (wz)) = (~1)R+M T (=RuI
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Also by (6.107),
(6.110) exp(ir Y [(wa,u)]) =

GER+
exp(iﬂ-(w z a’u))(_l)l{a€R+,—1<(wa,u)<0}|+|{aER+,(wa,u)::tl}l =
aER4
eZi"(vau)(._1)l{a€R+v_1<(waiu)<0}|+|{QER+!(WQ’“)=:‘:1}, .

From (6.108)-(6.110) , we get (6.106). The proof of our Proposition is completed.
a

REMARK 6.25. It is clear that the right-hand side of (6.106) only depends on
the class of u in C/R’.

Observe that the function

H (a’ s)eZiﬂ(wp,u)

(6.111) s€ by —ERus eC

H 23inh(-1-(a, 8 + 2imu))
2
GER+

is a well-defined holomorphic function near s = 0.

THEOREM 6.26. For any u € C/CR,p € M,p # —c, the following identity
holds,

va/Z(u) L(u, \?) = Vol(T)292 Léf_zu;}i))l(p + c)(g=1dim(3(w)+Fdim(3()/t)

H 3/6t 2g9-2+s
(a,
p+c
g~ a€R. +
(6.112) (~1)He-1)+1 a/a '
H 2sinh ( + 2z1ru))

aER4
Z(w‘,...,w‘)EW' H;=1 £wi exp({w’ (p - ctj), p+c)
+2i1r(wj (p+ Ptj): u))Pu,29—2+s,p+c(t)|t= Tl wits -
PRroOF. Clearly, since 2g — 2 is even,

(6.113) { 11 2((a, 3/3t>)

c
a€ERy 4 p +

129-2
1

a/at

———) + 2, w)])-

I o/0t, I

aERu+ pt+c

- H2smh (a,/ +217))

a€ER,y

1
a€R4\Ry,+ 2sinh(=({a

2@,

29-2
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Also, since t; € P, by Proposition 6.24 , we get

Mecr. . A((e 22)) aer,\n.
Rt ( P ) SRRt sinh(L > (e a76t)+211r[(a W)
(6.114) sgn((~ )I"O'Z(u)(’w-’t:,)) i Yaer, (@ a,u)] —
I o/ot,
a€R. + p+ C eZim(wp,u)
I 2 L
a€R4

By Theorem 6.22 and by (6.113),(6.114) , we get (6.112). The proof of our Theorem
is completed. 0O

REMARK 6.27. Suppose temporarily that t;,...,t,—; verify assumption (A),
and that € > 0 is small enough so that if |¢t,| <, (1,... ,ts) still verify (A). Then
(6.112) can be written in the form

(6.115) / L(u, ?) =
M*/Z(u)

Vo 1(T)29 2l£|(_z_(}_‘ll'ﬁl. (p +c)(y 1)dim(3(u))+ §dim(3(u)/t)

29—2+s
I 2%
(—1)o=D+1 GGR«-; ST
H 2sinh (E(a’p{l-c + 2im ))
a€R+
E €w e(W(ﬂ+pt.) 828 1 2inu) Z
wew (wl,..,w—1)ewes-1

HE (v (o—cti) S 2im(wi (o4pti) ) p
i=1

—2+s,p+c(t);¢=z;;} wit; *
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Using (1.94), (2.131), since pt, = 8, € -CTF{;, we may rewrite (6.115) in the
form

(6.116) L(u, W) =
M+ /Z(u)

Vo I(T)2g—2lz|(z(1;))|(p+ )(g l)dxma(u)+5'—,—12d1m(3(u)/l)

/6t 29—2+s5-1
I 2%
- €R,, 8/8t
(-1)He-1)+1 ks 1* 8/6t Xpt, (e’ﬂ?{iﬁ'*'“)
H 2sinh ( + 2z1ru))
a€R+
Z H gy iel '(p—ct;), Y4 )+ 2im (w’ (p+pt; ) u)

(wl,... wr=1)eWs—1 j=1

Pu,2g—2+s—l.p+c(t)|t=2;;11 wity

With respect to (6.112) , s has been replaced by s — 1, and we have the extra
8/06t
differential operator Xp, (e Trlaray tu

Let M’ be the manifold attached to G, Oy,...,0,_1. Let F be the vector

bundle over M'/G associated to the representation of highest weight pt, C CR of
G. Then if we still denote by L(u, A?) the corresponding class (6.13) over M'*/Z(u),
in view of (5.318), we can rewrite (6.115),(6.116) in the form

(6.117) / L(u, %) = / L(u, \%)chy, (F).
M [Z(u) M'v [Z(u)

Also by Theorem 5.57, for |t,] small enough, the orbifold M/G fibres over M'/G
with fibre G/T. Let p be the projection M/G — M'/G. Then one verifies easily
that

(6.118) p«L(u, \?) = L(u, AP)ch,(F),

which makes (6.117) tautological.

REMARK 6.28. If u € C/CR, w € W, one should have the equality

(6.119) / L(u, \P) = / L(wu, \P).
M/ Z(u) Mvwy /Z(wu)

We will briefly explain why the right-hand side of (6.112) is unchanged when re-
placing u by wu. Put

(6 120) C= Vol(T)Zg 2IZ?Z(1';))I(p+ )(g 1)dim 3(u))+s/2 dim(3( u)/t)( l)l(y 1)+1
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Then using (1.45), (2.167), (6.112), we get
1 29-2+s

(wa,8/8¢t)
nnen.,d. ptec
Maer, 2sinh (%(wa.%-ﬁ%wwu))

] ; t . :
(Ew(‘1)|R+nW(_Ru'+)') Z(wl,-.. wr)ews H;=1 Ewie(w’(p_‘:t’)'%%)++2'"<w1(p+pt")’wu)

fM“"‘/Z(wu) L(wu’ AP) =C |'

o/0 9 29—2+s
{a, ‘ t)

nﬂsﬂu,L p+e
acr, 2sinh (g—(a,%o?‘+2i1ru)) |

TT°o, £us el (Pmcti) 35 e+ 2im(uw (otpty) )
J:

Pwu,2g—2+aup+¢(t)]t=zf wit; = ¢ [

E(w‘,...,w‘)eW'
(6.121) Puzg-24spte(Bp=51 wit; = fare 700 Lt AP).

So we find that (6.112) is compatible with (6.119).

6.8. The case where E;=1 pt; ¢ R. Recall that in Section 1.8, we saw that
if Y35, pt; € R, for any (w',... ,w*) € W*, then 3_7_, wipt; € R.

THEOREM 6.29. If Y pt; ¢ R, ifv € C/R’, then

(6.122) / L(u, 3?) = 0.
uEC/n M /Z(u)

In particular, if p e M,p # —c,

(6.123) Ind(D, ) =0

PROOF. To establish (6.122), we use Theorem 6.26. In fact, in the right hand-
side of formula (6.112), we observe that the various terms depend on the image
v = Tu, with the exception of n;=1 exp(2im(wipt;,u)). Also

(6.124) Z exp (2i1r(§,: wpt;, v)) =0 if iw"ptj ¢R,
ij=1

veR'/CR Jj=1
=|CE}%| iwajptjGI_Z.
i=1
(6.125)
It is now clear that (6.122) holds. Equation (6.123) follows from Theorem 6.16 and
from (6.122). O

6.9. A residue formula for the index. In view of Theorem 6.29, we may
and we will assume that

8
(6.126) S ptieR.
j=1

We now use the notation of Section 2. Recall that S C t/CR has been defined
in (2.111).
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DEFINITION 6.30. We will say that (1, ... ,t,) verify assumption (A) if for any
(w!,... ,w*) € W*,
8

(6.127) > wit; ¢ 3.
j=1
Clearly assumption (A) is stronger than assumption (A) of Definition 5.17. In
the sequel, we assume that (¢;,... ,t,) verify (A).

THEOREM 6.31. For any u € C/ﬁ‘, p € M,p # —c, the following identity
holds

Tra sy £ N2) = | | Vol(Ty2o =2 LEEEL (1. ) (0=1r (—1)tte-11+r
29—2+4s
1 1

ReSI=0
sea) | 2R, 2sinh (o, 2 + 2imu))

Is(iy, .. ,ir)€Tu (e, -
f€ECR/4R

(6128) Z(wl,... Jwh)EW? Ewl ... Eye EXP ((Z_;:l w] (p —_ Ctj), p_z_‘:z))
] r ! _jai; 2t
+2m(T5y wi(p + pty) + (P + ), u) ) exp (45;- {Pior2ia )

1 (P’-_ll-'!‘ .e7)
(L1 (i whte + 1), €9)])

(Pi_q@i;.2")
nr_l exp (d—JI—l_‘JTr)_)

(P @i
Proor. If (w',... ,w*) € W%, 30, wit; ¢ S. Then we use Theorems 2.50
and 6.26 and we get (6.128). ]

THEOREM 6.32. If p € M,p # —c, then

(6129) Ind(Dp’+) = I%lvol( T)29-2 |Z(G |(P+ )(_q l)r( l)t(g—l)+r Z

ueC/R”
29—2+4s
1 1
N |
k%‘gﬁ}';’ﬁez“ (Qiyy - ,05.) a€R, 2sinh (%( ,p+c +211ru))
f] ) 2’.I
. J(p — ot

X eweewep (Do -a), )
(wl,...,w?)ew? Jj=1

. - ] (pJ la!,iz )
+2z7rjz=:lw1(p+Ptj)+(P+C)f, )exp (dz o, 00)

1
r (p]_yoni;,27)
Hj:l (exp (d—l‘(p’,_ida,.j',e:')) - 1)

PROOF. Recall that Z(G) = R’ /CR. Using Theorems 6.16, (6.124) and 6.31,
we get (6.129). The proof of our Theorem is completed. a

L1 (3wt + 0.e))
k=1

REMARK 6.33. As we saw in Proposition 1.40 and Remark 2.7, for n > 2 and
G = SU(n), then C/R" = 0, and we can choose d = 1. Then formula (6.129) has
an especially simple form.
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6.10. A formula for the index for large p.
THEOREM 6.34. For p € M, and |p| large enough, the following identity holds

R _21Z(G)| -
Ind(D Vol(T)%9—2 + ¢)8~Dr(_1)Ue—1)+r
(05 = || Vo EELp 4 ga-ir e 3
ueC/R
2g—2+s
1 1
'g(;le"a:h‘;?ﬁfz“ (¢ TR 78 [a€R+ 2sinh (%( ’p+c + 217ru))
(6.130) Z Ewl ... Eys EXP ((z:wJ p z!)
(wl,... , w*)eEW j=1 P

2in(3 " u (o +pty + (p+ 1)
j=1

exp(dz (p, o2 [1 31'—1(

=1 lai ’eJ)
1

(P Qi T )
H;—l (exP (d(pj 110' ,e:> )

Proor. Clearly, for p = +00, Z

k=1 p+

ct,

— 0. Also by Proposition 2.14, since
2_7:1 wit; ¢ S, if f € R,
(6.131) ,’._I(Zw”tk + f),ef) ¢z

k=1

Therefore by (2.13) , for |p| large enough,
(p; lain - wkptk j
(6.132) d}Z la“e,) (p, 1(Zp+c +£).¢)| =

dz (AR [ (PI—l(Zw tx + ), ¢') ] - (Z ;w"‘té =)

i= 1a. ,€9)

By (2.115), (6.132) , we find that for |p| large enough,

oo Zjes S [0 (St 20+ 1). )]

(pj_ i,
(6.133) =exp( S, ek g 1))
(.pJ la‘;,, 1 I . J
exP(dJZI o1 ,eJ d 1"1(;“’ ty + f),€e)| |-

From (6.129), (6.133) , we get (6.130). The proof of our Theorem is completed. O

REMARK 6.35. The formulas in Theorems 6.32 and 6.34 are essentially identi-
cal.The point is that, as we will see in Theorems 7.23 and 8.1, the right-hand side
of (6.130) is just Verlinde’s formula.
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6.11. A perturbation of the index problem. We still assume that s > 1
and that if g = 0, then s > 3, so that 2g — 2 + s > 1. Note that these assumptions
are almost irrelevant, since by adding as many marked points as one wishes with
holonomy equal to 1, one can make s arbitrarily large.

Recall that, by Proposition 1.23, P embeds into T'. Also the orbit under the
Weyl group W of any element, in T' always intersects P.

Let ti1,...,ts be s elements in T. We may and we will assume that they all
lie in P. In the sequel we will consider t;,... ,t, as elements of t. We still define
M C Z as in (6.20), and we assume that M is not reduced to 0. For p € M, set

(6.134) 0;=ph;,1<j<s.

Then6; e CR,1<j<
Let 6 = (61,...,4,) E t’ and assume that t; +y,... ,t; +d, lie in P and verify
(A). Put

8
(6.135) X% =G% x [[ 0,445
ij=1

and let M? correspond to X¢ as in (5.59). Then M? is a smooth submanifold of
X,

We will briefly show how to equip M? with an orbifold line bundle AP. We use
the notation of Section 4.10. For 1 < j < s, consider the orbit O_pa/at+p(t;+8,) C

Lg. By (4.30),
(6136) O—pd/d£+p(tj+6j) ~ LG/T.

Also as in Definition 4.3, LG/(T x S') ~ LG/T can be equipped with the line
bundle Hg, _,) of weight (6;,p). Therefore O_pq/4s+p(t;+4;) Can be equipped with
the corresponding line bundle L;. Recall that pt; = 8;. Then we define the line
bundle ), as in (4.189), and the line bundle A? on M? as in Definition 6.10.

We can then define a Dirac operator D ¥ )
6.3 and 6.4.

in the same way as in Sections
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THEOREM 6.36. For p € M,p # —c,

(6.137)  Ind(D{r%) = ﬁ'VI(T)“ 2|_1_I(p+c)(a Hr

(_l)t(g—1)+r Z Z (ai ’e 1 y @ )

I=(i1,...,ir)€Tu
u€C/CR t€R/dR

29—2+s
1
Resi:o H
a€R, 2smh( (o, 2= p+c + 2z7ru))

Z Ew ew.exp((Zw’(p+c —Jj),z[)

(w?,...,w*)EW?»

+2i1r(i w¥(p +pt;) + (0 + O)f, u))

j=1
I 8
exp (dz T 1‘;':";)) [;(P;In ( w* (t +6k)+f) ,ej)])
j= 1945, k=1
1
u d(pl- a,-,.,a:’) .
,-—1:'[1 (exp (—(pj-]_:a,-j,ef)—) - 1)

PROOF. The proof of our Theorem follows the same steps as the proof of The-
orem 6.32, where the case d = 0 was considered. We briefly describe the main steps
where the proof of our more general result differs.

o Instead of (6.26) in Proposition 5.11, we have

(6.138) ar(W, V) = p(w + i(lﬁ, 9;))-
J=1

This follows from an easy computation which is left to the reader. _

o In formula (6.74) in Theorem 6.21, the main point is in fact that [];_, 2™ (= pti+phu)
is unchanged. The argument is in fact the same as in the proof of Theo-
rem 6.21. Also using (6.138) instead of Theorem 5.78, one finds that in

formula (6.74) in Theorem 6.21, [];_, er¥e ((P=cti).0/04) ghould be replaced
by T, (Gt —8i,0/0t;)
By proceeding otherwise as before, we get (6.137). The proof of our Theorem is
completed. 0

REMARK 6.37. Using (6.137) and proceeding as in the proof of Theorem 6.29,
we find that (6.123) is still true. So in the sequel, we may and we will assume that
(6.126) holds.

Now we will slightly modify the statement of Theorem 6.36. Recall that
t1,...,ts all lie in P. Therefore for p € M,p > 0, for 1 < j < s, pt;/(p+¢)
still lies in P.
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THEOREM 6.38. For p € M,p > 0, if €1,...,,6, € t are such that ‘;‘%+

€1,. p+c+e, € P, and that, for any (w!, ... ,w®) € W?, E;=1 w? (ﬁ‘; +a]) ¢5,
then

Ind(D, ,+:+£,)) lC |Vl( )2 —2|Z”(G;)I(p+ c)lo-br

(-pemor Z Z (o 1 o)

R I=01.... .ir)€ET
u€C/R feﬁ/fﬁ u

29~2+s

1
Res!_, H
LER+ 2sinh (%( a, p+c + Zzwu))]

E Ewl --.Eqys €X E w’( —5-),
wl w p(<j=1 Pt j 1')

(wli“' .w')EW‘

+2i1r(z wi(p+pt;) + (p+c)f, u))

=1

o (45 G 1 (S e) ) )

k=1
1

H (exp (d(p; 11::”:))) 1)

(6.139)

PRrROOF. In Theorem 6.36, we take

(6.140) b; = p_cl_t’ +ej,1<j<s.

Then we get (6.139). a

PROPOSITION 6.39. For p€ M,p > 0, there is€1,... ,e5 € t such that for £ €
10,1,1<j<s, fj-_"‘-: +fe; € T is regular, and for any (w',... ,w®) € W?,£ €0, 1],

Siowl (B +te;) ¢5.

PROOF. Recall that S is a union of hypertori in T. Therefore SN P is the
intersection of P C t with a union of hyperplanes in t. Our Proposition now follows
easily. O

Let (z]4,[z]- be the functions defined on R with values in [0, 1], which are
periodic of period 1 and such that

(6.141) [z]+ = z forz € [0,1],
[z]- = z forz €]0,1].
Observe that by 2.14 , for £ €]0,1}, f € R/dR,1<j <,

(6.142) I (Z wt (z% +zek> + f) &) ¢ Z.

k=1
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From (6.142) , it follows that either

8
6.143 I J &) ¢ Z,
(6.143) Wt (Lo (Z)+1).ene
or

(6.144) I (Zs:w (pf’fc) +f) &) ez

j=1

) (i:szj) &) #0.

J=1

DEFINITION 6.40. Given (w!,... ,w®) € W*, for f € R/dR, I = (iy,...

put

(6.145) " wI(£,D) = +if (pl_, (iwk ( Pl )+f) &) ¢ Z,

1
i
o
AN
L
TN
-
g
=
=
+(&
N—r”’
+
~n
N—
®
<
m
N

Observe that if f = ijej

k=1

k=1 k=1

(6.146) (pl_, (Z w* (I% +1),ef) = (o, (Z w ppikc + Z f kek)

By (6.146), it is clear that nﬁ"’l"“’w‘)(f,f) depend only on f1,..., fi,iy,...

)1:7')’

yij—1.
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pt
THEOREM 6.41. Given p € M,p > 0, the integer Ind D(_":LH ) does not de-
pend on £ €]0,1]. More precisely

+l5|

(6.147) Ind D’ ’+c ,__ Vol(T)?~ 2|Z(G)|(p+ &)e-1r

Wi

D S D ooy

T* I=(31,... ir)ET
u€C/R ecn/rm *

1
Resf_;o H 1 "
€Ry 9sinh { =(a. —— + 21
a€Ry 2smh(2(a,p+ +217m))

S e (S (;2)0

(W, wr)eW? i=1

+2i1r(z w? (p+ ptj) + (p+ o) f, U))
1

8 I
\Pj1%i;,Z7) ~1Gi;, T )

exp d 1
\ =1 1111,’3])

1 (iw Pl +f) e')] )
[d I\& <p+c) ’ ngte (£

1
§ d(p’_ a,-J.,a:I)
H (exp (—(pji’_—l___lai“e].) ) - 1) .

j=1

Proor. Clearly, for £ €]0, 1],

(6.148) [ (vl_ IZ ( )+f,ej)]

depends continuousiy on £ G]O, 1], and moreover as £ — 0, it converges to

1 . wit;
(6.149) [E ! (Z +’c+f),ej)] :
T P R e

P e
By (6.139) and the above, Ind D:,f’f“ 1) depends continuously on £ €]0,1], and
so remams constant. This last fact should also be clear by the construction of

29—-2+s

D(,+c +£5.1)

Usmg (6 139), (6.149) , we get (6.147). The proof of our Theorem is completed.
O

REMARK 6.42. Observe that in our direct index theoretic computations, we
have avoided introducing central holonomies, because they are non generic. We
dealt with this case by a perturbation argument. However we may assume that
one of the t;, say t,, is equal to h, € Z(G), while the other holonomies are generic.
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By Proposition 1.24, we can identify h, to a unique element in P, which we still
denote ko, so that h, € PNR". When the moduli space M /G is an orbifold (which
is the case when condition (4) holds), all the computations we did in Sections
6.1-6.9 can be done directly. By proceeding as in Remark 6.27, it is obvious that
in both cases, we compute the same index. This is less obvious at the level of
explicit computations. Using in particular equations (1.78) and (1.140), we find
that equation (6.112) is now replaced by

fM"/Z(u) L(u, \P) = €, Vol(T)%9-2 %m
(p + ¢)(@-Ddim(3(w)+ {52 dim(a(v)/1)

/o, 20-2+s-1
H (e p+ c
(6.150) (~1)Ue-1+1 a€R, +
' I 3/3
[ 2sinb ( o 217ru))

a€ER4
Z(wl,... aw—l)ews-1 n;;i Ewi exP((wj(p - Ct.'i) pic )
+2im(w’ (o + pt;), u) exp(2in{(p + c)ho, u))
Pu.29—2+s-1.p+c(t))t=):;;l‘ witj+h, *

The fact that ultimately, the two explicit index formulas coincide will be verified
via the Verlinde formulas in Remark 8.4, by using in particular Theorem 1.33.
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7. Residues and the Verlinde formula

In this Section, we apply residues techniques to the finite Verlinde sum, we
express it as a residue in several complex variables, and we prove that for p large
enough, the Riemann-Roch number of M/G is given by the Verlinde formula. With-
out any condition on p, the Verlinde formula is the Riemann-Roch number of some
perturbation of the moduli space of M/G.

As indicated in the introduction, higher cohomology groups on M/G may well
not vanish. This would account for the discrepancy between the index and the
Verlinde formula for small p.

This Section is organized as follows. In Section 7.1, we give a residue formula
for a Fourier series over R /qR , Ly(t,x). In Section 7.2, we consider a related
series My(t, ), which we also evaluate as a sum of residues, the sum being indexed
by the semisimple centralizers Z(u). In Section 7.3, we introduce the Verlinde sums
Vo,q(81,...,6,). In Section 7.4, we express the Verlinde sums as residues.

Finally in Sections 7.5-7.7, we “localize” the Verlinde formulas to put them a
form which is very similar to the form we obtained in Section 6 for Ind(D,, ..) .
This is done using the techniques we already developed in Section 2.

7.1. A residue formula for L(t,z).
DEFINITION 7.1. For g € N*, t € R/qR , = € (C\2inZ)¢, put

exp(2im({A,t
(71) Lq(t: Z) = Z FA p( <2i1|’/¢:1()1 ~T; ’
reR /qr [li=1 2 tanh ( 20 )

If t € R/qR, then t/q € (R/q) / R C t/R. Recall that the subset H of t/R was
defined in (2.44), (2.45). Then by (2.45),

(72)  {teR/eRt/qcH}={tecR/eRt= Y  tia;int/qR,
jegc{i,...,r}

and the {a;,j € J} do not span t* ~ t} .

As in Section 2.4 , we identify R/dR to {0,1,...,d — 1}", i.e. f € R/dR is
identified to ) _ fles, f* € {0,...,d - 1}.

1
By (2.14), if I = (i1,...,i,) is generic, if z € Z¢, then d(e;,z') € Z, 1 <
j <r and so for 1 < i < ¢, d{a;,z') € Z.Therefore the function z € C¢ —

tanh (S"—’Iq)—"—) is periodic of period (2imqd, ... ,2imqd).
Similarly if ¢t € R, we claim that the function

(7.3) T € C' > exp (dz %[3‘1 Pj-1t %j)])

is periodic of period (2imqd,... ,2iwrqgd). In fact by (2.13), (2.28), (2.29), if z €
(2irZ)¢,

(7.4 exp(dz“”’ e Ly >])—exp(<““)'
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Also, as we just saw, if t € R, z € Z, d(t,z’) € Z. From (7.4), it follows that if
T € (2imqdZ)¢,t € R, (4.4) is equal to 1, which proves the periodicity of (7.3).

Ifg =(91,...,9-) € Z",if I = (i1,...,4r) C {1,...,€}, let g1 C C* be such
that

(75) (gl)i,' = g5 1 S .7 S T,
(gf)i = 01 { g 1.

THEOREM 7.2. For generic values of = €_(C\2i7rZ)‘, fort € R/qR, t/q ¢ H,
if we still denote by t a representative of t in R, then

(7.6) Ly(t,z) = _d' Z sgn ({@iy,...,ai.))
I=(iy,..., ip)C{1,...,£},1 generic
1€R/dR,g€(2/d2Z)"

[exp(dz: z’, iZ:”j,)[d f_1<t+qf),§>])

i=1
1 ) 1
(z + 2inqgr) I l .
y_ .
T ] = (ORI
-1%

Proor. Take 1 < j <7, I = (i1,...,1j-1) C {1,...,£} such that (a;,) # 0,
(@iy,.--,ai;_,) # 0. We use otherwise the notation and the conventions in the
proof of Theorem 2.19, in particular in equation (2.63).

-

For k = (kj+1,--- »kr) C Z777, we identify k to Z k'e; € R. Fora € C,
i=j+1

re€CtteR,put

(7.7) Si(a,z) =

I
5 {on(swf0 2 +aX ey 0 2))

0<gp<d n=1
1€p<i-1

1
[l;ccr 2gtanh (ng

}(m + 2img(g1, ... :9.1'—1)1) .

@i ,aed +2ink—zT)
2¢q

We claim that as a function of z € C¢, each of the expressions { }, with
(91,--.,9i-1) = 0, is periodic of period 2inqd,...,2imqd. In fact by (2.63), if
z € Z¢,

(7.8) dipl_,,0i,3") € Z.
Also by (2.28), (2.63),for 1<n<j-1,z€Z¢

d(-ptll-laiﬂ ? zI)

(7.9) ., e)

€Z,
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so that if z € Z¢, using (2.12),

(Pl _ i, ,z!) I e"
(7.10) exp (227Td E _—————la.",e") [ n—1ts 7 )])
_ 2 (pn— Qi > T ) n
- onp (MY sty o)

exp (—q— (¢, ") - (pJI-_lt,zI))) .
Also by (2.14), (2.63),ift € R, z € Z¢,
(7.11) d(t,z') € Z,
dip}_,t,z’) € Z.

By (7.11), it follows that if = € ¢dZ¢, (7.10) is equal to 1.
Ultimately, we find that indeed, each of the expression { } in (7.7) is periodic
in z € C¢ of period 2imqd, ... ,2imqd. Therefore, we will write (7.7) in the form

(7.12) Si(a,z) = E {exp(a(p,’-_lt, gq—j) +d

g€(Z/dZ)i-1

£ e lavtn )

- }( + 2imqgy)
— T + 2imqgy) .
!, ai0ei+2ink—~z!
[Tieer 2qtanh(91 e ))
In particular Sy(a,z) is periodic in z € C*? of period 2ing, ... ,2irg.

Now we claim that S;(e,z) is periodic in a € C, with period 2iwg. In fact,
since ef = (ae’)’,
(7.13) (pi_y0u,e?) = (p}_, i, (@e?)").
Also by (2.12),
Pl @)

(7.14) (pl_it,e?) = (t,€) Z

=1 n-lain’en)

fl_lt,e") .
Since t € R, then (t,e’) € Z and so, by (7.14), we get

J=1 .1 RS §
(7.15) (pl_yt,ef) = —:L_:l (”&;{:‘ia(“;; )(p{,_lt,e") mod (Z).

From (7.12), (7.13), (7.15), we find that

(7.16) Si(a+ 2inq,z) = Si(a,z — 2inqae’)
= Sl(a’ :L‘) )
i.e. Si(a,z) is periodic in a with period 2irq.
Put
(7.17) Li= Y. Si(2irk,z).

kE€EZ/qZ
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Clearly
1 ,
(7.18) Li=5 > Si(2ink,z).
k€Z/dqZ
From (7.18), we obtain
1 2infk 2ink
(7.19) L;=§ aqz<d exp( = )S;( p ,x) .
h€Z/d3qZ

By (7.12), for generic z, we rewrite (7.19) in the form

(120) L= ¥ { )> Res“:m[exp(a[ ,’-_1(t+3fej),ej/q>J

k€Z/d3qZ 0<s<d
€Z/d% 9€(2/dZ)i~1

j-1
@ _jai,,zf) |1 )
+d§m[a n-itse /q>]>

L 1 ] } (z + 2inqgy)
- = ).
(p!_,ai,aei /d+2ink—zT)\ e — ]
[licer 2gtanh (Emote s )
Now we just saw that the function of @, o<s<sa ..., which appears in the

9€(Z/dz)i—1

right-hand side of(7.20), is periodic of 2iwqd.
We claim that for f,0< f < d, g € (Z/dZ)’~!, the function of a,

I.1(t+afe;).e’ /q)
exp(a|B=12Te e /0
(7-21) hf;g(a) = ( [ (pl_ a:,j aej/d+2i]12;—$’) ea.l_ 1
[Licer 2qtanh( = 2% )
is periodic of period 2iwd?q. This follows from the fact that since t € R,
(7.22) d(p;_,(t + gfej,e’) € Z,

d(p;_la;,ej) E Z .
By Proposition 2.14, if t/qg ¢ H,

0< [ ,'--1(t+qfej),ej/0)] <1

(7.23) >

Then for given f,0 < f < d, g € (Z/dZ)’~!, we will apply the theorem of residues
to the function hy 4(a) on the domain given in Figure 7.1. By (2.65), for at least one
i; € I, (p]_,ai;,€?) # 0. For generic z, mod (2imd?q), the poles of the function
hy,¢(a) other than the 2ink are simple and given by

- d I o ol — i) + %imal
(7.24) a= 5—1aijiej) ((pj_la,j T — 2iTk) + 2img q) ,

0 < gj < dl(quai,-»ej)l ’ ij ¢ I:@;—lai,'aej) # 0.
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2ind q

L -

/N
/N

A4

><\/

NI JAgE

€

FIGURE 7.1

Needless to say, in (7.24), d(p]_,0;;,€?) € Z. In view of (2.28) , we rewrite (7.24)
in the form
(7.25) a= ————‘—1—(p1 a;, (:L' + 2imq(g’); 1‘~)[ - 2i1r’k;)
Pl vy D% & !
0 < gj < dl(PJI'—lai,-,ej)l .

By periodicity, the integrals of hy j(a) over 4, and §_ cancel each other.

Using the theorem of residues and (2.70), (2.76), (2.78), (7.20), (7.23), (7.25),
we get

(7.26) L= 713 >

0<f<d ,g€(2/dz)i~1 )
ijilegy e oy y#0 ,0< gl <d|(,§_la,-j &)

1 ) iy~ ,
{m exp (2“"(?;-1’1’)9:‘, k)(pj_1(t + afe;), e’ /q)
j—10t5 5

+dz (pl_ i, , ") (pn— (t+qfej),e /q])

el (.pl—lal ,e™) Ld
- (z + 2imq(g,9;)1,i;)
(p(-“".)a.‘,2i1r7c.—z’) 9193014
HiEU.i,-) 2qtanh (—L————zq )

exp (ﬂ’}—_:_’_:“_’)) T

(pj_qaij.ef)
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We claim that as functions of z;;, the terms in the right-hand side of (7.26)
are periodic of period 2irgd. In fact this follows from what we saw after (7.7), by
replacing j — 1 by j. We also claim these functions, are periodic as functions of z;,,
with period 2irgd(p!_, a;;,e’). In fact, using (2.29),

d(pl_,ai;,e7) d

= €Z.
(@i, .- ,ai,-) (aiu--waj—l)

(7.27)

(pg-I_'i’)a,', %k — 2! )

In view of (2.63), (7.27) takes care of the terms tanh ( % ) Also
among the term (p}_,a;,,z'), n < j, only (p]_,ai;,z') depends on z;;. More
precisely by (2.63),

(7.28) For (pl_sai;,z") =1
Clearly,
[ ai,ed) [1 .
(129 G|l afe )| =
i— 15

d(pj_,(t + afe;),e’) mod (Z).

Using (2.29), we find that (7.29) is 0 mod (Z), i.e. the left-hand side of (7.29)
lies in Z. Ultimately, this guarantees the periodicity of the functions appearing in
(7.26) in z;;, with period 2imqd(p]_a;;, €7).

Now by (2.29),

) dlay,, ... ,a;;)
7.30 dp!_,a;;,el) = —2 T
( ) (pJ 1%, ) (ai”.“’a‘j_J)
From (7.30), we find that
(7.31) d(p_ a;,€7) | d?.

Since the functions in (7.26) are periodic in z;; of period 2z'1rqd(p1’._1a.-,. ,e7), using
(7.31), in (7.26), we may and we will replace the condition 0 < ¢7 < d|(p]_, a;, )|

ol_ ai,, el
] 1., €
by the condition 0 < ¢/ < d?, and this introduces a correcting factor 1pj-sis, e}l

in the right-hand side of (7.26). Using the periodicity in z;; of period 2imqd, we
may finally replace the condition 0 < g7 < d? by 0 < ¢/ < d, with a new correcting
factor d. Ultimately in (7.26), we replace the condition 0 < g7 < dl(p,’-_la,-j,ej)|
by 0 < ¢’ < d, with a correcting factor |(p]_a;;,e)|. Also by (7.30),

(7.32) sgn(p}_,ai;, ') = sgn(ay,,... ,ai;)sgn(ay,, . .. ,aj-1).
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So, from (7.26), (7.32), we get

(7.33) L;= _71‘ Z sgn«aiu v )aij—1)<a1'1’ ce ’a'ij))

0< f<d,g€(2/d2))
PR PR i )#0

(p{l—lain ) zI)

:. -~ ] j
{exp (2i1r(p§.“‘)e,-,k)(PJI'—l(t"'qfei)’e])+dz T o e

n=1 n-—1

(36816 + afe,e/al )

! }( +2i )
(T.3;) = 1 z 7"19(1,:‘,-)
(p. a;,2ink—z")
I Iie(l.i,-) 2gtanh (—1——-———2q )

1
exp (—i—L——d(p""m"ml)) -1

(pj_y@ij.e)

Clearly
exp(2im }07_, kit ¢/ /q))

(7.34)  Ly(t,z) =

k=(k1,... kr)E(Z/qZ)" nf_=l 2gtanh (Zin(aa.z,;; kje )-m.')
Also with the notation in (2.63),
(7.35) (p?,’ai,m’) =Ii.
Then we use (7.33), so that if t € R/qR, t/q ¢ H,
-1
(7.36)  Lo(t,z) = — >

0<f1<d,geZ/dZ
(ai, )#0,h=(k2,... kT )E(Z/qZ)"—1

. . 1] 1
sgn({a;, ) exp (2i1r(P§")(t +qflel), k) + d(::) [(t o jl,e /q)] )

1 . 1
(z+ 2z1rqgi,)—————dn .
exp (_17(“-‘1 ) -1

Using (7.33), (7.36) and an obvious iteration, in view of (2.83), we obtain (7.6).
The proof of our Theorem is completed. a

(1), oirp T
[1ixi, 29tanh (‘J——""‘_(p - a“zzqu - ))

7.2. A residue formula for M(t,z).
DEFINITION 7.3. For g € N*, t € R/qCR, = € (C\2inZ/m)*, put

exp(2im(), t/q))
(7.37) Myt,z)= Y 7 te)
A\eCR"/qFR" IT;=1 2¢tanh (?__L_-ZT'\)_L)

Now we will adapt the formalism of Sections 2.5 and 2.6, with t/CR replaced
by R/qCR. If f(t) is a function on R/qCR, if u € CR /R, put

(7.38) ful) = = 3 e B f(t 4 ).
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Then by (2.92),

(7.39) =Y fO.
w€CR"/R*

PROPOSITION 7.4. If u€ CR /R, if \, € CR’ represents p, for t € R/qCR,
(7.40) (M,)u(t,z) = exp(2im(Ay, /) Ly(t, T — 2imaA,) .

PROOF. If A€ CR /qR’, then

exp(2ﬁt/q)),, = exp(2ir (A t/q)) if A mapstopu
(7.41) in CR*/R"
0 otherwise .

Then

exp(2im(\ + A, t/q)
(2i1r(a.' A) —(zi ~2im(ai, A\u)) ) ’
2¢q

(742) (Mput,z)= Y

\eR" /qR" ]_[f=l 2gtanh
which is equivalent to (7.40). a
PROPOSITION 7.5. For g € N*, t € R/qCR, x € (C\2inZ/m)*,
(7.43) My(t,z)= Y exp(2im(\,,t/q))Ly(t,z — 2inaN,).
weCR' /R*
PRrOOF. This follows from (7.39), (7.40). 0o

Recall that 7 is the projection t/CR — t/R. Then 7 induces the projection
R/qCR — R/qR. Also recall that the set § C t/CR was defined in (2.111). By
(2.45), (2.111),

(7.44) {te R/gCR,t/qe S} = {te R/qCR,7t= Z t'aj,
JET
{aj,j € J} does not span t*}.
THEOREM 7.6. For generic values of z € (C\2inZ/m)%, t € R/qCR, t/q ¢S,

if we still denote by t a representative of t in R, then

(7.45) M, (t,z) =

cr Y sEn((as ... i) exp(2im(As, /)
dr (S I Rt IS I73]

I=(iy,...,ip)C{1,... ,£},I generic
J€R/dR,g€(2/d2Z)T, »eﬁﬁ‘/ﬁ'

-1Q4;, T
[exp(dZ e [ (v} 1(t+qf),e’/q)D
-1Q4;,
1 ] (z + 2imqg
Ty I
L= 2qtanh ({ezi=2:)
1
. 4l _jai.el) (=
Hj:l (exp (__i_-—z(pj_lal-:,,gj) ) - 1)

Proor. This follows from Theorem 7.2 and Proposition 7.5. 0

- 2ima),)

—2imal,).
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DEFINITION 7.7. If I = (44,...,1,) is generic, let HY be the lattice in t gener-
ated by a*,... ,a'.

Recall that C C B® was defined in Definition 1.35.

PROPOSITION 7.8. The following identity holds

(7.46) c= |y H.

I generic
In particular for I generic,
(7.47) dH' Cc R .

PRrOOF. The identity (7.46) follows from the definition of C. Then (7.47)
follows from (2.21), (7.46). The proof of our Proposition is completed. a

By Proposition 7.8, we have a natural projection

(7.48) w:H!'/dH' - H'/R",
. whose kernel is just

(7.49) kerh! =R /dH' .

PROPOSITION 7.9. For any generic I,

— dr

(7.50) IR /dH!| = Moar)["

PROOF. Recall that ey,...,e, span R, and €!,... ,e" span R . Therefore
(7.51) [R'JdH!| = d'|(a" A...Aa¥",e1 A...Ae,)

dr
(@i, Ao oA i)

The proof of our Proposition is completed. a

THEOREM 7.10. For generic values of x € (C\Zsz/m)‘ for t € R/qCR,
t/q € S, if we still denote by t o representative of t in R, then

(7.52) M,(t,z) = ' 2y ¥ 5
ueC/R" kﬁlw/;rz)*g:'ﬁ' generic
! exp (2im ((u, t + qf)))

2q

(ai1 yere ai..) H'Ecl 2q tanh ( ﬁm,m’+2z’1rqu2—z.' )

exp dz (pJ 124,27) (P, 1(t+(If):3]/‘I)]
=1

101,:61)

1

p]_yai;,zh)

r d(pl_ya; '
Hj:l (exp (——Y—(Pj_la'?:ei) ) - 1)
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PROOF. Clearly the map g € (Z/dZ)! — gf € H'/dH' is one to one. Also if
te R, fcR by (2.13), (2.28), (2.29),

(7.53) exp (dz (P10, 2imag)) [ d(p_, Lt +af), e’/Q)])

j=1 p]_1a1,~181)

= exp(2in(t + ¢f,g)) = exp(2im(t + ¢f, h'gf)).
Moreover by (2.115),

(7.54) (@i, (@A)") — (@\,): = 0.
Also if i € I, using (7.47),
(7.55) (i, 91) = (91)i = (o, 91) »

g{ai, 91) = glas, hg]) in Z/qZ.
Finally by Proposition 7.8, the map h! : H!/dH' —) C’/R surjects on {u €

C/R",IC 1.}, and by (7.49), (7.50), the fibre has R__)T elements.

From (2.13), (2.119A), (7.45), (7.53)-(7.55), and proceeding as in the proof of
Theorem 2.28, we get (7.52). The proof of our Theorem is completed. O

7.3. The Verlinde sums. Recall that by Proposition 1.27, if A € CR , the
character x» of G does not depend on the choice of a Weyl chamber K such that
A € K. Also by Proposition 1.28, if w € W

(756) Xwr = X -

Moreover the function (ifo)?(t) is well defined on 7" = t/R".
Now we introduce the Verlinde sums [62], [3].

DEFINITION 7.11. For g€ N, g € N*, 64,... ,0, € CR, put

— |91
C'R 1
(7.57) Vg,q(el, e ,0,) —_—
TR W, 2
e2()\/q)50

r\/q

s [t

By Proposition 1.12, we get
g—1

*

CR

(7.58)  Vg,b1,...,6,) = Ok > WH”’ (eM).

——y

A€gPNCR

Recall that in Section 1.8, it was shown that Y
(w!,...,w*) e W*, 37, wid; € R.

By Proposition 1.29, observe that if 3°;_, 6; € R, then []]_, xs,(e*/?) is a
well-defined function of A € CR /R .

THEOREM 7.12. If ¥°3_,6; R, then

=1

(7.59) Vo q(61,...,6,) =0.

j=1 0; € R, if and only if for
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IfY;_,0; €R, then

¥

g—1
(7.60) Va6, ,0,) = I% '-ZW(-VG,J >
q \eCR"/qR*
a2(2/q)#0

1 8
(o(Mq)%—2 l_] Xo (€M) .

ProOF. Clearly

— |91
CR 1 1
761)  V,o(6h,...,0,) = ||  — —_
(T61)  Voo(6: =55 ;_ o OTa)
e2(x/Q)#0
8
Z H X, (eMatr),
weR" /CRI=1
Using Propositions 1.29 and 1.30, (7.61), and the fact that Z(G) = R’ /CR, we get
our Theorem. O

THEOREM 7.13. The following identity holds,

(7.62) Vore(01,- .. ,8:) = [ xo; ().
j=1

If one of the 6;’s does not lie in R,

(7.63) Vie(61,...,05) =0.
More generally
(7.64) Voc(01,...,0,) =0, +1or —1.

ProoFr. By Proposition 1.10 and 1.11, we get (7.62). By Proposition 1.31 or by
Theorem 7.12 when s = 1 and by (7.62), we get (7.63). By (7.62) and by Theorem
1.32, (7.64) follows. The proof of our Theorem is completed. O

Let K be a Weyl chamber.
DEFINITION 7.14. If § € TR, put

(7.65) () = — 3 eyetin@lorn,
a(t) ot

By (3.115) , if p + 8 does not lie in a Weyl chamber,

(7.66) xK(t) =0.

If p + @ lies in the Weyl chamber w K, then

(7.67) X5 () = Xp+6-wop(t) -
Alsoifw e W,

(7.68) Yo (t) = x5 (t) .
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DEFINITION 7.15. Forge N, g€ Z*, 0,,... ,0,,05,4, € CR, put

« 191
—K CR 1
(7'69) 4 y (911 v 703708+1) = |= Ta71 E
- qCR |Wl AECR*/qCR
a2(2/q)#0

1 : MNavsK (A
Y] 1 II Xﬂj(e q)Xo, (e q) .
CZeYRIEES “
THEOREM 7.16. For g € N, q € N*, the following identity holds,

(7.70) V.'I,!I(ola cooybs) = ( l)t Z Ey1Ey2
|qcn| (v!,v2)eW?
Vfﬂ,q(&,--- ,0s,v p + v2p).
PROOF. Recall that
(7.71) xo=1.

By (7.57), (7.71),

_..g—l
1
(7.72) Va(61,.. 9,)._l Tl >
AECR*/qCR
a2(r/q)#0
1 . MaYo3 (A
oty L1 (e,
j:l

—k w

By (7.56), we may and we will assume that 8,,... ,6, € CR, =CR NK.
Using (1.94), (7.72) we obtain

Iﬁ'.“ -1
qCR
(7.73) V,.a(01,...,6,) = W 3
AeCR*/qCR
a2(r/q)#0
1 1 s+3

(€(7/9))29-2 (a(X/q))**? 2 lew

(wl,... ,w*)eWs+3 j=1

8+3
exp (2” Zw’(p+9 )+ E w’P,)\/Q))

j=s+1
_ (_1)¢CE [aCRps-! 1 1
S 7D DR - ¢y X e ovy
o2(2/q)#0
s8+1
Ey1€y2 Z HEWJ
(v!,v2)eW? (wh,... wotl)eWe+1 j=1

exp (2i1r(z w(p +6;) + w*t (p + vl p +07p), z\/q)) ,

Jj=1
which is just (7.70).
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The proof of our Theorem is completed. 0

REMARK 7.17. If w € W, p+wp € R. Therefore (7.59) and (7.70) are compat-
ible. Also observe that the fusion rules [3], [62] express V; 4(.) in terms of V—1,4(.).
Here equation (7.70) goes the opposite way.

7.4. A residue formula for the Verlinde sums. In the sequel, we fix a
Weyl chamber K C t, and we use the notation in Section 2.
Also by (7.56) and (7.59), we may and we will assume that

(7.74) ;e CR,=CR NK ,1<j<s,
Zej GR.
j=1

DEFINITION 7.18. If w € W, let gy, € Sy, let €4(1),... ,e4(£) € {~1,+1} be
such that for 1 <i <,
(7.75) wley = eu(i)as, () -

By [15, Corollary V.4.6 and Lemma V.4.10] , we know that

4
(7.76) ew = [J ewld).
i=1
DEFINITION 7.19. For z € C¢, w € W, put
£
1
(7.77) ew(z) = ];Il PRk
Equivalently, by (7.76),
¢
_ 1 358 ey (i)
(7.78) Yu(T) = t,:,,,i];[1 eI .
THEOREM 7.20. For g > 2, q € N*, the following identity holds,
(1.79)  Voqolby,... ,6,) = Vol(T)29’2q(9'1)'—|ZléVGI)|
- 1 -
(=1)#0=") Res{iry = > [ew/

Hl 2 sinh( & % 1 . s j=
i=1 2sinh(ZL (wl,...,w*)eW? j=1

M, (i: wjﬂj,a:) .

Jj=1
For g > 0, for s even, 2g — 2+ s > 1 and g € N*, the following identity holds,
(7.80) Vyglb1,---,05) = Vol(T)zy_zq(g_l)"wl(—G‘)l
- ol 1 2
(~1)*¢Resiy 0 —— e 2. Llew
[I'[i=1 2 sinh(%)] (wl,..., w*)eWs j=1

My(Y_wi (o +65),).
Jj=1
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FIGURE 7.2

PROOF. First we assume that g > 2. For A€ CR /qR , w = (w},... ,w®) €
W, z € (C\2inZ/m)*, put

(7.81) Usu(o) = [T wi(a/a)

[Hf:l 2 sinh(%)] e

3
1
H gtanh (2i1r§A.a,-2—ze) )

2q

Then U, w(z) is a meromorphic function of z,,... ,z,, which is periodic of period
2ingq,...,2imq.

For € > 0, let A, be the domain in C given in Figure 7.2. For € > 0 small
enough, as a function of z; € A,, the function Uy 4 (z) has poles at 0, and also at

2imq [9‘—:&] Here ¢ ‘1\—':‘—"1 is the real number in [0, ¢[ which represents (), a;)
mod g. For € > 0 small enough, the poles do not meet the boundary 8A, = §_Ud..

Assume first that [Q—;"—'l] # 0. Then 2ing [Q_.qg._)_] is a simple pole of U, (z).
We now use the theorem of residues on A.. Since g > 2, as z; & *o0 inside A,

the function Uy, (z) tends to 0. Also since U, (z) is periodic of period 2img in
the variable z;, the boundary integrals cancel each other. Therefore

(7.82) Resz,=oUn w(z) + Res,‘.=2,-,,q[(*-a<z] Usw(z) =0.
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Clearly
(7.83) Reszl:zl.”[ (A.:,-)] Usw(z) =

_ 1 m—! o
2isin (3207) 525 2sinh (2)

ﬁ‘ﬂ . (371 Ti—1 2m(A, ;) :1;() 1
wI —-..——,———-—’.__’___ : .
j=1 q q q q iy 2qtanh (2:n§A,2aqi2—zi)

Assume now that [Q:—‘l] = 0. Then as a function of z;, the function Uj (z)
has a single pole at z; = 0. By the theorem of residues used as before, we get

(7.84) Resg,—oUn,w(z) = 0.
By (7.83), (7.84), we obtain
- 1 z
(7.85) (~1)%o~DRes; " > Pus ()

[ 2inh (2)] W o o ews

L 1
M ig,z | = 1
" (g"’ ’ z) 2 e O/

AETR* /qR*,0%(2/q)#0
(wh,..., wi)ews

jl;l;tpw;' (2i7r(—/\—%—)-,... ,2”.()"_:!1) exp (2im(wi6;,\/q)) .

Now by (1.93), (7.75), (7.78), for 1 < j < s,

(7.86) Z P (2i1rM,... ,ZiWM) exp (2im(w’6;, A/q))
wieWw 7 1
= ng (e'\/q) .

From (1.17), (7.85), (7.86), we get (7.79).
Now we consider the case where g > 0, s is even and 2g — 2+ s > 1. Put

I4
1 1
(7.87) Hu(z) = el i | YR
[H§=1 2 sinh(i,’—;)] i=1 2gtanh (MATC;LL)
Then H) () is a meromorphic function of z;,. .. , ;. Since s is even, it is periodic

of period 2inq,...,2inqin z,,... ,z,.
Assume that [9—:‘1] # 0. Since 29 — 2+ s > 1, as z; tends to +oo inside

A, Hy () tends to 0. We thus find that the analogue of (7.82) holds, with Uy ,,
replaced by H) .. The analogue of (7.83) is now

29—2+s
R‘esz‘=2inq[&§i_).] Hyu(z) = - [2isin(“—':il—"—) Hj# 255""(;%)]

(788) nj#‘ 2qtanh(_7"3(»\-:,'2—=,') .
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Also the analogue of (7.84) still holds. So we get the analogue of (7.85),

(7.89) (-—1)‘(3—1)Res;;'6'l ! pr o z €wl .- Eo
[]'[f 2 sinh (-;—;)] (w!,... w)EW?
M, Za:wj(p'*'aj)’z = Z ; L 292 L 3
j=1 AETR? /aR" 232/ 9)0 (ita(Mq) (a(Mq))
(wh,...,w?)€

H €ws exp (2im(w’ (p + 0;), A /q)) .
j=1

Now by (1.94),for 1 < j<s,

(7.90) D" ews exp(2in(w’ (p + 65), /@) = xo;(*).

_1
oD 2=,

From (1.17), (7.89), (7.90), we get (7.80).
The proof of our Theorem is completed.

REMARK 7.21. It is crucial that in (7.80), s is even. In fact under the given
conditions on the 6;’s, 35_; w’8; € R, but we know that }°7_, wip € R only if s

is even.

7.5. The generic case with g > 2.

DEFINITION 7.22. We will say that (6,,...,0,) verify assumption (4,) if for

any (w!,...,w") € W*, % ;=1 wif; ¢8S.

In the sequel, if u € C’/I_i‘, we choose once and for all a representative of u in

C, which we still denote by u.
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THEOREM 7.23. If ¢ € N*, g > 2, if (61,... ,0,) verify (A,), then

R Z(G
Vg,q(gl, coanyls) = ’ﬁ' VOI(T)Zg—zI‘(T,)Iq(y—-l)r(_l)t(y—l)ﬁ-

1
Z Z (ain'--:air>

weC/R" 1=G11- ir)ETu
1eCR/4R

29~2+s
1
Res!_,
- Lg+ 2sinh (%—(a,m’/q + Ziwu)):l

(7.91) Z Ewl --.Eys €XP ((XJ: wip,z!/q)
=1

(wl,... w)EWS

+2i1r(i w!(p +6%) + qf, u))

i=1
exp(dz(pj 121,1;))[ f_l(zw"Gk/Q+f),€j)D
j=1 W3i—-17%) k=1
1

T d(pl'_ ““’11) .
[l=1 (exp (7;#—‘—7) - 1)

PROOF. Take t € R. By Theorem 7.10,ift € R, t/q € S, then

Res{t; 9 1 — 2]:[(pw,( )M(t )

s s

B* I=(i1,-.. ,ir)CIy,I generic
u€C/R 1eCR/dR

8
(7.92) Resl ){ 1 _ oo @/
N\ T zmn ()]
1
Hie‘] 2qtanh (.(L’*zz"'ql‘)—_z')

q

exp (dz (p, la,,,e]) [ (Pl_l( +Qf)a—)])

i=1 J 1%,
1

d(p!_ i ,zT) '
T (e"p (W) - 1)
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Observe that in the right-hand side of (7.92), the expressions starting after exp(2im (u,t+
gf)) does not depend on the z;, ¢ ¢ I.

Now we explain how to evaluate the residue in (7.92). We use the notation in
Definition 2.47.

1. Thecasei I, i gL, origl,i €Ly, a; & {agr(),--- »Q01(p,)}-

Note that the above condition just says that i € I, and (o;,u) € Z, a; ¢
{asr1y,- -+ 1y agr(py}, or {ai,u) € Z. If (a;,u) € Z, o; & {ag1(1),--- ,Qgr(py}, for
at least one k € I, k > 1, then (a;,a*) # 0. So since the {Tk}x>; have not yet
been made “small”, for generic z, (a;,z!) is “large”. So we find that under the
assumptions we made in 1., for generic z, mod (2inqZ), (a;,z’ + 2imqu) should
be considered as different of 0. Then by proceeding as in (7.82) and using the fact
that g > 2, we get

= 1 3!‘; Yie1 yi (DT
(7.93) Resz, =0 [ [2 — (%)] e 1

2qtanh (Sa.-.:’+2i1rgu2-z;) ] =

2

1 ]2y_2+'e=‘a<z:;=, €us oz’ +2imqu)

[2sinh (ﬁﬂ;—":—'lﬂz)

2. The case where i € I, i € I, and a; € {a,1(1),- .. ,Q51(p}-
In this case (a;,u) € Z, and so
1 1

2g tanh (ﬁﬁe-’il_'*'i_;ﬂﬁ)_i) - 2q tanh ((a;l:r;’q[-—za)
1 l-—tanh (%;) tanh (52’-'27’&)

(7.94)

Iz tanh ({2ez))y
an (1) (1- T‘E‘(:j‘))
q

Now since a; € {agr(1), ... ,051(p,)}, (@i, z) i8 a linear combination of the z, (),
k < p;, which have been made “small”. Therefore we get the expression

tanh (-@T:—')-) tanh? (M)

1 2q
7.95 =1+ + ce
(795) tanh (-("2—;’1) tanh(z;/2q) tanh?(z;/2q)

" “tanh(z;/2q)
In view of (7.92), (7.94), (7.95), for k > 1, we should evaluate
1 PRy (i) 1
(796) Res,'.=o [ 3= e2q Ej=l e,i(1)zi ___k____} .
[2sinh(z:/2q)] ’ tanh* (z:/2q)

The function of z; which appears in (7.96) is periodic of period 2imq. Recall that
the contour A, was defined in the proof of Theorem 7.20. For € > 0, 0 is the only
pole inside A.. By using the theorem of residues as in (7.84), and the fact that
g > 2, we find that (7.96) vanishes.
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From (7.94)-(7.96), we see that if i € I, i € I, a; € {apr(1y, - - - » Qg1 (p;)}, then

(7.97) Res,i=o[ 1 53T e}"; 5=t £y (D)Ti
[2 sinh(z; /2q)]

2 tanh (@)} =0.

29
Using (7.79) in Theorem 7.20 and (7.92), (7.93), (7.97), we get

— E 29-—2[Z(G)| (9—1)r(_1\é(g—1)+r
(798) Vy.q(ela--- ,98) - ﬁ’VOI(T) ,W‘ q ( 1)

1
z E (aiu"' 1a!'r)

B* I=061,.-. ,ir)EZ,
u€C/R T R aR

29-2+s
1
Res,_o{ [H 2sinh(Z) ,1;; 2sinh (i——m 'z’;‘qﬁ”u )]

ZEW (3)z;
i€l
Z Ew ew.exp( Z(Zew, a,,—)+—(—l——))

(wl,... . w*)ew? =1 igl
exp (2im(u, 3 (D% gy o)
j--l
1a‘l,:m ) 2 .
o)

=)
- (o (5557) -

(p,'._l iy ,e9)

Now observe that if 7 € I,

(7.99) (i, z’) = ;.
Therefore
(7.100) D ewi(@)ai,z!) + Y eui i)z =
i@l iel
] ]
(Z Ewi (i)aiy :BI) = (wJ Z a;, a‘.I) = 2(w’p, xl) .
=1 i=1

Also if i € I C I,,, then (o;,u) € Z, and so

29-2 . 29~
1
7.101 ==z )
( ) [2 sinh (Sai =¥ +2imqu) ) ] [2 sm(%—;— ]

12" ex (2z'1r(u,ewj(i)a.')) - 1
2sinh (Mg—'—‘fi“‘l+i7r) P 2 2sinh (g—;) '
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From (7.98)-(7.101), we get (7.91). The proof of our Theorem is completed. a

REMARK 7.24. Clearly,

292
1
(7.102) [ S ]
o [ {ai,z! fg4-2imu)
2sm( ai,T g iTu )

does not depend on the representative u in C. Also
1
acRy 28inh ((a.-, zl /q + 2imu)
1

acR, 1 —exp ( —(wia,z!/q+ 2z'7ru))

(7103) ) Eui €XP ((w.ip’ z’/q + 21,7I"U,)) =

does not depend either on the representative u € C. This explains why the terms
in the right-hand side of (7.91) do not depend on the choice of the representatives
of u.

7.6. The non generic case for g > 2. Recall that the functions [z]4, [z]-
were defined in (6.141).
Let m,...,n, be r functions from R/dR x {I,Igeneric} into {+,—} such

that if f = ) fle; € R/dR, I = (i1,... ,ir), then 7;(f,I) depends only on
1
TP - I MRS P

First, we will extend Theorem 7.2 to the case where t € R/qR is arbitrary.

THEOREM 7.25. For anyt € R/qR, there are meromorphic functions o, (, s,
e Te)y o, 0i(t, B, Tis1, Tigy ... Ze) . .. which vanish identically whent/q &
H, such that

(7.104)  Ly(t,s) = ("df)r )y sgn (... ,00.))

I=(iy,... ,ip)C{I,... €}, generic
tER/dR,g€(2/dZ)"

10, T Y1
[ﬂp(dz llame’) [d -t +ad), —)] j(f.l))

1 ] ' 1

(z + 2imqgr) I I
Iy .

TLice; 2qtanh (S“_Lq)_”_) 1 exp (“(‘;"'"‘5";‘,-'>>) 1

-1

+Z‘Pi(t1$1,--- 1y Ti1, Tigl,--- ,TL)

PROOF. We use the notation in the proof of Theorem 7.2. Let ny,... ,9j_1 €
{+,-}. We define S;(a,z) as in (7.7), except that [ (! .t %)] is replaced by

[ e ]n,15n5]~1.

in—1 ’ q



SYMPLECTIC GEOMETRY AND THE VERLINDE FORMULAS 297

y
0k
2im d2q
Z Z
™~ \/ ™~ A\
\/ N N \ X
7 0 P V4
n Y )

FIGURE 7.3

Take 7;(f) : {0,...,d —1} —» {+,—}. Then we rewrite (7.20) in the form

(7.105) L,=% ) { )

kEZ/d2qZ 0<s<d
€Z/dq 9€(2/dz)i -1

Resy=2irk [exp (a [ (PJI'—l (t+ qfej), el /q)

d
ni(f)

pn laln’z l I n
+dz (pI la‘ln)en [d n-1b€ /Q>]n)
1
-1

- ]}( + 2imqgr)
" = T 1).
(p!_,ai,aei fd+2imk—z!)\ eo
[1;c; 2gtanh ( i1 5 )
Instead of (7.21), we now set
®l_y(t+afe;), <)
€xp (a [ J - ] (f)) .
(7106) h'f.g(a) = - — 1‘”- - .
[Tice; 29tanh ((pi—l"‘»fzz—;‘?’"k—m')) et -1

The key point is that we do no longer assume that (7.23) holds. Equivalently
(pj_1(t+afe;).e? /q) I .
—i=i———22—— may now well be an integer.

For n € N, we now replace the contour in Figure 7.1 by the contour of Figure
7.3. We apply the theorem of residues to h¢ 4(a) on this contour, and let n = +o0.
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Clearly, if —E—Mq—) is an mteger if n;(f) = %, then

(ra0n) gg»m hygla) =
1
11m hso(a =
a—F fg( ) 1_[ (pf_la,‘,2i7l'k - 1«'1)
tanh ( 2 )
iecr q
(,.l. 194 ei)=0
1

Hi€"L,(p}_, i e?)#0, sgn(pl_,ai.67)= £1}
grEa VT g
Observe here that by (2.65), {i € °I;(pj_,a;,e’) # 0} is non empty. Then by
(2.63), the right-hand side of the second equation in (7.107) does not depend on
{Ii’}iecl ,(pg_la‘-,ei)#O'
So by proceeding as in (7.21)-(7.25), we find that
I ) et
o if Piza(tHafeeT/a) 4o p00 o integer, (7.26) still holds, with [ ] replaced by

[ ]ﬂl"" 1[ ]'71—1’[ ]ﬂ:(f)
pl_1(t+afe;).e’/q) .

o if —Jd— is an integer, writing 7; instead of 7;(f), then (7.26) is
replaced by
1
(7.108) L;= -3 Z |
0<s<d g€(Z/dz)i~1
e e, )#0 ,0< g7 <ﬂ|(p,’._1°'.j Ledy)

1 . . ~ .
{ (pl P e,‘) exp (2"!'@;[,.1)8]" k)(pg—l(t + qfej)veJ /q)
j 1%t5

et Gt o]

1 .
(0" 0y 2imk—21) } (2 + 2imq(g, 9_1')1,;‘,»)
Ilig(r;) 2qtanh (“"—"—‘—-zq )

1
d(p‘_,aa-,z’)) -1 +q Z

exp ( (P,'_.lai,- e7) ne(‘;f:;)d"I
2l 0,27 11
d n—1%ns [ I t.em
[exp( ,12—:1 I ag,em) Ld 1 /q)]"“
1 1
— T+ 27w ——
H canh (p]_ i, 2imk — ') ] ( 991) (2g)I™N
i€e’s 24

(pl_jai.ed)=0
(_l)u.'ev,(p,'._,a..,,:')#o, sgn(pj_yai.e)=n; (N}
the key point being that the last sum in (7.108) is a sum of functions which do not
depend on the z;, i € °I ,(p]_;ai,e;) # 0).
Using (7.108) and proceeding by recursion as in the proof of Theorem 7.2, we
get (7.104). The proof of our Theorem is completed. a
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REMARK 7.26. The last term is the right-hand side of (7.108) depends in a non
trivial way on the choice of n;. More precisely, it is a sum of terms depending on 7;

up to sign. As a corollary, we find that the function Ef Wil Z1,y ..y Tic1, Tig1y- - ,Tt)
also depends on the choice of n;,... ,7, in a non trivial way.
Now we extend Theorem 7.6 to the general case. We still take 7;,... ,7, asin

Theorem 7.25.

THEOREM 7.27. For any t € R/qR, there are meromorphic functions
¥1(t, T3, - s Ze)y - Yilty X1y ey Tim1, Tig1, . . -, Z¢) which vanish identically when
t/q € S, such that

(7.109) M,(t,z) =
(GM Z sgn({ai,, ... i) exp(2im(A,, t/q))

r
d I=(iy,....ir)C{1,... ,£},I generic
f€R/dR,g€(2/d2)" ,p€CR" /R*

(P —1Qi;, T )

d J J ' , i

[exp< ,53 R [ o1t +af) e/q)]m(f,”]
1

[1;e<; 29tanh (59-‘-1;};’—

) (z + 2imqgr — 2imar,)

-
1 ~

H (z — 2imqar,) +

vy d(p]_yoi; zf) | 1

=1 exp (P?,-_]a-',- e7)

L
Z"/}i(taxl,-.. y i1y Titlye-- ,.’L‘().
i=1

Proor. Using Proposition 7.5 and Theorem 7.25, we get (7.109). a

Given (w!,...,w*) € W*, let n%wl""'w‘) Y "*) be s functions from
R/dR x {I,I generic} into {+, —} having the properties listed before Theorem 7.25.
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THEOREM 7.28. If g € N*, g > 2, then

- _E_ 29—2|Z(G)| (9=1)r(_1\0(g+1)+r
T110)  Vylth,... 80 = | g | vaieryr D ooy

Z E (a,-l,... ,ai,)

B* I=(i1,... in)ETy
ueC/R ler/dﬂ

-

29—2+s
1
Res!_,
i Lg+ 2sinh (-;—(a,-, z!/q+ 2z'7ru))]

Z Ewl +-.Ews €XP ((Z wip,z! /q)

(wl,... ,w*)eWs j=1

+2i7r(z w(p + 67) + qf, u))

j=1

(p ai;, T
o (dz (Pj’_llame’ [ (kz ) )] “"]"""""(fl))
n; ’

ij=1
1

, d(pl_y i, ah) '
M= (exp (@r—ﬁ—)—) - 1)

Proor. We use (7.79) in Theorem 7.20 and 7.27, and also the arguments in
the proof of Theorem 7.23. We will show that for 1 <i < ¢,

(7.111)

1,...L
Res; g

H‘Pw-" x/?)'/’z(-’”l, i1, Tig1, . - 1zl)=0

[T] 2sinb (;_;)]29‘ j=1

from which (7.110) follows. To establish (7.111), we only need to show that

1 8
(7.112) Resz, o =7 || $wi(2/9) = 0.
j=1

[2sinh ()]

The proof of (7.112) is the same as the proof of (7.84).
We have thus established our Theorem. a

7.7. The general case. We will now establish another form of Theorem 7.28.
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THEOREM 7.29. If g > 0, if s is even and if 29 — 2 + s > 1, the following
identity holds

|2 —21ZG)| (o
7.113) V, . (01,...,6,) = |==| Vol(T')29~ 21 g(o=D)r(_1)te+1)+r
( ) y,q( 1 ) ICR‘ 0( ) lurl q ( )

1

Z Z (ailr" ’aiw)

Bt I=(i1,... ,ir)€Tu
ueC/R 1eTR/dR

29—2+s
1
Res!_,
: L!L 2sinh (%(a,-, ol /g + 2z'7ru)) ]

Z Ewl .. Ews exp(2i7r(zs:wj(p+0j) +qf,u))

(wl,... ,wi)EW? i=1
Limpiao,z) 1, — wk(p + ) -
— ] il [ et U7 J
exp (d T 1a;.,e-f) d(p;——l(z q +f)7e) . "
-1% = =g
1

r adpl_ i, zT) -
Hj=1 (eXP ( (P,t_:“ij 7y ) - 1)

PROOF. We proceed as in the proof of Theorems 7.23 and 7.28. Instead of
(7.79) in Theorem 7.20, we use (7.80) and we still use Theorem 7.27. In particular
the obvious analogues of (7.93) and (7.97) still hold because s is even and 2g—2+3s >
1. For the same reason, the analogue of (7.111), (7.112), with the ¢,,; replaced by
1 still holds.

The proof of our Theorem is completed. O
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8. The Verlinde formulas

In this Section, we prove the Verlinde formulas, in the restricted sense which
was described in the Introduction. Namely, we show essentially that for p large
enough, the Riemann-Roch number of M/G is given by the Verlinde formulas.
Also we show that the Riemann-Roch numbers of suitable perturbations of M/G
are given by the Verlinde formulas.

This Section is organized as follows. In Section 8.1, we establish our results
under a suitable genericity assumption on the holonomies. In Sections 8.2 and 8.3,
we consider suitable perturbations of the moduli space.

8.1. The generic case. Here we will assume that s > 1, 29 — 2+ s > 1, that
ty,...,t, are regular and lie in the alcove P, and that (t;,... ,t,) verify assumption
(A) of Section 6.9. Namely we assume that for any (w',... ,w®) € W*, 3i_, wt; ¢
S.

Recall that M C Z was defined in (6.20). Here we assume that M is not
reduced to 0.

THEOREM 8.1. For p € M, p > 0 large enough,

(81) Ind(DP.+) = Vy.p+c(.ml, s 1pt8)‘

PRrOOF. By Theorem 6.29 and by Theorem 7.12, we know that if 3;_, pt; ¢ R,

then both sides of (8.1) are equal to 0. So we may as well assume that 2;=1 pti € R.
First we consider the case where g > 2. Observe that for p € M large enough,
(pt1,... ,pt,) verify (Apic). By comparing formula (6.130) in Theorem 6.34 and
formula (7.91) in Theorem 7.23, we get (8.1).
Now we consider the case g = 1. By Theorem 7.16, we get

(8.2)

-1)¢ —K
Vl.P+C(ptl1"' ’pta) = _(é%z— Z Evleuzv2,p+c(pt11--- aPts,le+U2P)-
| e w ews
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Observe that for p large enough, (pti,... ,pts,vlp + v2p) verify (Ap4.). Using
(1.17), Theorem 7.23 with g = 2 and (8.2), we obtain

(83)  Vipre(pts,... pts) = ‘Téﬁ"( 1y

1
Z Z {0ty ,04)

T I=(i1,... .ir)€Ty
YCCIR R iR ucR /A

43
1
ReS£=0 El ... Eqys+3
[ag+ 2sinh (l—(a,zl/q + 2i7ru))] (wl,..., W.ZH)GW.-H

s+1 s+3
exp ((Zw’p,z /(p+c) +211r(2w’pt1/(p+c) Z wp/(p+c), \y)

j=1 i=1 j=s+2

8+3
+2”(Z w’ (p + pt?) + Z wip+ (p+0)f, ))

j=1 j=s+1

{exp (dz ((f;, 12”,‘;3[ (ol 1(§:w pte/(p+¢) +

§+3 = )
> wtp/lp+o) +f),e’)])
k=842
1

(
[Tz (exp (__;_d(”"—l_""‘z'.",').) - 1) }

(p,'_lai’- |eJ)

z — 2iTal,).

Since (ti,... ,t,) verify (4), by Proposition 2.14,
s .
(8.4) T_1 Y whty + f,e) ¢ Z.
k=1

By proceeding as in (6.132) and using (8.4), we get for p € M large enough,

s+3

85) [l utpte/ )+ Y who/(p+o)+ 1)) =
k=1 k=s+2
s+3

§_1(iw"ptk/(p+6)+f),e")]+%(p,’-_1 > whp/(p+c),€).
k=1

k=s+2
Also by (2.13),

5+3 5+3

I
(8.6) Zﬁ—‘—"—”—’———’( IS whp/(p+e)ed) = (Y whp/(p+c),2").

104, €5) k=s+2 k=s+2
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So by (8.3), (8.5), (8.6), we get

(87) ‘/l,p-f-c(ptl;' . ypts) = l (_l)r

> Z(;—

R* I=(1....,ir)€Tu
ueC/R 1€R/dR.ueCR* /R*

s+3
1
Res£=0 H Ewl . Eqyat3
aci, 2sinh (Ha, 2! /(p+ ) + 2m>) (wi. ,w-zmewm
8+3

L
exp ((Zw’p,z' [+ +( Y w’p,p+
i=1

j=s+1

+ 2imu) +

ZiW(i wipti/(p+c), ) + Ziﬂ(i w!(p+pt) + (p + 0) f, u))

j=1 i=1
(p i,z 2 i
{e"p (dZ_: Blane) 11a,,,ej> [ s (om0 + ). )D
1

}(z — 2maA,).
. a(pl_ o 00)
HJ’:] (exp ( (pj—lla‘j lc]) ) - l)

Now by (1.94), (7.71),

(8.8) - > ew exp((wp,

[Taer, sinh (3(a, 2= p+c + 2imu)) 5

) =1
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By (8.7), (8.8), we obtain

(8.9) Vipte(pts, ... ,pts) = Izlé‘f;)l (=17
1

Z Z <ai11---:air)

B*  I=(iy,...,ir)€T
u€C/R 1ER/4R,ueCR* /“—R,‘

8
1
Res;_g Ewl «..Eqe
LIL{ 2sinh ( (a,zT /(p+c) + 2'mu)):l (W', ,w*)EW? w w

exp ( > wipz!)(p+e) + 2%#(2 wpt;/(p + ), Au)

Jj=1

+2i7r(z wi(p+pt?) + (p+0)f, u))

i=1

foo (o3 psme o (St 1))

1

(z
H;=1 (exp ( ((:,_’::;j ':j))> - 1)

By comparing (6.130) and (8.9), we get (8.1) for g = 1.
A similar proof can be given for the case g = 0. The proof of our Theorem is
completed. 0

— 2imd),).

8.2, The perturbed case at -‘3%. Now we make the same assumptions as
in Section 6.11. Namely take p € M,p > 0. We assume that €,... ,e, € t

are such that form £ €]0,1], 1 < j < s, ;,”—:f'; + fe; € T is regular, and for any

(wh,...,w*) e W*,£€)0,1], Y5, w/ BL p+c +2;¢5S.
THEOREM 8.2. For g > 2,
L+te;)
(810) d(D(p+ “ ) gp+c(pt1’ . ,pt,).

Forg=0org=1, if (t1,...,t;) verify (A), for p € M and p > 0 large enough,
equation (8.10) still holds.

PROOF. By Remark 6.37, we find that if 37_, pt; ¢ R, then the left-hand side
of (8.10) vanishes. By (7.59) in Theorem 7.12, the right hand-side also vanishes.
As in the proof of Theorem 8.1, we may and we will assume that Z;=1 ptj € R.

First we consider the case g > 2. Then (8.10) follows by comparing (6.147) in
Theorem 6.41, and (7.110) in Theorem 7.28.

In the case 0 < g < 1, we proceed as in the proof of Theorem 8.1, and use
(8.10) in the case g > 2.

The proof of our Theorem is completed. O
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8.3. The perturbed case at %’f%i. Observe that if t € P, for p € N,

. t . .
LBl ¢ P, i.e. £fZ is regular. This follows follows from (1.33), (1.34), (1.36).

The same argument as in the proof of Proposition 6.39 shows that if s > 1,
given p > 0,p € M, there exist €;,... ,€, € t such that for £ €]0,1],1 < j < s,

%‘;,_+—f+£ej € T is regular, and for any (w',... ,w*) € W*,£€]0,1], 3°;_, w"(ﬁ";+

le;) ¢ S.
In Theorem 6.36 we now take

p—ctj
(8.11) b =L+ te;.

ptrptj
By the construction of Section 6.11, we get a Dirac operator D,*'*

THEOREM 8.3. For g >0, and 29 — 2+ s > 1, for £ €]0,1],

PPt +Le;
(812) d(D{ 77 ") = Vprelpts, . ,pt).

PROOF. As in the proof of Theorems 8.1 and 8.2, we may restrict ourselves
to the case where Z;=1 pt; € R. First assume that s is even. Then (8.12) follows
from (6.137) in Theorem 6.36, with 4; given by (8.11), and from (7.113) in Theorem
7.29. When s is odd, first we perturb the s holonomies as indicated before. Then
we add an extra marked point z,43, with holonomy equal to 1. We perturb the
holonomy 1 to a generic holonomy, and we use the result we just proved with s +1
marked points. We can then gently make our holonomy ¢, tend to 1. This is
in fact possible because the perturbation of the first s holonomies are generic and
verify condition (4). The proof of our Theorem is completed. a

REMARK 8.4. Suppose temporarily that the assumptions of Remark 6.42 are
satisfied. In particular we assume the holonomy t; to be central and represented
by ho € P. A direct treatment would show that an analogue of (8.12) would still
hold, where, in the Verlinde sum (7.57), the term xp,(e*/(P*<) should apparently
be replaced by ey, exp(2im(ho, A)). However Theorem 1.33 tells us that indeed,
this is just xpa, (e* P+ 30 that we recover the standard Verlinde formula.

REMARK 8.5. By Teleman’s vanishing results [55, 56], if (1,. .. ,t,) verify (4),
for any p € M, one should have
(8.13) Ind(Dp,+) = dim H°(M, X?).
Since dim H%(M, AP) is given by Verlinde’s formula, then one should have for any
pEM,

(814) Ind(Dp,.,.) = Vg,p+c(pt1, PN ,pt,).

The arguments of Teleman also show that more generally, if 8;, ... ,d, are taken as
in Theorem 6.36, for any p € M,

(8.15) Ind(D 1) = Vg pre(pta, - ,Pta)-

Here, Theorem 8.1 only asserts that if (t,,... ,t,) verify (4), for p large enough,
(8.13) holds. For a given p € M, Theorems 8.2 and 8.3 give a corresponding equality
for a suitable perturbation of the moduli space, depending on p, the perturbation
being smaller as p — +o00. A proof of (8.14), (8.15) for any p € M would be possible
if one could modify Theorem 7.20, so that in (7.79) or (7.80), the term where the
function M, appears would be instead M, (% 3°;_, w’6;,z). To establish such a
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result, one would need to prove the vanishing of a certain residue. This vanishing
result is true for g large enough, but not obvious for small values of g.
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