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Introduction

It is well-known that a number of important nonlinear evolution equations are
associated to spectral problems for ordinary differential operators (see [1, 4]).
The initial value problem for the evolution equation can, in principle, be solved
by solving an inverse scattering problem. Schematically, the unknown function
u(-,t) (possibly vector-valued) is identified with or transformed into the coef-
ficients q(-,t) of a differential operator L,. A spectral problem is associated
to L, which carries (at least formally) some asymptotic information called the
scattering data v(-,t). The original nonlinear evolution of u, or equivalently of
q, corresponds to a trivially solvable linear evolution of the scattering data v.

The analytical theory of scattering and inverse scattering in various cases
has been treated, for example, in (1], [6], [10], and other papers of these au-
thors. It should be noted, though, that in much of the literature the expression
“solvable by the inverse scattering method” designates evolutions associated to
spectral problems for which certain purely formal scattering data would evolve
linearly if it existed. The proposed scattering data may exist only for compactly
supported or exponentially vanishing ¢, and the support condition or the van-
ishing condition may be destroyed by the evolution itself. In short, problems
may have been termed “solvable” when neither the scattering map ¢ — v nor
the inverse map v — ¢ has been seriously investigated. (For such problems
one has recipes to produce special solutions, such as soliton or multi-soliton
solutions, but the general initial value problem may be untouched.)
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A satisfactory analytical treatment of scattering and inverse scattering for
a given spectral problem should aim for the following:

i. to formulate a notion of scattering data v which is meaningful for (essen-
tially) all reasonable coefficients ¢, such as q € L?;

ii. to show that ¢ — v is injective;

iii. to characterize scattering data by determining all the algebraic or topo-
logical constraints such data satisfy;

iv. to show that for (essentially) each set of data satisfying the constraints,
there is a corresponding g;

v. to discuss the relationship of such analytic properties of ¢ as smoothness
or decay at oo with corresponding properties of v.

We summarize here some results of this nature on a class of spectral problems
sometimes called generalized AKNS-ZS systems (named after [1] and [11]). This
class is directly or indirectly related to most of the interesting nonlinear evolu-
tion equations which are said to be solvable by the inverse scattering method.
The eigenvalue problem has the form

Y = 25w+ a@)f@), zeC 1)
Here f : R = C", J is a constant (n x n) matrix, and ¢ is a matrix-
valued function. The (2 x 2) case was introduced by Zakharov and Shabat [11]
in connection with the cubic nonlinear Schrédinger equation and was studied
extensively by Ablowitz, Kaup, Newell, and Segur [1]. The formal theory of the
(nxn) case, including the determination of the appropriate nonlinear evolutions
of ¢, has been considered by a number of authors (see [5], [7]). The results
described below seem to be new, in some respects, even for the (2 x 2) case.
Qur results on the analytic theory of the scattering and inverse scattering
problems for generalized AKNS systems are stated in detail in the first section.
The direct problem is treated in Sections 2-6. The case of compactly sup-
ported g is studied in Section 2 and the case of ¢ with small L! norm in Section 3.
The general case is obtained by limiting or patching methods in Sections 4 and 5.
The consequences of smoothness of g or decay of ¢ are studied in Section 6.
Sections 7-11 treat the inverse problem. The problem is reformulated as
an integral equation in Section 7. The problem is solved for “small” data
in Section 8, with refinements for smooth or decaying data in Section 9. In
Sections 10 and 11 a rational approximation is used, together with the result
for small data, to reduce the general inverse problem to a purely algebraic
problem: a system of linear equations with z-dependent coefficients.
In Section 12 we consider systems with a symmetry and the relations be-
tween symmetry conditions on the potential and on the scattering data. We
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derive a formula of Hirota type (see [4], [9]) for the soliton and multi-soliton
potentials for a system with symmetry.

We have benefitted from discussions with B. Dahlberg, P. Deift, C. Tomei,
and E. Trubowitz. Several key observations, in particular the relationship of
the winding number constraint to asymptotic solvability of the inverse problem,
are due to D. Bar-Yaacov [2] in his work on the case when the matrix J is skew
adjoint.

1 Summary of Principal Results

We assume throughout that the matrix J in (1) is diagonal, with distinct com-
plex eigenvalues:

J = diag(A, Aoy An)y A # A if § # k. (1.1)

Let P denote the Banach space of (n x n) matrix-valued functions on R which
are integrable and off-diagonal: P 3 g = (g;x), where

qi; = 0, qjk € Ll (R) (1.2)

We refer to g € P as a potential.
The spectral problem (1) leads to the problem of determining a fundamental
matrix ¥(z, z):

d—d:;z/)(a:,z) = 2JY(z, z) + q(z)y¥(z,2) ae. z, (1.3)

det¢(z,z) #0.
The desired solution is normalized to be of the form

Y(z,2) = m(z, 2)e”, (1.4)
m(+, z) bounded and absolutely continuous, (1.5)

m(z,z) = I as z = —oc.

Equation (1.3) is equivalent to

im =z[J;m]+gm ae. x (1.6)
dz

Let ¥ be the following union of lines through the origin in C:

Y ={z: R(zA;) = R(zAx), some j # k}. (1.7)
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Theorem A. Suppose ¢ belongs to P.

(a) There is a bounded discrete set Z C C\X such that for every z € C\(X U
Z) the problem (1.4)—(1.6) has a unique solution m(-,2) and such that,
for every z € R, m(z,-) is meromorphic in C\X with poles precisely at
the points of Z. Moreover, on C\Z,

lim m(z,z) =1. (1.8)

zZ—= 00

(b) There is a dense open set Py C P such that if ¢ belongs to Pg, then

Z is finite, (1.9)
the poles of m(z,-) are simple, (1.10)
distinct columns of m(z, ) have distinct poles, (1.11)

in each component  of C\X,m(z,-) has a continuous extension to 2\ Z.
(1.12)

The function m is an eigenfunction for the matrix differential equation (1.6);
we call it the eigenfunction associated to g. The elements of the dense open set
P, will be called generic potentials.

Let Q1,Qs, ... ,, be the sectors which are the components of C\X, ordered
in the positive sense about the origin. Let ¥, be the closed ray from the origin
which one crosses in passing from 2, to 1,41 in the positive sense. According
to (1.12), if m(z,-) is associated to a generic potential, it gives rise to two
continuous functions on X,:

m,, (z,-) = limit on ¥, from Q,, (1.13)

v

+(z,-) = limit on ¥, from Qy41, (Qrt1 = Q). (1.14)

m,

Theorem B. Suppose ¢ is a generic potential with associated eigenfunction
m.

(a) For z € ¥, there is a unique matrix v, (z) such that, for all x,

mi(z,2) = m} (z,2)e** v, (2)e . (1.15)

(b) If m(z,-) has poles at {z1,---,2n}, then for each z; there is a matrix
v(z;) such that the residue satisfies

Res (m(z,-); z;) = zlLIr;j m(z, z) exp{zz;J}v(z;) exp{—zz;J}. (1.16)

(c) The potential ¢ is uniquely determined by the functions {v,}, the singu-
larities {z;}, and the matrices {v(z;)}.
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Given ¢ as in Theorem B we denote
v="_(v1, " ,Ur; 21, ,2N;U(z1), - ,v(zN)) (1.17)
and call v the scattering data associated to g. Note that
v, € C(E,), w(z) > asz— . (1.18)

Part of the scattering data may be recovered from asymptotic information
on the singular set . Let II, be the following projection in the matrix algebra:

g if i) = R(zA ¥,
(ILa)jk = {a]k i R(z .J) (2h), 2 € (1.19)
0 otherwise.

Theorem C. Suppose ¢ is a generic potential with associated eigenfunction
m. If z is in 3, then the limits

st(z) = z-l-}r-}l:loo I, (e~ **/mt (x, z)et=*7) (1.20)

v

exist and uniquely determine v, (z). Moreover, the set of functions {s}} deter-
mines the poles {z1,- - ,2nx} and the columns which have singularities at these
points. Conversely, this information determines the {sF}.

To describe constraints on the scattering data we introduce additional no-
tation. For any matrix a we let djf (a) and dj (a) denote the upper and lower
(k x k) principal minors:

df (a) = det((aij)i,j<k), (1.21)
dy (a) = det((ai;)ij>n—k)- (1.22)

Given z € (1, we introduce an ordering of the eigenvalues {A;} so that R(zA;)
is strictly decreasing. Note that the induced ordering of the standard basis
gives a new matrix representation of the matrix algebra, denoted

a—a”. (1.23)

Thus a” is the matrix a after conjugation by a permutation matrix, and J¥
has its diagonal entries occurring in the v-ordering.

Theorem D. Suppose ¢ is a generic potential with scattering data v. Then

Mu,(2) =v.(2), z€X,, (1.24)
0,(0) = 4 a1, (1.25)
where (a,);; =1 and (a,)” is upper triangular,
dy(v,(2)") =1, 1<k<n,z€%,, (1.26)
d}:(v,,(z)") #0, 1<k<n,zeXx,, (1.27)

if z; is in Q,, then v(z;)” has a single non-zero entry
which is in the (k, k + 1) position for some k < n.
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Moreover, let a,; be the winding number of the k-th upper minor of (v,)”:
2Tog = / dlarg dif (v, (2)¥)], (1.29)
Eu

where ¥, is oriented from 0 to oo. Let,
Bur=number of z; € ¥, such that k-th column of v(z;) is # 0. (1.30)
Then the {a,k, Bur} satisfy n — 1 independent homogeneous equations
Z(evk,javk + Muk,iBk) =0, 1<j<mn, (1.31)
where the coeflicients belong to {0, +1}.

Some analytic properties of the scattering map are summarized in the next
theorem.

Theorem E. Suppose q is a generic potential with scattering data v and sup-
pose k is a non-negative integer.

(a) If the distribution derivatives of ¢ satisfy

Dige L', 0<j<k, (1.32)
then
lim 2", (2) - I = 0. (1.33)
(b) If
ztqe L, (1.34)
then

v, € C¥X,) and Di(v, - I) 2 0asz -+ o0, 0<j<k. (1.35)

Moreover, let v, ; be the Taylor polynomial of degree k for v, at the
origin. Then there are matrix-valued polynomials a,, as in (1.25), with

Uk (2) = ap i (2) tappk(2) + O(2F), 2| < 1. (1.36)
(c) If
rge Ll'nL? 0<j<k, (1.37)
then in addition to (1.35) we have

Di(v, - I) € L*(%,), 1<j<k. (1.38)
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Let 8(R) denote the usual Schwartz space (of matrix-valued functions) and
let 8(¥,) denote the space of functions each of whose derivatives is continuous
on the closed ray ¥, and is rapidly decreasing at co. Theorem E shows that for
a generic potential belonging to 8(R), v, is rapidly decreasing at oo and all its
derivatives are bounded. A rapidly decreasing function with bounded second
derivative has rapidly decreasing first derivative; thus we have the following:

Theorem E'. If q is a generic potential belonging to S(R), then each v, belongs
to 8(X,), and (1.36) holds for every integer k > 0.

For the inverse problem we introduce the space S of formal scattering data,
consisting of elements v of the form (1.17), satisfying the following:

I—-wv,, Duv,€L*%,); (1.39)

this implies
v, = I as z = o0, (1.40)
conditions (1.24)-(1.28) and (1.31) hold. (1.41)

In (1.39), Dwv, is the distribution derivative along the ray. Condition (1.39)
implies (after correction on a set of measure zero) that v, is bounded and
belongs to the Holder space C'/2(%,), so (1.25) makes sense.

Note that from Theorems D and E it follows that if ¢ is a generic potential
and satisfies (1.37) with k = 2, then its scattering data belongs to S.

There are two natural ways to topologize S, each of them being, for each
fixed NV, a product topology. The components v, receive the obvious topology,
the components v(z;) the natural matrix topology, and the z; either the usual
C-topology or the discrete topology. The map from generic potentials satisfying
(1.37) with kK = 2 to S is continuous with respect to the first topology on S,
while the set Sy below is open and dense with respect to either topology.

Given v € S and z € R we look for a matrix-valued function m(z,-) such
that

m(z,-) is meromorphic on C\X with poles at z;3,--- , zpn, (1.42)
conditions (1.12), (1.15), and (1.16) hold. (1.43)

Theorem F. Suppose v belongs to S.

(a) For any real z there is at most one associated eigenfunction; for |z| large,
there is exactly one.

(b) There is a dense open set Sg C S such that for every v € Sg the associ-
ated eigenfunction exists for every real x. Moreover, m(-, z) is absolutely
continuous with respect to z for all z € £ U {21, -+ ,2n} and satisfies
the differential equation (1.6), where ¢ is an off-diagonal matrix-valued
function with

(1+ |z|)g € L* + L*™. (1.44)
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The following is a partial converse of Theorem E.

Theorem G. Suppose v belongs to Sy and suppose ¢ is the corresponding
potential.

(a) If 2F(v, — I) € L?(Z,), all v, then the distribution derivatives of ¢ satisfy
Dige L’ +L>®, 0<j<k. (1.45)

(b) Suppose the distribution derivatives of v satisfy
Div, € L?, 0<j<k+1. (1.46)
Let v, be the Taylor polynomial of degree k for v, at the origin, and

suppose (1.36) holds. Then
"l e L2 + L™. (1.47)
As above, Theorem G has the following consequence for Schwartz class scat-
tering data.

Theorem G'. Suppose v belongs to Sg. Suppose also that each v, belongs to
8(X,) and that (1.36) holds for every integer k > 0. Then the corresponding
potential belongs to S(R).

The conditions defining S are preserved under the type of nonlinear evolu-
tion of ¢ which is associated to the spectral problem (1.3). Indeed the scattering
data v(-,t) for such an evolution evolves with singularities {z;} fixed with

ov,

3¢ (1) =), v (2, 8], (1.48)
v
7 7o t) =lulzi), vz, ), (1.49)
where p is a diagonal-valued function. Thus
v, (z,1) = ey, (2,0)e ) (1.50)

a similar expression holding for the v(z;,t). The algebraic conditions on v are
clearly invariant under conjugation by a diagonal matrix. Therefore the flow
(1.48)—(1.49) maps S to itself (continuously with respect to either topology) if
and only if

4 is continuous, (1.51)
RILu(z) =0, z€X,. (1.52)

In general, Sy is not invariant under (1.48), (1.49). For example, if v, =0,
all v, then q is of the form

q(x,t) = R(el(zat)7' o ,EN((E,t)),
ej(z,t) = exp{rt + §z},

where R is a rational function. Depending on the data, ¢ may have algebraic
singularities for some real z and ¢.

(1.53)
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2 Compactly Supported Potentials

With the assumptions and notation of Section 1, we investigate the solution of
the eigenvalue problem (1.5), (1.6) when the potential has compact support.

Proposition 2.1. Suppose ¢ € P has compact support. For each complex z
there is a unique absolutely continuous mg(-, z) such that

imo(a:,z) = z[J, mo(z, 2)] + g(z)mo(z,2), ae. z, (2.2)

dz
mo(z,z) =1 if 2 < 0. (2.3)
Moreover, mg(z,-) is an entire function and
22 s0(2)e™ 2 2> 0, (2.4)
detmg = 1. (25)

mo(z,z) =€

Proof: Clearly my is the (unique) solution of the Volterra integral equation

mo(z,2) =1 +/ eV gy )ymo (y, 2)e¥ =27 dy. (2.6)

—00

The dependence on the parameter z is holomorphic. To prove (2.4) we note
that

imo = z[J,mo}, z>>0. (2.7)
dz

To prove (2.5) we let 1) (z,z) = mo(z, 2)e®*/. Then
d
= (2J + @) (2.8)
T
so that

i(det o) =z tr J - det iy (2.9)
dr

and thus det mg is constant with respect to z.
Note that (2.6) gives

so(z) =T+ /R v+ g(y)mo(y, 2)e¥™ dy. (2.10)

Proposition 2.11. Suppose g € P has compact support. Then the eigenvalue
problem (1.5), (1.6) has a unique solution m(-,z) for every z € C\(X U Z),
where Z C C\X is discrete. Moreover, m(z,-) is meromorphic on C\X.
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Proof: We look for m of the form
m(z, z) = mo(z, 2)ag(z, 2). (2.12)

Since mg is invertible we must have

%ao = Z[Jv aO]a (213)
so a must have the form
ao(z, 2) = e**a(z)e 2%/, (2.14)

Conversely, (2.12) and (2.14) imply that m is an eigenfunction. Now
m(z,z) = e®*a(z)e | <0, (2.15)
m(z,z) = e so(2)al(z)e™ 7, > 0. (2.16)

In order to have m bounded as x — —oo it is necessary and sufficient, in view
of (2.15) that

a(z)j, = 0if R(zA;) < R(zXi). (2.17)
In terms of the v-representation introduced in Section 1, this condition is
a(z)” is upper triangular if z € ,,. (2.18)
Similarly, (2.16) and boundedness as z — +o00 become
so(2)”a(z)" is lower triangular if z € Q,. (2.19)
Convergence to the identity as £ — —oo requires
a(z)i; =1, 1<j<n. (2.20)

Thus (2.12), (2.14), (2.18)-(2.20) are necessary and sufficient conditions. The
algebraic conditions (2.18)-(2.20) determine a”, and thus e, uniquely, provided
that the upper minors do not vanish (see [8], Theorem 1.1):

di(s0(2)") #0, 1<k<n,z€Q,. (2.21
k

Thus Z is precisely the set where (2.21) fails.

Remark 2.22. 1t will be shown in Section 4 that Z is finite. It is clear from
this construction that starting from a given sector 2, the function m has an
extension which is meromorphic in all of C. In particular, except for a discrete
set Z,, in a ray ¥,, the limits (1.13) and (1.14)exist. These limits again have
determinant 1, and by differentiating the expression (m;)~!mJ}, we see that it
satisfies the equation (2.13). Thus there is v, (2) such that

m¥(z,2) = m} (z,2)e* v, (2)e” %, zeT\Z,. (2.23)
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Definition 2.24. Let ¢, m, Z be as in Proposition 2.11. A singularity z € Z is
stmple if it is a simple pole for m and only one column of m is singular at z.

Proposition 2.25. Suppose z € ZNQ, is a simple singularity for m. Then
there is a matriz v(z) such that

Res (m(z,-);z) = lim m(z,2")e** v(z)e™%*. (2.26)
z'—=z

Moreover, v(z)¥

matriz unit.

s of the form cepr+1, where ¢ is a constant and egr+1 @

Proof: For convenience, replace the original matrix representation with the
v-representation. Thus in Q,, m is of the form (2.12), (2.14), where

a” =1+ wu, wu strictly upper triangular. (2.27)

It is easily seen that Res (m(z, ‘), z) satisfies the differential equation (1.6), and
it follows that

Res (m(z,); 2) = mo(z, 2)e®* vy (2)e 2%, (2.28)

Suppose that it is the column k + 1 of m which is singular at z. Taking z < 0
we see that vy is the residue of u at z; thus vy is strictly upper triangular, with
only column & + 1 non-null. Let

Pk = €11+ €2+ + €Ekk.
Then upy has no singularity at z and we may define
u(2) = (1 + u(2)pe) " vo(2). (2.29)

In view of (2.12), (2.14), and (2.27)—(2.29), it is clear that (2.26) holds. To see
that v has the given form we use the fact that, in Q,, m is lower triangular for
z > 0. Therefore,

0 = px Res (so(1 +u);2)
= piso(2)(1 + u(2)p)v(2)
= prb(2)prv(2) = prb(2)v(2),
where b is lower triangular. By assumption the (k — 1) x (k — 1) upper minor of

so(z) is not zero, so the same is true for b. It follows that the first k£ — 1 entries
of column k + 1 of v are zero, and the proof is complete.

Proposition 2.30. Suppose ¢ € P has compact support. In any neighborhood
of q there is a potential whose associated eigenfunction m has properties (1.10)—
(1.12).
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Proof: Suppose r € P also has compact support. Let M, (C) be the (n x
n) matrix algebra. Given { € M,(C), let r. be the potential with entries
¢jkrjk- Let so be the matrix-valued function associated to g as in the proof
of Proposition 2.1, and let sg,¢ be the corresponding function associated to r¢.
Note that (2.10) implies

sog(z) =T+ /R eV (y)er™ dy + O(ICP2). (2.31)

Now suppose that the support of r lies to the right of supp (g). Then it is easily
seen that the eigenfunction for ¢ + r¢ which satisfies (2.3) is

zzJ

mo ¢ (,2)e** so(2)e ™, x>0, (2.32)

where mg, is the corresponding eigenfunction for r;. Thus the asymptotic
matrix s¢ corresponding to g + 7¢ is

s¢(2) = s0,¢(2)s0(2). (2.33)
Consider now the map

@ :C x M,(C) » M,(C), (2.34)

SO(Z,C) = dlag (1 +<11) o 51 +Cﬂn)sC(Z)'

This map is holomorphic. For fixed z, equation (2.31) shows that the differential
of so¢ at ¢ = 0 is a matrix whose entries are certain dilations of the Fourier-
Laplace transforms of the entries of r, evaluated at z. In particular, r may be
chosen so that none of these entries vanishes at a given point z, and it follows
that dy is surjective at (z,0). Let I'; C My,(C) consist of all matrices for
which at least j distinct minors vanish. This is an algebraic variety of complex
codimension j in M,(C). Thus if dy is surjective at (z,0) it follows that the
complex codimension of ¢~*(T;) near (z,0) is j, and the complex codimension
of the projection to M, (C) is at least j — 1. In particular, this means that if
z is a point where two or more distinct minors of sp vanish, then there is a
neighborhood U of z and a sequence of potentials converging to g such that the
minors of the corresponding so have distinct zeros in U. A similar argument
based on the real codimension and the restriction of ¢ to R x M,(C) shows
that if a minor of sg has a real zero z, then there is a neighborhood U and a
sequence of approximating potentials whose so have no minors with real zeros
inU.

In the proof of Theorem A (a) below we show that there is a constant C
such that the eigenfunction m for g, or for any sufficiently nearby potential,
has no singularities in the region |z] > C. A regular point remains regular
under small perturbations, so the argument just given implies that we may
remove singularities on ¥ one at a time by arbitrarily small perturbations, and
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similarly we may split poles of distinct columns which happen to coincide. The
last step is to show that any multiple poles can be split into simple poles by
small perturbations. If z € 2, is a multiple pole, it corresponds to a multiple
zero of an upper minor d: of s§. We choose r with support to the right of supp
(q), such that the dilated Fourier-Laplace transforms of the r;; have a simple
zero at z. Rewriting matrices in the v representation, and multiplying s¢ on the
right by an upper triangular matrix with ones on the diagonal, we may assume
that (so)ij = 0 for ¢ > j if j < k, near 2. Since the next minor is not zero at
2, (S0)k+1,k(2) # 0. If we choose (k,k+1 # O but small, and the other (;; = 0,
then (s¢)xx will have simple zeros near z and so will the corresponding minor.
This completes the proof.

3 Small Potentials

It is convenient here to introduce more notation and structure. We let C”
have the standard hermitian inner product, and let the matrix algebra M,,(C)
operate on C" in the standard way. Then M,,(C) is a Hilbert space with respect
to the trace form

(a,b) = tr b*a

and we denote the norm by | |. Then the L!-norm on the space of potentials P
is

lglly = /R l9(a)|dz. (3.1)

Define § : M,(C) — M,(C) by
da = adJ(a) = [J,a]. (3.2)
Then g is a normal operator, and for any complex z the operator
R(23) = ad(R(2J)) = 3(23) + 3(23)*
is selfadjoint. Let
I3, 112, TI§ = M,(C) = M,(C) (3.3)

denote the orthogonal projections of M,(C) onto the positive, negative, and
null subspaces for R(29), respectively. Let

IIZ = My (C) = Mn(C) (3.4)

be the orthogonal projection onto the kernel of g, the set of diagonal matrices.
Then the projections (3.3) are constant on each component of C\X, while

— {no if and only if z ¢ %, (3.5)

°7 N, ifze ,\(0).
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Furthermore,
1% a = a & a” is upper triangular, (3.6)

where {0, 3 2, a similar statement holding for II* and lower triangularity. Note
also that

exp{td}(a) = e’ ae . (3.7)

Theorem 3.8. Suppose q € L' has norm ||q|ly < 1. Then for each z € C\Z
there is a unique associated eigenfunction m(-, z) satisfying (1.5) and (1.6). The
function m is holomorphic in C\X with values L NC. On each component of
C\XZ, m and its inverse extend continuously to the closure. In addition,

m(z,z) = I as z = oo uniformly w.r. to z, (3.9)
Im(z, 2)| < (1 —|lgll1)™? for all z, 2, (3.10)
Im(z,2)7' < (1= llgll) ™" for all z, 2. (3.11)

Proof: Given ¢ € P and z € C\X, let
K,q:L®—» L>®NC (matrix-valued), (3.12)

(Keafl) = | T VB 1 117 Y (g(y) £ () dy

-0

o0
—/ e*~V1% (q(y) £ (y)) dy-
z

The exponential operators here have norm at most 1 on the subspaces where
they act, and these subspaces are orthogonal and invariant for J, so the operator
norm satisfies

1Kz,qll < llgll- (3.13)
Clearly,
d
S Koo () = 20K, 0f (&) + 4@)f(2) 2 (314
It follows that, for ||g|l1 < 1,
m(z,z) = [(Id — K, )" I)(z) (3.15)

is a bounded continuous function of z satisfying the differential equation (1.6)
and the estimate (3.10). Moreover, the map z — K, 4 is holomorphic from
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C\X to the space of bounded operators in L N C, so m is holomorphic with
values in this space. Similarly, m extends to be continuous on the closure of a
component of C\X, with values in L* N C.

The dominated convergence theorem implies that, for fixed z,

K,q.f(z) > 0asz = —oo, (3.16)
uniformly on bounded sets in L> N C. In particular, since
m(z,z) = I+ [K, m(-, 2)](z), (3.17)

it follows that m satisfies (1.5).
As in the proof of (2.5) we see that

detm = 1; (3.18)

thus m is invertible and m(-,z) ! is bounded. If m; were a second solution of
(1.5), (1.6), then as in the proof of Proposition 2.11 we would have

mi(z, z) = m(z, 2)e**3(a(z)), z¢Z. (3.19)

But exp{z2J}(a(z)) would have to be bounded with respect to , which implies
that a(z) is diagonal, and then the asymptotic condition (1.5) for m and m;
implies a(z) = I.

To prove the estimate (3.11) for m~!, let g2(z) = —q(z)* and let m2 be the
corresponding eigenfunction. Then

(diig? - zB) [m(z, z2)ma(z,—2)*] = 0 (3.20)

and as above we can conclude that

1

m(z,2)”" =mg(z,—2)" (3.21)

which implies (3.11).
Finally, consider the asymptotic behavior in z. Suppose first that dg/dz is
also in L!. Let

n(z,z) =1 — 2719 1q(z), (3.22)

where 37! : ran J > ran J. (Note that (1.2) implies g(z) € ran J for all z; this
is our first essential use of this fact.) Then

(i - za)n =gn+z7'f, (3.23)
dz
where f € L!. Then using the asymptotic information and

(% - z3> (m™'n) = 7' f = g(z, ), (3.24)
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we obtain
T
(min)(a,2) =1+ [ @V + 2 )g(y, ) dy
o (3.25)
—/ =V g(y, 2)dy.
Thus

|m(z, z) — n(z,2)| < Clz|™* for all z, 2. (3.26)

This proves (3.9) when the derivative of ¢ is in L. In general we approximate
g by such potentials and note that the corresponding eigenfunctions converge
uniformly with respect to z and z. In fact, suppose q and q; are in L' with
norm less than 1 and let m,m; be the corresponding eigenfunctions. Then

<% - ZH> (m™'my) =m ™ (1 — @)ma, (3.27)

and we obtain an integral expression analogous to (3.25) which implies

Imi (e, 2) — m(z, 2)| < llg = @i lllIm(, 2) " loollm(-, )26 (3.28)

4 Proof of Theorem A and Theorem B

Suppose g belongs to P. When ||g||s < 1, part (a) of Theorem A is just
Theorem 3.8, and the set Z of singularities is empty. To complete the proof
of part (a) we induce on the least integer N > 0 such that ||q||; < 2. Note
that the eigenfunction corresponding to a translate of ¢ is the translate (with
respect to z) of the eigenfunction. Thus after translation we may assume that

0 [eS)
| l@ids= [l (41)
—00 0
Let g1 (z) = q(z) for < 0, ¢1(z) = 0 for z > 0, and g2 = ¢ — ¢1. The induction
assumption implies that ¢; has an eigenfunction m; for which Theorem A (a)
holds. Any eigenfunction m for ¢ must be of the form

m(z,2) = mi(z,2)e*?ay (2), = <0, (42)
= my(z, 2)e"*9az(z), =z >0. .

For boundedness, continuity, and the asymptotic condition as x — —oo it is
necessary and sufficient to have

m1(0, 2)a1(z) = ma(0, 2)az(z), (4.3)
I a;(2) = 0 =17 az(2), (4.4)
Hoal(z) = I, z € C\E (45)
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In the matrix representation corresponding to the sector 0, > z, this is a
factorization problem:

[m2(0,2)7'm1(0,2)]” = ax(2)"[a1(2)7"]",
a(z)” lower triangular, a;(z)” upper triangular, (4.6)

ar(2)j; =1, 1<j<n

As before this problem has a unique solution as long as the upper minors of
(m5'm,)¥ are non-zero. The latter matrix approaches I as z — o0, so the
factorization problem (4.6) introduces at most a bounded, discrete set of new
singularities in the construction of m. Moreover, aj(z) = [ as z = o0, so
m(z,z) — I as z = oo. This completes the proof of Theorem A (a).

To prove that the set Py of generic potentials is dense, we note first that
the set of compactly supported potentials is dense in P. Second, since the set
of singularities is now shown to be bounded, the construction in the proof of
Proposition 2.11 shows that any compactly supported potential has only finitely
many singularities, including the singularities of the extensions to £. Therefore,
the potentials obtained in Proposition 2.30 are generic and dense in P.

Finally, we need to show that Py is open.

Lemma 4.7. Suppose q € P has associated eigenfunction m. Suppose K is a
compact subset of the one-point compactification of the closure of a sector Q,
and suppose that m extends to be continuous on R x K. Given € > 0, there is
& > 0 such that, if 1 € P and ||g — q1||1 < 6, then the associated eigenfunction
my extends to R x K and |m —mi| <eon R x K.

Proof: The argument leading to the inequality (3.28) proves this when
llglli < 1, and the inductive construction of this section gives the general result.

Suppose now that ¢ is a generic potential. Lemma 4.7 implies that the
eigenfunction for a nearby potential will extend to £ and will have singularities
only near those of the eigenfunction m of q. Moreover, if the potential is
sufficiently close, the singularities will be simple poles occurring in one column
at a time, by a contour integration argument. Thus Py is open, and the proof
of Theorem A is complete.

If ¢ is a generic potential with associated eigenfunction m, then by assump-

tion the limits m¥ exist on ¥,. If z belongs to T,, then

(% - z3> [m; (@,2)7'm (z,2)] = 0 (48)

so (1.15) holds. If z; € C\X is a singularity for m, to prove (1.16) we approxi-
mate ¢ by compactly supported generic potentials. It follows from Lemma 4.7
and the construction in (2.29) that we may pass to the limit in (1.16) for the
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approximating potentials to obtain (1.16) for m. Note also that the limit v(z;)
is of the form ceg k41 in the v-matrix representation.

Finally, to see that a generic potential is uniquely determined by its scat-
tering data, suppose ¢; and ¢, are generic potentials with eigenfunctions m,,
mgy and having the same scattering data. For any fixed z € R the function

f(z) = my(z, 2)my(z,2)? (4.9)

is meromorphic on C\X and converges to I as z — co. It is enough to show that
the apparent singularities are removable. On %,, f has limits ff. A trivial

calculation shows that f;f = f,, so f is holomorphic except possibly at the
sigularities {z;} of m; and my. Now

mi(z,2) = (z — z;) " ta+ b+ O(|z — z), (4.10)
and (1.16) implies
av; =0, bu; =a, (4.11)
where v; = exp{zz;J}[v(2;)]. Thus
my(z,2) = b(I + (z — z;) " v;) + O(|z — z;|). (4.12)
Since v} = 0, (4.12) implies that
ma(z, 2)(I — (z — z;)"1v;) = my(z, 2)w;(2) (4.13)
has a removable singularity at z;. The same is true for mz, so f = mym; e

(miw;)(mow;)~! has a removable singularity at z;. Then f = I and the proof
of Theorem B is complete.

5 Proof of Theorem C and Theorem D

Assume first that the generic potential ¢ has compact support. Let mg be the
eigenfunction of Proposition 2.1 and so the function in (2.4) which gives the
asymptotic behavior of mg. We know that

m(z,z) = mo(z, 2)e**?a(z). (5.1)
The function a has limits a¥ on £,. Now
m(z,z) = e*¥s,(2), >0, (5.2)
where s; = spa. Again, s; has limits on ¥, and we set

st =1, (spal) = Mi(spal), z€X,. (5.3)

14
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Clearly, (1.20) is satisfied. We may now pass to the limit from compactly
supported potentials to obtain the existence of (1.20) in the general case.

To see that the limits s& determine v,, we return to the compactly supported
case. Recall that (5.2) and boundedness imply that (s;1)” is lower triangular
when z is in Q,. Thus

(IZ + 112 ) (sga) = spa on Q,. (5.4)
Forz>> 0and z € 9,

v (2) = €™ m; (z,2) " 'm] (z, 2)]

= [so(2)az (] so()a (2). 59
Boundedness implies
vo(2) = v, (2), z€3,. (5.6)
From (5.4)~(5.6) we obtain
v, = I§(s0a; ) (soa}) = (s;) 7 s} (5.7)

since II§ is multiplicative on the range of II§ + II%, which is an algebra. Again
passage to the limit gives (5.6) and (5.7) for general generic potentials.

To see that the limits st determine the location of the singularities, we
return again to the compactly supported case. In the matrix representation
corresponding to §2,, a singularity in column k + 1 occurs at a zero of the k-th
upper minor of s§. Since a” is upper triangular with 1’s on the diagonal,

df (sg) = df (sga”). (5.8)

Now sga” is lower triangular, so its upper minors are the same as those of the
corresponding diagonal matrix 6, where

8(2)j; = (s0a)(2);

= zli_)n;o m(z,z);;-

(5.9)

The elements of §, being ratios of the minors which are holomorphic in C\Z,
are themselves meromorphic in C\X with continuous extensions to £. They
are therefore determined by their restrictions to X, which are just the diagonal
elements of the s¥. Once again we may pass to the limit from compactly
supported gq.

To complete the proof of Theorem C, we want to show that {v,} and the
location of the singularities of m determine s¥. Again we start with the com-
pactly supported case and pass to the limit. In the v representation the range of

§ consists of matrices whose non-zero elements occur only in certain diagonal
blocks, when z € Q,,. Moreover, in these blocks (s; ) is lower triangular, while
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(sF)¥ is upper triangular. Thus, within the range of IIg, (5.7) gives a trian-
gular factorization of v. This factorization is unique up to left multiplication
of s by a diagonal matrix; hence it is determined once we know the diagonal
parts of s} or s;. The factorization (5.7) implies that the upper minors of v¥
are quotients of the upper minors of (s})” and (s} )", and this means that v,
determines the ratios of corresponding diagonal elements of s; and s}. Re-
turning to the diagonal matrix &, we conclude that the ratios of its elements on
¥ are determined by the {v,}, while the zeros and poles are determined by the
singularities of m. This information determines § and thus it determines st.
This completes the proof of Theorem C.

We have already proved (1.24) of Theorem D, as (5.6) above, and also (1.28).
When ¢ has compact support and a is as in (5.1), we take z < 0 to obtain

Uy = (a;)_laj

= &), (>0

where
bt =MNZaE, 2€Q,. (5.11)

In the diagonal blocks where v lives, (a; ) is upper triangular and (a})” is
lower triangular. Thus (b,)” is upper, (b})” is lower, and each has 1’s on the
diagonal. It follows that (1.25) is true and also that the lower minors of v} are
= 1. Similarly, the factorization (5.7) implies that the upper minors of v} are
non-zero. Once again, passage to the limit gives (1.25), (1.26), and (1.27) in
general.

Finally we come to the constraints (1.31). Let & be the diagonal matrix
(5.9). As we have already observed, the ratios of the limits (6%),; on %, are
determined by the upper minors of v); in fact, the latter ratios are certain
products of the former. On the other hand, the singularities of m and the
columns in which they occur determine the zeros and poles of the §;;. For each
j, there is a compatibility condition between the ratios (¢, jj)‘léijj and the
zeros and poles on J;;. This condition takes the form (1.31); the n conditions
are not independent because of the single constraint

H(Sjj =detd =1, (5.12)
which follows from the fact that

6(z) = lim m(z,2). (5.13)

z—+00

In fact, (5.13) is clear from (2.16) when ¢ has compact support and then follows
from a limit argument for general generic q. For details on the compatibility
condition, see part 1 of the appendix.
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6 Proof of Theorem E

Suppose q is a generic potential with eigenfunction m and scattering data v.
Part (a) of Theorem E is an immediate consequence of the following.

Theorem 6.1. Suppose q belongs to P and suppose
Dige L', 0<j<k. (6.2)
Then there are unique functions
m; : R My(C), 0<j <k, (6.3)

such that mg = I and

=0(lz|™) (6.4)

k
\m(z,n ~ 3 imy(a)
j=0

as z = 00,z € C\Z, uniformly with respect to x € R.

Proof: Uniqueness is clear. Since m(z,z) — I as £ — —oo we need

mj(z) +0asz = —oo0if 7 > 0. (6.5)
We determine my, - - - ,my from (6.5) and
%m]‘ —gqmj; = am]‘+1 a.e. (66)

In fact, given a € M,(C), write

a=a +ad", (6.7)
where o' is diagonal and o is off-diagonal. Then (6.6) determines m}, ,, given
m;. Note also that (6.6) requires

d 1 ! 6 8
i = (gm;)' a.e. (6.8)
Now ¢ = ¢" so that (gm;)' = (gm})’. Thus (6.5) and (6.8) give
T
my(e) = [ (awmiw"Y dy. (69)
-0
Hence (6.6) and (6.9) allows us at least formally to determine m{,my,my,
my,- -+ ,m}. Moreover, D’qg € L* if j < k, and Jm; = —q. Inductively we
obtain
D'mfeL'if0<r<k+1-j, (6.10)

D'mjeL'if0<r <k+2-j (6.11)
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Let
k
mk(z,z) = Z z7Imj(z). (6.12)
=0
Then from (6.6) we obtain
(D - 2g)ym™'m* = 2~ m(z,2)" f(2) = g(z, 2), (6.13)

where f € L!. Therefore for large 2 we have

(m™'m*)(z,2) =T + / e@=V(I0E + 117 )g(y, 2) dy
~o0 (6.14)

- / e®=I2 g(y, 2) dy.
This implies that, for all  and all large z,
Im(z, z) —m*(z, 2)] < Clz|7*. (6.15)

The map ¢ — m; is continuous to L* with respect to the L! norms of the
derivatives (6.2), and for large z the map q — m(-, 2) is continuous from L!
to L* uniformly with respect to 2. Considering (6.13) for the functions corre-
sponding to two nearby potentials and taking the difference, we conclude that,
for large z,

lml(z)z) - m2($,2)| < C(qlaq2)|z|_k) (616)

where, for fixed ¢;, C is small when the derivatives of g; — g; have small L!
norm. Because of this it is enough to prove (6.4) for a dense set of g. But when,
in addition to (6.2), we have D¥+1g € L!, then (6.15) with k replaced by k + 1
implies (6.4).

We turn now to part (b) of Theorem E.

Lemma 6.17. Suppose k is a positive integer, and suppose
el <1, qr €L, (6.18)

where qi(z) = (—zd)*q(x). Then for z real and z € C\X we have

| (58; - xH) km(w, z)

Proof: Let K, be the operator (3.12), and let K, be the operator on
functions of two variables:

(Ko f](z,2) = [Kq,: f(- 2)](2). (6.20)

< Ce(1=llall) ™1 (1 + llglh + llaxlln)*. (6.19)
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Let A = 3/8z — zJ. The commutator is

[A, K¢l = Kq, @1 =-z—0g (6.21)
Also,
N
[A, KN =Y KNI [A, KK, (6.22)
j=1

If I denotes the identity constant function,
N N
AK, (I) =[A, K |(I). (6.23)
Using (6.21)—(6.23) we obtain
|AK (D] < NllgllY ™ llas [l (6.24)

on R x (C\X). Thus we may differentiate the Neumann series term by term to
obtain

Kl ad . )
(5; —xa)m =Y Y K)TKL,K]TND)

M= ) (6.25)
=(1- Kq)— qu(l - Kg)” ()
=(1-K,) 'Kgum
This gives the estimate
9 -2
5> — a8 )m| < (1= llgll) s . (6:26)

The estimate (6.19) for k > 1 is obtained by an elaboration of this procedure.
The argument just given shows more generally that

[A, (1~ Kg) ™= (1~ Kg) 1AL - Kg)™ (6.27)
applied to functions f with f and Af bounded. In particular,

A?m = A(l - K))'K,m
=(1- Kq)_lAqum + (1~ Kq) 7 K, (1 K¢) "' Kgm (6.28)
=(1- Kq)—quzm +2(1— Kg) T Ky, (1 - Kq)—thhm-

Thus
2
](—a— —za) m] < (1 llgll)~2llas e + 21 = flgll) =2 lau 2

0z
<3(1—1lgll) 2@ + llgll + llg21l)?.

The general case is proved by the obvious elaboration of this argument.

(6.29)



490 Beals and Coifinan
Lemma 6.30. Suppose ¢ € P and

/R(1 + |z))¥|g(z)| dz < 0. (6.31)

Then, for large z € C\X and all z € R,

()

Proof: As in the proof of Theorem A (a), we induce on the least integer
r > 0 such that ||g|l; < 2"; the case r = 0 is part of Lemma 6.17. If |jg|l; < 27

we choose y so that
Y oo
[ @lde = [ la@)ds,
oo y

and let ¢ = ¢1 + g2 with

< Cy(1 + |z))*. (6.32)

a(z) =qz)ifz <y, q)=0ifz>y.

Again the eigenfunction associated to g is of the form

m(iC;Z) = {ml (xaz)e(ﬁ—y)zaal(z% z < Y,

mZ(IvZ)e(z—y)zaaQ(z)! >y,
where m; is associated to g;. The a; solve a factorization problem for
ma(y, 2) " 'ma(y, 2). (6.33)

We know that this problem is solvable as z — oo since the matrix (6.33) tends
to I. The solution has entries which are rational functions of the entries of
(6.33), and the denominators are bounded away from 0 for large z. Therefore
the induction assumption applied to m;, mq gives the desired estimates for m.

We may now prove Theorem E (b). Given a generic g € P satisfying (6.30),
we may write ¢ = ¢q1 +q2+¢s, where g; is supported on (—o0, 1], g2 is supported
in [y1,92], and g3 in [y, 00). Moreover, we may assume

laalls <1, llgslly <1, g2 € Po. (6.34)

Let m; be the associated eigenfunction. Again
m(z,z) = mj(z,2)e**a;(2) (6.35)
on the support of g; and the a; solve a certain algebraic factorization problem.

Now since ¢, has compact support, my is meromorphic with respect to z. From
Lemma 6.17, m; and mg3 are C* with respect to z, on the closure of any sector
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Q. Therefore, the a; in (6.35) are C* with respect to z, and so then is m.
Thus

v, (2) =m; (0,2)"'mf(0,2), z€I,,

is C* in 2z on X,. Lemma 6.30 gives boundedness of the derivative. To prove
that D7 (v, — I) converges to zero at oo, it is enough to show this for a dense set
of generic potentials. Part (a) of Theorem E implies that if the generic potential
g belongs to the Schwartz class, then v, — I is rapidly decreasing, while we have
just shown that the derivatives are bounded. As noted in Section 1, these facts
imply that the derivatives also are of rapid decrease. This completes the proof
of (1.35).

Finally, let v, ; be the Taylor expansion of v, at the origin. When ¢ has
compact support, let a be the function in (2.18) and let a, be the Taylor
polynomial of a in the sector 2, at the origin. Then we have (1.25) and (1.36).
Note that if we assume that our polynomials are of degree k, then they are
uniquely determined by (1.25) and (1.36). In fact, s = 2p is even and the v and
v + p orderings are opposite. Thus (letting av4sx = aukx and Vyys g = Vy k) We
have

(@utp k)’ = (@w ) {VkVus1,k -+ Vutp-1,6}" + O(2F), (6.36)

an upper- and lower-triangular factorization problem with a unique solution;
the condition that it have a solution is that the term in braces has appropriate
minors which are 1+ O(z*). Therefore we may pass to the limit from potentials
with compact support.

To prove Theorem E (c), we assume first

lalh <1, gl = [ la@)F do < oo. (6.37

Consider the operator K, of (6.20); we extend if to z € X, from either side of
¥, and consider it as mapping the space of matrix-valued functions

L®(R; L? (%)) N C(R; L* (%)) (6.38)

to itself. Then, as a mapping in this space, K is easily seen to have operator
norm

1K 1lg < llglla- (6.39)
The function
9= K,(I) (6.40)

has entries which are Fourier or Fourier-Laplace transforms of products of trans-
lates of ¢ with the characteristic function of Ry, so g belongs to the space (6.38).
Under assumption (6.37),
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thus m — I belongs to the space (6.38). Then, on ¥,,
vy (2) = I = my(0,2)7{m; (0,2) —~ m; (0, 2)}

belongs to L?. We may now induce again on the smallest integer N > 0 such
that |lq|j; < 2 to establish the following:

Lemma 6.41. Suppose q is in P N L%2. Then there is a bounded set A, C T,
such that mt exists on £,\A, and

mE — I € L*(Z,\A4,). (6.42)

Proof: By induction, using the method of proof of Theorem A (a), and
noting that since mq(0,2)"1m;(0,2) — I is in L? near co on any ray, the same
is true for a; — I and ay — I.

This lemma and Theorem E (b) give Theorem E(c) when £k = 0. The
extension to positive k is analogous to the argument for Theorem E (b) when
k > 0, operating again in the space (6.37). We omit the details.

7 A Reformulation of the Inverse Problem

Suppose ¢ is a generic potential with eigenfunction m, and suppose that m has
no singularities in C\X. On X,, m has an (additive) jump

v(z,2) =m}(z,2) —m} (z,2

9v(z, 2) (z,2) (z,2) (7.1)
=m; (z,2)[e"*v, (2) — I].
We may expect m to be given by the corresponding Cauchy integral,
1
miz,) =1+ [ (-2 0@ 0 d, (72)
27t =,

where X, is oriented from 0 to oo. In fact, suppose

I-v, € L*Z,), Dv, € L*Z,), (7.3)

so that g, belongs to L%(X,) for each z. Then well-known results for R, carried
over to the rays X,, imply that the function defined by (7.2) has the additive
jump g, on X,, from which we can deduce that (7.2) is valid.

We want to formulate (7.2) as an integral equation for m(z, ) on X, and it
is convenient to make the following choice for m on X.

Proposition 7.4. If ¢ € P is generic, then for each z € X,\(0) there is a
unigue function m(-,z) satisfying (1.5) and (1.6). This function has a contin-
wous extension to the closed ray X, .



Scattering and Inverse Scattering for First Order Systems 493

Proof: Suppose first that ¢ has compact support. As in (5.1),
m(z,z) = e**3a(z), z <« 0,z€ C\Z. (7.5)
The function a has limits a}f on £,. As in (5.12), take
bE = M,at (7.6)
and on X, set

m(z, 2) = mJ (z,2)e"*[b} (2) 7]

7.7
= my (@, 2)em0p; ()1 77
the second equality comes from (5.11). Now
IIym(z,z) =1 ifz <0, (78)
(Id-T,)m -0 asz — —oo. '
Thusm — I as ¢ — —oo.
Recall that b¥ are the unique solutions of the factorization problem
byv, = bj_a HVbIZ/l: = bf» (bf)jj =1,
(b)) is lower triangular, (7.9)

(b, )" is upper triangular.

In the general case we approximate by compactly supported potentials. The
corresponding scattering data converge; thus the solutions to (7.9) converge,
and so the eigenfunctions on X, converge and give the desired eigenfunction.
Finally, any other solution would have the form

m(z,z)e**e(z). (7.10)
But boundedness in z implies II,¢ = ¢ and the normalization at —oo implies
that I,c = 1.
Set
wy(2) = b} (2) = b, (2), z€X,, (7.11)
so that
(w,,)jj = 1, H,,U),, = Wyp. (712)

Now w, is determined from v, by (7.9) and (7.11). Conversely, given w, sat-
isfying (7.12), let w¥ be defined so that (w)” is the lower triangular part of
(wy)” and (w; ) is the upper triangular part. Then set

bE=T+w, v, =)} (7.13)
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Then v, satisfies the constraints (1.24), (1.26), (1.27), and w, is determined
from v, by (7.9) and (7.11). There is a complete equivalence between scattering
data (or formal scattering data)

v= (1)1;"' yUr; 21, ,ZN;'U(Z1),“‘ ?U(ZN)) (714)
and transformed scattering data
w = ('(U1,"‘ s Wpy 21, va;U(zl)a' tt ,’l)(ZN)). (715)

We shall show eventually that when m has no singularities and is extended
to ¥ as in Proposition 7.4, then it satisfies on ¥ an integral equation

m(z,) = I+ Cym(z,-), (7.16)
where w is the transformed scattering data. Here
Cusf =CH(fu™(z,))) + C™ (fw*(z,)), (7.17)
where
w(z,2) = e®wE(2), z€%,, (7.18)

and where C* are suitably normalized Cauchy integrals which we proceed to
describe. When p # v, we let C,,, map functions on ¥, to functions on X,
(oriented from 0 to oco) by

1
Cunt(@ =357 [ €270, 23, (7.19)
Let C* map functions on X, to functions on X,:
1
CE16) = tim 5= [ (=27 F(O e, (7.20)

where the limit is taken from Q,4, for C} and from 2, for C;. These maps
will be discussed more thoroughly in later sections. It is classical that

C/J,V : Lz(zl/) — Lz(zu)a v # K, (721)
Ct:.L%(x,) - L3(Z,), (7.22)
+C% are complementary orthogonal projections. (7.23)

For a function f € L%(X) write f = (£,), f» € L*>(Z,), and define C* f by

(C*fu= Cunf+CLS. (7.24)
v#p
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Suppose that m(z,-) is a function on ¥ which solves the integral equation
(7.16), where Cy, . is defined in (7.17), (7.22). We extend m to C\X by taking
the natural extension of (7.16), which is

m(z,z) =1+ EL. (¢ — 2) " m(z, 2)e**Pw(¢) dC. (7.25)
2w Jy,

Then (7.23) implies for the limits of m on %, that
m,'f' =1+ C+(m,’LU) =1+ Cw,zm + mwﬂ,’(z, )

=m + muw] (z,) (7.26)
= m(z, 2)(I + 2w (2)) = m(z, 2)e**b} (2).

Similarly,

m} (z,2) = m(z, 2)e®*b; (2). (7.27)
Thus

my (2, 2) = my (z,2)e”*v, (() (7.28)
as desired.

8 The Inverse Problem with Small Data, I

We begin our study of the integral equation (7.16) with a lemma which is
classical; it is convenient for later use to record the proof.

Lemma 8.1. The operators C* of (7.24) are bounded in L*(X). Moreover, if
a1, ,a, are constants such that

a,z > 0if z € £,\(0) (8.2)
and if ey denotes the function on X with
ex(z) = exp{idayz}, z€X,,A€ER, (8.3)
then for any f € L*(X) we have
ICE(exf)ll2 = 0 as £ A = —co. (8.4)

Proof: It is enough to consider the operators C,, and Cjf, and we may
rotate and assume ¥, = R;. Parametrize ¥, by R also. For u # v, we see
that C, . is an integral operator with kernel

k(s,t) = 2mi) *(as+t)', a€C\R,s,t>0. (8.5)
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Then |k(s,t)| < C(s +t)™1; L2-boundedness is classical. To see that
ICu.v(exf)ll = 0 as [A] = oo, (8.6)

where ey (t) = e**t, X € R, note that it is enough to prove (8.6) when f is smooth
and has compact support in (0,00); then (8.6) follows from an integration by
parts.

When ¥, = R, the operator C} can be computed on test functions:

CFf(s) = lim —— [ (s —t —ie) £(2) dt

eNO 271
—tim - [[(s-t-io e f dgas 57)
0 -~ A
- / e f(€) dt = (hof)(5),

where hy(€) = 1if € < a, ho(€) = 0if £ > a, and”, denote the Fourier transform
and its inverse. This gives L2-boundedness. With ey (t) = e, A € R, the same
calculation gives

Ci (exf)(s) = (hrf)(s) (8.8)
which yields L? convergence to 0 as A = —oo and to f as A — +oo.

Theorem 8.9. Suppose w = (w,) satisfies the conditions (7.12), belongs to
L2(Z)N L>®(Z), and w(z) = 0 as z = co. Let Cy, , be the operator defined by
(7.17), (7.24), let C* be defined by (7.24), and let

I =1lIC]]
be the operator norm in L*(Z). Suppose
2||wllool|C*| < 1. (8.10)

Then for every real T there is a unique function m(z, ) € L?(Z) 4+ L®(X) which
satisfies the integral equation (7.16). If m is extended to C\X by (7.25), then
for each z € C\Z, m(-, z) is bounded and absolutely continuous with respect to
z, and

m(z,z) = I as x — —o0. (8.11)
Let
- 229
q(z) = 2m,8l:m(x,z)e w(z) dz. (8.12)
Then
geL>®+L? (8.13)
and, for z € C\X,
im(:v,z) = zdm(z,z) + q(z)m(z,z) ae. z. (8.14)

oz
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Proof: The operator Cy, , maps L*(X) to L%(X), since w is assumed to
belong to L%(X). As an operator in L?(X), Cy » has norm dominated by the
expression (8.10). Therefore, Id — C,, ; is invertible as an operator in L% 4+ L*°,
and (7.16) has the unique solution

m(z,-) = (Id — Cypz) " (I). (8.15)

Then
m(z,) — I = (Id — Cy )" g(x, ")), (8.16)

where
9(z,) = Cu,(I). (8.17)

Now it follows from Lemma 8.1 that the L?-norm of g(z,-) approaches zero as
z — —oo. From this and from (8.16) we obtain

sup [|m(z,-) — I||2 < oo, (8.18)
[|m(z,-) — I|lz = 0 as £ — —oo0. (8.19)

An easy consequence of {8.18) is that m(-, 2) is bounded as a function of z for
every z € C\Z. Lemma 8.1 and (8.19) imply (8.11) for z € C\X.

Let ¢ be defined by (8.12) and write it as a sum of two integrals, involving
m(z,z) — I and I, respectively. The integrand in the first integral is a product
of L? functions with norms bounded as z varies, so the first term is in L*. (In
fact £ — Cy, , is continuous to the strong operator topology, by the dominated
convergence theorem, which implies that = — m(z,-) — I is continuous to LZ,
so this term is even continuous.) The entries of the second term are easily seen
to be (dilates of) Fourier transforms of the entries of w; thus the second term
is in L2(R).

In this region where (8.10) holds, this construction shows that

w — m is continuous from L%*(Z) N L®(T) to C(R; L® (L) + L*(T)), (8.20)
w +— ¢ is continuous from L?(X) N L®(Z) to L (X) + L*(T), (8.21)

Because of (8.20) and (8.21), it is enough to prove (8.14) when w belongs
to a dense set. We shall assume, in fact, that w has compact support. In that
case it is clear that z — C,, , is analytic from R to the bounded operators in
L + L?, and so  — m(z,-) is analytic to L* + L?. Consider A and C,, as
mapping the space

C*®(R; L™ + L?) (8.22)

to itself,

[Afl(z, 2) = a%f(ﬂi,Z) — 23 f(z,2), (8.23)
[Cw,f](l',') = Cw,zf(za')- (8.24)



498 Beals and Coifman

Then the commutator
1
A, Culf @) = 5758 [ f@ Qw0 d¢ (5.25)

maps to functions which are constant with respect to z. As in (6.22)-(6.25),
since A(I) = 0 we have

Am(z,-) = (I — Cu) A, Cu](I = Cyp) ™M (D)

—(I-Cu) g (8.26)

Since ¢ = ¢l and C,, commutes with left multiplication by functions indepen-
dent of z, we have

(di _ za) (m,") = g(@)m(z, ) (8:27)

as functions in C®°(R; L>® + L?). Now for z € C\X we differentiate (7.25) to
obtain

27ri(c’% - z3>m(x,z) = L(c— 27 [B?” 3+ (¢~ 2)3| m(z, Qe Pw(¢) dC

= [(€= 2 alaIm(a, 0exPu(Q) d¢ + 2rig(a)
= 2mig(z){m(z,z) — I + I} = 2mig(z)m(x, 2).
(8.28)

9 The Inverse Problem with Small Data, I1

In this section we strengthen the hypotheses on the function w of (8.1), with
respect to decay at co and with respect to smoothness, to obtain results corre-
sponding to Theorem G. We consider first the condition

1+ |2))kw, € L3(Z,). (9.1)

Theorem 9.2. Let w, m, and q be as in Theorem 8.9. If w satisfies (9.1),
then

Dige L® + L% j<k. (9.3)

Proof: Assume first that w has compact support. As noted above, this
implies that m is analytic in z with L® + L? values, and q is analytic. It
is enough to establish bounds on D’g in L*® + L?,j < k, which (under the
assumption (8.10)) depend only on the pair

Nie = {[[wlloo, [I(1 + |2])*w]|2}. (9-4)
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We have this result for £ = 0. Note also that in (8.12) we have

2miq(z) = /(m(x,z) - De**3w(z)dz + /e“aw(z) dz. (9.5)

As pointed out above, the first term is in L>. The second term has L' norm
dominated by
lwlly = X+ 12D 71 + [2])wlly
<+ 1) all(n + [l

again because it is essentially a Fourier transform. This shows that ||g||eo is
dominated by Nj.

We now induce: suppose we know that Diq in L™ + L2, j < k-1 is
controlled by Nx_1, and also that ||[DF~!q|| is controlled by Ni. Repeated
differentiation of (8.12) gives an expression for D*q as a linear combination of

integrals with integrands which (apart from occurrences of the operator J) are
of the forms

Zp(a)[m(z, 2) — 1]e**w(z), (9.6)

Zp(2)e*Pw(z), j <k, (9.7)

where p is a product of derivatives of order less than k of ¢q. By the induction
assumption, ||p||co is controlled by N and it can be ignored. The term (9.6)
gives a function with L® norm controlled by ||m(z,-) — I||2 and N, hence by
Ni. The term (9.7), as before, has L? norm controlled by Ny and L* norm
controlled by Niy1. This completes the induction, and the proof.

In order to consider the effect of smoothness of w, we introduce two spaces
of functions on ¥ and an extension of Lemma 8.1. Recall that

Df, e L*%,), 0<j<k+1, (9.8)
implies, after correction on a set of measure zero,
f,eC¥x,),Dif, 50asz— 00, j<k. (9.9)

Definition 9.10. For k an integer greater than or equal to 0, we denote by
H*+1(%) the space of matrix-valued functions f = {f,} satisfying (9.8) and
such that

D7 £,(0) = D7 f,(0) for all p,v, j<k. (9.11)
We denote by H¥*!(X) the subspace consisting of f such that

Dif,(0)=0foralv, j<k. (9.12)
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The Sobolev norm

113 kee= D IDIfII3 (9.13)

J<k+1

makes H*+1(Z) a Hilbert space. H**1(X) is also an algebra under pointwise
multiplication, and H¥*!() is a closed ideal.

Lemma 9.14. The operators C* of (7.24) are bounded from HE(Z) to H*(Z).
Moreover, if {a,} and ey are as in (8.1), then

ICE(eaf)ll2 < CelM ™ I fllzk,  f € HE(E),£X < 0. (9.15)

Proof: For a smooth function f with support not containing the origin, it
is clear that, along any line through the origin,

dizci(f) =Cc* (%). (9.16)

Such functions are dense in HE(E), so the first statement follows from L2-
boundedness of C*. To prove (9.15) we argue as in the proof of Lemma 8.1.
For C, note in (8.8) that f € H*(Z) implies (1 + |¢])* f(¢) € L%(R); thus

Ihafllz < Ce+ ADT* I fll2k, A <O.

Consider now C), , when p # v. For ease of notation we suppose ¥, = Ry,
¥, = R_, and then change signs on £, to consider the map in L?(R;) with
kernel (t + s)~1. We want to estimate

h(\t) = /Ooo(t +s) e f(s)ds, t>0. (9.17)

We have
iAR(\, ) = /0 ~ d%(ei“)(t +58)71f(s)ds 019
= - /Om e (t +s)"'Df(s)ds + /000 e (t + 5) 72 f(s) ds. '

The first term on the right has L? norm in ¢ dominated by ||D f||2. The second
term is dominated by

o0 s 8 " = o0 1
/0(t+s) /OlDf( )| d /o(t+u) {Df(u)| du (9.19)

and again the L? norm in ¢ is dominated by || D f||>. This proves (9.15) for C,,
when k = 1, and the argument extends in the obvious way to larger k.
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Theorem 9.20. Let w, m, and q be as in Theorem 8.9. Suppose
w € HFYYE), |lwll2k+1 < Ok, (9.21)
where 8 > 0 is sufficiently small. Then, for all z in R,
m(z,-) — I € H*(Z), (9.22)

Im(z,) = Ill2 = O(lz|*71), =z <o0. (9.23)
Moreover, there is a function s on ¥ with properties

s—1€ HF(D), (9.24)

“m(x’ ) - S(CE, )”2 = O(x_k_l)’ z >0, (925)
where s(z,2) = e**95(z). Finally,
(1+|z))**1q € L®(R) + L*(R). (9.26)

Proof: Fix z and consider the operator

B.f(2) = 5-(2) - 28£(2). (9:27)
Let
1B e = Y IBAIE. (9.25)
j<k+1

This is equivalent to the H*+!(Z) norm. Set
we(2) = e**w(2). (9.29)
Clearly,
B (we f) = weBo f + (Dw)s f. (9.30)

The L! norm of the Fourier transform of f can be estimated by the Schwarz
inequality to obtain || f|lec < ¢||f[|2,1,& With ¢ independent of x. Thus, iterating
(9.30) and estimating L? norms, we get

llwe Fllz k1,0 < chllwellz kvl Fll2 41,2 (9.31)

Here and below ¢ will denote various constants depending only on ¥ and k.
Recall that HET' () is an ideal in the algebra H**!(). Integration by parts
shows that the operators C+ of (7.24) map

Cy : HEYH(D) » HF(D). (9.32)
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Thus C,, , maps H*+1(X) to itself with norm
ICuw .z fll2.k+1,2 < crllwllzkrill fllz k41,0 (9.33)
Also, clearly
ICuw,e(Dll2,k+1,2 < ckllwllz,kt1- (9.34)
It follows from (9.33) and (9.34) that (9.21) with é; small enough gives

m(z,) — I = i Ch .(I) € H*(%). (9.35)
n=1

To get the L? estimate (9.23) we note that Lemma 9.14 implies
1Cw (D2 = O(l2|7*71), =z <0. (9.36)

Thus (9.23) follows from the identity (9.35).
To obtain the function s we set

Cu,z0f(2) = f(2)e"[w™ (2) — w*(2)]
= f(2)e** b (2),
Cwenf =Cuwzf —Cuaof
= C*(fu™(z,) - O~ (fu™(z,"),
in the notation of (7.17), (7.18). Dropping the subscripts w and z, we write

(9.37)

(9.38)

N
(Co+C)N =C& + > (Co+C1)N M1 G (9.39)
M=1

It is clear from Lemma 9.14 that the off-diagonal part of C;C~1(I) has L?
norm less than or equal to

g e lwl|yy, >0, (9.40)

The diagonal part of C;C3?~(I) is independent of z. We apply (Co + C1)N—M
to this diagonal part and use the identity (9.39) with N replaced by N —
M. At the next occurrence of C; we again dominate the L? norm of the off-
diagonal part by an expression like (9.40), and iterate for the diagonal part.
This procedure yields

N
(Co+C)N(I) =D CYMénm+rn, (9.41)
M=0

where dn, s is diagonal and independent of z, while, for z > 0,
2 rnllz < Ny llwllg ki1 (9.42)

l16n, pell2 k41 < b Jwl]|3 s (9.43)
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Now we set

00 N
s(z) = e—z5(1+ >y ch*MaN,M(z)>
L ErM=e (9.44)
=1+ ’lD(Z)N_M(sN‘M(Z).
N=1
The estimates (9.43) give (9.24) if §; in (9.21) is small enough, and the estimates
(9.42) yield (9.25).
Finally, we want to obtain information on the potential g. We use (8.12)
again and assume z > 0; the argument for < 0 is the same but uses I in place
of s(z,z). We have

g(z) = H/m(z,z)e“’zaw(x) dz
(9.45)

=7 /[m(x,z) — s(z, 2)Jw(z, z) dz + H/eua[s(z)w(z)] dz.

The L* norm of the first term on the right above is dominated by the L? norm
of m(z,-) —s(z,-), since w(z,-) is in L? uniformly with respect to z. Thus (9.25)
gives the desired estimate, O(z=*~1). From (9.24) we have sw € H¥*'. Because
of the operator J, only off-diagonal entries appear, and these are dilates of
Fourier transforms of the entries of sw, hence have L? norm which is O(z~%-1).

10 The Inverse Problem Near —co

Suppose v belongs to the space S of formal scattering data,
v= (1)17' oy Upy 21,0 ,ZN;'U(Zl),“ : 7U(ZN))'

We shall see that a rational approximation and the results of Sections & and 9
will allow us to reduce the inverse problem for v to a finite set of linear equations,
with  a parameter.

Definition 10.1. A matrix-valued function u defined on C\X is piecewise ra-
tional if on each component Q, of C\X it coincides with a rational function
which has no singularities on the boundary ¥, UX, ;.

As before we denote by u;, and u} the limits on X, from Q, and Q,;.

Lemma 10.2. Given v € S and € > 0, there is a piecewise rational function u
with the properties

uj; =1, wu;(z)” is upper triangular in 0, (10.3)
u—1 as 2 = oo, (10.4)

llug v (u) ™! = Illoo <, (10.5)

u; (O)u, (O)uf ()1 = I. (106)
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Proof: Let {a,} be the (unique) matrices satisfying (1.25). Choose a piece-
wise rational function a having no singularities, such that a satisfies (10.3) and
(10.4), and such that

a(z) »a,a82z—0, z€Q,. (10.7)
The matrices
[a; (2)v,(2)a} (2)71)", z€ X, (10.8)

have lower minors = 1, because of (1.26) for v and (10.3) for a. It follows that
there is a unique factorization of (10.8) as

b7 ()10 (2)]”, (10.9)

where
(bE);; =1, (b)) is upper triangular; (10.10)
I,bF = b}, (b)) is lower triangular. (10.11)

In fact, (IL,b%)" are the triangular factors of the IT, projection of (10.9), and
b, is then determined from (10.11) and the equality of (10.8) and (10.9). The
uniqueness implies

bE(0) = 1. (10.12)

From condition (10.11) it follows that (b})*! is upper triangular on T,.
Since (b,,,)**! is upper triangular on X,; and both are the identity at the
origin, continuous, and approach I at oo, we may approximate both on the
boundary of Q,4+; by a rational function; see part 2 of the Appendix. Thus,
given § > 0, there is a piecewise rational function ¢ = c¢s which satisfies (10.3)
and also

cE0) =1, et - bl < 0. (10.13)
With 4 to be chosen later, set
u(z) = ¢(2)a(z). (10.14)
Then

uy v (uf) 7t = ¢y fag v (ad) () T

=, (0) 7o ()T (10-19)

and (10.13) with J sufficiently small gives (10.5) and (10.6).
Define

v¥ = ulv, (ul) L (10.16)
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Because of (10.3), v’ satisfies the defining conditions (1.25) and (1.26) for el-
ements of S. Because of (10.4), it is also clear that v# — I and its derivative
belong to L?(X,). It follows that if € in (10.5) is small enough, we may apply
Theorem 8.9 and obtain an associated eigenfunction m#, piecewise holomor-
phic, with

(m*)f (z,2) = (m¥) ™ (z,2)e"" % (z), z€3D,. (10.17)

Lemma 10.18. Suppose v € S, and suppose v is given by (10.16), where
u is as in Lemma 10.2 and € is small enough so that {v¥} has associated
eigenfunction (10.17) for all z. Then, for any z < 0, if v has an associated
eigenfunction m(x,-), it is of the form

m(z,2) = r(z, 2)m* (z, 2)e**%u(2), (10.19)
where r(z,-) is rational.

Proof: First, set
mo(z, 2) = m¥ (z,2)e"*u(z) = m*(z, 2)u®(z) (10.20)
and note that

(mo,)* = (m¥)* (up)*

10.21
= (mow) vy o2y

by (10.17) and (10.16). The differential equation (8.14) and asymptotic condi-
tion (8.11) imply once again that

detm* =1 (10.22)

and the same is true of mg. Therefore, if m(z, ) is an eigenfunction associated
to v and if we define

r(z,2) = m(z, 2)mo(z,2) 1, (10.23)
we find that

rh=r. (10.24)
Clearly, r(z,-) is meromorphic in C\X since m#*, m, and u are; hence r(z, -) is
rational.

Remark 10.25. The piecewise rational function v has the same singularities as
the function c¢ in the proof of Lemma 10.2. The latter function can be chosen
to have only simple poles, and the locations can be chosen to be distinct from
the {2} of v and to be distinct for distinct entries. It follows from this that
at any singularity in €2, the residue of u is strictly upper triangular in the v-
representation and has only one non-zero row; thus its square is zero. We say
that such a function u is regular, and we assume that u is chosen to be regular.
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We now fix z € R and look for a rational function r(z, -) so that when m(z, -)
is defined by (10.19), it is the associated eigenfunction for v. (We remark at this
point that the uniqueness proof in the case ¢ — v shows that formal scattering
data has at most one associated eigenfunction, given z). The function r should
have only simple poles and should be I at co; thus

P
r(z,2z) =1+ Z(z - 2) tag, (10.26)
k=1
where z1,- -, zy are the singularities of m and zy41,- -, zp are the singular-
ities of u. Then
r(z,2) = (z — 2;) "taj + b; + O(|z — 24). (10.27)

If j < N, then mp = m#u?® is regular at z;,
mo(z,2) = ¢j + (2 — z;)d; + O(|z — 2;|?), (10.28)

where ¢; = mo(z, z;) is invertible. Let

vj = exp{zz;d}v(z;). (10.29)

We would like to have
Res (m(z,-), z;) = zli)nzlj m(z, z)vj, (10.30)

which is equivalent to
ajcjv; =0, j <N, (10.31)
(ajd; + bjcj)v; = ajcj, j < N. (10.32)

Note that the condition (1.28) in the definition of formal scattering data implies

v =0. (10.33)

Therefore, (10.31) is a consequence of (10.32).
If > N, then u is singular at zj,

e"u(z) = (z — z;) " tuj +ny + O(|z — zj). (10.34)

Note that nY is upper triangular if z; € ,, and the diagonal part is I; thus n;
is invertible. Then, as in the remark above,

(un;1)? = 0. (10.35)

The function m# (z, ) is regular at z;; therefore,

mo(;z:, z) = (Z — zj)_lajuj + (,Bj’l.bj + a,-nj), (1036)
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where a; = m¥(z,z;) is invertible. We want m(z,-) to have a removable
singularity at z;,j > N. From (10.27) and (10.36) this is equivalent to

ajaju; =0, 7> N, (1037)
bjOtjUj + a; (,BjUJ' + ajﬂ,]‘) =0, j7>N. (1038)
These in turn are equivalent to
ajajun;t =0, j>N, (10.39)
a;ja; = (bjaj - ajﬁj)ujn;-'l, j>N. (10.40)

Because of (10.35), equations (10.39) are a consequence of (10.40), or (10.38).
Consider now the necessary and sufficient conditions (10.32), (10.38). The
¢j, dj, aj, Bj, uj, and n; are determined by m¥ and u. We have also

bj =1+ Z(Z] - zk)_lak. (10.41)
k#j

Thus (10.32), (10.38) are Pn? equations for the Pn? unknown coefficients of
the ax. Since ¢;, a;, and n; are invertible, these equations would have only the
trivial solution ax = 0, all k, if we had

v; =0,j <N, wu;=0,j>N. (10.42)

Thus (10.32), (10.38) have a unique solution for almost all choices of the matri-
ces aj, B, ¢;, dj, uj, n;, and the entries are rational functions p; of the entries
of these matrices. The functions p; are independent of z.

As x — —o00, we have, near points z;,j7 < N,

m#(z,2) = I, exp{zz;d}u(z) = I, exp{zz;J}v(z;) — 0. (10.43)
Thus
cj(x) = I, dj(z) =0, v;(z)—0. (10.44)
Similarly, for j > N as £ = —oo we have
a; =1, B; =0, u; =0, n; >1I (10.45)
Remark 10.46. We have proved half of Theorem F (a), namely the fact that
there is an associated eigenfunction as £ — —o0. Note that the convergence of
v; and u; in (10.43) and (10.44) is exponential; examination of (10.32), (10.38)

shows that we may conclude that a;(z) — 0 exponentially at —oco. From this
we obtain, for some § > 0,

[m(z,) — (m*)E(z,)]loo = O(e™°1*) as = — —o0. (10.47)
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We have not used the winding number conditions (1.31). In the next section
we show that these conditions allow us to transform the scattering data in a way
which corresponds to normalizing the eigenfunctions at 4+ oo instead of —oo. The
renormalized problem may then be handled in an analogous fashion, leading to
a linear system with coefficients having limits at +o00. It follows, indeed, that
(1.31) implies solvability of (10.32), (10.38) for £ — +o0 as well; however, the
coefficients grow exponentially in this direction; hence the renormalized system
is easier to study theoretically and to solve in practice.

11 Solvability Near +oco; Theorems F and G

To investigate solvability of the inverse problem at 400, let us suppose first
that m is the eigenfunction for a generic potential q. Let

0(z) = mEIfmm(z,z) (11.1)

be the diagonal matrix of (5.9). Then / = md~! is an eigenfunction normalized
at +o00. We have, clearly,

mi(z,z) = m; (z,2)e**30,(2), (11.2)

o, = 6, v, (6)7 . (11.3)

Thus {9,} is the scattering data for the renormalized problem on X. The
singularities of 71 are the same as those of m, since § and 6! are regular where
m is. Consider a singularity z; € ,. For convenience, we suppose that the
v-ordering of the basis vectors coincides with the original ordering. Suppose m
is singular at z; in column %k + 1. According to the discussion in Section 2, this
means that the k-th diagonal entry of 4, éx, has a simple zero at z;; since the
k + 1 upper minor is not zero at z;, x41 must have a simple pole at z;. Thus

6k (2)"t = alz — 2;)"t + O(1), (11.4)
Sr1(2) 7 = alz — z) + O(|z — z]?). (11.5)
Also,
m(z,z) = (z — z;) e+ b+ O(|z — 2), (11.6)
where
0#a=bv(z) = Bbexry1, BEC, (11.7)

where e;; is the usual matrix unit. There is a similar expression for m(z, z),
with

0# &= bi(z;) = Bberrsr, BEGC (11.8)
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in fact the argument giving the form ey x+1 for v(z;) gives this corresponding
form for ©(z;). Since ™ = md~!, we may infer from (11.4) and (11.5) and
inspection of columns k and k + 1 of /n that (11.7), (11.8) imply

abeyr, = a = Bﬁj = ay¥; = vbv;0;; (11.9)
therefore
aerr = 1v(2;)0(2;) = vBBexx- (11.10)
This may be written in invariant form, using the trace
tr (v(z;)0(2;)) = tr (Res (6, 2;)) tr (Res (671, 2;)). (11.11)

We have shown that the scattering data for the renormalized eigenfunction m is
computable from that for m, once we know the diagonal matrix §. To determine
6 from the scattering data for m we note that the condition corresponding to
(1.26) is

df (5,(2)") =1, 1<k<nz€e3,. (11.12)
From (11.3) we see that these conditions determine the ratios
d ((67)")/di ((65)°) = dif (v)) (11.13)

and therefore the ratios of the (6;)f on £,. The zeros and poles of the dj
are also determined by the scattering data; this information, together with
the ratios of the limits of the rays ¥,, uniquely determines the dx. In fact,
the winding number constraints (1.31) are exactly the conditions that all this
data be compatible; see part 1 of the Appendix. Thus starting with v € S we
may determine uniquely the data & which would correspond to a normalization
at 4+o0o. Repeating the procedure of Section 10, we reduce to an algebraic
problem which is uniquely solvable as z — +o00. We obtain eigenfunctions
m(z,-) associated to ¥; then m(z,-) defined by m(z, ) = m(z,-)d(:) is the
eigenfunction associated to v.

We have now proved part (a) of Theorem F. To prove part (b) we suppose
first that each v, has compact support. The same is true of the transformed
data v¥ of Section 10, and it follows that m# is analytic with respect to z.
Therefore the system of equations (10.32), (10.39) has coefficients depending
analytically on . We know now that the system is solvable for |z| large, and
hence for all by finitely many values of z. Consider the map

o RXCF > C (11.14)

obtained by taking the determinant of the system (10.32), (10.38) at , when v,
has been replaced by (;vj,j < N, and u; has been replaced by (ju;,j > N. For
¢; = 1 this is the system corresponding to a slight perturbation of the original
scattering data v. Now ¢~1(0) has real codimension 2, so its projection on
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CP has real codimension at most 1, and we conclude that there are arbitrarily
small perturbations of v for which the associated eigenfunction exists for every
z. Data with compact support are dense, so Sy is dense in S.

To see that Sg is open, we note that in the construction in Section 10, the
piecewise rational function u can be chosen to vary continuously with v, so m#
will also vary continuously with v. Thus the coefficients of (10.32), (10.38) vary
continuously with v and z; the system is solvable for large |z| for all v’ near a
given v, and it follows that if v is in Sg and v’ is sufficiently close, then v’ is in
So.

Finally, we need to establish the differential equation (1.6) and prove (1.44).
The additive jump of m(z, ) across X, is

mie) -mie ) =m @@ -0
=m (z, 2)w,(z, 2),
while if we define
1 _
m(z, z;) = 2—/ (¢ = 2;) " tm(z, () d¢, (11.16)
me C,-
where C is a small circle with center z;, then (1.16) is
Res (m(z,-); z;) = m(z, z;) exp{zz;d}v(z;) (11.17)

= m(z, z;)v;(z).

From (11.15), (11.16), and the asymptotic behavior as z — I we see that m(z, -)
is a solution of

mie,) =T+ 5 [ (2= 07m (@, Que, O de

+ 3(z — zj) " tm(z, z;)v; (z).

(11.18)

Suppose now that w has compact support. It is then obvious that any
solution of (11.18) is asymptotically I as z — oo and satisfies (11.15), (11.17).
The eigenfunction m(z,-) constructed in Section 10 is invertible where it is
regular, so we repeat the proof of uniqueness in Theorem B to conclude that
mim™! = I. Now still assuming that w has compact support, once again m is
analytic in z and we may differentiate (11.18) to see that my = (8/0z — 2J)m
satisfies

1 ’_
+ g (€= 2 Ima@, Quia, O d¢

+ (2 — 2;) 'ma(z, z;)v; (),

’ITLQ(:E,Z) = Q(«’IJ) (11 19)

where

1) = 378 [ m@ Qi@ O de — Bm(a, (@) (1120)
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Again, this equation implies that ms satisfies (11.15) and (11.17), while ms ~ ¢
as z — oo. Consequently, mom ™! = ¢, and this is our differential equation.

To complete the proof of Theorem F (b) it is only necessary to estimate the
norm of (1+4|z|)q in L%+ L? in terms of the norms of v and Dv in L%(X), locally,
since we may then pass to the limit from compactly supported v. (Observe, in
this passage to the limit, that the piecewise rational function u of Lemma 10.2
can be held fixed.) As noted at the end of Section 10, m} (z,-) is exponentially
close to (m#)} (z,-) as ¢ — —o0; the same is true of derivatives with respect to
z. Since v;(z) in (11.20) is also exponentially small at ~oco, we may estimate
¢ in the same way here as in Section 8, for £ < 0. For £ > 0 we repeat the
renormalization at +oo and have formulas of the same type with exponential
convergence at +oo.

Remark 11.21. The arguments here show that if v belongs to S but not to
So, the associated eigenfunction m(z,-) exists on an open set and satisfies the
differential equation on that open set, again with g given by (11.20).

When the scattering data evolve according to (1.50), we may let the piece-
wise rational function u of Lemma 10.2 evolve in the same way. It continues to
satisfy the algebraic constraints, and in the stable case (1.52) it also satisfies
(10.5). In short, the rational approximation only needs to be computed twice
(at —o0 and at +00) for an equation of evolution.

Proof of Theorem G: For part (a) we may argue exactly as in the proof of
Theorem 9.2, except for considering separately the cases z < 0 and z > 0 in
order to have exponential decrease in the discrete terms in (11.20).

For part (b) we examine Lemma 10.2. Using the assumption (1.36) we
may suppose that the piecewise rational function a is chosen so as to have the
correct Taylor expansion to order k at 0 from Q,, so that (1.36) holds also for
a. For the factors b¥ this will imply that they are I + O(z*) at the origin.
We approximate the b on the boundary of ©, in C*(Q,), and the result is
that the new data {v#} will have transformed data {w}} which satisfies the
conditions of Theorem 9.20. Thus m# is as in Theorem 9.20. Now once again
m is exponentially close to m#* on ¥ or on the circles C; as z — —o0, s0 we
may argue as in the proof of Theorem 9.20 to obtain (1.47) for z < 0; again the
renormalization at +o0o completes the argument.

12 Systems with Symmetry; Multisolitons

Suppose a — a® is an automorphism of the matrix algebra M, (C), and suppose
J is an eigenvector:

Jo=a (12.1)
Let Py denote the space of generic o-symmetric potentials:

5 ={g€Po:q(z)” =q(z)}. (12.2)
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Theorem 12.3. Under assumption (12.1), a is a root of unity and X is in-
variant under multiplication by a. If g belongs to P§ and v = {v,, z;,v(z;)} is
the associated scattering data, then

v(az)? =v(z), z€X, (12.4)
{z;} is invariant under multiplication by a, (12.5)
a tv(az;)? = v(z;). (12.6)

Conversely, if q belongs to Py and the associated scattering data satisfies (12.4)-
(12.6), then q is in P§.

Proof: The automorphism is inner:
a’ =7 tar, somerm € M"(C). (12.7)

From (12.1) it follows that 7 maps the eigenspace for J with eigenvalue A to the
eigenspace for eigenvalue a~1 ), and it follows that « is a root of unity and that
¥ is invariant under multiplication by a. For a matrix-valued function defined
on a subset of C invariant under multiplication by a, set

f#(2) = f(az)’. (12.8)

In particular note that if f(z) = 2J, then f = f#. It follows for ¢ € P§ with
associated eigenfunction m that m(z, -)* satisfies the differential equation also.
Therefore, m = m#, and (12.4), (12.5) follow immediately. The residue at a
singularity satisfies

Res (m(z,-),(;) = o' Res (m(z,),a(;)’ (12.9)

and (12.6) is a consequence.

Conversely, if the scattering data satisfy (12.4)-(12.6), then it is easy to see
that m(z,-)* has the same relationship to the scattering data as m(z,-); since
m(z,-)¥ also is I at 0o, we have m = m#* and the differential equation implies
that ¢ = ¢°.

We suppose now that « is a primitive n-th root of unity, which is equivalent
to assuming that 7 is a cyclic permutation of the eigenspaces of J. Then n"
is scalar, and we may replace 7 by a scalar multiple so that 7™ = I. After a
change of basis and rescaling of the eigenvalue problem we may assume

J = diag (e, a?,--+ ,a"" 1, 1), (12.10)
T =e12+e€x3+- -+ €n, (12.11)

where the e;; are the matrix units in M™(C).
The key fact is then that the subalgebra fixed by o,

Mn(C)° = {a € Mn(C) : a° = a}, (12.12)
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is commutative: it is the commutator of = and consists of polynomials in 7.

Under these assumptions we consider the construction of an eigenfunction
for scattering data which vanish on ¥. As above, the problem becomes an
algebraic one. In this case the symmetries and the commutativity allow an
explicit computation. Let the singularities be

{a*2; :1<j < N,0<k<n}, (12.13)

and let these points be distinct. The symmetry condition implies that if one
column of m has a singularity at point zp, then the last column has a singularity
at a*zp, some k. Therefore we may assume for convenience that it is the last

column which is to be singular at 2q,---,zny. The matrix v(z;) is of the form
cjed;n for some constant ¢; and some index d; < n. Then
exp{zz;d}v(z;) = exp{z((; — 2;)}v(z), (12.14)
G =a%z # 2 (12.15)
Given a rational matrix-valued function f, we define as before
1 _
f) =57 | oL (12.16)
where C; is a small circle around z;. We set
N
Cozf(z) =) exp{a(( — 2)}[f (z)v]™ (2 = 2;) 77, (12.17)
j=1
where b%Y™ is the symmetrized version of the matrix b:
n—1
Y™ =Y Fbrk (12.18)
k=0
Then
(Cv,zf)# =Cuef (12.19)
and
Res (Cy 2 f;25) = f(2;) exp{zz;d}v(z;). (12.20)

From the symmetry condition (12.19) we see that (12.20) also holds with z;
replaced by a_’“zj. Therefore the desired eigenfunction m(z,-) is precisely the
solution of

m(x> ) =1+ Cv,xm(iva ) (12.21)
Consider the formal Neumann series solution of (12.21). We have

Coo(I) = Sexp{a((; — 2)}v;(zd — )71, (12.22)
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where
vj = v(z;)¥™. (12.23)

In general, if f is of the form

f(z) = Baj(zJ = 2)7", aj=af, (12.24)
then
Coof(2) = Bbj(2J = 2j) 7, (12.25)
where
by = Ya; A(x);, (12.26)
A(z) 1 = exp{2(Gr — 2x) }k — 2j) " ok (12.27)

We consider A(z) as an (N x N) matrix with entries in the commutative algebra
M, (C)° and write it as a product of such matrices:

A(z) = A(z)B(z)V A(z) L, (12.28)

where A(z) and V are diagonal:

A(z)7 = exp{zz;}I, Vj; = v;, (12.29)
and
B(z)jr = exp{z((x — 2;) (G — 25) 7. (12.30)
Let As(z) be the diagonal M, (C)?-valued matrix with
Ba(z)j; = exp{z(;}H. (12.31)

Let 1 denote the M, (C)?-valued row vector with N entries, each of them the
identity matrix. Then from the above considerations we see that the formal
Neumann series solution of (12.21) is given by

m(z,2) = I + Xaj(z)(zd — z;)7", (12.32)
where
a(z) = (ar(z), a2(x), -, an(2))
= i 1V Ay (2)(B(z)V)* Ay (z) 1. (12:33)
s=0

The corresponding potential, as in Section 11, is

g(z) = —JX Res (m(z,-)) (12.34)
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and from (12.32) we calculate that the sum of the residues is
¥ Res (m(z,-)) = Xa;J 7 . (12.35)
Thus
q(z) = Sa;(z) — J(Sa;(z))J 7 . (12.36)

Now we can represent Ya;(z) as the matrix-valued trace of the matrix-valued
matrix

1 a(z) = i 1 1V A (2)(B(2)V)* Ay (z) . (12.37)
s=0

Relation (12.30) shows that

d
%B(:I:) = A1(z)711 - 1A,(2). (12.38)
Note also that V and As(z) commute. Since the trace of (12.37) is unchanged

under conjugation by A;(z), it is the same as the trace of
d -1
a;B(m)V (I -B(z)V)™. (12.39)

The trace of (12.37) is the derivative of the trace of —log(I — B{z)V'), which is
the negative of the logarithm of det(I — B(z)V'). Therefore we have the (formal)
calculation

dF \dF

— F—l__ -1 _ - 4
qg=4J de F I (12.40)
where F' is the matrix-valued determinant,
F(z) = det(I — B(z)V). (12.41)

When the formal scattering data belongs to S, the exponentials are rapidly
vanishing at —oo and the series (12.33) converges for £ < 0. It follows that
(12.40) defines the corresponding potential wherever m(z, -) exists.

Appendix
We sketch the derivation of two facts used above which are extensions of well-
known results.

A.1. THE SCALAR FACTORIZATION PROBLEM

As before, let £ be a union of lines through the origin. Write £\(0) as a
union of open rays £,,%s,---,%,, where ¥, and ¥, form (with the origin)



516 Beals and Coifman

the boundary of a component 2, of C\X, and ¥,1; = ¥;. The &, are indexed
in order of increasing argument. The problem to be considered is the following.

Al. Suppose for 1 < v < r that ¢, is a continuous nonvanishing complex
function on the closure of ¥, with ¢, — 1 and Dy, in L. Find functions 4,
meromorphic on {2, with simple zeros and simple poles at prescribed points of
2, and no other zeros in Q,, such that 6, extends continuously to the boundary
of Q,, has no zeros on the boundary, and has limit 1 at co; moreover 6, =
d,—1¢, on L, where &g = §,.

Theorem A2. Problem Al has at most one solution. A solution ezxists if and
only if

P1(0)p2(0) -+ (0) = 1, (A3)

> [ dargion) = 208 - P, (A4)
v=1 v

where N is the number of zeros, P the number of poles, and the ¥, are oriented
from 0 to occ.

Proof: Unigueness. In a simpler version of the argument at the end of
Section 4, the quotient of two solutions has removable singularities at the pre-
scribed zeros and poles and on ¥ and is 1 at oo.

Necessity. Since ¢, (0) = §,4+1(0)6,(0)~1, with 6,41 = 41, condition (A3)
is immediate. If N, and P, are the numbers of zeros and poles at 2,,, then the
argument principle gives

—/ d(argé,) +/ d(argé,) = 2n(N, — P,). (A5)
41 Z.

On %,, argd, = argd,—; + argp,. Inserting this identity into the second term
on the left in (A5) and summing, we get (A4).

Sufficiency. It is convenient to consider transformations of the problem.
Suppose f1,---, fr are rational functions having only simple zeros and poles,
having no zeros or poles on ¥, and equal to 1 at co. Look for the §, in the form

o, = fu0). (A6)
Then the §; must solve a similar problem with data ¢}, where
(10: =<,0uf,,_1fu—1, fO =f7‘7 (A7)

and where the prescribed zeros and poles are altered to take into account those
created or destroyed by the f,. Condition (A4) will be satisfied for one problem
if and only if it is for the other, by (A5) for f,. In particular we may choose the
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fv to have the prescribed zeros and poles, so that the 6 are to have no zeros
and poles. Also, by choosing f, with

fv(0) = ¢ (O)(PZ(O) - 0u(0), (As)

we may ensure that ¢ (0) = 1 for all v.

Now induce on s = %r. When s = 1 we have a single line which we may
assume is the real axis with £; = Ry. Set ¢(s) = ¢1(s), s > 0, and ¢(s) =
¢(s)™!, s < 0. The problem is a trivial Wiener-Hopf factorization problem:
with the zeros and poles removed, we want to find §, and §_, holomorphic and
non-zero in the upper and lower half-planes, respectively, with §, = @dé_ on R.
The winding number of ¢ is zero; thus ¢ = exp and the solution is obtained
by expressing 1 as 1 = ¢4 — ¢_, where ¢, and ¢_ are boundary values of
functions holomorphic in the upper and lower half-planes, respectively.

For s > 1 we first reduce to the case ¢, (0) = 1, all ». Having done so we

note that

1 1
o [, dersen 4o [ drsion) (49)
is an integer, since each summand is a winding number. A suitable transfor-
mation as above by rational functions will then give us a problem for which
the integer (A9) is zero. This means that (A4) will be satisfied for the problem
for the configuration ¥’ in which the (collinear) rays ¥; and ¥,;; have been
removed. By the induction assumption this problem has a piecewise meromor-
phic solution ¢’ with the prescribed zeros and poles. We look for ¢ = ¢' f and
the problem reduces to the Wiener-Hopf factorization problem for a function
on the line ¥; U (0) U X;4;.
Remark. If the ¢, satisfy conditions like

(1+ |2))*[pu(2) — 1] € L*(Z,) or Di(p, —1) € L2, j<k+1,

then the same will be true of 4, on ¥, and ¥,;. This follows readily from
the construction when s = 1, and then inductively. Similarly, if the ¢, satisfy
conditions like

Di(p, —1) € L*(Z,) or L®(%,), 0<j<k

and (A3) holds to order k — 1, then the same will be true of §, on &, and ¥, ;.
It follows that the renormalization at +o0c in Section 10 does not destroy these
conditions.

A.2. RATIONAL APPROXIMATION

Here we consider a single sector €2 bounded by the origin and two rays ¥;
and .

Theorem A10. Suppose f is a continuous complezx function on the boundary
of Q, with limit 0 at co. Then f may be approzimated uniformly by (restrictions



518 Beals and Coifman

to ON) of ) rational functions f, which vanish at co. Moreover, suppose

DifeLl®nNL?>ony;, 0<j<ki=1,2, (A11)
1in%DJ'f(z) =0on%;, 0<j<k,i=12 (A12)
z—

Then the f, may be chosen so that
Difo Dif in L® N L% for j < k,

D*f, — D*f in L?, (A13)

{D*f,} is bounded in L>.

Proof: Recall one version of the argument when 8Q = R. Given € > 0, let

£ L/R[(s—t—ie)-l — (s — t+ie)"1]f(s) ds. (A14)

271
This is just the convolution of f with the Poisson kernel P, which is an ap-
proximate identity, so the f. converge uniformly to f and one has the requisite
convergence by derivatives as well. For a fixed ¢, f, itself (and derivatives) may
be approximated by Riemann sums

N2
fen(t) =Y fU/N)P(s = j/N), (A15)
j=—N?
which are rational functions.
With a little more effort, the same construction works for a general sector.
We may assume that the positive imaginary axis bisects {2 and define f. by
(A14) with R replaced by Q. We no longer have a convolution kernel, but

folt) = /3 Pts)f(s) ds, (A16)

where P, has the essential features of an approximate identity:

[ 1Besiiast <
/ Pu(t,s)ds — 1 as € \, 0, (A17)

/ | Pe(t,s)|lds] = 0 as e \, 0 for all § > 0.
|[t—s|>8

Thus fo — f uniformly. Under assumptions (A1l) and (A12) we also have
appropriate convergence of the derivatives, since (complex) differentiation of
fe can be passed onto f in (A16). Finally, the Riemann sums approximating
(A16) are again rational functions which vanish at oo.
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