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The purpose of this paper is to work out some of the implications of re-
cent ideas of M. and Y. Sato about the Korteweg-de Vries (KdV) equation
and related non-linear partial differential equations. We learned of these ideas
from the papers [5] of Date, Jimbo, Kashiwara and Miwa (the original work of
M. and Y. Sato appears to be available only in Japanese). We shall describe
a construction which assigns a solution of the KdV equation to each point of
a certain infinite dimensional Grassmannian. The class of solutions obtained
in this way, which is misleadingly referred to as “the general solution” in [5],
includes the explicit algebro-geometric solutions of Krichever [10, 11]; among
these are the well known “n-soliton” and rational solutions.

Our main aims are to determine what class of solutions is obtained by the
method, to illustrate in detail how the geometry of the Grassmannian is reflected
in properties of the solutions, and to show how the algebro-geometric solutions
fit into the picture. We have also tried to explain the geometric meaning of the
“r-function”, which plays a fundamental role in the papers [5]. But above all
we have endeavoured to present a clear and self-contained account of the theory,
and hope to have elucidated a number of points left obscure in the literature.

1 Introduction

The KdV equation

8t =~ Ozxd Oz

This article is reprinted by permission from Communications on Pure and
Applied Mathematics 37 (1984), pp. 39 - 90.
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describes the time-evolution of a function u of the variable z: we think of the
equation geometrically as defining a flow on a suitable space of functions u. It
is well known that the theory of the equation is closely connected with that of
the linear differential operator L, = D? + u, where D = 8/0z, which is to be
regarded as an operator on functions of z which varies with time. In fact the
KdV equation can be written in the “Lax form”

OL, _
ot

where P, is the operator D® + %(uD + Du).
The operator P, is almost characterized by the fact that—for any function

u—the commutator [P,, L,] is a multiplication operator. More precisely, for
given L, there is a canonical sequence of operators

4[Pu, L),

P® = DF + paD¥"2 4.+ pis

such that each [Pék) , L) is a multiplication operator, and any operator P with
the same property is a constant linear combination of the P,Sk). It turns out
that the coefficients of such as operator P must be differential polynomials in
u, i.e. polynomials in u and its z-derivatives 87u/dz7. For each k the equation

oL
u _ p(k)
5 = P Ll (1.1)

defines a flow on the space of functions of . These flows are called the “KdV
hierarchy”. The case k¥ = 3 is the original KdV equation (apart from the

factor 4). When k = 1 we have Pﬁl) = D, and the corresponding flow is just

uniform translation of u. When k is even we have P{" = (Ly)*/?, so that the
corresponding flow is stationary. It is a fundamental theorem of the subject
that the flows given by (1.1) for various k commute among themselves.

In this paper we shall describe the KdV flows on a certain class C® of
functions u. Our approach is in terms of the geometry of an infinite dimensional
manifold which is of considerable interest in its own right. It has two alternative
descriptions. The first is as the space 2Uz of loops in the unitary group Us. The
second, more immediately relevant, description is as the Grassmannian Gr®»
of all closed subspaces W of the Hilbert space H = L?(S') of square-summable
complex-valued functions on the circle S* = {z € C : |z| = 1} which satisfy the
two conditions

(i) 2°W € W, and
(ii) W is comparable with H,.

Here z denotes the operator H — H given by multiplication by the function
z on S', and H; is the closed subspace of H spanned by {z*} for k¥ > 0,
i.e. the boundary values of holomorphic functions in |z| < 1. The meaning of
“comparable” is explained in §2.
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Our basic construction associates to each point W in a connected component
of Gr® a meromorphic function uy on the line, belonging to the class €(). The
group I';. of holomorphic maps Dy — C*, where Dy is the disc {z € C: z < 1},
acts by multiplication operators on H, and hence acts on Gr®. The action of
I, induces the KAV flows on € in the following sense: if

g= exp}:tkz’C el;,

where (t;,t,...) are real numbers almost all zero, then u,w is the function
obtained from wuy by letting it flow for time t; along the k-th KdV flow, for
each k. (This makes sense precisely because the KdV flows commute.)

The meromorphic function uy is obtained from the so-called “7-function”
Tw of W by the formula

uw (z) =2 (%)2 log 7w (2);

Tw () is the determinant of the orthogonal projection e **W — H,. Of course
the determinant needs to be suitably interpreted. To define it one must choose
bases in W and H_, and accordingly 7 (z) is defined only up to a multiplier
independent of z. The determinant 7y (z) vanishes, and hence uy (z) has a
pole, precisely when e ®*W intersects H. i

For certain particular subspaces W belonging to the Grassmannian it turns
out that the r-function is a Schur function. This was discovered by Sato, and it
was, we have been told, the observation that led him to develop his theory. In
general a point of the Grassmannian can be described by its Pliicker coordinates,
and (as we shall prove in §8) the corresponding 7-function is an infinite linear
combination of Schur functions with the Pliicker coordinates as coefficients.

It is not practical, however, in developing the theory, to pass directly from
the 7-function to the function uy, . Instead, one introduces an intermediate
object, the Baker function 1y . Thisis an eigenfunction of the operator D2+u,,:

(D2 + uw )w (z,2) = z21/)w (z,2);

on the other hand for each fixed z it is the unique element of W which is of the
form

e*(1+ay(z)z~  +az(z)2™2 +...). (1.2)

Finding the formula ((5.14) below) for the Baker function in terms of the 7-
function was one of the most important contributions of the Japanese school.
The formula is a precise analogue of a formula known earlier, in the case of
solutions arising from an algebraic curve, expressing the Baker function in terms
of f-functions.

At this point we should say something about the class €2 of solutions uw
which we obtain. Suppose to begin with that u is a C* function defined in an
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interval of R. Then the eigenvalue problem L, = 2%t has a formal solution
of the form (1.2). The coefficients a; in the formal series are C* functions
determined recursively by

—20,; = Luai_l,

with ag = 1. Each successive a; involves a new constant of integration: this
means that 1 is determined up to multiplication by an arbitrary power series
in 27! with constant coefficients. The series (1.2) will usually not converge for
any values of z. The class of functions €3 is, roughly speaking, those such
that it can be chosen convergent in a neighbourhood of z = oco. To see how
restrictive this is, consider the case of functions v which are rapidly decreasing
as T — +oo. Then there are unique genuine solutions ¥4 (z, z) and ¥_(z, 2)
of Ly = 2%, defined and holomorphic in z for Re(z) > 0 and Re(z) < 0
respectively, characterized by the properties

Yi(z,2) ~e** as r = —o0,
P_(z,z) ~ e as x = 400,

These solutions both extend to the axis Re(z) = 0, but unless u belongs to the
exceptional class of so-called “reflectionless potentials” or “multisolitons” they
will be linearly independent functions of z, and then no genuine solution of the
form (1.2) can exist. The situation is similar if we consider the case where u
is a real C® periodic function: of these, our class € contains only the “finite
gap” potentials u. The periodic KdV flows have been described by McKean and
Trubowitz [25] in terms of Riemann surfaces of (in general) infinite genus: the
finite gap potentials are precisely those for which the Riemann surface involved
is of finite genus. The corresponding solutions to the KdV hierarchy are then
included in the class obtained by Krichever’s method.

We next explain how Krichever’s construction is included in ours. Krichever
associates a function of z, say ux ., to an algebraic curve X with a distinguished
point Zo and a line bundle £ (and also some additional data which we shall
overlook in this introduction). A solutions of the KdV equation is obtained by
letting £L move along a straight line in the Jacobian of X. We shall see that
a space W € Gr® is naturally associated to Krichever’s data. Think of the
circle S as a small circle around the point T, of X; then W consists of those
functions on S! which are boundary values of holomorphic sections of £ outside
S'—we suppose that £ has been trivialized near .. Krichever’s solution ux ¢
is simply uy. When the curve X is non-singular, we shall show in §9 that the
7-function 7, is essentially the 8-function of X.

The algebro-geometric solutions u are precisely those such that the operator
L, commutes with an operator of odd order. There is a very elegant theory,
due essentially to Burchnall and Chaundy [4], relating commutative rings of
differential operators to algebraic curves. A modern treatment of the subject
has been given by Mumford [16]; but as it fits very naturally into our framework
we have included a short self-contained account in §6.
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We shall describe in particular detail the KdV flows on the two dense sub-
spaces Gr((f), and Gr§2) of the Grassmannian corresponding respectively to poly-
nomial and rational loops in Uy. The first spaces corresponds exactly to the
rational solutions of the KdV equations which are zero at oo. It is a beautiful
fact that the orbits of the group I'; of KdV flows on Gr((]z) form a cell decom-
position of Gr((f) , with one cell of each complex dimension. (The n-th cell is the
orbit of the function —n(n + 1)/z2.)

The points of Gr?) are those that arise by Krichever’s construction from

rational curves with singularities. For any W € Gr?) the orbit of W under I'y
can be identified with the Jacobian of the corresponding curve.

The KdV hierarchy has fairly obvious generalizations in which the operator
D? 44 is replaced by an operator of order n: these hierarchies are related to the
loop space of U, in the same way that the KdV equations are related to QUs.
For simplicity of explanation we have restricted ourselves in the introduction to
the case n = 2, but in the body of the paper we shall always treat the general
case, which presents no additional difficulty. In fact we shall treat a more
general hierarchy still, that of the “Kadomtsev-Petviashvili” (KP) equations;
the hierarchies already mentioned are all specializations of this. Less obvious
are the generalizations of the KdV hierarchy due to Drinfel’d and Sokolov [6],
in which, roughly speaking, U, is replaced by an arbitrary compact Lie group;
more precisely, Drinfel’d and Sokolov associate several “KdV” hierarchies to
each affine Kac-Moody algebra. Some of these hierarchies are discussed in
[5], though no general theory is developed there. The key step in [6] which
is missing from [5] is to view the KdV flows as quotients of certain simpler
ones, the “modified KdV” flows [12, 20]: the generalization of the latter is
fairly evident. We refer to [35] for a brief account of how the present theory
generalizes to the equations of Drinfel’d and Sokolov: here we just mention that
from this point of view our main construction appears as a special case of a well
known procedure (“dressing”) of Zakharov and Shabat [23].

We end with a technical remark. In this introduction we have been consid-
ering uy and 7, as functions of the single variable z. In the body of the paper,
however, it will be more convenient to think of them as functions of an infinite
sequence of variables (z,ts,ts, ... ), or alternatively as functions of the element

g =exp(zz +to2® +t32° +...)
of the group I'+.. To do this we define

Uw(x,tz,tg, .. ) = ug—lw(O),

Tw(x>t2)t3a . ') = Tg“IW(O)a

Then u = uy, will be a solution of the hierarchy (1.1) in the sense that

d
—L, =[P¥ L,].
Bty (Pu ]
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Note added July 1984. — We draw the reader’s attention to several related
papers and preprints [26-33] by Japanese authors, which we have seen since
completing this work.

Summary of contents

§2 describes the Grassmannian of Hilbert space and its relationship with
loop groups.

§3 describes the determinant line bundle Det on the Grassmannian, and
its relationship with a central extension of the loop group. We introduce the
T-function, and calculate it explicitly for the subspaces which correspond to
multisolitons.

§4 is an outline of the basic formal theory of the generalized KdV equations.

§5 describes the correspondence between points of the Grassmannian, Baker
functions, and differential operators, and works out the simplest examples. We
also give a characterization of the class of solutions e,

§6 shows how Krichever’s construction fits into the framework of §§2-5. It
also contains a discussion of rings of commuting differential operators, and of
the “Painlevé property” of the stationary solutions of the KdV equations.

87 is devoted to the subspaces Grg") and Grgn) of the Grassmannian which
were mentioned above.

§8 obtains the expansion of the general T-function as a sequence of Schur
functions.

§9 proves that when W arises from an algebraic curve the 7-function 7 can
be expressed explicitly in terms of the #-function of the curve.

8§10 is an appendix explaining the connections between the theory developed
in the paper and the representation theory of loop groups.

2 The Grassmannian and loop groups

In this section we shall describe the Grassmannian of Hilbert space and its
relation with loop groups. The material is all fairly well known, and we shall
not prove all our assertions. For a much more detailed discussion we refer the
reader to [17].

The Grassmannian

Let H be a complex Hilbert space with a given decomposition H = H; & H_
as the direct sum of two infinite dimensional orthogonal closed subspaces. We
are interested in the Grassmannian of all subspaces of H which are comparable
with H in the following sense.

Definition. Gr(H) is the set of all subspaces W of H such that

(i) the orthogonal projection pr : W — H, is a Fredholm operator (i.e. has
finite dimensional kernel and cokernel), and
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(ii) the orthogonal projection pr: W — H_ is a compact operator.

If W belongs to Gr(H), then so does the graph of any compact operator
from W to W+. Thus W lies in a subset of Gr(H) which is in one to one corre-
spondence with the vector space X(W; W) of compact operators W — W+,
This makes the Grassmannian into a Banach manifold modeled on X(H; H_),
which is given the operator-norm topology.

If W € Gr(H), we shall call the index of the Fredholm operator pr : W —
H, the virtual dimension of W (recall that the indez of a Fredholm operator
T is dim(ker T') — dim(coker T')). The Grassmannian is not connected: two sub-
spaces belong to the same component if and only if they have the same virtual
dimension. In the application to differential equations we shall be interested
only in the component consisting of subspaces of virtual dimension zero. These
subspaces are precisely the ones which are the images of embeddings H;. — H
which differ from the standard inclusion by a compact operator.

Because of the restrictions on the subspaces W belonging to Gr(H), not
every invertible operator on H induces a map of Gr(H). We define the restricted
general linear group GL,e(H) as follows. Let us write operators g € GL(H) in

the block form
a b
o= (2 5) 1)

with respect to the decomposition H = Hy @ H_. Then GL,(H) is the closed
subgroup of GL(H) consisting of operators g whose off-diagonal blocks b and ¢
are compact operators. The blocks a and d are then automatically Fredholm.
The group of connected components of GL;e(H) is Z, the component being
determined by the index of the Fredholm operator a.

Lemma 2.2. The group GLs(H) acts on Gr(H).

Proof. A subspace W belongs to Gr(H) precisely when it is the image of an
embedding Ay ® w_ : Hy — Hy & H_ with wy Fredholm and w_ compact.
Then its transform by the element g in (2.1) above is the image of w/, ® w’,

where w/, = awy + bw_ and w' = cwidw_. But v/, is Fredholm and w_ is
compact.

We can read off from the formula for w/, that the virtual dimension of gW
differs from that of W by the index of a. O

Remark. The action of GL,e(H) on Gr(H) is easily seen to be transitive.

We now specialize to the case where H is the space of all square-integrable
complex valued functions on the unit circle S' = {z € C: |z| = 1}. In this space
we have a natural orthonormal basis consisting of the functions {2*}, k € Z.
We define H, and H_ to be the closed subspaces spanned by the basis elements
{z"} with k¥ > 0 and k < 0, respectively. Then H = H; @ H_: we shall write
simply Gr for the Grassmannian corresponding to this choice of (H, Hy, H_).
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Any continuous non-vanishing function f on S! defines an invertible mul-
tiplication operator, again written f, on H. This induces an action on Gr in
view of the following theorem.

Proposition 2.3. Let T' denote the group of continuous maps S* — C*, re-
garded as multiplication operators on H. Then I' C GLes(H).

If f: 81 = CX is twice differentiable, then the off-diagonal blocks of the
corresponding operator are of trace class (i.e. nuclear).

Proof. The first assertion follows from the second, as the usual topology on I’
corresponds to the norm topology on the multiplication operators, and for this
a limit of operators of trace class is compact.

Now let f = 5 frzF be the Fourier expansion of f. The matrix of the
corresponding operator, with respect to the basis {z*}xez of H, has (i,)-th
entry f;—;. We must show that the blocks {i > 0,7 < 0} and {i < 0,5 > 0} are
of trace class. But a matrix (a;;) is certainly of trace class if ) |a;;| < 0o. So
what we need is that

Z | fi—j] < oo and Z | fimj| < 00,

i>0,j<0 i<0,j2>0

that is,

D klfel <ocoand Y k|f_k| < oo.

k>0 k>0

These conditions are satisfied if f is twice differentiable, because the Fourier
series of a C! function is absolutely convergent. ]

In this paper we shall be interested mainly in the action of the subgroup
I';y of T consisting of all real-analytic functions f : S — C* which extend
to holomorphic functions f : Dy — C* in the disc Do = {z € C: |z| < 1}
satisfying f(0) = 1. (Here and elsewhere, when we say that a function defined
on a closed set in C is holomorphic, we mean that it extends to a holomorphic
function in a neighbourhood of the set.) We shall also consider the subgroup
I'_ of T’ consisting of functions f which extend to nonvanishing holomorphic
functions in Do, = {z € CU 00 : |z| > 1} satisfying f(co) = 1. Concerning this
subgroup we can assert

Proposition 2.4. I'_ acts freely on Gr.

We shall postpone the proof of this for a moment.

The stratification of Gr

We shall make much use of some special spaces Hs € Gr indexed by certain
subsets S of the integers: for any S C Z we define Hg to be the closed subspace
of H spanned by {z°}scs. The kernel and cokernel of the orthogonal projection
Hs — H, are spanned by the functions {2} with i belonging to S \ N and
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N\ S, respectively; thus Hs € Gr precisely when both S\ N and N\ S are finite.
We denote by 8 the set of all subsets S C Z of this kind. If S € 8, we call the
number

card(S\ N) — card(N'\ S)

the wvirtual cardinal of S: it is equal to the virtual dimension of Hg. A set
of virtual cardinal d is simply an increasing sequence S = {so, $1,S2,...} of
integers such that s; = ¢ — d for all sufficiently large i. Let us order the set §
by defining

S <S8 & s > forall k.

Lemma 2.5. For every W € Gr, there exist sets S € 8 such that W is the graph
of a compact operator Hs — Hg-, or, equivalently, such that the orthogonal
projection W — Hg is an isomorphism. Furthermore there is a unique minimal
S with this property.

We shall omit the straightforward proof of this lemma: it can be found in
[17]. Let us only point out that the unique minimal S associated to W consists
precisely of those integers s such that W contains an element of order s, i.e. an
element of the form 3°, ., axz® with a; # 0.

A very useful corollary of the lemma is

Proposition 2.6. In any W € Gr, the elements of finite order form a dense
subspace, which we shall denote by W28,

This holds because a projection W — Hg which is an isomorphism induces
an isomorphism between W#%8 and H;Ig; and the elements of finite order are
obviously dense in Hg.

Let us at this point return to give the proof of Proposition 2.4. Suppose
that W € Gr, and that g € T'_ is such that gW = W. Now g is of the form
1+ Zk<0 axz®. Let w € W be an element of minimal order so. Then gw — w
is an element of W or order less than sq. So gw = w, and hence g = 1.

The spaces W € Gr which are the graphs of operators Hg — Hg will be
called transverse to Hg. They form an open set Us of Gr; lemma 2.5 asserts
that the Ug cover Gr. The set of W such that S is the minimal indexing set
with W € Us form a closed submanifold of Us denoted by ¥s. Notice that W
belongs to ¥ precisely when W3 has a basis {w; };>o (in the algebraic sense)
with w; of order s;.

The ¥ s constitute a stratification of Gr by manifolds of finite codimension.
The codimension of Xg is the length of S, defined as

0S) = (k- sk —d),

k>0

where d is the virtual cardinal of S.
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Scaling

For each A € S', we can consider the operator Ry on H induced by rotating
the circle S?, that is, the operator defined by

Ryf(2) = f(\7'2), (f € H).

If X is a complex number with |A] # 1, the operator Ry defined by this formula
is unbounded. Nevertheless, using (2.5), we can see that if |A| < 1, then the
operator R still induces a transformation of Gr. For then the domain of R
includes the dense subspace H2%€ of H consisting of functions of finite order, i.e.
those whose Fourier series involve only a finite number of positive powers of z.
We can therefore define Ry\W to be the closure of the space RyW?2%8. To see
that RyW belongs to Gr, we use (2.5): if W is transverse to Hg, then clearly
R)\W is too, and is the graph of a compact operator. We shall refer to the
operators {R» : |A| < 1} as the semigroup of scaling transformations of Gr. It
should be noticed that RyW depends continuously both on A and on W.

The scaling operators Ry preserve the stratification of Gr by the £s. In the
sense of Morse theory, ¥ is the stable manifold of the point Hg for the scaling
flow, i.e. the set of all W such that R\W — Hg as A — 0.

Loop groups

We now come to the connection of the Grassmannian with loop groups. Al-
though this will not play a very prominent role in the paper, we regard it as
fundamental.

Let H(™ be the Hilbert space of all square integrable functions on S! with
values in C*. We break up H™ as Hi") e H (_"), using Fourier series just as in
the case n = 1. The group LGL,(C) of all continuous maps v : S* = GL,(C)
acts on H™ in an obvious way. Generalizing Proposition 2.3 we have

Proposition 2.7. LGL,(C) C GL,s(H™).

The proof is exactly the same as in the case n = 1.

Thus LGL,(C) acts on Gr(H(™). For each v € LGL,(C) we set W, =
5 H_s_"). Then zW., C W,,, where z denotes the operation of multiplication by
the scalar-valued function z on S*; for multiplication by z commutes with the
action of y on H™, and zH{™ C H™. This leads us to introduce the

Definition. Gr'™ = {W e Gr(H™) : zW c W}.

Gr{™ is a closed subspace of Gr, and LGL,(C) acts on it. One reason for
its importance is that it is essentially the loop space QU, of the unitary group
Up,, i.e. the space of continuous maps v : S! — U, such that y(1) = 1. To
be precise, v — W, maps U, injectively onto a dense subspace of Gr("); and
indeed Gr™ can be identified, if one wants, with a certain class of measurable
loops in U,.
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The construction by which one associates a loop to a subspace W in Gr™ is
as follows. One first observes that the quotient space W/zW is n-dimensional.
Let wy,...,w, by the elements of W which span W/zW. Think of them as
functions on the circle whose values are n-component column vectors. Then
(w1, ws,...,w,) is a function on the circle with values in GL,(C): call it . It
is obvious that - H_(,_n) = W. Unfortunately the matrix entries of -y are a priori
only L? functions, and it may not be possible to choose them continuous. If the
elements wi, ... ,w, are chosen to be an orthonormal basis for the orthogonal
complement of zW in W then it is easy to see that the loop v takes its values
in U,,. Furthermore v is then unique up to multiplication on the right by a
constant unitary matrix.

We should notice that in the correspondence between loops and subspaces
the winding number of a loop « is minus the virtual dimension of W,. (This can
be seen by deforming - continuously to a standard loop with the same winding
number.)

We shall now identify the Hilbert space H(™ with H = H() by letting the
standard basis {e;2* : 1 <4 < n,k € Z} for H™ correspond lexicographically
to the basis {z*} for H. (Here {e;} denotes the standard basis for C*.) Thus

€:2* corresponds to z™¥*i~1. More invariantly, given a vector valued function
with components (fg, ..., fn—1), We associate to it the scalar valued function f
such that

f2) = fo(z™) + zfi(2™) + ...+ 2" foi (27).
Conversely, given f € H, we have

file) = = 3R
¢

where ¢ runs through the n-th roots of z. The isomorphism H(™ = H is an
isometry. It makes continuous functions correspond to continuous ones, and
also preserves most other reasonable classes of functions, for example: smooth,

real analytic, rational, polynomial. Multiplication by z on H(™ corresponds to
multiplication by z™ on H; and Hg_") corresponds to H,. From now on we shall

always think of Gr™ as the subspace of Gr given by
Gr™ = (W € Gr: z"W c W}.

Note that Gr{™ is preserved by the action of the group I' and also by the
semigroup of scaling transformations.

Proposition 2.8. Let W € Gr'™. Then for any complex number A with |A| <
1, the space R\W corresponds to a real analytic loop.

The proposition implies that for the purposes of this paper we could per-
fectly well confine ourselves to the subspace of Gr™ consisting of those W
that correspond to analytic loops (see (5.10) below). However, most of our
arguments apply naturally to the larger space Gr™,
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Proof of (2.8). We have to see that there is a complementary subspace for
2" (R\W) in R\W consisting of analytic functions. Choose a complementary
subspace A for z"W in W such that A C W3 (this is possible because, as we
have seen, W2 is dense in W). Then each f € A has the form

N .
f(z)= Z c;z'

where the series converges for |z| > 1; hence the series for f(A7!z) converges
for |z| > |Al, so that f(A7!'z) is an analytic function on S*. Thus the space
{f(A712): f € A} is a complement to 2" (R \W) in Ry\W of the desired kind. O

Rational and polynomial loops

In §7 we shall consider two subspaces Grgn) and Grg") of Gr(™; they can be
defined as the subspaces corresponding to rational and Laurent polynomial
loops, respectively. They can also be characterized in another way, which will
be more convenient for us.

Proposition 2.9. The following conditions on a subspace W € Gr™ are equiv-
alent.

(i) W = W, for some rational loop ~ (that is, a loop such that each matriz
entry in 7y 1s a rational function of z with no poles on St).

(ii) There exist polynomials p and q in z such that

pH, CW CqH,.

(i4i) W is commensurable with H,, i.e. W N Hy is of finite codimension in
both W and H,..

We denote by Gr(ln) the subspace of Gr(™ consisting of those W that satisfy
the conditions in (2.9). We define Gr; to be the subspace of Gr consisting of
those W € Gr that satisfy condition (ii) in (2.9). Notice that we may assume
that the roots of the polynomials p and ¢ all lie in the region {|z| < 1}; for if
le] > 1, then z — ¢ is an invertible operator on H, .

Example 2.10. For spaces W € Gr not belonging to any Gr™ the condition of
commensurability (2.9) (iil) does not imply condition (2.9) (ii). As an example,
consider the subspace W of codimension 1 in H, which is the kernel of the
linear map F': Hy — C defined by

F(f) = residue,—o(e'/* - f).

Obviously there is no polynomial p such that pH, C W.
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Proposition 2.11. The following conditions on a subspace W € Gr(™ are
equivalent.

(i) z9Hy C W C z79H, for some positive integer q.

(i) W = W, for some Laurent polynomial loop v (by this we mean that both
v and y~! have finite Laurent expansions).

We denote by Grp the subspace of Gr consisting of those W that satisfy the
condition (2.11) (i), and we set

Gr(()") = Gro N Gr(™.

Then Gry is the union of all the Gr{™.

We note that all the Grassmannians Gry, Grg, Grgn) and Gr((,") are invariant
under the semigroup of scaling transformations, and also under the action of
the group I'y of holomorphic functions in the disc (defined after (2.3)). (Gro
and Gr; are preserved by I'; because gH, = H, for any g € I';..)

It is easy to see that Gry is dense in Gr. As Grg is the union of a sequence
of compact finite dimensional algebraic varieties (namely the Grassmannians of
279H, /z?H ), this implies that every holomorphic function on Gr is constant.

Although it will play only a minor role in this paper, we should mention
that the space Grg has a cell decomposition into even-dimensional cells indexed
by the same set § as the stratification. For S € § the cell Cs consists of all
W € Grg for which W#8 has a basis {w;}ses with w, of the form

ws = 2° + E a2t
i>s

The cell Cs is homeomorphic to CS). Tt is a submanifold of Gr transversal
to the stratum Xg, which it meets in the single point Hg. On Gry the scaling
operators Ry make sense for all A € C*, and Cs is the “unstable manifold” of
Hg for the scaling flow, i.e. the set of W such that R\W — Hg as A — oo.
Finally, let us observe that Hg belongs to Gr™ if and only if S+n C S.
For such S let us write Cg") for Cg NGr™ . The Cé") form a cell decomposition

of Gr™, and the dimension of Cg") is 3°,(i — si — d), where the sum is taken
only over the n integers ¢ such that s; ¢ S + n, and d is the virtual cardinal
of S.

3 The determinant bundle and the 7-function

In this section we are going to construct a holomorphic line bundle Det over
Gr. For simplicity, we shall confine ourselves to the connected component of
the Grassmannian consisting of spaces of virtual dimension zero: the symbol Gr
will now denote this component. We think of Det as the “determinant bundle”,
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that is, the bundle whose fibre over W € Gr is the “top exterior power” of W.
Our first task is to explain how to make sense of this.

On the Grassmannian Gry(C") of k-dimensional subspaces of C* the fibre
of the determinant line bundle at W € Gry(C?) is det(W) = A*¥(W). A typical
element of A¥(W) can be written Adw; Awa A ... Awg, with X € C, where {w;}
is a basis for W. In analogy with this, an element of det(W), for W € Gr, will
be an infinite expression Awe Awy Awa A ..., where {w;} is what we shall call
an admissible basis for W. The crucial property of the class of admissible bases
is that if {w;} and {w]} are two admissible bases of W then the infinite matrix
t relating them is of the kind that has a determinant; for we want to be able to
assert that

Awg Awy Awa A ... = Adet(t)wy Awy Awg A ...

when w; = Ztijw;-.

Let us recall (see, for example, [19]) that an operator has a determinant
if and only if it differs from the identity by an operator of trace class. Now
the subspaces W we are considering have the property that the projection
pr : W — H, is Fredholm and of index zero. This means that W contains
sequences {w;} such that

(i) the linear map w : Hy — H which takes 2! to w; is continuous and
injective and has image W, and

(ii) the matrix relating {pr(w;)} to {z'} differs from the identity by an oper-
ator of trace class.

Such a sequence {w;} will be called an admissible basis. (A possible choice
for {w;} is the inverse image of the sequence {z°};¢s under a projection W —
Hg which is an isomorphism (see (2.5).)

We shall think of w: Hy — H as a Z x N matrix

w=(3)

whose columns are the w;, and where w,; — 1 is of trace class; the block w_ is
automatically a compact operator. Then w is determined by W up to multi-
plication on the right by an N x N matrix (or operator H; — H.) belonging
to the group § of all invertible matrices ¢ such that ¢t — 1 is of trace class. (The
topology of § is defined by the trace norm.) Because operators in T have de-
terminants we can define an element of Det(W') as a pair (w, A), where A € C
and w is an admissible basis of W, and we identify (w,A) with (w’, ') when
w' = wt™! and X' = Adet(t) for some t € T, (we could also write (w, ) as
Awg Awy A..L)

To be quite precise, the space P of matrices w should be given the topology
defined by the operator norm on w_ and the trace norm on w,;. — 1. Then P is
a principal T-bundle on Gr = P/T, and the total space of Det is P xg C where
T acts on C by det : T — C*.



Loop Groups and Equations of KdV Type 417

Now we come to the crucial difference between the finite and infinite dimen-
sional cases. The group GL,(C) acts on Grg(C"), and also on the total space
of the line bundle det on it: if g € GL,(C) and w1 A ... A wg € det(W) then
g (w1 A... ANwy) is defined as gwsy A ... A gwg in det(gWW). We have seen that
the corresponding group which acts on Gr is not the entire general linear group
of H but the identity component of the smaller group GLs(H) of invertible

operators in H of the form
a b
9= (c d) (3.1)

(with respect to the decomposition H = H, & H_), where b and ¢ are compact.
But this action on Gr does not automatically induce an action on Det, for if
{w;} is an admissible basis for W then {gw;} is usually not an admissible basis
for gW. To deal with this problem we introduce the slightly smaller group
GL,(H) consisting of invertible operators g of the form (3.1), but where the
blocks b and ¢ are of trace class. The topology of GL,(H) is defined by the
operator norm on a and d, and the trace norm on b and ¢. We shall see that
the action of the identity component GL;(H)? on Gr does lift projectively to
Det. In other words there is a central extension GL{* of GL;(H)? by C* which
acts on Det, covering the action of GL; (H)? on Gr.

To obtain a transformation of Det we must give not only a transformation
g of H but also some information telling us how to replace a non-admissible
basis {gw;} of gW by an admissible one. To do this we introduce the subgroup
& of GL;(H)® x GL(H) consisting of pairs (g, ¢) such that ag—! — 1 is of trace
class, where a is as in (3.1). (We give € the topology induced by its embedding
(9,9) = (9,¢,a¢7 ' —1) in GL; (H) x GL(H}.) x {operators of trace class}.) The
definition of & is precisely designed to make it act naturally on the space P of

admissible bases by
1

(9,9) w=gwqg™",
and hence act on Det by (g,q) - (w,\) = (gwg™1, ).
The group € has a homeomorphism (g,q) — g onto GL;(H)?. Its kernel
can clearly be identified with 7. Thus we have an extension

T — € - GLy (H)".

But the subgroup To of T consisting of operators of determinant 1 acts trivially
on Det, so that in fact the quotient group GL{ = /T acts on Det. This last
group is a central extension of GL; (H)° by T/T, = C*.
The extension
C* — GL; — GL,(H)°

is a non-trivial fibre bundle: there is no continuous cross-section GL(H)? —
GL?, and the extension cannot be described by a continuous cocycle. But on
the dense open set GL{* of GL;(H)? where a is invertible, there is a cross-
section s of & — GL;(H)? given by s(g) = (g,a); the corresponding cocycle
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is
(91,92) — det(awza;l),
where g; = ((Zz Zl)’ and g3 = g1g2. We shall always make the elements of
1 T

GLI* act on Det by means of the section s. Of course, GL{* is not a group,
and the map s is not multiplicative. But let GL{ by the subgroup of GL;%

a b

0 d) . Then
the restriction of s to GL} is an inclusion of groups GL] — € and we can regard
GL; as a group of automorphisms of the bundle Det. Similar remarks apply to

the subgroup GL7T, consisting of elements of GL;*% whose block decomposition

consisting of elements whose block decomposition has the form (

has the form ((é g) In particular the subgroups I'y and I'_ of the group of

maps S = C* act on Det, for I'y C GLit. (Cf. remarks following (2.3).)

The r-function

We have now reached our main goal in this section, the definition of the 7-
function.

Alongside the determinant bundle Det just constructed there is its dual
Det*, whose fibres are the duals of the fibres of Det. A point of Det* over
W € Gr can be taken to be a pair (w,A), where w is an admissible basis for
W, A € C, and (w, A) is identified with (w’, \') if w’ = wt and X' = Adet(t) for
some t € T. The action of GL{ on Det induces an action on Det*. The line
bundle Det* has a canonical global holomorphic section o, defined by

o(W) = (w,det wy),

where W € Gr, and w is an admissible basis for W. We can think of (W) as
the determinant of the orthogonal projection W — H_; note that o(W) = 0 if
and only if W is not transverse to H_. The section o is not equivariant with
respect to the action of I'y on Det*. For each W € Gr, the 7-function of W is
the holomorphic function 7, : 't — C defined by

alg™'W)

TW(g) = g_law

where 8y, is some non-zero element of the fibre of Det* over W. In general
there is no canonical choice of dy,, so that 7, is defined only up to a constant
factor. However, if W is transverse to H_, it is natural to choose d,, = o(W),
so that the r-function is given by

Tw(9) g 'o(W) = o(g W) (for W transverse to H_). (3.2)

It is easy to give an explicit formula for 7, as an infinite determinant.
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Proposition 3.3. Let g~ € I'y have the block form

-1 _ a b
=5 )
with respect to the splitting H = H, ® H_. Then for W € Gr, we have

Tw(g) = det(wy +a™'bw_), (3.4)

where w is an admissible basis of W. In particular, if W is transverse to H_
and Ty is normalized as in (3.2), then we have

7w (g) = det(1+ a~'bA), (3.5)
where A : Hy — H_ is the map whose graph is W.

The proposition follows at once from the definitions.

Example

An interesting example of a space W belonging to Gr§2) is the following one,
which, as we shall see, is related to the m-soliton solution of the KdV equation.

Let p1,...,pm be non-zero complex numbers such that |p;] < 1 and all p?
are distinct; and let Ay,..., Ay, be also non-zero. Then W = W), 5 denotes the
closure of the space of function f which are holomorphic in the unit disc except
for a pole of order < m at the origin, and which satisfy f(—p;) = A;f(p;) for
i=1,...,m. To calculate 7, we first determine the map A : H;, — H_ whose
graph is W, . This assigns to f € Hy the polynomial

Afy=ar(f)z7 + ...+ am(f)z™™

such that f + A(f) belongs to W, x. Clearly each o;(f) is a linear combination
of ﬂl(f)a ce 7ﬂM(f)a where

Bi(f) =

for A(f) is zero when the §;

(SR

(N2 £ ) = X725 (-p0)

f) vanish. In fact 8; = >~ M;ja;, where

—

My = L (W2 = (1A
and W, is transverse to H_ precisely when det(M;;) # 0.

To apply (3.5) we must also calculate the map a~'b: H_ — H, correspond-
ing to the element g=! of I'y. We write g in the form exp Y, .o tx2".

Suppose that a~'b takes z7% to fx € H.. Before determining f; let us
observe that an infinite determinant of the form

det (1 + ifi @ a,-)

i=1
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reduces to the determinant of the m x m matrix whose (7, j)-th entry is
51’]’ + o; (fJ)

Thus 7y (t) = det(Mij)“l det(Mij + ﬂ,(f]))
If pr: H — H, is the projection, we find

fr=g-pr(g7'z7")
=z7%{1- etz (l1+ciz+ecz?+... + ck_lzk_l)},

where 3 ¢;z* is the expansion of e~ £ %% ; and so
Mij + Bi(f;) = =Bi{z77eX t""‘k(l +cz4 ... +cim122H}

The determinant of this matrix, after the obvious column operations have been
performed on it, reduces to

(=1)™exp (Z 1, ktzkp?k)

prio1(61+681) prlea(f1+61) - pi™om(81 + 61)
« det p2—1¢,1(92+52)

p;zl‘Pl (Om + 6m) T o P om(Om + Om)
where ¢; = cosh for 7 odd and = sinh for 7 even,

0; = Z pftk, and
kodd

d;

1
3 log A;.

The constant factor (—1)™ det(M;;)~! in 7y can be ignored.

2
In §5 we shall see that 2 (3—‘37) log 7 is a solution to the KdV equations.
It is usually called the “m-soliton” solution.

The projective multiplier on ', and T'_

The results of this subsection will be used only in §9.

The actions of the groups I'y and I'_ on Gr obviously commute with each
other. However, their actions on Det* do not commute, and we shall need to
know the relationship between them. Note that since the discs Dy and D, are
simply connected, the elements g € 'y and § € I'_ can be written uniquely in
the form g = ef, § = ef, where f : Dy = C and f : Do, = C are holomorphic
maps with f(0) = f(oco) = 0. If v is an element of either I'y or I'_, we shall
write D(y) for the corresponding automorphism of the bundle Det*.
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Proposition 3.6. Ifge 'y and g €T, then
D(9)D(g) = c(3,9)D(9)D(9);
where, if as above § = ef and g = e, we have
(d,9) = 0
and

SUS) = 5 [ F@1()d.

Proof. 1t is immediate from the definition of the actions of 'y on Det* that we

have a formula of the kind stated, with
c(§,9) = det(adga™ta™?t)

where a and @ are the H, — H, blocks of g and §. (The commutator has
a determinant because, from the fact that g and § commute, it is equal to
1 - béa~'a~!, where b and & are the off-diagonal blocks of g and g, which are
of trace class by (2.3).) The map c is a homeomorphism from I'_ x 'y to C; it
follows easily that it is of the desired form, with

S(f, f) = trace[a, &,

where o and & are the H — Hy blocks of f and f. Now, if f = S a;2* and
f = b;iz7% the (k, k) matrix element of the commutator [a,d] is

k oo
> ambm — Y ambm.
m=1 m=1

The trace is therefore

) . )
_mzzlmambm = ZT—Z./;;f (2)f(z) dz.

as stated. O

Lemma 3.7. The section o of Det* is equivariant with respect to the action of
I'_, that is, we have

o(GW)=go(W) forgel_
Lemma 3.8. For g € I'_, we have
7w (9) = €SI (g),
where as before g =ef and § = ef.

Both lemmas follow at once from the definitions.
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General remarks

In the theory of loop groups like the group L of smooth maps S! — GL,(C)
the existence of a certain central extension

C* Lo L

plays an important role. This extension (at least over the identity component
of L) is the restriction of the central extension GL{* constructed in this section,
when L is embedded in the usual way in GL,(H).

On the level of Lie algebras the extension can be described very simply for
the loop group LG of any reductive group G. The Lie algebra of LG is the
vector space £g of loops in the Lie algebra g of G, and the extension is defined
by the cocycle

B:LgxLg—C

given by
L[ gy o
Bt = 5 [ (O L),

where (, ) is a suitably normalized invariant bilinear form on g.

The existence of the corresponding extension of groups is less obvious {cf.
[18]), partly because it is topologically non-trivial as a fibre bundle. The dis-
cussion in this section provides a concrete realization of L as a group of holo-
morphic automorphisms of the line bundle Det, in the case G = GL,(C). For
the elements of L above v € L are precisely the holomorphic bundle maps
4 : Det — Det which cover the action of v on Gr. (For given v the possi-
ble choices of 4 differ only by multiplication by constants, as any holomorphic
function on Gr is constant. (Cf. remark following (2.11)).)

The corresponding central extension of the loop group of any complex re-
ductive group (characterized by its Lie algebra cocycle) can be constructed in a
similar way as a group of holomorphic automorphisms of a complex line bundle,
and conversely the holomorphic line bundle is determined by the group exten-
sion. This is explained in [17]. But in the general case the line bundle does not
have such a simple description.

4 Generalized KdV equations and the formal
Baker function

The n-th generalized KdV hierarchy consists of all evolution equations for n — 1
unknown functions ug(z,t),... ,un—2(z,t) that can be written in the form
OL/8t = [P, L], where L is the n-th order ordinary differential operator

L=D”+un_2D"_2+‘..+u1D+uo

and P is another differential operator. (As usual, D denotes 8/0x.) The
possible operators P are essentially determined by the requirement that [P, L]
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should have order (at most) n—2. A very simple description of them is available
if we work in the algebra of formal pseudo-differential operators, which we
denote by Psd.

A formal pseudo-differential operator is, by definition, a formal series of the

form
N
R = Z ri(z)D*

for some IV € Z. The coefficients r;(z) are supposed to lie in some algebra of
smooth functions of z. To multiply two such operators, we need to know how
to move D! across a function r(z): the rule for this,

o0
D7 lr =Y (=1)irl) p=1-7,
=0
follows easily from the basic rule
Dr =rD+0r/0z (4.1)

determining the composition of differential operators. It is easy to check that
this makes Pds into an associative algebra.

Proposition 4.2. In the algebra Psd, the operator L has a unique n-th root of
the form

o
LVn=Q= D+ZqiD“1.

The coeﬁiczents g; are certain universal differential polynomials in the u;; if we
assign to u; 9 the weight n — i + j, then ¢; is homogeneous of weight i + 1.

Proof. Equating coeflicients of powers of D in the equality @™ = L, we find
that

Un—i—1 = Ng; + @,
where «; is some differential polynomial in ¢;, ... ,g;—1 (here we have set u; =0
if j < 0). We claim that if we give q(J weight 7 + j + 1 then «; is homogeneous
of weight ¢+ 1. Granting that, it is clear that the above equations can be solved
uniquely for the ¢;, and that these have the form stated.

The homogeneity of the «; is most easily seen as follows. Consider the
algebra of formal pseudo-differential operators whose coefficients are differential
polynomials in the g; (which we think of for the moment as abstract symbols,
rather than as fixed functions of z). Call such an operator homogeneous of
weight r if the coefficient of D' is homogeneous of weight r — i (thus D has
weight 1). From the homogeneity of the basic rule (4.1) it follows at once
that the product of two operators that are homogeneous of weights r and s is
homogeneous of weight r + s. Since @ is homogeneous of weight 1, @™ must be
homogeneous of weight n. O
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If R =Y r;D!is a formal pseudo-differential operator, we shall write Ry
for the “differential operator part” Ry = 3 ¢ > 0r;D*, and R_ = ¥, i D"
Thus R=FR, + R_.

Proposition 4.3. The equation

aL/8t = [L/™, L] (4.4)
is equivalent to a system of evolution equations
Ou;
= I
for the coefficients ug, ... ,un—2 of L. The f; are differential polynomials in the

uj, homogeneous of weight n 4+ r — 1.

Proof. Note first that LZF/ " denotes (L™/™);; L"/™ is defined as Q". The only
part of the proposition that is not obvious from what precedes is that the
commutator in (4.4) is an operator of order at most n — 2. But that follows at
once from the equality

(L™ L) = [-L7™, ).

(Of course L'/™ and L commute, because they are both powers of Q = L/™))
O

The equation (4.4) is called the r-th equation of the n-th KdV hierarchy. It

is trivial if r is a multiple of n, because then L:/ ™ = L"/™ is just an integral
power of L.

It is usual to think of the equations (4.4) as defining flows on some space
of functions {ug(z),... ,un—2(z)}: it is then a basic fact that the flows corre-
sponding to different values of r commute. For this assertion to make sense,
we need to identify some class of functions on which the flows can be proved to
exist, that is, we need to prove existence and uniqueness theorems for solutions
of the equations (4.4). However, the analytic problems involved here are in a
sense irrelevant: the basic “infinitesimal” fact underlying the commutativity
can be formulated in a purely algebraic way. We refer to [22] for a very simple
proof of this algebraic version of the commutativity. In the present paper none
of these questions need concern us, because for the special class of solutions that
we are interested in, both the existence of the flows and their commutativity
will be clear from the construction.

The formal Baker function

The main idea in all studies of solutions of the equations (4.4) is this: as
L changes in time, we try to follow the evolution of the eigenfunctions of L
by comparing them with the eigenfunctions of the constant operator D™. To
do that, we find an operator K such that K"'LK = D™; then if v is an
eigenfunction of D™, ¢ = K1y will be an eigenfunction of L. The algebra Psd
enables us to give one realization of this idea.
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Proposition 4.5. There is an operator K € Psd of the form

K=1+ i ai(z)D~* (4.6)
1

such that K~'LK = D™. Such a K is unique up to right multiplication by a
constant coefficient operator of the form 1 +c;D™' + ...

Proof. Only constant coeflicient operators commute with D", so the statement
about uniqueness is trivial. To prove existence, we simply compare coefficients
of powers of D in the equality LK = K D™, this gives equations 8a;/0z = ...,
where the right hand side involves only a; with j < i; we can therefore solve
these equations successively to get suitable a;. O

Proposition 4.5 can be reformulated as follows.

Proposition 4.7. The equation L = z™ has a solution in the space of formal
series of the form

P = e* (1 + Z ai(x)z_i> . (4.8)

The solution v is unique up to multiplication by a series with constant coeffi-
cients of the form 1 +ci2 ' +....

The series 9 in (4.8) is called the formal Baker function of L. The solutions
of the KdV equations that we are going to construct are characterized by the
property that this formal series actually converges (for |z| sufficiently large).
As we mentioned in the introduction, among these solutions are the rank 1
algebro-geometric solutions of Krichever: it was essentially in that context that
the function ¢ was originally introduced by Baker [3].

The intuitive reason for the equivalence of (4.5) and (4.7) was explained
above: since K "1LK = D™, we expect the solutions of the equation Ly = 2™y
to be of the form i = K1)g, where 1/ is a solution of D™y = 2™). If we take
1o = €®%, then formally it is clear that ¥ = Ky should be given by (4.8). We
can make this argument rigorous as follows. Let M be the space of all formal
expressions f = e®*f, where f is a formal series

N
f=)_fiz)z* (for some N).

Differential operators act on M in an obvious way: the action of D on M is
given by _ _
DeIZf — eZZ(D + Z)f.

If we let D~! act on M by
D le® f = e**(D + 2)" 1 f,
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where (D + z)7! is interpreted as the formal series 27! — D272 + ..., it is
easy to check that this makes M into a module over the algebra Psd. If R =
S ri(z)D" € Psd, then

Re%* = % (Z Ti(x)z_i) ,

so that M is in fact a free Psd-module of rank 1, with generator e** € M.

The KP equations

It will often be convenient for us to regard the n-th KdV hierarchy (for any n)
as embedded in a certain “universal KdV hierarchy” of evolution equations in
infinitely many variables; for brevity we shall follow [5] and call these equations
the KP (for Kadomtsev-Petviashvili) hierarchy. The KP equations are defined
as follows. Let @ be a general first order formal pseudo-differential operator of
the form

Q=D+ qz)D™"
1

(in general, such a @ will not be the n-th root of a differential operator for any
n).

Proposition 4.9. The equation

o .
T =@.a (4.10)

1s equivalent to a system of evolution equations

0g; _ ‘
'é?—fz

for the (infinitely many) functions q;(z,t),i > 1. The f; are certain universal
differential polynomials in the g;, homogeneous of weight r +i+1 if we give q,(])
weight i +j + 1.

The proof is the same as that of (4.3). We call (4.10) the r-th equation of
the KP hierarchy.

Proposition 4.11. The assignment L — L™ = Q sets up a 1-1 correspon-
dence between solutions of the n-th KdV hierarchy and solutions () of the KP
hierarchy such that Q™ is a differential operator.

Proof. It is trivial that if Q satisfies (4.10) then L = Q™ satisfies (4.4). We
refer to [22] for the proof of the converse, which is only slightly harder. O
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The scaling transformation

Proposition 4.12. Let Q@ = D + Z%D“i be any solution of the r-th equation
(4.10). For any non-zero complex number A, let R\Q =D + 3 qu‘)D“', where
the coefficients q(’\) are defined by

¢V (z, 1) = ATl g;(Az, A1),
Then RxQ is another solution of (4.10).

Proof. This follows trivially from the assertion in (4.9) about the homogeneity
of the f;.

We call the operation Ry the scaling transformation of the solutions to
the KP equations. Notice that each variable gets rescaled by the power of A
corresponding to its weight. The scaling transformations clearly act on the
solutions to the n-th KdV hierarchy (for any n). O

Note on the literature — Our construction of the KdV equations follows
closely the exposition in [14]. The basic idea of using fractional powers of
L first appeared in the 1976 paper of Gel’fand and Dikii [9], and has been
used extensively in the literature since then. In [5] this idea is attributed to
Sato (1981).

5 The Baker function

In this section Gr and Gr™ will denote the component of the Grassmannians
consisting of spaces of virtual dimension zero. We are going to associate to each
W € Gr a “Baker function” v, and also a sequence of differential operators
defined in terms of ¥, .

We recall from §2 that the group I'y of holomorphic maps g : Do — C*
with g(0) = 1 acts on Gr. Given a space W € Gr, we set

Y ={gely : g7 W is transverse to H_}.

From now on we shall refer to spaces transverse to H_ simply as transverse.
From §3 it follows that '} is the complement of the zero set of the T-function
7w : 'y = C; in particular it is a dense open subset of I';.. (We admit for the
moment the fact that T’} is not empty, that is, that the holomorphic function
Ty is not identically zero: this will be proved in §8.)

Proposition 5.1. For each W € Gr there is a unique function ¢y (g,2), de-
fined for g € TY and z € S*, such that

(i) Yw(g,") € W for each fized g € T'¥
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(i) yw has the form

Yw = g(2)(1+ Y ai(g)z™). (5.2)

The coefficients a; are analytic functions on I'Y; they extend to meromorphic
functions on the whole of T'y.

The proof of the last sentence depends on the properties of the r-function,
and will be given later in this section. The rest of the proposition is trivial:
the infinite series in (5.2) is simply the unique function of that form that lies
in the transverse space g~!W, that is, it is the inverse image of 1 under the
orthogonal projection g7'W — H.,.

We call vy, the Baker function of W.

Now, each g € I'; can be written uniquely in the form

9(2) = exp(zz + t22® +132° +...) (5.3)
with z,¢; € C. When g is written in this way, we shall write ¥y, (2, t, z) instead

of Yw(g,z). Here t stands for (tq,%3,...). In this notation, ¢y, is a “function
of infinitely many variables” of the form

Yw(T,t,2) = exp(zz + t22® +...) (1 + Z ai(z, t)z—i) . (5.4)

Proposition 5.5. For each integer r > 2, there is a unique differential operator
P, of the form

P.=D" +pr2DT_2 +... +pr,r—1D + Prr
such that

Ow
ot,

= P"y. (5.6)
(Here as usual D = 8/0x.) The coefficients p,; are certain universal differential
polynomials in the functions a; in (5.4).

Proof. From (5.4), we have

Iw

g = 9EE + @z +0().

On the other hand, D"y, also has this form, and in general we have

D%y, = g(2)(27 + O(2971)).
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Comparing coefficients, we see at once that there is a unique operator P, of the
form stated such that

OMw

S = Prbw = 9(2)(0()). (5.7)

Now, since 1)y, lies in W for each fixed (z, t), the same is true of the derivatives
0w [0, and D%y, . Hence the left hand side of (5.7) lies in W for each fixed
value of (z,t) for which it is defined, that is, for which the corresponding g
belongs to I'Y. But the right hand side of (5.7) belongs to gH_. As g~'W is
transverse, both sides must vanish. O

Now let
K=1+ Zai(x,t)D_i
1

be the formal integral operator corresponding to ¢y, (see §4). Equation (5.6)
can be written in the form
oK
ot,

+KD" = PK, (5.8)

so that in particular we have
P, = (KD'K™Y), = Q7

where we have set @ = KDK~'. Thus Q is a formal pseudo-differential oper-
ator of the form

Q=D+ gz, t)D".
1

Proposition 5.9. The coefficients g; of Q satisfy the equations of the KP hi-
erarchy; that is, we have
0Q

o =

Each q; is a meromorphic function of all the variables (z,t).

[@%, Q-

Proof. Differentiating the relation defining @ and rewriting, we find

9Q _ -
o, [(0K/0t ) K1, Q.

On the other hand, from (5.8) we have

0K
Ot,

K'=P -KD'K'=Q% -Q",

so the proposition follows at once. O
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Recall from §2 that rescaling z induces an action W — R\W of the semi-
group of complex numbers A with |A| < 1 on Gr.

Proposition 5.10. The Baker function corresponding to the space R\W is
given by

YRaw (T, t2,t3, ... 5 2) = hw Az, N2, A2t3,... ;A7 12).
If Q is the solution of the KP equations corresponding to W, then the solution
corresponding to R\W is R)\Q (see (4.12)).

The proof is trivial.
We now specialize to the case W € Gr{™.

Proposition 5.11. If W € Gr‘™, then
Popw = 2"y .

Moreover, the functions a;, and hence also all the operators P,, are independent
Of tna t2na t3n7 e

Proof. From (5.4) and (5.6) we see that

Popw — 2"y = g(2 Zg:i -

For W € Gr(™, the left hand side of this expression lies in W for each fixed
(z,t); it therefore vanishes by the same argument as in the proof of (5.5).
That proves the first statement in the proposition, and also that the a; are
independent of t,. Since obviously Gr™ C Gr"™ for all r > 1, the a; are
independent of ¢,, too. O

Since the a; are independent of t,,, the operator K is also, so (5.8) gives
P,=KD"K_; =Q".

Thus if W € Gr{™ then Q" is a differential operator. Write L for P, = Q";
then L has the form D™ + up—2D™"2 + ... + uo. Combining (5.9) and (4.11),
we get the main result of this section.

Corollary 5.12. If W € Gr™| the coefficients of the operator L satisfy the
equations of the n-th KdV hierarchy, that is, we have

oL r/n
— =[LY", L].
Otr Ly
Let us reformulate this slightly. For each W € Gr™ | let L, denote the
operator L evaluated for t; = t3 = ... = 0. The coefficients ug, ... ,up_o of Ly

are functions of one variable z: they are the “initial values” of the KdV flows.
Let €™ be the space of all Ly, for W € Gr™. The map Gr{™ — €(" is not one
to one: however, from (4.7) we see that L, = Ly precisely when W = yW',
where v is a function of the form 1+ ¢;27! +.... Since multiplication by ~
commutes with the action of I';, we can restate (5.12) as follows.
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Proposition 5.13. The action of Ty on Gr™ induces an action on the space
(™. The flow W + exp(t,2")W on Gr™ induces the r-th KdV flow on €™,

Since I'y is commutative, it is obvious that the different KdV flows on €(®)
commute.

Examples

To obtain the simplest interesting example of a space in Gr'™ we choose peC
so that 0 < |p| < 1, and A € C*, and define W, , as the L? closure of the space
of functions f which are holomorphic in |z| < 1 except for a possible simple
pole at the origin, and which satisfy f(—p) = Af(p).

The Baker function of W, » must be of the form

Wb, z) = eX = (1 + a(t)/2).

(We write here t = (t1,12,...), where t; is identified with z.) From the condi-
tion ¥ (t, —p) = A (t, p) we find

a(t) = —ptanh(@ + ),

where 6§ = 3", 14 P"tk, and e2* = .
The second-order differential operator L such that Ly = 224 is D? — 24/,
ie.
D? + 2p% sech®(6 + a).

This is the well known one-soliton solution of the KdV equation.

More generally, we have the subspace W, » introduced in §3 which depends
on m points p1,... ,pm of the disc |z| < 1 and m parameters Ay, ... , A, € C*.
The corresponding solution of the KdV equation is called the m-soliton solution.
We shall give an expression for it below in terms of the 7-function which was
calculated in §3; but let us at present notice the obvious fact that it depends on
t only through e+ where 6; = 3, 44 P tx and €2® = );. This is because
the orbit of W, » under I'; is isomorphic to (C*)™: in fact if v : Dg — C* is
an element of I'y then - W, x = W, ., where p; = v(pi)y(—=pi) "t Ai-

The Baker function and the 7-function

We now turn to the proof of the last part of (5.1), concerning the properties
of the functions a;. It depends on the formula (5.14) below, relating the Baker
function to the 7-function, which we mentioned in the Introduction as central to
the theory. We return to the case of an arbitrary space W € Gr (not necessarily

in any Gr(™). Let us write

Pu(g,2) =1+ 3 ai(g)z™
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for the infinite series in (5.2). Clearly ¥, extends to an analytic function of z
in the region |z| > 1 (for each fixed g € I'Y). For ¢ € C we write g for the map

gc(2) =1-2/¢.

Obviously
g ey for (] >1.

Proposition 5.14. For g € 'Y and |(| > 1 we have

2ﬁw(ga Q) = Twl(g - qc)/mw(9)-

Proof. It follows easily from (3.2) that the right hand side is equal to 7y-1y(q¢).
The left hand side is characterized as the unique function of the form 1+3" a;{™*
whose boundary value as |¢| — 1 lies in the transverse space g7!W. Hence the
proposition follows at once if we apply the next lemma to g~ 1W. a

Proposition 5.15. Let W € Gr be transverse, and let fo be the unique element
of H_ such that 1 + fo € W. Then for |(| > 1, we have

Tw(gc) = 1+ fo(Q)-

Proof. We use the formula (3.5). When g ! is written in the form (8 g) , the

map b: H_ — H, takes z7% — C“kqg_l; thus a~'b is the map of rank one that
takes f € H_ to the constant function f(¢). The map a~!bA is thus also of
rank one, and the infinite determinant

Tw(g¢) = det(1 + a~'bA)

is equal to
1+ trace(a1bA).

Since A maps 1 to fo(z), the lemma follows. O

If we write g in the form (5.3), and correspondingly write g¢ in the form

ge(z) = explog(l — z/¢) = exp (— sz/k(k) ,
1

then (5.14) takes the form

Yw (2,6,0) = 1w (T — 1/( ta — 1/2¢%, .. ) /7w (2, 1). (5.16)

The fact that the functions a;(z,t) are meromorphic follows at once from this
formula: indeed, if we expand the numerator in a Taylor series, we see that
each a; has the form

a; = Pir/T
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where P; is a polynomial differential operator in 8/dz,8/0ts,...,0/0t;. For
example, we have

ay = —(07/0z)/T
az = %(627—/87;2 —01/0ta) /1.

The proof of (5.1) is now complete.

We can be more precise about the orders of the poles of the functions a;.
Let us fix the values of the variables to,3,. .., say ¢, = t2, and regard a; as a
meromorphic function of one variable z.

Proposition 5.17. The poles of the function a;(x,t°) have order at most i.

In the case of a;, this follows at once from the formula above and the fact
that 7 is analytic. For ¢ > 1, however, that is not so; for example, if we had
T = z™ + ty, then the corresponding function a;(z,0) would have a pole or
order n at the origin. Our proof of (5.17) uses the expansion of the r-function
in terms of Schur functions: it will be given in §8.

Corollary 5.18. For W € Gr'™, the differential operators Ly, € €™ have
only regular singular points (except for the point at infinity); that is, the coeffi-
cient u; of D* has poles of order at most n — i.

Proof. Recall that L, = KD"K~! where K = 1+ Y a;(z)D~*. Thus if we
give ascj ) weight k + j, then w; is a homogeneous differential polynomial in the

ay of weight n — 4 (cf. proof of (4.2)). Thus the corollary follows at once from
(5.17). O

Finally, we note that the coefficients u; of L can be expressed directly in
terms of the 7-function. In the case n = 2, L has the form D? + u,,, where

Uy = —2— =2—=—log 7. (5.19)
x
However for n > 2 the explicit formulae become very complicated.

The class €™

We have shown how to associate an n-th order differential operator
Ly = D™ 4+ wp_o(z)D"% + ... + ug(z), (5.20)

with meromorphic coeflicients and only regular singular points, to a space W €
Gr{™. We shall now describe the inverse process of associating a space W to
a differential operator L. This cannot be done for an arbitrary operator, even
one which is meromorphic with regular singular points. We do not know an
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altogether satisfying description of the desired class C(™); roughly speaking, it
consists of the operators whose formal Baker functions converge for large z.

Suppose that L is of the form (5.20), with coefficients defined and smooth
in an open interval I containing the origin. The formal Baker function

Y(z,2) = " {1+ ar(z)z™! +ax(z)z2™ 2 +...}

of L was introduced in §4. It is a formal series whose coefficients a; are smooth
functions defined in the interval I, and it is uniquely determined by L if we
normalize it so that (0, z) = 1. If the n formal series

¥(0,2), DY(0,2),...,D" 140, 2) (5.21)

(which belong to the field C((z7!))) converge for large 2, then by a scaling
transformation we can make them converge for |z| > 1 — ¢, so that they define
n elements g, 41, ... ,¥n_1 of our Hilbert space H. We should like to define the
corresponding W € Gr'™ as the closed z™-invariant subspace of H generated
by %o,...,¥n-1, 1.e. as vHy, where v is the (n X n)-matrix-valued function
(¥0,¢1,- - ,¥n—1) on the circle. (In regarding v as a matrix-valued function
we are using the identification H = H(™ described in §2.) For this to be
possible we need to know that -« is a loop of winding number zero in GL,,(C)—
otherwise W28 would turn out to be bigger than the space spanned algebraically
by {anwi}k20,0§i<n- Making ~ explicit according to the formulae of §2, we find

1

LG TN (@) (@) o Yaa(G)
1 ¢ - gt Yo(C2) Y1((2) -+ Yn-1(C2)
()= 1. :
1 Cn T Cﬁhl wO(Cn) "/}1 (Cn) T 1/)11—1((11)
where (i1,...,(, are the n-th roots of z. But ¥(2) ~ z* as z = 00. So v is

holomorphic in |2| > 1 — ¢, and y(z) — 1 as z — o0. By a further rescaling, if
necessary, we can therefore ensure that y(z) is invertible for |z| > 1 — ¢, as we
want.

Let us notice that the series D*%(0, z) depend only on the jets (i.e. Taylor
series) at the origin of the coefficients u; of L, and that conversely the series
D¥3(0, 2) determine the jets of the u; at 0. The space W which we have just
constructed has its own Baker function ¥, which in turn defines a differential
operator L, with coefficients meromorphic in the entire complex plane. (For
brevity, we shall write ¢y, (z, 2) for the Baker function evaluated at ts = t3 =
... = 0.) Because both D*4(0,z) and D*,, (0, z) belong to W and are of the
form z* + (lower terms), it follows by induction on k that they coincide. The
jets of the coefficients of L and L, at 0 must therefore coincide too. This gives
us the first half of the following result.



Loop Groups and Equations of KdV Type 435

Proposition 5.22.

(i) If the series (5.21) converge in a neighbourhood of z = oo, then there are
meromorphic functions g, ... ,Un—2 defined in the entire complex plane
such that u; and @; have the same Taylor series at © = 0.

(ii) If the series ¢(zx,z) converges for |z| > R for each x in I then the u;
coincide with the 4; in I.

To prove the second statement, let ¢;(z,2") be the solution of L, = z"¢
characterized by the initial conditions D7¢;(0,2") = 4;;. Each y; is an entire
function of 2" for z in I. If z is fixed and |z| > R, then v¢(z, z) and

n—1

3 @iz, 2 D0, 2)

=0

are both solutions of Ly = z"p with the same initial conditions. They must
therefore coincide, and it follows that ¥ (z,-) belongs to W for all z € I. As
(z,-) also belongs to e**(1 + H_), we can conclude that ¢(z, z) = ¥u(z,2)
for all z € I, and so L and L, coincide in 1.

6 Algebraic curves: the construction of
Krichever

In Krichever’s construction of solutions to the KdV equations the starting point
is a collection of data whose most important constituents are a compact Rie-
mann surface X and a holomorphic line bundle £ over it. Mumford [16] pointed
out that the construction still applies more or less unchanged if we allow X to be
any complete irreducible complex algebraic curve (possibly singular), and that
in that case it is natural to allow L to be, more generally, a rank 1 torsion free
coherent sheaf over X. (If X is non-singular, any such sheaf is a line bundle.)
One reason for including singular curves is that the n-soliton solutions corre-
spond to rational curves with n double points; and even the solutions coming
from torsion free sheaves that are not line bundles seem to have nothing very
exotic about them (we shall se examples in §7). The inclusion of torsion free
sheaves will not cause us any extra difficulty, and will be essential for the proof
of theorem 6.10 below.

As well as X and L, the construction requires three more pieces of data
(oo, 2,p). Here o, is a non-singular point of X and 2~ is a local parameter
on X near r.,. We shall suppose that z is an isomorphism from some closed
neighbourhood X, of T, in X to the disc Do = {|2| > 1} in the Riemann
sphere. That can always be achieved by rescaling z (see remark 6.5 below).
Finally, ¢ is a trivialization of L over Xo,. We shall use ¢ to identify sections
of L over subsets of X, with complex-valued functions. We shall also identify
the unit circle S! with its inverse image in X under z. We denote by Xp the
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complement of the interior of X,: thus the closed sets X and Xg cover X,
and their intersection is S*.

To all this data we associate the following subspace W of H = L%*(S!,C):
W is the closure of the space of analytic functions on S! that extend to sections
of L over Xj.

Proposition 6.1. The subspace W belongs to the Grassmannian Gr. The vir-
tual dimension of W is equal to x(L)—1, where as usual x(L) denotes the Euler
characteristic dim H°(X; L) — dim H}(X; L).

Proof. We observe first that the projection W — H_ factorizes
Ry pr Ry
W =~ H-—H_—>H_

for suitable A with 0 < A < 1 (here R) is the scaling transformation discussed in
§2). For A sufficiently close to 1, the map Ry-: : W — H is bounded: for each
f € W is the boundary value of a holomorphic section of L over X \ X, and
(by assumption) the trivialization ¢ extends over some open set containing X o.
Thus Ry-: simply assigns to f € W the function z — f(Az), i.e. f evaluated on
a circle slightly inside the boundary of Xy. Since Ry : H_ — H_ is compact,
the projection W — H_ is too. It follows easily that the projection W — H,
has closed range.

It remains to show that the projection W — H, is a Fredholm operator
of the index stated. We shall prove a more precise statement: the kernel and
cokernel of the orthogonal projection W — zH, are H(x,L) and H'(X, L)
respectively. Let Uy and Uy, be open sets of X containing Xy and X, and let
Ubso = UgNUy. Because Uy, Uy, and Uy, are Stein varieties, we can calculate
the cohomology of X with coefficients in any coherent sheaf from the covering
{Us,Uw}; in particular, we have an exact sequence

0= HOX,L) = L(Up) ® L(Us) = L(Ugoo) = HY(X,L) = 0,

where L(U) denotes the sections of L over a subset U of X. Taking the direct
limit of this as Uy and Uy shrink to Xo and X, gives the exact sequence

0 H(X,L) = L(X0) ® L(Xeo) = L(S?) = HY(X,L) = 0.

Since L is torsion free, its sections over Xy or X, are determined by their
restrictions to S*; thus we can identify L(X,) and L(X) with subspaces of
the space L(S!) of real analytic functions on S'. The two middle terms in the
above exact sequence then become

Wa @ zH* — H*",

the map being the inclusion on the first factor and minus the inclusion on the
second factor (we write V2" for the analytic functions in a subspace V of H).
The kernel and cokernel of this map are the same as those of the projection
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wat — zH2", so we have only to see that the kernel and cokernel of this do
not change when we pass to the completions W — zH. But a function in the
kernel of this last projection is the common L? boundary value of holomorphic
functions defined inside and outside S, hence it must be analytic: thus the two
kernels coincide. That the cokernels coincide too follows easily from the fact
that W — H, has closed range. a

The same argument shows that the kernel and cokernel of the orthogonal
projection W — H, can be identified with H°(X, L) and H(X, L), where
Lo = L & [-2] is the sheaf whose sections are sections of L that vanish
at Too. In particular, W is transverse if and only if we have H%(X,Lo,) =
HY(X, L) = 0. For readers of [16, 21], we note that it is the sheaf L., rather
than L, that is considered in those papers.

We are mainly interested in spaces of virtual dimension zero; by (6.1), these
arise from sheaves with x(£) = 1. If £ is a line bundle, the Riemann-Roch
theorem shows that its degree is then the arithmetic genus of X.

Combining the construction above with that of §5, we obtain a solution to
the KP equations for each set of data (X, zu,2,L,¢) with x(L£) = 1. This
construction is essentially the same as that of Krichever [10, 11]. To be more
precise, Krichever considers the case where X is non-singular, and starts off
from a positive divisor D = {P,,...,F,}, with P; € X, of degree g equal
to the genus of X. He assumes that no P; is the point z.,, and that D is
non-special. “Non-special” means that the line bundle £ corresponding to D
has a unique (up to a constant multiple) holomorphic section, which vanishes
precisely at the points P;; this section therefore defines a trivialization of L
over the complement of {P;}, in particular over a neighbourhood of z,. If
all the points P; lie outside the disc X, we can use this trivialization; our
construction then reduces exactly to Krichever’s.

The correspondence that we have described between algebro-geometric data
and subspaces of H is obviously not one to one, for the following reason: suppose
7w : X' — X is a map which is a birational equivalence (that is, intuitively, the
curve X is obtained from X' by making it “more singular”). Then we obtain
the same space W from a sheaf L' on X’ and from its direct image £ = 7, (L")
on X. We shall avoid this ambiguity by agreeing to consider only mazimal
torsion free sheaves on X, that is ones that do not arise as the direct image
of a sheaf on a less singular curve. A perhaps more illuminating description
of them is as follows. Recall (see [7]) that the rank 1 torsion free sheaves over
X (of some fixed Euler characteristic) form a compact moduli space M on
which the generalized Jacobian of X (the line bundles of degree zero) acts by
tensor product. We claim that the maximal torsion free sheaves form precisely
the part of M on which the Jacobian acts freely. Indeed, if £ is any rank 1
torsion free sheaf on X and L is a line bundle of degree zero, then giving an
isomorphism L@ L = L is equivalent to giving an isomorphism L = Hom (L, L);
but Hom(L, L) is just the structure sheaf of the “least singular” curve X' such
that £ is the direct image of a sheaf on X', hence it is Ox exactly when L is
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maximal. Obviously, any line bundle is a maximal torsion free sheaf; and if all
the singularities of X are planar, these are the only ones, for in that case (and
only in that case) M is an irreducible variety containing the line bundles as
a Zariski open subset (see [34]). However, in general there are many maximal
torsion free sheaves that are not line bundles: we shall meet simple examples
in §7.

Proposition 6.2. The construction described above sets up a one to one cor-
respondence between isomorphism classes of data (X, L, 2w, ,¥), with L maz-
imal, and certain spaces W € Gr.

Proof. Let W be the space arising from data (X, L, Z, 2, ) with £ maximal.
We have to show how to reconstruct all of this data (up to isomorphism) from W
alone. Let us recall from eqrefsw:2.6 to definition of the dense subspace W2/ of
W, consisting of all elements of finite order. Clearly W28 can be identified with
the space of algebraic sections of L over X \ {z}. If A4 is the coordinate ring
of the affine curve X \ {zoo}, then W3 is the rank one torsion free A-module
corresponding to the sheaf L restricted to X \ {zo}. On the other hand, let A,,
be the ring of analytic functions f on S! such that f-W?2%& c W2, Clearly Ay
is an algebra containing A (if we identify functions in A with their restrictions
to S!), and W#2 is a faithful A, -module. As W is torsion-free and of rank
one as a module over A, it follows that A,, can be identified with an integral
subring of the quotient field of A. This means that Spec(Ay ) is a curve of the
form X'\ {zs} (with X' complete) projecting birationally on to X \ {z}; and
so if £ is maximal we must have A,, = A. Thus we have reconstructed from
W the curve X, the point 2., and the restriction of £ to X \ {z}. Finally,
the inclusion W2€ C C[z] @ H_ defines a trivialization of £ over Xo, \ {Zoo}
(and hence the extension of £ to X); for if |(| > 1 then evaluation at ¢ defines
a map W## — C which induces an isomorphism of the fibre of L at ¢ with C.
(That is clear, because the fibre is canonically W2&/mW 28, where m C A, is
the ideal of functions that vanish at ¢.) O

Remark 6.3. The definition of A4,, makes sense for any W € Gr. In general,
however, it will be trivial, i.e. Ay, = C. (This is clearly the case, for exam-
ple, when W is the subspace of codimension one in H, which was described
in (2.10).) The spaces W € Gr which arise from algebro-geometrical data are
precisely those such that A, contains an element of each sufficiently large or-
der, or, equivalently, such that the A, -module W2% has rank 1. That follows
at once from the preceding discussion, in view of the fact that the coordinate
rings A of irreducible curves of the form X \ {z} (where X is complete and
Zoo 1S a non-singular point) are characterized as integral domains simply by the
existence of a filtration

C=A4ACA1CAC...CA

such that
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(i) Ai-Aj C Aiyy,
(i) dim(Ag/Ax—1) <1 for all k, and
(iii) dim(Ag/Ag—1) =1 for all large k.

Remark 6.4. We should point out that for any W € Gr the construction of
§5 defines a realization of Ay, as a commutative ring of differential operators.
More precisely, the proof of (5.11) shows that for any f € A,, there is a unique
differential operator L(f) such that

L(f)pw = f(2)dw.

If W € Gr™, then z" € A, and L(z") = Ly,. In general, the order of the
operator L(f) is equal to the order of f.

Remark 6.5. As we saw in §5, a change of local parameter z — cz (c a non-zero
constant) corresponds to acting on the solution to the KP hierarchy by the
scaling transformation. Thus the condition that the validity of the parameter
z should extend up to |z| =1 is not a serious restriction in our theory.

Remark 6.6. The solution to the KP hierarchy does not depend on the choice of
trivialization ¢: for a different choice of ¢ would just multiply W by a function
of the form ¢o +c127 +... (with ¢ # 0), which, as we know, does not change
the solution. Even the space W does not change if we replace ¢ by cp where
¢ is a non-zero constant; that does not contradict (6.2), because the quintuples
of data (X, Zeo, 2, L, cp) for different ¢ # 0 are obviously isomorphic.

Remark 6.7. We get a solution to the n-th KdV hierarchy (i.e. W € Gr(™) if
and only if 2™ € Ay ; that is, if the local parameter z is such that z™ extends
to a meromorphic function on X with no singularities except for the n-th order
pole at .. For fixed n, this of course imposes a restriction on which pairs
(X,Zoo) can occur: for example if n = 2 then X must be hyperelliptic and o
must be a Weierstrass point.

Remark 6.8. An important part of Krichever’s theory is the observation that
the KdV (or KP) flows correspond to straight line motion on the Jacobian of X.
That is easily seen from our point of view as follows. For each g € 'y, let L, be
the line bundle obtained by taking trivial bundles over X and X, and glueing
them by the transition function g on (an open neighbourhood of) S*. Thus L,
comes equipped with a trivialization ¢, over X. The natural action of I'y
on Gr corresponds to the following action on the data (X, 2, 2,L,¢) : g € T4
acts trivially on the first three components, and on (£, ¢) by tensoring with
(Lg,wq). The action of I'y on solutions to the KP hierarchy thus corresponds
simply to L + L & L,. The assertion about straight line motion is now clear
in view of the following result.

Proposition 6.9. The assignment g — L, defines a surjective homeomor-
phism from T'y to the generalized Jacobian of X (which consists of all holo-
morphic line bundles on X of degree zero).
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Proof. If L is a line bundle on X then L|Xq and L| X, are trivial, for all bundles
on affine curves are analytically trivial, and X, and X are contained in affine
open sets of X. So L = L, for some holomorphic function S — C* whose
winding number is the degree of L. We can change g by any element of I'_
without affecting Lgy; and so if g has winding number zero we can choose it in
| S O

Example

Let us return briefly to the subspace W = W, ) € Gr(lz) which was introduced
in §3 and discussed further in §5. In this case A, consists of all polynomials f
in z such that f(—p;) = f(p;) for each 7. This is the coordinate ring of the affine
curve whose completion X, is obtained from the Riemann sphere by identifying
the point p; with —p; for each ¢ : X, is a rational curve with m double points.
If we take £ = 2% and n = z(2% — p?) ... (2% — p%,) as generators of A, then the
equation of X, is
=€ -p)? ... (€~ ph)*.

We remarked in §5 that the orbit of Wp, y under I'; consists of all Wp, ,,, where
p runs through (C*)™. This conforms with (6.9), as (C*)™ is the generalized
Jacobian of X.

Commuting differential operators

Our last goal in this section is to point out that our results lead directly to
a proof of the so-called “Painlevé property” of the stationary KdV equations.
Since these have the form [P, L] = 0, the result can be formulated as a statement
about commuting differential operators.

Theorem 6.10. Let L = D™ +u,_2D" %2+ ...+uq be an ordinary differential
operator whose coefficients u; are defined and smooth in a neighbourhood I of
the origin in R. Suppose that there exists a differential operator P of order m
relatively prime to n that commutes with L. Then the functions u; extend to
meromorphic functions on the whole complex plane, with poles of order at most
n — 1, so that all the finite singular points of L are regular.

Note that the condition about relatively prime orders is obviously essential:
if we omitted it there would be trivial counterexamples to the theorem where
L = P, or more generally L and P are both polynomials in some operator of
lower order.

It is easy to see (for example by conjugating L into D™ by a formal integral
operator as in §4) that any operator P that commutes with L is some linear

combination
N
P = Z CTL:_/H
0

of the operators P, occurring in the definition of the n-th KdV hierarchy. For
each fixed sequence of constants {c,}, the stationary KdV equation [P, L] = 0 is
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a system of ordinary differential equations for the coefficients {ug, ... ,un—2} of
L. Let us call such an equation (or the corresponding P) admissible if there is
some index r relatively prime to n with ¢, # 0. For example, if n is prime, then
every non-trivial stationary KdV equation is admissible. If P is admissible,
then the algebra generated by L and P contains operators or order relatively
prime to n. Thus (6.10) can be formulated as follows: every solution {u;} of
an admissible stationary KdV equation is of the kind stated in the conclusion
of (6.10).

Theorem 6.10 will follow from (5.18) if we show that every operator L sat-
isfying the hypotheses is of the form L,, for some W € Gr™ arising from an
algebraic curve. This is well known, and is proved in [16, 21}; however, for com-
pleteness we give a self-contained proof, following the approach of Burchnall
and Chaundy [4].

Proposition 6.11. If L and P are commuting differential operators as in
(6.10), then:

(i) There is an irreducible polynomial F € C[¢,n] of the form
F=¢m+...£9"
such that F(L,P) = 0.

(i1) For all but a finite number of points (A, u) of the affine curve Xr whose
equation is F'(\, p) = 0 there is a unique common eigenfunction oy , of
L and P such that @ ,(0) = 1:

Loy =Xoxu,  Poru = toau-
For any x € I, o ,(x) is a meromorphic function on the curve Xr.

(i11) For x € I the formula Baker functions ¥, (z,z) and Yp(x,2) of L and P
both converge for large z, and then

Y. (z, )\1/”) = 2J’lr’(i’?uul/m) = 90/\.;1(5”)‘

(Notice that \/™ and u'/™ are local parameters at the point at infinity
Of XF )

We begin by proving assertion (i). For any A € C let V) be the n-dimensional
vector space of solutions of Ly = Ap on I. A basis for V) is given by the

functions ¢;(z,A) for 0 < 4 < n such that <p£j)(0, A) = d;;. Notice that for any
¢ € V) and any k we have

n—1
0" (0) = Zpki(/\)w“’ (0)

where the pg;()) are polynomials independent of ¢.
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The operator P maps V) into itself. In terms of the basis {y;} the action
of P on V) is given by an n x n matrix Py of polynomials in A. Let F(A, p)
be the characteristic polynomial det(u — Py). It is not hard to see that F'(\, u)
is a polynomial of degree m in A: in fact one can show that (up to sign) it
is the same as the polynomial obtained by reversing the roles of P and L in
the construction. Thus F' has the form stated in (i). Consider the differential
operator F(L,P). There is at least one solution of F(L,P)p = 0 in each
V. As a differential operator can have only finitely many linearly independent
solutions, this implies that F'(L, P) = 0. But the same argument shows that if
G is any factor of F then G(L, P) = 0; so F must be a power of an irreducible
polynomial. As F'(A,u) contains the monomials A™ and u”, the power must
divide both n and m. But these are relatively prime, so F' must be irreducible.

We next prove assertion (ii). Because the polynomial F is irreducible there
are, for all but finitely many values of A, n distinct solutions p of F(A, ) =
0. For each of these values of u there is (up to a scalar multiple) a unique
eigenvector ¢y , of Py in V) with eigenvalue p. We can choose it so that its
coordinates with respect to the basis {¢;} of Vi (i.e. its derivatives at 0) are
polynomials in A and p: for example we can take the coordinates to be the
cofactors of any row of the matrix p — Py. The value of ¢y, at 0 cannot vanish
identically, for the eigenvectors of Py must span V) for almost all A. This
permits us to normalize ¢y, so that ¢y ,(0) = 1, except at a finite number of
points (A, p). The derivatives cpf\l)u(O) will then be rational functions of A and p.

To see that ¢y ,(z) is meromorphic on Xp we observe that

n—1
oau(@) = Do (0)pi(z,N).
1=0

(Note that p;(z, A) is an entire function of A.)

To prove (iii) we first observe that not only do we have Ly, = 2™y, by
definition, but also Py, = u(z)y,, where u(z) is a formal power series belonging
to the field C((271)) of formal series of the form Zf;_m a;z*. To see this, choose
K asin §4 so that K~'LK = D". Then K~!PK commutes with D", and so
must be a formal pseudodifferential operator u(D) with constant coeflicients.
Thus PK = Ku(D). Applying both sides to e** gives Py, as Ke** =),.

Now we adopt the following point of view. The operators L and P can be
thought of as acting on the vector space of jets of functions (of z) at the origin:
in other words we replace functions ¢ by sequences {¢(9(0)};>o. Consider
the vector space J of formal jets whose components ¢(¥)(0) belong to the field
C((z71)) of formal series. The operator L — 2™ acts on J, and has an n-
dimensional kernel Ji spanned by the jets of the functions ¢;(z, 2™) already
mentioned. (Recall that <p£] )(O, 2™) is a polynomial in 2z".) Now formal series
of the form €%} ax(z)z~* define jets in J, and the jet of 1, belongs to Jy.
Furthermore P preserves Jy,, and Py, = pu(z)y,. On the other hand we already
know that the unique eigenvectors of P in Jr, when normalized at 0, are the
jets of @y ., where A = z", and p runs through the n roots of F(A, u) = 0,
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which are distinct for large A. This proves that wﬁ“(o, z) = cpgin)’ﬂ(z) (0) for some

point (2", 1u(z)) € Xp, and hence that the series wﬁ”(o,z) and u(z) converge
for large z.

In the preceding discussion the role of the origin could have been played by
any point zp € I. Thus we can conclude that if a formal Baker function ¢, 4,
is calculated at zg then

(%) — A0 Toz -1
Lo (Z0,2) = ‘PA,#(-'EO)G @an(o)
(The factor e*0%g) ,(zo)~! on the right occurs because ¢, ,, is normalized by
Yr,z0(T0,2) = €%°%.) The space Wy, € Gr'™ defined by ¢, 4, is therefore
related to the space W defined by . by

Wzo = ezoz(pz“,u(z) (xU)‘l w.

But e™%°*,n ,(;)(20) does not vanish for large z, and so (after scaling, if nec-
essary) it defines an element ~ of the group I'_. Thus W, and W define the
same meromorphic differential operator. The jets of its coeflicients coincide
with those of L at zo and 0 respectively. This proves (iii).

Remark 6.12. Notice that we have proved that L arises by Krichever’s construc-
tion from the curve Xr and the torsion-free sheaf £ whose space of sections
over Xr \ {oo} is the space W28 generated by the cpgf)“(O). In particular, this
proves (6.10). It is not hard to show that the fibre of L at any point (A, ) of

X is canonically isomorphic to the joint (A, u)-eigenspace of L and P.

Remark 6.13. We believe that theorem 6.10 is “well known” (except possibly
for the assertion about the orders of the poles), but our proof seems to be the
first complete one available. Krichever [10] noted that “most” of the solutions
(that is, the ones coming from non-singular curves X) of the stationary KdV
equations are globally meromorphic; our proof is essentially the same as his
except that he used the theta function of X where we use the more general
7-function (see §9 below). It might be interesting to give a direct algebro-
geometric proof of the theorem, presumably by introducing suitable “theta
functions” for singular curves. However, we note that one would have to define
a theta function, not merely for each singular curve, but for each orbit of the
Jacobian of such a curve acting on the space of maximal torsion free sheaves.

7 Rational Curves

We recall from §2 that Gr; is the subspace of Gr consisting of spaces W such
that
pH, CW Cq *H,

for some polynomials p, g, and that p and ¢ can be chosen so that all their roots
lie in the region |2| < 1.
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Proposition 7.1. The construction described in the preceding section gives a
one to one correspondence between spaces W € Gry and isomorphism classes of
data (X, L, Zeo,2,p) as in (6.2) such that

(i) X is a rational curve
(ii) z is a rational parameter on X

(iii) ¢ extends to an algebraic trivialization of L over some Zariski open set
containing the disc X .

Before giving the proof, we clarify the term “rational parameter”. The curve
X being rational means that there is an algebraic map f from the Riemann
sphere to X which is an isomorphism outside the inverse image of the singular
set of X. We can choose f so that f(co) = 2. By arational parameter z on X
we mean the inverse of such a map f in some neighbourhood of z,: note that
its domain in fact extends to the whole non-singular part of X. Note also that
the rational parameter is uniquely determined up to a linear change z — az+b:
for any two of them differ by a birational, hence genuine, automorphism of the
Riemann sphere preserving oo, which must be linear.

Proof of (7.1).
(i) Let W € Gry, and let p and g be polynomials as above. Let W2 and Ay
be as in the proof of (6.2). Clearly we have

pClz] € W C ¢~'C[z), (7.2)

from which it follows easily that pgClz] C Aw C (pg)~'Clz]. Since Aw is a
ring, we have in fact
pqClz] C Aw C C[z].

Thus the inclusion of Aw in C[z] induces an isomorphism of quotient fields;
that shows that the curve X \ {zo} = Spec Aw is rational, and that z is a
rational parameter on X. From (7.2) it is clear that the Ay -module W28, and
hence also the corresponding sheaf £ on X, has rank 1. It remains to prove (iii).
Let 2o € C; then evaluation at zq gives a map e(zp) : W2% — C which is defined
provided that z¢ is not a root of ¢, and non-zero provided that zy is not a root
of p. Let Py be the point of X corresponding to zp, and let m C Aw be its
maximal ideal. Then e(zo) defines a map from the fibre W2/8/mW 28 of £ over
Py to C, which is an isomorphism provided that zq satisfies the two conditions
above and that Py lies in the open set of X over which L is a line bundle. That
completes the proof that W gives rise to algebro-geometric data of the kind
stated in the proposition.

(i) Conversely, suppose we are given data (X, L, T, 2, ) of the kind listed
in the proposition: we have to see that the corresponding W belongs to Gr;.
Let B C X be the finite set of points over which ¢ is not defined. If necessary
we enlarge B to include all the singular points of X. Let {z1,...,z.} C C
be the inverse image of B under the map f : s> — X whose inverse is the
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parameter z. Then we can identify the sections of L over X \ B with the sec-
tions of a trivialized line bundle over S2\ {z1,... ,2.}. Thus W#&, which is the
space of sections of L over X \ {z }, is identified with a subspace of the space
F(z1,...,2r;—v1,...,—V,) of rational functions of z that are holomorphic ex-
cept for poles of prescribed orders v; at the points z;. More precisely, W2 is
the subspace of F(z;,—v;) consisting of all functions whose Laurent series at
the points z; satisfy some finite set of linear conditions. These conditions are
certainly satisfied by all polynomials that vanish to suitably high orders p; at
the points z;. It follows that if we set p = [[(z — 2z;)*¢, ¢ = [[(z — 2z;)*, then
we have
pClz] C W2 C ¢71C[2].

Passing to the L? closures, we find pH, C W C ¢~ 'H,, as required. O

Next recall that Grg is the subspace of Gr; consisting of spaces W for which
the polynomials p and ¢ can be taken to be powers of z. If we follow through
the above proof in that case, we obtain the following.

Proposition 7.3. The construction described in §6 gives a one to one corre-
spondence between spaces W € Grg and isomorphism classes of data
(X,Zoo,2,L,0) as in (6.2) such that

(i) X is a rational curve with just one irreducible (i.e. cusp-like) singularity

(#) z is a rational parameter on X such that the singular point zo corresponds
toz=0

(i4i) ¢ extends to an algebraic trivialization of L over the whole non-singular

part X \ {zo} of X.

The term “irreducible” in (i) means that when we resolve the singularity
we still get only one point, so that z is in fact a bijection between X and the
Riemann sphere. Note that z and ¢ are now both uniquely determined up to
multiplication by non-zero constants. The fact that ¢ is unique means that the
correspondence between spaces in Grg and solutions to the KP hierarchy is one
to one. Indeed it is easy to see directly that if W € Gry and « is a function of
the form 1+ c;271 + ..., then YW cannot belong to Grg unless v = 1.

The subspaces W € Grg provide many simple examples of maximal torsion
free sheaves that are not line bundles. Indeed let W = Hg, where S C Z is a set
of virtual cardinal zero. Then W € Gry, and we claim that the corresponding
maximal torsion free sheaf is seldom a line bundle. Here W28 is the vector
space spanned by {2*}ses. Let R be the semi-group of strictly positive integers
r such that S +r C S. Then Aw is the algebra spanned by 1 and {z"},¢r,
and the maximal ideal m of Ay corresponding to the singular point z = 0 is
spanned by {z"},cr. The dimension of the fibre W28/mW /% of the sheaf L
over the singular point is thus the number of elements of S\ S’, where we have

set
S'=J(S+r).

reR
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Unless this number is 1, the maximal torsion free sheaf L is not a line bundie.
The simplest example is when S = {-1,0,2,3,...}; then R = {3,4,5,...} and
S' ={2,3,...}. In this case the dimension of the singular fibre of L is 2. Note
that since the algebra Aw = C[2%,2*, 2°] needs more than two generators, the
singularity here is not planar: this conforms with our observation in §6 that in
the planar case every maximal torsion free sheaf is a line bundle.

The case n =2

In general, the isomorphism classes of data listed in (7.3) are hard to classify.

However, if we confine ourselves to the case of Grgf), then many simplifications
take place: perhaps the most important is that the orbits of the group I'; in
GréQ) coincide with the cells in the cell decomposition described in §2. Here we
give a brief description of the situation, leaving most of the (easy) proofs to the
reader. For simplicity, what follows will refer only to the component of Grgz)
consisting of spaces of virtual dimension zero.

We recall from §2 that Gr((]z) has a cell decomposition with cells indexed by
the sets S € 8 such that S+ 2 C S. It is easy to see that the only such S are
the sets Sy given by

Sk={-k,~k+2,-k+4,... . k,k+1k+2,...}.

We denote by Cj the corresponding cell in Gr(()z); it has complex dimension k,
and consists of all W of virtual dimension zero such that z*H, Cc W C z=*H,
and k is the smallest number with this property. It is not hard to see directly
that these W form a k-dimensional cell: such a space W contains elements w
of the form

—k+1 k—1

w:z‘k+a1z + ..+ ag-12" 7,

and {w,2%w,...,2%*"2w} is then a basis for W/z*H,. Thus w determines
W uniquely. The converse is not true; however, the coefficients «; can be
normalized in various ways, of which the most convenient for us is the following.

Lemma 7.4. Each W € Cy contains a unique element w of the form

w=z"Fexp(arz + a2’ + ... 4+ a2 1),

The correspondence W « (ay,...,ax) gives us an explicit isomorphism of
the cell Cy, with C*; the centre of the cell (corresponding to the origin in C¥) is
the space Hg,, which we shall denote simply by H. It is clear from (7.4) that
the subgroup {exp(tz?"~1)} of I';. acts on C}, by translating the r-th coordinate
ar. In particular, we see that C} is precisely the orbit of Hy under T'.

It is interesting to see how this description of the orbits of I';. fits in with the
algebrogeometric one implicit in (7.3). The main points are as follows. First, if
W = Hj, then A,y = C[22,22%1] = Ay, say. Let Xj = (Spec Ax)U{z} be the
corresponding complete curve, and let Ji be the Jacobian of X (parametrizing
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line bundles of degree zero). If we use the point z, to identify the spaces of line
bundles of different degrees, then the torsion free sheaf over X} corresponding to
the space Hy is the neutral element in J; indeed, it is clear that H,":Ig =2"%4,.
Hence the orbit of Hy under I'y, that is, the cell Ci, can be identified with the

Jacobian Ji. The fact that the cells Cy exhaust Gr((,2) implies that the curves

Xy are the only ones that arise from a space W € Gr((,2), and also that every
maximal torsion free sheaf over one of the curves X; is a line bundle. Both of
these facts can be seen directly: it is easy to show that the A are the only
subalgebras of C[z] containing 2% and also an odd power of z; and, as we have
observed before, the assertion about the sheaves is true for any curve with
planar singularities (a simple proof that covers our present case (X degenerate
hyperelliptic) can be found in [8]; in fact the assertion for singularities of the
type y™ = =™ is implicitly contained in [4(c)]). To see directly that J is a k-
dimensional cell, we can use the exponential sheaf theory exact sequence: since
H'(Xy,Z) = 0, this gives an isomorphism H(X},0) = Ji. The dimension k
of the vector space H'(Xy,0) can be calculated as the number of “gaps” in
the ring Ay, that is, the number of positive integers r such that Ay does not
contain a polynomial of order r. The algebras A are invariant under z — cz,
which implies that the pairs (X, cz) for different ¢ # 0 are isomorphic, so that
the scaling transformations can be viewed as flows on the Jacobians Ji. Indeed,
from (7.4) we see that the scaling flow on the cell Cy is given by

Ri(ai,...,ar) = A\ lay,..., A" 2 Hg,).

Finally, it is interesting to consider the closure Cj of the cell Cy: this the

union of all the cells C, with r < k. Alternatively, Cj consists of all W € Gr(()z)
such that AW C W. Hence each point of C; determines a torsion free sheaf (in
general not maximal) over Xy; in fact we get a bijective map Cy ~ M}, where
M;, is the moduli space of rank one torsion free sheaves of some fixed Euler
characteristic over X} (see [7]). The closed cell Cy is an algebraic variety, for it
is an algebraic subset (given by the condition z?W C W) of the Grassmannian
of k-dimensional subspaces of z~*H, /z* H, , and it is fairly clear that the above
construction gives us an algebraic family of sheaves over Xj: that implies that
the bijection Cy — Mj is an algebraic map. Unfortunately, we cannot assert
that it is an isomorphism of algebraic varieties: for example, C; is a one-
dimensional projective space (non-singular), whereas M; is isomorphic to the
curve X1, which has a cusp. (We do not know a precise reference for this fact,
but P. Deligne and T. Ekedahl have kindly pointed out to us that it follows
easily from (2.6.1) in [24].) In general, we expect that Cj is the normalization
of My. The inclusion Ay C Ax_; induces a map Xx_1 — Xk, and hence (taking
the direct image of sheaves) a map M;_1 — M. This map corresponds to the
inclusion Cx_; C Cg, and identifies My_; with the boundary of My, that is,
with the space of torsion free sheaves over X} that are not line bundles.

The solutions to the KdV equations corresponding to the points of Gr((f)
have been much studied (see [1, 2]): the cell Ci corresponds to the solutions to



448 Segal and Wilson

the KdV hierarchy flowing out of the initial value
u(z,0,0,...) = —k(k+ 1)/z%.

(This is the initial value defined by the space Hy, as will become clear in §8,
when we describe the 7-functions of the spaces Hg.) It is known that these
exhaust the rational solutions to the KdV hierarchy that vanish at z = oo.

8 The r-function and Schur functions

We have already given explicit formulae (3.4) and (3.5) for the 7-function as
an infinite determinant. It is useful for some purposes to make the formula
even more explicit by expanding the determinants in a certain way: the result
is that the T-function can be written as an infinite linear combination of Schur
functions.

We begin by reviewing the basic definitions concerning partitions and Schur
functions (for more details see, for example, [13]). By a partition we mean an
infinite sequence v = (vg,v1,V2,...) of non-negative integers such that vy >
v; > v > ... and all except a finite number of the v; are zero. The number
lv| = 3 vy is called the weight of v. To each partition v there is associated a
Schur function F,. This is a polynomial with integer coefficients in a sequence
of indeterminates (hi,hg, hs,...); it is homogeneous of weight |v| when h; is
given weight . One way to define it is as the r x r determinant

F,,(h) = det(hui—i+j)v (0 < 7'1.7 <r-— 1)

where r is any number sufficiently large so that v; = 0 for ¢ > r. Here it is
understood that hg = 1 and h; = 0 for 7 < 0; it is clear that the value of the
determinant does not depend on the choice of r. One reason for the impor-
tance of Schur functions is that they are characters of the general linear groups
GLN(C): to each partition v there corresponds an irreducible representation of
GLnN(C) (for any large N), and its character x, is given by x,(4) = F,(h),
where

1+ ) hiz' = {det(1 — A2)}7%,
1

that is, the h; are the “complete homogeneous symmetric functions” of the
eigenvalues of the matrix A. In our context, however, the Schur functions arise
in a purely formal manner, and the representations of GLnx(C) do not seem to
be relevant.

Let 8¢ denote the set of all subsets S C Z of virtual cardinal zero (see §2);
that is, 8¢ consists of all strictly increasing sequences S = {so, 51, $2,...} of
integers such that s; = ¢ for all except a finite number of indices 1.

Lemma 8.1. There is a one to one correspondence between elements of 8¢ and
partitions, given by S ¢ v where v; = i — s;.
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The proof is trivial. Notice that the weight |v| of a partition is equal to
the length ¢(S) for the corresponding S; that is, it is the codimension of the
stratum Y ¢ of Gr. In what follows we shall write Fs for the Schur function of
the partition corresponding to an element S € 8.

Recall from §2 that if S € 8y, then Hgs € Gr is the closed subspace of H
spanned by {z%}5cs-

Proposition 8.2. Let W = Hg, where S € 8. Then the T-function of W 1is
given by
Tw (g) = FS(h)

where we have set

Proof. We use the formula (3.4). As an admissible basis for Hg, we choose
w; = z% where S = {sg,$1,82,...}. Also, the map (a,b) : H — H, is just
f = (fg7')+, where the subscript + denotes orthogonal projection onto H, .
Thus if g~! is expanded as in the statement of the proposition, it follows at
once that the matrix of the map awy +bw_ : Hy — H, is

(hj—s:) = (Ri—si)—itj), (6,5 €N).

Since s; = 1 for large 7, this matrix is strictly (that is, with 1’s on the diagonal)
upper triangular apart from a finite block in the top left corner. The matrix of
the map a : Hy — H, is strictly upper triangular, so it follows easily that the
T-function

det(wy +a tbw_) = deta ! (awy + bw_)

is equal to the determinant of this finite block. That proves the proposition. O

Now let W € Gr be any space of virtual dimension zero. Fix an admissible
basis w = (wop, w1, ...) for W. As in §3, we think of w as a Z x N matrix, using
the natural basis {z*} for H. For each S € 8, let w® be the determinant of the
N x N matrix formed by extracting from w the rows indexed by the numbers
s € S; that is, if w; = Y w;;z%, we set

wS = det(wij)iesyjeN.

We call the numbers {w®} the Pliicker coordinates of W: they are homogeneous
coordinates (a different choice of admissible basis for W multiplies them all by
the same non-zero constant). As in the finite dimensional case, the Pliicker
coordinates can be regarded as giving a projective embedding of the Grassman-
nian (see the appendix §10 below). Notice that w® is non-zero precisely when
W is transverse to H: indeed, w? is just the determinant of the orthogonal
projection W — Hg with respect to the bases {w;} for W and {z° : s € S} for
Hg. In particular, by (2.5), there is a unique S of minimal length such that
w5 # 0. If we choose w so that w, has the form 1 + (finite rank), then the w?
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reduce to finite determinants. For example, if W is transverse, we can choose
w so that wy =1, and then if we set S\ N = A4 and N\ S = B we have

w® det(wij)ieA,jeB.
Proposition 8.3. The 7-function of W 1is given by
Tw(g) = Zwst(h),
S

where {w®} are the Pliicker coordinates of W, the sum is taken over all S € 8,
and the variables h; are related to g as in (8.2).

Proof. We first observe that if v and w are mxn and n X m matrices respectively,
with n > m, then we have

detvw = Z vgw?®,

where the sum is taken over all subsets S C {1,2,...,n} with m elements, vg
is the determinant formed from the columns of v indexed by the elements of
S, and w® is the determinant formed from the corresponding rows of w. (This
identity simply expresses the functoriality of the m-th exterior power.) It is not
hard to see that the identity extends to a product of infinite matrices, indexed
by N x Z and Z x N, of the form

(v20-) (%)

where v4 — 1, w4 — 1, v_ and w_ are all of trace class and S runs through the
indexing sets S C Z of virtual cardinal zero.
We apply this to the determinant (3.4) giving the r-function, with

(vy,v-) = (1,a7'b).

Then w* is the Pliicker coordinate defined above and vg is the 7-function of
Hg, which we calculated in (8.2). That completes the proof. O

As we saw in §5, for the application to differential equations we have to
write the elements of I'; in the form

g(z) = exp (z tizi>
1

(we write t; where we wrote z in §5). We shall write 1, (t) for the 7-function
expressed in terms of these “coordinates” on I'y: to calculate 7y (t) from (8.2)
or (8.3), we have only to substitute the variables #; for the h;, using the relation

exp (— i t,-zi) =1+ i hizt. (8.4)
1 1
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Each ¢4 is a polynomial in the h;, homogeneous of weight k if we give h; weight
i. If we regard the h; as symmetric functions of the eigenvalues {};} of a matrix,
as above, then the ¢, are given by

—kty =) A
J

(this differs by a sign from the convention adopted in [5]).

Example. Let S = {~1,0,2,3,...}. The corresponding partition is v =
(1,1,0,...), so the Schur function is

_ hi ha\ _ .,
Fs(h) = det ( 1 h1> = hi — ha.
From (8.4), we have hy = —t1, hy = 3t} — ¢, so by (8.2) the 7-function of the
space W = Hg is
1
Tw (t) = =t + t,.
2
We end this section with some examples of the use of (8.3). First, note that
it is clear that W has only finitely many non-zero Pliicker coordinates if and

only if it belongs to Gro; hence we can read off from (8.3) the following.

Proposition 8.5. The function 7 (t) is a polynomial in (a finite number of)
the variables (t1,ta,...) if and only if W belongs to Gry.

As a more substantial application of (8.3), we shall prove the assertion (5.17)
about the orders of the poles of the functions a;(z,t%). We shall continue to
write ¢; instead of z. The crucial ingredient in the proof is the fact that the
restriction of the 7-function to the one parameter subgroup exp(¢;z) of 'y
cannot be identically zero. More precisely, we have the following.

Proposition 8.6. For any W € Gr, we have
Tw(t1,0,0,...) = ctt + (higher terms),
where ¢ # 0 and £ is the codimension of the stratum of Gr containing W),

In particular, the proposition shows that the 7-function cannot vanish iden-
tically, a fact that we used implicitly throughout §5.

Proof of (8.6). We first consider the behaviour of a Schur function Fs when we
set to =t3 = ... = 0. Since Fs is a homogeneous polynomial of weight £(S) in
the ¢;, it is clear that we have

Fs(t1,0,0,...) = dstf(s)

(*) Added in proof. J. Fay has independently proved an equivalent result in the case when
W arises from a Riemann surface. (See his paper “On the even-order vanishing of Jacobian
theta functions”, Duke Math. J., 51 (1984), 109-132, thm 1.2.)
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where dg is some rational number. We claim that this number is non-zero.
Indeed, ds is equal to (—1)4(5) times the reciprocal of a certain positive integer,
the “product of the hook lengths” of the partition associated to S (see [13],
p. 37, ex. 3). Explicitly, we have

(-1)"Sdg = ] (s5 -5/ [J(n - 53)!

i<j<n i<n

where n is any number large enough so that s,, = n + 1, and as usual S =
{s0, 81, ...} (see [13], p. 9, formula (4)). We have already observed that for any
W € Gr, there is a unique S of minimal length £, say, such that the Pliicker
coordinate w* is non-zero; this S is the index of the stratum containing W, and
£ is the codimension of the stratum. That means that in the expansion (8.3)
of 7, all the terms have weight at least ¢; and the terms of minimal weight ¢
form a non-zero multiple of a single Schur function Fs. Thus the proposition
follows at once from (8.3) and the fact that dg # 0. a

Proof of (5.17). Replacing W if necessary by gW for suitable g € 'y, we see
that it is enough to consider the case where the pole is at the origin t = 0. We
already observed in §5 that the functions a; are quotients of the form

a; = Pr/T

where P; is a polynomial differential operator in {9/8tx}; indeed, P; is the
coefficient of z~% in the formal expansion of the expression

exp[ 5L

1

ﬁlr—l

r(0/8t,) ] .

It follows at once from this that the operator P; lowers weight by 7 (where, as
always, t; has weight k). Thus in the power series expansion of the numerator
P;7 in the expression for a;, only terms of weight at least £ — i can occur. (If
£ — i < 0, this statement is vacuous.) Hence when we put t2 =t3 =... = 01in
the numerator, the lowest power of ¢; that can occur is t{“i (any terms involving
a lower power of ¢; must also involve a higher t;, and hence vanish when we set

ta = ... = 0). Proposition (5.17) follows at once from this and (8.6). In fact
the argument shows also that the order of the pole of any a; cannot be more
than £(1). O

9 The 7-function and the theta function

Let X be a compact Riemann surface of genus g, and let J be the Jacobian of
X: it is the identity component of the group H!(X,0*), where O is the sheaf

(1) Added in proof. According to G. Laumon (private communication) the order cannot be
more than —sg.
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of holomorphic functions on X. We set U = H(X,0) and A = H!(X,Z). The
map f — e/ induces a sheaf homeomorphism O — 0% with kernel 27iZ, from
which we get the exact sequence

0>>A>U—->J—>0

(the kernel is really H'(X,2miZ), but we identify this with H*(X,Z) in the
obvious way). We recall that U is a g-dimensional complex vector space, A is
a lattice in U, and J = U/A is a complex torus.

We denote by B : U x U — C the unique Hermitian form whose imaginary
part is the R-bilinear extension of the intersection pairing A x A — Z. We fix
a quadratic form ¢q : A = Z/2Z such that

gA+ ) —g(A) —q(p) =A-p  (mod 2),

where A - p is the intersection pairing. Then the theta function of X (see, for
example, [15]) is the holomorphic function § : U — C defined by

O(p) = Z (_1)q(>\)e—%7rB(A,,\+2u)'
AEA

It is characterized (up to a constant factor) by the functional equation
B(u+ ) = (—1)1NermBOA+2Ug(y) 9.1)
(for u € U, X € A). It follows at once that we have
B(u + A) = CO(u)(\)e™ B

(where C = 6(0)~!). We shall use the fact that this relation too characterizes
the theta function up to certain simple transformations. More precisely, we
have the following.

Lemma 9.2. Let § : U — C be a holomorphic function such that
6(u+ 2) = CO(u)F(N)e™ B

for allu € U, A € A, and some (non-zero) constant C. Then we can find a
constant A, a C-linear map o : U — C and a point B € U such that

6(u) = Ae*™G(u — B).

Proof. Set .
_ CB(u)
Gu) = Cou)
Then G(u+ A) = G(u)G()), and the restriction of G to A is a homeomorphism
A — C*. Choose an R-linear map v : U — C such that G(\) = e"™ for
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A € A. Splitting v into its C-linear and C-antilinear parts and using the non-
degeneracy of the form B, we see that there are « and 3 as in the statement of

the lemma such that
G()) = (M) —mB(),8)

for A € A. If we set H(u) = e~*f(u+ B8)/8(u), then H(u+ ) = H(u) for all
A € A; hence the holomorphic function

01(u) = e‘a(“)é(u + )

satisfies the same functional equation (9.1) as the theta function, and must
therefore be a constant multiple of it. The lemma follows. O

Remark 9.3. Obviously, the constant A is uniquely determined by 8. The « and
[ are not quite uniquely determined, because the map vy occurring in the proof
of the lemma is determined only up to addition of a map 7y with v(A) C 2miZ.
However, it is easy to check that this would change the corresponding 3 only
by a lattice point, so the projection of 8 onto the Jacobian U/A is uniquely
determined. Also, a is uniquely determined once we have chosen S.

The 7-function is a function on the group I'y ; our next task is to explain how
we can regard the theta function too as defined on I'y, so that it makes sense
to compare the two functions. We fix a point z,, € X and a local parameter
z as in §6. We shall use z to identify X C X with the disc Do, = {|2| > 1}
in the Riemann sphere. We denote by V the vector space of all holomorphic
maps f : Dg — C with f(0) = 0. As in §5, we identify V with ' via the map
f — ¢/, and we shall regard the 7-function as a function on V. Now, any f € V
(indeed, any holomorphic function on S!) can be regarded as a cocycle for the
Cech cohomology group H!(X,U), where U = {Up,Us} is an open covering
of X as in the proof of (6.1). Using again the fact that we can calculate the
cohomology of X from any such covering, we get a surjective homeomorphism

V - HY(X,0)=U.

Thus if K denotes the kernel of this map, we can regard the theta function as
a Ky-invariant function on V. Now, K| is the linear subspace of V consisting
of all functions k£ € V which can be written in the form k = kg + koo, where kg
and ko, are holomorphic functions on Xy and X, respectively; the splitting is
unique if we normalize koo 80 that koo (00) = 0. We denote by V the vector space
of all such maps ko,. Let K be the kernel of the composite map V — U — J;
it consists of all functions k¥ € V such that there is a factorization (necessarily
unique)

ef = ppeke (9.4)

where koo € V and ¢4 is a non-vanishing holomorphic function on Xg. Clearly
K/Ky = A, so that Ky is indeed the identity component of K, as the notation
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suggests. In the proof of (9.10) below we shall give an explicit description of
the integral cohomology class corresponding to an element k € K.

We now fix a line bundle L of degree ¢ over X and a trivialization ¢ as in
§6; let W € Gr be the corresponding space. For simplicity we assume that W
is transverse and that the function 7 = 7, : V' — C is normalized as usual by
7(0) = 1. The 7r-function is not usually Ky-invariant: however, we show next
that a simple modification of it is. We define a map a: K — V by a(k) = keo,
where ko is as in (9.4). Clearly a is a homeomorphism, and its restriction to
Ky is a C-linear map.

Lemma 9.5. Let f € V, k € K. Then we have
7(f +k) = 7(H)7 (k)51

where S is the multiplier relating the actions of 'y and I'_ on the bundle Det*
(see (3.6)).
Proof. By the definition of the r-function (see (3.2)), we have

r(f + ke~ Ro(W) = a(e F*W). (9.6)

From the definition of W, it is clear that oW = W, so we have e *W =
e~*®W for k € K. Using this and the fact that o is I'_-equivariant (see (3.7)),
we find

r(k)e *o(W) = e~ B g(W). (9.7)
The right hand side of (9.6) is equal to
e~ Fg(e™ W) = 7(fle”*Pe~fo(W) = 7(f)eS@kHe=f o) (7).

Inserting (9.7) into this and canceling the non-zero vector e~f~*a (W), we get
the lemma. O

If we apply (9.5) when both f and k belong to K, we find that
S(a(k),£) — S(a(f),k) € 2miZ

for all k,# € K. Extend a to an R-linear map V — V; since K spans V over R,
the extension is unique, and we have

S(a(f),g) — S(alg), f) € iR (9.8)

for all f,g € V. Write a = b+ ¢, where b is C-linear and c is antilinear. Then
(9.8) implies that

S(b(f),9) = S(b(9), f),

5(c(f),9) = S(c(9), f)
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for all f,g € V. Since a|Kj is C-linear, we have ¢(Kp) = 0; thus ¢, and hence
also the Hermitian form (f, g) — S(c(f), g9), are well defined on U = V/K,. Set
m1(f) = 7(f)e~25®().f), Then from (9.5) we have

n(f + k) = n(f)r(k)eS®,

In particular, the restriction of ; to Kg is a homeomorphism K¢ — C*. Choose
a Clinear map  : V — C such that 7, (k) = €”®) when k € Ky; set 7(f) =
m(f)e= "), Then 7o (f + k) = 7 (f) for k € K. Thus 75 is well defined on U,
and it satisfies

To(u + A) = o (u)me(N)eSER)w) (9.9)
for A € A = K/Ky. But now we have the following crucial result.

Proposition 9.10. For all k¢ € K, we have
S{c(k), €) — S(c(f), k) = 2milk] - [£],
where [k], [f] denote the classes of k, € in the group K/Ko = A = HY(X,Z).

The proposition shows that the Hermitian form occurring in the exponent
in (9.9) is 7 times the form B occurring in the definition of the theta function.
We can therefore apply (9.2) to obtain the main result of this section.

Theorem 9.11. The T-function 7w : V — C is related to the theta function by
7w (f) = AW N+ 2SCWNDG(F — p,, ),

where A is a constant, ay, : V — C is a linear map, By, is a point of U, and f
denotes the projection of f onto U = V/Ky.

Remarks

(i) Note that the quadratic term 1S(b(f), f) depends only on X and z.

(ii) By (9.3), the projection of 8y onto the Jacobian J is uniquely determined
by W. If W moves according to one of the KP flows, then 3, moves along
the corresponding straight line in J.

(iii) There seems no point in trying to be more explicit about the map a,since
it depends on the choice of trivialization ¢ (see (3.8)).

It remains to give the proof of (9.10). For this we fix a basis A = {a, 8},
1 <i<g, for H(X,Z) of the standard kind, that is, such that a; - 8; = 1
and all other intersections are zero. We can then regard the Riemann surface
X in the classical way as a quotient of a polygon Y with 4g edges arranged in
groups of four (a;, B;,a; ', B8 ') (we get X from Y by identifying the two edges
corresponding to each element of A). We suppose Y chosen so that the disc
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Xo in X corresponds to a small disc Y, in the interior of Y; let Y be the
complement of the interior of Yo,. If k € K, then k = ky + ko, where kg and
ke are functions on Yy and Y., respectively. Now, efo = ¢ is a function on
X: that means that the values of kg at corresponding points of the two edges
of Y corresponding to a generator v € A differ by an integer multiple of 274,
say by 2min(k,~y). The cohomology class defined by k is then given by

K] = > n(k,7)v*

YEA

where {y*} is the basis of H(X,Z) = A dual to A.
Now, we have

S(c(k),€) — S(c(€), k) = S(a(k), ) — S(a(t), k)
1

- E — k).
5 Sl(f oo~ klo)

After a short calculation we find that this is equal to

1

— kofy.

27 Jor 00
Since ko and £y are holomorphic functions on Y;, we can replace S' by the
boundary of Y in this integral. The contribution to the integral of a typical set
of four edges

a; Bi a; ! B; !
[e; O

can be reduced to an integral over the middle pair (8;,a;*): we obtain
n(kaﬂl) 26 +n(k7ai)/ el = 27['1:{—71(]6,[31;)77,(6, ai) +n(k,ai)n(£7ﬁi)}'
Bi a;

Summing over ¢ and using the fact that the intersection matrix of the basis
{a}, B¢} is the same as that of {«;, 3;}, we see that the integral is indeed equal
to 2mifk] - [4].

The Baker function and the theta function

If we combine (9.11) with (5.14), we obtain a formula expressing the Baker
function (of a space W arising from a Riemann surface) in terms of the theta
function. As we mentioned in the introduction, such a formula is well known
in the Russian literature (see, for example, [10, 11, 36]). However, it is perhaps
not immediately obvious that the Japanese formula (5.14) coincides with the
Russian one: so at the suggestion of the referee we end this section by offering
a fairly detailed comparison of the two formulas.
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The Russian formula is expressed in terms of the classical Riemann theta
function, whose definition involves a choice of canonical homology basis {a;, 5;}
as in the proof of (9.10) above: we suppose such a basis fixed from now on.
The classical theta function is a function on the dual space R* of the space R
of global holomorphic differentials on X; but R* is usually identified with C?

via the basis
{w > / w} , wWER.
ag

On the other hand we have the natural pairing
HY(X,0)® H°(X,Q) - H'(X,Q) =C,

where 2 is the sheaf of holomorphic differentials on X, which canonically iden-
tifies R* with the space U = H'(X,0) on which our theta function was de-
fined. In what follows we shall use without further comment these identifica-
tions U = R* = 4. The choice of homology basis {a;,3;} gives a natural
choice for the form ¢ : A = Z/27Z occurring in our version of the theta func-
tion, namely, we can choose ¢ to vanish on the basis for A =& H!(X,Z) dual
to {ai,B:}. It is then easy to check that our theta function differs from the
classical one only by a factor exp Q(u,u), where Q is a symmetric R-bilinear
form on U. Thus if we use the classical theta function, theorem 9.11 remains
true except that the quadratic form is different. From now on we write 6 for
the classical theta function.

With these preliminaries, we can now explain the Russian formula relating
the Baker function and the theta function. We follow the account given in
[36], to which we refer the reader for more details. With Krichever, we fix a
non-special positive divisor D = {Py,...,P;} on X; without loss of generality
(see (6.5)) we suppose the points P; lie outside the disc Do, C X. We want
to write down the Baker function vy, where W is the closure of the space of
analytic functions on S! which extend to meromorphic functions on Xy that
are regular except for (possible) simple poles at the points P;. We fix a base
point Py # T in X, and let A : X — R* = (9 be the corresponding Abel
map, given by

P
A(P)(w):/ w (PEX,weR).
Py

The map A is well defined only modulo the period lattice A (because of the
choice of path integration). Let C € C? be a constant vector such that the
function (on X) 6(A(P) — C) vanishes precisely when P = Py,...,P,. For
n = 1,2,..., let w, be the differential of the second kind which has zero a-
periods and is regular except for a singularity at zo, with principal part d(z").
Let W,, € €9 be the vector of S-periods of w,. Consider the expression

P 6(A(P) + S t;W; - C)
exp{Xi:ti /;70 wi} 3(A(P) = O) . (9.12)
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It is understood that the path of integration in the first term is the same as that
used in the Abel map; it is then easy to check (see [36], ch. 3, §1) that (9.12) is
a well defined function of P € X, although the individual terms in it are not.
It is obvious that when restricted to S* C X the function (9.12) belongs to W
for each fixed t, and has the form

expz tiz'(ap(t) +ar(t)z™ 1 +...).

Thus to get the Baker function 1y, we have only to divide by ao(t). That
yields the final formula

B P O(A(P) + S t;W; — C)8(A(zo0) — C)
Pe e {Z “J, “"} = 20} AP - CAlrm) + 3, — O)

(9.13)

where the constants b;y are defined from the expansions

z 00
/ wp =2" + Z borz”"
P, 5
for z near r.

The formula (9.13) is global (P can run over the whole Riemann surface X).
We now restrict it to P € Dy, and accordingly write z instead of P. We claim
that (9.13) can then be identified with the formula obtained by substituting
(9.11) into (5.14). Note first that the quotient

0(A(zo) — C)/0(A(2) - C)

in (9.13) is nothing but a function of the form 1 + ¢;27! + ...; it comes from
the uninteresting linear term « in (9.11). The exponential terms in (9.13) can

be written
o0
exp {Ztiz’} exp Z tibz’]‘Z—j ;
2,j=1

the second factor here is the contribution to (9.13) coming from the quadratic
term in (9.11). To complete our check that (5.14) and (9.13) agree, we have still
to see two things: (i) that the vectors W; € C? corresponding to the different ¢;
agree with those in (9.11) (obtained by regarding the functions z* as cocycles
for H1(X,0)); (ii) that the difference in the arguments of the two remaining
theta function terms in (9.13) agrees with the g¢ in (5.14). For (i), we use the
fact that the canonical pairing U x R — C can be derived from the pairing

V x R — C given by
1
(f:w)H%Llfwy

the desired assertion then reduces to something well known (see, for example,
[36], (2.1.12)). Concerning (ii), note that the difference in question is

A(z) — A(z) = Ao (2),
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where A, is the Abel map defined using the base point z.,. Hence the result
we need is the following.

Lemma 9.14. LetT'y — U — J = U/A be the map used earlier in this section
(defined by regarding an element of 'y as a transition function for a line bundle
on X ). Then for |(| > 1, the image of gc under this map is A (C).

Proof. We write g¢ in the form

The two factors here are transition functions for the line bundles corresponding
to the divisors [(] and [~z ], respectively. Thus the image of g¢ in the Jacobian
is [¢] = [0, Which is indeed A (). O

Finally, we point out that one can reverse some of the arguments we have
just given and prove (9.11) by comparing the formulas (5.14) and (9.13). This
argument is indicated in [5], and is indeed the only possible one there, because
at this point in [5] the 7-function is defined in terms of the Baker function by
the formula (5.14). In our context, however we have an independent definition
of the 7-function, so it seemed to us very desirable to give a direct proof of
(9.11), avoiding the use of the Baker function.

10 Appendix: the representation theory of the
loop group

In this paper we have not mentioned the representation theory of the loop
group LGL,(C), whereas the Japanese papers [5] put it in the foreground. The
difference, however, is more apparent than real, as we shall now explain. We
shall begin by describing the situation without any attempt at justification, and
at the end we shall return to give some indications about the proofs.

It will be convenient in this section to let Gr denote the “Hilbert-Schmidt”
Grassmannian of H, consisting of closed subspaces W of H such that the
projection W — H, is Fredholm and the projection W — H_ is Hilbert-
Schmidt. Alternatively, Gr consists of the graphs of all Hilbert-Schmidt oper-
ators Hg — Hg. It is clearly a Hilbert manifold. We shall write LGL,(C) for
the group of smooth loops.

We have seen®) that a central extension of LGL,(C) by C* acts on the holo-
morphic line bundle Det* on Gr. This means that LGL,(C) acts projectively
on the space I'(Det*) of all holomorphic sections of Det*. With the topology
of uniform convergence on compact sets, ['(Det*) is a complete topological vec-

tor space. It is the so-called “basic” irreducible projective representation of
LGL,(C).

(DStrictly speaking, in §3 we considered only one component of LGLA(C) and Gr; but it is
not hard to extend the discussion to include the other components (see [17]).
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For any indexing set S € 8 the “Pliicker coordinate” W +— w® (introduced
in §8) is an element of I'(Det*). We shall denote it by ws. In fact the g span
a dense subspace; and there is a natural Hilbert space H inside I'(Det*)—it
can be thought of as the “square-integrable” holomorphic sections—for which
the 7g form an orthonormal basis. The subgroup LU, of LGL,(C) acts by a
projective unitary representation on 3.

The geometrical significance of HH is that there is a natural antiholomorphic
embedding

Q:Gr— P(H)

of the infinite dimensional complex manifold Gr in the projective space of H.
It assigns to W € Gr the ray in H containing the section (U, of Det* defined
by

(W) = det{w, w'),

where w is an admissible basis of W. (Here (w,w’) denotes the matrix whose
(4,)-th element is (w;,w}); and we are thinking of a section of Det* as a J-
equivariant map P — C.) The embedding 2 is equivariant with respect to
LU,.

The vector in H corresponding to H; with its standard basis, i.e. the canon-
ical section o of Det* (cf. §3), is called the vacuum vector Q.

If we think of the representation H as given, rather than the manifold Gr,
then the discussion of §§3 and 5 can be very simply translated. The crucial
formula is the definition of the 7-function, which becomes

Tw(9) = (R0, 90)

where g € 'y, and w is an admissible basis for W. This is the definition in
parts of [5], except that these authors appear to have in mind only the group
of polynomial loops, corresponding to our Grassmannian Gry.

Two other realizations of the Hilbert space H are of importance. To de-
scribe the first, notice that the connected components of Gr are indexed by the
integers, and that correspondingly

%Z@S‘Ck,

kEZ

where H;, consists of functions on the k-th connected component. We saw in
§2 that the group I'_ of holomorphic functions in the disc |z| > 1 acts freely
on Gr. Let X denote the orbit of H, under I'_. The restriction of Det* to X
is canonically trivial; so holomorphic sections of Det* restrict to give complex-
valued holomorphic functions on X. Writing a general element of I'_ in the
form

1+mz 4 hyz72 4.,

we think of functions on X as functions on the infinite sequence of complex
variables hi, hy, hs,.... In fact sections of Det* over the component of Gr
containing H, are determined by their restrictions to X, and we have.
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Proposition 10.1.

(i) If S € 8 has virtual cardinal zero then the Plicker coordinate s €
I'(Det*) restricts to the Schur function Fs(hi, ha,...). (Cf. §8.)

(ii) Ho can be identified with the completion of the ring of symmetric polyno-
mials Z[hs, he,...] with respect to its standard inner product [18]; equiv-
alently, it is the space of L? holomorphic functions on T'_ with respect to
the Gaussian measure

du(g) =€~ Znlenl® H danda,,

where g = exp Y anz™ ™.

The second concrete realization of J is as the exterior algebra on the Hilbert
space Hy @ H_. As Hy and H_ have the orthonormal bases {z*};>0 and
{Z*}r<o respectively, the exterior algebra A(H, ® H_) has an orthonormal
basis of the form

ZOALLATR A AL A2 (10.2)

where a; < ... < a; < 0<b <...<b,. These basis elements correspond
exactly to the indexing sets S € § with which we are familiar: we write S\N =
{a1,...,0x} and N\ S = {b1,...,b,}. Thus we can denote the element (10.2)
by z°; the isomorphism A(H, ® H_) = H makes 2° correspond to the Pliicker
coordinate 7s.

A more interesting and also more relevant way of constructing the map
A(Hy ® H_) — H is by defining “fermionic field operators” on H. These
amount to an operator-valued distribution § — ¢(6) on the circle, satisfying
the anticommutation relations

[0(61),0(02)]+ = 0.
[90(01); 90(62)*]+ = 5(91 - 02)

Then the map A(H, @ H_) - K is

f1/\.../\fk/\§1/\.../\§mH(pfl...wfktpzl...(p;mﬂo,

where
2w

or=g5 | 1000 ®.

The highly singular “vertex operator” ¢(f) is constructed from the action
of ' = LC* on K as the limit p — 1+ of the action of p¢q¢, where ¢ = pe'?,
and

g =1- C_lz ely,

pe=1-C 'z el
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The important formula (5.15) for the unique element of W N (1 + H_) can
be written

Y (0,€) = (0, p(6) ).
this is equivalent to (5.15), because
(€0, (6)2w) = lim(Qo, pcgc )
= (PEQO,QCQw)
= (QOa‘ICQw>
= Tw(qq)-

Remarks about the proofs

Let Hp, p, = 2™H, /2" H when m < n. Then Gr contains the finite dimensional
Grassmannians Y;, = Gr(H_, 1), and the union of the Y, is dense. The bundle
Det* on Gr restricts to the usual Det* on Yy; so we know that I'(Det*|Y;)
can be identified with the exterior algebra A(H_, ;). A section of Det* is
determined by its restrictions to the Y,,. Thus we have an inclusion

T'(Det*) < lim A(H-_p ). (10.3)

Now A(H_, ) has a basis indexed by the 22" sets S € § such that
[n,00) C S C[—n,00).

These come from the corresponding Pliicker coordinates wg in I'(Det*). This
shows that the map (10.3) has a dense image, and also that the mg span a dense
subspace of I'(Det*).

To construct the Hilbert space H we begin by observing that w — Oy,
defines an antiholomorphic map

Q : Det — I'(Det*)

which is antilinear on each fibre of Det. (Notice that if w = {2°}s¢s then £,
is the Pliicker coordinate wg.) By transposing 2 we obtain a C-linear map

Q* 1 F - T(Det*),

where F' is the antidual of I'(Det*), i.e. the space of continuous antilinear maps
I'(Det*) — C. This gives us a hermitian form F x F — C defined by

(a, B) = a(Q7B).

In fact 2* is injective and has dense image, because the (., span I'(Det*), and
the Hilbert space completion H of F is sandwiched between F' and I'(Det*). It
is clear that the mg form an orthonormal basis of . Because {2 is equivariant
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with respect to LU, (or, more accurately, with respect to a central extension
of LU,, by the circle), it follows that LU, acts unitarily on K.

The proof of (10.1) (i) is almost exactly the same as that of (8.2); the second
part is then routine.

For a discussion of vertex operators we refer to [17] or [18].
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