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Abstract

Differential-geometric structures on the space of orbits of a finite Coxeter group,
determined by Grothéndieck residues, are calculated. This gives a construction
of a 2D topological field theory for an arbitrary Coxeter group.

Introduction: Formulation of main results

Let W be a (finite) Coxeter group, i.e. a finite group of linear transformations
of a n-dimensional Euclidean space V generated by reflections. The space of
orbits

M=V/W

has a natural structure of affine variety: the coordinate ring of M coincides
with the ring R := S(V)W of W-invariant polynomial functions on V. Due
to Chevalley theorem this is a polynomial ring with the generators z1,... ,z,
being invariant homogeneous polynomials. The basic invariant polynomials are
not specified uniquely. But their degrees di, ... ,d, are invariants of the group
(see below Sect. 2). The maximal degree h of the polynomials is called Coxeter
number of the group W. (More details about Coxeter groups will be given in
Sect. 2.)

A clue to understanding of a rich differential-geometric structure of the orbit
spaces can be found in the singularity theory. According to this the complexi-
fied orbit space of an irreducible Coxeter group of A-D-E type is bi-holomorphic
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equivalent to the universal unfolding of a simple singularity {1, 10, 31, 41]. Un-
der this identification the Coxeter group coincides with the monodromy group of
vanishing cycles of the singularity. The discriminant of the Coxeter group (the
set of irregular orbits) is identified with the bifurcation diagram of the singular-
ity. The invariant Euclidean inner product on V coincides with the pairing on
the cotangent bundle 7, M defined by the intersection form of vanishing cycles
[45]. The bi-holomorphic equivalence is given by the period mapping.

Additional differential-geometric structures on a universal unfolding of an
isolated hypersurface singularity are determined by the Grothéndieck residues
(see [39]). Let me explain this for the simplest example of the group A,
where the formulae for the residues were rediscovered by R.Dijkgraaf, E. and
H.Verlinde [15] (they also found new remarkable properties of these residues, see
below). This is obtained from the group of all permutations of the coordinates
&, ... ,€nt1 of (n + 1)-dimensional space by restriction onto the subspace

V={&+...+&+1 =0}

The space of orbits of A, can be identified with the universal unfolding of the
simple singularity f = 21,

n+1
M= {f(z§x17--- y Tn) =" +xnzn_1 +.oot T = H(Z_Ei)}.

=1

The residue pairing defines a new metric on M: the inner product of two tangent
vectors in a point ¢ = (z1,...,Z,) is defined by the formula

f(z52(s1)) f(2; z(s2))
f'(z2)
Here the dots mean derivatives w.r.t. the parameters s1, s resp. on two curves

through the point z, the prime means d/dz. This pairing does not degenerate
on TM. We can define in a similar way a trilinear form on T'M putting

F(z;2(s1)) (2 2(52)) f (25 2(s3))
f'(z ) '
(2)

This gives rise to an operation of multiplication of tangent vectors at any point
TEM

(f(z:2(51)), f(232(52)))s := reS:mco

1)

C(f(z;-r(sl))a f(Z;I(SZ))a .f(z; 1‘(83)))1 = TI€S;=0

U, v u-v, u,v €I M

uniquely specified by the equation
c(u,v,w)y; = (u-v,w),.

This is a commutative associative algebra with a unity for any x isomorphic to
the algebra of truncated polynomials

Cl2]/(f'(z; ).
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At the origin = 0 the algebra coincides with the local algebra of the

Ap-singularity Clz]/(f'(2)).
One can define in a similar way polylinear forms

f(z2(s1) - - f(z52(sk))
f'(z;z)

where the tangent vectors in the point z have the form

Ce(Uty .-y Uk)g = I€S;=00

u; = f(z;2(s:)),t=1,...,k.

For k > 3 they can be expressed in a pure algebraic way via the multiplication
of vectors and the pairing (, ):

ck(uiy .. uk) = (ug ~ug -+ Uk—1, Uk )-

Note that this formula coincides with the factorization rule for the primary cor-
relators in two-dimensional TFT {16, 50]. Further details about 2-dimensional
topological field theory from the point of view of the theory of singularities can
be found in [8].

Let us come back to orbit spaces of arbitrary Coxeter groups. As it was
mentioned above the intersection form of the simple singularity corresponding
to a Coxeter group (as a metric on the universal unfolding) on the space of orbits
can be defined intrinsicaly being induced by the invariant Euclidean structure
in V. V.I.Arnol'd in [3] formulated (for A— D — E-singularities; for other simple
singularities see [28]) the problem of calculation of the local algebra structure
in intrinsic terms, i.e. via the metric on the orbit space M (this metric was
introduced by Arnol’d in [2]; it is called also convolution of invariants). In the
same time K.Saito [36, 37] solved the problem of calculation in intrinsic terms
the residue pairing metric. The ideas of the papers [3, 36, 37] (and of the paper
[39] where the constructions of [36, 37] were developed for extended affine root
systems) are very important for constructions of the present paper.

To develop the approaches of these works I am going to contribute to un-
derstanding of the problem of giving an intrinsic description of the differential-
geometric structures on the space of orbits of a Coxeter group induced by the
constructions of the theory of singularities. [This problem was spelled out by
K.Saito in [39] (but the structures like (2) were not considered). He considered
it as generalised Jacobi’s inversion problem: to describe the image of the period
mapping. An equivalent problem of axiomatization of the convolution of invari-
ants was formulated by Arnol’d in [5, p.72].] I will give an intrinsic formula for
calculation of the Grothéndieck residues for arbitrary Coxeter group without
using the construction of the correspondent universal unfolding. My purpose
is to obtain a complete differential-geometric characterization of the space of
orbits in terms of these structures (see Conjecture at the end of this section).
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I came to this problem from another side when I was trying to understand
a geometrical foundation of two-dimensional topological field theories (TFT)
[14-16, 42, 48-50]. The idea was to extend the Atiyah’s axioms [7] of TFT (for
the two-dimensional case) by the properties of the canonical moduli space of a
TFT model proved in [15] (see also [16]). On this way I found a nice geometrical
object that I called Frobenius manifold. Any model of two-dimensional TFT
is encoded by a Frobenius manifold and I showed that many constructions
of TFT (integrable hierarchies for the partition function, their bi-hamiltonian
formalism and 7-functions, string equations, genus zero recursion relations for
correlators) can be deduced from geometry of Frobenius manifolds [20, 22].
It looks like Frobenius manifolds play also an important role in the theory of
singularities. Better understanding of the réle could elucidate still misterious
relations between the theory of singularities, theory of integrable systems, and
intersection theories on moduli spaces of algebraic curves [12, 16, 29, 30, 48-52].

In the present paper I show that the orbit spaces of Coxeter groups carry a
natural structure of Frobenius manifold. For the groups of A — D — E series this
gives an intrinsic description (i.e. only in terms of the Coxeter group) of the
residue structures like (1), (2) (this coincides with the primary chiral algebra
of the A — D — E-topological minimal models [15, 42]).

It’s time to proceed to the definition of Frobenius manifold. This is a
coordinate-free formulation of a differential equation arised in [15, 49] (I called
it WDVV—Witten-Dijkgraaf-E.Verlinde-H.Verlinde equation). This is a sys-
tem of equations for a function F(t) of n variables t = (¢!,...,t") resulting
from the following conditions:

1. The matrix
O3 F (1)
naﬁ = 1 a ﬁ
otlote ot
should be constant and not degenerate. Let us denote by (7%#) the inverse
matrix.

2. The coefficients
O3F(t)
ye Y SNV
Can(t): Z Bt-Dto0tP
for any ¢ should be structure constants of an associative algebra.

3. The function F(t) should be quasihomogeneous of a degree 3—d where the
degree of the variables are 1 — g, := degt®, ¢; = 0. (In physical literature
d is called dimension of the TFT-model and g, are called charges of the
primary fields.)

To give a coordinate-free reformulation of the WDVV equations let me recall
the notion of Frobenius algebra. This is a commutative* associative algebra with

*Also noncommutative Frobenius algebras are considered by algebraists.
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a unity over a commutative ring R supplied with a symmetric nondegenerate
R-bilinear inner product (, ) being invariant’ in the following sense

(ab,c) = (a,be)

for any a, b, c € A. We will consider the cases where R = R, C or the ring of
functions on a manifold. There is a natural operation of rescaling of a Frobenius
algebra: for an invertible constant ¢ we change the multiplication law, the unity
e and the invariant inner product ( , ) putting

a-bca-b, escle, (, )=o), )

for an arbitrary ¢(c).

Definition 1. A manifold M (real or complex) is called Frobenius manifold
if the tangent planes T; M are supplied with a structure of Frobenius algebra
smoothly depending on the point z and satisfying the following properties.

1. The metric on M specified by the invariant inner product ( , ) is flat (i.e.
the curvature of the metric vanishes).

2. The unity vector field e is covariantly constant
Ve =0.
Here V is the Levi-Civita connection for the metric ( , ).

3. Let ¢ be the section of the bundle ST, M (i.e. a symmetric trilinear form
on TM) given by the formula

c(u,v,w) := (u-v,w).

Then the tensor
(Vo) (u,v,w)

should be symmetric in u, v, w, z for any vector fields u, v, w, z.

4. A one-parameter group of diffeomorphisms should be defined on M acting
as rescalings on the algebras T, M.

We will denote by v the generator of the one-parameter group. It can be
normalised by the condition on the commutator of the vector fields e, v

[e,v] =e.

We will call v Euler vector field on the Frobenius manifold. The eigenvalues of
the linear operator V;v/ are called invariant degrees of the Frobenius manifold.

tInvariant inner product on a Frobenius algebra is not unique: any linear functional w € A*
defines an invariant symmetric inner product on A by the formula (a, b). := w(ab). This does
not degenerate for generic w. We consider a Frobenius algebra with a marked invariant inner
product.
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In the flat coordinates ¢!, ..., t" for ( , ) the metric is given by a constant
matrix (1), the unity vector field also has constant coordinates (we can nor-
malize the flat coordinates in such a way that e = 8/8t') and the Euler vector

field has the form 5
v = Z(l - qa)taa?-

The degrees (1 — go) of the coordinates t* coincide with the invariant degrees
of the Frobenius manifold. The tensor c,g+ can be represented (at least localy)
as the third derivatives of a function F(t) satisfying WDVV equations.

The nondegenerate form ( , ) establishes an isomorphism

(,):TM - T.M.

This provides also the cotangent planes with a structure of Frobenius algebra.

Note that the space of vector fields on a Frobenius manifold acquires a
natural structure of a Frobenius algebra over the ring R of functions on M.
This can be used for algebrization of the notion of Frobenius manifold for a
suitable class of rings R as a Frobenius R-algebra structure on the R-module
Der R of derivations of R satisfying the above properties [22]. Particularly, if
R = Clz1,...,Zy,] is a polynomial ring then a Frobenius R-algebra structure on
the polynomial vector fields Der R satisfying the conditions of Definition 1 will
be called polynomial Frobenius manifold (see the algebraic reformulation of the
notion of polynomial Frobenius manifold in Appendix to this paper). In this
case M = Spec R is an affine space and the correspondent solution of WDVV is
a quasihomogeneous polynomial. Polynomial solutions of WDVV with integer
and rational coefficients are of special interest due to their probable relation to
intersection theories on moduli spaces of algebraic curves and their holomorphic
maps [6, 52].

Let us come back to the orbit space M of a Coxeter group. We denote by
{, )* the metric on the cotangent bundle T, M induced by the W-invariant
Euclidean structure on V. There are two marked vector fields on M: the Euler

vector field P
E = di P e
Z .’E a.’lli

e:= 0
o 81‘1
corresponding to the polynomial of the maximal degree degz; = h. The vector
field e is defined uniquely up to a constant factor. The Saito metric on M
(inner product on T, M) is defined as

() =Le(, )

(the Lie derivative along e). This is a flat globaly defined metric on M [36, 37]
(for convenience of the reader I reprove this statement in Sect. 2). Our main
technical observation inspired by the differential-geometric theory of S.P. Novikov

and the vector field
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and the author of Poisson brackets of hydrodynamic type [24, 25] and by bi-
hamiltonian formalism [33] is that any linear combination a{ , )* + b( , )* of
the flat metrics is again flat.

Theorem 1. There exists a unique (up to rescaling) polynomial Frobenius struc-
ture on the space of orbits of a finite irreducible Cozeter group with the charges
and dimension

dg, 2

=1—-—, d=1- —, 3
o A h (3)
the unity e, the Euler vector field %E, and the Saito invariant metric such that
for any two invariant polynomials f, g the following formula holds

iv(df - dg) = (df,dg)". (4)

Here i, is the operator of inner derivative (contraction) along the vector
field v.

The formula (4) gives an effective method [23] for calculation of the struc-
ture constants of the Frobenius manifold in the flat coordinates for the Saito
metric (see formula (2.25) below). If the Saito flat coordinates are chosen to be
invariant polynomials with rational coefficients then the polynomial F'(t) also
has rational coeflicients (it follows from (2.25)).

In the origin ¢ = 0 the structure constants cfj(O) of the Frobenius alge-
bra on ToM coincide with the structure constants of the local algebra of the
correspondent simple singularity F'(z) =0

$i(2);(2) = ck;(0)¢x (2) (mod F'(z)).

Here ¢;(z) := [0F(z;21,...,2n)/0%i],—q, F(2;71,...,2,) is the versal defor-
mation of the singularity F(z) = F(z;0) = 0. In the origin the formula (4)
thus coincides with the formula of Arnol’d [3, 28] related the local algebra with
the linearized convolution of invariants (i.e., with the linear part of the Eu-
clidean metric) where the identification of To M with the cotangent plane Ty M
should be given by the Saito metric. But the formula (4) gives more providing
a possibility to calculate the local algebra via the convolution of invariants.

Let R = C|zy,...,z,] be the coordinate ring of the orbit space M. The
Frobenius algebra structure on the tangent planes T; M for any z € M pro-
vides the R-module Der R of invariant vector fields with a structure of Frobe-
nius algebra over R. To describe this structure let us consider such a basis of
invariant polynomials zy,...,x, of the Coxeter group that degz; = h. Let
D(zy,...,z,) be the discriminant of the group. We introduce a polynomial of
degree n in an auxiliary variable u putting

P(u;zy1,...,on) = D(z1 —u,z2,...,Tyn). (5)

Let Do(zy,...,T,) be the discriminant of this polynomial in u. It does not
vanish identicaly on the space of orbits.
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Theorem 2. The map
l—e ur—wv (6a)
can be extended uniquely to an isomorphism of R-algebras
Clu, z1,...,2,]/(P(u;z)) — Der R. (6b)

Corollary. The algebra on T, M has no nilpotents outside the zeroes of the
polynomial Do(x1,...,Zy).

A non-nilpotent Frobenius algebra (over C) can be decomposed into a direct
sum of one-dimensional Frobenius algebras. Warning: by no means this implies
even local decomposability of a massive (see below) Frobenius manifold into a
direct sum of one-dimensional Frobenius manifolds.

Definition 2. A Frobenius manifold M is called massive if the algebra on the
tangent planes T; M is non-nilpotent for a generic z € M.

In physical language massive Frobenius manifolds correspond to massive
TFT models. Examples of massless TFT models where the algebra structure
on the tangent planes is identicaly nilpotent are given by topological sigma-
models with a Calabi-Yau target space [52].

Conjecture. Any massive polynomial Frobenius manifold with positive invariant
degrees is isomorphic to the orbit space of a finite Coxeter group.

In other words, the constructions of Theorem 1 (and their direct products)
give all massive polynomial solutions of WDVV with

0<ga<d<1.

This could give a simple approach to classification of 2-dimensional topological
field theories with d < 1. An alternative approach was developed recently by
S. Cecotti and C. Vafa [12]. It is based on studying of Hermitean metrics on
a Frobenius manifold obeying certain system of differential equations (the so-
called equation of topological-antitopological fusion [11], see also [21]). The
approach of [12] also gives rise to Coxeter groups (and their generalizations) in
classification of topological field theories.

The conjecture can be “improved” a little: instead of polynomiality it is
sufficiently to assume that the function F(t) is analytic in the origin. For
positive invariant degrees analyticity in the origin implies polynomiality.

The Conjecture can be verified easily for 2- and 3-dimensional manifolds.
There are other strong evidences in support of the conjecture. I am going to
discuss them in a separate publication.

Historical Remark. 1 started to think about polynomial solutions of WDVV
trying to answer a question of Vafa [43]: what are the 2-dimensional topolog-
ical field theories (in the approach based on WDVV equations) for which the



Space of Orbits of a Coxeter Group 189

partition function is a power series in the coupling constants with rational co-
efficients? The question was motivated by the interpretation, due to E.Witten
[42-44], of the logarythm of the partition function as a generating function of
intersection numbers of cycles on some orbifolds. On this way I found the solu-
tions (2.46)—(2.48); the sense of the solutions (2.47) and (2.48) from the point
of view of known topological field theories was not clear. In December 1992
during my talk at I.Newton institute Arnol’d immediately recognized in the
degrees of the polynomials (2.46)—-(2.48) the Coxeter numbers (plus one) of the
three Coxeter groups in the three-dimensional space. This became the starting
point of the present work.

1 Differential-geometric preliminaries

The name contravariant metric (or, briefly, metric) will mean a symmetric non-
degenerate bilinear form (, }* on the cotangent bundle 7., M to a manifold M.
In a local coordinate system z!,...,2" the metric is given by its components

g9 (z) := (dz*, da?)” (1.1)

where (¢%/) is an invertible symmetric matrix. The inverse matrix (g;;) :=
(g9)~! specifies a covariant metric { , ) on the manifold M (usually it is also
called metric on the manifold) i.e. a nondegenerate inner product on the tangent
bundle TM

(ai,aj) = gij(:v) (1.2)
0
0; = prg

The Levi-Civita connection Vj, for the metric is uniquely specified by the con-
ditions

Vigij = 0kgij — T'tigsj — Tk;9is =0 (1.3a)
or, equivalently,
Vg™ = Opg' + I g% + TI ¢ =0 (1.3b)
and
If =Tk, (1.4)

(Summation over twice repeated indices here and below is assumed. We will
keep the symbol of summation over more than twice repeated indices.) Here
the coefficients Ffj of the connection (the Christoffel symbols) can be expressed
via the metric and its derivatives as

1
F:‘Cj = §gks (0igsj + 0gis — 0sgij) - (1.5)
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For us it will be more convenient to work with the contravariant components of
the connection

I = (do?, Vidz?)* = g1, . (1.6)

The equations (1.3) and (1.4) for the contravariant components read
g =T% 4 T (1.7)
g*Ti" = Tk (1.8)

It is also convenient to introduce operators

Vi =gV, (1.9a)

Vi€ = g% 0,6 + T &s. (1.9b)

For brevity we will call the operators V¢ and the correspondent coefficients I‘Zj
contravariant connection.

The curvature tensor R¥, of the metric measures noncommutativity of the
operators V; or, equivalently V*

(VsVi = ViVi)& = —Riyé (1.10a)

where
Rl = 8,Tf, — T, + T4, T}, - T} T, (1.10b)
We say that the metric is flat if the curvature of it vanishes. For a flat metric
local flat coordinates p, ... , p™ exist such that in these coordinates the metric is

constant and the components of the Levi-Civita connection vanish. Conversely,
if a system of flat coordinates for a metric exists then the metric is flat. The
flat coordinates are determined uniquely up to an affine transformation with
constant coefficients. They can be found from the following system

Vi€ =g¥0,0;p+T¥0,p=0, 4,j=1,... ,n. (1.11)
If we choose the flat coordinates orthonormalized
(dp,dp®)* = 59 (1.12)

then for the components of the metric and of the Levi-Civita connection the

following formulae hold o
_ 0z 02/

o 2 2
B e (1.13a)
oo Ozt 9%zt
I'de* = dp®. )
L dz 97 OpeOph D (1.13b)

All these facts are standard in geometry (see, e.g., [26]). We need to rep-
resent the formula (1.10b) for the curvature tensor in a slightly modified form
(cf. [25, formula (2.18)]).
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Lemma 1.1. For the curvature of a metric the following formula holds
Ri% = g g Rb, = g (9,T3* - QL) + TVT Ty, (114)

Proof. Multiplying the formula (1.10b) by g**¢%t and using (1.6) and (1.7) we
obtain (1.14). The lemma is proved. O

Let us consider now a manifold supplied with two nonproportional metrics
(, )i and (, )5. In a coordinate system they are given by their components
gy and g7 resp. I will denote by '} and T, the correspondent Levi-Civita
connections Vi and V3. Note that the difference

AF = giTI% — gl°Tik (1.15)
is a tensor on the manifold.
Definition 1.1. We say that the two metrics form a flat pencil if:
1. The metric - -
97 =g{ +Ag) (1.16a)
is flat for arbitrary A and
2. The Levi-Civita connection for the metric (1.16a) has the form
I =TY + A%, (1.16b)

Proposition 1.1. For a flat pencil of metrics a vector field f = f'0; exists
such that the difference tensor (1.15) and the metric g{] have the form

AR = vV f* (1.17a)
97 = Vifl + Vift + cgf (1.17b)

for a constant c. The vector field should satisfy the equations
AVAP = AfAY (1.18)

where

Aij = As‘ij — v vi j’
is Jjt gf: jt 2kk 2f (119)
(9393 — 9591 ) VasVar f* = 0.

Conversely, for a flat metric g;j and for a solution f of the system (1.18),
(1.19) the metrics g5 and (1.17b) form a flat pencil.
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Proof. Let us assume that z!,...,z" is the flat coordinate system for the metric
g5 . In these coordinates we have

T =0, AY = gy, A% =T% (1.20)
The equation Rfjk = 0 in these coordinates reads
(g1° + Ag8) (0,07 - BAJF) + ATAP —A¥AY =0, (121)
Vanishing of the linear in A term provides existence of a tensor f¥ such that
AY =, f4.

The rest part of (1.21) gives (1.18). Let us use now the condition of symmetry
(1.8) of the connection (1.16b). In the coordinate system this reads

(91° + Agl") B, 7% = (gl + 2gd") B, . (1.22)

Vanishing of the terms in (1.22) linear in A provides existence of a vector field
f such that

fij = gésanj-
This implies (1.17a). The rest part of the equation (1.22) gives (1.19). The last
equation (1.7) gives (1.17b). The first part of the proposition is proved. The
converse statement follows from the same equations. O

Remark. The theory of S.P. Novikov and the author establishes a one-to-one
correspondence between flat contravariant metrics on a manifold M and Poisson
brackets of hydrodynamic type on the loop space

L(M) := {smooth maps S* - M}

with certain nondegeneracy conditions [24, 25]. For a flat metric g/ (z) and the
correspondent contravariant connection V* the Poisson bracket of two function-
als of the form

1 1

27 27
I=1I[z] = %/0 P(s,z(s))ds, J=J[z]= a7 J, Q(s,z(s)) ds,

z = (z%(s)), z(s + 2m) = z(s) is defined by the formula

1 [ s 8J
—_ —_ Y ——
2r Jo  bxi(s) 9" (@)ds 8zi(s)’

2m
{[,J};z.l_ ' _‘S_I__Vi 87

2m Jo  Oxi(s)  dzi(s) da!(s) +

Here the variational derivative 61/dz(s) € T.M |s=z(s) is defined by the equal-

ity ) 5
1 T oI ;
Iz + éz) - I[z] = o ), ms—)éz’(s)d8+o(l6z|);
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8J/8z7(s) is defined by the same formula, ds := ds%. The Poisson bracket can
be uniquely extended to all “good” functionals on the loop space by Leibnitz
rule [24, 25]. Flat pencils of metrics correspond to compatible pairs of Poisson
brackets of hydrodynamic type. By the definition, Poisson brackets { , }; and
{, }2 are called compatible if an arbitrary linear combination

G,{ ) }1 + b{ ) }2
again is a Poisson bracket. Compatible pairs of Poisson brackets are important
in the theory of integrable systems [33].

The main source of flat pencils is provided by the following statement.

Lemma 1.2. If for a flat metric in some coordinate system z',...,z™ both
the components g (z) of the metric and Ty (z) of the correspondent Levi-Civita
connection depend linearly on the coordinate x' then the metrics

g :=g¢" and ¢¥ := 8,g" (1.23)

form a flat pencil if det(géj ) # 0. The correspondent Leuvi-Civita connections
have the form By S By
Y, =Ty, I =oIry. (1.24)

Proof. The equations (1.7), (1.8) and the equation of vanishing of the curvature
have constant coefficients. Hence the transformation

gzt ...z = gzt + A, ... 2, Fij(xl,... ,z”)r—)F?(ml +A,...,z")

for an arbitrary A maps the solutions of these equations to the solutions. By
the assumption we have

gt + A, ., 2") = g (z) + Ag¥ (z), T (a* + ... ,2") = T (2) + ATY, (2).
The lemma is proved. O

All the above considerations can be applied also to complex (analytic) man-
ifolds where the metrics are quadratic forms analyticaly depending on the point
of M.

2 Frobenius structure on the space of orbits of
a Coxeter group

Let W be a Cozeter group, i.e. a finite group of linear transformations of real
n-dimensional space V generated by reflections. We always can assume the
transformations of the group to be orthogonal w.r.t. a Euclidean structure
on V. The complete classification of irreducible Coxeter groups was obtained
in [13]; see also [9]. The complete list consists of the groups (dimension of the
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space V equals the subscript in the name of the group) A, By, Dn, Es, E7, Es,
F,, G2 (the Weyl groups of the correspondent simple Lie algebras), the groups
Hj and Hy4 of symmetries of the regular icosahedron and of the regular 600-cell
in the 4-dimensional space resp. and the groups I2(k) of symmetries of the
regular k-gon on the plane. The group W also acts on the symmetric algebra
S(V) (polynomials of the coordinates of V = V*) and on the S(V)-module
Q(V) of differential forms on V' with polynomial coefficients. The subring R =
S(V)W of W-invariant polynomials is generated by n algebraicaly independent
homogeneous polynomials z!,...,z" [9]. The submodule Q(V)W of the W-
invariant differential forms with polynomial coefficients is a free R~module with
the basis dz®* A ... A dz®* [9]. Degrees of the basic invariant polynomials are
uniquely defined by the Coxeter group. They can be expressed via the exponents

mi, ... ,my of the group, i.e. via the eigenvalues of a Coxeter element C' in W [9]
d; :=degz® = mp_jp1 + 1, (2.1a)
{eigenC} = {exp Zw—l(-d%-_—l-)—, , €Xp zﬂg—;—_ﬂ} (2.1b)

The maximal degree h is called Cozeter number of W. I will use the reversed
ordering of the invariant polynomials

d1=h>d22...2dn_1>d2=2. (22)
The degrees satisfy the duality condition
di+dp—iv1=h+2,i=1,...,n. (2.3)

The list of the degrees for all the Coxeter groups is given in Table 1.

w dy, ..., d,
An di=n+2—i
B, di=2(n—-1+1)
D,, n=2k d; =2(n —1), i <k,
di=2n—-i+1), k+1<i
D,, n=2k+1 di =2(n—1), i <k,
dk+1:2k+1,
di=2n—i+1), k+2<i
Eg 12, 9, 8, 6, 5, 2
E; 18, 14, 12, 10, 8, 6, 2
Es 30, 24, 20, 18, 14, 12, 8, 2
Fy 12, 8, 6, 2
G 6, 2
Hj 10, 6, 2
Hy 30, 20, 12, 2

I (k) k, 2
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Table 1.
I will extend the action of the group W to the complexified space V ® C. The

space of orbits
M=V®C/W

has a natural structure of an affine algebraic variety: the coordinate ring of M
is the (complexified) algebra R of invariant polynomials of the group W. The

coordinates z!, ..., 2™ on M are defined up to an invertible transformation
zt a:il(:vl, vz, (2.4)

where z?' (z!,...,z") is a graded homogeneous polynomial of the same degree d;

in the variables z1, ... , 2", deg z* = di. Note that the Jacobian det(axi'/azj)

is a constant (it should not be zero). The transformations (2.4) leave invariant
the vector field 8, := 0/0x! (up to a constant factor) due to the strict inequality
d; > do. The coordinate z™ is determined uniquely within a factor. Also the
vector field

0

Op*
(the generator of scaling transformations) is well-defined on M.
Let ( , ) denotes the W-invariant Euclidean metric in the space V. I will

E = dlfL‘lal +...+ dnz"é)n = pa

(2.5)

use the orthonormal coordinates p!, ..., p™ in V with respect to this metric.
The invariant ™ can be chosen as
1
" = 5((101)2 +.+(p")?). (2.6)

We extend (, ) onto V ® C as a complex quadratic form.

The factorization map V ® C — M is a local diffeomorphism on an open
subset of V' ® C. The image of this subset in M consists of regular orbits
(i.e. the number of points of the orbit equals # W). The complement is the
discriminant Discr W. By the definition it consists of all irregular orbits. Note
that the linear coordinates in V' can serve also as local coordinates in small
domains in M \ Discr W. This defines a metric (, ) (and (, )*) on M \Discr W.
The contravariant metric can be extended onto M according to the following
statement (cf. [39, Sections 5 and 6]).

Lemma 2.1. The Euclidean metric of V induces polynomial contravariant met-
ric { , }* on the space of orbits
dz* dz?

g (z) = (da*,da?)* := B Op° (2.7)

and the correspondent contravariant Levi-Civita connection
ozt %0 |,

I'Y(z)dz* = Wwdp (2.8)

also is a polynomial one.
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Proof. The right-hand sides in (2.7)/(2.8) are W-invariant polynomials/

differential forms with polynomial coefficients. Hence g%/ (x)/ I‘ij (z) are polyno-

mials in z!, ..., 2. Lemma is proved. O

Remark. The matrix ¢¥(z) does not degenerate on M \ Discr W where the
factorization V ® C — M is a local diffecomorphism. So the polynomial (also
called discriminant of W)

D(z) := det(g%(z)) (2.9)

vanishes precisely on the discriminant Discr W where the variables p!, ...,
p™ fail to be local coordinates. Due to this fact the matrix g (z) often is
called discriminant matriz of W. The operation z%,z7 + g% (z) is also called
convolution of invariants (see [2]). Note that the image of V in the real part
of M is specified by the condition of positive semidefiniteness of the matrix
(¢¥(z)) (cf. [34]). The Euclidean connection (2.8) on the space of orbits is
called Gauss-Manin connection.

Corollary 2.1. The functions g (z) and Fij (z) depend linearly on x*.

Proof. From the definition one has that ¢¥/(z) and I'¥(z) are graded homoge-
neous polynomials of the degrees

deg g (z) = d; + d; — 2 (2.10)
degT¥ (2) = d; + dj — dy, — 2. (2.11)

Since d; + dj < 2h = 2d; these polynomials can be at most linear in zl.

Corollary is proved. ]
Corollary 2.2 (K. Saito). The matriz
7 (z) := 019" (=) (2.12)
has a triangular form
n(z) =0fori+j>n+1, (2.13)
and the antidiagonal elements
=D = g (2.14)

are nonzero constants. Particularly,

n(n~-1

ci=det(n?)=(=1)"2 c1...cy #0. (2.15)

Proof. One has -
degn(z) =d; +d; —2—h.
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Hence degn("~+1) = 0 (see (2.3)) and degn* < 0 for i + j > n + 1. This
proves triangularity of the matrix and constancy of the antidiagonal entries
¢;. To prove nondegenerateness of (n*/(z)) we consider, following Saito, the
discriminant (2.9) as a polynomial in !

D(z) =c(z")" +a1(z")" 1 + ... +an
where the coefficients ay, . . . ,a, are quasihomogeneous polynomials in 22, ... ,z"
of the degrees h,... ,nh resp. and the leading coefficient ¢ is given in (2.15).
Let « be the eigenvector of a Coxeter transformation C with the eigenvalue
exp(2ni/h). Then

2*(y) = 2*(Cy) = 2*(exp(2ri/h)7) = exp(2mide/h)z* (7).
For k > 1 we obtain
¥(y) =0, k=2,...,n.
But D(vy) # 0 [9]. Hence the leading coefficient ¢ # 0. Corollary is proved. O

Corollary 2.3. The space M of orbits of a finite Cozeter group carries a flat
pencil of metrics g (x) (2.7) and 0¥ (z) (2.12) where the matriz n% (z) is poly-
nomialy invertible globaly on M.

We will call (2.12) Saito metric on the space of orbits. This metric will be
denoted by (, )* (and by (, ) if considered on the tangent bundle TM). Let

us denote by N -
7(z) = T () (2.16)

the components of the Levi-Civita connection for the metric /(). These are
quasihomogeneous polynomials of the degrees

degy(z) =di +dj —de —h — 2. (2.17)

Corollary 2.4 (K. Saito). There erist homogeneous polynomials t!(p),... ,
t"(p) of degrees dy, ... ,d, resp. such that the matriz

n%P .= 9, (dt®, dt’)* (2.18)
18 constant.

The coordinates t1,. .. ,t™ on the orbit space will be called Saito flat coordi-
nates. They can be chosen in such a way that the matrix (2.18) is antidiagonal

naﬂ = gatBintl

Then the Saito flat coordinates are defined uniquely up to an n-orthogonal
transformation
t* — agt?,
> afaf =gt
Atp=n+1
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Proof. From flatness of the metric % (z) it follows that the flat coordinates
t*(z), @ = 1,...,n exist at least localy. They are to be determined from the
following system

n*9,0;t + 7i*0st = 0 (2.19)
(see (1.11)). The inverse matrix (n;;(z)) = (n¥(z))~! also is polynomial in
zl,...,z™. So rewriting the system (2.19) in the form

k0t + Nyt =0 (2.20)

we again obtain a system with polynomial coeflicients. It can be written as a
first-order system for the entries & = 9t,

Okly + e, =0, k,l=1,...,n (2.21)

(the integrability condition 8x& = 8¢, follows from (1.4)). This is an overde-
termined completely integrable system. So the space of solutions has dimen-
sion n. We can choose a fundamental system of solutions £*(z) such that
£2(0) = . These functions are analytic in z for sufficiently small z. We put
& (z) =: Oit*(x), t*(0) = 0. The system of solutions is invariant w.r.t. the
scaling transformations

i e ¥zt i=1,...,n.

So the functions t*(z) are quasihomogeneous in z of the same degrees dy, . . . , dy,.
Since all the degrees are positive the power series t*(z) should be polynomials
in z!,...,z". Because of the invertibility of the transformation z¢ — t* we
conclude that t*(z(p)) are polynomials in p*,...,p". Corollary is proved. [

We need to calculate particular components of the metric g®® and of the
correspondent Levi-Civita connection in the coordinates t!,... ;¢ (in fact, in
arbitrary homogeneous coordinates z*,... ,z™).

Lemma 2.2. Let the coordinate t™ be normalized as in (2.6). Then the follow-

ing formulae hold:
g™ = dt® (2.22)

[3% = (do — 1)03. (2.23)
(In the formulae there is no summation over the repeated Greek indices!)

Proof. We have

_otnote ot
~ Ope Op* P op®
due to the Euler identity for the homogeneous functions t*(p). Furthermore,

otn 92t 5%t ot~
I\nadtﬂ - d b - b — —
5= o oo ™ = ppagp® =P (apa)

ot® ) ote
d{p*— | — dp® = (d, — 1)dt®.
(p pm opa P ( )
Lemma is proved. Od

no

= dat®
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We can formulate now the main result of this section.

Main lemma. Lett!,...,t" be the Saito flat coordinates on the space of orbits
of a finite Coxeter group and

NP = 9y (dt*, dt’)* (2.24)

be the correspondent constant Saito metric. Then there exists a quasihomoge-
neous polynomial F(t) of the degree 2h + 2 such that

(da + dﬂ - 2) ,’70)\
h

The polynomial F(t) determines on the space of orbits a polynomial Frobenius

structure with the structure constants

(dt*, dtP)* = PEONOUF (t). (2.25)

¢15(t) = 7 BaBpBF (1) (2.26a)

the unity

and the invariant inner product 7.

Proof. Because of Corollary 2.3 in the flat coordinates the tensor AP = I'2#

should satisfy the equations (1.17)~(1.19) where g2° = g®8(t), g2* = n*5. First
of all according to (1.17a) we can represent the tensor I‘ﬁ;ﬁ (t) in the form

L5(t) = n*9.0, f° () (2.27)

for a vector field f#(t). The equation (1.8) (or, equivalently, (1.19)) for the
metric g®(t) and the connection (2.27) reads

gaapgv — gﬁdr‘?‘r_
For a = n because of Lemma 2.2 this gives
S dt7rP 8,087 = (dy = 1)g”.
Applying to the Lh.s. the Euler identity (here degd, f” = d, —d. + h) we obtain
(dy - l)gﬂ’y = Znﬁe(d'r —de +h)0.f7 = (dy +dg — 2)77666&)”- (2.283)

From this one obtains the symmetry

1P f7 _ M0 f*
dy—-1  dg—-1"

Let us denote fv -

= —. 2.28b
-1 'k (2.280)
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We obtain
9. F" = 9. FP.
Hence a function F(t) exists such that
F® =n*4,.F. (2.28¢)

It is clear that F(t) is a quasihomogeneous polynomial of the degree 2h + 2.
From the formula (2.28) one immediately obtains (2.25).

Let us prove now that the coefficients (2.26a) satisfy the associativity con-
dition. It is more convenient to work with the dual structure constants

C$B(t) = n"*nﬁ“axauawF-

Because of (2.27), (2.28) one has

dg —1
r ,‘;’ﬁ =P W cgﬁ .
Substituting this in (1.18) we obtain associativity. Finaly, for & = n the formu-
lae (2.22), (2.23) imply
cg” = hég.
Since '™ = h, the vector (2.26b) is the unity of the algebra. Lemma is proved.
O

Proof of Theorem 1. Existence of a Frobenius structure on the space of orbits
satisfying the conditions of Theorem 1 follows from Main lemma. We are now
to prove uniqueness. Let us consider a polynomial Frobenius structure on M
with the charges and dimension (3) and with the Saito invariant metric. In the
Saito flat coordinates we have

dt® - dt? = n**nP#9,0,0,F(t)dt".
The Lh.s. of (4) reads

iy (dt® - dtP) = dyt naanPh0x0,0, F(t) = (da + dg — 2)1axn’*0x8, F (t).
Y

This should be equal to h{dt*, dt®)*. So the function F(t) should satisfy (2.25).
It is determined uniquely by this equation up to terms quadratic in ¢*. Such
an ambiguity does not affect the Frobenius structure. Theorem is proved. O

An algebraic remark: let T be a n-dimensional space and U : T — T an
endomorphism (linear operator). Let

Py(u) :=det (U —u - 1)
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be the characteristic polynomial of U. We say that the endomorphism U is
semisimple if all the n roots of the characteristic polynomial are simple. For a
semisimple endomorphism there exists a cyclic vector e € T such that

T = span(e,Ue,... , U e).

The map
Clu]/(Py(u)) = T, u*— Ute, k=0,1,...,n—1 (2.29)

is an isomorphism of linear spaces.

Let us fix a point z € M. We define a linear operator

U= Uz): TeM - T:M (2.30)

(being also an operator on the cotangent bundle) taking the ratio of the quadratic
forms g% and n'
(lejw2)* = <£4)1,U)2>* (231)

or, equivalently, ‘ :
Uj(z) := 05 (2)g" (=). (2:32)

Lemma 2.3. The characteristic polynomial of the operator U(x) is given up
to a nonzero factor ¢~ (2.15) by the formula (5).

Proof. We have
P(u;at,...,2") = det(U — u - 1) = det(n;s) det(g** — un®) =
cldet(g%(a! —u,22,...,2") =c ' D(z! —u,2?%,...,2™).
Lemma is proved. O
Corollary 2.5. The operator U(z) is semisimple at a generic point x € M.

Proof. Let us prove that the discriminant Do(z!,...,z") of the characteristic
polynomial P(u;z!,...,z") does not vanish identicaly on M. Let us fix a Weyl
chamber Vy C V of the group W. On the inner part of V, the factorization map

VE)_>MRe

is a diffeomorphism. On the image of V; the discriminant D(z) is positive. It
vanishes on the images of the n walls of the Weyl chamber:

D(x)i—th wall = 0) 1= 1» ceey T (233)

On the inner part of the i-th wall (where the surface (2.33) is regular) the
equation (2.33) can be solved for z1:

b =z} (2%, 3"). (2.34)
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Indeed, on the inner part
(01D(x))i-th wan # 0.

This holds since the polynomial D(z) has simple zeroes at the generic point of
the discriminant of W (see, e.g., {2]) .

Note that the functions (2.34) are the roots of the equation D(z) = 0 as
the equation in the unknown z!. It follows from above that this equation has
simple roots for generic z%,... ,z". The roots of the characteristic equation

D(z' —u,2°%,...,2") =0
are therefore
w=a' —zH(2?,...,2"), i=1,...,n. (2.35)
Generically these are distinct. Lemma is proved. O

Lemma 2.4. The operator U on the tangent planes T, M coincides with the
operator of multiplication by the Euler vector field v = %E

Proof. We check the statement of the lemma in the Saito flat coordinates:

dy o o h—dg+de o B
;Ft g = D F =

dy + do — 2
> S e 0, F = noag™ = Ug.
A

Lemma is proved. O
Proof of Theorem 2. Because of Lemmas 2.3, 2.4 the vector fields
e, v, v3,..., v} (2.36)

genericaly are linear independent on M. It is easy to see that these are poly-
nomial vector fields on M. Hence e is a cyclic vector for the endomorphism U
acting on Der R. So in generic point z € M the map (6a) is an isomorphism of
Frobenius algebras

Clul/(P(u;z)) = T, M.
This proves Theorem 2. O

Remark 1. The Euclidean metric (2.7) also defines an invariant inner product
for the Frobenius algebras (on the cotangent planes T.M). It can be shown
also that the trilinear form

(w1 - wo,ws3)"
can be represented (localy, outside the discriminant Discr W) in the form

for some function F'(z). Here V is the Gauss-Manin connection (i.e. the Levi-
Civita connection for the metric (2.7)). The unity dt™/h of the Frobenius
algebra on T, M is not covariantly constant w.r.t. the Gauss-Manin connection.
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Remark 2. The vector fields
IV:= g (2)0,, i=1,...,n (2.37)

form a basis of the R-module Derg(—log(D(z)) of the vector fields on M tan-
gent to the discriminant [2]. By the definition, a vector field v €
Derg(—log(D(z)) iff

uD(z) = p(z)D(z)
for a polynomial p(z) € R. The basis (2.37) of Derg(—log(D(z)) depends on
the choice of coordinates on M. In the Saito flat coordinates commutators
of the basic vector fields can be calculated via the structure constants of the
Frobenius algebra on T, M. The following formula holds:

1,1 = QE-;ifﬁicgﬂzf. (2.38)

This can be proved using (2.25).

Remark 3. The eigenvalues u;(z),... ,un(z) of the endomorphism U(z) can be
chosen as new local coordinates near a generic point € M (such that Do(z) #
0). As it follows from [20, 22] these are canonical coordinates on the Frobenius
manifold M: by the definition, this means that the law of multiplication of the
coordinate vector fields has the form

8; - 8; = 6:;0% (2.39)
0
T Qu;

In these coordinates the Saito metric ( , ) is given by a diagonal Egoroff metric
(see [20] for the definition)

i

ot ot?
niz(uw) = naﬁgl:%f&j- (2.40)

The Euclidean metric { , ) outside of the discriminant u;...u, = 0 in these
coordinates is written as another diagonal Egoroff metric with the diagonal
entries 7;; (1) /u;. The unity vector field has the form

n
e=Y 0 (2.41)
=1
and the Euler vector field
1 n
FE=v= > uidi. (2.42)
i=1

I recall that, according to the theory of [20] the metric (2.40) satisfies the
Darboux-Egoroff equations

Orvij = YikVkj, 1,3,k are distinct, (2.43a)
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> Bkyi; =0 (2.43b)
k=1
Zukak')’ij = —ij (2.43c)
k=1

where the rotation coefficients +;;(u) = v;:(u) are defined by the formula

oOvmi(¥) £ . (2.44)

i) = i3 (u) ’

The system (2.43) is empty for n = 1; it is linear for n = 2. For the first
nontrivial case n = 3 it can be reduced to a particular case of the Painlevé-VI
equation [27] using the first integral

(u1 — u2)® 7Py + (w1 — us)®¥f5 + (uz — us)®13; = R%. (2.45)

For any n > 3 the system (2.43) can be reduced to a system of ordinary differ-
ential equations. It coincides with the equations of isomonodromy deformations
of a certain linear differential operator with rational coefficients [20, 22]. Thus
the egs. (2.43) can be called a high-order analogue of the Painlevé-VI. The
constructions of the present paper for the groups Az, B3, Hs specify three dis-
tinguished solutions of the correspondent Painlevé-VI egs.. The function F'(t)
for these groups has the form

_tits+atd 3t 4

F 3 2.4
As 2 4 60 (2.46)
_ Btg+ 0t | 3tz |t t]
Fo, ===+ "% T2 (2.47)
s + 82 t5t2 23 !
Fy,=21=2_~"2,723 4 7323 3 2.48
Hs 2 6 ' 20 ' 3960 (2.48)

The correspondent constants R in (2.45) equal 1/4, 1/3 and 2/5 resp.

Concluding remarks

1. The results of this paper can be generalised for the case where W is the
Weyl group of an extended affine root system of codimension 1 (see the
definition in [39]). In this case the Frobenius structure will be polyno-
mial in all the coordinates but one and it will be a modular form in this
exceptional coordinate. The solutions of WDVV of [32, 46] are just of
this type. We consider the orbit spaces of these groups in a subsequent
publication.

2. The two metrics on the space of orbits of the group A,, are closely related
to the two hamiltonian structures of the nKdV hierarchy (see [18-20, 22]).
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The Saito metric is obtained by the semiclassical limit of [24, 25] from the
first Gelfand-Dickey Poisson bracket of nKdV, and the Euclidean metric is
obtained by the same semiclassical limit from the second Gelfand-Dickey
Poisson bracket. The Saito and the Euclidean coordinates on the orbit
space are the Casimirs for the corresponding Poisson brackets. The fac-
torization map V' =+ M = V/W is the semiclassical limit of the Miura
transformation. Probably, the semiclassical limit of the bi-hamiltonian
structure of the D — E Drinfeld-Sokolov hierarchies [17] give the two flat
metrics on the orbit spaces of the groups D,, and Eg, E7, Eg resp. But
this should be checked.

It is still an open question if it is possible to relate integrable hierarchies
to the Coxeter groups not of A — D — E series. A partial answer to
this question is given in [20, 22]: the unknown integrable hierarchies for
any Frobenius manifold are constructed in a semiclassical (i.e., in the
dispersionless) approximation.

3. A closely related question: what is the algebraic-geometrical description
of the TFT models related to the polynomial solutions of WDVV con-
structed in this paper? For A — D — E groups the correspondent TFT
models are the topological minimal models of [15]. For other Coxeter
groups the TFT can be constructed as equivariant topological Landau-
Ginsburg models using the results of [44, 47] for W # Hy (the singularity

~ theory related to H, was partialy developed in [35, 40]). For the group
A, a nice algebraic-geometrical reformulation of the correspondent TFT
as the intersection theory on a certain covering over the moduli space
of stable algebraic curves, was proposed in {50, 51] (for the topological
gravity W = A; this conjecture was proved by M.Kontsevich [29, 30]).
What are the moduli spaces whose intersection theories are encoded by
the orbit spaces of other Coxeter groups? Note that a part of these inter-
section numbers should coincide with the coeflicients of the polynomials
F(t) (these are rational but not integer numbers since the moduli spaces
are not manifolds but orbifolds).
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Appendix: Algebraic version of the definition of
polynomial Frobenius manifold

Let k be a field of the characteristic # 2 and

R:=k[z',...,z"] (A1)
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be the ring of polynomials with the coefficients in k. By Der R we denote the
R-module of k-derivations of R. This is a free R-module with the basis

o .
0; = pye i=1,...,n.
A map
DerRxR—= R
is defined by the formula
(u =u'd;, p) — up = u'd;p. (A.2)

A R-bilinear symmetric inner product
Der R x DerR =+ R
u, v (u,v) €R (A.3)
is called nondegenerate if from the equations
(u,v) =0 for any v € Der R

it follows that u = 0.

As it was mentioned in the introduction, a polynomial Frobenius manifold
is a structure of Frobenius R-algebra on Der R satisfying certain conditions.
We obtain here these conditions by reformulating the Definition 1 in a pure
algebraic way.

The first standard step is to reformulate the notion of the Levi-Civita con-
nection. By the definition, this is a map

Der R x Der R — Der R

u, v Vyu (A4)
R-linear in the first argument and satisfying the Leibnitz rule in the second one
Vu(pv) = pVuv + (up)v (A.5)

uniquely specified by the equations
u(v,w) = (Vyv,w) + (v, Vyw) (A.6a)
Vv — Vyu = [u, ] (A.6b)

(the commutator of the derivations). Equivalently, it can be determined from
the equation

(Vuv, w) =%[u<v,w> +o(w,u) ~ wlu,v) (A.6c)

+ ([u, 9], w) + ([w, ul, v) + ([, v], w)]

for arbitrary u, v, w € Der R.
Now the assumptions 1-3 of Definition 1 for the Frobenius R-algebra Der R
can be reformulated as follows:
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1. For any u, v, w the following identity holds
(VuVy = VoV = Vi o)w = 0.

2. For the unity e € Der R and for arbitrary u € Der R
Ve =0.

3. The identity
Vil -w) = Vy(u-w)+u-Vow—v-Vyw = [u,v]-w (A7)
holds for any three derivations fields u, v, w.

To reformulate the assumption 4 of Definition 1 let us assume that Der R is
a graded algebra over a graded ring R with a graded invariant inner product
(, ). That means that two gradings deg and deg’ are defined on R and on
Der R resp., i.e. real numbers

P; :=deg2’, Q;:=deg'd; (A.8)

are assigned to the generators !, ... ,z™ and to the basic derivations 9, ... , 8,
resp. By the definition, the degree of a monomial

p= (ml)m1 s (™)™
equals
degp:=miP, + - +mnpPy,.

Homogeneous elements of Der R are defined by the assumption that the oper-
ators p — up shifts the grading in R to deg’ u — Qg for a constant Qq, i.e.

deg(up) = deg’ u + degp — Qo. (A.9)

The R-algebra structure on Der R should be consistent with the grading, i.e. for
any homogeneous elements p, g of R and u, v of Der R the following formulae
hold:

deg'(pu) = deg’ u + degp (A.10)
deg(pg) = degp + degq (A.11)
deg'(u - v) = deg’ u + deg’ v. (A.12)
The invariant inner product (, ) should be graded of a degree D, i.e.
(u,v) =0 if deg'u+deg'v # D (A.13)

for arbitrary homogeneous u, v € Der R. Note that the Euler vector field is
homogeneous of the degree Qg. We consider only the case Qg # 0.

The numbers P;, Q;, Qo, D are defined up to rescaling. One can normalise
these in such a way that Q)9 = 1. Then we have

Qi=¢q, =1-¢q;, D=d

in the notations of Introduction.
The constructions of this paper give such an algebraic structure for £ = Q.
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