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1 Introduction

What is an integrable system?

There is no precise formulation which will encompass all the mathematical phe-
nomena covered by this term, but we have a host of examples: most mathemati-
cians would agree that any definition of an integrable system should include:

e completely integrable Hamiltonian systems
e systems linearized on an abelian variety
e Painlevé equations

All these have the characteristic property (in Ward’s definition of integrability
[60]) that “their solutions can in principle be constructed explicitly”. Even
that vague statement begs the question, for we know that a general solution
to a Painlevé equation involves new transcendental functions. What we mean
by an integrable system is that there is a systematic method of describing all
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solutions. In an individual problem, we simply have to select the particular one
whose constants of integration match the problem.

That sounds like the 19th century approach to differential equations, and
it is true that even the modern questions in Riemannian geometry which are
amenable to attack using integrable systems frequently involve a journey into
the last century to get going. There could not be a stronger contrast between
the 20th century use of existence theorems for partial differential equations to
discover deep differential geometric results and the method of integrable systems
in producing explicit answers, but existence theorems will never give us all the
information we want. Nor, as we shall see, does explicitness, when we find it,
always answer the interesting questions. What integrability can do is to reveal
truths and patterns which are hidden in the existence theory.

There are perhaps three contrasting approaches to mathematics which dis-
tinguish the last two centuries:

¢ local versus global
e explicitness versus existence
e special cases versus unifying structure

I hope to show that, even in those areas of concern to our predecessors, the
modern approach as applied to integrable systems has much to commend it.

Riemannian geometry is not a priori concerned with abelian varieties or
symplectic manifolds—the stuff that integrable systems are made on. The nat-
ural questions we ask are those concerning curvature—properties of the extrinsic
curvature of manifolds in Euclidean space, for example, or special properties of
the Riemann tensor of an abstract manifold. In this paper we shall concentrate
on three areas of Riemannian geometry where integrable systems have been
used over the past few years:

e Tori of constant mean curvature
e 4-dimensional Einstein manifolds
e Hyperkahler metrics

The first topic is one where the literature is most extensive, and the subject best
understood. Whereas ten years ago, one could have argued that the theory of
algebraic curves played an important role in the theory of minimal surfaces and
harmonic maps, this was essentially based on versions of the twistor construc-
tion. In particular, the algebraic curve was the surface itself, with its conformal
structure. The integrable system approach to minimal tori is very different (al-
though now integrated into the twistor viewpoint too), and although algebraic
curves come in to play, they do so in a more subtle manner: it is a subspace of
the Jacobian which models the surface itself, with its linear structure. We give
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here an account of two approaches to the problem. One is a direct construction
of the algebraic curve from holonomy considerations. The other, which is more
developed in the literature, concerns the production of a rather special object
on the torus—a polynomial Killing field. We show in Section 2 how these two
points of view are related by bringing in a correspondence which lies at the heart
of many applications of integrable systems. This is the relationship between a
line bundle on a curve which is expressed as a covering of the projective line,
and a matrix of polynomials. Systems which are linearized on the Jacobian of
a curve are usually of this form, and the creation of polynomial Killing fields is
one example.

The second topic, treated in Section 3, is broader, but the usefulness of in-
tegrable systems in addressing the open problems is less well understood. The
specific problem we consider concerns the case of self-dual Einstein manifolds
with a three-dimensional group of isometries. Here the aspect of integrabil-
ity which enters is the isomonodromic deformation problem, as manifested by
Painlevé’s sixth equation. There are other problems in Riemannian geometry,
both classical and modern, where the essential question is to solve a Painlevé
equation, but this particular one allows us to produce a complete solution to
the original question. In doing so, we can write down some explicit complete
non-Kéhlerian Einstein metrics on the four-dimensional ball. We emphasize
here the non-Kéahler nature, since existence theorems for Einstein metrics are
few and far between in the absence of a complex structure.

In Section 4, we survey the central role of the self-dual Yang-Mills equa-
tions as an overarching structure yielding integrable equations in Riemannian
geometry as special cases. This is a curious fact, but the role of these equations
in explaining integrability is ever-present. We show in particular how the two
systems considered above are derived from forms of the Yang-Mills equations,
and then study a third system—Nahm’s equations—which play a central role
in the latter part of this paper.

The first four sections survey material which has already been published
by various authors. Section 5 is a new set of results in which the methods
of integrable systems are used to provide concrete information about families
of metrics which are of interest to both differential geometers and physicists—
hyperkéhler metrics. Many of the examples of such metrics—Kronheimer’s met-
rics on the cotangent bundle, or a coadjoint orbit of, a complex semi-simple Lie
group—or monopole moduli spaces—are based on solutions to Nahm’s equa-
tions. We give a formula for the Kahler potential of those metrics within these
families which carry circle actions of a particular type. The formula can be ex-
pressed in terms of the data used to construct a solution to Nahm’s equations:
an algebraic curve and a line bundle on it. In fact it is the logarithmic derivative
of the Riemann theta function which provides the essential component of this.
In many respects this is the analogue in Riemannian geometry of the formula for
the potential in the KdV equation in terms of the 7-function, perhaps the most
familiar place in the conventional literature on integrable systems where theta
functions arise. Within the general formula we work out some specific examples
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to compare with alternative methods. These include the Eguchi-Hanson metric
and the £? metric on the moduli space M3 of centred SU(2)-monopoles.

The monopole moduli space and its Riemannian metric has attracted much
attention recently as a testing ground for duality theories in physics [53]. Our
formula for the Kahler potential ¢ of a given complex structure is the sum of
two terms. (N+2)

+
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The first, which is rotationally invariant, is fundamentally associated to the
spectral curve of the monopole: it is defined by the expansion of the Riemann
theta function about a distinguished point. The second term, while also ex-
pressible in terms of the spectral curve, can also be read off from the monopole
itself. It depends on a direction u in R®, which corresponds to the complex
structure in the hyperkahler family. The term —Q(u,w)/4 is the coefficient of
r~3 in the asymptotic expansion of the length of the Higgs field along a radius
in the direction u.

2 Tori of constant mean curvature

2.1 Background

The classical problem here is one of determining the shape of a soap bubble—the
constant pressure difference between the inside and the outside is translated into
the condition on a surface in R? that it should have constant mean curvature.
Generalizations of this include such surfaces in S3, hyperbolic space or higher
dimensional manifolds.

A.D. Alexandrov [2], in the 1950’s, extended the local results of Jellet [32]
a hundred years earlier to show that the only constant mean curvature surface
embedded in R® was a round sphere, thus satisfactorily explaining the prevalence
of round soap bubbles, but the question remained open as to whether higher
genus surfaces could be immersed with constant mean curvature.. This problem,
in the case of the torus, is attributed to Hopf, and was solved in 1984 by Wente
[61]. He found a particular immersed torus which has constant mean curvature.
Wente’s is a purely 20th century proof—an existence theorem for the sinh-
Gordon equation,

Wzz + Wyy = —sinhw

but the subsequent development of the subject, as described by Melko and
Sterling [43] is noteworthy.

Wente’s existence theorem provoked Abresch to make a computerized nu-
merical analysis of the solution to create pictures of the torus. He noticed, on
plotting the curvature lines, that each line of one family appeared to be planar.
Taking this as an ansatz, he reduced the partial differential equation to ordi-
nary differential equations solvable by elliptic functions and gave an explicit



Integrable systems in Riemannian geometry 25

analytic solution [1]. Ironically, Wente had seen the reformulation of the prob-
lem into the sinh-Gordon equation in Eisenhart’s classic textbook [20]. Had he
read a few pages further, he would have encountered the 19th century version
of Abresch’s analytical solution [58].

This cautionary tale does not of course reveal the general solution to the
problem, which has now developed into a major area of research. The main
points of view (see [21] for various articles on the subject) are due to Pinkall
and Sterling et al, whose approach can be expressed in terms of Hamiltonian
systems and loop groups, Bobenko, who sees it in terms of the much studied
finite-gap solutions of the sinh-Gordon equation and the corresponding Baker-
Akhiezer function, and the author [25] whose approach is influenced by twistor
theory. These viewpoints all embed the specific problem in a bigger structure,
and they are all related. In the next sections I want to make the relationship
between two of these a little more precise, since it involves a construction which
appears in many of the interfaces between integrable systems and differential
geometry.

2.2 Harmonic maps

All approaches to constant mean curvature surfaces set the problem in the wider
context of harmonic maps of surfaces into Lie groups. It is an old result [50]
that the Gauss map of a constant mean curvature surface in R? is a harmonic
map to S?. Embedding S? totally geodesically as an equator in S* we get
a harmonic map into S® = SU(2). Once we are in the 3-sphere we can also
think of minimal surfaces in the sphere, which are other examples of harmonic
maps. Generalizing, we may consider a Riemann surface M and a harmonic
map f : M — G into a compact semisimple Lie group, with its biinvariant
metric.

The equations for a harmonic map have a particularly accessible form. If we
trivialize the tangent bundle by left translation, this defines a flat connection V,
with trivial holonomy, and by right translation another trivial connection Vp.
Since the tangent bundle has structure group G, we may equally regard these as
connections on a principal G-bundle. The map f relates the two trivializations:
fldf =V — Vx. However, instead of this formalism we consider

v (VR+VL)

| =D =

¢ = 5(Va- Vi)
to define a pair of objects: a connection V and a section ¢ € Q*(M;ad P). Using
the conformal structure, we write ¢ = & — ®* where ® € Q1'0(M;ad P ® C) is
of type (1,0). Although we write —®* which makes sense only for the unitary
group, for a general Lie group we interpret this as the application of the anti-
involution on Q%°(M;ad P ® C) defined by the real structure on the complex
Lie algebra which gives the compact real form. We then have the following:
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Proposition 2.1. If f is a harmonic map the G¢ connection
V+¢d—-(¢ o

is flat for all ( € C*. Conversely if V, ® define a flat connection for all { which
has trivial holonomy for ( = £1, then it arises from a harmonic map.

The historical origins of this method are unclear: in some respects it is the
classical notion of an associated surface, but in the context of integrable systems
it seems to begin with Pohlmeyer [49].

2.3 The loop group approach

The approach initiated by Pinkall and Sterling provides a formulation in terms
of loop groups and algebras, as studied for example by Burstall et al [8], who we
follow in this section. Here one works in the trivial covariant constant gauge at
¢ = 1 for the connection V + (® — (~1®*, the connection V. The connection
matrix can be written as

Ac=(1-Qa~-(1-¢Nar

for some Lie-algebra valued (1,0)-form « on the Riemann surface M. The
harmonic map f is then defined by the covariant constant trivialization at
¢ = —1, the connection V7,

fdf = 2(a—a*) (2.1)

If M is a torus, passing to the universal covering C, we can write a = adz, and
then comparing coefficients of ¢ in the flatness condition gives the equation for
f to be harmonic:

da

— = —[a,a” 2.2
o = —la,a’] 22)
The essential point of the loop group approach is to see these equations as the
consequence of another equation with more variables, but with a simpler form.

One considers a finite Laurent series which vanishes at ( = 1 (a “polynomial
Killing field”)

=) (1-¢M
Inj<d
where the &, are g°-valued functions with £_,, = —¢ satisfying the equation
dé +[(1 - Qadz — (1 —¢Y)a*dz,£] =0 (2.3)
or equivalently
23
= = 1601-0d (2.4

= = -le-c e (25)
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and where a = £;. Expanding out yields equation (2.2) as one of the many
terms.

The principal advantage of using this approach is its integrability in finite-
dimensional terms. The highest order coefficient of £ commutes with a, so a
solution of (2.4), (2.5) will still be a Laurent polynomial of the same degree:
we can thus rewrite the problem in terms of integrating vector fields on the
finite-dimensional vector space Q13 of Laurent polynomials in the Lie algebra g
of degree d. These are the two vector fields X;, X2 defined by the equations
(2.4,2.5)

Xy +iXo = Z =[€,(1 - ()&d] (2.6)

They can be simultaneously integrated if they commute, and this happens if
and only if [Z, Z] = 0. But this is true iff

[[€, (1= ¢7Hé-a), (1 = Oa) +[€, (1 = Q6,1 = ¢TH)é-dld]
= (16 (1= Q&) (1 = ¢THE-a] +[6, (1= ¢THIE (1 = Oal-d]

or equivalently

(1= = ¢ €-a), al + (1 = QIE, [€4,6-d]]
= (1 - C)(l - C_l)[[é.)gde—d] + (1 - C—l)[fv [E—d?fd”

and verification of this statement follows immediately on writing (1 — ¢)(1 —
(") =(1-¢) +(1-¢') and using the Jacobi identity.

The specific form of this approach has certain benefits. Any vector field
of the form X = [£, B(£)] on a Lie algebra (a Laz pair) has the property that
invariant functions are conserved along the flow. In our case, the algebra is
the loop algebra Qg, and we are restricting to the finite-dimensional subspace
Q4. Any invariant function on g then defines a polynomial, all of whose coeffi-
cients are constants of integration. In fact, these constants fit into a convenient
Hamiltonian formalism for the system, but we shall not go into this here.

A particular consequence of the existence of these conserved quantities is
obtained by applying the Killing form. The constant coefficient in the resulting

polynomial is the expression
S (€n6on)

n

which, since &, = —£*,,, defines an inner product on 2y. By compactness the
vector fields can be integrated to give a solution to (2.4),(2.5) on the whole of
R2.

A slightly stronger consequence of a Lax form is that the flow is tangential
to an orbit of the Lie group, so that (2.6) implies for the complex vector field
Z that ¢ lies in the orbit of £; under the complex Lie group. In particular,
a=§&;: R? — g° itself maps to a fixed orbit.
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As it stands, this method is an ansatz designed to produce solutions of the
equations on R2. We shall not go into the Hamiltonian formalism which helps
to solve it, involving r-matrices, and the Adler-Kostant-Symes method but (see
[9]) it is well-documented.

For the problem at hand, maps of a torus, we need to find doubly periodic
solutions. The aim is thus to find the general solution and then choose the right
constants of integration to give us maps of a torus. More importantly, what
is needed is a proof that the method has general applicability: in particular
we need to show that eny harmonic map from a torus has the property that
a lies in a fixed orbit, and then find a polynomial Killing field. Furthermore,
if this is true, we need to interpret the equation geometrically in terms of the
original problem of harmonic maps to G. The situation here is now quite well
understood. In the next section I essentially follow [9].

2.4 Jacobi fields

Suppose we have a harmonic map from a torus to G, then (2.2) shows that
evaluating any invariant polynomial on a gives a holomorphic function on the
torus, which is constant by compactness. In the simplest case where a is prin-
cipal semi-simple (has distinct eigenvalues) at some point it follows that it is
principal semi-simple everywhere and since all invariant polynomials have the
same value, lies in a single complex adjoint orbit. If we make this simplifying
assumption for th present, then we see that one condition for the method to
apply is satisfied, and this is a consequence of compactness of the torus. It will
be compactness again which gives the existence of a polynomial Killing field,
but this involves a more complex argument.

The equation (2.3) simply says that £ is a covariant constant section of the
adjoint bundle ad P ® C with respect to the flat connection d4 A;. The flatness
of the connection for all { implies the existence of a local infinite Laurent series
solution, but what we need is a polynomial. We begin by finding a semi-infinite

series
o0
z=2 an"
0
This provides a formal solution if the following recurrence relation holds:
dzn_1 +[a—a”, zp1] — [oyzp] + [0, 20-2] =0 (2.7)
We focus attention on the (1,0) part:

0zn—1

0z

If we begin with zp = a, we can solve this recursively so long as 8z,,_;/9z
lies in the image of ad(a). Since, as we have seen, a lies in a single orbit,
O0zo/0z = Oa/0z is tangential to the orbit and so is indeed in the image of

+[a,zp_1] = [a,z,] =0 (2.8)
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ad(a). To proceed, one engages in a two-step recursion process modifying z,
by a suitable term in ker ad(a) [8]. If a is doubly periodic, so is each z,, which
is thus defined on the torus. We therefore get a formal solution z to

dz+ [Aé’o,z] =0

Attending to the (0, 1) part, we note that since d + A¢ is flat, 8/8z + (1 — {)a
and 8/0z — (1 — ("1)a* commute, so that

0x/0z — [(1-¢1a", €] =) &nl ™"
0

is another solution to (2.8). In this case, we have o = da/dz — [a*, a] which
vanishes by (2.2). Thus, by recurrence, the solution determined above satisfies
the full recurrence equation and gives a formal solution to dz + [A¢,z] = 0.

The coefficients of this series have an interpretation on the torus itself,
which helps to prove finiteness of the series. They are (complex) Jacobi fields—
solutions of the linearization of the harmonic map equation. To see this, recall
from (2.1) that the actual harmonic map f is defined by

fldf = 2(adz — a*dz)

An infinitesimal deformation f of the map f : M — G defines a tangent vector
to G along the torus which we represent as the Lie algebra-valued function
¥ = f~1f. Differentiating the above equation along the deformation gives

dy + 2[a — a*, 9] = 2(a — &*)

We have the harmonic map equation d"a — [a*, @] = 0, and differentiating this
along the deformation we get

d"a-a*,0] —[a*,a] =0

Writing f = & and v = &*, a complex solution % of the Jacobi equation is
equivalent to a solution of the three equations

dy+2[a, 9] = 28
d"y - 20a*, 9] = —2y
d"f—[v,e]-[o" 0] = 0
We want to see that ¥ = z,, solves these equations. Now from (2.7),

d'Tpn_1+[e,Tn-1] —[,z,] = O
d'tp1 — [, Tp1] + [, Tp2]

I
o
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Setting 28 = [@, Tp + Tn—1] and 2y = [a*, Zp—2 + Tn—1] We obtain the first two
of the Jacobi equations. As for the third, we have, using d"a = [a*, a],

2d"8 = [[@*,a],zn + Tn-1] — [, d" (Tn + Tn_1)]
=[[a",a],zn + Tn_1] — [a, [0, 2] ] + (o, [0, Tp—1] ]
= o, [e", zp-1]] + [, [07, Tn—2] ]
= 2[v,a] +2[a", B]

using the Jacobi identity.

The coefficients x,, of the formal solution therefore each belong to a fixed vec-
tor space of Lie-algebra-valued functions - the space of Jacobi fields. Moreover,
since the linearization of the harmonic map equations is elliptic, by compactness
of the torus this space is finite-dimensional. This is the crux of the finiteness re-
sult from this point of view. To reduce = from a series to a polynomial requires
one more step.

We consider the polynomials

k

Dk = Z Ck_n-zn

n=0

obtained from the first (k + 1) terms of (¥z. Since dz + [A¢,z] = 0, we have
d(¢*z) + [A¢, ¢¥2] = 0, and consideration of the polynomial part gives

dpr + [A¢, pr] = [@, Th41] (2.9)

We want to show that z; vanishes for k large enough. Suppose not, then we
can find polynomials p;,...,pny spanning a space of greater dimension than
the vector space J of Jacobi fields. But then, since each x4, is an element of
J, it follows from (2.9) that there is a polynomial ¢(¢) = Zév AkDr such that
dq + [A¢,q] = 0. Without loss of generality, we can assume that the constant
coefficient ¢p is non-zero. But from (2.7) with n = 0 go = ha for some function
h, and from the same formula with n = 1, A must be holomorphic and hence
constant on the torus. We can thus scale ¢ to be obtained from the same
recurrence relation with the same initial condition as z. Since, moreover, the
other coefficients of g are multiples of x\, for k > 0, they are in Im(ad(a)) and so
q coincides with z, showing that the z, do indeed vanish for ¥ > N. It is now
a simple step using reality and dividing by a power of { to obtain the required
polynomial Killing field.

This is the loop group approach. We now give the alternative viewpoint
which involves the geometry of algebraic curves.
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2.5 Hyperelliptic curves

The details of this construction have only been worked out for G = SU(2)
[25], so we restrict ourselves to this case and consider, for comparison with the
previous method, the situation where a is semisimple. The construction starts
with an algebraic curve S defined by the equation

n’ = P(()

where P(() is a polynomial of degree 2p+2 in ¢ such that P(¢) = {?***2P(¢1).
There must be no roots of P at 0 or oo nor on the unit circle. The curve is a
branched double covering 7 : S — P!—a hyperelliptic curve.

We then take two meromorphic differentials 6,0 with double poles over 0
and oo but with residue zero, anti-invariant with respect to the hyperelliptic
involution n — —n and satisfying some reality conditions.

To relate this to the problem of harmonic maps of a torus, we have to find
the torus in this mass of algebraic data. The differentials have expansions near
¢=0
%g"*')\o-l-... 525\_2%-{'/\04-...
and since their residue is zero, the principal parts are determined by the coef-
ficients A_p, A_s.

We write as usual O(d) for the pull-back to S of the line bundle of degree d
on P!, then the poles of the differentials occur on the divisor D = 7 ~1{0, 00}
of O(2). The principal parts [6], [5] are then, invariantly speaking, elements of
H°(D,0(2)) and the exact cohomology sequence for the natural sequence of
sheaves

0=2A_

0->0—-0(12)—->02)p—0

gives a coboundary map
§: H°(D,0(2)) = H*(S,0) (2.10)

The image of the principal parts of the differentials then spans a (real) 2-
dimensional subspace U. This is going to be the universal covering of our
2-torus.

The aim is to construct, for each ¢, a flat connection on a certain rank
2 vector bundle over U, and show that this is of the form of Proposition 1.
Now each z € U C H(S,0) defines by exponentiation (and choice of Poincaré
bundle) a line bundle L, of degree zero over S. The vector bundle arises by
choosing a fixed line bundle E of degree p+ 1 on S (with some reality property
we will not go into here) and defining the fibre at € U to be

Ve, = H%S,E® L,).

The connection on the bundle V is defined by means of parallel translation,
and this involves the interpretation of the cohomology classes in the image of
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the map é in (2.10). The coboundary construction of the cohomology class
means that after exponentiating, the line bundle L, = exp(é(a[6] + b[8))) is
naturally trivial outside D. The trivialization extends to the whole of S only if

we multiply by
exp(£¢ (aA_g + bA_3)) (2.11)

in a neighbourhood of 7~!(0) and analogous expressions at co. For z,y € U
the ratio of these trivializations gives a non-vanishing section Py of L, ® L}
outside D. Now if the line bundle E® L,(—1) of degree p—1 is non-special (i.e.
HO(S,E® L,(-1)) = H(S,E® L,(—1)) = 0), it is easy to see that restricting
sections of E ® L, to D¢ = n~1(¢) is an isomorphism, so we have

Ve = H*(S,E® L;) = H*(D¢,E® L) (2.12)
Furthermore, if { # 0, 00, then multiplication by P, defines an isomorphism
H°(D,E® L,) = H*(D¢,E ® L) (2.13)

Putting (2.12) and (2.13) together, we have our definition of parallel translation
O, : V; = V. It is clearly independent of the path, and so for each ¢ # 0,00
we have a flat connection on V.

As (¢ approaches 0, then (2.11) shows that the connection matrix acquires a
simple pole in {. A similar consideration at ( = co shows that the connection
is of the form

V4¢P o

as required.

This, in brief, is the construction. We start with the hyperelliptic curve,
and for each line bundle E satisfying suitable reality constraints (which actually
guarantee it is non-special—see [25]) we obtain a harmonic map from U = R?
to SU(2). In order to obtain a map of the torus we need the connection to
descend to a quotient of the vector space U, and for this we need U € H!(S,0)
to intersect H'(S,Z) in a lattice. An equivalent way of saying this is to insist
that the periods of the differentials # and § should lie in 27iZ, and this of course
imposes severe constraints on the curve.

Even if those constraints are satisfied, we only get a harmonic map if the
holonomy is trivial at { = £1. In fact, given that 6 has periods in 2miZ, we
can write § = dh/h for some holomorphic function on S\n~1{0,00}, and this
2-valued function on P\{0, 00} can, by examining the construction above, be
séen to be the eigenvalue of the holonomy of the flat connection V +(® —(~1&*
around one generator of the fundamental group of the torus. Similarly 8 gives
the holonomy for the other generator. The existence of a harmonic map thus
requires this extra constraint, which can also be written in terms of periods of
differentials using the reciprocity formula [25].
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The algebraic curve method provides another construction in
finite-dimensional terms, of harmonic maps from the torus. As with the loop
group method, we need to prove its generality—that to every harmonic map
from a torus to SU(2) there exists a hyperelliptic curve.

2.6 Spectral curves

Let f: M — SU(2) be a harmonic map of a 2-torus. Where do we find an
algebraic curve? The key idea is to consider the holonomy of the flat connection
V+(¢®—(1®*. Since m (M) = ZDZ, we have two holonomy matrices for each
¢ # 0,00 and so holomorphic functions H, H : C* — SL(2, C) which commute.

As we saw in the previous section, if the hyperelliptic curve construction
applies, then the eigenvalues of the holonomy are single-valued holomorphic
functions on S\7~1{0, 00}, so to construct S we need to consider the eigenvalues

. trH+/(trH)? — 4
B 2

This function has branch points where (tr H)? —4 has odd zeros, and the essen-
tial point for producing an algebraic curve is to show that there are only finitely
many such points. As with the previous method, this finiteness will depend on
solutions of an elliptic equation on the compact manifold M. In fact, we have to
rule out first the case where the holonomy is trivial for all ¢, but this can rather
readily be shown to correspond to the harmonic map defined by a holomorphic
or antiholomorphic map to P1.

The important point to note here is that if (tr H)? — 4 has an odd zero at
¢ = (o, so does (tr H)? — 4. To prove this, we work in the field K of fractions
of the convergent power series in (¢ — (o). Then H and H are 2 x 2 matrices
with entries in the field. If (tr H)? — 4 has an even zero, the eigenvalues of H
are in K and are distinct since (o is an isolated zero. But since H commutes
with H, the eigenvectors are also eigenvectors of H which thus has eigenvalues
in K, and hence (tr H)? — 4 also has an even zero.

A consequence of this is that at an odd zero of (tr H)? —4, the eigenvalues of
both H and H are +1, and since they commute, there is a common eigenvector
with eigenvalue 1 for some choice of +H,+H. We now interpret this fact in
terms of flat connections. It means that after possibly tensoring with a flat
unitary line bundle with holonomy %1, we have a global solution s to the
equation

Vs + (bs — (g ld*s =0

and in particular to the elliptic equation
V1054 G@s =0

For ||¢|| € 1, V}? + (@ is a holomorphic family of elliptic operators of index
zero which therefore has a determinant which is a holomorphic function of (.
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Being holomorphic, it vanishes at a finite number of points or identically. If
the latter, then for ¢ = e, the connection is flat and unitary and we can use a
standard Weitzenbock argument (as in the theory of stable bundles) to deduce
from V%s + e?®s = 0 that s is covariant constant and thus the holonomy
trivial. Since this is true for all 8, we are back in the trivial holonomy case.
So there must be only finitely many odd zeros of (tr H)? — 4 in the unit disc.
Arguing similarly with the (0,1) part we get only finitely many outside the disc.

This is the essential finiteness property, which as the interested reader will
find in [25], leads to the fact that any harmonic map from a torus to SU(2)
can be constructed from a (possibly singular) hyperelliptic curve—the spectral
curve—in the manner of the previous section.

We have seen here two rather different methods of integrating the equations
for a harmonic map of the torus. One is based on a polynomial with values in
the Lie algebra, the other on line bundles over an algebraic curve. The two are
in fact closely connected, and the link is provided by the following well-known
result, to be found, for example in [3].

2.7 A basic result in integrable systems

Many classical (and not so classical) integrable systems can be linearized on
the Jacobian of an algebraic curve. The fundamental idea behind this is the
link between a line bundle over a certain curve and a matrix of polynomials.
Applications to integrable systems concern the evolution of those matrices as
the class of the line bundle follows a straight line on the Jacobian.

As usual, let O(d) be the line bundle of degree d over P!. We consider an
element A € H°(P!,0(d)) ® gl(k), so that in terms of an affine coordinate ¢ on
P!, A(() is simply a polynomial of degree d with coefficients which are k x k
matrices. Let n denote the tautological section of 7*O(d) over the total space
of O(d) and S C O(d) the curve defined by det(n — A({)) = 0, the spectral curve
of A. We then have the theorem [5]:

Theorem 1. Suppose S is smooth, and let X be the space of all B
€ HO(P!,0(d)) ® gl(k) with spectral curve S. Then PGL(k,C) acts freely
on X by conjugation and the quotient can be identified with J9~1(S)\O.

Proof: In algebro-geometric language, a line bundle L on S is equivalent to a
vector bundle V = w,L with the structure of a m,.0O-module. But this is the
same thing as a homomorphism

AV 5 V(d)

satisfying the equation P(A4, () = 0 where det(n — A(¢)) = P(n,(). Since S is
smooth and in particular irreducible, then by the Cayley-Hamilton theorem A
has characteristic polynomial P. Now L is not contained in the theta divisor if

and only if
H°(S,L) = HY(S,L) =0
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and from the functorial properties of the direct image, this is equivalent to
H°(PYV)=HYP,V)=0.

But from the Birkhoff-Grothendieck classification of bundles on the projective
line, this means that V = O¥(—1), and so Hom(V, V) = Hom(O*, O*) and we
can thus interpret A € H°(P!, 0(d)) ® gl(k)

Remarks:
1. Note that the genus g of S is

g= %(lc - 1)(dk - 2) (2.14)

2. As described in [5], the assumption of smoothness is by no means necessary in
the proof: if S is irreducible and reduced then we can repeat the argument using
torsion-free rank 1 sheaves, and in the general case using invertible sheaves so
long as A is regular (i.e. it has a k-dimensional space of commuting matrices)
at each point. )

The slick algebraic proof perhaps disguises the meaning of the correspon-
dence, so let us spell it out. The matrix A has a single-valued eigenvalue 1 not
on P!, but on the covering S. Over a point { € P!, the fibre V¢ is by definition
HO(D, L) where D¢ is the divisor 77!({). At a generic point the fibre consists
of k distinct points py, ..., pr and we can find a basis of sections sy, ..., sy with
si(p;) = 0if ¢ # j. This is a basis of eigenvectors of A(().

Let us now compare the two methods of solving the harmonic map equations
for a 2-torus to SU(2). On the one hand, the loop group method produces a
polynomial Killing field

d
5 = Z(l - Cn)gn
—d

which we may regard as a section of O(2d) ® si(2,C). Its coefficients depend
on a point of the torus M. It satisfies the differential equation

d§ +[A¢, €] =0

On the other hand, the spectral curve approach produces a hyperelliptic curve
S with equation n? = P(¢). Since P is a section of O(2p + 2), the curve
S naturally lies inside O(p + 1). Moreover the points z of the torus in the
construction correspond to line bundles £ ® L, on S. It seems plausible that
the two points of view may be linked by taking d = p+ 1 and k = 2. This is
indeed so:

Proposition 2.2. Let f be a harmonic map of a torus M to SU(2). Then, if
the spectral curve S is smooth, the polynomial Killing field at the point x € M
is obtained by the procedure of Theorem 1 from the line bundle L = ELy(-1)
over S.
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Proof: Recall that the construction of the vector bundle V over the torus gave
Ve 2 H(D¢, EL,) = m(ELy)¢ = (me L)(1)¢

so that A(() acts naturally as an automorphism of V. We have to prove that it
is covariant constant, that is commutes with parallel translation. But as we saw,
parallel translation is defined by multiplying H°(D¢, EL,) by the section P,
of L*L,. If s € H(D., EL,) vanishes at all but one point in D¢, then so does
P,ys hence parallel translation preserves the eigenspaces of A(¢). Equivalently
A commutes with parallel translation and is therefore covariant constant for
each (. It therefore satisfies the differential equation, and thus agrees, up to a
constant, with &.

It follows that, given the polynomial Killing field, we obtain the spectral
curve from its characteristic polynomial, and given the curve, Theorem 1 pro-
duces the Killing field. Seen in this light, the spectral curve construction (at
least in the smooth case) clearly works for G = SU{(n) for general n.

2.8 Successes and failures

The two methods have different advantages, and it is clear that a synthesis of
the two is the best way for further progress. On the one hand, our criteria
of integrability are best satisfied by the algebraic curve approach, for here we
have a general form of solution, the constants of integration being essentially
the coefficients of the curve and the parameters of a point on its Jacobian.
Our particularly relevant geometrical problem of harmonic maps to the torus
involves choosing those coefficients to satisfy constraints (which are incidentally
transcendental in nature and not at all easy to put into effect). On the other
hand, it is most effective for the group SU(2), or at best SU(n), since the direct
image of a line bundle constructs a vector bundle. For the other classical groups,
the Jacobian is replaced by a Prym variety (see [24]), but for a general Lie group
one has to consider more general abelian varieties as in [15]. By contrast, the
Lie-algebraic formulation of the loop-group approach does not distinguish the
linear from non-linear groups.

The generality of the methods is approached in different ways. In the spec-
tral curve approach [25], the case where a is semisimple or nilpotent are treated
side-by-side with no essential difference in method. The case of trivial holon-
omy was simply set aside to be dealt with by different methods. In geometrical
terms nilpotency of a corresponds to a conformal harmonic map to SU(2)—so
its image is a minimal surface—and the trivial holonomy case to a conformal
map to S? This contrasts somewhat with the loop-group approach where the
essential finiteness result seems to require semi-simplicity. Nevertheless, the
loop-group approach seems to be more effective for higher rank groups.

One issue which arises in higher rank is the question of how one can incor-
porate other constructions of harmonic maps, those which factor through holo-
morphic maps to flag manifolds—the superminimal surfaces, for example—into
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the integrable system approach. Here the loop-group formalism really comes
into its own (see [10], [38]).

What, then, putting both methods together, are the successes?

There is now a reasonably general method for constructing harmonic tori.
Under precisely stated conditions, any harmonic torus can be constructed
by a particular ansatz.

The methods allow one to construct explicit new examples, Wente’s torus
being but the first.

Some non-existence results ensue due to parameter counting: in particular
there are constraints on the conformal structure of a torus to be minimally
immersed in S® [25], whereas Bryant showed using superminimal surfaces
that it can always be minimally immersed in S*.

An unexpected feature is the essential presence of deformations. In the
loop-group approach we obtain non-trivial Jacobi fields as part of the
ansatz, but perhaps more importantly the algebraic curve approach shows
that at least some of these integrate to give deformations through har-
monic maps. This consists of the choice of the line bundle £ on the
spectral curve. If the polynomial P is of degree 2p + 2, then curve S is of
genus p, so its Jacobian is p-dimensional. The constraints for a harmonic
map, severe though they are, are independent of the choice of E, so given
one harmonic map, it possesses a p-dimensional family of deformations.

And what are the failures?

The methods are restricted to the 2-torus (or, as in [8] to pluriharmonic
maps of a complex torus of higher dimension). If M is a surface of higher
genus, then of course we can still consider the holonomy of the flat con-
nection V 4 (® — (= ®* around generators of the fundamental group, but
it is not clear how much help that is since the group is now non-abelian.
In particular, it was the existence of a commuting holonomy matrix in the
torus case which gave finiteness for the branch points. More seriously, it
is difficult to see how the surface itself, whose universal covering is now
no longer a vector space, can appear in the context of integrable systems
linearized on a Jacobian.

Despite having full control of the parameters, it is very difficult to read off
information of a differential-geometric nature from the algebraic-geometric
origins. There are formulas for energy in terms of the expansions of the
differentials [25], but even estimating the size of the energy from the hy-
perelliptic curve is currently impossible.

Some of the longstanding questions in the subject remain unanswered,
for example the conjecture of Hsiang and Lawson that the only embedded
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minimal torus in S® is the Clifford torus. All that the method offers in
this direction, since the Clifford torus corresponds to the case p = 0, is
the invitation to prove that an embedded torus has no deformations.

3 Four-dimensional Einstein manifolds

3.1 Background

Since the days of relativity, the search for 4-dimensional solutions to the Einstein
equations R;; = Ag;; in both positive definite and Lorentzian signature has
been a driving force in differential geometry. As a result of Yau’s proof of
the Calabi conjecture, and subsequent developments by Yau, Tian and others
since, the 20th century approach of global existence theorems has produced
many examples, but always restricted to the Kahler case. For a compact non
locally-homogeneous example which is not Kédhler, we only have the Page metric
(see [6]) on the non-trivial 2-sphere bundle over S2.

The non-compact case is less amenable to analysis, but offers more oppor-
tunities for constructions. Here again, both analysis and explicit construction
are easier in the Kéahler case. I want to indicate now how solutions of Painlevé’s
sixth equation can enter into the construction of some complete non-Kdhlerian
Einstein metrics of negative scalar curvature on the unit ball in R*, providing
deformations of both the hyperbolic metric and the Bergmann metric. The
details are in [26].

The Painlevé equations are well-known not to be solvable in terms of “known
functions”, and require the introduction of the so-called Painlevé transcendants
in general. Fortuitously, the problem discussed here does not need these and
can be solved explicitly in terms of theta functions. The reason, as we shall
see, is fundamentally associated with the sense in which these equations can be
thought of as being integrable.

The starting point for this construction is the work of Tod [57], who directly
approached the question of finding Einstein metrics in four dimensions which
have self-dual Weyl tensor, and are invariant under the action of SU(2). He
showed that the conformal structure could be written, using the standard basis
01,02,03 of left-invariant 1-forms on SU(2), in the form:

ds? o2 (1-3s)o2 so?
=2 _,a (-5 s
s(l-s) Qf Q3 Q2
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where the functions ); satisfy the differential equations:

0,03

! = _——

h = s(1—s)
(X9)

o = - 331 (3.1)
010,

! g —_——

Q3 _— 1_8'

and the value of 02 — Q2 — 02, which is a constant as a consequence of (3.1), is
—1/4. This is not the metric itself. The Einstein metric is g = e?“gq and has
scalar curvature 4A where

85020202 + 20, 0,05 (s(Q2 + Q2) — (1 — 402)(02 — (1 — 5)02))

_ 2u
4he (30 + 205 (2 — (1 — 5)02))2

(3.2)

This equation is one whose integrability we shall consider. Again, as is
characteristic of the subject, its history goes back beyond Einstein and his
equations to the 19th century study of orthogonal coordinates.

3.2 Orthogonal coordinates

Consider a metric given locally by

0 0
g= a—jl—dzf+---+£dxi
Clearly z,...,T, are orthogonal coordinates, so if the metric is flat we have
an orthogonal coordinate system on R"™. Flatness leads to a nonlinear equation
for ¢, which can be put in various forms. Metrics of this type were studied
by Darboux and Egorov (see [14, Chapter VIII], and [18]) at the turn of the
century. In more recent times, such metrics arise in Dubrovin’s theory [17]
of Frobenius manifolds with its connections to conformal field theories and
quantum cohomology. Such metrics have extra properties:

e d¢ is covariant constant
e ¢ is homogeneous as a function of z;,...,z,

The first condition is that the 1-form

o¢ o¢
dp = —d o4 —d
1) Bz, T + + oz, Ty
is covariant constant, which means that, using the metric, its dual vector field
9] 0]
X=—+ -+

6.’21 E
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is covariant constant. In particular X is an infinitesimal isometry. It generates
the R-action z; — x; +t. The homogeneity condition clearly gives an action of
R* by conformal transformations, so we are considering a problem of orthogonal
coordinates invariant under the two symmetries:

T;—> T+t
T; > Az

In positive definite signature, the degree of homogeneity of the coefficients of the
metric must be zero, because X being covariant constant implies that g(X, X)
is a non-zero constant. Thus the coeflicients are functions of R™ invariant
under this two-parameter group. In three dimensions, this means that they are
functions of the single variable

Ty — T2

T3 — T2
and this is where the differential equation (3.1) enters:

Proposition 3.1. Let Qy,Q, Q3 be functions of s = (z1 — z2)/(z3 — x2), then
the metric
g = —Q%dz} + Q; %dz3 + Q3 *dz;

is flat iff Q1,89,3 satisfy equation (3.1).

Darboux’s 1910 book [14] on orthogonal coordinates has more pages than
Besse’s comprehensive 1987 book [6] on Einstein manifolds, which is perhaps
an indicator of the importance of the subject at the time, but in some sense
we are seeing here another manifestation of the same piece of mathematics
in a different context. We face the same problem, though: how to solve the
differential equation (3.1).

3.3 Isomonodromic deformations

The equation (3.1) is integrable because it can be reduced to the geometrical
problem of isomonodromic deformations, which we describe briefly next.

Consider a meromorphic connection on a trivial bundle over P! with con-
nection form (in an affine coordinate z)

~ Aidz
A=

2

=1

An isomonodromic deformation A;(z1,...,2,) for (z1,...,2,) € U C C" is
a family of such connections with constant holonomy (up to conjugation). It
necessarily satisfies the Schlesinger equation [40]:
dz; — dz;
9z — %5 _ . (3.3)

2 — 25

dA; + > [Ai, Aj]
i
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Suppose we have four points z1,...,24. By a projective transformation we can
make these points 0,1, s,00. Then

A1 A; As

A =

(2) = -1 + z—5

and Schlesinger’s equation becomes:

dA; (A, Al]
ds s
dA;  [As, Ad]
ds —  s—1 (3:4)
dds _  [A1,As] | [As, A5]
— = +
ds s s—1

where the last equation is equivalent to
Ay + Ay + A3 = — A4 = const.

Assume that the A; are 2 x 2 matrices of trace 0. Note that from Schlesinger’s
equation (3.3),
2  — dz;
dltr A7) = 23 tr(Ai[As A;) 0 g
J#i AT

so that each tr A? is independent of 27, 29, 23, 24, and is a constant of integration.
By its very origin, the full constants of integration of this equation consist of
the prescription of the holonomy: a representation of the fundamental group of
the 4-punctured sphere in SL(2,C). Since this group is a free group on three
generators (taken to be loops passing once around three of the punctures),
these constants are essentially the choice of a triple of elements My, Mo, M3 in
SL(2,C) modulo conjugation. When the eigenvalues of A; do not differ by an
integer, the holonomy around a small loop surrounding the pole z; is conjugate
to
M; = exp(2miA;)

so that if tr A% =k,

tr M; = 2 cos(wv/2k) (3.5)

The constancy of k is thus just part of the full constants of motion—invariants
of the holonomy.

From the point of view of integrable systems, we have here the general solu-
tion. A specific one is determined by the choice of a holonomy representation.
That is precisely what we shall do when we relate the equations for the ; to
isomonodromic deformations.
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To make that relationship, we consider solutions to the isomonodromic de-
formation problem for which the holonomies for small curves surrounding the
poles are all conjugate. This means that the residues A; satisfy

trAZ =tr A2 =tr A2 =tr(A; + Ay + A3)2 =k (3.6)
Now if we set
Q= —(k+trd;ds) Q3 = (k+trdsAs) Q2 = (k+trAz34,) (3.7

The Schlesinger equation for isomonodromic deformations (3.4) shows that

dy  _ tr([A1, As)As)

2 = ds s(s—1)

20,2 _ Ay, A2l4s) (3.8)
ds s

20,9% ds  _ tr([Ar, 42)4s)
ds s—1

On the other hand, in the Lie algebra of SL(2,C), we have the identity

tr A% tr A1 A2 tr A3A1
(tr([Al, AQ]A;;))2 = —2det | tr A1A2 tr A% tr A2A3
tr A3A1 tr A2A3 tr A%

Expanding the determinant and using (3.6), we see from this that tr([A;, A2]A3)
is a distinguished square root of 4020202, which gives the required equations
(3.1):

Q203
Qo o= -
! s(1—s)
Q/Z — _QSQI
S
02,09
! —_— ——— “
Q3 _— 1_8-

Does this approach give explicit solutions? In some ways, the answer is no,
for a simple substitution

dy yly-1y-=) 1 1 1
dz = z(z-1) (2—@_2(y—1)+2(y—$)>

(which defines the auxiliary variable z), and

of = R () ()
o = B o) (o)

0 = %@(Z 2y>(z m)
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reduces the general isomonodromic deformation problem for four points to a
Painlevé equation:

d’y 1 1 1 dy\?> /1 1 1\ dy
@—1/2(§+y_1+y_m) (d—) "(;+x_1+y~z)£
y(y—l)(y—r)( T z—1 z(r —1)
2a-nr \“T Pt T O e

and the general solutions of such equations are known to involve new transcen-
dental functions. However, the specific problem on Einstein manifolds we began
with concerned finding solutions to this equation with Q3 — Q2 — Q3 = —1/4.
This has a natural interpretation in terms of the holonomy, for

Q% - Q% - Qg = -3k —trd; Ay —tr Ay Az —tr A3 A; = -2k

and so we must take k = 1/8. From (3.5) this means that the holonomy around
each pole has eigenvalues £¢ and so is of order 4. We can use this fact to give
explicit solutions.

The basic idea is that by taking a double covering of P! branched over the
four poles of the meromorphic connection, we pull back the connection to one on
an elliptic curve E. This time the eigenvalues of the holonomy around each pole
are =1 and since the connection has holonomy in SL(2,C), this is a multiple
of the identity. In PSL(2, C) this is trivial, and so the holonomy extends to a
répresentation of the fundamental group of the elliptic curve, which is abelian.
We can now rewrite the connection in terms of meromorphic connections on
line bundles and the holonomy is then defined by the periods of meromorphic
differentials on the elliptic curve E. This allows us to find explicit solutions of
the isomonodromic deformation problem, and consequently (see [26] for details)
explicit forms for Einstein metrics. For information, the general solution to
this particular Painlevé equation, where the coeflicients in the equation are
a=1/8,8=-1/8,y=1/8,0 =3/8,is

_ 97'(0) 1 19,4(0)
O TRV <1 - ﬁ§<0>>

' ()91 (v) — 20 (V)9 (v) + dmiey (9] (V)Y (v) — I (v))
2m294(0)9 (v) (V4 (v) + 2wici V1 (v))

+

where v = ¢;7 + ¢z and z = 93(0)/93(0). It is then a matter of using estimates
for theta functions to describe global properties of the resulting Einstein metrics
in terms of the two constants of integration ¢; and cs.

This is a classical approach to the problem, but just as with the case of
harmonic tori, it gives some new examples and illuminates the area in a number
of ways.
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3.4 Metrics on the ball

The complete metrics produced this way are of different forms. There are two
obvious ones—the well-known (and unique) compact self-dual Einstein mani-
folds S* and C'P? with positive scalar curvature. The isomonodromic problem
they correspond to has finite holonomy group: the binary dihedral group for a
triangle and a square respectively (see [27]). The three matrices My, My, M3
cover three reflections in the dihedral group.

In the case of zero scalar curvature the metric on the moduli space of 2-
monopoles [3] is the unique complete metric and corresponds to the holonomy
representation

—i i —i 0
= (o) = (50) = (00

The rest are metrics of negative scalar curvature, and correspond to represen-
tations of the following form:

0 A 0 Aet? 0 e'?
M, = (-A—l 0)’ M; = <—,\—1e—i9 0 ) My = (—e—“’ 0)

(3.9)

They live naturally on the unit ball in R* and fall into two types. The first
consists of taking a general value for A and 6. It has the following properties:

e The conformal structure extends over the boundary 3-sphere, and induces
there a left-invariant conformal structure on SU(2). If we add in the hy-
perbolic metric and Pedersen’s metrics [48], then we have a two-parameter
family of self-dual Einstein metrics which induce any left-invariant confor-
mal structure on the 3-sphere. Thus these conformal structures are, in the
language of LeBrun [36] of “positive frequency”. There are obstructions
in general to the positive frequency condition, involving the eta-invariant
of the boundary (see [28]).

e The metrics approach the hyperbolic metric near the boundary of the
ball, but not fast enough to be covered by the rigidity theorem of Min-
Oo [44] which would force it to be the hyperbolic metric itself. It is
interesting to note that Min-Oo’s approach is based on Witten’s proof of
the positive mass theorem, concerning zero scalar curvature. The Taub-
NUT metric (see e.g. [6]) is a self-dual Einstein metric on R* with zero
scalar curvature which does not fall within the scope of Witten’s theorem.
Our metrics are in some sense hyperbolic analogues of this metric. Indeed,
the Pedersen metrics (which have an extra degree of symmetry) can be
obtained by a quaternionic-Kahler quotient construction which generalizes
the hyperkahler quotient which yields the Taub-NUT metric.

e There are no quotients of these metrics by discrete groups: the central
fixed point of the SU(2) is distinguished by its local geometry.
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e The full family is parametrized by the left-invariant conformal structures
on the 3-sphere.

The second family corresponds to taking a special value § = 0 in the holonomy
(3.9). It has the following features:

e One of the coefficients of ¢ in the metric decays much faster than the oth-
ers as the boundary 3-sphere is approached and so the conformal structure
of the metric does not extend over the sphere. In the limit it induces a
degenerate conformal structure, which we can think of as a CR-structure
on the boundary. If we add in the Bergmann metric on the unit disc in
C?Z, then we get a family which realizes every left-invariant CR-structure

on S°.

e Although the Bergmann metric is a Kéhler metric, this is not so for any
other member of the family.

e There are no quotients by discrete groups.

e The full family is parametrized by the left-invariant CR-structures on the
3-sphere. In fact, if uo? + o2 represents this structure, with p < 1, we
take the holonomy with

4 Integrability and self-duality

4.1 Background

We remarked initially that among the distinguishing characteristics of 20th cen-
tury mathematics is the goal of setting up unifying structures linking together
disparate areas. The most noteworthy case for us concerns integrable systems
and their relationship with the self-dual Yang-Mills equations. For a thorough
account of this, we refer to the book of Mason and Woodhouse [42]. The essen-
tial idea is to see integrable systems as dimensional reductions of solutions to
the equations
FA = *FA

for the curvature F4 of a connection A on a principal G-bundle P over R*. In
fact, it is unwise to rely on the Euclidean signature alone. We may consider
complex connections, or more commonly real ones which are self-dual in signa-
ture (2, 2) (recall that there are no real self-dual 2-forms in Lorentzian signature
since in that case *2 = —1).

By “dimensional reduction” we mean that we take solutions which are in-
variant under a group H of diffeomorphisms of R* which preserve the equations.
Since the Hodge star operator is conformally invariant in the middle degree, this
must be a group of conformal transformations, i.e. a subgroup of SO(5,1) for
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Euclidean signature, or SO(3,3) in the other case. If dim H = d < 4, then the
self-duality equations can be reinterpreted as equations in a (4 — d)-dimensional
quotient space, which in the case of translations consists of another vector space,
but where the induced metric may be degenerate.

The equations on the quotient are not for just a connection, but involve
extra data—the “Higgs fields”. These arise, invariantly speaking, from the fact
that H-invariance of the connection only has meaning if we have a lifting of
the action of H from R* to the principal bundle P. If X is a vector field on
R* generated by the action of H, then for any section s of a vector bundle V
associated to P there is another section, the Lie derivative L xs. If we have a
connection, we can also define the covariant derivative V x s and the difference
(Vx —Lx)s is a zero-order operator: an endomorphism of V. If the connection
is H-invariant, then this endomorphism is defined on the quotient space, and is
called a Higgs field. Thus for a d-dimensional group H, we have d Higgs fields.

To relate the corresponding coupled equations for connections and Higgs
fields to known integrable systems, two processes are involved. In the first place,
since systems are not necessarily written in gauge-theoretical terms, some gauge
choices have to be made. Secondly, a curious phenomenon takes place with a
reduction to two dimensions: the equations become, after a suitable reinter-
pretation, conformally invariant. This has nothing to do with the conformal
invariance in four dimensions, and is much stronger since there is an infinite
dimensional pseudogroup of such transformations in two dimensions. In the
case that the quotient metric is degenerate, this is the pseudogroup of Galilean
transformations. What it means is that a reduction to a relatively few canonical
models can be achieved.

In this manner, choosing G to be an appropriate real form of SL(2,C),
the KdV equation and non-linear Schrédinger equations appear as dimensional
reductions, as pointed out by Mason and Sparling [41].

We have considered so far two examples of integrable systems arising in
Riemannian geometry: harmonic maps of a surface and the isomonodromic
deformation problem corresponding to Painlevé’s sixth equation. We can see
these now as dimensional reductions of the Yang-Mills equations.

4.2 Two examples

We begin with R* with metric g = dz? + dz} — dz? — dz% and and volume form
dzy Adzs A dzs A dxy. The Hodge star operator is then:

*d:l)l A d.’II2 = d:l?3 A d.’L‘4
xdrg ANdrs = —dzg Adzs
*dry ANdry = —dzo Adzs

We take for the group H the 2-dimensional group of translations

(x1,$2,$3,.’t4) — (.’l)l,zz,zg + a1,T4 + 0,2)
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for (a;,as) € R2. The quotient space is R? with Euclidean metric dz? + dz2
and we have two Higgs fields ¢1(z1,z2) and ¢2(z1,z2). In these terms, the
self-dual connection has connection form

Ardzy + Axdzs + ¢1dzs + dadxy

Equating the three anti-self-dual coefficients of the curvature to zero gives the
three equations:

F12 = [¢1) ¢2]
Vigr = Voo
Vige = —=Vagy
Putting ® = (¢; + i¢2)d(z; + iz2), we obtain the equations
VOlg =0
F=[8, 8"

for a harmonic map in the form of Proposition 1.

For the next example (following [42]) we pass to complex coordinates, setting
Z =1 +1Te,Z = T} — 1Ty, W = T3 + T4, W = T3 — iT4, SO that the metric is
given by

g =dzdZ — dw dw.

In this case, the anti-self-dual 2-forms have as basis dz A dw, dZ A dw,dz A dZ —
dw A dw.

Consider the 3-dimensional group H = C* x C* x C* acting by conformal
transformations as follows:

(2,2, w, ) = (A z, uz, w, uv~1d)

The quotient space is 1-dimensional. Since s = zZ/ww® is invariant under the
group action, we can take it to be a parameter on the quotient. Now introduce
coordinates

= -—logw
= —logz
= log(w/Z)
Under the group action these transform as
(p,q,7) = (p—log A, g — logp,r —logv)

and so an H-invariant connection defines Higgs fields P, @, R which are Lie-
algebra valued functions of s. In one dimension, a gauge transformation locally
trivializes any connection, so there is a gauge for which the connection form is

Pdp + Qdg + Rdr.
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In these coordinates the anti-self-dual 2-forms are spanned by
ds ANdp+sdr ANdp, dgAdr, (s—1)dpAdg+dpAdr—dsAdg
and the curvature is
P'dsAdp+ Q'ds Ndq+ R'ds Adr + [P,QldpAdq+ [Q, Rldg Adr + [R, Pldr Adp

For self-duality of the connection, the product with the anti-self-dual 2-forms
must vanish and this leads to the three equations

P =0

Q'=1RQ)

.1 1

R = (S—l)[R,P]+S(S—1)[R’Q]

and taking
P=-A -4y - A3

Q=4
R = A;

we obtain Schlesinger’s equation in the form (3.4). So Schlesinger’s equation,
and the isomonodromic deformation problem for four singular points, is a di-
mensional reduction of the self-dual Yang-Mills equations.

The two concrete applications of integrable systems to problems in Rieman-
nian geometry which we have considered thus arise in a natural way by choosing
a group H of conformal transformations and studying the self-dual Yang-Mills
equations invariant under H, for differing gauge groups G. Much more can be
said, in particular with regard to the twistor methods of solving the equations,
but that will take us too far afield. Suffice it to note that the indeterminate
¢ in the flat connection V + (@& — (~1®* for a harmonic map is essentially a
complex parameter on a twistor line. Many of the standard, inverse scattering
methods of solving integrable systems have a reinterpretation in twistor terms
(see [42]).

The one feature which does emerge from this general point of view, is that
we can’t expect all of the interesting problems in Riemannian geometry to
succumb to the method of integrable systems. As Ward has pointed out in [59),
the self-dual Yang-Mills equations have the “Painlevé property” whereas the
full Yang-Mills equations do not. By analogy, it would be surprising if the full
Einstein equations could be solved by any integrable system method. In four
dimensions, as we have seen, self-duality may lead to integrability, and we shall
see later a very direct relationship between certain integrable systems and the
construction of hyperkéhler metrics in higher dimensions. For this, though, we
need to study another dimensional reduction, that of Nahm’s equations.
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4.3 Nahm’s equations

Take R* with positive definite Euclidean metric dz3 + da? + dz? + dz? and
consider the 3-dimensional group H of translations of the form

($07$17m271‘l3) — (‘T07m1 +a‘1)'r2 + as, T3 +a3)

An invariant connection now gives three Higgs fields 71,75, T3, functions of zg,
and, as in the previous example, trivializing the connection in one dimension,
the connection form can be written T1dx; + Todxos + T3dzz. The curvature of
the connection is

T)dzo A dzy + Tydro A dza + Tydzo A ds
+ [Tl,Tz]d.’L‘l Adzy + [Tg, Tg]dl‘g Adxg + [T3,T1]d£173 A dzq

The self-dual Yang-Mills equations now become Nahm’s equations

Ty = [I2,T3]
T, = [I3T]
TSI = [Tl ) T‘Z]

Since these are obtained by the action of a three-dimensional group of transla-
tions, it is not surprising that there is a close relationship to the equations for
a harmonic map, where H was a two-dimensional translation group. The only
difference is in the signature on the metric on R*. In fact, harmonic maps of a
torus which are S'-invariant reduce to the very similar equations

T = [Ty,T3]
T, = —[13,Ti]
T; = -[N,T2)

which also arise in the theory of variations of Hodge structure [52]. Given that
we can linearize the equations for harmonic maps of a torus on the Jacobian of
a curve, it is not surprising that Nahm’s equations can be too. We write, with
an indeterminate (,

A(C) = (T + iTs) — 26Ti¢ + (T — iT3)¢? (4.1)

so that A € H(P!,0(2)) ® g. When G = U(n), Proposition 1 tells us that,
modulo overall conjugation, this corresponds to a line bundle L on the spectral
curve S C O(2) defined by det(n — A(¢)) = 0.
If we now set A, to be the polynomial part of AC™!, Nahm’s equations
become equivalent to the Lax pair (putting s = zo)
dA

— =[A A
ds [7+}
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As a consequence of the above Lax form, the spectral curve remains the same,
and the line bundle evolves along a curve in the Jacobian, which in fact is a
straight line. This is very similar to the case of harmonic maps from a torus,
but there the points { = 0,00 were distinguished. In the present case, because
A is only quadratic in (, these points play no particular role. The direction
in the Jacobian in which the straight line evolution takes place is determined
by a canonical element in H!(S, 9), (the tangent space to the Jacobian at any
point). We take the canonical generator z of H (P!, K) = H!(P!,0(-2)) and
the tautological element n € H°(0(2),7*0(2)) and define nz € H(0(2),0).
Restricting nz to S C O(2) gives a canonical element in H*(S, Q).

The principal result (see e.g.[22]) is that (T1,T%,73) satisfy Nahm’s equa-
tions if and only if the line bundle L; evolves in a straight line on the Jacobian
in the distinguished direction nz.

Nahm’s equations originated in the study of magnetic monopoles, but they
have become a means of constructing concrete Einstein metrics in higher di-
mensions than four. We shall use the integrable systems approach to study
these in some detail, and find explicit formulae.

5 Hyperkahler metrics

5.1 Background

It is now 20 years since Yau’s proof of the Calabi conjecture. This theorem pro-
vided a great many compact manifolds satisfying the Einstein equation R;; = 0.
Given a compact Kéhler manifold with first Chern class zero, the theorem as-
serts the existence of an essentially unique Kéhler metric cohomologous to the
initial one, but with zero Ricci tensor. The first examples, of K3 surfaces, are
also the first examples of hyperkdhler manifolds—Riemannian manifolds whose
holonomy is contained in Sp(n) C SU(2n), and, as pointed out in [4], a minor
extension of Yau’s theorem can be used to prove the existence of a hyperkihler
metric on any compact Kdhler manifold with a non-degenerate holomorphic
2-form. In particular, the Hilbert scheme X[™ of 0-cycles of length n on a K3
surface or an abelian surface X has a hyperkahler metric.

These existence proofs are impressive, especially given the state of affairs 25
years ago, when no complete non-trivial Ricci-flat metric was known to exist.
They have provided a great source of information for algebraic geometers, in
particular for studying moduli problems, but there are simple questions which
they cannot hope to answer. For example, is the hyperkdhler metric on the
Hilbert scheme in any way locally defined by that on the K3 surface itself?

The existence theorems work best in the compact situation, and despite
more than 15 years of study, the situation in the non-compact case—trying to
put a Ricci-flat K&hler metric on the complement of an anticanonical divisor—
is still not fully understood (see [56]). On the other hand, some construction
methods have arisen over the last few years to give plenty of explicit hyperkihler
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metrics on noncompact manifolds. These are of three types:
e twistor space methods
o finite-dimensional hyperk&hler quotients
¢ infinite-dimensional hyperkahler quotients

Sometimes all three methods can be used to give a single metric, for example
the ubiquitous Taub-NUT metric on R*, whose twistor construction is given in
[6] (Chapter 13) is expressed as a quotient of C? x C? in [6] (Addendum E), and
has recently appeared in the context of duality as the natural metric obtained
by an infinite-dimensional quotient construction on a certain family of SU(3)
monopoles [37].

Among the infinite-dimensional quotient constructions is a series of metrics
defined on coadjoint orbits of complex semisimple Lie groups. These ideas
were initiated by Kronheimer [35] and developed more fully by Biquard [7]
and Kovalev {33]. The construction makes use of Nahm’s equations, as do
other metrics of interest. In [34] Nahm’s equations are used to put complete
hyperk&hler metrics on the total space of the cotangent bundle to a complex
Lie group. Finally, Nakajima’s result [45] show that the natural metrics on
the moduli spaces of SU(2) monopoles on R? as described in [3] may also be
obtained from the Nahm matrices which are used to construct the monopole. A
more recent result of Nakajima and Takahasi [46], [55] shows that this applies
also to the SU(3) monopole metrics studied by Dancer [11].

As we have seen, Nahm’s equations are solvable in terms of a linear flow
on the Jacobian of a curve, and we might hope to be able to write down the
hyperkahler metric explicitly using the data of the curve. In some sense, as we
shall see, this is the case.

5.2 Hyperkihler quotients and Nahm’s equations

Recall that a hyperkihler manifold is a K&hler manifold M with a nonde-
generate covariant constant holomorphic 2-form w®. The real and imaginary
parts of w® together with the Kéhler form constitute a triple of closed 2-forms
w1, ws, ws, each one symplectic and satisfying some algebraic constraints. These
constraints can be summed up as saying that the stabilizer of all three at each
point is conjugate to the quaternionic unitary group Sp(n) C GL(4n,R). Each
form w;,ws,ws is the Kahler form of a complex structure I, J, K and these
generate an action of the quaternions on the tangent bundle.

If G is a Lie group acting on M, preserving all three 2-forms, we have three
moment maps, which can be collected into a single function:

p:M - g®R?

If 4~ 1(0) is smooth, then the induced metric is G-invariant and descends to the
quotient. The hyperkiahler quotient construction [23] consists of the observation
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that this quotient metric is again hyperkahler. For most purposes, the initial
space M is taken to be a flat quaternionic vector space, so that in this case the
hyperkahler metric on the quotient is simply induced from the restriction of a
Euclidean metric to a submanifold. This is quite explicit, except for the fact
that the non-linear algebraic equation u(m) = 0 may not be easy to solve.

A standard class of examples can be obtained by taking a compact semisim-
ple Lie group G, setting
M=goH

and taking the adjoint action of G. The moment map equations are then
[Ao, A1] = [A2, A3}, [Ao, A2) = [43, A1), [Ao, A3] = [A1, As]

where A € M is A = Ag +iA; + jAs + kAs. An infinite-dimensional version
of this is to consider the interval [0,1] and a connection Ag = d/ds + Bo(s)
on a trivial G-bundle, with A;, As, A3 replaced by Higgs fields B; : [0,1] — g.
We can then consider the infinite-dimensional quaternionic affine space A of
differential operators of the form

d . :

-dg+B0+'LB1 + jBs + kBs
as a hyperkéhler manifold, using the £2 inner product. The appropriate group is
now the infinite-dimensional gauge group G of smooth functions g : [0,1] = G
such that ¢g(0) = ¢g(1) = 1. The moment map equations for this action read

Bi + [Bo, Bl] = [BQ, B3]

Bé + [Bo, BQ] = [Bg, Bl]

By + [Bo, B3] = [B1, By]
Formally speaking, we expect a hyperkihler metric to be induced on the quo-
tient space. The appropriate analysis was carried out in [34] and gives a com-

plete hyperkihler metric on the cotangent bundle of the complex group G°¢. A
related paper which describes properties of these metrics is [13].

The identification of the hyperkéhler quotient as a cotangent bundle proceeds
as follows: define
CYZBo—’iBl ﬁ:BQ+iBg

and let f :[0,1] — G° be the solution to the equation

af

satisfying the initial condition f(1) = 1. Consider the map defined by

b(a, 8) = (f(0)71,8(1)) (5.2)
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Then because the group G9 consists of functions vanishing at the end-points, the
map 7 is easily seen to be defined on the quotient, and as shown in Kronheimer’s
paper [34] (where the arguments are modelled on those of Donaldson [16]), this
gives a diffeomorphism to G¢ x g¢ = T*G°.

Now there is a unique gauge transformation ¢ : [0,1] — G with g(0) = 1
such that p
g

hat: A

s 0g
and after applying this and putting 7; = Ad(g)B;, the moment map equations
for B; become Nahm’s equations, so that in principle we only have to solve
Nahm’s equations to determine the zero set of the moment map and hence the

metric.

The other uses of Nahm’s equations to give hyperkahler metrics depend on
different boundary conditions for the Nahm matrices, and we shall deal with
these separately later.

5.3 Kahler potentials

It is easy to ask for an explicit form of a metric, but less easy to decide in what
form one would really like it. When we ask for explicitness and receive it, it
may not be what we really wanted, since the questions we pose initially may
not be readily answered by using some complicated expression in transcendental
functions. The examples of metrics on the ball in Section 3 are borderline in
this respect: it is just possible to determine global behaviour of the metric, but
it involves a mixture of expansions of theta functions—well-known because of
their long lineage—and consequences of the differential equations they satisfy.
So what would be a good answer for a Kahler metric on a manifold? Perhaps
the simplest is to find a Kdhler potential—a locally-defined function ¢ such that
the Kahler form is expressible as

1004 = w

This is just a single function on the manifold, and as a consequence has an
interpretation independent of coordinates. It disguises the fact that one needs
to know the holomorphic coordinates as well in order to write down the metric,
but it may well be that some properties of the manifold can be deduced from
the potential itself. This is what we shall do for the metrics constructed from
solutions of Nahm’s equations. It turns out that there is a natural global Ké&hler
potential for one of the complex structures of the hyperkéhler family. This is a
consequence of the following result [23]

Proposition 5.1. Let M be a hyperkihler manifold with Kéhler forms w1, ws, w3
and suppose X is a vector field on M such that

Lxw; =0, Lxws=ws, Lxws=—ws
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Let p be the moment map for X with respect to wy, then 2u is a Kdihler potential
for the complex structure J.

Proof: By definition, u satisfies du = ¢(X)w;. Using the complex structure J,

we have ~ _
du(JY) = (Ogp+ 0yp)(JY) = i(8sp — 9gp)(Y)

But we also have
du(JY) = UX)r(JY) = g(IX, JY) = g(KX,Y) = ws(X,Y)

Hence ~
U(X)ws = 1(0yp — Ogp)

and so )
"‘228J8_]/L = d(L(X)w3) = &st = —wy

giving, as required, B
W = ZiE)Jc’?J“

Remarks:

1. Note that so long as the moment map u is globally defined (and this will
certainly be true if b, (M) = 0), so is the Kihler potential. This has serious
implications for the complex structure J. In particular, since the Kahler form
is cohomologically trivial, there can be no compact complex subvarieties.

2. A circle action which acts non-trivially on the 3-dimensional space of covari-
ant constant 2-forms spanned by w;,ws,ws will, after some orthogonal change
of basis, always be of the above form. The vector field X generating it is
normalized by the conditions Lxwy; = w3, Lxws = —ws.

3. It is clear from the symmetry of the problem that the complex structure J is
not determined by the circle action, and any complex structure cos8J +sin 0K
orthogonal to I in the 2-sphere of all complex structures will share the same
Kahler potential 2u.

In the case of Nahm’s equations, there is an obvious action of SO(3) on the
space of (By, By, Bs, B3) given by

3
By — Bo, B;— ZPiij

where P € SO(3). This rotates the Kahler forms, as does the action which
descends to the quotient. Choosing the SO(2) subgroup which leaves fixed the
Kéhler form w; then gives an action which differentiates to a vector field X of
precisely the nature of Proposition 5.1. Thus Kronheimer’s metric on T*G¢ has
a globally defined Kahler potential for one of the complex structures. In fact,
since the SO(3) action acts transitively on the hyperkihler complex structures,
these are all equivalent to the standard one.
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The chosen circle action acts trivially on a = By — iB; and takes 8 =
By +iBs to e¥ 3. In terms of the parametrization (5.2) above, this is just scalar
multiplication by e*’ in the fibres of the cotangent bundle.

Now on the affine space A, the vector field X generated by the circle action
is given by
X =jBs — kB,
On a Kéhler manifold, the moment map u for the Hamiltonian vector field X
satisfies grad u = I X, but since

IX = jBy + kB3
we see that for A € A,

1

1
wd) = ; /0 (B, Ba) + (B3, Ba)ds

This descends to the quotient, and so defines a potential for the metric there.

The inner product on the Lie algebra is Ad-invariant, so we may equally
write g as a function on the space of solutions (73, 7%,T3) of Nahm’s equations:

u(4) = 1/0. (T2, T2) + (13,T3)ds (5.3)

2
The challenge now is to express this in terms of the data which yields the
solution to Nahm'’s equations for the group G = SU(n): a family of line bundles
over an algebraic curve.

5.4 Theta functions

We consider the integrand in the formula (5.3) in the case that G = SU(n).
With the invariant inner product (U,U) = trUU* = —tr U?, this can be ex-
pressed in terms of
tr(T2 + T3).

Since this does not involve the adjoint, it makes sense for arbitrary T; € sl(k, C).

Consider then what tr(T + T%) expresses: a conjugation-invariant function
on the space of triples (T7,7%,T3) of matrices of trace zero. If we put these
together, as in (4.1)

A(Q) = (T2 + iT3) — 26T ¢+ (T2 — iTg)CQ
= Ay + A1+ A2C2

we obtain an element of H°(P!,0(2))®gl(k). According to Theorem 1, a dense
open set in the space of triples modulo conjugation corresponds to the choice
of a non-singular curve S

det(n — A(Q)) = n* + ar(Qn* ' + a2 (On* % ... +ar(() = 0
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in O(2) and a point in the Jacobian of line bundles of degree g — 1, not in the
theta divisor ©. Since A(() has trace zero, in fact the coefficient a; (¢) vanishes.
From the algebraic nature of the correspondence, tr(TZ + T2) is a meromorphic
function on J971(S) having a pole on ©, and our task is to determine what it
is.

There are quadratic functions of (T3.75.T3) which are constant on the torus:
the coeflicients of the polynomial a3(¢) in the formula for the spectral curve.
In fact,

1
az(¢) = 3 tr A(¢)?
=co + c1{ + 2% + e3¢® + ea?
so that

co + s = tr(T3) — tr(T3)
Cco —cqg = —2itrToT3
c1 +c3 =2itrTh Ty (5.4)
c1 —c3 = —2trT3T,
co = 2tr(T}E) — tr(T2) — tr(T%)

It is clear that tr(T2 + T2) is not in the space spanned by these coefficients,
and indeed it is not constant on the Jacobian. Nevertheless, it is more natural
to ask for the more symmetrical invariant

A=tr(TE+T§ +T3)
and we can then obtain

tr(TE + T3 = %(m - c3) (5.5)

Before we give the answer, recall some basic features of J971(S). It has a
distinguished linear vector field X = nz € H!(S,0). ;From (2.14), the genus of
the spectral curve is g = (k — 1)%, so 7*O(k — 2), which has degree k(k — 2) =
(k—1)2 =1 = g — 1 is a distinguished point, which we can use to identify
with J(S). Furthermore, it is easy to see [22] that Kg = n*O(2k — 4), so the
distinguished origin is a theta-characteristic: a line bundle L such that L? = K.
Finally, since O(k — 2) has k — 1 sections on P! (and usually even more on S
itself), the distinguished point always lies on the theta divisor, and if &k > 2 it
is a singular point. With these preliminaries, we can state:

Theorem 2. Let (T1,T>,T3) be a triple of trace-free k x k matrices for which
the spectral curve S is smooth. Then

3 &
= 2 24T ="}
A=tr(TY +T5 +T3) 5 752 ogd+c¢
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where ¥ is the Riemann theta function translated by a half-period, d/ds denotes
the derivative along the vector field X, and the constant c is given by

3 N2 (0)
(N +2)(N+1) 9N)(0)

with N = k(k? — 1)/6.

Proof: First recall that the Riemann theta function is a holomorphic function
on the universal covering CY of J(S). We may write

I(z) = Z exp[mi({(Bm,m) + 2(z,m))]
meZ9

where A;, B; are the integrals of the holomorphic differentials on the curve over
a canonical basis, and B; are the columns of the matrix B. The Riemann theta
function depends on the choice of canonical basis, which in turn determines a
theta characteristic, providing an isomorphism J(S) = J9~!(S). This isomor-
phism carries the theta divisor @ C J97! to the zero set of the theta function .
In our geometrical problem, we have another theta characteristic, independent
of the choice of canonical basis, and the difference is a half-period. We shall
continue to denote this translate by 9.

The theta function satisfies the basic properties:

Wz + 4i) = 0(2) (5.6)

Yz +n1B1 + -+ nyBy) = exp[—mi((Bn,n) + 2(z,n))]9(z) (5.7)

It is a consequence of these relations that

82
———log?¥
8zié)zj &
is invariant under translation by the lattice generated by A;, B; and hence is a
meromorphic function on J(S). In particular, so is

d2 02
el | — ) |
75 og v ;x X; 507, og?

Both A and (log®)” are meromorphic with poles along the theta-divisor. The
strategy of proof will be to show that, taking an appropriate multiple of A,
the principal parts coincide, so the difference is holomorphic and constant.
A calculation at the distinguished origin will then evaluate the constant. To
analyze the pole, we shall use Nahm’s equations.

We begin by considering a generic smooth point of © where the vector field
X is transversal. From [5], the holomorphic structure on the vector bundle V(1)



58 Nigel Hitchin

jumps from 0% to O(1) ® O(=1) ® O*~2. We need to investigate the behaviour
of A(¢) near this point. It acquires a singularity clearly from Theorem 1, but
its precise nature requires further investigation.

In fact, in [22] (§5), it is shown that at the origin in J(S), a solution to
Nahm'’s equations acquires a simple pole and thus does so at a general point of
©. Expanding, we have

Ti(s)=%+ai+n—s...

and applying Nahm’s equations about any simple pole gives the three sets of
relations:

-p1 = [p2,ps] (5.8)
0 = {02,0'3] + [023 p3] (5.9)
= [r2,p3] +[02, 03] + [p2, T3] (5.10)

and similar expressions obtained by cyclic permutation of the indices. From
(5.8), the residues p; define a k-dimensional representation of SL(2,C). At
the origin, the purpose of the long argument in [22] is to show that this is the
unique irreducible k-dimensional representation, a fact we shall need at a later
stage.

Consider then a solution of Nahm’s equations which acquires a pole as s — 0,
for which the line bundle L approaches a smooth point of ©®. The construction
of Theorem 1 always yields a vector bundle Vi on P! and a homomorphism
Ag 1 Vi — V(2). The bundle V(1) is trivial for s # 0. At s =0, V(1) =2 O(1)®
O(=1) ® ©O%=2, and then V(1) still has a k-dimensional space of sections, just
as in the trivial case. It follows that we can choose a basis v1((, s), ..., vk (¢, s)
of sections of Vj, holomorphic for s in a neighbourhood of 0. For s # O these
span the fibre at each point ¢ € P!, but for s = 0, they all lie in the subbundle
O(1) @ O%*~2. Now since the Nahm matrices acquire a simple pole,

A (Qvi(¢,8) = Z M N

S

J

and so since this is finite at s = 0,

> R(Q;wi(¢,0) =0
j

But v1(¢,0),...,v£(¢,0) span a (k — 1)-dimensional subspace, so the rank of
R(({) is 1. The residues of the Nahm matrices thus define a representation for
which

R(C) = (p2 +1ip3) — 2ip1C + (p2 — ips)(®

has rank 1. But on the irreducible representation of dimension n this has
rank n — 1, so the representation is the sum of a (k — 2)-dimensional trivial
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representation and the irreducible 2-dimensional one. The residues thus only
have a pole on the 2-dimensional component, and this, up to conjugacy, is

_1(i 0 _1(0 1 _1(0
Pr==50 —i) P27 732\-1 0/ =72\ o

It follows that

3 C_1

A(s)ztr(T12+T22+T3?)(s): —_2T95+_9_+”' (5.11)

We now need to determine the constant

c_1 =2 Z tr(pio;)

Note that from Nahm’s equations (5.9), we have
[pg,a'g] + [Ug,pg] =0 etc.

and so
(o1, [p2,03]] = [p1, [p3, 02]]

But from the Jacobi identity,

[p1,[p2, 03]] = —[03, [p1, p2]] = [p2, |03, p1]]
= [03, p3] + [p2, [p1, 03] ]

Doing a similar calculation on the right hand side, we obtain

[03, p3] + [02, p2] = —[p2, [p1, 03] ] + [p3, [p2, 1] ]
= —[an [p37al]] + [PS, [P2701”
= ~[o1,p1]

As a consequence of this relation

0 = [p1,[p1,01]] + [p1, [p2, 02]] + [p1, [p3, 03] ]
= [,01, [01701]] - [P27[02,pl]] - [02,[P1,P2]] - [Ps,[Usam]] - [03, [Phﬂs]]
= [p1,[p1,01]] = [p2, 01, p2] ] + [02, p3] = [ps, [01, ps]] — [o3, p2]

= ((ad p1)* + (ad p2)* + (ad p3)*) o1

Consider for a moment the case of any simple pole for Nahm’s equations. The
residues p1, p2, p3 give C* the structure of a representation space for SL(2,C).
We decompose C* = €,, En where E, is an irreducible representation space.
Since from the calculation above, ((adp;)? + (ad p2)? + (adp3)?)o; = 0, 0
commutes with each p;. Its component in each Hom(FE,, E,) is thus a scalar by
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irreducibility. It follows that tr(p;o;) = 0 since tr(p;) = 0. Hence the coeflicient
of s~! vanishes and

3
A(S):Qﬁ +cp+cis+ ... (512)
Now compare this with the Riemann theta function ¥. We know that this has
a simple zero at a smooth point on O, so in terms of the parameter s, we have
an expansion
I(s) = s(aop + ars + ass® +...)

Elo)
d2 1 20,002 - az
4 gy = -1 20a=a
ds? 08 27 a? *
Hence from (5.12),
3 d?
A~ ——=1
2 ds? og ¥

is holomorphic on J(S) and so is equal to a constant, depending on the curve

S.

To evaluate the constant, we focus attention on the origin. Here, as proved
n [22], the residues p; define the k-dimensional irreducible representation of
SL(2,C). Thus C*¥ = E;, and by the argument above each o; is a scalar.
However, tro; = 0 so

g; = 0

Now consider the constant term

2(2 tr(pirs) + tr(o;)?) = 2 Ztr(pﬂi)

(2

in the expansion of A at the origin. From (5.10), with o; = 0, we have
71 = [72, p3] + [p2, 73]
and so

tr(pim1) = tr(p1[re, p3]) + tr(p1(p2, 73])
= tx([ps, i) + tx((pr, poJrs)
= — tr(pQTg) - tr(p37-3)

from the definition of representation (5.8). Consequently
Z tr(p;7i) =0

and A has no constant term at the origin.
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Compare this with the expansion of ¥ at the origin. Since this is a singular
point of the theta-divisor, ¥ vanishes to high order V. Since the origin is a
theta-characteristic, our translate ¥ of the theta function is either odd or even
and so

9(s) = sV (ag +azs® +...)

where ) )
— _— 9 — = p(N+2)
hence ) (N42)
d N 29 (0)
—logd(s) = —— -
452 0890) =~ N o) T
Now for the k-dimensional irreducible representation,
k(k? — 1)
2y — —_— 7
Xi: tr(p;) = 7
so near the origin,
k(k% - 1)
A(s) = - 157 +
and 3 d? 3N
iplogﬁz —é‘s—i + ...
Hence since 3 P
———1
A 5 752 og v
is constant, we must have N = k(k? — 1)/6 and finally
3 d? 3 IIN+2)(0)

A= g 8 T (W2 ™)

as required.

Example:

When k = 2, the curve S is elliptic, and we can identify J(S) with S itself. The
theta divisor is a single point, which we take as the origin, and the translate of
the theta function which vanishes at the origin is traditionally called ¥;, and
regarded as a function of v = u/2w;. The classical formula for the Weierstrass
zeta function

_ mu 1 ¥ (v)
C(u) = o Tt (5.13)
shows that

o) = ) = P
p(u)—c(u)_wl+du210gﬂl
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and as is well known, the Weierstrass p-function has an expansion at the origin
1 2
p(u) = F+C2u +...

Thus there is no constant term for p. Now u = s for some constant x. This
constant is a function of the coeflicients of the spectral curve: it expresses the
canonical vector field X in terms of the Weierstrass vector field d/du. As a
consequence of the theorem, we can say that

6e(T2 + T2 + T2)(s) = —gnzp(ns) (5.14)

The constant  can be evaluated by referring to Hurtubise’s calculation [29].
The spectral curve can be reduced by a rotation to the canonical form

n° =11 —re(® —ri(

1/2

with 71,72 real and r; > 0. In this form x = r;

If we return to the question of Kahler potentials, then Theorem 2 provides
an answer for Kronheimer’s metrics on T7*G°. From Proposition 5.1 and (5.3)
and (5.5) we have

1
¢ =2u(A) = - /0 tr(T + T32)ds

1
—/0 %(m ~¢2)

so from Theorem 2, we have

i 20V+2(0) &
=], ~da s+ G oo+ 3

Before we state this as a theorem, we need to understand better the role of the
coefficient ¢ in the formula. As it stands, the formula for the Kahler potential
is the sum of two terms. The first, involving the theta function, depends only
on the modulus of the curve, and so is invariant under the SO(3) action

3
Bo —r Bo, B, — ZP,;]'BJ'
1

The second term consists essentially of the coefficient of (2 in the quartic poly-
nomial az(¢) appearing in the formula for the spectral curve. This is picked out
by the action of the circle subgroup in SO(3) which preserves the complex struc-
ture I. Invariantly speaking, as(¢) lies in the vector space H°(P!,0(4)). The



Integrable systems in Riemannian geometry 63

circle action generates the vector field X = {d/d(, a holomorphic section of the
tangent bundle O(2), and so X2 € H°(P!,0(4)). But the space H°(P!,0(4))
is an irreducible representation space for SL(2,C) and has an invariant inner
product. If a € H°(P!,0(4)) is written as

a=co+crC+ el + csl® + eal?
then the inner product is
(a,a) = 12cocq — 3103 + €2
From this point of view, the coefficient ¢, has the invariant meaning
e = (az, X?)

We are aiming to give a formula for the Kahler potential of the complex
structure J, but our formula seems to involve the holomorphic vector field X
which vanishes at I, and I is not canonically associated to J. There are circle
actions in SO(3) fixing any complex structure orthogonal to J. We cannot
expect a formula for the Kahler potential to be independent of the complex
structure I, because as remarked above (following Proposition 5.1), it is already
independent of the complex structure orthogonal to I and putting both facts
together, we would have an SO(3)-invariant potential which is not the case.

The explanation, of course, is that K&ahler potentials for a given complex
structure are not uniquely defined: we may add on any pluriharmonic function—
a function f satisfying

98f =0.
With this in mind, consider the effect of rotating the complex structure I by a
circle action preserving J. A rotation of  replaces ¢ by

c + gsin2 O(co +c4 — o) — g sin 6 cosf(cy — ¢3) (5.15)
Note from (5.4) that
2tr(T3 + ’iTl)z =cyg+cCq4—Co— 2’[(61 —¢3)

and tr(T3 +iT1)? = tr(Bs +iB)? is holomorphic relative to the complex struc-
ture J. Its real and imaginary parts ¢g + ¢4 — ¢z and ¢; — c3 are thus pluri-
harmonic. Hence from (5.15) any one of these choices gives the same Kahler
metric.

The vector field Y conjugate to X which fixes J is

1 d
Y=g+ g

and this gives 3
(az,Y2> = —5(60 +cq4 — Cz) — 2¢9
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so that
8,85¢s = -%aJéJ<a2,Y2> (5.16)

Thus —({az2, Y'2)/2 provides an alternative to the ¢y term in the Kihler potential,
which is now invariantly defined by the complex structure J under considera-
tion.

Perhaps a better way to express this is to use the identification of the 5-
dimensional irreducible representation space of SU(2) which here appears as
HO°(P1,0(4)) as the space of 3 x 3 symmetric matrices of trace zero, in other
words to define from ¢ € H°(P!,0(4)) a quadratic form @ on the 3-dimensional
space H°(P!,0(2)). This is easily achieved by defining for z € H°(P!,0(2))

Q(z,z) = (q,2°)

From this point of view, we think of a complex structure in the hyperkahler
family as being a point u € S2 C R® and then (5.16) becomes

d0cy = —%85(@,1”2) = —%85Q(u,u)

We can now formulate the theorem in a more natural form:

Proposition 5.2. Let u € S? be a complez structure of the hyperkéhler family
on T*SL(k,C) , then the Kihler potential ¢ is given by the formula

LACRRCAU) 20(N+2) (0) 1
= 9(a)  9() * (N + 1)(N +2)0™(0) gQ(“’U)

where the spectral curve S given by n* + a2(O)n* 2 + ...+ ar(¢) =0, Q is the
quadratic form defined by the coefficient aq, the points a,b € J(S) are the line
bundles corresponding to the triple (T1,T>,T3) at s = 0 and s = 1 respectively,
and ¥ is a translate by a half-period of the Riemann theta function on J(S).

Remark: Although this is an explicit formula, it is only useful in the
parametrization of the space T*SL(k,C) by the integrable system approach.
The data involves firstly (k + 1)? — 4 parameters for the coefficients of the spec-
tral curve (these are real because the curve satisfies reality conditions), and
secondly (k — 1)? real parameters for the points a on the Jacobian, the initial
point for the flow of the vector field X. These provide

(k+1)? -4+ (k-1)2=2k*>-1)

parameters. The full space has real dimension 4(k? — 1) since dim SU(k) =
k* — 1, but there is a free isometric action of SU(k) x SU(k) given by the
two quotient groups Go/S9 and G°/G3 where Go, G° are the groups of gauge
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transformations g : [0,1] — G for which g(0) = 1 or g(1) = 1 respectively (see
[13]), and this provides the extra degrees of freedom. Since SU(k) x SU(k)
preserves the metric and all three complex structures, the Kéhler potential
naturally exists on the quotient.

A more satisfying answer would result if we could relate these coordinates
to the holomorphic parametrization given by (5.2). This, however, involves
solving a supplementary linear differential equation df /ds = fa to determine
f, and even in the case of SL(2, C), where solutions to Nahm’s equations can be
explicitly written down with elliptic functions, this is not a practical prospect.
Instead we can consider another class of metrics obtained by solutions to Nahm’s
equations: those on coadjoint orbits.

5.5 Hyperkahler metrics on coadjoint orbits

Kronheimer’s use of Nahm’s equations to construct hyperkdhler metrics on
coadjoint orbits of a complex semi-simple Lie group [35] has been extended
from the semi-simple or nilpotent orbit case which he originally considered by
Biquard and Kovalev [7],[33], but we shall restrict ourselves here to the semi-
simple case. It is the same basic set-up as above, except that one studies
solutions of Nahm’s equations on a semi-infinite instead of finite interval. We
also make a special choice of boundary condition to ensure the existence of a
circle action, for only this will give us our Kahler potential by the above method.

Choose a point ¢ in the Lie algebra of the maximal torus of a compact semi-
simple group G, and consider solutions to Nahm’s equations on the interval
(—00, 0] with boundary condition

(TI) T25 T3) - (Ad(g)EJ 01 0)

for some g € G. Because of this choice, we have the same circle action as before:
(Ty, Ty +14T3) = (T1,e*(Ty +1T3)). The Lax form of Nahm’s equations implies

(T1 + iTQ)I = [iTg, T+ lTQ]

so that for all s € (—00,0], (Th +iT2)(s) lies in the G°-orbit of £. Kronheimer
showed in [35] that
(T],T2, T3) — (T1 + iTQ)(O)

identifies the moduli space of solutions diffeomorphically with the adjoint
2 coadjoint) orbit of &.

Now for G = SU(k), the spectral curve det(n — A((, s}) = 0 is independent of
s. Letting s = —oo, (T1,T%,T3) = (Ad(g)&,0,0) so we have

det(n — A(C, 8)) = det(n — (T + iT3) — 2Th¢ + (T2 — iT3)¢?))
= det(n + 2i€(¢)
=m-MQMm=X0)...(n = A()
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and the spectral curve is reducible to a union of projective lines, all meeting at
¢ = 0 and ¢ = oo. Biquard’s analysis [7] shows that any solution of Nahm’s
equations arising from this spectral curve also satisfies the boundary conditions
at s = —o0, and also shows that the K&hler potential defined by

0
b= / te(T2 + T2)ds (5.17)

-0
is finite.

What is required then is to study such solutions from the point of view of
integrable systems, involving line bundles and the construction of triples from
curves of the above type. Such a study was made in the paper of Santa Cruz
[61]. We would like to apply Theorem 2 to obtain a description in terms of
theta functions, but that was only stated for a non-singular spectral curve S.
One might hope in general that the statement of the theorem would hold for
these curves too. The line bundles on the degenerate spectral curve S can be
described as in [51] in terms of transition functions and from that, a means of
determining those triples (71, T», T5) for which A(¢) is regular (in the Lie group
sense) for all { is provided. As Santa Cruz points out, this leads to explicit
determinantal formulas for the theta divisor, and rationality in terms of e*
for the integrand tr(7% + T) in the Kihler potential. With such concrete forms
for each side it seems likely that the theorem would still hold.

The case k = 2 is somewhat easier, for then the spectral curve consists of
two rational curves meeting transversely at two points, and this is a situation
where degeneration methods tell us what the theta divisor should be [39]. The
metric is the well known Eguchi-Hanson metric [19]. This is more commonly
described as being defined on the cotangent bundle of the projective line, but
this is an exceptional complex structure among the hyperkéhler family. The
general one is that of an affine quadric in C®*—a semisimple orbit of SL(2, C).

Consider then the spectral curve
n’ =X =m-A)n+A) =0

since ¢ lies in the Lie algebra of SU(2) and ) are the eigenvalues of 2i£, X is
real. The curve has genus (k — 1) = 1 and any line bundle of degree zero is
obtained as exp(unz) for the canonical element nz € H!(S,0). Setting Uy to
be the complement of { = oo and Uy, the complement of Uy, this is the line
bundle with transition function

exp(un/().

On the component = A(, this can be trivialized by the constant functions e**
on Up and 1 on Uy, and on the other component n = —A{ by the functions
e~** and 1. For these ordinary singular points the bundle is trivial if and only
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if the two trivializations agree at { = 0 and ¢ = oo, and this is true if and only
! exp (Au) = exp (—Au)
The Jacobian of S is thus C/(ni/A)Z, and following [39], the theta function is
?(u) = sinh(Au)
According to Theorem 2, we have
RYa
2 du?

19/// (0)
~ 29/(0)

_ 3. 2 L.,
= 2/\ cosech” \u 2/\

log

Now the spectral curve has the equation n? — A2¢? = 0, so the coefficient a2 (¢)
is given by

az(¢) = —A*¢?

and the constant ¢, is —\%. Consequently, we have from (5.5)
1
tr(T¢ +T3) = g(2A —¢2)
1 1
= —A?cosech® \u — 5/\2 + =2

3
= —X2cosech? \u

The solution to Nahm’s equations for s € (—o0, 0] is derived from a linear flow
along the Jacobian using the vector field X and this corresponds to setting
u =5 —a. Thus at s = 0, u = —a. Since the solution must be non-singular
for s € (—00,0], the theta divisor u = 0 must not be in this interval, so a > 0.
From (5.17) we can now evaluate the Kahler potential as

0
¢ = —/ tr(T3 +T3)ds

—00

/ A2 cosech? (Au)du

oo

A(1 — coth Aa)

Now we must relate the parameter a to the complex coordinates of the
coadjoint orbit. This is the more difficult part in higher rank groups, but it is
purely algebraic: there is no extra differential equation to solve. Recall that a
solution to Nahm’s equations defines the matrix

X = (T1 + ZTQ)(O)
on the orbit of £&. Note that

tr XX* = —tr(T2 + T3) = — to(T§ + T3) + tr (T3 — TY)



68 Nigel Hitchin

but from the coefficients of az(¢) = —A2¢? (5.4) we see that tr T'Z = tr 7¢ and
2tr T — tr T2 — tr T2 = —\? and hence

tr(T2 - T2) = %V

so that now !
tr X X* = A2 cosech® a + 5/\2

This now provides the final formula for the potential in terms of the coadjoint
orbit:

(X)) = A+ /(tr X X* + A2/2)

Remark: This formula has been encountered before. In [51], Santa Cruz
uses conjugates of the Nahm matrices explicitly derived from the line bundle
approach to give the integrand tr(T¢ + T2). Stenzel [54] obtains the same
expression by using the SU(2) symmetry to reduce the problem to an ordinary
differential equation.

5.6 Monopole moduli spaces

Nahm'’s equations were originally produced in order to solve another set of differ-
ential equations: the Bogomolny equations. These are dimensional reductions
of the self-dual Yang-Mills equations by the group H of translations

(%o, x1,22,23) = (T0 + a,71,T2,23)

The quotient space is R3 with the Euclidean metric and we have a G-connection
A and a single Higgs field —¢. The equations are then

V¢Z*FA

A solution to these equations with the boundary conditions that the curvature
F, is L2 is called a magnetic monopole. The boundary conditions and equations
imply that as 7 — oo, ¢ tends to a particular orbit in g. Let G = SU(n), then up
to conjugation the Higgs field has an asymptotic expansion in a radial direction

¢ = idiag(A\1, ..., An) — -;—rdiag(kl,...,kn)+...

where for topological reasons ki, . .., k, are integers.

In 1981, W. Nahm proposed a construction of SU(2) monopoles by per-
forming a non-linear Fourier transform to reduce the Bogomolny equations to
the ordinary differential equations which have now become known as Nahm’s
equations. We assume then that n = 2, and

¢ =idiag(\, —\) — 2’7 diag(k, —k) + ...
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The interpretation of the integer k is as the first Chern class of the i) eigenspace
bundle of ¢ at large distances.

The formalism for the Nahm transform is rather like that of the hyperkéhler
quotient construction for

A=Ay +iA + jAx + kA3
in Section 5.2. In R* the formally written operator
D =Vo+iV1+jVa+kV3

can be thought of as the Dirac operator coupled to the vector bundle with
connection. It has a dimensional reduction to three dimensions

D=-¢+iVy +jV2+kV3

which is also a Dirac operator, now with the zero-order Higgs term ¢. One
considers an eigenvalue problem for this operator, showing that for s € (=, A)
the space of L2 solutions 1 of

(D —is)p =0

is of dimension k. For varying s this space is a vector bundle of rank & inside the
space of £? functions. Orthogonal projection then defines a connection d/ds +
By on the vector bundle over the interval (—A, A) and orthogonal projection of
the operations of multiplication ¢ + z;4 defines three Higgs fields B;(s). One
then shows (cf. [22]) that, gauging By to zero, the matrices B; = T; satisfy
Nahm’s equations. They acquire poles at the end points of the interval whose
residues are irreducible k-dimensional representations of SL(2,C).

It is for this reason that so much attention in [22] was expended on this
singular behaviour, but which was also of some considerable use in our proof of
Theorem 2.

The return journey, from a solution to Nahm’s equations to an SU(2)
monopole, involves the same procedure, considering the L2 solutions to the
equation (D — iz)y = 0 on the interval, where

A d
D=£+’L‘T1+]’T2+kT3

and £ = z1i + z2J + T3k is a “quaternionic eigenvalue”.

The Fourier transform analogy enables one to prove a “Plancherel formula”
(see [45]) that the natural £2 metrics from both points of view coincide. For
physical reasons (see [3]), the metric from the Bogomolny equation point of
view is the most fundamental, but for calculation it is the Nahm equation
metric which is most accessible. Nakajima and Takahasi [46], [55] have studied
not only the case of SU(2), but also SU(n) where the Ay = A3 =--- = X, and
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ko = k3 = - -+ = k,. This means that the Higgs field breaks the symmetry from
SU(n) to U(n — 1) at infinity. The Chern class of the line bundle at infinity
for Nakajima must be n — 1 which we call the charge of the SU(n) monopole.
Dancer [11] made a close study of this case where n = 3. At present these are
the cases where the Plancherel formula is known and where the monopole metric
is the natural metric on the moduli space of solutions to Nahm’s equations. Let
us consider this in more detail, first in the more studied SU(2) case.

5.7 SU(2) monopoles

The hyperkdhler quotient setting of Section 5.2 needs to be modified for the
case of SU(2) monopoles since the Nahm matrices are singular at the end-points
of the interval. The standard normalization here, achievable by rescaling the
metric on R3, is to take the eigenvalues of the Higgs field at infinity to be
#+i. The interval for Nahm’s equations then has length 2 and it is convenient
to take it, as in [22], to be [0,2]. We consider solutions T1,T>,T3 to Nahm’s
equations on this interval, for which tr 7; = 0, (this being equivalent to centering
the monopole [3]) and which have simple poles at the endpoints whose residue
defines an irreducible representation of SL(2, C). The circle action

(T + iTs) = (T, +iT3)

is well-defined on this space, but the £? metric is not, since the residues may
vary within a conjugacy class. We therefore have to adopt the point of view
of fixing the residues at the poles. This necessitates the reintroduction of the
connection matrix By. We thus consider the space A of operators d/ds + By +
iB1 + jBy + kB3 with B; : (0,2) — su(k) on a rank k¥ complex vector bundle
over the interval [0,2] where at s = 0, By is smooth and for ¢ > 0,

Bi:ﬁ-}-,,_
S

for a fired irreducible representation defined by p;. At s = 2 we have the same

behaviour:
Pi

§—2

Tangent vectors (Ag, A1, Aa, A3) to this space are then smooth at the end-
points, and using the group G of smooth maps g : [0,2] = SU(k) for which
g(0) = ¢g(1) = 1, and a little analysis, we obtain a hyperkihler metric on the
space B of solutions to the equations

+ ...

i =

Bi + [Bo, B:1] = [B2, B3]
Bj + [Bo, B2] = [Bs, Bi] (5.18)
Bj + [Bo, B3] = [B1, Bs)

modulo the action of the gauge group 9.
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This is our metric, but to find the Kihler potential we need the circle action.
Having fixed the residues, this is less easy to describe, because it involves a
compensating gauge transformation outside G3. The potential only depends on
the infinitesimal version of the action, and this is represented by a vector field

(¢' + [Bo, 9], [B1,¥], Bs + [Ba, ¥, —Bs + [Bs, ¢])

This is a vector field on the space B in the infinite-dimensional flat space A:
we are using the linear structure of the ambient space to write down tangent
vectors. It must be smooth at the end-points, so

¥(0) =¥(2) = —p1.

The Kahler potential is defined in terms of the moment map u for this
vector field, which uses the symplectic form on the quotient. But the quotient
construction tells us that its pull-back to B is the restriction of the constant
symplectic form on A:

2
/ [— tr(AoAl) +tr(A4;4p) + tr(A2A3) - tI’(AgAg)]dS
0
The moment map thus satisfies

du(A) = /02 — tr(Ao[By, ¥]) + tr(A1 (4" + [Bo, 9])) + tr(A2(—Bz + [Bs, ¥]))
— tr(A3(B; + [Ba,9]))ds
= /02 —tr([Ao, Br]ih) + tr(A19') — tr([Bo, A1]y) — tr(A2Bs)
+ tr([A2, B3ly) — tr(A3Bs) + tr([By, As]y)ds

On the other hand A is tangent to B, so A satisfies the linearization of the
equations (5.18), so in particular

A} + [Ao, B1] + [Bo, A1] = [A2, B3] + [Bz, A43)

Substituting in the formula for du then gives
2 2
du(A) = / (AL ) + tr(AL ) ds — / t(A2By + Ay Bs)ds
0 0

2
— [tr(A )] — / tr(A2B; + AgBy)ds

0
Now as we saw in the proof of Theorem 2, at an irreducible representation, the
Nahm matrix has an expansion

Ti:g—i+ns+...
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so the conjugate B; by a smooth gauge transformation behaves like
pi
B, = ;'+[<,o,pi]+...
hence
N
tr(Bipi) = —5.; + b15 +...

Thus, differentiating with respect to a parameter, a tangent vector A to B has
the property
A;(0)=0

and similarly at s = 2, which tells us that the boundary term vanishes and
2
du(A) = —/ tr(Ang + A3B3)ds
0

The integrand is conjugation-invariant, so we can write this in terms of Nahm
matrices

2
du(T) = — / te(Ty T + T5Th)ds (5.19)
0
To find the potential, we would therefore like to make sense of the divergent
integral
1 r?
——/ tr(T2 + T2)ds
2 Jo

Since again there is no constant term in the expansion of T; at an irreducible
pole, we have

N
tr(T?) = ~95 + 2tr(pm) + ...
the most obvious function p that will satisfy (5.19) is thus

2
w(T) = —%/0 (tr(Tg +T3) + g + (3—_1%)—2) ds (5.20)

We can cast this in another form if we recall how Nahm’s equations are to be
solved with a linear flow in the direction of the canonical vector field X on the
Jacobian of the spectral curve. As we saw, a pole which defines an irreducible
representation corresponds to the flow passing through the origin of J(S), so
an irreducible pole at both ends of the interval means that the flow is periodic.
(This is the L2 2 O condition on the spectral curve—see [3]). Thus the function

tr(T2 + T2)

is periodic in s of period 2.



Integrable systems in Riemannian geometry 73

Now let f(s) be a meromorphic function with an expansion about s = 0 of
a—
f(s) = —32—2+a0+a15+...

and I'; a contour consisting of an interval [a, b] indented around the origin with
a semicircular contour of radius e. The contour integral is the limit as € — 0 of

20,2

—€ b
f(s)ds+/ f(s)ds —

a €

Comparing with (5.20) and using the periodicity, we can take u to be the
integral of —tr(T$ + T:2)/2 around a closed contour in the Jacobian which is
an orbit of the flow missing the origin.

Now return to Theorem 2. We saw that
1
tr(T2 + T3) = §(2A —c2)

and ,
3d

A=33

so apart from the constants ¢ and ¢z, the Kahler potential is obtained by inte-

grating (log )" around a closed cycle. This would be zero if (log )’ were single

valued, but (5.7) shows that this is not so. However (5.6) gives

logd + ¢

¥z + 4;) = 9(z2)

so if we choose a canonical basis so that our cycle is in the linear span of the
A-cycles, then the integral is indeed zero. We thus obtain a formula for the
Kaihler potential:

B 4 9N+ (0) 1
=S NI 2 9y 32wy (5:21)

¢

In the case of monopoles the term Q(u,u) has a direct interpretation in
terms of the Higgs field ¢. For this, we have to use Hurtubise’s approach to the
asymptotic Higgs field.

Recall that the boundary conditions of a monopole imply an expansion

k
9l =12 +0(™?)

Hurtubise shows in [30] that this extends to a complete asymptotic expansion
which defines a harmonic function, corresponding to some distribution of charge.
Moreover, this can be calculated from the spectral curve.
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If we consider the expansion of |¢| along the ray (r,0,0), then we set n =
—2r( = R( in the equation of the spectral curve

n* +a2(On* 2+ + a(Q)

to obtain a polynomial of degree 2k in ¢ whose coefficents are functions of R.
As R — oo, the 2k roots of this equation separate unambiguously into two
groups: k which tend to 0 and k£ which tend to oco. If (i,...,(; are the first
group, then Hurtubise’s formula is

|¢| ~ 1~ %log(ﬁﬁ k)

Making the substitution in the equation of the spectral curve, we obtain

¢k2 ax ()
R2 +...+ Rk

¢* +as(¢) =0 (5.22)

Now each root (; has an asymptotic expansion

)
(= R + ...
and it follows that each term of the form c¢**™ for m > 1 in (5.22) decays
at least as fast as R~(¥+3), Collecting together the terms of the form ¢¢™, for
n < k we have a polynomial of degree k such that for each ¢ = (;,

(1 +C2R_2)Ck 4 g ZOR——k — O(R—(k+3))

where a3(¢) = co +c1{ +ca¢? + -+ c4¢* and ar,(¢) = 20 + 21 + - - - + 221 C%%.
Thus the product of the roots satisfies

Z()R_k

_ o~ —(k+3)
(1+c2R™2) +O(R )

Gile-. G = (-1)F

and so 5 L o
ca
ﬁlOg(CIQ'--Ck) ="B BT

Replacing R by —2r, we have

0 _ k¢
|9l ~ 1~ 5plog(GiCa.. . Go) = 1= o — 75 +

In our parametrization, the unit direction u = (1,0,0) corresponds to { = 0,
and so as in 5.4, c; = (a2, X?) = Q(u,u) The asymptotic expansion in the
direction v is thus

ko Qu,u) 4

6l =1-5 - 22

We thus have the following theorem about the moduli space metric:
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Theorem 3. Let MY denote the moduli space of centred SU(2) monopoles on
R? and let u € S? be a complex structure of the hyperkihler family on MY.
Then the Kdihler potential for the natural L2 metric in this complez structure
18

4 IVEA(0) 1

(N+1)(NV+2) 9M@©) 3

where 9 is a translate of the Riemann theta function of the spectral curve and
—Q(u,u)/4 is the coefficient of r=3 in the asymptotic expansion of the length
of the Higgs field in the radial direction u.

¢

As with the metric on the cotangent bundle of the group, to express this po-
tential in terms of the natural complex coordinates of M3, considered as a space
of rational functions [15] requires the solution of a linear differential equation
whose coefficients are Nahm matrices. This clearly places constraints on explic-
itness. Even the coordinates determined by the integrable system approach are
complicated to determine because of the constraints. The periodicity condition
imposes g = (k — 1)? conditions on the coefficients of the spectral curve which
are 5+ 7+ (2k+ 1) = (k + 1)? — 4 in number, giving the moduli space M}
dimension 4k — 4.

Example:

Consider the 2-monopole moduli space, where the metric is fully described in
[3]. Here, k = 2, the curve S is elliptic, and the periodicity of the Nahm flow
for s — s + 2 requires us in standard Weierstrassian coordinates to put

s=ufw =2v
In this case N =1 and

4 IV (0)  29B(0)  197(0)
(N+1D)(N+2) sM@©) ~ 39M(0) 6 9(0)

using differentiation with respect to v. From the the standard formula in elliptic
functions (cf. (5.13)), we have

1 19/4/(0)
"~ 6 9'(0)

27710.)1 = (523)

so that the SO(3)-invariant term in the potential is
—2mw

In [47], D.Olivier gives a derivation of this potential, directly from the formula
in (3]

(dk?)?
(4k2 k2 K?2)?

g = B*y26* + ﬁzaf + 7203 + 520§
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where
By = —Kz(k"2 +u)
v8 = K2(k* —u)
86 = —K%u
and B
U= I k

All these expressions use the Legendre notation for complete elliptic integrals.
For Olivier, the Kahler potential is

d+4
= Pr+ad+dB _
4
where J is direction-dependent. After changing from Legendrian formulae to

Weierstrassian ones, this corresponds (up to a constant multiple) to the formula
here.

5.8 SU(n) monopoles

The study of SU(n) monopoles is more complicated because of the choice of
boundary conditions

¢ = idiag(\i, ..., An) — ;—Tdiag(kl,...,kn)+...

for the Higgs field. The most studied case is that of maximal symmetry break-
ing: where the eigenvalues at infinity are distinct. Thus the structure group
SU(n) is reduced to its maximal torus at infinity. Here there is a construction
involving Nahm’s equations [31]. In this case one solves the equations on a
sequence of intervals corresponding to vertices of the Dynkin diagram. It seems
reasonable to believe that the same methods advanced here may work in that
situation, but the full correspondence, including the Plancherel formula, has
not been worked out. We restrict ourselves instead to a special case of minimal
symmetry breaking:

¢=idiag(n-—1,—1...,—1)—El;diag(n—l,—l,...,—l)-i-...

where the group is reduced from SU(n) to U(n — 1) at infinity. Here the work
of Nakajima, Takahasi [46] and Dancer {11], [12] provide a fuller picture.

The arguments involving the Dirac operator can be extended in this case
so that there is an £2 nullspace of dimension k = n — 1 for s between the two
distinct eigenvalues k and —1 of ¢ at infinity, or normalizing so that the origin
is one end-point, for s € (0,k + 1). Nahm matrices can then be defined just as
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in the SU(2) case, but with the boundary condition that there is a simple pole
at s = 0 whose residue defines the irreducible k-dimensional representation of
SL(2,C). At the other end-point s = k + 1, the matrices are finite.

Using matrices (By, B1, B2, B3) as above, we can define a hyperkahler metric
on the moduli space of solutions to Nahm’s equations, and by the Plancherel the-
orem this is the natural metric on the moduli space of monopoles with this struc-
ture. There is, as with all monopole metrics, an action of SO(3) rotating the
complex structures and in this case an extra action of the group Go/59 = SU (k)
where Gy is the group of smooth maps g : [0,k + 1] —» SU(k) with g(0) = 1.
Using the integrable system approach we can count dimensions, since solving
Nahm’s equations with these boundary conditions consist of starting at the ori-
gin and following the flow for a time ¢ = k + 1. We therefore have (k + 1) — 4
parameters for the spectral curve and k? — 1 = dim SU (k) for the gauge action
giving a moduli space My of dimension (k +1)2 —4 + k2 — 1 =2(k* + k - 2).

As above, we remove the singularity at s = 0 by defining

k+1 N
w(T) = —l/ (‘mc(Tz2 + T3 + —2> ds
2 0 S
and using .
tr(Tg +T3) = §(2A ~¢2)
with 2
3
A= 272 logd¥ + ¢
This gives the potential
Ik+1) k(-1 2k+1)  IND0) k+1
po EED KE-D | 2kr)  I0) kL
d9(k+1) 6 (N +2)(N +1) 9(N)(0) 3
Example:

For k = 2 (the case considered by Dancer) we can again express this using
Weierstrass functions. We obtain from (5.14)

Afs) = =~ 3K7p(ss)

and so using the Weierstrass zeta-function and ignoring the constant term,

¢ = —k((3K) + c2 (5.24)
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