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Introduction

Given a 2-dimensional homology class ¢ in a smooth 4-manifold X, what
is the least possible genus for a smoothly embedded, oriented surface ¥ in
X whose fundamental class is 07 Gauge theory has been a successful tool
in answering a collection of basic questions of this sort. In [22, 25, 20, 24],
information extracted from Donaldson’s polynomial invariants of 4-manifolds
[6] gave some strong lower bounds, which were in many cases sharp. To give
just one example, if X is a smooth quintic surface in CP*® and ¥ is a smooth
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algebraic curve obtained as the intersection of X with any other complex
surface H C CP3, then ¥ is known to achieve the smallest possible genus in
its homology class.

The introduction of the Seiberg-Witten monopole equations and the re-
placement of Donaldson’s polynomial invariants by the apparently equivalent
monopole invariants [42] lead to much simpler proofs of essentially the same
results, though often in rather greater generality. For example, the state-
ment about the quintic surface is now known to hold for complex algebraic
surfaces in general, and the theorems can be extended quite cleanly to the
case of symplectic manifolds [36].

At the same time, the simpler understanding that the Seiberg-Witten
techniques afforded made clear that the case of complex and symplectic 4-
manifolds was rather special. Although gauge theory gives lower bounds on
the genus of embedded surfaces in general 4-manifolds, these lower bounds
should no longer be expected to be sharp, at least in the form in which they
are usually phrased. The situation is clarified by the work of Meng and
Taubes [30], in which a 3-dimensional version of the monopole invariants
is studied. For 3-manifolds with non-zero first Betti number, the monopole
invariants are closely related to Milnor torsion, and are a cousin of the familiar
Alexander invariant of a knot. These invariants do contain information about
embedded surfaces, but they do not lie very deep: the degree of the Alexander
polynomial gives a lower bound for the genus of a knot, but not always a very
good one. There seems no reason to expect the outcome in four dimensions
to be any better.

With a little more work, however, there is more information to be ex-
tracted from the monopole equations, at least on 3-manifolds, where one can
use the equations to define a ‘Floer homology’. There is much here that is
not yet worked out in detail, but it is already clear that one obtains sharp
lower bounds for the genus of embedded surfaces in general 3-manifolds.

One of our aims in this article is to give an account of this 3-dimensional
story, which is closely tied up with a well-established theory of embedded
surfaces, foliations and contact structures, due to Bennequin, Eliashberg,
Gabai and Thurston, among others. We include a leisurely summary of those
parts of the foliation story that are most relevant to the gauge theory side.
We give a basic account of gauge theory on 3-manifolds, defining the Seiberg-
Witten monopole equations, touching on Floer homology and explaining the
connection with foliations and contact structures.

By and large, the flow of ideas is one-way: from the geometric and topo-
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logical results concerning foliations of 3-manifolds, we learn something about
the gauge theory invariants. But it seems likely that gauge theory has some-
thing to offer in return. We mention some potential applications in section 6,
among them the question of whether one can make a homotopy 3-sphere by
surgery on a knot. For such applications, one needs not only the Seiberg-
Witten techniques, but the older Yang-Mills invariants of Donaldson and
Floer. We shall also look at 4-manifolds, to explore the limitations of the
existing tools.

Acknowledgment. Amongst the material presented here, the theorems in
which the author had a hand are the result of joint work with Tom Mrowka,
and have all appeared (or are appearing) elsewhere. In particular, the results
which collect around Theorem 3.6 are contained in the joint paper [21] or
are easily deduced from results presented there. The fact that one can use
the Seiberg-Witten monopole invariants to define invariants of 3-manifolds
(either the integer invariants that we call SW(Y) in this paper or the more
problematic Floer homology) has been pursued by several people, as has the
fact that one can bound the genus of embedded surfaces in terms of these
invariants. See for example (2, 4, 27, 29, 30, 40].

1 Surfaces in 3-manifolds

The Thurston norm

We begin in three dimensions. For a 3-manifold Y, the fact that any class
o in Hy(Y;Z) is represented by a smoothly embedded surface can be seen
as follows. Take a smooth map f,: Y — S! such that the pull-back of the
generator of H'(S') is Poincaré dual to 0. Then for any regular value 6 of
fs, the set f;1(6) is a suitable surface. Any surface representing o arises in
this way for some map f,.

It is not always possible to represent ¢ as the fundamental class of a con-
nected surface. Even when a connected representative exists, it is profitable
to consider disconnected representatives also and to try and minimize not
the genus but the quantity

X-(2) = Y (29(i) - 2),

9(%:)>0
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over all oriented embedded surfaces ¥ whose fundamental class is 0. One
might call this the complexity of ¥. The minimum complexity in this sense,
as a function of the homology class represented, was considered by Thurston
[39], who made the following observation. Define

Xmin(0) = min{ x_(X) | [E] = 0 }.

Proposition 1.1 (Thurston). On any closed, oriented 3-manifold Y, the
function xmin on Hy(Y;Z) satisfies the triangle inequality and is linear on
rays, in that Xmin(no) = N Xmin(c) for n > 0. It is the restriction of a
semi-norm on Hy(Y; R).

The triangle inequality and linearity have straightforward geometrical
explanations. Suppose that ¥ is an oriented embedded surface realizing the
minimal complexity in its homology class ¢ = [£]. Let & be the surface ob-
tained by taking n disjoint, parallel copies of ¥ inside a product neighborhood
¥ x [-1,1] € Y. This surface represents the class no and has complexity

Y- (5) = nx_(2).

The linearity assertion is that & also has minimal complexity in its class. The
reason this is true is that any surface 3 representing no must be a disjoint
union of n surfaces, each representing o, so the complexity of S cannot be less
than n Xmin(0). Indeed, we can realize S as a regular inverse image ' 16 )
for a suitable f: ¥ — S1 as above, and the divisibility of [%] implies that
this f lifts through the n-fold covering map p,: S* — S*:

f::u'nof-

Thus ¥ is the disjoint union of the surfaces f~'(), as 6 runs through the n
preimages of .

To see that that xm;, satisfies the triangle inequality, let classes ¢ and 7 be
represented by surfaces ¥ and 7' of minimal complexity. If these are moved
into general position, they will intersect along a collection of circles. Each
of the circles has a neighborhood D? x S! which meets ¥ U T in a standard
K x S', where K is a pair of intersecting arcs in D2, Replacing K x S! with
J x S, where J is a pair of disjoint arcs in D? with the same four endpoints
(connected differently), we obtain a new surface in Y representing o + 7. Its
complexity is the sum of the complexities of 3 and 7', thus

Xmin(a + 7—) S Xmin(g) + Xmin(T)- (1)
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We shall write |o| for the norm (or semi-norm) Xmin(co) in the 3-dimen/-
sional case. The dual norm on H?(Y;R) can be characterized by

(o, [Z])
=P e -2y
where the supremum need only be taken only over connected embedded sur-
faces of genus 1 or more on which a has non-zero pairing, with the under-
standing that the norm is infinite if & has non-zero pairing with an embedded
torus. The Thurston polytope B(Y) is the unit ball for this dual Thurston
norm. It is a convex polytope lying in the subspace of H2(Y; R) on which the
norm is finite. Its vertices are lattice points (that is, they are the reduction
of integer classes).

a € HX(Y;R), (2)

Foliations

If working with a closed 3-manifold is difficult, one can get a feel for the
problem of determining the Thurston norm, or equivalently the polytope
B(Y), by looking at a version of the question for a manifold with boundary,
such as a knot complement. Let K C S3 be a knot and Y the 3-manifold
obtained by removing an open tubular neighborhood of K. The boundary of
Y is a torus T, on which there is a simple closed curve A having the property
that it is homologous to zero in Y: this is the longitude of the knot. Being
null-homologous, A is the boundary of an oriented surface ¥ C Y. Any such
surface is a spanning surface for K. The genus of the knot K is the least
genus of any spanning surface.

Finding a spanning surface for K is never hard. Harder is to provide a
spanning surface ¥ with a certificate assuring us that it is of least possible
genus. It is another observation of Thurston’s [39] that a suitable foliation
of the 3-manifold may supply such a certificate.

To state this result, we return to the closed case and suppose that the
3-manifold Y has a smooth foliation F by oriented 2-dimensional leaves L.
Such a foliation determines a field of oriented 2-planes TF C TY, the tangent
directions to the leaves. Let e(F) denote the Euler class of TF in H*(Y;Z).

Theorem 1.2 (Thurston). Suppose the foliation F of Y has no Reeb com-
ponents, and suppose that'Y is not S'x S%. Then the Euler class e(F) belongs
to the polytope B(Y). In other words, if ¥ is any embedded surface, its com-
plezity satisfies the lower bound

X-(2) > (e(F), [E]).
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A Reeb component is a foliation of a solid torus in which the boundary torus
is a leaf and all interior leaves are planes.

Corollary 1.3. Let ¥ be an oriented embedded surface in'Y which is a union
of compact leaves of an oriented foliation F without Reeb components. Then
Y has mintmal complezity in its homology class.

The Corollary follows from the Theorem because if ¥ is a union of
correctly-oriented compact leaves, then

(e(F), [Z]) = (e(TZ), [Z])
= -x-(¥),

as long as no component of ¥ is a sphere. Changing the orientation of the
leaves then gives a foliation F for which the inequality of the Theorem is an
equality. Note that the Theorem contains the statement that no compact
leaf of F can be a sphere. The proof of Theorem 1.2 itself is given in [39]; see
also Theorem 7.1 of [13], where a detailed proof is given of a more general
version of the basic lemma which underlies the result. The original version
of the lemma was first proved by Thurston [38] and Roussarie [34]:

Lemma 1.4. Let F and Y be as in Theorem 1.2, and let ¥ be an incom-
pressible surface in Y. Then there is a surface &' isotopic to ¥ which is
transverse to F ezcept at a finite number of circle and saddle tangencies.

In this statement, incompressible means as usual that no loop in ¥’
bounds a disk in Y\ ¥’, unless it already bounds a disk in ¥’. This condition
is certainly necessary if ¥ is to be of least complexity, since by cutting along a
compressing disk one reduces the complexity of a surface. A circle tangency
is what one sees along the level rim of a volcano, in the foliation of 3-space
by level planes. A saddle tangency needs no explanation. In each case, the
tangency may be given one of two signs, according as the orientation agrees
with that of the leaves or not. One can calculate x_(¥’) and the evaluation
of ¢(F) on X' in terms of the number of tangencies of each type [39], and the
Theorem is an elementary consequence.

Corollary 1.3 gives a criterion with which to ascertain that a given surface
is of minimal complexity. But it is of little use in itself unless we also have a
handle on constructing foliations without Reeb components. In [14], Gabai
gave a practical algorithm for finding the genus of a large class of knots,
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based on exhibiting a spanning surface as a compact leaf of a foliation of
the knot complement. Further, in [13], Gabai proved that every surface of
minimal complexity can be certified as such by a suitable foliation. We state
the result only in the closed case:

Theorem 1.5 (Gabai). Let Y be a closed, irreducible, oriented 3-manifold.
Let ¥ be an embedded surface representing a non-trivial homology class o.
Suppose that x_(X) is least possible amongst surfaces representing this class.
Then there exists a taut, oriented foliation F of Y of class C°, having ¥ as
an oriented union of compact leaves. The foliation can be taken to be smooth
except along the components of ¥ which are tori.

Remarks. The irreducibility of Y is the condition that every embedded 2-
sphere bounds a ball. It excludes S! x S? as well as non-trivial connected
sums. One definition of taut is that every leaf L is met by a closed curve v in
Y which is everywhere transverse to the leaves. This is a stronger condition
than the absence of Reeb components. In Lemma 1.4 for example, the taut
condition allows one to dispose of circle tangencies, leaving only saddles.
Generally, in a taut foliation, no correctly-oriented union of compact leaves
can bound: if W C Y had oriented boundary which was a union of leaves,
then no transverse curve which left W to enter Y \ W could return. The
possibility that the foliation F in the Theorem may not be smooth when ¥
has tori amongst its components presents a difficulty at some points: we will
sometimes legislate against it in the statement of our results. In many cases
one can construct a foliation that is smooth, despite the presence of tori.

Gabai’s result combines with Thurston’s to characterize the polytope
B(Y'), and hence the Thurston norm, in terms of smooth foliations:

Corollary 1.6. Let Y be a closed, irreducible oriented 3-manifold in which
embedded tori do not form a basis for the homology. Then the unit ball
B(Y) ¢ H*Y;R) for the dual Thurston norm is the convez hull of the
classes e(F), as F runs through smooth, taut foliations. In other words, the
Thurston norm s given by

lo| = max (e(F), o).

F taut

The extra hypothesis in this Corollary ensures that at least one of the foli-
ations which result for Theorem 1.5 is smooth. When this is the case, we
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can throw out all the non-smooth foliations corresponding which might arise
when ¥ contains tori, without changing the convex hull.

In [13], the inequality of Theorem 1.2 is extended to the case that ¥
is not an embedded surface, but simply a surface mapped into Y by an
arbitrary map, whose image may therefore have singularities. Combining
this strengthened inequality with the existence theorem for foliations, one
obtains:

Corollary 1.7 (Gabai, [13]). If a homology class o in an irreducible 3-
manifold Y is represented as f.[¥] for some map f : ¥ — Y, then the
homology class is also the fundamental class of an embedded surface of the
same complexity.

Non-trivial examples of plane polygons arising as the Thurston polytopes
of various 3-manifolds with b; = 2 are given in Thurston’s original paper.
Gabai’s theorem and its refinements have many applications in 3-manifold
topology [13, 15, 16, 17].

2 Gauge theory on 3-manifolds

The Seiberg-Witten monopole equations were introduced as a tool in 4-
dimensional topology in [42]. One of their first applications was to questions
of embedded surfaces [23]. Here we shall explore their relationship to the
Thurston norm in dimension 3.

The monopole equations

A Spin® structure ¢ on an oriented Riemannian 3-manifold Y consists of a
rank-2 complex bundle W = W, with a hermitian metric (the spinor bundle)
and an action p of 1-forms on spinors, called Clifford multiplication:

p:T*Y — End(W).

If e, €2, €3 are an oriented orthonormal frame for the cotangent space at a
point, then there should be an orthonormal basis for the fiber of W at that
point so that the p(e’) are represented by the Pauli matrices. The standard
convention on orientations has p(e!)p(e?)p(e®) = —1. Clifford multiplication
is extended to forms of higher degree, by p(e! Ae?) = p(e!)p(e?), for example.
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If ¢ is a Spin® structure and e € H?(Y;Z) a 2-dimensional cohomology
class, there is a new Spin® structure c+e. Its spin bundle is W, ® L., where L,
is the unique line bundle with first Chern class e. Conversely, if ¢ and ¢’ are
two Spin® structures, there is a unique difference element ¢ — ¢ € H*(Y; Z).
We write ¢;(¢) for the first Chern class of W, and we note that, since

ci(c+e) =ci(c) + 2e,

the class c;(c) determines ¢ in the absence of 2-torsion in the cohomology.
Because every 3-manifold is parallelizable, there is always at least one Spin®
structure with a topologically trivial spin bundle. It follows that c;(c) is
always divisible by 2 in H?(Y;Z). Although our definition involves a Rie-
mannian metric, the set of isomorphism classes of Spin® structures can be
viewed as metric-independent.

Given a Spin® structure, a unitary connection A on W is a spin connection
if p is parallel; that is, the resulting connection on End(W) should coincide
with the Levi-Civita connection on the image of p. This leaves only the
central part of A undetermined, so if A and A’ are two spin connections,
then their difference is scalar:

A/ = A+alw,

for an imaginary-valued 1-form a. A spin connection A is therefore deter-
mined by its ‘trace’, the induced connection A in the line bundle A2W.

The monopole equations are the following equations for a spin connection
A and a section ® of W on a Riemannian 3-manifold Y equipped with Spin°®
structure:

p(Fg) —{® @Di* q}; z 8 3)

In the first equation, F'; is the curvature of the connection in the line bundle
(an imaginary-valued 2-form), and the curly brackets denote the trace-free
part of the endomorphism. In the second equation, D, is the Dirac operator
for the spin connection A, which is defined as the composite

T(W) 24 D(T*Y @ W) -2 T(W).
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An application of the Weitzenbock formula

When a Riemannian 3-manifold Y is given and a Spin® structure c is specified,
we can ask first whether the monopole equations (3) have any solutions at
all. There is a constraint which must be satisfied if a solution is to exist,
which comes from the Weitzenbock formula for the Dirac operator D :

s

D3Da® = V3Va® + £

1
P + E,O(FA)(I)

Here s is the scalar curvature of the Riemannian metric. If (A4, @) is a solution
of the equations, then the left and right-hand sides are zero. For a solution,
then, we calculate

Al®]2 = 2(V4 V4D, ®) — 2(V4®, V4 0)
S
< 512~ (p(F2)2, ®).

(Our inner products are real.) The first of the equations (3) can be used
to rewrite the last term as |®|*/2 (an elementary calculation with vectors in
C?). So we have

24| < —s|of* — |9, (4)

which we may integrate to obtain

/|<I>|4dvol < /(—s)]q)[deol,

/|<I>|4dv01§ /SQdVOI (5)

by Cauchy-Schwartz. The first equation of (3) is used again to rewrite this
as

and hence

|sf?

/|FA|2dvol < Tdvol,

which is an inequality between the L? norms:

I1E411 < 1lsll/2- (6)
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The two form (i/2)||F ;]| represents the first Chern class of A*W,, which
is c;(c). The de Rham representative of this class with smallest L? norm
is the harmonic representative. Let us define an L? norm on H%(Y;R) by
defining ||| to be the L? norm of the harmonic representative. Then we
have, from (6)

llew(e)]] < |ls|l/4m.

(Both sides depend, of course, on the Riemannian metric.) We state the
conclusion as a lemma:

Lemma 2.1. A necessary condition for the existence of a solution to the
monopole equations on Y for a given Riemannian metric and a given Spin®
structure ¢ is that the harmonic L? norm of the class ¢, (c) satisfy

llew(e)]] < llsl/4 (7)
m

Note that we could have taken a little more care over the argument, to arrive
at the inequality

lea(O)] < lls-[1/4m, (8)

where s_ is defined pointwise as max(0, —s).

The calculation above, and the inequality (6), were first described by
Witten in [42] (though in a 4-dimensional version). As pointed out there,
it follows that, for a fixed Riemannian metric, there can be solutions for
only finitely many different Spin® structures on Y. Indeed, there are only
finitely many integer classes with norm less than any given constant, and the
cohomology class c¢;(¢) (as an integer class) determines the Spin® structure ¢
to within the addition of a 2-torsion element.

One can also obtain a pointwise bound on |®| from the inequality (4). At
a point where |®| is maximum, the Laplacian is positive, and as long as |®]
is not zero at this point one may divide to obtain the estimate

B2 < —s

at the maximum.



254 2. Gauge theory on 3-manifolds

Scalar curvature and the Thurston norm

The relationship between the monopole equations and the genus of embedded
surfaces arises in its simplest form from the following simple lemma. Like
the inequality (7), it compares the norm of a class in H? to the norm of the
scalar curvature.

Lemma 2.2. Let o € H*(Y;R) be a two-dimensional cohomology class.
Then the dual Thurston norm |a|. satisfies the inequality

e
||, < 47 sup ladln , (9)
N EAN
in which the supremum is taken over all Riemannian metrics h, the norms
on the right-hand side are the L? norms, and s, denotes the scalar curvature

of h.

Proof. Let ¥ be an oriented embedded surface of genus 1 or more on which
« is non-zero. Let h; be a Riemannian metric on Y such that some neighbor-
hood of ¥ is isometric to a product ¥ x [0, 1], with ¥ having constant scalar
curvature —47(2g — 2) and unit area. Let h, be a metric which contains a
product region ¥ x [0, 7] and is isometric to h; outside that region. Then

Isnlln = 47r7"1/2(2g -2)+ 0O(1)

as r — oo, while any 2-form w representing a class o must satisfy
lwlln > 7/, [£]).-
Thus if g is at least two we have

(a, [Z]) /(29— 2) < sup ar|elln/lIsnlln,

and in the case that ¥ is a torus we see that the right-hand side is infinite.
This is the desired result, in view of the characterization of the dual Thurston
norm at (2). O

Combining this lemma with the previous one, we obtain:

Corollary 2.3. If ¢ is a Spin°® structure on Y and the dual Thurston norm
of c1(c) is bigger than 1, then there exists a Riemannian metric on Y for
which the monopole equations have no solution. O

We shall see later that the inequality in Lemma 2.2 is actually an equality
for many 3-manifolds Y (Proposition 3.8).
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3 The monopole invariants

Obtaining invariants from the monopole equations

There is a well-understood procedure by which we can extract some metric-
independent data from the set of solutions to the monopole equations, to
obtain an invariant

SW(Y,c) € Z

depending only on Y (a closed, oriented 3-manifold) and the Spin® structure
¢. A careful account of the most general case is given in [4, 27], and there
is a model for this construction in [35], where Casson’s invariant is given a
gauge-theory interpretation. In this subsection, we review this construction,
restricting ourselves sometimes to the simpler cases.
The monopole equations on a Riemannian 3-manifold Y are the varia-

tional equations for a functional

1 P - 1

CSD(A, ®) = —/(A—AO) NF;+F;)— —/((I),DA<I>>dvol,

2 Jy ° 2Jy
the Chern-Simons-Dirac functional of A and ®. (A reference connection
A, is chosen to define the first term, but a change of reference connection
only changes the functional by addition of a constant.) The equations are
invariant under the natural symmetry group of the Spin® bundle W, which
is the group G of maps u : Y — S* acting on W, by scalar endomorphisms.
This group acts on A and ® by

A A— (udu)l
b — ud.

The functional CSD is invariant only under the identity component of G. The
component group of G is the group of homotopy classes of maps ¥ — S 1
which is isomorphic to H!(Y; Z): the change in the functional under a general
element of G is given by

CSD(A — (u"'du)1,ud®) — CSD(A, @) = —4n?([u] -« c1(c))[Y].

So CSD does not descend to a real-valued function on the quotient space
C = {(A, ®)}/G, but does descend to a circle-valued function whose periods
are multiples of 472
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The orbit space C is an infinite-dimensional manifold except at points
where the action has non-trivial stablilizer. These are the configurations
with ® = 0 (the reducible configurations), whose stabilizer is the circle group
of constant maps u. If ¢;(c) is zero or a torsion class, then there are spin
connections for which A is flat, and these are reducible solutions to the
equations.

To define SW (Y, ¢), one first chooses a perturbation of the functional
CSD so as to make the critical points non-degenerate. To do this, one may
add an extra term, setting

CSD, (A, ®) = CSD(4, ®) + /Y(A — Ag) A (i),

where p is an exact 2-form. The variational equations are now
p(Fz+iwp)—{2® 2} =0

10
Ds® =0, (10)

and for a suitable choice of x (such u are dense), the Hessian will be non-
degenerate at all irreducible solutions in C. A proof is given in [12]. (The
condition that y be exact means, among other things, that the function CSD,,
still descends to a circle-valued function on C and that its periods are the
same as those of CSD.)

Critical points of CSD, on C have infinite index: the Hessian is a self-
adjoint operator which, like the Dirac operator, has a discrete spectrum
which is infinite in both the positive and negative directions, so one cannot
define an index i(a) at a critical point a as the dimension of the sum of
the negative eigenspaces. However, there is a way to define a relative index
between any two critical points. If a and b are two non-degenerate critical
points of CSD,, and +(¢) is a path in C which joins them, then the Hessians
H.,; a family of operators for which one can define a spectral flow — the
number of eigenvalues which move from negative to positive in the family.
One can defines the relative index i(a,b) as the spectral flow. There is a
further point to attend to, which is the possible dependence of the spectral
flow on the choice of path. The fundamental group of C is again isomorphic
to HY(Y;Z), and for a closed path =, the spectral flow is given by

SF(7) = ([u] = e1(9)) Y],

where u is the corresponding element of H'. As noted above, c;(c) is always
divisible by 2, so at least the parity of i(a,b) is well-defined. After settling
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on a convention as to which is to be which, we can divide the critical points
into even and odd, using the relative index.

The invariant SW (Y, ¢) can now be defined as, roughly speaking, the euler
number of the vector field CSD, on C. We restrict our attention to the case
that ¢;(c) is not a torsion class, so that there are no reducible solutions to
the equations, and after choosing u so that the solutions are non-degenerate
we set

SW (c) = #(even) — #(odd). (11)

The main technical point here is that the set of critical points in C is compact,
and hence finite under our non-degeneracy assumption. The proof of the com-
pactness property of solutions to the monopole equations is a straightforward
application of standard techniques, starting from the C° bound obtained by
applying the maximum principle to (4). The quantity (11) is independent of
the choice of Riemannian metric on Y and the choice of u. Our failure to
fix a convention about which is even and which is odd leaves an overall sign
ambiguity in the invariant.

If ¢;(c) is torsion, a similar definition leads to an invariant in the case
that b;(Y") is non-zero: one can perturb by a small, non-exact, closed 2-form
u to remove the reducible solutions. The case of b;(Y) = 0 is a little more
subtle, but an invariant can be defined: see [4, 27].

Basic classes

We call a Spin® structure ¢ on a closed 3-manifold Y basic if the monopole
invariant SW (Y, ¢) is non-zero. In this case, we also refer to the first Chern
class ci(¢) as a basic class if Y. For our present purposes, these definitions
are only interesting when b,(Y) is non-zero and c¢;(c) is not torsion. The
definition of the invariant SW means that, if ¢ is basic, then the correspond-
ing perturbed monopole equations (10) have at least one solution, for every
Riemannian metric and a dense set of exact 2-forms p. The compactness
properties of the equations imply that the non-emptiness of the solution
space is an open condition, so it is also true that the original equations (3)
have solutions for every Riemannian metric h. This observation, together
with Corollary 2.3, yields a relationship between basic classes and the genus
of embedded surfaces:
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Proposition 3.1. If Y is a closed, oriented 3-manifold with by # 0 and o
is a basic class on'Y, then the dual Thurston norm of a satisfies |al, < 1. In
other words, for any oriented embedded surface ¥ in'Y representing a class
o, we have

X-(%) > (a, 0).

Monopole invariants and the Alexander invariant

Whether the above proposition is useful depends on what else one knows
about the invariant SW and the basic classes. Meng and Taubes [30] showed
that when b;(Y") is non-zero, SW (Y ¢) is completely determined by a classical
invariant, the Milnor torsion. While it is interesting that torsion is calculated
by the gauge theory route, this result does make Proposition 3.1 look less
interesting.

The situation is easiest to describe when the 3-manifold Y is the result
of zero surgery on a knot K in S*: that is, Y is obtained by removing a solid
torus neighborhood of K and replacing it while interchanging the longitude
and meridian curves on its boundary. In this case, the information contained
in the Milnor torsion is the Alexander polynomial of K. We shall use the
symmetrized Alexander polynomial, whose shape is

Ag(t) =a_ t7" 4+ - F+a_t7 4 ag+at+ - +at

with a; = a_;. We refer to r as the degree of the polynomial. The betti
number of Y = Y(K) is 1, and the second cohomology is Z. There is therefore
exactly on Spin® structure ¢; with ¢;(cx) = 2k. Its monopole invariant can
be expressed in terms of the Alexander polynomial:

Theorem 3.2 (Meng-Taubes [30]). On the manifold Y(K) obtained by
zero-surgery on K, the monopole invariants are given by

SW(Y,e) = jaji. (12)

§>0

In particular, SW(z,¢,) =0 for k >r — 1. O
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(The symmetry SW (Y,cx) = SW(Y,c_x) is a general property of the
monopole invariants, and follows from a symmetry of the equations.)

With this interpretation of the monopole invariants, we can reformulate
Proposition 3.1 as

Statement 3.3. If ¥ is a connected, oriented surface in Y (K) representing
the generator of H,, then

9(X) =,
where r s the degree of the Alezander polynomial.

Indeed, the theorem tells us that the extreme basic classes in H? = Z arise
from the Spin® structures c.(,_1), with ¢;(c)[X] = (2r —2). (The restriction
to connected surfaces has no effect on our statement when b; = 1.)

The statement above, however, is an elementary consequence of the defi-
nition of the Alexander polynomial, in the formulation which expresses Ak (t)
in terms of the homology of the infinite cyclic cover of Y (K). Furthermore,
the inequality between the genus of ¥ and the degree of the Alexander poly-
nomial is not a sharp one in general. Here is a relevant result:

Theorem 3.4 (Gabai [15]). If ¥ is an embedded surface in Y (K) repre-
senting the generator of Ha, then g(X) is no smaller than the genus of the
knot.

This theorem is not self-evident. The proof of the result comes from refine-
ment of the existence theorem for taut foliations quoted earlier: a minimal-
genus spanning surface for K can be filled out to a taut foliation F of the
complement of a neighborhood N(K) in S*, and this can be done so that
the boundaries of the leaves are a family of longitudinal circles. The solid
torus N(K) has a trivial foliation by meridianal disks, and in the surgered
manifold Y (K), this foliation joins with F to give a taut foliation of the
closed manifold.

The genus of a knot K and the degree of Ax are in general different.
The untwisted Whitehead double of any non-trivial knot has genus 1 and
Alexander polynomial 1. Figure 1 shows a Whitehead double of a trefoil
knot; a spanning surface is formed from a ribbon which follows the course
of the trefoil, together with a small band with one full twist at the clasp.
Under the connected sum operation, the genus of a knot is additive, while
the Alexander polynomial is multiplicative, so one can easily obtain knots of
large genus whose polynomial has small degree.
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Figure 1: A doubled trefoil.

Monopole classes

The result of the previous subsection is disappointing. The lower bound for
the genus of embedded surfaces in terms of basic classes is no better than
the lower bound for the genus of a knot which the Alexander polynomial
provides: it does not capture the topology. However, the reason for the
disappointing result is that too much of the content of the gauge theory has
been disposed of in passing from the solution set of the monopole equations
(3) to the integer invariant SW (Y, ¢) which counts these solutions.

Rather than count the solutions, let us take a step backwards and simply
make the following definition:

Definition 3.5. A class a € H*(Y;Z) is a monopole class if it arises as ¢, (c)
for some Spin® structure ¢ on Y for which the equations (3) admit a solution
for every choice of Riemannian metric h on'Y.

This definition ensures that the basic classes are monopole classes. Also,
Proposition 3.1 applies to monopole classes, just as it applies to basic classes;
so a monopole class o has dual Thurston norm at most 1. (This is simply
another step backwards, to Corollary 2.3, from which Proposition 3.1 was
deduced.)

However, the monopole classes are in general a larger set than the basic
classes. The following theorem is our central result. We shall give an outline
of the proof in section 5.
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Theorem 3.6. If Y is a closed, irreducible, oriented 3-manifold with a
smooth, taut foliation F by oriented leaves, then e(F) is a monopole class.

Combining this statement with Corollary 1.6, one obtains

Corollary 3.7. If Y is a closed, irreducible oriented 8-manifold, then the
unit ball B(Y) C H*(Y;R) for the dual Thurston norm is the conver hull
of the monopole classes (reduced to real coefficients). In other words, the
Thurston norm on Hj is given by

o] = max(a, o),
«a

where the mazimum s taken over all monopole classes.

(The extra hypothesis in Corollary 1.6, that there is not a basis for H,
consisting of tori, was there to ensure that Y had at least one smooth, taut
foliation. The hypothesis is unnecessary in Corollary 3.7, for the accidental
reason that 0 is always a monopole class, on account of the reducible solution
with & = 0.)

Thus the monopole classes give us sharp information about the genus of
embedded surfaces, while the basic classes (in general) do not. For example,
in the 3-manifold Y (K) obtained by zero-surgery on a knot K of genus g,
the classes +(2¢ — 2) in H? & Z are monopole classes. This means that, for
the Spin® structure which we called ¢,_;, solutions of the monopole equations
always exist, even though the algebraic count of the solutions will be zero if
the Alexander polynomial has small degree.

We can also return to our discussion of the scalar curvature, and see that
our inequalities there were sharp also. Our previous results stated that the
unit ball for the norm

47 sup HaHh
n|lsalln

was sandwiched between the convex hull of the monopole classes and the
unit ball for the dual Thurston norm (Lemmas 2.1 and 2.2). Knowing that
these last two coincide, we can replace the inequality of Lemma 2.2 with an
equality:

Proposition 3.8. If Y is a closed, irreducible oriented 3-manifold, then the
dual Thurston norm on H?(Y;R) is given by

|ae|s = 47 sup Jedln
no llsalln

)
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where the supremum is taken over all Riemannian metrics on 'Y . U

Remark. Up until this point, it was by no means clear that the supremum on
the right hand side was ever finite. Our results now say that the supremum
is reached, in the limit, by stretching the metric along a cylinder [-R, R] x ,
where ¥ is a minimum-genus representative for a class o with (a, o) = |a|.|o].

4 Detecting monopole classes

How can one detect that a given class is a monopole class, without it being a
basic class? An existence theorem is needed for solutions to the equations. A
simple scenario in which one can see that solutions must exist arises when the
3-manifold in question is embedded in a suitable 4-manifold. We therefore
turn to dimension four.

The 4-dimensional equations

The equations we have been discussing are a 3-dimensional version of the
monopole equations which were first introduced, by Witten [42], in dimension
4. On an oriented Riemannian 4-manifold X, a Spin® structure ¢ consists of a
hermitian vector bundle W of rank 4, together with a Clifford multiplication

p:T"X — End(W)

with the property that, if e!, ..., e* are an orthonormal coframe at a point
in X, then the endomorphisms p(e’) are skew-adjoint and satisfy the Clifford
relations

p(e)p(&) + p(e?)p(e") = —26;;.

Clifford multiplication is extended to forms of higher degree as before. It is
a consequence of this definition that the spin bundle W decomposes into two
bundles of rank 2, W+ & W™, whose determinants are equal. The action of
1-forms maps W+ — W™, the action of 2-forms preserves the decomposition,
and one can characterize W~ as the subspace annihilated by p(w) for all self-
dual 2-forms w (forms satisfying *w = w). A spin connection is defined as
before, and given a spin connection A, one has a Dirac operator D4 acting
on sections of W. We write Dj: for the restriction of D4 to W, which is an
operator

D% D(W*) - T(W™).
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The connections on A?W+ and AW~ induced by a spin connection A are
equal, and we write A for either. We write c1(c) for the first Chern class
of W, which is the class represented in de Rham cohomology by the form
(¢/2m)F ;.

Once again, the set of Spin® structures is acted on transitively by
H?(X;Z), and we have the same rule,

ci(c+e) = ci(c) + 2e,

which shows that c;(c¢) determines ¢ to within a finite ambiguity measured
by the 2-torsion subgroup of H%(X;Z).

The 4-dimensional monopole equations are the following pair of equations
for a section ® of W* and a spin connection A:

p(F7)—{2® 2} =0

13
Did =0. (13)

The first equation is to be interpreted as an equality between endomorphisms
of W*. The curly brackets denote the trace-free part on W, not on W, and
F'* denotes the projection of the curvature onto the self-dual forms, as usual.
The moduli space M, is the space of solutions (A, ®) modulo the action
of the gauge group, G = Map(X, S!). We can also perturb the equations,
rather as in the 3-dimensional case, by an arbitrary self-dual 2-form #:

p(FT+in) —{2®2*} =0

14
Di® = 0. (14)

We write M., for the solution space.

In dimension 3, for a generic perturbation, the irreducible solutions are
isolated. In dimension 4, the equations have an index. We suppose X is
compact and write

1
d(c) = Z(cl(c)Q[X] - 2x(X) - 30(X)),
which one can also recognize as the second Chern number, ¢;(W*)[X]. The

basic facts about the moduli space are these:

Proposition 4.1. The moduli space M., is compact. For an open, dense
set of perturbations 7, the irreducible part of the moduli space (the locus
of solutions with ® # 0) is a smooth manifold of dimension d(c), cut out
transversely by the equations.
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Remark. The proof of compactness runs much as in the 3-dimensional case,
beginning with an essentially identical calculation leading to (4).

For the unperturbed equations, a solution with & = 0 means a connec-
tion A in A2W* with anti-self-dual curvature, and hence an anti-self-dual
representative for ¢;(c). An anti-self-dual form has negative square, so there
can be no solutions if ¢;(c)?[X] is positive. If ¢;(c)?[X] is zero, there can
be reducible solutions only if ¢;(¢) is a torsion class, so that there is a flat
connection. The same is true of the perturbed equations if 7 is small. Even
if ¢;(c)?[X] is negative, however, there can only be a reducible solution if
2mey(c) — n is represented by an anti-self-dual form. The real cohomology
H?(X;R) is the direct sum of the self-dual and anti-self-dual harmonic spaces,
so the space of 7 for which such a representative exists is an affine subspace of
codimension b7 (X), the dimension of the space of self-dual forms. If b*(X)
is non-zero, there is no reducible solution for generic 7, and if b™(X) is at
least 2, there is no solution for all n in a generic path.

Now let ¢ be a Spin® structure with d(c) = 0, so that ¢;(¢)?[X] = 2x + 30.
We shall suppose that X either has bt > 2 or has 2x + 30 non-negative,
and if 2x + 30 is zero we shall also ask that let ¢;(c) is not a torsion class.
For a generic 1, and also for a generic path of n, the moduli space M., then
consists of finitely many points which are transverse, irreducible solutions
of the equations. The number of solutions, counted with suitable signs, is
independent of the choice of perturbation and the choice of metric. We write

SW(X,c) €T

for this number. This is the Seiberg-Witten monopole invariant for X with
the Spin® structure ¢ [42]. As before, if SW(X,¢) is well-defined and non-
zero, we call ¢1(c) a basic class of X. Note that if SW (X, ¢) is non-zero, then
the moduli space M, of solutions to (13) is non-empty for every choice of
Riemannian metric.

The first significant result about basic classes was proved by Witten in
[42]. This was the statement that, for a smooth algebraic surface with b* > 1
(e.g. a hypersurface in CP?® of degree 4 of more), the first Chern class and
its negative (the canonical class) are basic classes. This was soon generalized
by Taubes in [36, 37] to symplectic manifolds, in the following form. A
symplectic structure w on a manifold determines an almost-complex structure
uniquely up to deformation, and hence has Chern classes ¢;(w). The canonical
class K, is —c¢;(w).
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Theorem 4.2 (Taubes, [36, 37]). Let (X,w) be a compact symplectic 4-
manifold. Suppose either that b* > 1, or that b* =1 and K, « [w] and K?
are both positive. Then the canonical class is a basic class.

Remarks. Note that the hypotheses rule out CP2. (On a Kihler manifold,
the sign of K -« [w] is opposite to that of the mean scalar curvature.) The
statement for the case b* = 1 can be sharpened, but not without refining
our treatment of the monopole invariants. A full treatment of the monopole
invariants in the case b* =1 is given in [26].

This version of the theorem is a little careless. As well as determining
a canonical class K, a symplectic structure gives rise to a canonical Spin®
structure c,,, with c¢;(c,) = K,. Taubes result asserts that this Spin® struc-
ture is basic, and in fact

SW(X,c,) = +1 (15)

under the hypotheses of the Theorem.

Stretching 4-manifolds

A simple relationship between the 3- and 4-dimensional equations gives the
following criterion for a class o on a 3-manifold to be a monopole class.

Proposition 4.3. Let Y be a closed, oriented 3-manifold embedded in a
compact, oriented 4-manifold X. Let « be a basic class on X. Then the
restriction aly is a monopole class on Y.

Proof. Let ¢ be the Spin® structure with ¢;(¢) = o and SW (X, ¢) non-zero, so
that solutions to (13) exist for all metrics A on X. Let hy be a Riemannian on
Y, and let h; be any metric on X such that a collar neighborhood [-1,1] x Y
carries a product metric dt?> + hy. Let hr be obtained from h; by replacing
this short cylinder by a longer cylinder, [-R, R] x Y, for R > 1. For each
hr, there exists a solution (Ag, ®gr) on X.

The idea of the proof is to show that, as R approaches co, we can find a
subsequence such that the corresponding solutions converge to a translation-
invariant solution on some portion of the cylindrical piece. A translation-
invariant solution can be interpreted as a solution of the 3-dimensional equa-
tions on Y, for the metric hy, so showing that a solution exists. Since hy is
arbitrary, the class ¢;(c)|y is a monopole class.
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To make this work, we need first to understand the relationship between
the equations in dimensions three and four. On a cylinder [-R, R] x Y with
a product metric, the action of p(dt) gives an isomorphism between W and
W~. Using this isomorphism, Clifford multiplication by 1-forms orthogonal
to dt become endomorphisms of W*. In this way, Y acquires a Spin® structure
(with spin bundle W3 = W|y) which one can call the restriction of ¢. Given
a solution of the unperturbed 4-dimensional equations on the cylinder, one
can apply a gauge transformation to make the dt component of A zero. If A
is in such a temporal gauge, it can be recovered from the path A(t) in space
of spin connections on Y, obtained by restricting A to the slices {t} x Y.
The spinor ® on the 4-manifold gives a path ®(t) in the space of spinors on
the 3-manifold.

In a temporal gauge, the 4-dimensional equations (13), become the fol-
lowing equations for the paths A(t) and ®(¢),

p(A) = —p(Fs) + {2© 0"} i~
® = —D,9,

in which D4 now stands for the 3-dimensional Dirac operator, and the dot
is differentiation with respect to t. These equations can be recognized as the
downward gradient-flow equations for the functional CSD(A, ®).

Having understood this relationship, we can complete the proof. The
solution (Ag,®g) on the cylinder [-R, R] X Y can now be interpreted as a
gradient trajectory for the Chern-Simons-Dirac functional. The compactness
properties of the equations can be used to show that the change of CSD along
these trajectories is bounded, by a constant independent of R. It follows that,
when R is large, there is at least some portion of the cylinder in which the
change in the functional is small. Passing to a subsequence, one obtains in
the limit a translation-invariant solution to the equations on the cylinder,
in a temporal gauge. This is a critical point of CSD, or in other words a
solution of the 3-dimensional equations. This outline is filled out in [23]. O

Remark. It is worth commenting that, if ¢ restricted to Y is trivial, the
solution whose existence is established by this argument may only be the
trivial solution. With some additional hypotheses however, one can establish
a stronger conclusion.

Using Theorem 4.2, we can draw the following simple corollary.
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Corollary 4.4. Let Y be a closed oriented 3-manifold embedded in a closed,
symplectic 4-manifold (X,w). If b*(X) = 1, suppose that the hypotheses of
Theorem 4.2 hold. Then K|y € H*(Y) is a monopole class on Y. U

(In fact, solutions on Y exist for the Spin® structure ¢, |y.) This observation,
with a little ingenuity, is already enough to show that the set of monopole
classes can have larger convex hull than the set of basic classes on a 3-
manifold. We will need to adapt the corollary, however, before it becomes
very useful. It is a puzzling question to characterize the classes a € H?(Y)
which arise in this way, for a general Y.

Floer homology

There is a well-understood framework in which to place the ideas just dis-
cussed, namely the framework of ‘Floer homology’. The model in the lit-
erature that is closest to what we need is Floer’s construction in [11] of an
invariant of 3-manifolds, using the gradient-flow of the Chern-Simons func-
tional (of an SU(2) connection).

There appears to be no serious obstacle to adapting [11] to the Chern-
Simons-Dirac functional, particularly in the case that c;(¢) is not torsion,
but there is not yet a complete account of such a construction in the litera-
ture. Nevertheless, it is clear how to proceed, and we shall content ourselves
with some remarks. The starting point of [11] is the basic observation that
one can calculate the homology of a compact manifold M by the following
recipe. Choose a Morse function f on M whose gradient flow satisfies the
additional ‘Morse-Smale’ condition, that the stable and unstable manifolds
of all the critical points meet transversely. This means in particular that the
trajectories which run from a critical point a at t = —oco to a critical point b
at t = +oo form a family of dimension equal to the difference of the indices
of @ and b. Of these degrees of freedom, one is the freedom to reparametrize
the trajectory v(¢) as y(t + ¢). If a and b have index differing by 1, the tra-
jectories are isolated once one forgets the parameterization. Now form the
vector space C with a basis e, indexed by the critical points a, and define a
linear transformation 0 by

8(6(1) = Z T abCs,

where ng, counts the number of trajectories from a to b in the case that
i(b) = i(a) — 1 and is zero otherwise. To avoid questions of orientation, one
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can take Z/2 as the field of coefficients for C. Then one shows that 8% = 0
and the ker /im0 is the homology of M. In particular it is independent
of the choice of f and the choice of Riemannian metric used to define the
gradient. Without having an alternative definition of the homology however,
one can verify this independence directly.

Floer applied this construction in an infinite-dimensional setting, taking
the Chern-Simons functional as f. In the monopole setting, one should
use the functional CSD on the space C. The situation is simplest in the
case that ¢;(c) is not torsion, so that the monopole equations on Y have no
solution with ® = 0. As mentioned above, for a suitable exact 2-form p, the
perturbed functional CSD, has non-degenerate critical points, and these are
a finite set. Although there is no well-defined difference of indices between a
pair of critical points, we can measure the index difference between a and b
along a given trajectory -y, as the spectral flow of the Hessian, as before. If a
Morse-Smale condition is satisfied, we can then construct C and 0 as before,
defining n,;, as the number of trajectories whose spectral flow is 1.

Unfortunately, we cannot expect to achieve the stronger Morse-Smale
condition by such a restricted class of perturbations as the addition of an
exact 2-form p. One must seek a larger class of perturbations. At the
same time, it is a particular property of the equations involved that the
spaces of trajectories have any reasonable compactness properties (as noted
in the previous subsection, the gradient trajectories can be interpreted as
solutions of the 4-dimensional monopole equations), and one must choose
the perturbations of CSD, so as not to upset this feature. We make some
remarks in the following subsection about how one might define a suitable
larger class of perturbations, and for the moment we shall pass over this
point. It is precisely here that more work needs to be done to carry through
the Floer program for the monopole equations.

After taking care of perturbations and compactness, one should arrive
by this construction at a vector space HF(Y,c) with Z/2 coefficients and
an even-odd grading. It should depend only on Y and ¢, not on the choice
of Riemannian metric or the perturbation chosen for the equations. The
construction makes clear that HF (Y ¢) is zero if the original monopole equa-
tions, or their perturbation, have no solution. Also, the euler characteristic
of HF (Y, c) (the difference of the odd and even betti numbers) is equal to
the integer invariant SW (Y, ¢).

The usefulness of Floer homology in the present context is that Proposi-
tion 4.3 and Corollary 4.4 can be strengthened, so as to conclude that the
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Floer homology is non-zero. (For the 4-dimensional Yang-Mills invariants,
this role for the instanton Floer homology of [11] was first noted by Don-
aldson.) For example, if Y is embedded in a closed symplectic 4-manifold
(X,w) (satisfying the hypotheses of Corollary 4.4 in the case b*(X) = 1), and
if K|y is not torsion, then one would conclude that HF (Y, ¢, |y) is non-zero,
once the definition of this Floer homology was in place.

Perturbing the gradient flow

It may be worth noting that perturbing the Chern-Simons-Dirac functional
so as to achieve a Morse-Smale condition for the trajectories of the gradient
flow may not be particularly difficult. Let Y be a closed Riemannian 3-
manifold with Spin® structure ¢, and let S be the space of all pairs (4, ®),
where A is a spin connection and ® is a section of W. The space C above is
the quotient S/G.

Let Ay be a fixed spin connection, so that we can write the general spin
connection as

A:A0+a1,

so identifying the space of spin connections with the space of imaginary-
valued 1-forms a, as before. We have already considered adding to CSD a
function of the form

Tﬂ(a):i/a/\p

for an exact 2-form u. Let us now relax the requirement slightly, and suppose
only that u is closed. Take a collection p, ..., puy of closed 2-forms, which
included a basis for H%(Y'), and let 71, ... , 7x be the corresponding functions
of a. As noted earlier, the functions 7; on & are invariant only under the
identity component G, C G. The map

(r1,...,78) : S > RY

commutes with the G action, however, when G acts on RY through a discrete
action of the quotient, G/G. & H'(Y;Z), by translations. So to obtain a
G-invariant function on S, we should take a function

F:RY - R
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which is invariant under these translations, and define

f(a,®) = F(ni(a),... ,7n(a)).

(Functions of this shape include the ‘smoothed-out’ holonomy maps used in
[11] for non-abelian connections.)

Our function f is not yet sufficiently general, for it does not depend on ®.
To incorporate ®, we can proceed as follows. Let L be the Greens operator
for the ordinary Laplacian on C*°(Y"). Thus L inverts the Laplacian when
restricted to functions with zero mean, and the kernel and cokernel of L are
the constant functions. Let H C G, be the subgroup

H={e*|(:Y - R, with [6=0}.

The quotient G./H 1is the circle, represented by the constant maps, and
G/H is represented by the harmonic maps Y — S, a group isomorphic to
St x HYY; Z).

For any fixed spinor 9 € T'(W), let o, be the complex function on S
defined by the hermitian inner product

7o(a,®) = [ (°,9),
where 1 denotes the expression
wa — e—Ld*aw.

The definition of 1* is such that it transforms as ® does under the action of
H: if u = e*, where £ has mean zero, then

,(/)a-—u' Ydu _ wa—id{

— e—Ld aezLd dfw

= uy?.
Thus oy : § — C is invariant under H. Under the circle G./H, however, it
transforms with weight 1.

Now choose a collection of spinors #; (1 = 1,...K), and let o; be the
corresponding complex functions on S. We now have a collection of functions

) N K
(T, , TN, 01, ... ,0K): S = RY x C*.
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These functions are equivariant for G when G/H is made to act suitably on
RY x CX. The quotient of RN x CK by this action is a bundle with fiber
CK /S? over the base T® x R¥N~° where b is the Betti number of Y.

Now choose a smooth function
F:RY xCK 5 R
which is invariant under the action of G/H, and define
fla,9) = F(m,...7n,01,... ,0K).

Now consider perturbing CSD by the addition of such a function f. With
terms of this sort we can C!'-approximate, for example, any smooth function
on a compact submanifold of C (lying in the locus where ® is non-zero), and
quite formally the class of functions is large enough to give the necessary
transversality. If the partial derivatives of F' are bounded, it seems that the
compactness theorems for spaces of trajectories hold up too. Thus, in the
crucial calculation (4), one finds amongst other things an additional cubic
term in ®, which is local in the ¢ coordinate, but non-local on Y, involving
an expression of the shape

®*p(d o L{y®, @))®.

But such a term does not break the argument.

5 Monopoles and contact structures

We now turn to the proof of Theorem 3.6. In view of Corollary 4.4, one
might hope to prove this by showing that if ¥ had a taut foliation F, then
one could always embed Y in a closed symplectic manifold (X,w) in such
a way that ¢;(w) restricted to Y was £e(F). Perhaps this can be done;
such a result would be very interesting, and presumably very hard. A slight
modification of this tactic leads to a proof, however. Applying a theorem
of Eliashberg and Thurston [8], we shall embed Y in an open symplectic
manifold whose ends have a cone-like geometry. We shall then extend the
4-dimensional gauge-theory techniques to this setting.
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Using the theorem of Eliashberg and Thurston

The following material can be found in [8]. To begin, the following propo-
sition sheds a geometric light on the meaning of taut. (The converse to the
proposition is true also, but is rather deeper.)

Proposition 5.1. If F is a taut foliation of Y by oriented leaves, then there
is a closed 2-form ) on'Y whose restriction to the leaves is positive.

Proof. Let v be a closed curve, transverse to the leaves and meeting every
leaf. (The existence of v was our chosen definition of taut.) A small tubular
neighborhood N(7) meets the leaves of F in a foliation by disks, to give a
product structure. Using the product structure, pull back to N(y) a 2-form
1 supported in the interior of the disk and non-negative there. The result is
a closed form Q(vy) which is non-negative on the leaves of F. By pushing
along the leaves, one obtains transverse curves running through any point of
Y. By taking a suitable finite collection of such curves ; and adding up the
corresponding forms €(7;), one obtains a suitable 2. O

Now let a be a non-vanishing 1-form on Y whose kernel at each point is
the tangent plane to F and whose orientation is such that a A €2 is positive.
The integrability of the tangents to the foliation means that o A da is zero.
On the cylinder [—1,1] x Y, consider the closed 2-form

w=d(tAa)+N.

In w?, the only term to survive is the terms dt A o A §2, which is positive. So
w is a symplectic form.

We have succeeded in embedding Y in a symplectic 4-manifold with
boundary, [—1,1]x Y, and it is not hard to see that the first Chern class ¢; (w)
restricts to e(F) on the 3-manifold. But this elementary step is insufficient
for our needs.

A contact structure on a 3-manifold is a field of 2-planes £ which strictly
fails to be integrable at every point of Y. This means that, if £ is defined
locally as the kernel of a 1-form 3, then 8 A df is nowhere zero. If the 3-
manifold and the 2-plane field are oriented (as will always be the case for us),
then a suitable form f exists globally. Note however that, as a non-vanishing
3-form, the product G A dB itself determines an orientation of Y. We shall
say that the contact structure £ is compatible with the orientation of Y if the
form (B A df is positive, for some and hence for all choices of 8 with kernel
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&. The theorem of Eliashberg and Thurston which we need states that the
tangent planes to a foliation can be deformed to give a contact structure,
compatible with either orientations:

Theorem 5.2 (Eliashberg-Thurston [8]). Let F be a smooth, oriented
foliation of an oriented 3-manifold, other than the foliation of S' x S? by
spheres. Then the 2-plane field TF can be C° approzimated by contact struc-
tures & compatible with either the given orientation of Y or its opposite. [

(An example of this phenomenon arises when Y is a circle bundle over a
surface arising as a compact left quotient of SL(2,R). A left-invariant 2-
plane field is determined by a 2-plane 7 in the Lie algebra sl(2,R). If 7 is
tangent to the null cone of the Killing form, then the corresponding 2-plane
field is a foliation. If the Killing form is either definite or hyperbolic on T,
then the 2-plane field is a foliation, compatible with one or other orientation
of the 3-manifold.)

Now let us return to the manifold X = [—1,1] x ¥ with the symplectic
form w constructed above. The oriented boundary of X is Y UY (the bar
denotes the opposite orientation), and F foliates both components. Using
the Theorem, one obtains foliations £_ and &, on Y and Y, compatible with
their respective orientations, and at a small angle from the tangents to F. If
the angle is made small enough, we can arrange that these contact structures
are compatible with w, in the weak sense that w is positive on the 2-planes
at the boundary:

LUI{ >0 at 0.X. (17)

Indeed, w is positive on the tangent planes to F, which &4 approximate. (To
clarify the signs involved, this sort of compatibility holds for the standard,
Kihler, symplectic form on a pseudo-convex domain in C?, such as a ball,
when the boundary is given the contact structure defined by the complex
tangent directions.)

To summarize, starting from a 3-manifold Y with a foliation F, we have
constructed a symplectic 4-manifold (X,w) in which Y is embedded, with
K|y equal to the euler class e(F). The 4-manifold has a contact structure
& =&_U&, on its boundary (compatible with the boundary orientation, in
a ‘convex’ direction), and the symplectic form is compatible with &, in the
sense described by (17).
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Four-manifolds with contact boundary

Although we have not embedded Y in a closed manifold, the convex contact
structure on the boundary of X is all we shall need, because we can extend
the monopole invariants SW (X, ¢) for closed manifolds so as to define similar
invariants for 4-manifolds with contact boundary.

We give an account of the construction from [21]. Let X be a compact,
connected, oriented 4-manifold with non-empty boundary X, and let £ be an
oriented contact structure on 90X, compatible with the boundary orientation.
In the presence of a metric, any oriented 2-plane field such as £ determines
a Spin® structure on 0X, and hence a 4-dimensional Spin® structure on a
collar of the boundary. One can think of this in various ways. For example,
define the spin bundle W on 0.X can be defined as the sum C&® &€, where the
second summand means that the oriented 2-planes of £ are being regarded
as complex lines; then define Clifford multiplication at a point y by picking
a basis ey, e;, e3 of tangent vectors at y, with e; the positive normal to £ and
declaring that these act on (C @ £°), by the Pauli matrices

(2 G9) (o)

using the basis vector ey to trivialize £. Alternatively, one can think of this
as a special case of the way in which an almost-complex structure determines
a Spin® structure in even dimensions. Note that the spin bundle comes with
a canonical section ®y = (1,0).

Now let ¢ be any extension of ¢, to the interior of X. Given such an
extension, we shall define a monopole invariant

SW(X,&,¢) € Z,

which is a diffeomorphism invariant of the triple (no condition on b*(X) is
needed).

The invariant SW(X,€,c) is defined as follows. First we enlarge the
manifold X by adding expanding cones to the boundary components. In
more detail, if Y is a 3-manifold with a positive contact structure defined
as the kernel of a 1-form 3, then there is a symplectic form on the cone
(0,00) x Y, given as

w = d(f(£)p)
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[-1,1]xY

Figure 2: The geometry of Z.

for any monotone increasing function f of t € (0, 00). To reproduce the way
in which R* with its standard symplectic structure arises from S®, we prefer
to set

w = (1/2)d(£28).

We apply this standard construction to the components of X, and attach
conical pieces [1,00) x 0X to the boundary, to obtain an open 4-manifold Z
(diffeomorphic to the interior of X):

On Z we choose a Riemannian metric h compatible with w on the conical
pieces. This means that there are local orthonormal coframes in which w can
be expressed as e! A €2 + €2 A et. Figure 2 shows an illustration of Z in the
case that X is the manifold [—1, 1] x Y from the previous subsection. In this
case, the contact structures £_ and &, give symplectic forms wi on the two
conical ends.

The symplectic structure w on the conical pieces determines a canonical
Spin® structure ¢, there, essentially the same as the Spin® structure deter-
mined by & on the boundary of X. The choice of ¢ on X gives an extension
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of Comega to all of Z. The spin bundle W+ = W} has a canonical section
®, of unit length on the conical pieces of Z, and there is a unique spin con-
nection there, with the property that D:{O‘I’o = 0. (Such a connection is
determined by any non-vanishing spinor on a 4-manifold.) We extend ®,
and Ay arbitrarily over the remained of Z.

Motivated by the constructions of [36, 37|, we now consider a modified
version of the Seiberg-Witten monopole equations on the Riemannian man-
ifold Z. The equations are

p(F}) — {2 @ 8"} = p(F}) - {0 ® @)

18

D1® =0. (18)
We can also consider, as before, perturbing these equations by the addition
of a self-dual 2-form 7, which should decay on the ends of Z:

p(Fi +in) —{2®®"} = p(F] ) — {2 ® 3}
Did =0.

The unperturbed equations are set up so that (Ag, ®o) satisfies the equa-
tions on the conical ends, though not necessarily in the interior, since ®,
may not satisfy the Dirac equation there. We seek solutions (A4, ®) in gen-
eral which are asymptotic to (Ag, ®o) at infinity. It turns out that, even if
only mild decay is required of A — Ay and ® — ®;, any solution of the un-
perturbed equations will approach the canonical pair exponentially fast after
adjustment by a suitable gauge transformation.

We again write M, (or M., in the perturbed case) for the set of such
solutions, considered up to the equivalence relation defined by the gauge
transformations. Note that there can be no ‘reducible’ solutions with & = 0,
because @ is required to approach the unit-length spinor ®, at infinity. The
main facts about the moduli space are these:

Proposition 5.3 ([21]). The space M., is compact, and for generic n it is
a smooth manifold cut out transversely by the equations. In this case, the
dimension of the moduli space is given by

d(C) = Cz(Wj,@o)[Z,Z\X],

(which is the relative euler class of the bundle W on Z, relative to the
non-vanishing section ®y on the ends).
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(The formula for the dimension coincides with the alternative formula
co(W*[X] which we gave in the closed case.)

In the case d(c) = 0, we can again count the number of solutions, either
with suitable signs, or just modulo 2, to obtain a definition of the invariant
SW(X,¢&,c). It is again independent of the choices made, such as the 1-form
B3, the metric h, and the perturbation 7.

Symplectic filling

In the definition of SW (X, &, ¢) as just described, no symplectic form on X is
involved and none is needed in the construction. When one has a symplectic
structure on X compatible with £ at the boundary, then there is a non-
vanishing theorem for the invariant. The symplectic form w determines a
canonical Spin® structure ¢, on X, and the compatibility condition with &
means in particular that ¢, and ¢, are the same at the boundary, so and
invariant SW (X, &, c,) is defined. The theorem is then:

Theorem 5.4 ([21]). If X is a compact {-manifold with contact structure
& on the boundary, and w is a symplectic form on X compatible with £, then

SW(X,€, ¢, = 1.
O

Once the analytic framework of the previous subsection is in place, the proof
of this result is very much as the same as the proof of (15) from [37]. There
is one point to note, however. The proof begins by constructing a symplectic
form wz on Z, the manifold with conical ends. Although Z is a union of
pieces each of which carries a symplectic form (as illustrated in Figure 2 for
the case of [—1,1] x Y'), these forms do not necessarily agree at the joins,
and even their cohomology classes may be different. Nevertheless, one can
patch the forms together, in that one can find a symplectic form wz which is
asymptotic to the conical form on the ends, and agrees with the given form
w on X except in a small neighborhood of 0X. See [21], for example.

The stretching argument used in Theorem 4.3 and Corollary 4.4 works
just as well in the present setting of 4-manifolds with contact boundary. From
the above theorem, we can therefore deduce:

Corollary 5.5. Let (X,w) be a symplectic 4-manifold with a compatible con-
tact structure £ on the boundary. If Y s an oriented 3-manifold embedded
in X, then K |y is a monopole class. O
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Using the construction of Eliashberg and Thurston, with X = [-1,1]xY,
we deduce Theorem 3.6:

Corollary 5.6. If Y is a closed, irreducible, oriented 3-manifold with a
smooth, taut foliation F by oriented leaves, then e(F) is a monopole class.

a

(Again, the hypothesis of irreducibility excludes S* x S2.) Slightly more
generally, one can apply Corollary 5.5 to the case that Y is parallel to X or
a component of 0X. In Eliashberg’s terminology, [8], a contact 3-manifold
Y is symplectically fillable if Y arises as the correctly oriented boundary of a
4-manifold X carrying a compatible symplectic form w. If Y arises as a union
of components of such a boundary, then it is symplectically semi-fillable.

Corollary 5.7. If a contact 3-manifold (Y,&) is symplectically semifillable,
then e(£) is a monopole class. O

One useful feature of this corollary is one can form a connected sum of
semifillable contact structures, and so obtain results about monopole classes
on reducible 3-manifolds also.

All these statements can be sharpened a little, because one knows which
Spin® structure is involved, not just the Chern class. More significantly per-
haps, one should draw the stronger conclusion that the Floer homology is
non-zero in these cases. For example, if (Y] ¢) is symplectically semifillable
and e is not torsion, one would conclude that HF (Y, ¢¢) is non-zero. (A more
refined statement could be made in the case of a torsion class.) In particular
then, one should say:

5.8. If Y carries a taut foliation, then the Seiberg- Witten Floer homology of
Y is non-zero for the corresponding Spin® structure.

The obstruction to proving such statements is no larger than the problem of
verifying a suitable construction of Floer homology.

Invariants of contact structures

There is a way to rephrase part of the construction just described. Given
an oriented 3-manifold Y and a contact structure & compatible with the
orientation, one can form a symplectic cone [1,00) X Y with symplectic form
w; as before, and attach to it a cylinder (—oo, 1] x Y, as shown in Figure 3.
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Figure 3: Defining an invariant of (Y, £).

Using the Spin® structure given by £, one can then write down a version
of the monopole equations on this 4-manifold which resemble the deformed
equations (18) on the conical piece and resemble the usual equations (13) on
cylindrical end, where they can be interpreted as the gradient flow equations
for a trajectory of CSD.

For each critical point a of the functional CSD on Y (or of the perturbed
functional CSD, considered before), one can look at the moduli space of
solutions (A, ®) which are asymptotic to (Ag, ®o) on the cone, and which
descend from the critical point a on the cylinder. After perturbation, these
moduli spaces are smooth manifolds. For each «, let n(a, ) be the number
of solutions belonging to zero-dimensional moduli spaces, counted with signs
as usual, and consider the expression

E Ta€q
a

as an element of the chain group C which defines Floer homology. If we
suppose that e(£) is not torsion, to eliminate the reducible solutions, then
the above sum is closed under @ (by arguments that are familiar in other
applications of Floer homology), and the resulting homology class

1> " neea] € HF (Y, ¢) (19)

is an invariant of the contact 3-manifold.
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In this way, one can define an invariant of contact structures, once Floer
homology is in hand. These seems the most natural setting in which to place
the constructions of [28], where collections of contact structures are exhibited
which are homotopic as 2-plane fields but not isotopic as contact structures.
(The manifolds Y in [28] are homology spheres, so one needs to tackle Floer
homology for the case that ¢;(c) is zero.)

The non-vanishing result, Corollary 5.7, should be rephrased so as to say
that the invariant (19) of (Y, €) is a non-zero element of HF if the contact
structure is semi-fillable.

6 Potential applications

When the Seiberg-Witten equations were introduced as an alternative gauge
theory tool to replace the self-dual Yang-Mills equations exploited by Don-
aldson, an important link with topology was temporarily lost. The 3-
dimensional companions of Donaldson’s Yang-Mills invariants are, as we have
mentioned, the instanton Floer homology I(Y) introduced in [11], and the
Casson invariant A(Y) [1]. These play the roles of HF(Y,c) and SW (Y,¢)
from the monopole theory. Floer defined I(Y) for homology 3-spheres Y by
studying the gradient-flow of the SU(2) Chern-Simons functional, whose crit-
ical points correspond to flat SU(2) connections, or representations of 7 (Y)
in SU(2). There is also a version [,,(Y) for the case that Y is a homology
S! x S?, where the chain group is built from flat SO(3) connections with
non-zero Stiefel-Whitney class [3]. Defining I(Y") in other situations presents
technical difficulties related to reducible connections.

In the definition of I(Y'), there is an immediate connection with the fun-
damental group. Thus, for example, Floer’s instanton homology vanishes if
Y is a homotopy sphere (Floer’s definition did not use the trivial represen-
tation of 7). No such statement can be made very easily for the monopole
Floer homology (our tentatively defined HF (Y ¢)).

On the other hand, in the Seiberg-Witten version, we have a handle on
anon-vanishing result: irreducible 3-manifolds with b; # 0 admit taut folia-
tions by Gabai’s results, and we have argued that a foliation forces HF (Y, )
to be non-zero. If one could establish even a weak relationship between the
monopole HF (Y, c) and instanton Floer homology, then there would be a
useful payoff.
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Surgery and property ‘P’

To elaborate on the last remark, the application we have in mind is in line
with Casson’s application of the invariant A(Y") to the question of ‘property
P’. This is the question of whether one can make a simply connected 3-
manifold by non-trivial surgery on a non-trivial knot K. (If one cannot, then
K is said to have property P.) Work of Gordon an Luecke [18] showed that
one cannot make S3 this way. So if one did manufacture a homotopy-sphere
by surgery on a knot, it would be a fake 3-sphere (a counterexample to the
Poincaré conjecture).

- The basic example to consider is +1 surgery, in which a neighborhood
N(K) is removed and sewn back in so that the meridian on N(K) is attached
to a curve in the class of the meridian plus longitude. Let us call this manifold
Y1, or Y1 (K). We also have the manifold Y obtained by zero-surgery, which is
a homology S* x S2. To prove property P, we would like to know that Y] has
non-trivial fundamental group, and to this end we could seek to show that
m1(Y1) had non-trivial representations in SU(2), or that I(Y}) is non-zero.

There is a powerful tool at hand, in the following theorem of Floer. (This
is a special case of his ‘exact triangle’ in instanton homology [3]).

Theorem 6.1 (Floer, [3]). In the above situation the instanton Floer ho-
mology I(Y1) of the homology sphere Y is isomorphic to the instanton Floer
homology I,(Y,) of the homology S x S% obtained by zero-surgery. O

In this form, the theorem is already hard to prove. But the special case
we are interested is actually very easy to prove:

Corollary 6.2. If the instanton Floer homology I,,(Yy) is non-trivial, then
Y] is not a homotopy 3-sphere. O

(In fact, if Y; is a homotopy 3-sphere, then one can easily use the holonomy

perturbations introduced by Floer to deform the equations F4 = 0 on Yj so

that they have no solutions for SO(3) connections A on Y with non-zero w,.)
Suppose now that we could prove:

Conjecture 6.3. If the monopole Floer homology HF (Y, ¢) of a homology
St x S? is non-trivial for some Spin° structure with c;(c) not torsion, then
the instanton Floer homology I,(Y) is non-trivial also.

Then we would be home, at least in the case that the genus of K is 2 or
more. Indeed, we have learned from the foliation theory that in this case, Y}
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admits a smooth, taut foliation having a genus 2 surface has a compact leaf.
The euler class of this foliation is non-trivial, and modulo the verification
of the definitions, the monopole Floer homology of Y; for the corresponding
Spin® structure has been shown to be non-zero. The conjecture would imply
that instanton Floer homology is non-trivial also, and it would follow that Y;
was not a homotopy sphere, by Floer’s result. (In the case of genus 1, there
are two additional difficulties. The first is that Gabai’s foliation may not be
smooth. The second is that the relevant Spin® structure on Yj has ¢; = 0, so
one must treat reducibles with respect. The second point is moot, perhaps,
because one would need to consider all Spin® structures together, most likely,
to prove the conjecture above.)

Note that, without using any connection between the instanton and
monopole Floer homologies, one could try and reprove the theorem of Gor-
don and Luecke by establishing an exact triangle for the monopole Floer
homology.

The Pidstrigatch- Tyurin program

Conjecture 6.3 does not stand unsupported. Indeed, there is evidence for a
closer relationship. In introducing the monopole invariants of 4-manifolds,
Witten [42] conjectured a very specific relationship between the monopole
invariants and the older instanton invariants, for a large class of 4-manifolds.
(This conjecture is extended in [32].) A mathematical approach to prov-
ing Witten’s conjecture was proposed by Pidstrigatch and Tyurin [33], and
although their program does raise some technical challenges at the time of
writing, it seems most likely that a proof will be along the lines suggested.
There is work in this direction in [9]. The proposed method is to study a
larger moduli space of solutions to the PU(2) monopole equations. These
equations have the same shape as the equations (13) but involve a non-abelian
connection A. The equations contain both the instanton equations and the
usual monopole equations.

If one pursues this line in three dimensions instead of four, one can arrive
at an elegant proof that the 3-manifold invariants we have called SW (Y ¢)
are related to the ‘odd’ Casson invariant. For example, if Y is obtained by
zero surgery on a knot K, there is a Casson-type invariant A(Y) which is
the euler characteristic of the instanton Floer homology I,,(Y'), and without
encountering any of the technical difficulties of the 4-dimensional case, one
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can prove that
AY) =) SW(Y,0).

Of course, one can verify this relationship externally, because both sides can
be reduced to the Alexander invariant. (In the case of the left-hand side,
this is due to Casson.) But the ‘internal’ proof using the PU(2) equations
seems to show that the relationship extends beyond the euler characteristics.
It may well be that one can relate the Floer homologies using this approach.

7 Surfaces in 4-manifolds

Where the theory succeeds

We turn now to the question of representing a 2-dimensional homology class o
in a smooth, oriented 4-manifold X by a smoothly embedded, oriented surface
¥ of minimal complexity. There are many statements here that can be made
to look very much like their 3-manifold counterparts, particularly when ¥
has trivial normal bundle. (This condition implies that the self-intersection
number o - ¢ is zero, but the converse is false, because we still allow that %
may be disconnected.) For example, if o - o is zero, then PD[o] € H?*(X) is
the pull-back of the generator of H2(S?) by some map f: X — S?, and one
can find a representative surface ¥ as the inverse image of a regular value of
f, so establishing that representative surface exists. Every embedded surface
with trivial normal bundle arises this way, just as a surface in a 3-manifold
Y arises from a map to S'.

We have already introduced the 4-dimensional monopole equations and
the basic classes, at least in the case that b*(X) > 1. For surfaces with
trivial normal bundle, the basic classes provide a lower bound for the genus,
just as in dimension three (compare Proposition 3.1):

Proposition 7.1. Let X be a smooth, oriented, closed 4-manifold with
bT(X) > 1, let a be a basic class and ¥ an embedded surface representing a
class o. Suppose that the normal bundle of ¥ is trivial. Then

x-(Z) 2 (a,0).

Proof. Being a basic class means for « that there is a Spin® structure ¢ with
c1(¢c) = a for which the invariant SW (X, c) is non-zero. All we need, however,
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is that the moduli space M, of solutions to the equations (13) is non-empty,
for every choice of Riemannian metric on X. Just as in the 3-dimensional
case (see (5)), if (A, @) is a solution for a given metric, then the Weitzenbock

formula leads to
/|<I>|4dvol§/ s%dvol.
X X

In dimension 4, the first of the two Seiberg-Witten equations leads to the
relationship |F'7|> = (1/8)|®|*, so there is a relationship between the L
norms,

£ < lsl*/8. (20)

Now let ||a|| stand for the L? norm of the harmonic representative, as before.
We have

lefl < (1/2m) || F4ll

On the other hand, alpha is the orthogonal sum of its self-dual and anti-self
dual parts, and

llo*(1? = lle™lI* = (e = @) [X],
so from the inequality (20) we obtain the bound
ledlli < Wsnlli/ (47)* + (1/2)e*[X],

in which we have once again adjusted our notation to indicate the dependence
on a Riemannian metric h. We can write

lladl|n < llsulln/(47) + C, (21)

for a constant C' which is independent of A, to reach an inequality that we
can compare with (7).

Now let ¥ be an embedded surface representing o, as in the statement.
We may assume that ¥ is connected, because the general case follows by
linearity. Since o2 is zero, the normal bundle of ¥ is trivial, and we can find
embedded in X a product region [0,1] x S! x ¥, as a collar on the boundary
of a tubular neighborhood of ¥. Let h; be a metric on X whose restriction to
this region is a product metric, with the metric on the ¥ factor being of unit
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area and constant non-negative scalar curvature. (We can suppose ¥ is not a
sphere.) Then we can do just what we did in dimension three (see Lemma 9).
Let h, be a metric on X which contains a product region [0,7] x S* x ¥ and
coincides with h; outside this region. Exactly as before, we can calculate for
h = hra

Ishlln = anri/?(2g — 2) + O(1)
as r — oo, while
llatfln > r%{e, [Z]).

These two estimates are inconsistent with the inequality (21), unless 29 —2 >
(a,0). O

One can pass from the proposition above to a statement about surfaces
with non-negative normal bundle (that is, surfaces ¥ such that each compo-
nent has non-negative self-intersection number):

Proposition 7.2. Let X be a smooth, oriented, closed 4-manifold with
bt(X) > 1, let a be a basic class and ¥ an embedded surface representing a
class o. Suppose that the normal bundle of ¥ is non-negative. Then

x-(Z) >0 0+ (a,0).

Proof. The statement can be deduced from the case of trivial normal bundle
by using the ‘blow-up formula’ for the 4-dimensional monopole invariants. It
is enough once more to consider the case that ¥ is connected. Let k =0 -0
and et Xy = X;‘;Ek(C—]P’2 be the connected sum of X and k copies of CP? with
reversed orientation. Put

ar =a+e + -+ e, (22)

where e; is the generator of H? in the ith copy of CP>. The blow-up formula
([19], Proposition 2) says that o4 is a basic class on X if a is a basic class
on X, because the monopole invariants of corresponding Spin® structures are
equal. Let & be the embedded surface in X formed by an internal connected
sum of ¥ with the spheres representing the generators of homology in the
CP’ summands. (We orient these spheres so that the class e; evaluates as
+1 on the ith sphere, and we form the sum respecting these orientations.)
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The surface ¥ has trivial normal bundle and the same genus as £. So the
previous proposition gives

X-(Z) = x-(£)
> (ay, [%])
=k+ (a,o0)
=00+ (a,0),

which is the desired result. O

Remarks. In some applications of this proposition, a proof of the blow-up
formula is not needed. One may know that « is a basic class by an application
of Taubes’ result, Theorem 15, when « arises as K, for some symplectic
form, in which case one knows that a4 is a basic class also, because there is
a symplectic structure on X, with this class as its canonical class. Without
using the blow-up formula, one can therefore deduce

x-(X) > 0.0+ (K,,o0). (23)

This inequality is an equality for symplectic submanifolds, or smooth al-
gebraic curves in a complex surface, where it is usually referred to as the
adjunction formula. The inequality in the proposition is often called the
‘adjunction inequality’.

Unlike the 3-dimensional version of this statement, which led only to such
basic facts as the lower bound for the genus of a knot in terms of the degree
of its Alexander polynomial, the 4-dimensional version provides information
which we can reach in no other way at present. Even with the 4-torus, where
the Spin® structure ¢ with ¢; = 0 has a monopole invariant SW(T*¢) = 1,
we learn that embedded surfaces in T* satisfy

Xx-(Z) > |Z- X,

which is a significant result. For example, it leads to a proof of Milnor’s
conjecture [31] on the unknotting number of torus knots [22]. (The absolute
value appears on the right-hand side because T* looks the same with either
orientation.) By contrast, the 3-dimensional result, applied to the 3-torus, is
entirely contentless.

The result for T above is sharp: every class o can be represented by a
surface of complexity |o-o|. More generally, if X carries a symplectic form w,
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then Proposition 7.2 is sharp for at least a significant range of classes o, by
Donaldson’s theorem [7] on the existence of symplectic submanifolds. That
is, since non-degeneracy of a closed 2-form is an open condition, any rational
cohomology class Q' € H?(X;Q) sufficiently close to the class Q = [w] in
H?(X;R) is represented by a symplectic form ', and the theorem of [7]
says that for some large k£ (depending on Q') an integer class PD(kQY) is
represented by a symplectic submanifold ¥, for which the inequality (23) is
inevitably an equality.

Where the theory hesitates

One should not, however, expect too much of Proposition 7.2. Symplectic
4-manifolds are, perhaps, close cousins of the 3-manifolds Y which fiber over
the circle, such as manifolds obtained by zero-surgery on a fibered knot in
S3. For these knots, the degree of the Alexander polynomial and the genus
of the knot are equal, and the lower bounds coming from the basic classes are
sharp. For general 3-manifolds, the basic classes (as opposed to the monopole
classes) give us information which is rather less than sharp, as explained in
section 3, and the 4-dimensional situation is probably no better. In dimension
three, we recovered much better information by looking at monopole classes
detected using the stretching arguments from one dimension higher, or what
is essentially the same, the non-vanishing of Floer homology. In dimension
four, we have no analogous tool: if we defined a ‘monopole class’ to be a class
c1(c¢) for a Spin® structure ¢ with the property that the equations had solutions
for all metrics, as we did in dimension three, then we would have (at present)
no tools for detecting monopole classes, other than the observation that basic
classes are monopole classes. We have no Floer homology in dimension four.

The relationship between dimensions three and four is clarified somewhat
by focusing on 4-manifolds of the form X = S! x Y, where Y is a closed
oriented 3-manifold. If ¢ is a Spin® structure on X which is pulled back from
Y, then it is quite easy to see that the monopole invariants are related:

SW(X,c)=SW(Y,¢).

Note that, as long as ¢;(c) is non-zero, the invariant SW (X, c) is well-defined
according to our exposition above, because even if b*(X) = 1 (which occurs
when b;(Y) = 1), the class ¢;(c) has square zero.

Thus if Y is the manifold Y (K') obtained by zero-surgery on a knot K,
then the invariants SW (X, ¢) are determined by the Alexander polynomial
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of K, through a formula like (12). If K has Alexander polynomial 1, like
the unknot, then the monopole invariants of X are all zero. A similar ex-
ample with b > 1 is the 4-manifold S' x Y, where Y, is the connected
sum of two copies of the same Y (K). For such 4-manifolds, the inequality of
Proposition 7.2 tells us nothing.

For the special manifolds S* x Y, this set-back is temporary. There is
actually a simple device which gives excellent information (sharp in many
cases) concerning the minimum genus problem, despite the failure of the
basic classes. It is a variant of the stretching argument.

Proposition 7.3. Let Y be an oriented 3-manifold embedded in a closed,
oriented 4-manifold Z with b*(Z) > 1, and suppose that the image of H,(Y)
in every component of Hi(Z \'Y) is zero. Let a be a basic class on Z, and
let o be the class on S X Y obtained by restricting a to Y and pulling back
to the product. Then if ¥ 1s an oriented embedded surface in the 4-manifold
S! xY, we have

x-(5) > 00+ (d,0),
where o is the class represented.

Remark. Thus o behaves like a basic class on X = S! x Y, even though the
monopole invariants of this 4-manifold may all be zero.

Proof. Let % be a surface in S! x Y. We may take it that £ is connected.
Cut open S' x Y to form the manifold with boundary [0, 1] x Y, and make
the cut transverse to X, so that we obtain a surface with boundary ;. Let
¥n C [0,n]xY be the surface in [0, n] XY obtained by concatenating n copies
of ¥;. Regard ¥, as a surface with boundary in Z, by embedding [0,n] X YV
as a collar neighborhood IV of Y. The boundary of ¥,,, as a subset of N in
Z, is independent of n, and by the hypothesis on H; it is the boundary of a
surface Sin Z \ N.

Consider now the closed surface S, C Z formed as the union of £, C N
and S C Z\ N. We apply the basic class inequality, Proposition 7.2, to the
surface S,, and we find that all three terms are linear in n:

(Sn) =nx- (E) + Cl

X—
Sn-Sn=n(c-0)+Cy
(a, Sp) = n{d, o) + Cs,
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for constants C; independent of n. Taking n sufficiently large, we deduce the
required inequality. O

As in section 5, one can apply the same device to the case that Z is not
closed but has a boundary carrying a contact structure ¢ compatible with
the orientation. If Z carries a symplectic structure compatible with &, then
K, is a basic class, and we have a revision of the above proposition:

Proposition 7.4. Let Z be a compact 4-manifold with boundary carrying
a contact structure & on the boundary, compatible with the boundary orien-
tation, and having a compatible symplectic form w. Let Y be a 3-manifold
embedded in Z and suppose that the image of H1(Y) in each component of
Z\Y is zeero. Let K' € H*(S! x Y) be obtained from the canonical class
K., as before. Then for any embedded surface T in S x Y, one has

x-(2) >0-0+ (K, o),
where o is the class represented. O
Using the theorem of Eliashberg and Thurston, we deduce:

Corollary 7.5. Let Y be a closed, oriented 3-manifold carrying a taut fo-
liation F by oriented leaves. Let e be the euler class of TF pulled back to
St x Y. Then for any embedded surface & in S* x Y representing a class o,
one has

X-(X) 200+ (e0),
where o 1is the class represented.

Proof. Using the result of Eliashberg and Thurston, Theorem 5.2, we con-
struct a 4-manifold Z = S! x Y with contact structure £ on the boundary
and a symplectic structure w, for which K, is e(¥). The only thing missing
is the condition on H;(Y). This can be put right by the Legendrian surgery
of [41]. That is, we choose Legendrian curves v; in the contact 3-manifold
0Z so as to represent a basis for the homology of each component. We can
then form a 4-manifold Z* by adding 2-handles to these curves. According
to [41], if the framing of the 2-handles is correctly chosen, the manifold Z*
has contact boundary and carries a compatible form w* extending w. In the
larger manifold Z*, the condition on H; is satisfied. g
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Corollary 7.6. Let ¥ be an embedded surface in S* x Y representing a class
o. Suppose that Y does not have a basis for Hy represented by tori. Then
the complexity of ¥ satisfies the lower bound

X-(Z) 2 |o - o]+ |m. (o),

in which the last term denotes the Thurston norm of the image of o under
the mapm:S'xY =Y.

Proof. Under the given hypotheses, the classes e(F) as F runs through
(smooth) taut foliations have the Thurston polytope B(Y) as their convex
hull, by Gabai’s result, Theorem 1.5. (Recall also that, even without the
hypothesis on tori, enough smooth foliations may well exist.) The absolute
value sign is appropriate because the 4-manifold has orientation-reversing
diffeomorphisms. O

The last corollary usually gives sharp information. To represent a class o
by a surface ¥ whose complexity is as given on the right-hand side, one can
proceed as follows. Write

0 =147 (0) + T,

where i, is the inclusion of {1} x ¥ and 7 has the form [S!] x [] for a closed
curve v in Y. Let S be a surface representing 7, (o) in Y, whose complexity
is as small as possible (so given by the Thurston norm). Try to arrange that
S meets 7y transversely and without excess intersection in Y, so that the
geometric and algebraic intersection numbers coincide. If this can be done,
then we form a singular surface

Y =i(S)u (S* x v)

representing o, and by smoothing the double points which occur at i(SNy) we
arrive at a smooth surface ¥ in the 4-manifold having the right complexity.
The condition on excess intersection easily fulfilled if S is connected or if S
is a union of parallel surfaces. Thus we can always apply this construction
in the case that b;(Y) is 1.

This corollary seems to draw more from the 3-dimensional world than it
does from gauge theory. Our proof has used the existence theorem for taut
foliations, as well as the contact perturbations of foliations obtained from [8].
And yet the gauge theory remains an essential part of the story.
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An interesting corollary of the lower bound above is to the question of
whether the 4-manifold S' x Y can be symplectic. As we said in the previous
subsection, if S! x Y is symplectic, then the lower bounds coming from basic
classes of S! x Y are sharp, at least for some homology classes o of positive
square. If Y is obtained by zero-surgery on a knot K, then this lower bound
is

X-(X) 2 00+ (2r —2)8-m(0),

where r is the degree of the symmetrized Alexander polynomial and 3 is
the generator of H;(Y). On the other hand, the corollary above gives the
potentially stronger lower bound

X-(2) > 00+ (29 —2)8-m(0),

where g is the genus of the knot, at least if ¢ is at least 2. (If g is 1, we need
to know that the taut foliation can be made smooth.)

Corollary 7.7. Let K be a knot of genus g and let r be the degree of its
symmetrized Alezander polynomial. Let'Y be obtained by zero-surgery on K.
If g is 1, suppose in addition that Y carries a smooth taut foliation. Then a
necessary condition for the ezistence of a symplectic structure on S' x Y is
that g and r are equal. O

Where the theory fails

An interesting construction of 4-manifolds was described recently by Fin-
tushel and Stern in [10]. The building brick of this construction is a 4-
manifold with boundary, of the form S x Y, where Y is a knot complement,
S$3\ N(K). The boundary of S* x Y is a 3-torus. Let X, be a K3 surface,
obtained for example by the Kummer construction which resolves the sixteen
double points in 7%/ + 1. Let T C X, be a standard 2-torus. In the Kummer
model, T might be the image of a standard 2-torus in T*. Let Xk be a
closed 4-manifold obtained by removing a neighborhood N(T') from X, and
replacing it with S! x Y, attaching the 3-torus boundaries. This should be
done in such a way as to leave the homology of Xk the same as that of Xj.
(Note that S x Y and N(T') look the same at the level of homology.)

In [10] it is shown that one can read off the Alexander polynomial of K
from the monopole invariants of Xg. In general, X has the same homotopy
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type as Xy, and if K has trivial Alexander polynomial we have no invariants
to distinguish the two manifolds. The question raised in [10] is whether X
can be diffeomorphic to X if K and K’ are different knots. In particular,
if K is a knot with trivial Alexander polynomial, is X diffeomorphic to the
K3 surface X7

It is tempting to guess that the genus of K is visible in Xg. For example,
let S C X, be a sphere meeting T orthogonally in one point and having
normal bundle of degree 2. (One can see such a sphere in the Kummer
construction.) The cohomology class o carried by S in X; corresponds to a
class ¢’ in Xx. What is the smallest possible genus for a representative of
0'? The simplest surface that is easily visible is the surface ¥ obtained from
S by removing the disk in which S meets N(T') and replacing the disk with
a spanning surface of the knot in S* x Y. This representative has

x-(£) =29 -2,
where g is the genus of the knot. The basic classes give us the lower bound
X—(E’) 2 2r — 27

for any other surface ¥’ representing this class, but it seems most likely that
Y is already best possible.

Note that if one carries out this construction using simply the 4-torus for
Xp rather than K3, then one has 4-manifolds X with an S* factor, and the
results of the previous subsection can be applied. In particular, the genus
of the knot is reflected in the minimum genus of embedded surfaces in the
4-manifold, even if it is not reflected in the monopole invariants. This lends
some support to the conjecture that 2g — 2 cannot be bettered in the K3
examples, but we seem to have no tools.

Unanswered questions

There are many more questions than answers concerning the minimum genus
problem in dimension 4. We know very little about classes of negative square
in algebraic surfaces, for example. There are manifolds such as CP?#CP?,
where the gauge theory invariants have told us very little.

To illustrate the lack of present understanding in another direction, con-
sider the following question.
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%%\Z\/\
(9]

Figure 4: The pretzel knot (5, —3,5).

Question 7.8. Let 7 : X — X be a finite covering of a closed 4-manifold
X. If ¥ is a surface representing the smallest possible complexity for a class
o € Hy(X;Z), does its inverse image ¥ = 771(X) have least complexity
in its homology class? Is there any large class of 4-manifolds (not simply
connected) for which the answer is yes?

This question was posed by Thurston in dimension 3, and answered by
Gabai in [13]: since one can lift a taut foliation to a cover, Theorem 1.5 and
Corollary 1.3 give an affirmative answer in this case, at least if the manifold
is irreducible. There is no comparable tool in dimension 4, which is why the
question arises. In a similar spirit, one can ask about branched covers. For
example:

Question 7.9. Let 7 : X — X be a branched double covering of a closed
4-manifold X, branched along a surface B C X. Let B be its inverse image.
If B has least complexity in its homology class, is the same true of B? Is
there a class of 4-manifolds X for which the answer is yes?

One can also ask whether xmi, is linear on the ray generated by a class o in
the case that the normal bundle of a representative is trivial:

Question 7.10. Let ¥ be a representative of least complexity for the class
0 € Hy(X;Z). Suppose that the normal bundle of ¥ is trivial, and let ¥, be
the surface consisting of n parallel copies of ¥ in the tubular neighborhood.
Is ¥, a representative of least complexity for the class no? Is there a class
of 4-manifolds X for which the answer is yes?
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It is easy to invent other questions whose answers seem out of reach. The
list of 4-manifolds with b, > 0 for which the function xmin(o) is known is
very short. There is a slightly longer list if one only asks about surfaces with
non-negative normal bundle.

The following question is of a slightly different nature, but arises naturally
from the discussion above.

Question 7.11. Let Y be obtained by zero-surgery on a knot K in S3. If the
4-manifold S! x Y carries a symplectic structure, is the knot K necessarily
fibered?

That K be a fibered knot is a sufficient condition for S! x Y to be symplectic.
This is an observation of Thurston’s. On the other hand, we have seen that
a necessary condition is that the genus of K coincide with the degree of
its symmetrized Alexander polynomial, at least if the genus is 2 or more.
Another necessary condition is that the Alexander polynomial have leading
coefficient 1 (see [10]). The pretzel knot shown in Figure 4 satisfies both of
these necessary conditions (though with genus 1), but is not a fibered knot
[5].

One might speculate that there is a role for codimension-two foliations
of 4-manifolds, somewhat akin to the role of codimension-one foliations of
3-manifolds, though perhaps without the powerful existence theorem. Let F
be an oriented foliation of a closed, oriented 4-manifold X by 2-dimensional
leaves. Let us say that F is taut if there is closed 2-form w which is positive on
the leaves. Let x(F) be the ‘canonical class’ of the almost complex structure
on X which F determines. That is, x is minus the sum of the euler classes
of the tangential and normal 2-plane fields. If ¥ is a compact leaf of F, its
genus is determined by an adjunction formula,

2g-2=0-0+ (k(F),o),
where o is the class carried in homology.

Question 7.12. Is it true that a compact leaf of a taut foliation F of this
sort is always genus-mimizing? More generally, is it possible that embedded
surfaces in such a foliated 4-manifold satisfy an adjunction inequality, which
bounds there genus from below by a formula such as

X—(E) 200+ <l€(f),0>,

at least in the case that (w, o) is positive?
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(Some extra hypothesis of the sort indicated is needed to deal with the case
that x(F) is negative, as the example of S? x S? shows.) Note that S? x ¥
has codimension-two foliations arising from the foliations of Y, so the above
question includes Corollary 7.5 as a special case. Another special case arises
when the foliation is a fibration. The quesion then has an affirmative answer,
because the fibration carries a symplectic form.

In the version given above, the question may not be very useful, because
of a lack of examples of foliations. The situation looks more interesting if one
allows the foliation to have singularities of the sort that arise in holomorphic
foliations (taking due account of orientations). What we have in mind is
the sort of foliation F that one obtains in a complex surface when TF is
defined by the vanishing of a holomorphic 1-form, or more generally a 1-form
with values in some holomorphic line bundle. One could extend the previous
question to singular foliations based on this model.

In this form, the question encompasses the question of mimimum genus
in the Fintushel-Stern fake K3 surfaces (the spaces we called Xg earlier).
The 4-manifolds X carry singular codimension-two foliations F formed by
combining a holomorphic foliation of K3 with Gabai’s foliation of the knot
comlement S3\ K (extended trivially to the product with the circle). The
canonical class of this foliation F is given by 2¢ P.D.[T], where [T} is the class
of the torus on which the modification was performed and g is the genus of
the knot. Thus an affirmative answer to the last question would imply that
the genus of K is visible in X, as we speculated earlier. Note that the
manifolds Xk provide interesting examples of taut, singular foliations on a
manifold admitting no symplectic structure. (It is pointed out in [10] that
Xk is not symplectic if the Alexander polynomial of K is not monic.)
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