QUASI-MINIMAL SEMI-EUCLIDEAN
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§0

INTRODUCTION

Thurston’s hyperbolization conjecture [Th] asserts that a closed, atoroidal, irre-
ducible 3-manifold with infinite fundamental group has a metric of constant negative
curvature. A more modest form of the conjecture asks whether the fundamental
group of such a manifold is negatively curved in the sense of Gromov [Gr]. (E.g. see
[Bu}, {Sch], [Mol], [MO] or [Ka].) A main result of this paper, the Ubiquity Theo-
rem, provides a technique for addressing the group negative curvature conjecture.
We use it in [GK] to show that an atoroidal 3-manifold with a genuine essential
lamination has group negative curvature. (These manifolds appear to form a vast
subset among the irreducible atoroidal 3-manifolds with infinite 7,. See the survey
(G4].)
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In this paper the ubiquity theorem is used to derive new information about quasi
least area semi-Euclidean laminations in 3-manifolds.

Gromov stated 6.8.S [Gr] that if M is a compact manifold or finite simplicial
complex whose fundamental group is nonnegatively curved, then there is a non
constant least area conformal map f : R2 — M. Mosher and Oertel [MO] provided
the first detailed proof (of a sharper version) in the context of finite 2-complexes.
Recently Kleiner [K1] showed that if M is a closed Riemannian n-manifold such that
w1 (M) is non negatively curved, then there exists a branched Lipschitz conformal
least area immersion f : R — M. If n = 3, then f is an immersion, though the
induced metric on R? may be incomplete.

In §1 we state basic definitions regarding immersed laminations and branched
surfaces in 3-manifolds. Then we outline and discuss the proof of the main technical
result of [MO] in the 3-manifold context. Their proof makes essential use of a
theorem of Ghys and the Plante argument for immersed surfaces. In §2 we show

how to extend [MO] to obtain our first main result.

Theorem 2.1. If M is a closed non negatively curved 3-manifold, then there exists
an immersed strongly least area, Euler characteristic 0, measured semi-Euclidean

lamination X. The induced metric on each leaf is complete.

Here M has a triangulation 7, and the various measurements of length and area
are computed simplically. Strongly least area [MO] means that if L is a leaf and D is
an embedded disc in the universal covering of L, then the induced mapi: D — M
is a least area map. Semi-Fuclidean means that the set of leaves, conformally
equivalent to the Euclidean plane, are of full measure and dense in .

By replacing immersed by branched immersed in the above statement, we obtain
the exact translation of the main result of [MO] to 3-manifolds. The content of §2
is how to eliminate the branched points.

Our second main result states that if k£ is a smooth simple closed curve in the
irreducible group nonnegatively curved 3-manifold M, then either k lies in a 3-cell,

or M is toroidal or among least area discs D, of small isoperimetric ratio, area(D,)
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is approximately the geometric intersection number of D and k. (By definition M
is toroidal if and only if Z @ Z C =1 (M). By [CJ], [G2] the topology of closed
irreducible toroidal manifolds is completely understood.) More precisely we have

the following equivalent results.

Theorem 5.1. Let k be a smooth simple closed curve in the closed irreducible
Riemannian 3-manifold M. Then either M is toroidal or k is contained in a 3-cell
or there exists a constant C > 0 such that if D is a least area disc with DNk = (),

then area(D) < C(wr(8D, k) + length(8D)).

Ubiquity Theorem 5.2. Let k ¢ B® be a smooth simple closed curve in the
closed, atoroidal, irreducible 8-manifold M. There exists constants K and L such
that if D is a least area disc with 3D Nk = O and length(dD)/area(D) < L, then
wr(0D, k)/area(D) > K.

If k£ is a simple closed curve in M, and a is a homotopically trivial curve in M
disjoint from k, then we define the wrapping number wr(a, k) to be the minimal

geometric intersection number between k£ and all immersed discs D, spanning a.

Corollary 5.3. Let A be a quasi least area semi-Euclidean lamination in the closed
atoroidal irreducible 3-manifold M. If k C M — X is a smooth simple closed curve,

then k lies in a 3-cell.

Chapter §3 explains how to use cellulations of hyperbolic 3-manifolds by ideal
polyhedra to obtain PL versions of various results known in the Riemannian world.
In §4 we prove the Ubiquity Theorem in the PL category. Chapter §5 is devoted to
proving the Ubiquity Theorem in the smooth category.

In §6 we give a very brief survey of progress on the Thurston geometrization
conjecture.

Since the unresolved parts of Thurston’s conjecture only concern orientable 3-

manifolds, we will assume that all 3-manifolds in this paper are orientable.

Readers Aduvisory. If you are interested in Ubiquity theorem, then skip directly to

84 or §5 and refer back as needed. Except for minor references to earlier stated
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definitions or figures, §3-6 are completely independent from the earlier chapters. To
get right to the heart of the matter in the PL category, read 4.1-4.4 and then read
the proof of the case, M — k is hyperbolic. To read §5 one need only refer back to

three self contained arguments of §4.

I would like to thank Igor Rivin for several key conversations about hyperbolic

cellulations.

81

IMMERSED BRANCHED SURFACES AND LAMINATIONS

Definition 1.1. A generic immersed branched surface B = (B*,¢) in a 3-manifold
M is a finite 2-complex B* which is mapped via ¢ into M as follows. Each z € B*
has a neighborhood U whose image appears as in Figures 1.1 a-d. Furthermore if
¢(U) appears as in Figures 1.1 a-c, then ¢|U is an embedding. (Figures 1.1 a-c
are the standard local models of a generic embedded branched surface [FO].) If
¢(U) appears as in Figure 1.1 d) then U is homeomorphic to the 2-complex shown
in Figure 1.1e) and ¢|U fails to be an immersion only at z. Furthermore ¢(U)
has an arc of double points which starts at #(z). The model shown in Figure 1.1
d) is the crossed maw discovered by Joe Christy [Ch]. The singularity is similar
to the undrawable singularity of Poenaru [Po]. We assume that the various self
intersections of ¢ are transverse and generic. Define the branch locus v(B) of B
to be the set of nonmanifold points of B*, define a sector to be a component of
B* —~(B), and define 9B to be the union of free edges of B*. We will often abuse
notation by referring to the branch locus and boundary of B as objects in M. We

will also refer to generic immersed branched surfaces simply as branched surfaces.



QUASI-MINIMAL SEMI-EUCLIDEAN LAMINATIONS IN 3-MANIFOLDS 199

The Crossed Maw
inside M

d)

e)

Figure 1.1

Associated to the branched surface B we define the normal neighborhood N'(B) =
(N(B*), ) as follows. If B* is a locally finite union of embedded discs D;, then
define N (B*) = UD; x [—1,1] modulo the equivalence relation, where = x [-1,1] is
identified with y x [—1,disjoint from OE1], if z = y € B*. The identification is either
the identity or t = —t depending on whether or not the local orientations on D; and
D; agree when viewed inside of M. The singular immersion ¢ : B* — M induces a
singular immersion ¢ : N(B*) = M. The mapping will be non immersive exactly
along ['(B) the normal branched locus which we define to be 77 1(v(B)) where
7 N(B*) = B* denotes the natural projection. See Figure 1.2. We identify B*
with the 0-section of N (B*). The notation A (B) should not be confused with the

similar notation N(B) for fibred neighborhood of an embedded branched surface.

/ ®

AN

B*

N\
T

o(n (BY)

N (B*)=B*x I The shaded region is the double point locus

2-dimensional version of the normal neighborhood

Figure 1.2

We say that the branched surface B; is obtained from B by splitting if there is
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a lift of ¢, : By — M to an immersion B} to A(B*) such that B7 is transverse to
the I-fibres, By intersects each I-factor nontrivally, and finally 8B} C n~1(8B*).

Conversely we say that B is obtained from B; by squeezing.

Remark 1.2. Figure 1.3a shows a splitting one dimension lower. Figure 1.3b de-
scribes a splitting in a 3-manifolds. Note that one crossed maw is created in Figure

1.3b.

Splitting
] =
b)
Figure 1.3

Lemma 1.3. If B, is obtained from B by splitting, then By, has a normal
neighborhood N(Bp) which lifts to a singular immersion N'(B}) C N(B*)
such that each I-fibre of N(B}) is properly contained in the associated
I-fibre of N(B*). O

Definition 1.4. Suppose that we are given a Riemannian metric on B. If C > 0,
then we define a C-splitting to be a splitting B — B; such that if i : N(B}) —
N(B*) is the associated singular immersion then there does not exist paths a, 3 :
[0,t+ €] = N (B7) such that a(0), 3(0) lie in the same I-fibre of N'(B7), for all s €
[0,1],i(c(s)),2(B(s)) lie in the same I-fibre of N'(B*), and for s > t;i(a(s)),(8(s))
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lie in distinct I-fibres of N (B*). Finally length 7(i(a([0,¢]))) < C. Intuitively this

means that the branched locus of B has been blasted open at least distance C.

Definition 1.5. By a 2-dimensional abstract lamination p we mean a topological
space covered by charts of the form U; = T; x R?, where T} is a closed subset
of [0,1]. Furthermore if U; N U; # 0, then the coordinate transformations are of
the form (z,y) = (¥(z),d(z,y)) where z € T;,y € R2. This is a specialization
of a more general definition given by [Ca]. There Alberto Candel initiates a deep
investigation of the differential geometry of 2-dimensional abstract laminations.
Throughout this paper we will refer to abstract laminations simply as lamina-
tions. We say that the lamination y is immersed in M?3 if there is a continuous map
J : = M3 whose restriction to each leaf of p is a smooth or PL immersion. We
say that u is carried by the branched surface B if the mapping J factors through
an immersion into N (B*) such that the leaves of yu are transverse to I-fibres of

N(B*). If i intersects each I-fibre of N'(B*), then u is fully carried by B.

Definition 1.6. If A is carried by B, then By is said to be a A-splitting of B if there

exists a lift of A to A(B*) which after normal homotopy lifts to N (B7).

Definition 1.7. Generalizing the similar notion of [GO] we say that an infinite se-
quence of branched surfaces By, Ba,- - is a full splitting if there exists C' > 0 such
that for each 7 there exists a j(i) such that the splitting B; — B, is a C-splitting.

If B is the first term of a full splitting, then we say that B is fully splittable.

The following result is the direct analogue of Lemma 4.3 [GO] to immersed

laminations. See [MO] for a version for laminations in finite 2-complexes.
Theorem 1.8. B is fully splittable if and only if B fully carries a lamination.

Proof. Suppose that B is fully splittable. After making the lengths of the I-fibres
of N(B;) go to 0 as 1 — oo, then the inverse limit of the B;’s is a lamination
fully carried by B. Conversely if B fully carries A, then X provides the clue to

constructing a full splitting. The resulting lamination A’ arising from the inverse
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limit construction will generally be distinct from A, however it will be normally

homotopic to a sublamination of A in N(B*). O

Definition 1.9. Let M be a triangulated 3-manifold, with triangulation 7. Let 7
denote its i-skeleton. Following Haken [Hal, if J is a 1-manifold, then we say that

f:J — 72 is normal if f is a PL-immersion transverse to 7!

and for each edge
e of the induced triangulation on J, f|e is an embedding which sends the vertices
of e to distinct 1-simplices of 7!. A normal 2-disc is a properly embedded 2-cell
D in a 3-simplex o such that D is a normal curve crossing a given 1-simplex of
o at most once. If S is a surface, then wesay f : S = M is normal or S is a

normal surface if f is a branched immersion transverse to 72

and each 2-cell 5 in
the induced cellulation x on S gets mapped to a normal disc. Thus, all branch
points occur in 7!. For v € k0 define s(v), the spinning of v, to be the number of
2-cells of k which meet v. If e is a 1-simplex of 7, define V'(e), the valence of e, to
be the number of 2-cells of 7 which meet e. Also for v € k%, define V(f(v)) to be
V(e) where f(v) € e. Thus s(v)/V(f(v)) measures the local branching of f at v.
We say that f has fake boundary branching if there exists v € kK° N 9S, such that f
is an immersion at v, but s(v)/V(f(v)) > 1.

Define S(D) = }_,cronsp S(a) to be the total spinning of D. Define A(D) =
S(D)/(|&° N 8D|) to be the average spinning of D.

Proposition 1.10. Let 7 be a triangulation of the 3-manifold M. There exists a
branched surface B, called the canonical normal branched surface, with the following
property. If A is any immersed lamination in M whose leaves are normal with
respect to T, then after normal homotopy A is carried by B. In particular the

conclusion holds if A is a compact normal surface, possibly with boundary.

Proof. Figure 1.4 shows how to construct a canonical branched surface B on a 3-
simplex o. It is symmetric under the symmetries of o and carries the isotopy class
of each normal disc in a unique way. Thus by putting this branched surface in
each 3-simplex of 7 one obtains the desired B. To start with, the three distinct

normal quadralaterals and the four distinct normal triangles in ¢ can be normally
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isotoped to appear in ¢ as follows. The quadralaterals pairwise intersect in arcs
whose endpoints lie on edges of ¢. Also if 7 is a triangle then 7N (U quads ) = .
Thus the union of the quadralaterals and triangles is isomorphic to the cone on
the 1-skeleton of an octahedron together with four faces of the octahedron which
pairwise meet in points. (I.e. one color of a two coloring of the octahedron.) See
Figure 1.4a. By squeezing the faces in the appropriate manner, we obtain the

desired branched surface B. See Figure 1.4b. O

Two views of the
seven normal discs

a) The shaded regions are the triangles. Attach
hemispheres to each circle to obtain the quadralerals.

d

Attach discs to each of Abc, Ade, Abe, Adc.

Smoothing very near corner A of the octahedron creates the branched surface B
b)

Figure 1.4
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Definition 1.11. A measured branched surface is a branched surface B together
with a non negative valued function m : {Sectors of B} — R such that if sec-
tors s1, sz merge into sector sz, then m(s;) + m(s2) = m(ss3). A measured lam-
ination is a lamination A together with a transverse measure m. I.e. for each
lamination chart T; x R? there is a Borel measure supported on T;. Furthermore
the transversal overlap functions are measure preserving. If the measured lam-
ination (A,m) is carried by the branched surface B, then m induces a measure
also called m on B. Define the Euler characteristic of a measured branched sur-
face as follows. If (B,m) is a branched surface, then put a cell structure on B
so that the branched locus is contained in the 1-skeleton. If ¢ is a vertex or edge,
define m(t) to be the maximal m value of a sector which contains ¢ and define
X(B,m) = 3 ertices M(Vi) = 2 edges M(€5) + 2 taces M(fk). This formula is invari-
ant under splitting and choice of cell structure. If (A,m) is a measured lamination,

carried by a branched surface (B, m), then define x(A,m) = x(B,m).

Definition 1.12. We need the notion of diagram [LS] which is a slight generalization
of a disc. (The first time reader is strongly advised to pretend that all diagrams are
discs.) A diagram D is a simply connected finite 2-complex that is embedded in the
plane. Define lo) to be the interior of D as a subset of R?. Define (D) = D — lo) and
Bd(D) to be a simplicial map of the circle to the curve which traverses around D.
See Figure 1.5. Call a diagram map f : D — M admissible if 8D has a triangulation
¢ such that f takes each 1-cell of ¢ to a normal arc and f is transverse to 72, except
at isolated points where f appears as in Figure 1.6. We say that g : S' — 72 extends
to the diagram G : D — M or G spans g, if GoBd(D) is normally homotopic to
g- If f: D - M is an admissible diagram map, then define length(8f) to be the

number of 1-cells in the induced triangulation on Bd(D).
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Figure 1.5

2-cell

Figure 1.6

Definition 1.13. If f : S - M is a normal surface, then define “area (f)”
= Y, s(v)/V(f(v:)), where {vy,-- ,Un} are the vertices in the induced cel-
lulation & on S. Thus if f : S — M is a normal immersion of a closed surface, then

area(f) is the number of vertices in &, i.e. the Haken weight. This definition of
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area takes into account local branching and is additive under union. In a similar
manner we can define area(f) where f : D — M is an admissible diagram map, or
if f is a map of a compact surface such that f|0D is normal and f is transverse to
72 except as in Figure 1.6. In these cases one uses the induced stratification on D
to compute s(v;) and sum over points of f~1(r!).

A diagram f : D — M, and in particular a normal map of a disc, is said to
be least area (resp. k-quasi least area) if area(D) < area(E) (resp. area(D) < k
area(E)) among all diagrams E spanning 0D.

A normal surface f : L — M is least area if the restriction of f to embedded discs
is a least area diagram. L is strongly least area [MO] if the induced immersion of
the universal covering of L into M is least area. In a similar manner define strongly
k-quasi least area for a normal map f : L — M. The leaves of a lamination are
quasi strongly least area if there exists a k such that for each leaf L, the induced

immersion of L into M is strongly k-quasi least area.

The following Proposition is a restatement of the main technical result of Mosher
and Oertel [MO]. We translate their work about PL maps of discs into finite 2-
complexes into a Proposition about maps of discs into 3-manifolds. We generalize

slightly to allow for k-quasi least area maps.

Proposition 1.14 [MO)]. Let Dy, Do, - be a sequence of immersed normal discs,
in the triangulated compact 3-manifold M, such that

lim; 00 length(dD;)/area(D;) — 0. If no D; has fake boundary branching, then
after passing to a subsequence, D; converges to a normal Euler characteristic-0
measured lamination X. If each of the discs is k-quasi least area, then each leaf of
A 1s strongly k-quasi least area. If each D; is least area, then A has no 2-sphere

leaves. Finally, the induced metric on each leaf is complete. [

Remarks. The proof of the existence of X in [MO] is greatly complicated by the fact
that it is happening in the setting of branched immersed discs into 2-complexes.
In the setting of immersed normal discs without fake boundary branching in 3-

manifolds the argument is considerably simpler. Mosher and Oertel do a competent
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job of explaining their proof of strong area minimization. Indeed, their argument
shows that if A had a 2-sphere leaf, then for i sufficiently large, some component
of D; would be a 2-sphere, which gives a contradiction. By construction each leaf
of X is complete. One should be aware that the discussion of diagrams is implicit,

though suppressed in [MO].

Idea of the proof of existence of A\. Each D; is carried by B, the canonical normal
branched surface. Fix a small C > 0. By the usual diagonal argument one passes
to a subsequence of the D;’s and finds a sequence B = By, By, - such that B; is
obtained from B;_; via C-splitting where each B; carries every D; for ¢« > j. (This
step would fail if there was uncontrolled fake boundary branching.) By counting
the number of times a given D; crosses a sector of Bj;, we obtain a function my;
on the sectors of B; which fails to be a transverse measure only because of the
boundary of D;. Let a;; be the maximal value of m;;. By considering m,;/a;; and
using the length area hypothesis, then by passing to a subsequence of the D,’s the
measures m;; /a;; converge to a fixed transverse measure m; on B;. By passing to
another subsequence we can assume that the D;’s induce a measure m, on B so
that as measured laminations (Bs,ms) is obtained by splitting (By,m1). Thus by
applying Theorem 1.8 to the sequence {(B;, m;)} we obtain a measured lamination
X'. Finally take A to be the sublamination which is the support of the measure m.
This type of argument, in tamer form, goes back to Plante [P1].

Since x(D;) = 1, the Euler characteristic of the approximate measure m;;/a;; on
Bj is approximately 1/a;; and m;;/a;; — my, it follows that the Euler characteristic

of X is zero.

Definition 1.15. Let A be a lamination with a piecewise Riemannian metric on each
leaf, which varies continuously in the transverse direction. (E.g. a metric induced
from a 3-manifold) We say X is conformally Euclidean if each leaf is conformally
equivalent to the Euclidean plane. A measured Riemannian lamination A is said to
be semi-Euclidean if the set of leaves conformally equivalent to the Euclidean plane

are of full measure and dense in A.
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The following result provides the crucial link between the topology of the mea-

sured laminations and their geometry.

Theorem (Ghys [Gh] 1.16). Let A be o measured 2-dimensional abstract Rie-
mannian lamination with out spherical leaves. x(\) = 0 if and only if almost all

leaves are conformally Fuclidean. O

Remark 1.17. This was proven originally for 2-dimensional foliations of manifolds,
but Candel [Ca] pointed out that the proof holds for 2-dimensional abstract Rie-

mannian laminations.

§2
IMMERSED LEAST AREA

SEMI-EUCLIDEAN LAMINATIONS

Theorem 2.1. If M is a closed non negatively curved aspherical 3-manifold, then
there exists an immersed strongly least area, Euler characteristic 0, measured semi-

Euclidean lamination \. The induced metric on each leaf is complete.

Remark 2.2. i) Here M has a triangulation 7, and the various measurements of
length and area are computed simplically.

ii) Theorem 2.1 should be viewed as a refinement of [MO]. Their work translated
to closed 3-manifolds yields the above theorem with immersed replace by branched

immersed.

Conjecture 2.3. If Ky is a non negatively curved 2-complez, then Ky is simple
homotopy equivalent to a 2-complexr K, such that K, supports an immersed least

area Euler characteristic zero semi-Euclidean lamination.
The following is the main result of this section.

Proposition 2.4. Let M be a closed 3-manifold with triangulation 7. w1 (M) is
not negatively curved if and only if there exists a sequence of least area normal
immersed discs f; : D; — M, such that length(0f;)/area(f;) — 0 and no f; has

fake boundary branching.
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Remark. This result is a serious technical advance beyond the obvious translation of
Gromov’s theorem, group negative curvature implies linear isoperimetric inequality,
to normal surfaces in 3-manifolds. The new wrinkle is that “no f; has fake boundary

branching.”
Proof of Proposition 2.4.

Step 0. 71 (M) is non negatively curved if and only if there exists a sequence of least

area normal immersed discs f; : D* — M, such that length(8f;)/area(f;) = 0.

Proof of Step 0. Since m;(72?) = m (M) is not negatively curved, there exists by
Gromov [Gr], [Bo] a sequence of simplicial maps of discs a; : 4; — 72 such that
length, (A;)/area,;(4;) — 0. Where length,(04;) (resp. area,(A;) is the number
of 1-simplices (resp. 2-simplices) in 0A4; (resp. in A;.) Furthermore arear(4;) is
minimal among all such simplicial maps of diagrams that span a;|0A;.

Its routine to translate this statement about 2-complexes to the statement of

Step 0. O

From now on we will assume that m;(M) is non negatively curved and that
Proposition 2.4 is false. Thus there exists a constant Ko < 1 such that if f :
D — M is least area normal immersed disc with no fake boundary branching, then
length(0f)/area(f) > Ko.

Here is how we derive a contradiction. As a result of Steps 0 and 1 we find
a sequence satisfying the conclusion of Proposition 2.4, except that each disc has
fake boundary branching at a single vertex. We then delete a small neighborhood
of the branching vertex and take (in Step 2) a weak limit of these trimmed discs
to obtain an immersed least area measured lamination A’ of Euler characteristic 0,
with boundary S x K, K a closed subset of [0,1]. By capping off the boundary
circles with discs, we obtain a measured lamination X of positive Euler characteristic

and derive a contradiction to the least area property of A.

Step 1. There exists a sequence of least area normal immersed discs f; : D? 5 M,

such that length(8f;)/area(f;) — 0. Furthermore all the fake boundary branching
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of f; occurs at a single vertex w; of D;.

Proof of Step 1. Let f; be as in Step 0 and let A; denote the cellulation induced on
D; by 7. If J is a subcomplex of a cell complex, then let St(J) denote the union of
all open cells whose closures intersect J and St(J) to denote the closure of St(J).

Define Dtrim = D, — St(8D;).

Claim 0. We can assume that Df”m is connected, that A; has no separating 1-cells,

and St(v) N D™ is nonempty and connected for each vertex v € dD;.

Proof of Claim 0. Consider a maximal collection of properly embedded arcs 4,
in D; such that 886; C A, interiors of the §;’s are pairwise disjoint and the §;’s
satisfy the following additional property. Either é; is a separating 1-cell of A;,
or 3]- C A; — A? and each component of D; — §; contains at least one open 2-
cell of A;. The number of such paths between two given vertices is uniformly
bounded by a constant K, since M is compact and D; is least area. Thus for
Euler characteristic reasons there are at most Kilength(8D;), such §,’s. If C}, is
a component of D; — Ud;, then let C,, be the smallest subcomplex of A; which
contains C},. Since Y, length(8C,) < 4K, (length(8D;)), some C, will have very
small isoperimetric ratio, if D; does. Finally C,, satisfies the conclusions of Claim
0. Thus by cutting down the D;’s we can assume that they satisfy the conclusions
of both Step 0 and Claim 0. O

We will supress cumbersome language by writing as if each DI"'™, as well as
other to be defined objects are discs rather than diagrams.

Ifv € A°NAD;, then define DY = D! #™USt(v). DY is an immersed disc with pos-
sible fake boundary branching only at v;. Since DI"™™ is an immersed least area disc
with no fake boundary branching, it follows that for all ¢4,

length(8Dir™) /area(D{™*™) > K.
Claim 1. The average spinning A(D;) — oo.

Proof. Otherwise A(D;) < A all i implies length(dD!"™)/area(Di"'™) <
28(D;)/(area(D;) — S(D;)) < 2Alength(0D;)/(area(D;) — Alength(8D;)) — 0 as
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1 —o0. O

We now define Fan;(v), which more or less is the smallest simply connected
subset of DY(v) which contains all simplices distance j from v. More precisely, if v
is a vertex of OD; then define inductively define Sti"*™(v) = St(St{"™(v)) where
Sttrim(y) = St(v), all these complexes being computed in D?. Let Fan;(v) be the

minimal simply connected subcomplex of DY which contains St;"im(v).

Claim 2. Given p, there exists B(p) independent of 4, such that for any v,,vs € dD;,
area(Sti™ (v,) N Stir™ (v,)) < B(p). (Recall Stir™(v,) C D}” and Sti™™(v,) C

D)

Proof. 1f z is a vertex in St&7*™(v,) N St&7*™ (v, ), then there exists a simplicial path
a, of length < 4p from v, to v; which passes through z. The union of two such paths
az,ay gives rise to a least area diagram D,y C D;, with 0D,y C a; Uay C Dgy
and hence length 8D, < 8p. Since M is compact, the number of such diagrams is
bounded and hence if z,y € St (v,) N Stir™(v,), then the distance between z
and y in D!™™ is uniformly bounded, independent of i. Since the valence of vertices

of D™ are uniformly bounded, independent of i, Claim 2 follows. O

Claim 3. Given p, there exists a constant K3 independent of ¢ such that at most

K;(length(0D;) distinct pairs (Fan,(v,), Fany(vs)) intersect.

Proof. If Fan,(v.)N Fan,(vs) # 0, then define a5 to be a shortest simplicial path
in 1-cells of D" U D}* from v, to vs. Thus ;s is embedded of length < 4p. By
rechoosing a,s we can assume that D;?”'m N a,s is connected, and using Claim 0
that either a,s N D™ # () or a,s; C 8D;. Furthermore, if s N D™ 2 (), then
after possibly deleting the first and/or last 1-cells of a4, the remainder is properly
embedded in D;. Also if a,; C 8D;, then length(a,s) < 4. Thus there are at most
4 length(8D;) peripheral a,;’s and at most 5N non peripheral a,,’s, where N is the
number of properly embedded a.,s’s. Since at most finitely many paths o5 can pass
through a given vertex of Di"*™ it follows that there exists a uniform bound Kj on

the number of a,s’s which can intersect a given a,, inside of Df-”m. The collection
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of properly embedded a,,’s can be partitioned into K2+1 subsets, with the property
that if a,s,ay, are distinct elements of a given subset, then fx,s N Guy = 0. For
Euler characteristic reasons each subset has at most length(0D;) — 1 elements, so

N < (K3 + 1)(length(8D;) — 1) and Claim 3 follows with K3 = 5(Ky+1) +4. O

Claim 4. For every k > 0, there is a N > 0 such that i > N implies that there

exists a v € A N D; and a j such that length(dFan;(v))/area(Fan;(v)) < 1/k.

Proof. Fix k and i. If v is a vertex in D;, then let J.;:Fan;(v) denote 8 Fan;(v) N
lo)f. If there exists j such that length(f..:Fan;(v)) < s(v)/2k, then
length(0Fan;(v))/area(Fan;(v)) < (s(v)/2k+ length( Fan;(v) N 3(D}Y)))/s(v) and
hence either length(0Fan;(v))/area(Fan;(v)) < 1/k would hold or
length(Stt7"™ (v) NODY) = length(Fan;(v)NODY) > s(v)/2k. In the latter case, for
all p > j, length(StL*™(v) N DY) > s(v)/2k.

Now choose p so that p/(6k) > 8/K,. Therefore for all vertices v of 8D;

i) length(OFan;(v))/area(Fan;(v)) < 1/k for some j < p or

i) length(St&7*™(v) N ODY) > s(v)/2k or

iii) area(Sts*™(v)) > 8s(v)/ Ko.

Indeed if neither i) nor ii) held for v, then for all j < p, length(8.,¢Fan;(v)) >
s(v)/2k and hence area(Sty"™(v)) > (1/3) 3F_, length(8eFan;(v)) > ps(v)/6k >
8s(v)/Ko. This argument was inspired by [Pa].

Let vy, -, v, denote the vertices of 8D;. It follows that either

a) length(0Fan;(v,))/area(Fan;(vs)) < 1/k for some vertex v, of 8D; and some
Jj<por

b) oo, length(St&r*™(v,) N DY) > S(D;) /4k or

c) Yon—jarea(Sti™(v,)) > 45(D;)/Ko.

We show that b) does not hold if ¢ is sufficiently large. Claims 2,3 imply
that the sum of the pairwise area overlaps of the St;”m’s is bounded above by
B(p)Kslength(0D;). Possibility b) implies that the sum of the total pairwise area
overlaps of the St&'*™’s is > S(D;)/12k = A(D;)length(0D;)/12k. Now apply

Claim 1.
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We show that c) does not hold if ¢ is sufficiently large. If c) holds then we
obtain area(D!"™) > area((UfL, St ™ (v,))— St(8D;)) > 4S(D;)/Ko — B(p) K3
length(0D;) — S(D;) > 2S(Di)/Ko + S(D;) — B(p)Kslength(0D;) >
length(OD¥™) /Ko + (A(D;) — B(p)K3)length(0D;) > area(D!"™). By Claim
1, the latter inequality holds if i is sufficiently large.

Thus for fixed k, a) holds for ¢ sufficienlty large. O

Thus we can assume that each D; has fake branching except at the vertex w;.
Furthermore by the compactness of M we can assume that for all 4, f(w;) = w € 7*.
Let E; = D, — g‘t(vi) and h; = fi|(D; - g’t(wi)). Let v be the 1-simplex of 7 which
contains w and let a; = 8 St(w;) —8D;. Since h; has no branching or fake boundary
branching we can assume that for all 1, length(dh;)/area(h;) > Ko. Thus there
exists K7 > 0 so that for i sufficiently large length (o;)/area(E;) > Ky which in
particular implies that length(8F; — «;) /length(a;) — 0. Since the restriction of f;

to St(w;) is an immersion, h;(a;) is an embedded arc which spirals around 85t(7).

Step 2. Either Proposition 2.4 is true or there exists an immersed normal measured
lamination (A, m) by strongly least area leaves such that x(A) = 0. Furthermore 9\

is a lamination of the form S! x K C 85t(y) where K is compact and m(K) = 1.

Proof of Step 2. Let n; be the number of times h(a;) spirals around St(vy). Here
we abuse notation by letting St(y) denote the union of all 3-simplices of 7 which
nontrivially intersect % As in the proof of Proposition 1.14 normalize the various
weights associated to the discs E; by dividing by n;. Since area(D;)/n; is uniformly
bounded, thus we can apply the proof of Proposition 1.14 to let the normalized discs
E;/n; weakly converges to the measured lamination (A,m). Since O is the weak
limit of the sequence 8F;/n; and length(0F; — a;)/n; = 0, any weak limit of 0E; /n;
is a weak limit of h;(a;)/n;. Because each D; is immersed in M, o; is an embedded
spiral in 8St(7), so it follows that any weak limit is of the form S x K where K is

compact and m(K) =1. O
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Step 3. Obtain the contradiction.

Proof of Step 3. Let (X', m') be the immersed measured lamination obtained from
(X,m) by capping off each component of S! x K by a disc. x(A’) = 1 and so by
the Connes sphere theorem [Co] (or [MO1] for an elementary proof) there exists a

measured sublamination S of A’ consisting only of 2-spheres and x(S) > 1.

Since A is strongly area minimizing it has no 2-sphere leaves. The rest of the
argument follows implicitly from the proof of “strong area minimization of leaves
theorem” [MO)]. See the next paragraph for a hint. If some leaf S of S intersects
D? x K in a single disc F, then for i sufficiently large, there exists a subdisc H;
of D; which is normally parallel to S — 107‘, and 0H; C «;. This implies that D; is
a sphere. Now suppose that some leaf S of S intersects D? x K in exactly 2-discs
Fy,F;. Given n € N, and an essential arc 8 in the annulus 4 — }07’1 U 1%’2, then for
i sufficiently large, there exists a subdics H; of D; of the form [0, 1] x [0,n] where
(8[0,1]) x [0,n] C «, and H; naturally projects to A as part of an n-fold cyclic
cover. Finally each component of [0,1] x {0,n} naturally projects isomorphically
onto 3. Thus by coning off H; N a; one obtains a subdisc of D; whose boundary
length is constant, independent of i, but whose area — oo as ¢ = oco. This thereby
contradicts the least area property of D;. A similar argument works when SND? x K
has 7 > 2 components. However the cases r < 1, together with m(K) = 1, implies
x(S) = 1 and that the generic leaf of S— D% x K is an annulus thereby contradicting
the r = 2 argument.

Here is the idea behind what was used in the previous paragraph. Recall that we
had, by Proposition 1.14, a sequence of measured branched surfaces (B;,m;) which
converged to a measured lamination with measure m, and that A was the minimal
sublamination which supported m. Also j > i implies that (B;, m;) is obtained by
splitting the measured branched surface (B;, m;). Therefore if T is a compact leaf
of A, then for i sufficiently large T embeds in B;. If r = 1, then T is a disc so for
C sufficiently large, any C-splitting either isolates or destroys T. Since the latter

does not occur, T' must appear as an isolated sector in By, for j sufficiently large. If
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7 = 2, then T is an annulus and a holonomy argument shows that for 7 sufficiently
large near T' C B;, part of each Dj, j > 1, spirals around T'. The spiraling must get
arbitrarily large to obtain the annulus T in the limit. Our [0,1] x [0,n] is a piece

of that spiral. This completes the proof of Proposition 2.4 O

Proof of Theorem 2.1. Combine Propositions 2.4 and 1.14 with Theorem 1.16. O

83

HYPERBOLIC CELLULATIONS

Definition 3.1. Let 1 be a piecewise linear cellulation of the 3-manifold M. This
means that M is obtained by taking a disjoint union of 3-dimensional polyhedra
o1, - ,0n and pairwise identifying 2-dimensional faces in a PL fashion. Thus to
each cell C; of v, there is a piecewise linear mapping f; : C; = M which restricts to
an embedding on 6’1 We will usually suppress mentioning the f;’s and will denote
the i-skeleton of ¥ by .

As in the setting of triangulations define a normal curve (resp. local 1-embedding)
to be an immersion f : a@ — ¥? transverse to ¢!, where a is a compact 1-manifold
and for each l-simplex 7 in the induced triangulation on a, fla = f; o t, where
t :m — C; is an embedding into the 2-cell C; with 97 going to distinct edges (resp.
n not necessarily going to distinct edges.).

Similary define a normal disc to be a map f : D? — M, which factors through
an embedding into a 3-cell o of ¥, so that f|0D — M is normal and (the lift
into o) crosses a given edge of o at most once. If S is a surface, define a map
f:(5,08) = (M,4?) to be normal if f is transverse to 2, f|8S is a normal curve,
and for each 2-cell 7 in the induced cellulation on S, f|S is a normal disc. If S
is a surface, define a map f : (S,8S) = (M,%?) to be a-transverse to ¥? if f is
transverse to 2 except at isolated points of 3S where f appears as in Figure 1.6
and furthermore f|8S is a local y-embedding. We say that f : S — N is normal,
or S is a normal surface, if f is a branched immersion a-transverse to ¥?, inducing

a cellulation x on S such that each 2-cell of k gets mapped to a normal disc in 4.
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In particular f|8S is a normal curve.

In order to suppress notation, we will often view S as lyingin M. E.g. if Y is a
submanifold of M we may refer to SNY rather than f~1(Y).

If a is a curve in 2 transverse to ¢!, then define length(a) to be the number of 1-
cells crossed by a. If f : S — N is a-transverse to 12, then f induces a stratification
k on S, where f~1(y*) = &* the i-th strata. We’ll abuse notation by calling a com-
ponent of &* — k*~! an i-cell. Finally define area(S) = Y"1, s(v;)/valence(f(v;)).
Here vy, - ,v, are the vertices of &, s(v;) is the local number of 2-cells of &
touching v;, and valence(f(v;)) is the local number of 2-cells of 1 which come
into f(v;). For example if f : S — M is an immersion of a closed surface, then
area(S) is simply the intersection number of § with v'. This definition of area
keeps track of the local branching at vertices and is additive under unions, e.g. if
S =51US82,5 NSy C 851 NSy, and f|S is normal, then area(S; )+ area(S:z) =
area(S).

View the mass of M as being concentrated near ¢!'. Think of a 1-cell ¢ as a
D? x I. If k 3-cells of ¥ touch ¢, then pretend the D? x I is subdivided into k
wedges, one for each 3-cell. Finally imagine that each D? x t,t € I is subdivided
into k pie slices, the area of each slice being 1/k.

We may use the notation lengthy,(a) or areay(D) to make clear that we are

measuring with respect the cellulation .

Lemma 3.2. If f : S — M is a mapping of a closed surface into the aspherical
manifold M with cellulation ¢, then f can be homotoped to a normal surface, pro-
vided that for each essential simple closed curve in S, 1 # [f.(a)] € m (M) (i.e. f

injects on simple loops). O

Proof. First homotope f to a generic least area immersion transverse to 1%. After
a further homotopy we can assume that the induced statification « is a cellulation.
Among all such maps choose one that minimizes double points of f{f~!(y?). If 5 is
a 2-cell of k which maps into the 3-cell o, then f|0n is an embedding (when lifted)

into . Otherwise a homotopy of f supported near n reduces the number of double
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points. Thus we can assume that the restriction of f to each 2-cell is an embedding

(when lifted) into its associated 3-cell. Such an f is normal. O

Lemma 3.3. (Epstein - Penner [EP]). If N is a complete noncompact hyperbolic

3-manifold of finite volume, then N has a cellulation by ideal polyhedra. 0O

Question 8.4. (Igor Rivin) Does every complete noncompact hyperbolic 3-manifold

of finite volume have a cellulation by ideal triangles?

Definition 8.5. If the complete noncompact finite volume orientable hyperbolic 3-
manifold N has a cellulation by ideal polyhedra, then removing a neighborhood
of the ends of N one obtains a compact manifold M whose boundary is a non
empty union of tori. The induced cellulation on M is a cellulation by truncated
ideal polyhedra. We call such a cellulation a relative hyperbolic cellulation. Call

the newly created 2-cells (on M) the facets.

Definition 3.6. Define a combinatorial geometry (x, angle) on the compact surface S
to be a cellulation « together with a function angle:{vertices of 2-cells of ¢y} — [0, 7]
such that if v € k%, wy, -+, w, are the vertices of 2-cells of x which are identified
with the vertex v of x and Angle(v) e/ %, angle(w;), then Angle(v) = 2 for
ves.

If C is a 2-cell with vertices vy, ,vn, then define [, K = Y7, angle(v;) —
(n—2)m =2m = 31, (n— angle(v;)) and [( K = 3372, [ K, where C1,--+,Cm,
are the 2-cells of k. If v is a vertex of k,v € 8S, then define v,(v) = 7—Angle(v)
and fas Yo = Yv.enonas Yo(vi). Call a 2-cell C respectively negatively curved, flat

or positively curved if fc K is respectively < 0,0, or > 0.

PL Gauss Bonnet theorem [We] 3.7. If S has a combinatorial geometry
(1,angle), then [¢ K + [y57, = 27x(S). O

Remark 3.8. The proof is an elementary combinatorial exercise. See [We] for the

case of a closed surface.

Remark 8.9. The following result is the obvious generalization of an observation of

Andrew Casson which was stated for normal closed surfaces with respect to ideal
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triangulations on hyperbolic 3-manifolds.

Lemma 3.10. Let ¢ be a relative hyperbolic cellulation on'Y . If S is an immersed
surface in'Y which is normal with respect to . Then f induces on S a combinatorial
geometry (k, angle) where k is the induced cellulation on S and if v € }3', then
angle(v) is the dihedral angle at the edge of the associated 3-cell of 1. Otherwise

angle(v) = n/2. O

Corollary 3.11. (Casson [Ca]) Let ¢ be a relative hyperbolic cellulation on'Y . If
S is an immersed closed surface in Y which is is normal with respect to 1, then
x(S) < 0. Equality holds if and only if S is a normally parallel to a peripheral

torus.
Proof. Combine the the following result with Lemma 3.10 and Theorem 3.7. O

Rivin’s Lemnma 3.12 [Ri]. If a is a normal closed curve on the boundary of an
ideal hyperbolic polygon which crosses (not necessarily distinct) edges ey, ,en,
then 2m < Y (7 — d(e;)), where d(e;) is the dihedral angle at e;. Equality holds
if and only if a is a simple closed curve which separates off a single facet from the

rest.

Proof. Use the fact that any ideal polygon is the union of ideal tetrahedra and
use the fact that for an ideal tetrahedron, dihedral angles of opposite edges are

equal. O

Remark 3.13. Its a famous theorem of Igor Rivin [Ri], that the converse is also
true. That is any combinatorial geometry on a polygon satisfying the conclusion of

Lemma 3.12 arises from a unique ideal hyperbolic polygon.

Remark 3.14. A closed surface of genus ¢ which is (Riemannian) least area in
a hyperbolic 3-manifold has area bounded above by (29 — 2)wr. The rest of §3
is devoted to establishing a similar result for least area surfaces with respect to
relative hyperbolic cellulations. Unlike the Riemannian setting, it may happen that
fc K > 0, where C is a normal disc. However, we show that if S is a normal surface

in the relative hyperbolic cellulation, then after a small homotopy and redefinition
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of the combinatorial geometry, all such ”positively curved” discs can be eliminated.
It will then follow that the total integral over the negatively curved normal discs is
bounded below by 27x(S) — 7 length(dS). Therefore by the finiteness of normal
disc types the negative curvature is concentrated in a finite area subsurface. After
shoving, the flat part of S out of Y, we are left with a surface Sy whose area is
bounded above by Cy( length(dS) — x(S)) where Cp is a constant depending only
on .

Definition 3.15. A compact immersed surface S in the 3-manifold Y with relative
hyperbolic cellulation 1 is h-normal if S is a normal surface with respect to ¥ and
satisfies the following additional properties.

i) 8SNaYy =9,

ii) S has no fake boundary branching, and

iii) for each 1-cell 8 in & (the induced cellulation on S) which lies in the 2-cell
n of 1, if B separates in 7, a single vertex from the rest, then either 8 C 8Y, or
BNAS,# 0. Call an arc of the latter type bad. See Figure 3.1. .

Figure 3.1
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The next lemma is a version of Lemma 3.2 for surfaces in relative hyperbolic
cellulations. It says that at the cost of pushing part of S out of Y, S can be

homotoped to be h-normal, without decreasing x(S).

Lemma 3.16. Let Y be a codimension-0 submanifold of the compact aspherical
3-manifold M with Y N OM = 0. Let ¢ be a relative hyperbolic cellulation on'Y
and f : S = M satisfy 0S C }O’,flas is normal, f injects on simple loops, f is
transverse to ¥? near Y (and in particular transverse to Y ) and f is boundary
incompressible in the following sense. There is no properly embedded arc « C SNY
with endpoints in distinct 1-cells of the induced triangulation on 8S, such that f|a
can be homotoped rel da into a 2-cell of . Assume also that no component of
YY) is a 2-disc disjoint from 8S. Then S can be homotoped rel 8S to Sy such
that Sy NY is h-normal respect to ¢ and x(S1NY) > x(SNY). Furthermore no

component of Sy NY is a disc disjoint from 8S.

Proof. Using the boundary incompressibility of f, first homotope f rel S U (SN
8Y) to an immersion a-transverse to 1)?. Homotope f near S to eliminate fake
boundary branching at the expense of introducing intersections as in Figure 1.6.
If some component of f~1(Y) — f~1(¢?) is not a disc, then f can be homotoped
rel 85 to reduce |S N ¢!|. If for some 2-cell C of &, f(OC) crossed a 1-cell e of v
more than once, then a homotopy of f reduces |SN!]. (But x(SNY) may rise if
e C 0Y.) If S had a bad arc 3, then a small homotopy eliminates this arc thereby
reducing |S N Yn ¥!| and possibly increasing |S N 1!|. Argue as in the proof of
Lemma 3.2 to homotope f so that the restriction of f to each 2-cell of k is an
embedding into its associated 3-cell. All of these homotopies can be accomplished
without decreasing x(S NY) or introducing disc components of S NY. The result
follows by induction on (|SN Yn ¥1],|S N1?|) ordered lexicographically. [

Proposition 3.17. Let ¢ be a relative hyperbolic triangulation on the compact 3-
manifold Y which is contained in the interior of the compact 3-manifold M. Let f :
S — M be a map of a compact surface transverse to 0Y such that f|0S CY. There

exists a constant Cgy such that if SNY is an h-normal surface, then S is homotopic
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rel S to a surface Si, such that area(S; NY) < Co(length(8S) — x(SNY)).

Corollary 3.18. Under the hypothesis of Proposition 3.17, there exists a Cy, such
that length(0(S1 NY)) < Ci(length(8S) — x(SNY)).

Proof. Apply the following Lemma 3.19 taking C; = vCy. O

Remark. If S is a Riemannian least area surface in Y which goes far out the cusps,
then the region out in the cusp accounts for little Riemannian area, but large PL

area. The passage from S to S; amounts to shoving the cusp stuff out of Y.

Lemma 3.19. Let v be the mazimal valence of an edge of . If T is a-transverse

to 9, then area(T) > length(0T)/v. O

Proof of Proposition 3.17. Let k be the induced cellulation on SNY. Define a
combinatorial geometry (k,angle) on SNY as follows. Let v be a vertex of the
2-cell 5 of k.

If f(v) € 8Y, define angle(v) = =/2.

If v € S N1, then define angle(v) = 0.

If v € 8S — 4!, then define angle(v) = m/2 (Such vertices arise as in Figure 1.6.)

Otherwise angle(v) is the associated dihedral angle of the 3-cell o of 3 which

contains 7.

Claim. If C is a 2-cell of k, then C is nonpositively curved. If C' is flat, then either
a) f(C) is parallel to a facet and C is disjoint from 85, or
b) f(8C) encircles a vertex of ¢, or
¢) f(C) encircles a single edge e on the boundary of the 3-cell which contains

f(C), e 8Y and C NOS = 0. See Figure 3.2.
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Type a) Type b) Typec)

Flat 2-cells
Figure 3.2

Proof of Claim. If o is the 3-cell which contains f(C), then f|C lifts to an em-
bedding (also called f) of C into o. First suppose that f(8C) is disjoint from the
facets. Let C denote C with the following combinatorial geometry. The 1-skeleton
of C equals 8C, f~1(4') N C are the vertices of 8C, and each point z of f~1(3!)
is assigned the dihedral angle of o at f(z). Thus by Rivin’s lemma, C is either
negatively curved or is flat and parallel to a facet. If C NS = 0, then C and C
will have the same combinatorial geometry. If C N 3S # @, then by comparing the
combinatorial geometry of €' with that of C it follows that JcK< [sK<O.

If C crosses exactly one facet and has no bad subarcs, then by pushing 8C off
of the facet, in at least one of the two possible ways, one obtains a new normal
curve bounding a disc C' which is not more curved than C. Any two facets of a
truncated polyhedron are connected by at most one edge. Thus if C' is flat, then
C is negatively curved. If 3C has a bad subarc 3, then by decree angle(v) = 0 for
the non facet vertex v of 3. Another application of Rivin’s Lemma implies that
such a C is flat if and only if 8C crosses exactly 3 edges of .

If 8C crosses exactly two facets, and C C o is a 3-cell of ¢, then a similar
argument to the one above shows that either C is negatively curved or 8C separates

off a single edge of o disjoint from 9S.
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If OC crosses more than two facets, then C is negatively curved. [

Even accounting for the possibility that part of a 2-cell lies in S, there are only
a bounded number of combinatorial possibilities for negatively curved h-normal 2-
cells in 1. Thus there exists ¢; > 0 which depends only on % such that —c; is the
maximal possible value of [, K where C is a negatively curved h-normal 2-cell.

By definition for v € % N 85 either f(v) € ¢! in which case v,(v) = 7 or
f(v) ¢ ¢! in which case v4(v) = 0. Also if a is a component of f~1(8Y), then
Jo %9 = 0. Therefore [¢ K = 2mx(S) — wlength(8S) and hence there are at most
—CIT(Wlength(BS) — 27x(S)) negatively curved 2-cells of «.

Let ¢y be the maximal valence of an edge of ¥. The Claim and the fact that
there is no fake boundary branching implies that there are at most ¢ length(8S5)
flat 2-cells of type b). Since a flat 2-cell of type c) can only share an edge with either
another type c) flat 2-cell or a negatively curved 2-cell, and that a string of c; type c)
flat 2-cells leads to an area reducing homotopy of S, it follows that after homotopy
there can be at most <22 (rlength(05) — 2mx(S)) type c) flat 2-cells. Here c3 is the
maximal length of the boundary of an h-normal 2-cell. Thus for some constant cq,
there are at most ¢4(length(8S) — x(S)) 2-cells of & which are not flat of type a).
Now let W C S be the union of type a) flat 2-cells. Homotope S to S; by a homotopy
supported in V?/ to push most of W out of Y. Soif T denotes W with a small collar of
OW removed, then S1NY = ((SﬂY)—%)UA, where A is a union of annuli connecting
OT straight to 8Y. Therefore area(S;NY) < area((S — IX/)OY) +2¢olength(OW) <
csarea((S — I/?/) NY) < cseaca(length(8S) — x(S)) = Co(length(dS) — x(5)). O

Proposition 3.20. Let i be a relative hyperbolic triangulation on the compact 3-
manifold Y C ]\04 Suppose that f : S — M is a map of a compact surface such that
for each component & of &S, either 5NY = 0 or f|8 is an immersed curve in wzrﬂ;
which is transverse to ', f injects on simple loops, f is transverse to 8Y, f is
a-transverse to 2 and no component of f~1(Y) is a disc disjoint from 8S. Then
S can be homotoped rel S to Sy such that area(S1 NY) <Max(0, Co(length((8S) N
Y) - x(S§nY))).
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Proof of Proposition 3.20. The main improvement of this Proposition over the last
is that f : S — M is not h-normal. We argue by induction on ¢(S) = length((8S)Nn
Y) - x(SNY) and can assume that S is connected. If ¢(S) = —2, then S is a
2-sphere in Y and can be homotoped out of Y. Now assume that the Proposition
is true for ¢(S) < k. Using the induction hypothesis, its routine to verify the

Proposition if (8S) NY is not a union of normal curves.

Suppose that there is an arc @ C f~(Y) with endpoints in distinct 1-cells of
& such that f|a is homotopic into a 2-cell of ¢, via a homotopy fixing da and
supported in Y. Boundary compress along « to get a new map f; : T — M which
satisfies the hypothesis of the Proposition, and ¢(f;) < ¢(f). By induction, f; is
homotopic rel 8T to g; which satisfies the conclusions of the Proposition. If 77 is
the resulting surface, then attach a little 1-handle to T; (missing ') to obtain a

surface S; which is homotopic to S rel S and satisfies the conclusion.

Therefore we can assume that f satisfies the hypothesis of Lemma 3.16. Now

apply Lemma 3.16 and Proposition 3.17. O

Corollary 3.21. If S; is as in Proposition 3.20, then length(3(S; N Y))
< Maz(0, Cy (length((0S) NY) — x(SNY))). O

Remark 3.22. The main results of §1-2 can all be stated in terms of cellulations
rather than triangulations. In particular Proposition 1.14, Theorem 2.1 and Propo-
sition 2.4 hold by substituting triangulation with cellulation. The proofs parallel
those of §1-2. Of course a version of Proposition 1.10 also holds for cellulations,
but there is not an obvious canonical branched surface which carries all normal

laminations. For the sake of reference we single out

Proposition 3.23. Let M be a closed 3-manifold with cellulation . n (M) is
not negatively curved if and only if there erists a sequence of least area normal
immersed discs f; : D; = M, such that length(0f;)/area(f;) — 0 and no f; has

fake boundary branching. 0O
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84

THE UBIQUITY THEOREM

Definition 4.1. If a is a homotopically trivial curve in the 3-manifold M and & C
M — a is a smooth simple closed curve, then define the wrapping number wr(a, k) =

min{|ENk| where E C M is an immersed 2-disc transverse to & such that 0F = a}.

Theorem 4.2. Let k be a smooth simple closed curve in the closed, irreducible 8-
manifold M with cellulation v such that k is transverse to 12, disjoint from ' and
for each 2-celln C 4, |kNn| < 1. Then either M is toroidal, or k is contained in a
3-cell or there exists a constant C' such that for any least area disc D a-transverse

to ¥? with 9D Nk = § we have area(D) < C(wr(8D, k)+length(0D)).

Remark. Here length and area are measured as in Definition 3.1. Recall that normal

immersed discs are examples of a-transverse discs.
The following result is an immediate consequence of Theorem 4.2.

Ubiquity Theorem 4.3. Letk ¢ B3 be a smooth simple closed curve in the closed,
atoroidal, irreducible 3-manifold M with cellulation i such that k is transverse to
Y?, disjoint from ¢! and for each 2-cell n C ¥, |kNn| < 1. There exists constants
K and L such that if D is a least area disc a-transverse to ¥* with 9D Nk = and
length(0D)/area(D) < L, then wr(0D,k)/area(D) > K. O

Corollary 4.4. Let )\ be a quasi-least area semi-Euclidean lamination in the closed
atoroidal irreducible 3-manifold M. If k C M — X is a smooth simple closed curve,

then k lies in a 3-cell.

Proof of Corollary 4.4. Suppose that A is normal with respect to the cellulation v
and all measurements are taken with respect to 1. After passing to a subdivision
of ¢ and isotopy of k we can assume that for each 2-cell n of ¢ that |[kNn| < 1.
Note that the property of a leaf being conformally Euclidean or quasi-least area is
preserved after passing to subdivision. If L is a conformally Euclidean leaf of A,
then by the Ahlfors Lemma, [Ca] p. 499, there exists a sequence of embedded discs

Ey C Ey C -+ C L the universal covering of L, such that length(dE;)/area(E;) <
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1/i. Since A is quasi least area there exists a constant K; such that for each 1,
area(E;) < Kjarea(D;) where D; is a least area disc in M with 8E; = 8D;. If
E; is a slightly perturbed projection of E; to M such that 8F is embedded, then
wr(0E;, k) = 0 all 5. Also if k¥ ¢ B3, and i is sufficiently large then we obtain a

contradiction to Theorem 4.3. O

Remarks 4.5. i) In words the Ubiquity Theorem says that the area of a least area
disc D of small isoperimetric ratio is proportional to the wrapping number of 8D
and k.

ii) The proof we give relies on Thurston’s hyperbolization theorem for Haken
3-manifolds. One can give a much less elegant proof which uses only [Gr] and

standard 3-manifold topology.

Proof of Theorem 4.2. To obtain a clue, read the proof of case 1. For a complete

and more detailed argument read the proof of case 2.
Case 1. M — k is hyperbolic.

Proof of Case 1. It suffices to consider the case that v is obtained by attaching
a 2-cell and a 3-cell to a relative hyperbolic cellulation on M — ]:f (k). And it
suffices to prove Theorem 4.2 for y-least area discs D such that 8D C M — N(k).
Given such a disc D, let E C M be an immersed disc such that 0E = 8D and
wr{(0D, k) = |[ENk| = |[ENAN(k)|. By Proposition 3.20 and Corollary 3.21 E can
be homotoped to a disc E; rel OF, such that area(D) < area(E;) = area(E;N(M —
jtf(k)))"}‘ area(Fy N N(k)) < area(E1 N (M — ]C\}(k)))+ length(0Ey NN (k)) < (Co +
C1)(length(9E) — x(EN (M — N(k)))) = (Co + C1)(length(8D)+ wr(dD, k) — 1) <
(Co + C1)(length(8D)+ wr(6D,k)). O

Case 2. General case

Proof of Case 2.
If k¥ does not lie in a 3-cell, then M — ]c\)/ (k) is irreducible and hence there
exists by the characteristic manifold theory of [JS], {J] a collection of =;-injective

pair wise disjoint embedded tori Ty, 7y, -+ ,T, C M such that each component of
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(M- Ic\)f (k)) —U?™_,T; is either a finite volume hyperbolic 3-manifold or the interior of
a graph manifold. (Recall that all 3-manifolds in this paper are orientable and that
a graph manifold is the union of finitely many Seifert fibred spaces glued together
along some of their boundary components.) Here Ty = ON(k). By Thurston [Th]
M —k is hyperbolic if and only if {To, T}, -+ ,Tn} = {To} = {ON(k)} and M—Ji/'(k)
is a not a graph manifold.

If T is an embedded 7 —injective non boundary parallel torus in M — Jif (k), then
either T is m;-injective in M and hence Theorem 4.2 is proved or T is compressible.
By standard 3-manifold topology, if T is compressible, then either T' bounds a
unique solid torus W in M or T bounds a cube with knotted hole W. In the former
case k C W. In the latter case there exists an embedded B®* C M and a knotted
properly embedded arc 3 C B® such that W = B® — ]if(ﬂ) and thus kNW = 0.
Note that k£ ¢ B® implies that 7' cannot bound both a solid torus and a cube with
knotted hole. For each 7, let W; be the associated solid torus or cube with knotted
hole bounded by T;. Observe that if T; C V?/j, then W, C ch/'j.

The W;’s are partially ordered by inclusion, so reorder the Tj’s so that Wy
is the maximal solid torus region (which is necessarily nonempty since for some
i,W; = N(k)) and Wy, - - - W, are the maximal cube with knotted hole regions. Let

Y:M—V?/()U'-'UVT/T.

Claim 1. Either Theorem 4.2 is true or Y is atoroidal and hence by Thurston [Th]

has a complete hyperbolic metric of finite volume.

Proof of Claim 1. By construction Y is either atoroidal or is a graph manifold. We
will assume the latter and derive a contradiction. If r > 0, then Figure 4.1 shows
how to reembed Y U Wy U --- U W,_; into M in such a way that W, bounds a
solid torus V; in M =Y UW§U---UW/_,, where W/ (resp. OW,,Y") denotes the
reembedded W; (resp. OW,.,Y’). There are an infinite number of such reembeddings,
by “twisting the neck”. Now fix a graph structure on Y. This structure induces a

Seifert fibering on 8W,. At most one reembedding corresponds to spanning Seifert

fibres of 8W! by meridinal discs of V,. After any other reembedding, M — W§ U
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---UW]_; is a graph manifold. By repeating this operation r — 1 more times,
we conclude that M is obtained by attaching a solid torus to the boundary of a
graph manifold. Since such a manifold is either reducible, has finite 7; or has a
m -injective immersed torus, Claim 1 is established. Note that if 3 (M) is finite,

then M has a linear isoperimetric inequality. O
k k k k .k k.

Reembeddings ra

-

dW does not bound a solid torus W, bounds a solid torus
Figure 4.1

Given a 1)-least area disc D, define

wr(8D, k) + lengthy, (8D)

i W)

We may suppress the subscript ¢ when the cellulation is understood.

Claim 2. We can assume that 1 satisfies

a) ¢|Y is a relative hyperbolic cellulation and in particular for each ¢ < r,¢
restricts to a cellulation on W;.

b) There exists a D? x S! C Vi"o(k) called N;(k) such that & C &1 (k) is a core
of Ny(k), ¥? N Ni(k) consists of ON; (k) and a finite number of pairwise disjoint
meridinal discs. Furthermore if o is a 3-cell of ¥|N;(k), then kN o is a properly
embedded unknotted arc. Note that ¢! N ]:/_ 1(k) = 0. See Figure 4.2
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A schematic view of N1 k)

Figure 4.2

Proof of Claim 2. If ¢ is a subdivision of ¥y and Theorem 4.2 holds for ¢, then
Theorem 4.2 holds for 1. Use the fact that there exists a K; > 0 such that if
D is a 1)-least area disc, then there is a 1 least area disc, also called D, with
Wy (D, k) unchanged such that D is a K;j-quasi ¢-least area disc. Furthermore
length,, (D) < lengthy(0D) < Kilengthy(8D). The last inequality uses the fact
that an embedded arc « in a 2-cell of 1 is isotopic rel da to an arc crosing ¢* a
uniformly bounded number of times, via an isotopy disjoint from k. (This is where
we use the hypothesis that for each 2-cell 7 of ¢, |kNn| < 1.) Thus a sequence {D;}
of 1-least area discs with W, (D;) — 0 gives rise to a sequence {E;} of ¢-least area

discs with Wy (E;) — 0.

Conversely suppose that ¢ is a subdivision of ¥ such that if o is a 3-cell of
and o Nk # 0, then ¢|oc = Y|o. Then standard arguments show that there exists

a K3 > 1 such that a ¢-least area disc D give rise to a t-least area disc £ where

lengthy (8E) Kalengthy (8D)
areay(E) — areay (D)

from k. Thus if Theorem 4.2 holds for %, then it holds for ¢. Similarly this result

and O0F is homotopic to 8D via a homotopy disjoint

follows in the following case. Here if o is a 3-cell of ¢, then either kNo =0 or kNo
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is an unknotted arc and ¢ is a subdivision of 1 such that ¢> Nk =2 Nk.

Given v, we first construct a subdivision ¥, with the property that for each
3-cell 0 of Y1,kNo =0 or kN o is an unknotted arc. The subdivision is created
on each 3-cell B of 1 as follows. Let t = BN k. Think of B as D? x I with
0t C D?*x0 and t in generic position with respect to the height function coming from
the I-factor. Now attach a finite number of pairwise disjoint properly embedded
2-cells Cy,---,C, C B, one for each local minimum of t C é, with the property
that for each ¢, C; separates off a 3-cell B; with B; Nt is an unknotted arc and
tN(B - U?=1§,-) is a trivial B3-link on s components. Now subdivide each C; along
a properly embedded arc such that each "half” of of C; hits t exactly once. See
Figure 4.3. After subdividing along another s — 1 2-cells we obtain a cell division
on B such that each 3-cell intersects t in an unknotted arc. ; is the result of these

n + s — 1 subdivisions of 1. One readily checks in n + s — 1 steps that Theorem 4.2
holds for ¥ if and only if it holds for ;.

Figure 4.3 b)

a)

Let Ny(k) be a D? x S! in I/?/'o whose core is k such that Ny(k) Nyl = 0
and N (k) N v? is a disjoint union of meridinal discs. Subdivide v, to ¥ so that
Ni(k)nZ = Ni(k)Nyp2UON, (k). By the second paragraph of this proof, Theorem
4.2 holds for ¢, if and only if it holds for ;.

By [EP] there exists a hyperbolic cellulation on Y and hence there exists a
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cellulation ¥3 on M satisfying a) and b) and which agrees with 2 near N;(k). By
the uniqueness of PL structures for 3-manifolds [Mo], there exists a cellulation 14
on M isomorphic to 13 via an isomorphism which restricts to the identity on N (k)
such that 14 and 12 have a common subdivision s and 5| Ny (k) = 4| N1(k) =
12| N1 (k). By the first two paragraphs Theorem 4.2 holds for ¢4 if and only if it
holds for 15 if and only if it holds for 2. Therefore Theorem 4.2 holds for 4 if
and only if it holds for 1. Since 14 satisfies the conclusions of Claim 2, that result

follows. O
Claim 3. Tt suffices to prove Theorem 4.2 for discs D such that 8D C )3'

Proof of Claim 3. It suffices to prove Theorem 4.2 for discs D such that 8D N
N;(k) = . Indeed by construction of N;(k), a small homotopy disjoint from k,
pushes 8D off of N;(k) and so D gives rise to a least area disc E a-transverse
to ¥ with E N Ny(k) = O,wr(0E,k) = wr(0D,k) and D, E have approximate
isoperimetric inequalities.

Since balls and solid tori have linear isoperimetric inequalities it follows that
there exists a K3 such that if «y is a locally -embedded homotopically trivial curve
in M — N;(k) then there exists a homotopy H : S' x I — M of  to 41 such that
v is locally ¢-embedded, v; C 10’ and area(H) < Kslength(y). This implies that

if D (resp. E) is a least area disc spanning +, (resp. 1), then
area(E) > area(D) — area(H)

length(7y;) < length(%y) + v(area(H)) < (1 + vKs)length(y)
wr(y1, k) < wr(y, k) + 3area(H) < wr(v, k) + 3K3length(y)

The first and third inequalities are immediate. The second follows from Lemma
3.19. To obtain the fourth, note that H can be chosen so that if 5 is a 2-cell in the
induced cellulation on S* x I, and H(n) N Jifl(k) # (0, then H|n is an embedding
and H(n) Ny # 0. (This uses the fact v N Ni(k) = 0.) Since H can be chosen so

that |p N k| < 1 and area(H|n) > % it follows that |H ' (k)| < 3area(H).
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Thus a sequence of discs {D;} such that W(D;, k) — O gives rise to a sequence

{E;} with W(Ei, k) = 0 and 8E; CY. O

Let E be an immersed disc in M a-transverse to 1? such that 8E = 8D and
|ENk| =wr(0D,k). Among all such discs with these properties choose one that
minimizes |0Y N E|. Let By = ENY . Assume that length(9FE) > 0.

Claim 4. —x(Ey) < wr(0E, k)

Proof of Claim 4. Since Y has no essential annuli, and |0Y N E| is minimal, each
component of Fy disjoint from JF is a disc with at least two open discs removed.
Define a partial ordering on the components Fi,: -, Fr, of Ey, by F; < F; if F; is
separated from OF by Fj. Let F=uU F;<F; Fj and I:"i be the subdisc of E bounded
by the outermost component of F;. Since for some i, Ey = I:“i and E = ﬁ‘i it
suffices to show that for each 1, —X(Fi) < IF‘i N k| — 1. To prove this let F; be a
minimal component of Ey. All but one component of 8F; bounds a disc in E whose
interior is disjoint from F;. Let G be one such disc. The incompressibility of OW;
in W;,4 > 0 implies that G C Wy. The incompressibility of 0Wj in Wy — k implies
that G Nk # 0. Hence —x(F;) < |Fi Nk|. Now inductively assume that for all
F; < Fj,—x(F;) < |FyNk|—1. Again let G C E be the disc spanning an innermost
component of 8F}. By either the induction hypothesis, if 5 NEy # 0 or the previous
argument, if (cj?ﬁ Ey = 0 it disjoint from JF follows that —x(GNEy) < |GNk|-1
and therefore —x(F}) < |F;nkl—-1. O

Claim §. E can be homotoped to E’ rel 8E such that if F is the component of E{,
which contains F, then

1) area(F) < Co(wr(0D, k)+ length(8D)) and

2) length(0F) < Ci(wr(8D, k)+ length(8D)). O

Proof. Let S be the compact codimension-0 submanifold of E such that SNY is
exactly the component of ENY which contains 8E. By Proposition 3.20 and Claim
4, S can be homotoped rel 8S to S; such that area(S; NY) < Co(length((8S) N
Y) - x(SNY)) < Co(length(F) + wr(OF,k)). Since the homotopy of S to S;
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extends trivially to a homotopy of E and 8E = 3D conclusion 1) follows. (Here E’
is the homotoped E and F is the component of S; NY containing JE.) Conclusion

2) follows from Proposition 3.21. O

Claim 6. There exists a constant ks such that if « is a closed curve in W;, which is
homotopically trivial in M, then o bounds a disc A such that area(A)

< kz(length(a)). O

Proof. Since balls and solid tori have linear isoperimetric inequalities and each
Wi,i > 1, lies in a 3-cell, Claim 6 holds (using the same constant ks) for all
a C W;,i > 1, and for all @« C Wy which are homotopically trivial in Wy.

Let 3 C Wy be a normal curve which generates 7 (Wp). There exists a k4 such
that if @ C W, is not null homotopic in Wy, then « is homotopic in Wy to ™, n # 0
via a homotopy L : S* x I — M such that area(L) + |n| < kslength(c). Since o
is homotopically trivial in M, 3" and hence 3 (since m (M) is torsion free) are
homotopically trivial in M. If B (resp. A) is a least area disc bounded by £ (resp.

a), then

area{A) < |n|area(B) + area(L) < (1 + area(B))(|n| + area(L))

< 2(1 + area(B))k4length(a) = kslength(a),

where ks = (1 + area(B))ks. Finally, take ko =max(ks, ks). O

To complete the proof of Theorem 4.2 observe that D bounds a disc J which
is the union of F' (which was defined in Claim 5) and least area discs bounded by
OF — OD. Thus by Claims 5 and 6 we obtain area(D) < area(J) < area(F) +
kolength(8F) < (Cy + Ciko)(wr(0D, k)+ length(dD)). O

85
UBIQUITY IN THE SMOOTH CATEGORY

Theorem 5.1. Let k be a smooth simple closed curve in the closed irreducible

Riemannian 3-manifold M. Then either M is toroidal or k is contained in a 3-cell
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or there exists a constant C > 0 such that if D is a least area disc with DNk = §,

then area(D) < C(wr(8D, k) + length(0D)).

Proof: Step 1. Either k C B2 or M is toroidal or M = Y UWy U ---U W, where
Woisa D? x S',k C I/ci/o,GWo is mi-injective in Wy — k,W; "W, = @ if i # 7,
and if ¢ > 1, then W; lies in a 3-cell and 6W; is a torus which is m;-injective in
W,;. Furthermore Y # @ and )O’ has a hyperbolic structure of finite volume. Finally
YNn(WoU---UW,) =3dY.

Proof of Step 1. For the proof of step 1, read (in §4) from the beginning of the
proof of case 2, through the end of the proof of Claim 1. O

Step 2. It suffices to establish Theorem 5.1 for any Riemannian metric on M.

Proof of Step 2. Use the fact that changes in the Riemannian metric changes arc

length as well as area by uniformly bounded multiplicative amounts. O

Let X be a space diffeomorphic to )(;' and give X a complete hyperbolic metric.
Let T x [0,00) cut off the ends of X and be parametrized so that each T x i is a
union of r + 1 horospherical tori and for z € T, z x [0, c0) is a geodesic parametrized
by arc length.

Let N(0Y) C (WoU- - -UW,.)—k be a closed regular neighborhood of &Y. Let g be
a Riemannian metric on M such that g|Y is isometric to X -7 x (0, c0) and g|N(8Y")
is isometric to T x [0,1]. Le. g|Y U N(Y) is the pullback metric induced from a
diffeomorphism f: Y UN(Y) - X — T x (1,00) such that f(Y) =X —T x (0, 00)
and f(N(0Y)) =T x [0,1].

Step 3. a) There exists v > 0 with the following property. It suffices to prove
Theorem 5.1 for discs D where the geodesic curvature at each point of 9D NY is
bounded above by .

b) We can assume that 8D N N(8Y) is a union of curves of the form z x [0, 1].

c) We can assume the 8D is embedded in M. O

Let D be a least area disc in M such that 8D Nk = @. Let E be a smooth disc

which spans 0D, is transverse to k U N(9Y), |ENk| = wr(8D, k) and satisfies the
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following two conditions.
i) No component of ENY disjoint from JF is either a disc or an annulus
ii) If a C ENY is a simple closed curve, then either & bounds a disc in ENY

or a is homotopically nontrivial in Y.

Remark. The reader may have noticed that we have abused notation by identifying
the disc F with its image in M thereby suppressing the mapping f : E — M which
defines that image. Thus it would have been more precise to have first defined
f: E — M and then rephrased i) by “no component of f~!(Y) is a disc or annulus
disjoint from AE” and ii) by “If « is a simple closed curve in f~!(Y’), then either
a bounds a disc in f~!(Y) or flo is homotopically nontrivial as a map into Y. In

the following statement £ NY denotes a subset of the disc E.
Step 4. —x(ENY) < wr(0E, k)

Proof of Step 4. By hypothesis wr(8E, k) = |E N k|. Define a partial ordering on
the components F1,---,F, of ENY, by F; < F; if F; is separated from OF by
F;. Let F,- = Up,<r, F; and FL be the subdisc of E bounded by the outermost
component of 9F;. Since ENY is the union of Fil L, ,Fin where F;,,--- , F; are
the maximal components, it suffices to show that for each 7, —x(F‘iJ.) < [F‘ij Nkl—1.
The proof of this fact is given after Claim 4 §4. Ignore the assertion, true only in
§4, that OF = OF; for some i. In that proof Fy denotes ENY. [Note that for
each ¢, no component of F,NY is a disc or annulus disjoint from AE, each disc
component of En W; disjoint from OF must lie in Wy and nontrivially intersect

k, and that wr(8F;, k) = |F,nk|.)] O

Step 5. There exists constants Cy4, Cs such that after homotopy of E rel OF, there
exists a codimension-0 submanifold H of E such that ENY C H C Y UN(9Y)
and

a) area(H) < Cy(length(0F) + wr(9E, k))

b) length(0H) < Cs(length(8F) + wr(9E, k))

Proof of Step 5. Let Hy = ENY and view H; as lying in X — T x (0,00). After a
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homotopy of E rel E, supported near 8Y we can assume that H;NT x 0 is straight
in the Euclidean tori T'x0. Let Hy C X be H{U((H1NT x0) %[0, s]). [More precisely,
if f: H;y — Y, then define H, = H; U (f~}(8Y) x [0,s])/ ~ where z € f~1(8Y)
is identified with = x 0. Finally extend f to Hs by f(z,t) = (f(z),t) € T x t|
Choose s sufficiently large so that, length(Ha N (T X s)) < 1. After an extremely
tiny perturbation of OH> near T' X s we can assume that dH; is embedded in X.
By Theorem 3 of Meeks - Yau [MY] (generalizing [SY]) H; is homotopic rel 0H,

(in X) to a least area surface Hj. It follows that for s sufficiently large we obtain

area(H3) = dA
Hj

<[ -Kda
Hjs

= -2yt + [ v,
OH
1
2
< 27wr(9E, k) + vlength(OENY)) + glength(aE N N(@Y))

< —27wx(Hs) + ylength(0Hs NY) + n|EN (M — lo/)] +

< Cy(length(OF) + wr(OE, k))

where Cy = max(2n,v). The second equation follows from the fact that Hs is a
minimal surface and hence its sectional curvature is < —1 everywhere. The third
equation is Gauss - Bonnet. To establish the fourth equation use the fact that
OH3NY has geodesic curvature bounded above by v, 8H3NT x [0, s) is geodesic and
hence has zero geodesic curvature and 8H3 near T X s is essentially horospherical,
hence has geodesic curvature equal extremely close to 1. Finally note that there
are two right angled corners of OHjs for each arc component of (0H;) N 8Y. The
number of such components is equal to [0EN (M — }O’)l. To obtain the fifth equation
observe that —x(Hs) = —x(Hz) = —x(H1) = —x(ENY) < wr(8E, k) — }, the last
inequality following by Step 4. Also each component of dEN (M — }3') corresponds
to two components of 0E N N(9Y') each of which has length 1.

After a small perturbation of H; we can assume that the conclusion of the

above series of equations still hold and except for finitely many levels, Hj is
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transverse to each T' x i. Since fol length(Hs N (T x t))dt < area(Hs N (T x
[0,1])) < area(Hs), it follows that for some ¢ € [0,1), H3 is transverse to T X ¢
and length(Hs N (T x t)) < area(Hs3) < Ci(length(0F) + wr(0E,k)). Let H =
H3;NX —T x (t,00). Thus area(H) < area(Hs) < Cy(length(dE) + wr(dE, k)) and
length(0H) < length(OF) + length(H3 N T x t) < 2C4(length(0F) + wr(0E, k)).
Let C5 = 2C4 + 1. To complete the proof of Step 5, view H as lying in Y U N(8Y)
and observe that there is a homotopy of E rel 3E supported in Y U N(dY) such

that after the homotopy EN (Y UT x [0,t)) = H. O

Proof of Theorem 5.1. Let G be the closure of E — H. By the proof of Step 5
length(0G) < length(0F) + length(H3 N T x t) < Cs(length(0E) + wr(9E, k)).
Each component of G C W; for some i and is homotopically trivial in M. The
argument of Claim 6 (§4) shows that there exists a constant Cg such that if a is
a closed curve in some W; and «a is homotopically trivial in M, then « bounds a
disc D, C M such that area(D,) < Cglength(a). Therefore we can span 6G by a
collection of discs D such that area(D) < Cglength(9G).

One can construct a disc F' spanning 8D by piecing together a subset of the
components of H together with a subset of the least area discs bounded by com-
ponents of G. In fact, use those components of H which, as subsets of E, non-
trivially intersect OF and those components of 8G which are outermost in E. It
follows that area(D) < area(F) < area(D U H) < area(H) 4+ Cglength(8G) <
(Cy + CsCs)(length(9E) + wr(0E, k)). O

Ubiquity Theorem 5.2. Let k ¢ B? be a smooth simple closed curve in the
closed, atoroidal, irreducible 3-manifold M. There exists constants K and L such
that if D is a least area disc with 8D Nk = ) and length(0D)/area(D) < L, then
wr(0D, k)/area(D) > K. O

Corollary 5.3. Let ) be a quasi-least area semi-Euclidean lamination in the closed
atoroidal irreducible 3-manifold M. If k C M — X is a smooth simple closed curve,

then k lies in a 3-cell. [3

Remark 5.4. By defining wr(a, k) for all reasonable homotopically trivial curves «
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(rather than just @ with @ Nk = @) in the appropriate manner we can then obtain

5.1, 5.2, 5.3 with the hypothesis 8D N k = () eliminated.

§6 A VERY BRIEF SURVEY ON THE GEOMETRIZATION OF 3-MANIFOLDS

Thurston Geometization Conjecture 6.1 [Th]. Let M be a closed connected
irreducible 3-manifold, then either

a) M = S®/T where T C Isom(S?) or

b)ZSZ Cm (M) or

¢c) M = H? /T where T C Isom(H?)

Remarks 6.2. i) These conclusions exactly parallel the conclusions of the corre-
sponding geometrization theorem for closed surfaces.

ii) The three conclusions are mutually exclusive. Conclusion a) is the geometriza-
tion conjecture for 3-manifolds with finite fundamental group. That conjecture is

equivalent to positive solutions to each of the following longstanding open problems.

Poincare Conjecture 6.3. If M is a closed connected simply connected

3-manifold, then M is homeomorphic to S°.

Generalized Space Form Conjecture 6.4. If the finite group I' acts freely on

53, then T is conjugate to a linear action.

Remark 6.5. See [Liv], [My], [Ru], and [T] for partial results on this conjecture. In
particular by [T], Conjecture 6.4 for cyclic groups implies a positive solution to the

following classical question.

Space Form Conjecture 6.6. If M is covered by S3, then m (M) is isomorphic
to a subgroup of SO(4)

As of this writing there is one class of groups that still needs to be eliminated
[Mi], [Lee].

Remark 6.7. Conclusions b) and c) of the Geometrization conjecture treat the case
that 7, (M) is infinite. The topology of closed irreducible 3-manifolds with Z & Z C

71 (M) is now completely understood, thanks to the work of {CJ], [G2], [M], and
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[Sc1-2]. These works in turn built on ideas of many others e.g. Tukia, Ghering,
Martin, Jaco, Shalen, Johannson, Waldhausen, Burde, Zieschang, Neuwirth, and
Murasugi. (See [G2] for a more detailed history.) Such manifolds contain either
embedded ;-injective surfaces or are Seifert fibred spaces. The [JS][J]-theory,
discussed in §4, details the structure of 3-manifolds with ;-injective embedded
tori. The nature of 3-manifolds M with Z & Z C m(M) was not known when the
Geometrization conjecture was originally formulated and conclusion b) was spelled

out with all its possibilities.
Conclusion ¢) is also known as the

Thurston Hyperbolization Conjecture 6.8. Let M be a closed, connected,
irreducible 3-manifold with m (M) infinite and Z® Z ¢ m (M), then M = H3 /T
where T C Isom(H®).

Remark 6.9. In 1978 Thurston proved this conjecture for Haken 3-manifolds [Th].

A result known in those days as the Monster Theorem.

At the JDG 96 conference, the author announced the following result [GMT]

which was joint with Robert Meyerhoff and Nathaniel Thurston.

Theorem 6.10. Let N be a closed hyperbolic 3-manifold. Then

a) If f : M — N is a homotopy equivalence where M is an irreducible 8-manifold,
then f is homotopic to a homeomorphism.

b) If f,g: M — N are homotopic homeomorphisms, then f is isotopic to g.

¢) The space of hyperbolic metrics on N is path connected.

Remark 6.11. i) The analogue of a) for spherical manifolds is false. Its a classical
theorem of Reidemeister and Whitehead that the lens space L(7,1) is homotopy
equivalent but not homeomorphic to L(7,2). Its a much more recent observation of
the author that there exists an orientation preserving self homotopy equivalence of a
lens space which is not homotopic to a homeomorphism [G3]. For example, consider
the homotopy equivalence of L(8,1) to itself whose action on m; is multiplication

by 3.
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ii) Theorem 6.10 reduces the Hyperbolization Conjecture to

Conjecture 6.12. If M is a closed, connected, aspherical 3-manifold with ZOZ ¢
w1 (M), then M is homotopy equivalent to a hyperbolic 3-manifold. Equivalently
[since M is a K(m,1)], m1(M) is isomorphic to mi(N) where N is a hyperbolic
3-manifold.

Conjecture 6.12 is equivalent to the following two well known open problems.

Group Negative Curvature Conjecture 6.13. If M is a closed, connected,

aspherical 3-manifold and Z® Z ¢ m (M), then w1 (M) is negatively curved.

See [Gr], [Bu], [Sch], [Mol], [MO], and [Ka] for some contributions towards

Conjecture 6.13.

Cannon Conjecture 6.14. If M? is closed, connected, aspherical and m (M) is
negatively curved, then my (M) is isomorphic to the fundamental group of a closed

hyperbolic 3-manifold.

It was first proved by Casson [Ca] and Poenaru [Po], that if M is closed, aspheri-
cal with a negatively curved fundamental group, then the universal covering of M is
R3. Also by [HRS] and [M] a closed irreducible 3-manifold M with Z& Z C m, (M)

is covered by R®. Thus a special case of Conjecture 6.13 is the longstanding

Conjecture 6.15. If M is a closed irreducible connected 3-manifold with m (M)

infinite, then M is covered by R3.

Remarks 6.16. i) See p. 149-151 [Ki] for a list of contributions to this problem.
ii) Bestvina - Mess [BM] show that the sphere at infinity of an aspherical 3-

manifold with negatively curved fundamental group is a 2-sphere.

Remark 6.17. See [Can], and [CFP] for some very remarkable and beautiful devel-
opments towards Jim Cannon’s program to establish Conjecture 6.14. In particular
the introduction to [CFP] gives a lucid overview of both the general program and

the state of their work.
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