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Metabolic cobordisms and the simplest perturbative
Chern-Simons 3-manifold invariant

CLIFFORD HENRY TAUBES

1 Introduction. The perturbative, Chern-Simons three-manifold invari-
ants were predicted by Witten [8] and then defined by Axelrod and Singer ([1]
and [2]). Kontsevich [4] has given a second realization of Witten’s predictions;
and the simplest of Kontsevich’s invariants is the subject of this article, and its
prequel, [7].

As described in the first article, [7], the simplest of Kontsevich’s perturbative
Chern-Simons invariants is defined for compact, oriented 3-manifolds M which
have the rational homology of S®. The invariant, I;(M), is computed by an
integral

(1.1) Iz(M)=/ wAwAw,
MxM

where w is a closed 2-form on M x M with a prescribed singularity on
(1.2) Y =ApmU(po X M)U (M X po).

Here, Ay C M x M is the diagonal, and pg € M is a chosen base point.

The reader is referred to Section 2 of [7] and Definition 2.8 of [7] for
the details. (This article is a sequel to [7].) Suffice it to say that
H} pham(M x M — Ep) ~ R, and w is a generator of this group. In par-
ticular, w restricts to every linking 2-sphere around ¥js as 2-form with total
volume 1. None-the-less, w is constrained so that w A w = 0 near X, thus
insuring that the integral in (1.1) is well defined.

a) Cobordisms and I,.

Let My and M; be a pair of compact, oriented, 3-manifolds with the rational
homology of S®. An oriented cobordism, W, between My and M; is a compact,
oriented 4-manifold with boundary; and that boundary should be the disjoint
union of My and M;. Furthermore, the induced boundary orientation (using
the outward pointing normal) should be correct for M; and wrong for My. If
W is also a spin manifold, then the cobordism is called a spin cobordism.

Theorem 2.9 in [7] gives a set of conditions on the spin cobordism W which
imply I;(Mp) = I»(M;). In particular, one condition in [7]’s Theorem 2.9
required that W have the rational homology of S3. It is the purpose of this
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article to greatly relax this condition. The relaxed conditions are stated below
in Theorem 1.2. Here is a corollary of Theorem 1.2:

THEOREM 1.1. The invariant I5(-) equals zero on a 3-manifold with the
integral homology of S°.

The full statement of Theorem 1.2 requires the following digression to intro-
duce some necessary terminology. To start the digression, introduce tor(Hz) C
H,y(W; Z) to denote the torsion sub-group. Next, recall that there is a natural,
symmetric, bilinear form on H,(W;Z)= H2(W;Z)/tor(H,), this being the in-
tersection pairing. This form is non-degenerate, but not in general unimodular.
(It is unimodular if My and M; have the integral homology of S3.) The inter-
section form, §, on H,(W;Z) will be called equivalent to a sum of metabolics
if it is conjugate under GL(-,Z) to

(1.3) ©aH(m,)

where H(m) for m € Z is the symmetric, 2 X 2 matrix with zero on the diagonal
and with m in the off diagonal entries. For example, the compliment of a pair
of disjoint, open balls in §2 x S? is a spin cobordism between S® and S* whose
intersection form is conjugate to either H(1) or to H(—1), depending on the
orientation.

End the digression.

THEOREM 1.2. Let My and M; be compact, oriented, 3-manifolds with the
rational homology of S3. Let W be an oriented, spin cobordism between My and
M, . Suppose that:

1) The intersection form of W is equivalent to a sum of metabolics.

2) The inclusions of both My and M, into W induce injective maps on

Hi(5Z/2).
Then IQ(MO) = I2(M1).

Theorem 1.2 is an immediate corollary to Theorem 1.3, below. The state-
ment of Theorem 1.3 requires the following 2-part digression. For Part 1 of
the digression, consider a compact, oriented 3-manifold M with the rational
homology of S3. Fix a point py € M. Then, introduce from Definition 2.3 in [7]
the notion of a singular frame for 7*M. (This is a frame for T7*(M — po) with
a prescribed singularity at pp.) As in Lemma 2.4 of [7], let ¢ denote the set of
homotopy classes of singular frames for T* M. Define an equivalence relation on
¢ by declaring ¢ and (' to be equivalent when { = g- ¢’ where g is a degree zero
map from M to SO(3). Let ¢ denote the resulting set of equivalence classes.
Finally, use Definition 2.8 of [7] to identify a canonical element c)s € c.

For Part 2 of the digression, let W be a compact, oriented 4-manifold with
boundary and suppose that M, as above, is a component of W . Let K (M; W)
denote the cokernel of the restriction homomorphism H!(W;Z/2) —
HY(M;Z/2). As in (2.12) of [7], introduce the homomorphism
lw:c— K(M;W).

End the digression.
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THEOREM 1.3. Let My and M; be compact, oriented, 3-manifolds with the
rational homology of S3. Let W be an oriented, spin cobordism between My and
M. Suppose that:

1) The intersection form of W is equivalent to a sum of metabolics.

2) Both cpm, and cy, are represented by ¢ with lw(c) = 0.

Then Iz(Mo) = Ig(Ml).

b) Proof of Theorem 1.1.

Orient S3 as the boundary of the unit ball in C?. Let P denote the Poincaré
homology sphere. This is a quotient of S® by a certain finite subgroup of
S0O(4), and as such, inherits an orientation from S3. (Note that P is an integral
homology sphere.)

Note that P is spin cobordant to S, and there is such a spin cobordism with
signature divisable by 8 (See, e.g., [3]). (The signature of a 4-manifold is the
number of positive eigenvalues minus the number of negative eigenvalues in the
intersection form after diagonalizing the latter over Q.)

Let M be a compact, oriented 4-manifold with the integral homology of S3.
There is an oriented, spin cobordism between M and S3, and the index of such
a cobordism is automatically divisible by 8 (again, see [3].) Thus, there is a spin
cobordism between M and S° or between M and P with signature divisable by
16. Let W denote the afore-mentioned cobordism. If the signature of W is not
zero, then the connect sum of W with some number of K3 surfaces (with the
appropriate orientations) gives a new spin cobordism between M and S* or P
which has signature zero. This will now be assumed.

The intersection form of W is a signature zero, unimodular, even, symmetric
matrix. (The form is even if B(z,z) € 2Z for all z.) Such a form is equivalent
over GI(-,Z) to a sum of metabolics as in (1.3) with all m, = %1 (once again,
see [3]). Thus, the first condition of Theorem 1.2 is met with Mo = M and
with M; = S3 or P. The second condition of Theorem 1.2 is also met because
both My and M; have trivial homology. It follows that I;(M) = I5(S®) or else
L (M) = L(P). Now I>(S%) = 0 (Theorem 2.9 in [7]) so Theorem 1.1 will
follow with a demonstration that I;(P) = 0.

With the preceding understood, let P denote the Poincaré homology sphere
with the opposite orientation. Then I(P) = I2(P) since P U P bounds a
spin cobordism with index divisable by 16. However, unless I(P) = 0, this
conclusion is incompatible with

LEMMA 1.4. Let M be a compact, oriented 3-manifold with the integral
homology of S3. Let M denote the manifold M with reversed orientation. Then
L(M) = —I(M).

Proof. The form w for the computation of I>(M) is constructed after choosing
a singular frame, ¢, for 7* M in the class of cps. (See Proposition 2.5 in [7].) The
frame ¢ = ({1, (2, (3) must be compatible with the orientation of M. With this
point understood, then ¢! = (—(;,{2,({3) will be an oriented, singular frame
for T*M, which is in the class cp (see Proposition 2.7 and Definition 2.8 of
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[7].) The form —w will result from the constructions in [7] using the frame (’.
Meanwhile, the orientation of M x M is not sensitive to the choice of orientation
for M. O

¢) An outline for proving Theorem 1.3.

Here is a 4 step program for proving Theorem 1.3:

Step 0: Start with a cobordism between M, and M; which obeys the
conditions of Theorem 1.3. Appeal to Proposition 3.2 in [7] to find a cobordism
W between M, and M; which decomposes as W; U Wy U W3 with the following
properties:

1) oW, =MOUM6, 6W2:M6UM{, and 6W3=M{UM1,
where Mg and M, are compact, oriented 3-manifolds with
the rational homology of S3.

2) Wi g3 are oriented, spin manifolds.

3) Both W; and W3 have the rational homology of S3.
Meanwhile W5 has vanishing first and third Betti numbers;
and W, has a proper Morse function with no index 1 or
index 3 critical points.

4) Both cp, and cpy, are represented by elements in the kernel
of Lw.

(1.4)

Step 1: Construct a compact, oriented 7-manifold with boundary Z C
W x W. The boundary of this Z is the disjoint union of My x My, M; x M;
and some number of copies of S% x S3. Note that

(15) ZEZ1UZQUZ3,

where Z; C W; x W; are compact submanifolds with boundary. The Z; are
described in Section 3g of [7]. (The boundary of Z;,8Z2,, is the disjoint union
of My x My and M} x M} plus copies of S* x S3. Meanwhile 8Z, contains
M x M{, M] x M| and copies of S3 x S3. Finally, 8Z3 is the disjoint union of
M| x M{,M; x M; plus copies of S® x S%. In addition, Z; and Z, are glued
together along M{ x M, while Z; and Z3 are glued together across Mj x Mj.)

Step 2: Inside Z, find an oriented, dimension 4 subvariety ¥z with 82
being the disjoint union of ¥s,, s, and copies of £gs, one in each S3 x S3
boundary component. Note that

(1.6) Yz2=%zUXz UXg,

where Xz, , are described in [7] (see Eq. (4.10) in [7] and consider Sections 4d,
4e and 10 in [7].) The subvariety £z, C Z; is constructed here, and the details
of the construction of ¥z, account for most of the length of this article.
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Step 3: Find a closed 2-form, wz, on Z — ¥z with the following properties:

1) The 2-form wz should restrict to My X My — Xy, as
the 2-form used in (1.1) for computing Is(Mp). Its re-
striction to M; x M; — ¥, should give the 2-form used
in (1.1) for computing I (M;).

2) The 2-form wz should restrict to each S x S — ¥gs as
the 2-form used for (1.1) for computing I5(S3%) = 0.

3) The triple wedge product wz Awz Awz should vanish
near Y z.

Step 4: Given that wz exists as prescribed above, use Stokes’ theorem as
in (2.28) of [7] to prove that Io(M,) = Io(M;).

d) Issues in the construction of Z,¥7 and wy.

Compare the outline above with the outline in Section 2k of [7] for the proof
of [7]’s Theorem 2.9 and note the similarity between the two strategies. The
construction of Z; C Wy x W, mimics the construction of Z; and Z3 in [7]. In
all cases Z. is given as F~1(0) for a function F = (n}f — 7} f) on W. x W.
which is constructed from an appropriately chosen function f : W. — [0,1].
Here mg, : W. x W. — W. are the left and right projections. (As in [7], the
extra S% x S3 boundary components of Z. are in 1-1 correspondence with the
critical points of the function f.)

The construction of ¥z, here also mimics the construction of ¥z, and ¥z,
in [7] in that all are given as £z. = Az.UEL, UEg U E_UE,. Here, as in [7],
Az.C W.x W. is the diagonal, Er g are sections for the projections 7, g, and
E4 are certain subvarieties which are constructed with the help of a pseudo-
gradient vector field for the function f. As in [7], the variety ¥z will restrict
to each component M x M C 0Z as X ;.

Furthermore, the variety ¥z, is constructed so that the conclusions of Lem-
ma 4.1 hold for ¥z. This lemma gives necessary and sufficient conditions for
Zy — Xz, to admit a closed 2-form, wz,, whose restriction to each component
M x M C 82, is a generator of H2(M x M — X )s). The analogous closed forms,
wz, and wz, are constructed on Z; — ¥z, and Z3 — £z, in Section 10 of [7].
The form wz in (1.7) is defined so that its restriction to Z. = Z;, Z, and Z3 is
equal to the corresponding wy..

The construction of a 2-form wz, as above which satisfies the first two re-
quirements of (1.7) follows essentially the same plan as used in Section 10 of [7]
to construct wz, and wz,. The most difficult requirement to satisfy is the third
requirement of (1.7). The new difficulty, not present in [7], is the fact that the
restriction map ¢* : H2(Z;) — H?(Xz,) is not surjective when W has rational
H2.

Indeed, the arguments in [7] can be followed with minor modifications to
construct a 2-form, wy,, on the compliment of Xz, in a neighborhood of £z, U
0Z, which obeys the first two conditions of (1.7) and which has square zero near
Yz,. However, Meyer-Vietoris shows that there is an obstruction in coker(:*)
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to extending this form wz, over Z; — ¥£z,. (There is no such extension problem
for Z; and Z3; see Lemma 4.2 in [7].)

There is no argument at present which demonstrates that the coker(:*) ob-
struction is zero. But all is not lost because the application of Stokes’ theorem
in (2.28) of [7] requires less than the vanishing of wz, A wz, near ¥z,. The
application of Stokes’ theorem requires only the vanishing of wz, Awz, Awz,.

With this fact understood, remark that w;, — u has cube zero if w,, and p
both have square zero. Thus, the issue is framed as follows: Can the obstruction
in coker(+*) be killed by adding a closed form u to w,, where p has square zero,
is smooth near ¥z, and has support on Z»? As demonstrated in Section 6, the
answer to this question is yes.

The construction of u as above requires that care be taken with the construc-
tion of Ey for £z,. In particular, H?(Ey) must be controlled; as well as the
kernel of a certain homomorphism

(1.8) J :H2(2Z2) —)Hz(Zg -EZ2)-
The control of ker(¢') requires arguments which do not appear in [7].

e) The remaining sections.

Here is a brief outline of the remainder of this article: Sections 2, 3, 4 and
5 concern themselves with the construction of E4 for ¥z,. In fact, Sections 2
and 3 are occupied with various preliminary constructions on the cobordism W,
with the proper introduction of E. reserved for Section 5. Section 4 describes
a preliminary version of Ey, while Section 5 constructs the final version from
the preliminary version by ambient surgery in Wj.

The proof of Theorem 1.3 is completed in Section 6.

2 Morse Theory. This section serves as a preliminary digression to intro-
duce certain Morse theoretic constructions that are used in the subsequent con-
struction of E4 and ¥z. The subject here is a compact, oriented, 4-dimensional
cobordism between a pair of compact, oriented 3-manifolds with the rational
homology of S3. Given such a cobordism, one can find a second cobordism
which is described by (1.4) and Proposition 3.2 in [7]. The whole of the dis-
cussion in [7] concentrates on the factors Wi and W3 (which have the rational
homology of $%); and the discussion here will concentrate on the factor W.

With this last point understood, let Mp; be a pair of compact, oriented
3-manifolds, both with the rational homology of S®. In this section, W will
denote a compact, oriented, 4-dimensional cobordism from My to M; which
has a good Morse function with only index 2 critical points. (Section 3a in [7]
defines a ”good” Morse function.)

a) Algebraic considerations.

The intersection form, 83, for W is a bilinear form on Hy(W;Z) which is
non-degenerate and symetric. Suppose that this form is conjugate over Gl(-,Z)
to a form which appears in (1.3).
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Concerning the homology of W, remember that W has a good Morse function
with only index 2 critical points. The relative homology exact sequence gives

(2 1) O—}H2(W;Z)—)H2(W,MQ;Z)——)Hl(Mo;Z)
: — Hy(W;Z) — 0,
and the group Hy(W, My;Z) is freely generated. This implies that Ho(W;Z)
is freely generated too. Let {o;}]_, be a given basis for Ho(W, Mo;Z), and
{ri}i—, for Ho(W;Z). Then the image of {r;} in H2(W, My;Z) is given as
{rj = £;8Si; - 0;} for some integer valued matrix (S;;). The matrix (S;;) is
invertible over Q; it is unimodular if and only if H;(Mp;Z) =0
Given the basis {7;} for Hy(W;Z), then one can find a basis {o;} for
Hy(W, My;Z) for which the matrix (S;;) is upper triangular (see, e.g., [5])
with positive diagonal entries. That is,

(2.2) Si;=0 if i>j and S;; >0.

Note: If H1(Mo; Z) = 0, then the basis {0;} = {7;} is allowed.

Let f : M — [0,1] be the good Morse function with only index 2 critical
points. One can arrange for such an f to have one critical level, f=1(1/2).
A choice of pseudo-gradient for the function f defines the descending 2-disks,
{Bp- : p € crit(f)}, from the critical points of f. Each B,- is an embedded
2-disks in f~1([0,1/2]) to which f restricts with a single maximum, p. Orient
these disks and they give a basis for Ho(W, Mo;Z).

Using Milnor’s basis theorem (Theorem 7.6 in [6]), one can find:

1) A good Morse function f on W with critical value
1/2 and only index 2 critical points.

2) A labeling{bi,...,b,} of crit(f).

3) A pseudo-gradient, v, for f.

(2.3)

And, these are such that the given basis {0;}]_; for Hy(W, My;Z) is given
by

(2.4) {oi =[Bp-]:p=bi}iey

Here, [B,-] € Hy(W, My;Z) is the fundamental class for an appropriate choice
of orientation for B,-

b) Factoring the cobordism.

It proves convenient to factor the cobordism W into a linear chain of simpler
cobordisms. The following proposition describes the process:

PROPOSITION 2.1. Let My, be a pair of compact, oriented 3-manifolds,
each with the rational homology of S®. Let W be a compact, connected, oriented
4 dimensional cobordism between My and M,. Assume that the intersection
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form for W obeys (1.3) and assume that W has a good Morse function with
only index 2 critical points. Then W can be decomposed as

(2.5) W = UL, W,

where W; C W is a compact 4-dimensional submanifold with two boundary
components, F; and Fj,, which are embedded, 3-dimensional submanifolds of
W. These have the following properties:

1) For each j, F; has the rational homology of S3.

2) Fn+1 = Mo and Fl = Ml.

8) For each j,W; NW,_; = F;.

4) For each j, Ho(W;;Z) = @27 and the intersection matriz is conjugate by
GL(2;Z) to H(m;) for some m; € Z — {0}.

5) For each j,W; has a good Morse function which has only two critical
points, both with index 2.

The remainder of this subsection is occupied with the proof of this proposi-
tion.

Proof. The first step is the construction of the W}, and the second step verifies
their properties.

Step 1: Because of (1.3), the number r of critical points of f must be even.
Given this point, fix small € > 0 and modify f slightly so that for j € {1,...,7/2},
the critical points (b2;, byj—1) have critical value 1/2 —€- (j/r). Thus, (by,br—1)
have the smallest critical value, while (b2, b;) have the largest critical value.

Set F /241 = My, and for j € {2,...,7/2}, let

(2.6) Fj=f7'(1/2-¢€ (j-1/2)/r).

Note that each F; is a smooth, oriented submanifold which splits W into two
pieces. For 2 < j < r/2, let V; C W denote the closure of the component of
W — F; which contains M.

Set W, /2 =V, /2 and for 1 < j < r/2, set

(2.7) W; =V, — int(V; +1).
For j =1, define W; = W — int(V2) and define F} = M;.

Step 2: Consider now the properties of the {W;} and {F;}: First of all,
Assertions 2 and 3 of Proposition 2.1 follow by construction. As for Assertion 5,
note that W; is a submanifold with boundary in W which contains no critical
points of f on its boundary, and which contains only the critical points by, baj—1
of f in its interior. Thus, a rescaling of f on W; will yield a good Morse function
on Wj to verify Assertion 5 of Proposition 2.1.

The proofs of Assertions 1 and 4 of Proposition 2.1 require a digression to
construct representative cycles for the generators {7;} of Hy(W;Z). The cycle
for a given 7; will be the fundamental class of a submanifold T; C W.

To start the digression, remember that Hy(W;Z) is assumed to have a basis
{7j};=, in which the intersection form is given by (1.3). And, remember that
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the image of 7; in Ha(W, Mo; Z) is given by Zyc crit(£)Si, () * T3(b)» Where oj(p)s
shorthand for [By_] with b = b;. (This introduces the indexing function j(-) :
crit(f) — {1, ...,7} which is defined so that j(b) = j when b = b;.) Finally,
remember that the Morse function f and its pseudo-gradient have been assumed
chosen so that the matrix (S; ;) obeys (2.2).

The submanifold representative T;, for 7; can be recovered from (S; ;) and
{B,_ : be crit(f)} by the following construction: Let M4 = f~'(1/4). Note
that M, 4 is diffeomorphic to Mo. Note as well that Cy_ = By— N My, is an
embedded circle which is naturally oriented given that Bp_ is oriented. Thus,
Cy— determines a homology class, [Cy—] € Hi(M;4;Z). Meyer-Vietoris (Eq.
(2.1)) implies that

(2.8) 1i = Soeerit(£)Sij(b) - [Co-] =0 € Hi(My/4;Z).

Construct push-offs of each C,_ by taking a push-off copy of the correspond-
ing By— and intersecting with M;/4. Let p, C M, /4 denote the oriented 1-
dimensional submanifold which is the union, ,indexed by b € crit(f), of |S; ;@)
push-off copies of C,_, oriented correctly when S; ;) > 0 and oriented incor-
rectly otherwise. According to (2.8), this B, bounds an oriented surface with
boundary, R; C M, 4, which is such that mt(R )Np, =0.

With R; understood, represent 7; by the fundamental class of a subvariety
T! which is defined to be the union of R; with the union, indexed by b € crit(f),
of |S;,j(s)| push-off copies of By, oriented correctly if S; j3) > 0 and oriented
incorrectly otherwise.

Smooth the corners of T} near B, to obtain an embedded surface, T; C W.
This T; is naturally onented and its fundamental class represents the class 7;.

End the digression.

To return to the proof of Proposition 2.1, and, in particular, the proof of As-
sertion 1. By construction, Hz(V;, Mo; Z) is generated by {[Bs_] : j(b) > 2j—1}
and thus is a free group. Since M, is a rational homology sphere, Hz(Mo; Z) = 0
and therefore (1.3) (with V; replacing W) asserts that H(Vj;Z) is also free;
by construction, its generators are {[T}] : ¢ > 2j — 1}. The intersection form of
Vj is the restriction of the form for W to {[T}] : ¢ > 2j — 1}. This is a sum as
in (1.3) and is non-degenerate over Q. The non-degeneracy of the intersection
form of V; over Q implies that Fj is a rational homology sphere.

To prove Assertion 4, note that Hy(W;, Fjt1; Z) s freely generated by {[By—N
W;]: j(b) = 2j—1or 25}. Since Fj, is a rational homology sphere, Ha(Fj+1;Z)
= 0 and so the (W, Fj+1) analog of (1.3) implies that Hy(Wj;Z) is free of rank
2.

Furthermore, the intersection form on Hy(W;;Z) must be non-degenerate
because the boundary of W; has no rational homology. In fact, the inclusion of
W; into V; induces an injection Hy(Wj;Z) — Hy(Vj; Z) with image the gen-
erators [T2j_1] and [T3;]. This implies the statement in Assertion 5 concerning
the intersection form on Hy(W;;Z).

Here is why H,(W;;Z) injects into H3(Vj;Z): One must prove that the
submanifolds {T3;,T2j—1} are homologous to submanifolds which lie in W;.
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This happens if T5; and T5;_; have zero intersection number with all B,_ for
b =b; and i > 2j. Indeed, if T = Tyj,T>;—1 has zero intersection number as
described, then the intersection points of T with each such B,_ can be paired as
+ pairs. (One point with positive intersection number, and one with negative.)
Then, surgery on these embedded S%’s in T will yield a new surface, T', (with
larger genus) which is homologous to T' and which has no intersection with Bj_
when b = b; and i > j. (Mimic the tubing construction in Section 5d of [7].)
The pseudo-gradient flow can then be used to isotope this T’ into W;.

With the preceding understood, the lemma, follows with the realization that
the intersection number of T', as above, with B,_, as above, is a linear functional
of the entries of the matrix (S;;)i>;. And, this is, by assumption, the zero
matrix. O

c) Zand W x W.

This subsection describes Z C W x W, a submanifold with boundary. For
the most part, the discussion here mirrors the discussion in Section 3g, h of [7]
where an analogous Z is defined.

The stage is set with the following Definition:

DEFINITION 2.2. Let My, M; be compact, oriented 3-manifolds with the
rational homology of S3.

- A simple type cobordism: A cobordism W between M, and M, is of simple
type if the following criteria are met:
1) W is oriented and connected.
2) W has a good Morse function with only two critical points, both of
index 2.
3) Hy(W;Z) =~ Z2, and the intersection form of W is conjugate over GL(2;Z)
to H(m) for some integer m # 0.

- A simple type Morse function: Let W be a cobordism of simple type. Let
f:W —[0,1] be a function and let v be a pseudo-gradient for f. Then (f,v)
are of simple type if the following criteria are met:

1) f-1(0) = Mp and f_;(1) = M,.

2) df # 0 near OW.

3) f has only two critical points, (b;, b2), both with index 2.

4) 15/16 < f(b2) < 1/2 < f(b1) < 17/16.

5) There are integers m; > 0, mz > 0 and m; 2; and there are orientations

of the descending disks from b; and b2 such that

(2.9) o1 =my - [Bp,~] + mi2 - [Bb,—] and o2 = mg - [Bp,]

generate the image in Ho(W, Mo; Z) of Ho(W;Z).
6) The pseudo-gradient v is good in the sense of Definition 3.1 in [7].
With the stage set, assume below that W is a cobordism of simple type, and
that (f,v) are a pair of Morse function and pseudo-gradient on W which are
also of simple type.
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As in Section 3g of [7], introduce
(2.10) Z={(z,y) eW xW:F(z,y) = f(y) — f(z) = 0}.

Define Z C Z by intersecting the latter with the compliment in W x W of (open)
small radius balls about (b, ;1) and (bz, b2). That is, mimick the constructions
in Sections 3i and 3h of [7].

Some properties of Z are listed below:

A manifold: Z is a manifold with boundary,
(2.11)  8Z = (Mo x Mp) U (M1 x M1) U (S% x §3)p, U (S x §3)s,;

here (S3 x S3), is the link around Z’s singularity at (b,b). (See Section 3h of
[71.)
Orientation: The manifold int(Z) is naturally oriented using the orientation

from W x W along with dF to trivialize the normal bundle to int(Z) in W x W.
Orient the various components of (2.11) as described in Section 3h of [7].

Homology: The rational homology of Z is described by

LEMMA 2.3. Let W be as described above. Then the following hold:
1) Ho(Z) ~ R.

2) Hi(Z) = 0.

3) The inclusion Z C W x W induces Hy(Z) =~ Hy(W x W) ~ R*.
4) There is a surjection

(2.12) 0+— H3(Z) «— L_& L, ® H3(0Z).

Here, Ly =~ R are freely generated by embedded 3-spheres in Z as described in
FEquations (8.32) and (3.33) of [7].

Proof. Mimic the proof of Lemma 3.7 in [7]. O

3 Constructing T; and 7. The constructions in [7] aside, the proof of
Theorem 1.3 is mostly occupied with constructions on Wy x Wy, where W, is
described in (1.4). The previous subsection introduced a factorization of such
a W, as a sequence of cobordisms of simple type, each with a Morse function f
and pseudo-gradient v of simple type. (See Proposition 2.1 and Definition 2.2.)
The required constructions for W in (1.4) can be reduced to a series of identical
constructions, one on each simple type cobordism factor in (2.5).

With the preceding as motivation, this section will restrict attention to a
cobordism W of simple type with a Morse function f and pseudo-gradient v
which are of simple type also. The purpose of this section is to describe a very
useful pair of 2-dimensional submanifolds of W, Ty and T3, whose fundamental
classes generate Ho(W) and give the intersection form H(m). Thus, this section
serves as a second digression before the construction of E. .
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a) Reconstructing T5.

The submanifold T is obtained by smoothing the corners of a C® embedding
of a smooth surface into W. This embedding can be obtained as follows:

Step 1: Let V C W denote the set {x € W : f(z) > 1/4}. To construct
T5, first introduce the number m, from (2.9) and take my push-off copies of
By, NV, all with the same orientation. Make these push-offs so that f restricts
to each copy with only one critical point, a maximum. And require that said
maximum be close to b2 in the following sense: Use the Morse coordinates of
(3.2) in [7] and the Euclidean metric on R* to measure distance. With this
understood, the distance from each such minimum to by should be much less
than the number r which is used in (3.29) of [7] to define the boundary of Z.

To be precise, work in the Morse coordinates of (3.2) in [7] near b,. Choose
my distinct unit vectors {ny} in the (z3,z4) plane. Then, choose ¢ > 0 but
with € << r. Define the a’th push-off of Bs,— to be the set

(3.1) {(z1,22,23,24) : (z3,24) = € o}

Step 2: Use B,  to denote the resulting m, push-offs of By,; this is
an oriented, submanifold with boundary in V. It is important to realize that
OBy, C My;4 = f71(1/4) is a disjoint union of my embedded, oriented circles.
These circles bound an oriented, embedded surface with boundary Ry C M, 4
which intersects 6B,’,2_ as OR,. Take such an R, which is connected and which
has no compact components.

Set

(3.2) T} = B},_ UR.

This is a (tame) C°-embedding of a smooth surface; the embedding is smooth
save for the corners along OR2. However, these corners are right angle corners
in a suitable coordinate system and can be smoothed without difficulty. The
resulting smooth submanifold of W is T5.

Step 3: The push-offs B,’,z_ can be constructed so that T has the following
properties:

1) No pseudo-gradient flow line intersects 7 more than once.
2) No pseudo-gradient flow line is anywhere tangent to By, _.
2) T, has empty intersection with By, _.
(3.3) 3) The restriction of f to By, has only index 2 critical points,
and precisely one on each component.
4) Each component of Bj,  intersects Bp,+ transverally in
exactly one point.

To satisfy (3.3), first note that the explicit description in (3.2) for By, _ obeys
(3.3). (This is because the vectors {n,} in (3.1) are assumed to be distinct.)
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Second, note that By, can be made so that: (3.3) holds, 0B,  lies on the
boundary of an embedded solid torus N C M, /4, and past(By, _) N M 4 lies in
the interior of N. Note that the core circle of N is Bp,— N M) /4. (Recall from
Section 5a in 7] the definition of the past and future of a set U (written past(U)
and fut(U), respectively). For example, past(U) C W is the set of points which
can be obtained from U by traveling along pseudo-gradient flow lines to decrease
f.) The Morse coordinates in (3.1) extend over a neighborhood of By, in W,
and with this understood, the tubular neighborhood N is described by

(34) N = (z1,2,73,24) 22 + 72 <€ and z}+15 =125 +125+c,

Here ¢ > 0 is an appropriate constant.

Equation (3.3) follows by showing that B;,  bounds an embedded surface
with boundary in the compliment of int(N). And, such a surface exists because
the class 7o € Hy(W;Z) has zero self intersection number.

With the coordinates of (3.1) and (3.4) understood, the submanifold Ry can
be assumed to intersect a neighborhood of N as the set of (1, z2, z3,z4) which
obey:

(3.5) 1) (z3,74) =t-n, for t>e€ andsome a€ {1,...,ms}.

: 2) z?+2i=12+22+ec

Step 4: Henceforth, assume that Tj in (3.2) obeys (3.3) and (3.5). The
corner in T at OR; can be smoothed to produce a smooth submanifold T> C
f71([1/4,1]) which contains R, as a submanifold. The manifold 73 is obtained
by flowing points in By, near M4 slightly into their past so that the result
(also called By, ) is tangent to M4 at 0B,  to infinite order. Note that T
can be so constructed to obey

1) No pseudo-gradient flow line intersects 7> more than once.
2) No pseudo-gradient flow line is anywhere tangent to Ts.
(3.6) 3) T> has empty intersection with By,_.
4) Where f > 1/4+ 1/100, the restriction of f to T has only
index 2 critical points.

b) Constructing Tj.

It is convenient to replace T of the previous section with a different, though
homologous submanifold.

The construction of the new version of T requires first the construction of
a piece-wise smooth submanifold T{ C W which is defined in this subsection.
Second, the construction of the new T requires a modification of 77 to give a
smooth submanifold, 7' C W. This T} is described in the next subsection.
The new version of T} is finally presented in Subsection 2f, below.

The construction of T} is accomplished in the following steps:

Step 1: Let Ms/5 = f~!(3/8). Introduce the integers m; and m; » from
(2.9). Use By _ to denote the union of m; disjoint, push-off copies of By, _N



METABOLIC COBORDISMS 427

fut(Msz/s) together with |m; 2| disjoint, push-off copies of By, N fut(Msz/s).
Orient By _ by taking the given orientation for the push-offs of By, and, if
my,2 > 0, the given orientation for the push-offs of By,_. However, if m; 2 <0,
use the opposite orientation for the push-offs of By,_.

The function f should restrict to each of the m; push-off copies of By, _ to
have only one critical point, a maximum. And this maximum should be close to
by; its distance should be much less than the number r from (3.29) in [7] when
distance is measured using the Euclidean metric on R?* in the Morse coordinates
from (3.2) of [7]. Thus, use the Morse coordinates around b; and (3.1) to define
the typical push-off of By, _; in (3.1), use € << r and use distinct {n,}.

Note that fut(7%) intersects By, in a finite set of arcs with one endpoint at
bi. With this understood, make the push-off copies of By, N fut(M3/5) which
comprise By _ such that each intersects By, transversally in a single point,
and such that each intersects fut(T:) as a finite set of half-open arc with the
following properties:

1) Each end-point lies on 0By _.

2)  The closure of each arc has its second endpoint on the in-
tersection with By, .

3) The function f restricts to each arc without critical points.

Meanwhile, the function f should restrict to each of the |m; 2| copies of By, —
to have only one critical point, a maximum. In this case, this maximum should
have distance from b, much greater than r (of (3.29) in [7]) when measured with
the Euclidean metric in the Morse coordinates of (3.2) in [7]. Thus, a push-off
copy of By,_ in By _should be given by (3.1) but with e >> 7. Also, for these
|my 2| push-offs of By,_, use a set of unit vectors {n/,} in (3.2) that is disjoint
from the set that was used to define By, _.

Require that

(3.8) fut(T;) N B =0

whenever B C Bj _ is any of the set of [m; 2| push-off copies of By, N fut(M; /8)
in By, _. (See (3.5) and (3.6.3).)

Step 3: The boundary of Bl’u— is a disjoint union of oriented circles in
M3/g. This union of circles defines a cycle which is null homologous in Mj/g.
And, 8B;, _ bounds an oriented, embedded surface with boundary, R{ C M3s,
which intersects 0B;, _ as ORj. Take R} which is connected and which has no

compact components.
With R} and Bj, _ understood, set

(3.9) T/ =B} _UR;.
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c) Constructing T7'.

Given that T, has already been constructed, it is desirable to modify 77 by
isotopy so that the result, T}', has the following property:

1) No pseudo-gradient flow line intersects 7}’ more than once
where f < sup(f|T2).

2) No pseudo-gradient flow line is anywhere tangent to 77
where f < sup(f|T3).

(3.10)

If T{' = T} is given by (3.9), this condition may not hold. (Note that (3.10)
holds separately for R] and for B, _.) However, (3.10) can always be achieved
by redefining the push-offs in By _.

The redefinition of By, _ begins with the following observation: A component
B C By, _ which is a push-off copy of By, needs a choice of € in (3.1) for its
definition. Let €; denote the chosen value of €. Likewise, each copy of By,_
comprising By, needs a choice of € in (3.1). Use ez to denote the choice
here. One is required to choose €; >> €3. If €; is, none-the-less, much less
than f(b) — f(b2), then there are numbers h; < hy which are both greater
than sup(f|T2) but which are both significantly less than f(b;) (as measured in
multiples of €;) and also less than the maximum of f on any of the components
of By _.

Note next that OB _ is disjoint from the solid torus N in (3.4). This implies
that OR] has a collar C C R; which is disjoint from N. Each component
of C is an embedding in R of [0,1] x S!; and the convention will be that
{0} x S corresponds to a component of R} . Fix such a collar with the following
properties: A component which intersects a push-off of By, in By, _ should be
disjoint from fut(73). (See (3.8).) And, a component which intersects a push-off
of By, in By, _ should intersect fut(7?) as an arc between said components two
boundaries. (See (3.7).)

Define a re-imbedding of CU B, _ in W as follows: Move points of CU By, _
by an isotopy of W which pushes points along pseudo-gradient flow lines. The
result of the isotopy should push Bj _ to where f > h; but it should leave
the image of C' where f < h;. Thus, OR] is pushed to f~(h;). The isotopy
should keep fixed the compliment in C of a neighborhood of R} and it should
fix points in By _ where f > hy. It is not difficult to make this re-imbedding
so that

1) The restriction of f to the image of C has no critical points
(3.11) where f > 3/8.
’ 2) The restriction of f to the image of B; _ has only index 2
critical points, and there is precisely one on each component.

The embedded image of C U By, _ gives a piecewise smooth embedding in
W of a union of disks. Indeed, the embedded image of C U By, _ has a corner
where the images of C and of B; _ intersect, that is, along f~!(h;). Choose
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in advance a neighborhood of this corner, and the image of C U By, _ can be
smoothed in the chosen neighborhood so that the result, By’ _, has the following
properties:

1) B,’,’l_ = B,’,l_ where f < hs.

2) By _ agrees with the image of C' where f > h;.

3)  The restriction of f to By _ has only index 2 critical
points where f > 3/8; and there is precisely one on
each component.

4) Each component of By’ _ is either a push-off copy of
By, _, or else one of By, _.

5) A component of By’ _ which is a copy of B, inter-
sects By, + transversely in a single point. Such a com-

(3.12) ponent also intersects fut(73) in a finite set of half-
open arcs with their boundaries on M3/5. The closur-
es of each half-open arc is an embedded arc whose
other end-point is the intersection point with By, 4.
Furthermore, f restricts to each half-open arc with
no critical points where f < 3/8.

6) A component of B;’ _ which is a copy of By, has
empty intersection with fut(7%).

7) No pseudo-gradient flow line is anywhere tangent to
By _.

Let R} = R{ — C and define
(3.13) T, =R/ UBy _.

This submanifold obeys (3.10). (Where f > h;,Ty' is obtained from R by
flowing the latter along pseudo-gradient flow lines.)

d) Intersection of fut(7}') with T> and T}' with fut(73).

The intersection between fut(77') N7 is the union of a finite set of half-open
arcs each of which has its endpoint at one of the points of 7}’ N T3, and vice-
versa. (Note that T}’ N T, = R{ NT.) The closure of each half open arc is an
embedded arc with its other end point where By, _ intersects By,+. There are
at least m such arcs.

The intersection of T}' with fut(T%) is more complicated. After perturbing 77’
slightly, this intersection can be assumed to have the following form: It consists
of a finite, disjoint set of closed arcs, half-open arcs, and open arcs in 7}'; and
disjoint from these arcs, there is a finite set of disjoint, embedded circles. Each
point of T}’ N Ta(= Ry N By, ) will be a boundary component for some arc,
either half open or closed. (But, there may be more or less arcs than boundary
components of arcs.)

The closure of a half-open arc will be a smooth arc whose other endpoint
lies on By _ N By, + (and thus in a push-off copy of By, - in By _). The closure
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of an open arc will also be a smooth arc, but with both of its endpoints in
Bj' _N By, . To see that such is the case, introduce R, = fut(Rz)N f~*(7/16).
This will intersect T}’ in the my push-off copies of By, —. (In fact, its intersection
number with the union of said m; copies is equal to m. See (5) and (6) of (3.12).)
Each intersection point of R, with T]' has one half-open arc component or one
open arc component of T7'N fut(T3) passing through it. Furthermore, each
half-open arc component intersects precisely one point of 77’ N R,, while each
open arc component intersects precisely two such points. Each half-open arc
component intersects f~1([7/16,1]) as a push-off copy of a pseudo-gradient flow
line for f in By, which ends in b,; and each open arc component intersects
f~1([7/16,1]) in a pair of such push-offs.

The circles in 77'N fut(T2) can be assumed to lie in the interior of RY. (See
(5) and (6) of (3.12).)

It is important to note that there are at least m half-open arcs components
of T{'N fut(T>); any less would be incompatible with the assumed value of m
for T{' - T. If a pair of points in T7' N R, are points on the same open arc, then
these points will have opposite local intersection numbers for T7' N T5.

A similar argument shows that for at least m of these arcs, both the inter-
section point in By’ _ N R, and the endpoint in R{ N By, _ are points of positive
local intersection number for 7}’ N R, and for R{ N T3, respectively.

With the preceding understood, fix one half-open arc,

(3.14) 0 C (TV N fut(Ty)),

which intersects By’ _ N Ry at a point of positive local intersection number, and
which ends in Ry N By, _ at a point with positive local intersection number.

e) Homology of 7] and T; and the linking matrix.

There is one additional constraint that must be imposed on T7'; and this one
also requires advanced knowledge of T>. Suppose that T{' and T have already
been constructed.

The surface T» has some genus g2 > 0. As such, its first homology has a basis
which is represented by the fundamental class of a set, {nzg}f,gzzl C int(Rg), of
2 - go embedded, oriented circles. Take n; (from above) like oriented, push-off
(in Ry) copies of each 75, . Together, these form a set {pj;,}, where 3 runs
from 1 to 2g-, and where 7 runs from 1 to n;.

The pseudo-gradient flow pushes R isotopically into M3 /g as the submanifold
fut(R2) N M3/, and thus the circles {pj, } are pushed isotopically into M3/5 as
a set, {pg;} C M3/s, of 2-n; - g circles.

Fix the set of circles {pg,} once and for all. These circles will be used to
constrain R{; but a short digression is needed to define these new constraints.

Start the digression by observing that the surface 77" has some genus g; > 0
and so its first homology is represented by the fundamental class of a set of
2-g; embedded, oriented circles, {714}°%, C int(RY) C M /8- These generators
should be chosen to be disjoint from the arc v° which is described in (3.14).
(This is possible because v° is an arc with one endpoint on R} and the other
in the interior of RY.)
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The manifold M3/s, being diffeomorphic to Mp, has the rational homology of
S3. This means, in particular, that some number n; > 1 of like oriented push-
off copies (in RY) of each 71, bounds an embedded surface with boundary,
Sa C M3 /8'

No generality is lost by assuming that R{ intersect each of the circles {pg,}
transversally. Likewise, there is no generality lost here by requiring that the
{ma} which generate H;(T') be disjoint from the set {pg, }.

Push-off, in RY, the n; copies of each 71, . Make these close to 7n;, to
insure that the push-off isotopy is disjoint from {pg;}. Find the submanifold
with boundary S, C M3/s which intersects the n; push-off copies of 714 as its
boundary.

In general position, each such S, will intersect each of the circles pg,; transver-
sally. So, there is a 2¢1 % 2g, matrix A = (Ao g) where A, g is the sum of the
intersection numbers between the surface S, and the n, circles {pg, }72,. (Here,
the index 3 is fixed.) The matrix A will be called the linking matrix between
the set {n1o} and the set {pg.}. Note that the entries A, g are divisible by
the integer n;, and that the definition of A, g requires the apriori choice of
push-offs {ps } of {n2p}.

With the preceding understood, the point of this subsection is to remark
that there is an isotopy of RY in Mg (rel dRY, the arc 0%, and RY NT3) to a
surface R*; C Mj3/g so that the linking matrix A* between the isotoped circles,
{n*1a}, and {pg.} has all entries zero. In fact, this can be accomplished using
finger moves to isotope 71, to change its linking number with each pg; but leave
unchanged the linking number with each pg,>1. (Note that the linking number
with pg, can be changed only by multiples of an integer which divides n;, while
the entries of the matrix A, g are divisible by n;.)

Each such finger move changes R} by an ambient isotopy which fixes the
compliment of a small ball in R{ and which stretches the interior of this ball
over a regular neighborhood of some arc in Mj3/5. The ability to simultaneously
change all entries of A to zero is based on the fact that the finger move isotopy
moves R{ only in tubular neighborhoods of arcs.

Because each finger move changes R/ only in the neighborhood of a point,
these finger can be made away from AR}, the path v°. For the same reason,
the finger moves can be done so as to leave R{ N T2 unchanged.

With the preceding understood, it will be assumed in the sequel that there
exist n; > 0 and a set of:

1) circles {n2p} C T> which generate Hy(T3)
for the homology of T3,

2) n, push-off copies, {{pg,}:2,}, of {m25},
3) circles {n1o} which generate H,(T}'),

(3.15)

with the property that the resulting linking matrix A = (Aq4,g) has all entries
zero. Furthermore, {14} will be assumed disjoint from v° of (2.14) and from

fut({pj ;})-
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f) Definition of T;.

With T}’ understood, the surface 7; C W can now be constructed by isotop-
ing Ty’ into the future a small amount along pseudo-gradient flow lines.
This construction of T} is accomplished by the following steps:

Step 1: Find an embedding
(3.16) @ f71([3/8,1)) — f7H([3/8,1))
with the following properties:

1) ¢ is the end of an isotopy which moves points along
pseudo-gradient flow lines.

2) @ is the identity where f > 3/8 + 1/100.

3) Let M = p(M3/s). Then f|M > 3/8.

4) f restricts to p(v°) with out critical points.

5) inf(fle({ma})) > sup(fle({ps. NT7'})).
6) f restricts to p(By, _) with only index 2 critical points,

one on each component.

(3.17)

To find such a ¢, use the pseudo-gradient flow to construct a diffeomorphism
(3.18) F71([3/8,7/16]) = M3/s x [3/8,7/16],

where the pseudo-gradient flow lines are mapped to the lines p x [3/8,7/16], and
where f is given by projection onto the second factor. With respect to (3.18),
the embedding ¢ sends (p,t) to (p, g(p,t)), where g is a smooth function. It is
left to the reader to find g which makes (3.17) true. (Remark here that {74}
are disjoint from v° and from {pg,}.}

Step 2: With ¢ understood, define
(3.19) T = o(TY).

Also, introduce R; = ¢(RY). Here are some important properties of T;:
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1) No pseudo-gradient flow line intersects T; more than once
where f < sup(f|T>).
2) No pseudo-gradient is anywhere tangent to T; where
(3:20) f < sup(f|T2).
A1 NT, = int(Rl) N Bl,>2—‘
4) Where f > 3/8 + 1/100, the restriction of f to T} has only
index 2 critical points.

4 A start at ¥z. This section begins the construction of the subvariety
Lz, asin (1.6). The plan is to factor the cobordism W, from (1.4) as a se-
quence of cobordisms of simple type (Definition 2.2), and to define a . for each
component, simple type cobordism in this factorization. Then, ¥z, in (1.6) is
defined to be the union of these X. for the constituent simple type cobordisms
which comprise W,.

With the preceding understood, assume in this section and in Section 5 that
W, and the Morse function f and the pseudo-gradient v are of simple type, as
defined in Definition 2.2. Use the definitions in Section 2c to define Z C W x W.
Sections 4 and 5 will construct a particular oriented, dimension-4 subvariety
with boundary ¥z C Z. The boundary of ¥z will sit in Z. Furthermore, ¥z
will contain a class 0z € Hy(Xz,0%) which obeys the conclusions of Lemma
4.1in [7]. As in Section 4c and (4.10) of [7], the variety ¥z will be given as a
union

(4.1) Yz2=AzUE ,UERUE_UE,.

Here, Az is as described in Section 4d of [7], and Ef g are as described in
Section 4e of [7]. (Remember: Az is the intersection of Z with the diagonal in
W x W. Meanwhile, Eg, E; are the respective intersections of Z with v x W
and W x«; here vy C W is the pseudo-gradient flow line which starts at pp € Mo
and ends at p; € M;.)

a) A first pass at F_.

Recall that the future of a set U C W (written fut(U)) is the set of points in
W which can be reached from U by traveling along a gradient flow line in the
direction of increasing f.

Introduce

(42) Ei_ = [(Tl X fut(Tz)) U (fut(Tl) X Tg)] NnZ.

Equations (3.6) and (3.20) ensure that T} x fut(T>) and fut(T1) x T3 intersect Z
transversally, each as a smooth submanifold with boundary. These assertions
are proved with the following fact: Let U C W be a submanifold which intersects
no pseudo-gradient flow line more than once, and which is nowhere tangent to
a pseudo-gradient flow line. Then fut(U) C W is a smooth submanifold with
boundary, and that boundary is U.
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b) Ej_ as a cycle.

To consider E!_ as a cycle, it is necessary to understand first the boundaries
of (Ty x fut(T3)) N Z and (fut(Ty) x T2) N Z. One finds

4.3) O[Ty x fut(T2)) N Z] = [(Ty x Ty) N Z)U [(Ty x fut(T3)) N 8Z],
and, likewise,
(44) B[(fut(Tl) X Tz) n Z] = [(Tl X Tz) n Z] U [(fllt(Tl) X Tz)) n 6Z]

(The conditions in (3.6) and (3.20) are used here.)

It follows from (4.3), (4.4) that orientations exist for both (fut(T1) x T>) N Z
and (T x fut(T3))N Z such that 8[E; _] has support (as a cycle) in (S* x 53)p, U
(8% x S%);,. With the preceding understood, write

(4.5) E,_N3Z = Spy+ U Sp,—.

where, Sp,+ C (S® x S3);, while Sp,— C (S® x S3)p,. It is left as an exercise
to prove that Sy, can be identified as being some number of push-off copies
of the right-hand sphere, (S%)p,+ C (5% x S3)s,; while Sp,_ consists of some
number of disjoint, push-off copies of (5%)s,— C (S® x S3)p,. (See the proof of
Lemma 4.1, below.)

The next task is to determine the homology classes of the cycles that Sp, 4
and S, define.

LEMMA 4.1. The components (Ty x fut(T2)) N Z and (fut(Ty) x T2) N Z of
E{_ can be oriented so that as a cycle,

(4.6) OB ] = m - [S*]oi+ +m - [S]o,—.

Proof. Orient Ej_ as follows: To begin, orient 77 and T to make their
intersection number [T}] - [T3] equal to m. Let o012 € A*T(Ty2) denote the
respective orientations. Next, orient fut(7;) and fut(T3) by using —v A o1,2,
where v is the pseudo-gradient for f. (Note that v is tangent to fut(7} 2) and is
inward pointing along T or T5.) Orient T} x fut(T%) as wp * 0y Amg * (—v A 02)
and orient fut(T}) x T> as w * (v A 01) A g * 02. Notice that the former is
oriented using the product orientation, but the latter is oriented in reverse. This
insures that the respective orientations which are induced on 7 x T3 are, in
fact, opposite.

Near by, T; is identified with m; like oriented, push-off copies of the descend-
ing disk By, . Using the Morse coordinates of (3.2) in [7], this descending disk
is given by setting 3 = r4 = 0. And, one can assume, without loss of gener-
ality, that o; = 9, A 0;,. Here, the orientation for W can be assumed to be
0= 0z, NOgy AOgy A Oy,.

Near b, fut(T:) is a union of some number of disjoint components. These
components can be described as follows: The pseudo-gradient flow isotopes T3
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to where f > 7/16 in W. This isotopic image, T',, intersects T} transversally; in
fact, T', intersects T} in the m,; push-off copies of By, _. Each intersection of T,
with By, defines a component fut(72) near b;, and likewise each intersection
point of T, with one of the m; push-off copies of By, defines a component
of T x fut(T;) near (b;,b1). Thus, the intersection points of T, with the m;
push-off copies of By, _ are in 1-1 correspondence with the components of Sp, 4.

Using Morse coordinates of (3.2) in [7] near b;, a typical component of fut(7%)
near b is given by {z : £; = 0,2z, > 0}. If this component corresponds to a
positive intersection point of T, with T3, then this component can be assumed
oriented by —8;, A0z, Ay, ; here J;, is equal to v where x,, z3 and 4 all vanish
and z2 > 0. Thus, the corresponding component of T} x fut(73) is oriented by

4.7 — Ogy N Ozy A By, N Oy, A Dy,,
where
(4.8) T)=23=24=y=yY3s=ys =0 and y; > 0.

Here, the orientation for the intersection of Ty x fut(T2) with Z is given by con-
tracting (4.7) with —dy, + dzs. The resulting orientation is
Oz, A (Ozy + Oy,) A Oy; A Oy,. The induced boundary orientation is given by
contracting this with —dz, — dy,; and the result is 0y, A Oy, A Oy,

Meanwhile, (S%);,+ = {(z,y) : y1 = x3 = 24 = 0,72 = r}. At the point in
(4.8), (S3)b,+ is oriented by 8;, A 8y, A 8y, also. Notice that this orientation
is the same as that of the boundary of the given component of T x fut(T3),
and this component, by assumption, corresponds to a positive intersection point
between T; and T,.

To summarize the preceding, a component of S, + is oriented the same as
(S3)b,+ if the corresponding intersection point between T} and T, is positive;
while it is oriented in reverse if the corresponding intersection point between T
and T, is negative. This observation justifies the factor of m in the first term
on the right side of (4.6) because the algebraic intersection number between T}
and T, is equal to that between T} and T5, which is m.

Consider now the analogous calculation near (bq, b2). Here, the roles of T}
and T, are interchanged. The intersection of T3 and T occur along B,’,z_; the
ms push-off copies of By,_. Thus, the components of fut(77) x T> near (bs, b2)
are in 1-1 correspondence with the intersection points of 71 and By,  as are the
components of Sp,_.

Use the Morse coordinates of (3.2) in [7] near b,. A typical component of
fut(T1) x T» near (by,bo) is given as

(4.9) {(z,y) : 21 =y3 = ys = 0,72 > 0}.

If the component above corresponds to an intersection point of T with By,
which has positive intersection number, then the orientation of (4.9) is given by
Ozy A Ogy A Oz A Oy, A By, at points where

(4.10) T =xz3=T4=y1=yY3=ya=0 and =z, >0.
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The orientation for the intersection of (4.9) with Z is given by contracting its
orientation with —dy, + dzs. The resulting orientation at (4.10) is Oz; A Oz A
8y, A (8y, + 8z;). The boundary orientation is obtained by contracting again
with —dzo — dy2; the result is 8;, A 9z, A 8y,. Note that this orientation equals
the given orientation on (S2)p,—.

The preceding is summarized as follows: A component of Sy,_ is oriented
as (S%);,— if the corresponding intersection point of Ty and T is positive; and
the component is oriented negatively if the corresponding intersection point is
negative. Thus, the factor of m in the second term on the right in (4.6) also
follows from the fact that Ty - To = m. O

c) E;_ as a smoothing of Ej_.

As defined by (4.2), E]_ is the union of a pair of 4-dimensional submanifolds
with boundary in Z which meet along a common boundary component which
is (Ty x T) N Z. There are no obstructions to smoothing the crease along (T3 x
T») X Z to obtain a smoothly embedded, oriented submanifold with boundary,
E,_ C Z. The next few subsections will describe some additional properties of
E;_.

d) Ey,.

Introduce the switch map
(4.11) O:WxW —WxW,

which interchanges the coordinates. This map preserves Z. Define Ej, =
O(E!_) and E14+ = O(E;-). Thus,

(4.12) B, = [(fut(T3) x Ty) U (T} x fut(T}))] N 2.

e) The intersection with Az.

Make the standard identification of Ay C W x W with W (project on either
right of left factor). This identifies Az with the compliment in W of the union
of an open ball about b; and an open ball about b2. And this identifies E]_NAz
with the intersection of

(4.13) (Ty N fut(Te)) U (fut(T1) N T2)

with the compliment in W of said balls.

To begin the analysis of (4.13), note that fut(7y) N7 is the union of a finite
set of half-open arcs which start at the points of T3 N T, (this is the same as
RN B{,z_). The closure of each of these half-open arcs is an embedded arc
whose other endpoint is in By, N By,+. Remark that there are at least m such
arcs.

The intersection of T with fut(T%) is the image under the embedding ¢ in
(3.16) of T}' N fut(T2). The latter is described in Section 3d.
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It follows from the description in Section 3d of T}’ N fut(73) that the in-
tersection of F;_ with Az is the disjoint union of some number of arcs and
some number of circles. The end-points of the arcs lie dE;_ N Az, that is, on
(83 x §3)p, U(S? x S3)p,. It is important to note that there are at least m such
arcs which join m points of Sp,+ N (Ags)s, with m points of Sp,— N (Ags)s,.

Furthermore, the proof of Lemma 4.1 shows that for at least m of these
arcs, the one end point in Sy, and the other in S, lie in components which
are oriented positively with respect to the given orientations of (S2)s,4+ and
(S3)b,—, respectively. In fact, there is an arc, v C E;_ N Az, which connects
a positively oriented component of Sp,+ with a positively oriented component
of Sp,—, and which is characterized as follows: Before smoothing E}_ to E;_,
this v was an arc in E]_ which intersected Ty N fut(7T3) as ¢(v°) N Az, where
10 is the half-open arc in (3.14).

f) Intersections with Ef g.

The submanifold E;_ can be assumed to have empty intersection with Ef g.
Indeed, the flow line v between py € My and p; € M; misses a small ball around
b, and b2; and a small perturbation of R; and R, will insure that -y misses these
surfaces also.

g) Normal framings.

The claim here is that E;_ has trivial normal bundle in Z, and that there is
a trivialization of said normal bundle which restricts to each component of Sy, 4
and Sp,— as the constant normal framing. (Recall from [7] that the constant
framing of S%x point in S3 x S3 is the normal framing which is given by 7g * f,
where mr maps S2 x S3 onto the right factor of S2, and f is a normal framing
of the point.)

The establishment of this claim requires the following six steps.

Step 1: This first step identifies E;_:

LEMMA 4.2. The submanifold E,_ is diffeomorphic to the compliment in
T1 x Ty of a finite number of disjoint, open balls.

Proof. The identification of E;_ starts with the identification
(414) [fut(Tl) X Tz] NZ = (R1 X B{,z_) -U,
where U is a finite set of disjoint, open balls. Meanwhile,

(4.15) [Ty x fut(T2)]N Z
' ~ [(R1 x R2) U(By,_ x R2) U(By,_ x By, )] - U".

Here, R; X R, and B,’,l_ x R, are attached along their common boundary

component, By _ x R;. Meanwhile, (By, _ x Rp) U (By,_ x By, ) are at-

tached along their common boundary component, B,  x dB;, . Finally,

U' C int(By,_ x Ry) is a finite, disjoint collection of open balls.
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Remember that (fut(Th) x T>) N Z and (T3 x fut(T3)) N Z are attached along
their common boundary to obtain E;_. This common boundary is

(4.16) (Ty x )N Z = [Ry x (S')™]U[8R, U B}, _],

where (S')™ = (B;,_ N M). With (4.16) understood, one can see (4.14) and
(4.15) as a decomposition of T3 x T3 less some number of open balls by writing
T1 ~ B{)l_ UR1 and T2 ~ Bl,72~ URz. O

Step 2: The normal bundle to E;_ in Z is an oriented three-plane bundle,
and since E;_ is not closed, this 3-plane bundle is classified by its 2nd Stieffel-
Whitney class, wy. This class is zero for the following reasons: First, we(TW)
= 0 since W is assumed to be a spin manifold. Thus, wo(T(W x W)) = 0.
Second, remark that T'(W x W)|Z =~ TZ & R, where R is the trivial, real line
bundle. Thus, we(T'Z) = 0. Restricted to E1_,TZ =~ TE;_ & vE;_, where
vE;_ is the normal bundle in question. Now, T} x T, is a spin manifold, and
therefore wz (E1—) = 0; so we(vE;-) = 0 as claimed.

Step 3: Having established that E;_ has trivial normal bundle in Z,
it remains yet to establish that this normal bundle has a trivialization which
restricts to each component of F;_ as the constant normal framing. Here is
an outline of the argument:

a) Remember that F;_ is the image of an embedding of the compliment
in T; x T3 of some number of open balls. With this understood, the proof
establishes that this embedding extends as an embedding of 77 X T5 into W x W.
This extension will be called E;_.

b) The proof establishes that the normal bundle in W x W to E_ splits as
N ®R, where N is a trivial 3-plane bundle, and where R restricts to E;_ C E;—
as the normal bundle to Z in W x W.

c) The proof establishes that NV is a trivial 3-plane bundle over E_.

d) Thus, N restricts to E;_ as vE;_; and the restriction of a framing of N
to Ej_ gives a framing of vE;_ which is homotopic to the constant framing
over each component of 9F; _.

Step 4: To esteblish Step 3a, above, remark that a component, C of 0F;
on (S3 x S3);, has a neighborhood in E;_ which can be assumed to have the
following form in coordinates from Lemma 3.6 in [7]:

(417)  {(z,y):z3=x4=y2=0 and z}+23+y3 +yi=yi},

where y; > (r/2)'/2. Here, C is given by (4.17) with y; = (r/2)1/2.

Note that C is the intersection with (S® x S$2)p, of a push-off of the ascending
4-ball from the critical point (b;, b1) for the function F' on W x W which is given
in (3.20) of [7]. Thus C bounds an embedded 4-ball in W x W, for example,
the ball B ¢ (W x W — Z) which is given by

(4.18) {(,y) i3 =24 =9y2 =0,y = (7'/2)1/2
: and z%+ 2z} +y3 +y? <r/2}.
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Each boundary component of E;_ has its analogous B; and these can be taken
to be mutually disjoint, being all push-off copies of a descending 4-ball for F
from (b1,b;) or from (bg,b2). Glue these 4-balls to E;_ along their common
boundaries and smooth the corner along 8E;_ to obtain E;_, an embedding of
T x T, into W x W which extends E;_.

Step 5: To establish Step 3b, note that the normal bundle to Ei_inWxW
splits as vE;_ @ R where R is spanned by a section of T (W x W) along E;_
which has positive pairing with dF. With this understood, consider the vector
field —9/0y; in the coordinates of (4.17), (4.18). This vector field is nowhere
tangent to E;_ and restricts to a neighborhood of B in E\_ to have positive
pairing with the 1-form dF. Thus, —9/0y; extends the preceding splitting of
the normal bundle of E;_ in W x W to a splitting of the normal bundle of El_
in WxW as N @R, where N =vE;_ over E;_.

Step 6: The fact that vE;_ is trivial implies that wy(N) = 0. Thus, N is
the trivial bundle if N’s first Pontrjagin class vanishes. This class is computed
as follows: Since p) (T'(Ty x T3)) = 0, it follows that p;(N) is the same as
p1(T(W x W))|Ey—. Thus, N is trivial if p; (T(W x W)) is trivial as a rational
class. The latter is trivial because p; (T'(W xW)) & wpxp1 (TW)+mgr*p1 (TW)),
and both these classes vanish because W is has non-trivial boundary.

h) A fiducial homotopy class of normal framing.

The previous subsection establishes that there are homotopy classes of normal
framings for E;_ in Z which restrict to each component of E;_ as the class
of the constant normal framing. The purpose of this subsection is to describe
a subset of such classes which behave nicely when restricted to a specific set of
generators for Hy (E;_).

To make this all precise, it proves useful to first digress to describe a set of
generators of Hy(E;—-). To begin the digression, take the generators {114} for
H,(T{") and {nq5} for H1(T>) as described in (3.15). Choose a point z; € R;
and a point 2 € Ry. Then, generators for H(E;_) are given by

1) {s1a = (p(ma) x fut(z2)) N Z},

(4.19) 2)  {sag = (z1 x fut(nep)) N Z}.

Fix generators {s1q4, 523} as above. End the digression.

Ideally, a normal frame for E;_ should restrict to these circles as a product
normal frame, e = (e}, e2,e3), for Ry x fut(Rz) in W x W with the following
properties:

1) e isnormalto ¢(Mszs) in W and (df,er) <O.
(420) 2) ez isnormalto R; in @(Msys).
3) e3 isnormalto fut(R;) in W and (df,e3)=0.

LEMMA 4.3. Given generators {s14, 23} for H1(E1-) as described in (4.19),
there is a normal frame for E,_ in Z whose restriction to each component of
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OE,_ is a constant normal frame, and whose restriction to each s € {s14, 528}
is described by (4.20).

Remark: A normal frame for E;_ which is described by Lemma 4.3 will
be called a fiducial normal frame.

Proof. The restriction of a given normal frame £ of E;_ to s € {s1q, S25} can
be written as g - e, where g : s — SO(3). If g is null-homotopic, then, and
only then can £ be homotoped to a frame whose restriction to s is equal to e.
With the preceding understood, note that a map g : S* — SO(3) is classified
by the class in H!(S*;Z/2) of the pull-back of the generator, o , of the module
H'(SO(3);Z/2). Therefore, a normal frame ¢ for E;_ (which is homotopic
to a constant frame on each component of OF;_) defines an element A(§) €
(DaH'(s10;Z/2)) ® (DgH"(s28;Z/2)) which is the obstruction to deforming
¢ to a fiducial frame. By the way, note that when h : E;_ — SO(3), then
A(h - &) = M) +i*h*o, where i is the inclusion map of (UgS14) U (Ugs2g) into
E,_.

To prove the lemma, take a normal frame ¢ for F;_ and define a map q :
(UaS1a) U (Ugsag) —> S! as follows: If s € {s1a,523} and A(€) has trivial
summand in H!(s;Z/2), then make q|s the constant map. Otherwise, make
g|s a diffeomorphism to S! (a degree one map.) Because {s14,525} generate
H,(E,_), this map q extends as a map q : E;_ — S! which is trivial near
OE;_. Let j : 8' — SO(3) generate H;(SO(3)) and set h = j ogq. Then
A(h o &) = 0 because of the equalities i*h*o = (j 0 ¢)*o = A(£). O

i) Hz(El_) and Hg(El_).

Lemma 4.2 implies that
(4.21) H*(Er-;R) = H*(Ty) @ H*(T1) & (H'(Ty) ® H'(T2)).

Of course, Hy(E;—;R) is isomorphic to (4.21), but the proof of the results in
the introductory section requires a set of generators for Hy(E;—; R).

To give such generators, it is necessary to first choose orientations for T) and
T3 so that their intersection number equals m. Choose a point p; € By, _ with
f(p) < f|T,. Also, choose a point p» € R, which is on a gradient flow line
which ends on M;.

With these choices understood, then

1) Tl_ = (T1 X fut(pg)) N Z,
2) To- =p; x (fut(T2) N f~1(p1))

are embedded submanifolds of E;_ each of whose fundamental class is a gener-
ator of Ha(F;_).

To obtain the remaining generators, it is necessary to first choose embedded
circles, {n91«} C R{ and {723} C R, which generate the respective first homol-
ogy of T} and T,. Equation (3.15) introduces an integer n; > 1 and then, for
each 3, a set {pj. };2, of n; like oriented, push-off copies (in R;) of mzp. Let
M5 = Uipj,. Orient this submanifold of M, /4 by taking the given orientation of

(4.22)
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each p,’B‘. For future applications, it should be assumed, as in Section 3e, that
{ma} is disjoint from fut({n;s}).

For each o, fix a set, 1, C RY, of n;, like oriented, push-off copies of ;4.
Do not make a big push off: The push-off isotopy must not intersect fut({n55})
nor should (3.17.5) fail with {n],} replacing {niq}.

The remaining generators of Hy(E;_) can be taken to be the fundamental
classes of

(4.23) Top- = (p(me) x fut(nyg)) N Z.

J) Pushing off Hy(E;-).

The second homology of Ej, with real coefficients is generated by
(4.24) [T =Ty xy)NZ] and [Tor]=[(T2 xv)N Z].

The second homology of Er with real coefficients is generated by the correspond-
ing [Ti1gr] = ©.[T1L] and [T2g] = O«[T21]. The inclusion map from E; U Eg
into Z identifies these four classes as generators of Hz(Z). (Use real coefficients
here and through out this subsection.)

The inclusion map of E;_ U Eg U Er, into Z induces a homomorphism

(4.25) t: Hy(Ey— UELUER) — H2(2)
with the property that

) ¢ (Th-]-[T)) =
(4.26) 2) ¢ ([T2-] - [T2r) =
3) -[Tap.]=0.

0,
0,

As discussed in Section 4h, the submanifold E;_ has a trivial normal bundle
in Z with a fiducial homotopy class of framing which restricts to each component
of OF;_ as the class of the constant normal framing. Choose a framing from
such a homotopy class and use one of the frame vectors to push each of the
submanifolds 77—, T>—, and {T, -} into Z — E;_.

If p, is chosen so that fut(p,) is disjoint from 77, then the submanifold T;
is disjoint from E;y U Az. If p; is chosen to be disjoint from fut(7%), then the
submanifold T3 _ is likewise disjoint from E14UAz. As {11} and fut({n; ﬁ}) are
assumed to be disjoint, {T, g-} is disjoint from Az. And, because of (3.17.5),
{Tap-} is disjoint from E;4. Thus, T1—,T>— and all {T,3—} can be pushed
off of E;_ into Z — ¥; where

(4.27) Y1 =AzUELUERUE,_UE;,

in an essentially canonical way.

Both E;, and Eg have a canonical homotopy class of normal bundle framing.
The canonical homotopy class of normal framing for Ey, is the class of the normal
framing which is obtained by pulling back via the projection 7 a normal bundle
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framing for the arc v in W. Similarly, the canonical homotopy class of normal
framing for Eg is obtained by pulling back via the projection m; the same
normal bundle framing for v C W. Fix a framing in the canonical homotopy
class for E’s normal bundle and use one of the framing basis vectors to push
Tt and T,y off of Ey, into X;. Then, push T1g and T5g off of Eg into ¥; by
the analogous method.

These push-offs define a homomorphism

(4.28) Vo Hz(El_. UEL U ER) — Hz(Z - 21),
and the purpose of this subsection is to prove

LEMMA 4.4. The classes ([T1-] — [T1L]), (T2-] — [T2r]) and {[Tx,g-]} gen-
erate the kernel of u'. Thus, ker(t') = ker(r).

Proof. The proof considers each of the three kinds of classes in turn.

Case 1: The class [T1-] — [T1L]. To begin, remark that there is a natural
push-off, T} _, of T; _ into ¥; which is obtained by using (4.22.1) with p, replaced
by a point pj € M;,4 — Rz which is a push-off of p;. This sort of push-off can
be defined by a normal framing, (e;, ez, es), for E;_ which has the following
property: Along T3 C (Th x fut(T:)) N Z, the frame is the restriction from
Ty x fut(T3) of a product frame, where

(4.29) 1) e3 isnormalto fut(Tp) in W and (df,e3) =0,
’ 2) (e1,e2) is anormal frame for 77 in W.

The push-off T} _ as described above is then obtained by pushing off T;_ along
the normal vector e3.

Now Tj has trivial normal bundle (its self intersection number is zero), so
there is a normal frame as in (4.29) for E;_ along T;_. Furthermore,

LEMMA 4.5. There is a fiducial normal frame from Section 4h whose re-
striction to Ty_ is described by (4.29).

This lemma is proved below; accept it for the time being to continue with
the proof of Lemma 4.4 for [T1_] — [T1L].

An acceptable push-off of Ty, is defined as follows: Take a point pyeM; /4
which is near too, but not equal to v N M; /4. A push-off of Ty into Z — % is
(T1 x fut(pg)) N Z.

Since R; and R; both are connected, and both have non-trivial boundaries,
one can find a path u in M, /4 with one endpoint p; and the other p; and whose
future is disjoint from 77,75 and . With this understood, then (T} x fut(u))NZ
is an isotopy in Z — ¥; between the push-offs of 77 and T;.

Proof. Let £ denote a normal frame from Section 4h. There is a map
g : Ty — SO(3) such that g-(£|T1-) is described by (4.29). With this under-
stood, the lemma follows if such a map g can be found which is null homotopic.
Now, amap ¢ : 71— — SO(3) is null homotopic if and only if the map lifts to a
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map into S3. The obstruction to such a lift is an element 6(g) € H*(Ty—;Z/2)
which is the pull-back by g of the generator of H!(SO(3);Z/2). Note that
0(g1 - g2) = 6(g1) + 0(g2)- Store this information.

Consider now the homotopy classes of normal frames which have the form
of (4.29). Given that e3 is constrained to lie on a fixed side of R;, these are
in 1-1 correspondence with the homotopy classes of normal frames of 7T7. The
latter set is isomorphic (though not canonically) to the set of homotopy classes
of maps from T;_ to SO(2) ~ S.

Meanwhile, a map h : T;_ — S! is distinguished up to homotopy by an
invariant 6;(h) € H'(T,_;Z) which is the class of the pull-back by h of the
generator of H'(S'). Furthermore, let j : SO(2) — SO(3) denote the usual
inclusion. Then joh: T;_ — SO(3) and one has 6(j o h) = 6;(h)mod(2).

The lemma now follows from this last comment because H!(T1_;Z/2) ~
HYT\_;Z)® Z]2.

Case 2: The class [T>_]—[T2g]. The argument for [T>_]—[T2g] is essentially
the same as the preceding one and will not be given.

Case 3: The classes {[T,g]}. The first step is to consider the trivialization
of the normal bundle of E;_ along a given T, g.

LEMMA 4.6. There are fiducial normal frames for E1_ (as defined in Section
4h) that restrict to Top as the restriction of a normal frame e = (e1,ez,€3)
which is a product normal frame for the submanifold Ry x fut(R;) C W x W
as described by (4.20).

This lemma is proved below; accept it momentarily to continue the proof of
Lemma 4.5.

Describe the push-off of T, - into Z — % as follows: Let M35 = f~1(3/8).
Push 7{, into Mjs/s along the pseudo-gradient flow. Use le to denote the
resulting set of circles. Then

(4.30) T,p- =1, x (fut(myg) N Mass)

is a acceptable push-off of T, g— into Z — %;.

Now, remark that 7}, bounds a smooth surface So C p(M3/s), and this
means that Q; bounds in Mj/g, the bounding surface, Sa, is obtained by flow-
ing S, along the pseudo-gradient flow lines into M3/5. With the preceding
understood,

(4.31) S x (fut(mzg) N Mays)

bounds T', 5_ in Z.

Note that (4.31) is disjoint from E;_ and from E;. It is also disjoint from
E;, and it is disjoint from Eg if S, is chosen to miss the point of intersection
of v with ¢(Ms/s).

The intersection of (4.31) with Az is

(4.32) (Sa Nfut(nyg)) C Agz.
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This may be non-empty. However, by assumption, the linking matrix of Section
3e has all entries zero, which means that the intersection points in (4.32) can
be paired so that the local intersection numbers (+1) of the points in each pair
cancel. The cancelling of these local signs in pairs implies that an ambient
surgery in Z of the interior of (4.32) (remove (S° x B3) which intersect Az
and replace with (B! x $2)’s which do not) will result in a submanifold with
boundary in Z which is completely disjoint from ¥; and which bounds T', 5_.

Proof. Upon restriction to T, g, a fiducial normal frame § for E;_ (as de-
scribed in Section 4h) has the form g - e for some g : Tp g — SO(3). If g is
null-homotopic, then £ can be homotoped in a neighborhood of T, g to restrict
to T, as the restriction of e.

With the preceding understood, remark that a map g as above is null homo-
topic if and only if g lifts to a map into S3. The obstruction to finding such a lift
is g*0c € HY(Ta,p;Z/2), where o generates H!(SO(3);Z/2). Now, Ta g is the
disjoint union of push-off copies of an embedded torus, (¢(714) X fut(neg)) N Z.
The first homology of this embedded torus is generated by the circles (p(114) X
fut(z2)) N Z and (z1 x fut(neg)) x Z; here 21 € @(mq) while z € 795. This
fact with Lemma 4.3 insures that g*o is zero. O

k) Intersections with L.

Reintroduce the function F on W x W which assigns f(y) — f(z) to a point
(z,y). As remarked in Section 3 of [7], the critical points of F' are the points
(p,q) where p and ¢ are critical points of f. The descending 4-ball from the
point (b2, b;) intersects Z as an embedded 3-sphere which will be denoted by
S(2,1)- (In (3.32) of [7], this 3-sphere is denoted by S(s, s,)—; but such notation
is not necessary here.) Likewise, the ascending 4-ball from (b;,bs) intersects Z
as an embedded 3-sphere which will be denoted by S(; 5y (rather than S, 4,)+
as in (3.33) of [7]).

The purpose of this subsection is to prove

LEMMA 4.7. The intersection numbers of E1— and of Eyy with S(3 1) add
up to zero. The intersection numbers of E1— and of Eyy with S(; ) also add
up to zero.

Proof. To consider the case of S(3 1), note that the descending ball from
(be,b1) is Bp,+ X Bp,—. The intersection numbers of E;_ and of E;, with S(2,1)
(in Z) are minus the respective intersection numbers (in W x W) of E;_ and
of E1+ with Bb2+ X Bb1—~

Consider first the intersection number of E;_ with By, x By, —. There are
no intersection points in (fut(77) x T3) N Z because the intersection between
By, — and T5 occurs near f~1(1/4), while on fut(71), f > 3/8.

As for (T x fut(T2)) N Z, note that By, has intersection number m; 5 with
Ty; one intersection point is in each of the |m; 2| copies of By, which sit in
By _. Each of these intersection points can be assumed to have a different value
of f, but all such values occur near f(b;). Meanwhile, By, — has intersection
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number m/m, with fut(7%) N f~*(f(bz)). This number is computed using the
following facts:

1) The intersection number of T} with fut(T%) N f~'(f(bs)
is the same as that of T} with T5.

2) T1 intersects fut(73) N f~(f(b2)) only in the push-off
copies of By, — in ¢(By, _).

(4.33)

Thus, By, + X By, - has intersection number m - m; 5 /m; with E;_ (so S2,1)
has intersection number equal to —m - m; 2/m; with E;_).

Now turn to the intersection number of By, x By,_ with E;. Here, there
are no intersections in (fut(7%) x T1) N Z because By, intersects fut(7T,) where
f >7/16, while By, _ intersects T; where f is approximately 3/8.

On the other hand, By, has intersection number my with T5, once in each
copy of By, that makes up By, _. Each such intersection takes place near b,.
Meanwhile, the intersection number between By, — and fut(T}) N~! (by) is equal
to —m - mj 2/(m; - m2). This number is computed using the following facts:

1) T1 has zero intersection number with itself.
2) A push-off copy of T} can be constructed which intersects T}
(4.34) as a push-off of By _ intersects fut(R;) N f~*(7/16).
3) T> has m intersections with T, one in each of the push-off
copies of By, that comprise By, .

Thus, By, x By, - has intersection number —m-m; o /m; with Ey 4 (so S(2 1)
has intersection number m - my 5 /m; with Ey4).

The case for S(; o) follows from the preceding computation because S(;,2) =
©(S(2,1)) while © interchanges F,_ with Eyy. O

5 The Construction of E;. The previous section began the construction
of ¥z in the case where W is a cobordism of simple type as described in Defi-
nition 2.2. (See (4.1).) This section will finish the construction of ¥z for such
a cobordism. Indeed, (4.1) is missing only definitions of E4; and this section
will construct E4 from E; 4 via ambient surgery in Z. The surgical techniques
here are those from Sections 7-10 of [7].

a) Constructing E,_: Push-offs and tubings.

Begin with E;_ of the preceding section. Using the fiducial normal framing
at the end of Section 4h, make 2m disjoint, push-off copies of E;_ in addition
to the original. Orient the first m copies as the original, and orient the last m
copies in reverse. Use Ej_ to denote the resulting disjoint union.

The boundary of E;_ is described in (4.5) and (4.6). That is, it is a union
of 3-spheres which are push-off copies of (S3)p,+ or of (§2)s,— in (S x S§3), or
in (83 x 83),,, respectively. As described at the end of Section 4e, there is an
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arc component v of E;_ N Az that connects a positively oriented component
Sy C OE;— N (S3 x S3),,— with a positively oriented component Sy C 0E;_ N
(Ss x Ss)bz'

Each of the first m — 1 push-off copies of F;_ contains a push-off copy of
S1. Let {Sla}g‘;()l denote this set of push-offs. Here, Sjp is the original S; in
the original copy of E;_. Use {S3,}™, to denote the corresponding copies of
Sy (with Sz denoting the original), and let {v,}7") denote the corresponding
copies of v.

Note that the components of (0E}_ N (S% x S3)p,) — {S1a} can be paired
up so that each pair contains one positively oriented sphere and one negatively
oriented sphere. The spheres in each pair should be tubed to each other as
described in Section 7b of [7] (see (7.3) in [7]). Note: As m > 1, there is at
least one pair to tube here.

Likewise, the components of (OEj_ N (S3 x S$3);,) — {S24} can be paired
so that each pair contains one positively oriented sphere and one negatively
oriented sphere. The spheres in each pair should be tubed to each other as
described in the same Section 7b of [7]. There is at least one pair to tube here
too.

Use E,_ to describe the submanifold (with boundary) of Z that results. By
construction,

(5.1) OE_ = {S1a}i0 U{S2a )00 -

Note as well (see Section 7e of [7]) that after a small perturbation, the inter-
section of F,_ with Az will be transversal, and given by

(5.2) E;- NAz = {ua}55 UC,

where C C int(Az) is a disjoint union of embedded circles.

One can argue as in Section 7f of [7] that E,_ has trivial normal bundle in
Z with a framing which restricts to each component of E,_ as the constant
normal framing.

Meyer-Vietoris (as used in the proof of Assertion 6 of Proposition 7.4 in [7])
shows that H%(E,_) ~ H*(E}_).

Define E;; = O(E;-) and define X3 as in (4.27) with E,y instead of Ej4.
Define the homorphism ¢ : Ho(E;— U Ef, U ER) — H»(Z) from the inclusion
into Z, and define ¢' : Ho(E2— U EL U Eg) — Hy(Z — X3) by analogy with
(4.28) using the homotopy class of normal frame for E»_ which is inherited (as
in Section 7f of [7]) from the canonical homotopy class of normal frame for E;_.
Then

(5.3) ker(¢) = ker(4'),

just as in Lemma 4.4. To prove (5.3), note first that (5.3) holds for E}_ since
E;_ is the disjoint union of some number of push-off copies of E;_. Next,
remark that Eo_ = Ej_ except near §Z. Finally, note that the homologies
which prove Lemma 4.4 for E;_ are made away from 8Z.
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As a final comment about F,_, remark that the tubing can be done in such
a way that E;_ has empty intersection with Ey, gr; and it can be done so that
the tubing avoids the spheres S(2,1) and S(1 2 of Lemma 4.7. In any event, the
fundamental class [E;_] in Hy(Z,0Z) will equal [E;_].

b) Constructing E;_: Removing circles.

The goal here is to take some number N; of like oriented, push-off copies of
E5_ and do surgery on the circles in its intersection with Az. The goal is to
obtain a manifold F3_ with the following properties:

PROPOSITION 5.1. There is an oriented submanifold (with boundary) Ez_ C
Z and an integer N > 1 with the following properties:

1)

2)

3)
4)
5)

6)

7)

8)

9)

The fundamental class [E3_] in H4(Z,0Z) is equal to m™! - N - [E;_],
and, in particular, obeys

O[Es-] = N - [S°]p,+ + N - [S%]n, -
The boundary of Es_ is a submanifold of 0Z, given by
O0E;_ = (nglsla) U (ngl S2a),

where each S1q is a push-off copy of (S*x point) C (S x S®),, while
each Sy, is a push-off copy of (point xS3) C (S x S3)p,.

E3_ has empty intersection with My X My and with M, x M.

E5_ has empty intersection with E;, and with Eg.

Es_ has transversal intersection with Az and

E3— n AZ = U{yvzlvaa

where {vy} are all push-off copies of an arc. Furthermore, for each o, vy
has one end point on S1o N Az and the other on Soq N AZ.

Es_ has trivial normal bundle in Z, and this normal bundle has a fiducial
frame ( which restricts to each S1, and each Sa, as the constant normal
frame.

Es_ is obtained from the disjoint union, E}_, of some number N; of
like oriented, push-off copies of Eo_ by ambient surgery in Z on embed-
ded circles in Ef_ N Az. This surgery naturally identifies H*(E3_; Q) =~
ON H?*(E;_; Q).

Define E3y = O(F3_) and define X3 as in (4.27) with E3y instead of
Ey 1. Define the homorphism v : Ho(E3— U Ef, U Eg) — Hy(Z) from
the inclusion into Z, and define ' : Hy(E3_ U Ep U ER) — H2(Z — X3)
by analogy with (4.28) using the homotopy class of normal frame for E3_
from Assertion 6, above. Then ker(t) = ker(4').

The intersection numbers of E3_ and E3 with the sphere S(1 2y (of Lem-

ma 4.7) sum to zero; and the same is true for the intersection numbers of
E3_ and E3; with S5 ).
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Proof. The submanifold E3_ is constructed by mimicking the proof of Propo-
sition 8.1 in [7]. To be brief, the first step is to invoke Propositions 8.3 and 8.7
in [7). Copy the arguments in Sections 8c, 8d and 8e of [7] to verify that the
assumptions of Propositions 8.3 and 8.7 can be met with the following choices
of A,B, X and O:

1) A is the interior of some number Nj of like oriented,
push-off copies ofE,_.

2) B =int(Az).

3) X =int(2).

4) O is the compliment in int(Z) of the closure of a regular
neighborhood of 0ZUv U Ep U Ep.

Here, v C Az N E;_ is described in Section 5a, above; and it is assumed that O
does not contain the N; - m push copies of v which are the arc components of
ANAgz. (Note that there is a basis (i.e., [T1] and [T3]) for B’s second homology
in which the B’s intersection form is a 2 x 2 matrix with zero’s on the diagonal.
A symmetric, bilinear form with this property is even.)

In proving Assertion 7, note that the union of the circles in F5_ N Ay is
homologically non-trivial because the construction of E;_ required at least one
pair of tubings near each of (S® x S3),, ,.

The proof for Assertion 8 of Proposition 5.1 is as follows: The assertion holds
with E§_ replacing F3_ everywhere since Ej_ is a union of push-off copies of
E,_. Meanwhile, the surgery which changes E}_ to E3_ takes place in a regular
neighborhood of Az, and the homologies which prove that ker(¢) = ker(+') can
be made with support away from Az. (See the proof of Lemma 4.4.)

Assertion 9 of Proposition 5.1 follows from Assertion 1 and Lem-
ma 4.7. O

(5.4)

c) Constructing E,4; straightening E3, N E3_.

The intersection of E3, with E3_ can be something of a mess. After small
perturbations of F3., this intersection has the form

(5.5) Es; NE;_=TUC,

where I' C Z is the union of T'; = UY_ v, with some N — 1 like oriented,
push-offs of I'; into Z — Az. These push-offs can be assumed as close to Az as
desired. Meanwhile, C C int(Z) — Az is a disjoint union of embedded circles.

By the way, (5.5) can be established using (3.17.4).

Argue as in Section 9 in [7] to prove that ambient surgery on a pair, Ej_,
of like oriented push-offs of E3_, with ambient surgery on a pair, E3, of like
oriented push-offs of E3; will result in submanifolds E,+ with the following
properties:

PROPOSITION 5.2. There are connected, oriented submanifolds (with bound-

ary) E4_ C Z and E4y C Z and an integer N > 1 with the following properties:

1) The fundamental classes [E4x) in Hy(Z,0Z) equal m~! - N - [E14] and
furthermore obey

O[Es-] = N - [S%]p,+ + N - [S°]s, -,



2)

3)

4)
5)
6)

7)

8)

9)

10)

11)
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O[Es] = N - [S°]o,— + N - [S°]p,-
Let © : Z — Z denote the switch map. Near 0Z U Az,

Es4t = O(Ey).
The boundary of E4_ is a submanifold of 8Z, given by
OEs_ = (U}, S1a) U (UL, S2a),

where each Si1q is a push-off copy of (S®x point) C (S% x S®);,, while
each Syq is a push-off copy of (point xS3) C (S% x S3)s,.

E4+ have empty intersection with My X My and with My x M;.

E4+ have empty intersection with E;, and with Eg.

E4+ have transversal intersection with Az, and

E, NAz =Eq NAz =UY_ v,

where {vy} are all push-off copies of an arc. Furthermore, for each a,v,
has one end point on S, N Az and the other on S N Az.

E4_ has transversal intersections with E4,. Furthermore,
Ey NEyy =T,

where T' is the union of I'y = Uy=1Nv, and some N — 1 like oriented,
push-off copies of T’y in Z — Ag.

E4+ have trivial normal bundles in Z, and these normal bundles have
frames (4 with properties which include: The frames (1 restrict to each
boundary component as the constant frame. Furthermore, where Asser-
tion 2 holds, {4 = O x ({_).

E41 are obtained from the union, Ej,, of one or possibly two like ori-
ented, push-off copies of Esy by ambient surgery in int(Z — Az) on the
circles in E3_ N E3, . These surgeries naturally identify H 2(B4+;Q) =~
OH*(E3.; Q).

Define X4 as in (4.27) with E4y instead of E1+. Define the homorphism ¢ :
Hy(Ey_UE4 4 UELUER) — Hy(Z) from the inclusion into Z, and define
(' : Hy(Eq4_UE34 UELUER) — Hy(Z —X4) by analogy with (4.28) using
the homotopy class of normal frame for E4y from Assertion 7, above.
Then ker(t) = ker(:').

The intersection numbers of Es_ and E4y with the sphere Sy 2y (of Lem-
ma 4.7) sum to zero; and the same is true for the intersection numbers of
E4_ and E4y with S(2,1)'

The fact that Z is path connected implies that F4+ can be constructed to
be path connected. See Lemma 8.10 in [7] and its proof.

Remark that the last assertion of Proposition 5.2 follows from Assertion 1 and
Lemma, 4.7. The argument for Assertion 9 proceeds as follows: Since Ej, are
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disjoint unions of push-off copies of E34, Assertion 9 holds if Ej, everywhere
replace E4+. Now, Eysy is constructed by surgery on Ej,; and these surgeries
can be performed away from the generators of H;. Furthermore, the surgeries
take place in a regular neighborhood of a surface with boundary or 3-ball in Z,
and so can be performed away from the homologies which establish Assertion 9
for Ej,. (See the proof of Lemma 4.4.)

d) The meld construction and E,.

This section constructs E4 from E,4 using the meld operation of Section 10
in [7]. In this regard, note that the behavior of E4_ near 0Z U Az is described
by (10.2-5) in [7] modulo notation.

To be precise, there is a regular neighborhood U C Z of 8Z N Az such that
Eq_NU is aset {Yo}\_, (with N from Proposition 5.2), where {Y,>2} are
disjoint, like oriented push-off copies of Y;. Meanwhile, Y; is the image of a
proper embedding into U of the space in (10.3) of [7]; this being the compli-
ment in the open unit 4-ball of the open balls By of radius 1/8 and centers
(£1/4,0,0,0). Note here that the boundary of By is mapped diffeomorphi-
cally onto (S3)p,+ C (S® x S3)s,, and the boundary of B_ is likewise mapped
onto (S%)p,— C (S3 x S3)p,. Meanwhile, the arc along the z-axis between
(£1/8,0,0,0) is mapped to the arc v C E4— NAz.

The {Ya>2} are described by (10.4) and (10.5) in [7].

The melded space, E_, is then described by (10.8) in [7]. (See also (10.9)
and (10.10) in [7].)

As for E, the neighborhood U can be chosen to be invariant under the
switch map (4.11) and such that E44 NU = ©(E4— NU). With this understood,
define E, N(Z —U) = E4+ N(Z - U), and define E, NU = ©(E_- NU).

Note that
1) [Ei]=m"!-N-[Eix] in Hy(Z,0Z;Z).

2) OE-]=N-[Ss++ N [S]s,-
and [E;] =N - [S%]p,— +[S%]s,+-
3) H*(E4;Q) ~ H*(E44;Q).

(5.6)

6 Completing the proof The purpose of this last section is to complete
the proof of Theorem 1.3 along the lines that were outlined in Section 1c. Thus,
suppose that My and M; are compact, oriented 3-manifolds with the rational
homology of S3. Assume that My and M; are spin cobordant by a cobordism
whose intersection form is equivalent to a sum of metabolics (see (1.3)). As
descibed in (1.4), one can find such a cobordism which factors as W; UW, U WS,
where W; and W3 have the rational homology of S, and where W, has a good
Morse function with only index 2 critical points. As in Proposition 2.1, the
cobordism W can be factored as U7_; W5, ;, where each Wy ; is a cobordism of
simple type (Definition 2.2) between a pair, Fj_; and Fj, of rational homology
spheres. Here, Fp = M{ and F,, = M.

Define Z; = U; 2> ;, where each Z; ; C W3 j x W3 ; is defined as in Section 2c.
The identification of F; X Fj C Zy ; with Fj x F; C Z3 j4+1 is left implicit here.
Use this Z; in (1.5)
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Fix base points in each Fj. Then define {Xz,.} as in (4.1). With this un-
derstood, set ¥z, = U;X 2, . after making the implicit boundary identifications.
Use this ¥z, in (1.6).

Step 3 of the outline in Section lc constructs a closed 2-form wz on the
compliment of ¥z which obeys wz Awz Awz = 0 near ¥z. The construction of
wz proceeds by first constructing a closed 2-form w, on the compliment of ¥z
in a regular neighborhood Nz of £z in Z. The form w, will be built so that it
satisfies Condition 1 of Lemma 4.2 in [7]. Also, w, Aw, = 0.

The form will then be extended over the compliment of ¥z of a neighborhood
of 8Z U Xz so that its pull-back to any boundary component M x M — X,/ is
a form which computes I(M). Here M x M is any of My x My, M; x M; or
any (53 x 53)(,”,(33 X Sa)sz'

The next question is whether the form w, so constructed can be extended
over Z — X z. The author does not know when such is the case. However, it
is shown below that there is a closed 2-form g on Nz which obeys u A p = 0,
which vanishes near 0Z, and is such that wz = w, — p extends over Z — Xz as
a closed form. Note that such a form will satisfy the third condition in (1.7).

The form p will vanish near ¥z, and near ¥z,. Furthermore, p will be
written as u = X;—1nus ;, where us ; has compact support in the interior of
Zs,j. With this understood, the construction of p3 ; can be made independently
for each factor Z, ; which comprises Zs.

a) w, near ¥z and 0Z.

The construction of the closed 2-form w, on the compliment of £z in a regu-
lar neighborhood Nz C Z of ¥z UdZ proceeds by mimicking the constructions
in Sections 11a - 11i of [7] which construct wz near ¥z when the cobordism
between My and M; has the rational homology of S®. The conditions in The-
orem 1.3 that W be spin and that the canonical frame be represented by c in
the kernel of the homomorphism ¢y arise here.

The verification of Condition 1 of Lemma 4.2 for wz proceeds as in Sec-
tion 11k of [7], and the reader is referred there. (But note Assertion 10 of
Proposition 5.2.)

b) The obstruction from cobordisms of simple type.

At this point, the proof of Theorem 1.3 must diverge from the proof of
Theorem 2.9 in [7] because the restriction homomorphism H?(Z) — H?(Xz)
will not generally be surjective. (Use real coefficients here and throughout this
section.) Thus, the second part of Lemma 4.2 in 7] can not be invoked. This
failure of surjectivity obstructs the extension of w; to Z — ¥z.

This extension obstruction will be studied by using the fact that restric-
tion to the Z ; defines isomorphisms H?(Z) ~ @;H?*(Z,,;) and H*(Zz) =
®;H?*(Xz,,;). (Meyer-Vietoris proves these assertions.) These direct sum de-
compositions imply that the obstruction to extending wz over Z — ¥z can be
understood by restricting attention to Z2 — Xz, and even further, by restrict-
ing attention to Z, j. More precisely, the obstructions to extending w, can be
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understood by restricting attention to the very special case of a cobordism of
simple type (as in Definition 2.2).

With the preceding understood, agree, for the remainder of Section 11, to
restrict attention to a particular cobordism of simple type. Simplify notation
by using W now to denote this simple type cobordism. Then, Z C W x W and
Yz C Z are defined accordingly.

With Z as just redefined, note that the extension obstruction may well ex-
ist because rank(H?(Xz)) > 10 while rank(H2(Z)) = 4. Indeed, Lemma 2.3
describes H%(Z)(~ R*), while Meyer-Vietoris with Proposition 5.2 find

(6.1) H*(Zz) ~ H = H*(Az) ® H*(EL) ® H*(ER) ® H*(E_) ® H*(E,).

In fact, the restriction map from Z to £z maps H?(Z) injectively into H?(EL)®
H?*(ER).

c) Analyzing the obstruction.

Let W be a cobordism of simple type and let Z C W x W and let £z C Z be
defined accordingly. Let Nz C Z be a regular neighborhood of ¥z. Introduce

(62) i’{:Hz(Z—Ez)—)IZP(Nz—Ez) and
’ i;:Hz(Nz)—)HZ(Nz—Ez)

to denote the pull-back homomorphisms. One can conclude from the Meyer-

Vietoris exact sequence that

(6.3) wz = ija+i38,
and the purpose of the subsequent arguments is to prove

PROPOSITION 6.1. Equation (6.3) can be solved with a closed 2-form (3 on
Nz which obeys B A B =0 and which vanishes near 8Z.

Remark that the lemma implies that wz = w, — 138 extends over Z — Xz
(as a in (6.3)) and it obeys wz A wz Awz = 0 near Xz as required.

d) Strategy for the proof of Proposition 6.1.

The proof of Proposition 6.1 starts with the remark that the various framings
that were introduced in the construction of wz can be used to construct a
homomorphism

(6.4) j:Hy(Nz) — Hy(Nz — Xz)

with the property that the composition of j with i, (the dual of ¢} in (6.2)) gives
the identity. Indeed, each of Az, E r and F4+ have natural trivializations of
their normal bundles. And, these trivializations can be used to push-off the
generating cycles for the homology groups in question. (For EL, g, see the proof
of Lemma 4.4, and see Assertion 9 of Proposition 5.2 for E41 .) In this regard,
note that an application of Meyer-Vietoris shows that the dimension 2 homology
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of ¥z can be represented by submanifolds in Az, Ff g and in the smooth parts
of E4; and these submanifolds can be assumed to be disjoint from E+ N Az
and from EL,R NAz.

The homomorphism j has the property that

(6.5) (wz,3(-)) =0.

(This is because j is defined by the same homotopy class of normal framing
which is used to define wz.)
Put (6.5) aside for the moment to consider the composition

(6.6) Hy(Sz) -5 Hy(Nz — $z) -5 Hy(Z - B5),

which will be denoted by «'. (The arrow ¢; in (6.6) is induced by the inclusion.)
Define Q C H%(Xz) by the exact sequence

(6.7) 0— Q — H*(Xz) — ker(M)* — 0.

Note that the restriction induced monomorphism H?(Z) — H?(Zz) factors
through Q.

If the quotient Q/H?(Z) is zero, then it follows from (6.7) that (6.3) can
be solved with 8 = 0. If the quotient Q/H?(Z) is one dimensional, and if a
generator can be represented by a form § with 8 A 8 = 0, then Proposition 6.1
follows.

Thus, the proof of Proposition 6.1 will proceed with a proof that the dimen-
sion of Q/H?(Z) is one or less. The proof will end by finding a generator (when
dim(Q/H?(Z)) = 1) which is represented in Q by a form with square zero (see
(6.10), below).

By the way, the following lemma will be the principle tool for finding closed
forms with square zero:

LEMMA 6.2. Let X be an oriented 4-manifold, and let R C X be a compact,
oriented, embedded surface. Suppose that R has zero self-intersection number.
Given an open neighborhood O C X of R, there is a closed 2-form p with
u A p = 0 which is supported in O and which represents the Poincaré dual to R

Proof. The surface R has trivial normal bundle. Use this fact as in (6.12) of
[7] to define a fibration from a neighborhood of R in X to the unit disk in R?
which sends R to the origin. Use such a map to pull-back from said unit disk a
2-form with compact support in the interior and with total mass equal to one.
Set p equal to this pull-back. O

e) The dimension of Q/H?(Z).
Here is the answer to the dimension question:
LEMMA 6.3. The dimension of Q/H?(Z)) is one or zero.

Proof. The inclusion of ¥z into Z induces the homomorphism ¢ : Hy(Xz) —
Hy(Z). Then, the dimension of Q/H?%(Z) is equal to the dimension of
ker(c)/ ker(s').
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To prove that ker(¢)/ ker(s') has dimension 1 or less, consider an integral class
o € Hy(Xz) with -0 = 0, but with /-0 # 0. Since ¢-o = 0, there is a bounding
3-cycle 7 C Z. The cycle 7 is a sum of singular simplices; and these simplices
can be chosen to have the following property: Each is a smooth map from the
standard 3-simplex into Z which is transversal to each of Az, EL, Eg, E44+ on
the interior of every codimension p = 0,---,3 face of the standard simplex.
(Thus, the boundary of the standard simplex is mapped into the compliment of
Y z.) With this understood, it makes sense to speak of the intersection number
of 7 with each of Az, EL, Er, E41. Note that the intersection number between
7 and E44 can be assumed to be divisible by the integer N of Proposition 5.2.
This can be achieved by replacing o with V- 0.

Observe now that intersections of 7 with any of Ep, Egr, E4+ can be removed
by changing 7 to 7’, where 7' has extra intersections with Az. For example,
one can add to 7 some multiple of [pe X Mp] to remove the intersection points
with Ej, at the expense of adding such points to Az. Likewise, adding to 7
multiples of [S3],,— will remove intersections with F;_ and add intersections
with Az. Note that all of 7’s intersections with E4_ can be transferred to
Az because E,_ is connected, and because 7’s intersection number with Az is
assumed divisible by the integer N from Proposition 5.2. The cases for Er and
E4. are analogous. (See, e.g., (9.9a,b) in [7].)

It follows from the preceding that ker(¢)/ ker(¢') is at most one-dimensional.
This is because any element in this quotient can be represented by a closed
2-cycle which bounds 7 as above, whose intersections with ¥z lie in Az only.
Given two such elements, a non-trivial linear combination would be represented
by a closed 2-cycle which bounds 7 as above with absolutely no intersections
with ¥z. Such a linear combination would be zero in ker(:)/ ker(:'). O

f) ker(c).

The final step in the proof of Proposition 6.1 is to consider the possible
generators of Q/H?(Z) in the case where this group has dimension 1.

A generator of this group is represented by a class £ € H%(Xz) which anni-
hilates the kernel of ¢/, but which is non-zero on a class ¢ € Hy(Xz) which is
annihilated by ¢ but not by ¢'. The analysis of £ proceeds by considering various
possibilities for ker(:)/ ker(:'). Remark that if this group has dimension 1, then
it can be represented in ker(¢) by some generator.

In Hy(Az) ® H2(EL) ® H2(ER) sits a two-dimensional subspace of ker(s).
An element in ker(¢) N (H2(Az) @ H2(EL) ® Hy(ER)) has the form

(6.8) 0 =0A — 0L — OR,

where o. sits in the summand with the corresponding label. Here, each o. pushes
forward to W as the same class oo € Ho(W). Then, two generators of the kernel
of ¢ in Hy(Az) ® Hy(EL) ® Ho(ER) are given by o as above with oo = [T}] and
with o9 = [T2].
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The remaining generators of the kernel of + can be taken to have the form

1) o41—0om and o049 —org,
(6.9) 2) O-1—0L1 and 0_2 —OR2,
3) {A&c}-

Here, 0112 € H2(E+), while 0112 € Hy(EL) and og; 2 € Ho(ER) project to
Hy(W) as multiples of [T},5], respectively. Meanwhile, {\+.} € H2(E1) is a
finite set of classes, and each is represented by a push-off of some Top+ as
described in (4.23).

LEMMA 6.4. The classes in (6.9) are annihilated by ¢'.

Proof. This follows from Assertion 9 of Proposition 5.2.
With the preceding lemma understood, it follows that a generator of
ker(t)/ ker(s') is described by (6.8).

g) If 0 = oA — 6, — oR is not annihilated by /.'.

In this case, there exists o as above with either oo = [T1] or g9 = [T3]. For
arguments sake, assume g¢ = [T1]. Let Ba, € H?(Ea) be the pull-back by the
map 7z, to W of the Poincaré dual to [T;]. Then Ba, pairs non-trivially with
or and so with o. Let Sr2 € H?(ER) be the pull-back by 7g of the Poincaré
dual to [T1]. Note that Bg, pairs trivially with o.

It follows that there is ¢ € R such that 8’ = fBa, + ¢ Br2 annihilates the
ker(c) in Hy(Az) & Ha(EL) ® Ho(ER). This 8 will have trivial pairing with
the classes in (6.9.1), and it will have trivial pairing with 0_; — o1 in (6.9.2),
but unless ¢ = 0, it will pair non-trivially with o_2 — og2 in (6.9.2). However,
note that the Poincaré dual, f_s € Hy(E_), to o_; pairs trivially with o_; and
non-trivially with o_,. And so, there is a real number ¢’ such that

(6.10) B=pPa,+c - Br2+c Pz

annihilates all of the classes in (6.9.2). Note that 8 will also annihilate the
classes in (6.9.3).

By appeal to Lemma 6.2, each of 8a,, Br2, and B_» can be represented by a
closed form with square zero and with support away from 8Z. (This is because
[T1] and [T3] are classes with square zero in W.) Furthermore, Lemma 6.2
insures that these forms can be constructed to have disjoint supports. Thus, 8
will vanish near 8Z and have square zero as required.
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