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Homology cobordism and the simplest perturbative
Chern-Simons 3-manifold invariant

CLIFFORD HENRY TAUBES

1 Introduction. Witten predicted [18] that certain products of a certain
2-form could be integrated over products of a compact, oriented 3-manifold to
give differential invariants of the 3-manifold. These predicted invariants were
first constructed by Axelrod and Singer [2, 3] in the case where the 3-manifold
has the rational homology of S3. (A similar prediction in [18] for computing
Jones’ knot invariants had been partially realized by Bar Natan [4].) Subse-
quently, Kontsevich [9] gave an alternative realization of Witten’s proposed
invariants, with the same constraint on the homology of the 3-manifold. (Pre-
sumably, the invariants of Axelrod/Singer and of Kontsevich are the same, but
the author has not seen a proof that such is the case.) Note that the invariants
of Axelrod/Singer and Kontsevich have only been calculated for the 3-sphere
(where they vanish).

The Axelrod/Singer and Kontsevich invariants are formally related to the
3-manifold invariants of Reshitikin and Turaev [14]. (The relationship here is
presumed analogous to that between Jones, HOMFLY and other knot invariants
and the knot invariants of Vassiliev [16], [17]; see [6], [5], [10].) There is
no theorem at present which describes the precise relationship between these
various 3-manifold invariants. Such a theorem would be useful in light of the
fact that the invariants of Reshitikin and Turaev can be explicitly computed;
they have been computed in closed form for lens spaces [8] and Seifert fibered
3-manifolds [13].

This is the first of two articles focusing solely on the simplest of the invariants
of Kontsevich, an invariant, I, which assigns a number to a 3-manifold M
(as constrained above) by integrating the cube of a certain real valued 2-form
over M x M. Of particular concern here is the value of I; on the 3-manifold
boundaries of a 4-dimensional spin cobordism which has the rational homology
of S3. The results in this article, together with those in the sequel [15], prove
that Io(M) = I;(M') when M and M' are the boundary components of an
oriented, spin 4-manifold W for which:

1. The intersection form on W’s second homology (mod torsion) is conjugate
to a direct sum of metabolic pairs.

2. The inclusions of M and M' into W induce injections of H;(-;Z/2).
(1.1)

(A metabolic pair is a symmetric, 2 x 2 matrix with zero’s on the diagonal.)
In particular, the preceding result implies that I3(M) = 0 when M has the
integral homology of S3. These results are restated and proved in [15].
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This article makes a large step on the way to (1.1); the main theorem here,
Theorem 2.9, states (in part) that Io(M) = I;(M') when M and M’ are the
boundaries of an oriented, spin 4-manifold W for which the inclusions of M and
M' into W induce

1) Isomorphisms on Hy(-;Q) for p =0, ..., 4.

2) Injective maps on H(-;Z/2).

(1.2)

In the course of proving Theorem 2.9, I,(S®) is shown to vanish. Thus, even
without the sequel [15], the main theorem here can be used, in principle, to
show that I vanishes for certain 3-manifolds. (It is possible that I> = 0 for all
MY

The author hopes that the constructions in this article will prove useful in
studying the full set of invariants of Axelrod/Singer and Kontsevich, and this
accounts, in part, for the length of the presentation. (The constructions here
play a crucial role in [15].)

Before beginning the story, the author wishes to thank Robion Kirby and
Paul Melvin for their comments concerning this work, and also for their encour-
agement and support. A debt is owed as well to Dror Bar-Natan for sharing his
knowledge of knot invariants.

This article is organized as follows: The definition of I> and the main theorem
(Theorem 2.9) are given in the next section. The remaining sections (3-11)
are occupied with constructions that are needed for the main theorem’s proof.
Section 3 is a digression to present certain facts from Morse theory. Section 4
studies the homological constraints which arise in the proof. Sections 5-10
contain the construction of a solution to the homological constraints. The final
aspects of the proof of the main theorem are provided in Section 11.

2 The definition and properties of I5(M). The purpose of this section
is to give a definition of Kontsevich’s invariant, I5(-), for compact, oriented
3-manifolds that have the rational homology of S3. This section also contains
the paper’s main theorem about the equality of I for a pair of 3- manifolds
which occur as the boundary components of a certain kind of 4-dimensional
cobordism.

a) Topological considerations.

Let M be a compact, oriented 3-manifold with the rational homology of S3.
Fix a point pp € M. Let A C M x M denote the diagonal. Define the subspace
(21) ZEAU(poXM)U(MXpo).

Lemma 2.1 describes the cohomology of M x M — X. Before reading Lemma
2.1, be forewarned that a regular neighborhood of ¥ in M x M is a neighborhood
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of ¥ which strongly deformation retracts (rel ) onto X. It is an exercise to show
that such neighborhoods exist. Also, in Lemma 2.1, cohomology is computed
with real (R) coefficients.

LEMMA 2.1. Let X be as defined in (2.1). Then

1) H} (M xM)-X)=R.

2) Let N C M x M be a regular neighborhood of . Then, restriction gives
an isomorphism H?((M x M) — ¥) ~ H?(N - ).

3) Leti:R® — N be an embedding which intersects ¥ — (po,po) transversely
in a single point, i(0). Then i* : H*(N — X) ~ H?(R?® - 0) is an isomor-
phism.

4) H' (M x M)-%)~H!N -X)=~0.

Proof. For the first assertion, use Meyer-Vietoris to prove that (M x M) —
((po x M)U(M x po)) has the rational homology of R®. Then, use Meyer-Vietoris
again to compute the cohomology of the remainder when A is deleted. In fact,
this calculation with Meyer-Vietoris shows that M x M — ¥ has the rational
cohomology of S3 x S2.

Prove the second assertion using the Meyer-Vietoris exact sequence for the
cover of M x M by N and M x MUX. (The Kunneth formula gives H2(M x M) =
0, while restriction injects H3(M x M) into H3(X).)

The third and fourth assertions are left as exercises with Meyer-Vieto-

ris. O

The cohomology of (M x M) — X with rational coefficients is isomorphic to
its DeRham cohomology.

b) An invariant.

Let C denote the set of pairs (N, @) where N is a regular neighborhood of
¥, and where ¢ : N — R® is a smooth map with the property that ¢~(0) = X.
Define an equivalence relation on C as follows: Say that (Np, ) and (N1,¢1)
are equivalent if there is a regular neighborhood N2 C Ny N N; and a smooth
map

(2.2) ®:[0,1] x N, = R3

which obeys &(0,-) = ¢(0) and ®(1,-) = ¢; and $-1(0) = [0,1] x X.

Let ¢ denote the set of equivalence classes in C.

Now, change gears somewhat and pick a smooth, closed 2- form, u, on R® —0
whose integral over the standard unit 2-sphere is equal to 1. For example,

(2.3) p = (47) " z| 73 (21 dzo dz3 + T2 dz3 dy + T3 dTyds)

Let ¢ € C. According to Lemma 2.1, there exists a smooth, closed 2-form
on M x M — ¥ which agrees with ¢*u on N. Fix such a form and call it w,, .



HOMOLOGY COBORDISM 309

PROPOSITION 2.2. Let (N,¢p) € C and choose w, as described above. Then
the following integral converges:

(2.4) I, = / Wy Awy A wy
MxM-%

Furthermore, I, is independent of the choice of w, to extend ¢*pu, and it is
independent of the choice of u. Infact, I depends only on the equivalence class
of (N,p) inc .

Proof. The integral converges because the integrand has compact support on
M x M — N. Indeed, w, Aw, vanishes on N because w, on N is the pull back
of a form on S2.

Now, suppose that (Np,po) and (N1,¢1) define the same equivalence class
in ¢ . Suppose that po and p; are different choices for x4 in Proposition 1.2.
Suppose that wy and w; are closed 2-forms on M x M — ¥ which extend ¢§ 1o
and ¢} 1 from Ny and N, respectively.

Let N2 C NoNN; and @ : [0,1] x N2 = R® — 0 give the equivalence between
(No, o) and (N1,¢1). There are no obstructions to finding a 2-form p on
[0,1] x (R® — 0) which is closed and restricts to 0 x (R® — 0) as po and to
1 x (R —0) as p;. Meanwhile, Lemma 2.1 insures that there are no obstructions
to extending ®*p to [0,1] X (M x M — X) as a closed 2-form w.

With w defined, compute

(2.5) 0= dwAwAw)

~/[;,1]X(M>(M—E)

using Stokes’ theorem to express 0 (i.e. Equation (2.5)) as a sum of three terms.
(Note that the integrand in (2.5) is compactly supported away from [0,1] x ¥
since w is pulled back from a 4- dimensional manifold on [0, 1] x N2.) The three
terms alluded to above are as follows: The first term is the contribution to
Stokes’ theorem from {1} x (M x M — X); it is the integral in (2.4) as computed
using the data with subscript “;”.

The second term is the contribution to Stokes theorem from {0} x (M x M —
¥)); it is the integral in (2.4) as computed using the data with subscript “p”.

To write down the third term which contributes to the Stokes’ theorem com-
putation of (2.5), one must first fix N C N3, a smooth, oriented, codimension 1
submanifold that separates ¥ C M x M from M x M — N,. With N understood,

here is the third contribution to (2.5):

(2.6) 5]25/ wAwAw
[0,1]xN

Note that (2.6) is zero because w on [0,1] x N equals &*u, the pull-back of a
2-form on a 4-dimensional manifold.
Thus, the number I, is the same, whether computed using the data with

“ ”

subscript “p” or with subscript “;”. O
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c) Singular framings.

The previous subsection introduced the set ¢ of equivalence classes of pairs
(N, ), where N is a regular neighborhood of £, and where ¢ : N — R3® has
¥ = ¢~1(0). The purpose of this subsection is to describe a fiducial set of such
classes. However, a preliminary, digression is required to define the notion of a
singular framing of T*M. The digression has four parts.

Part 1 of the digression introduces the standard: framing of T*R3, dz =
(dzy,dz2,dz3). Part 1 also introduces the framing § of T*(R® — 0) which is
given at x € R® by

(2.7) d=—-dz+2|z| %<z, dz >z,

where < z,dz >= £2_,z;dz;.

Part 2 of the digression makes the remark that a framing (such as ) can be
changed to a different framing using a matrix in GL(3,R). Indeed, if g = (g;;)
is a such a matrix, and if ¢ = ((;,(2,(3) is a framing, then g( is the framing
given by (9¢)i = £3_, 9i; ;.

Part 3 of the digression defines the notion of a singular framing:

DEFINITION 2.3. A4 singular frame, , for T*M ‘is an oriented trivialization of
T*(M —po) which has the following property: Let ¢ : R® — M be an orientation

preserving embedding (coordinate system) with ¢(0) = po. There should exist
an element g € GL(3,R), with positive determinant, and such that

(2.8) lim sup | ¢*(—gd| () =0.

|z|=r

(Note: Let ¢ be a frame for T*(M — pp). Suppose that ¢ and ¢’ are two
coordinates systems as in Definition 2.3 and that there exists g which makes
(2.8) true for . It is an exercise to show that there will exist g’ which makes
(2.8) true for ¢'.)

Roughly, a singular frame for T*M is a frame which looks like § in some
coordinate system centered at po.

Part 4 of the digression defines a homotopy class of singular framing of T* M.
Measure the distance between singular frames using the C° norm on sections
of T*(M — pp). Then, give the set of C° norms the induced metric topology.
A homotopy class of singular frames is just a path component of the space of
singular frames.

LEMMA 2.4. The set c of homotopy classes of singular frames for T*M is
naturally a principal bundle over a point for the abelian group
mo = (Maps(M; SO(3)).

Proof. Since m2(S0O(3)) = 0, the set of homotopy classes of singular frames
is in 1 — 1 correspondence with the set of homotopy classes of honest framings
of T*M. Fix a frame of T*M and then the space of framings of T*M can be



HOMOLOGY COBORDISM 311

identified with the space of maps from M into SO(3). Thus, the set of homotopy
classes of singular frames is in 1 — 1 correspondence with the group mg.

The action of my on the set of homotopy classes of singular frames comes
about as follows: Let ¢ = ({1, (2, (3) be a singular frame, and let g = (gij);?‘,j=1
be a map from M to SO(3). Then g( is the frame whose i’th component is
given by Zﬁ:l 9i; ¢j. It is left to the reader to check that the aforementioned
action is free and transitive.

By the way, the group m is naturally isomorphic to an abelian extension of
H'(M;Z/2) by Z. The projection,

(2.9) w:m = HY(M;Z/2),

of a homotopy class [g] of map g : M — SO(3) is the cohomology class of the
pull-back by g of the generator of H!(SO(3);Z/2). Any two maps which have
the same pull-back of said generator differ by a map which lifts to a map from
M to S3. The homotopy class of such maps to S? is classified by assigning to
a map its degree, an integer.

There is also a homomorphism,

(2.10) Poo : Mo =+ Z,

which is defined on a class [g] by taking the generator H3(SO(3);Z) and evalu-
ating its pull-back on M’s fundamental class. Note that classes in 7y which lift
to map M into S® are sent by po into 2 Z.

End the digression. a

PROPOSITION 2.5. A homotopy class, [¢], of singular frames for T*M canon-
ically defines an equivalence class, c¢ = ¢ of pairs (N, ), where N is a regular
neighborhood of ¥ and where ¢ : N = R® is a smooth map with ¢~1(0) = X.
Furthermore, when (N, p) € c¢, then * is an isomorphism between H?(R® —0)
and H?(N - X).

Propositions 2.2 and 2.5 define a map, I, from the set, ¢, of equivalence
classes of canonical frames to R.

PROPOSITION 2.6. The map I : ¢ — R is equivariant under the action of mo
on c when the mo action on R is defined by sending a pair ([g],r) € mo X R to
27 poofg] + 7.

The propositions in this subsection are proved below.

d) A canonical singular frame.

Note that I, above is not a numerical invariant of M as it is apriori defined on
the quotient, ¢, of the set of homotopy classes of singular frames by the action of
the kernel of the homomophism p.,. However, (as suggested by Kevin Walker)
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one can apply an observation of Atiyah to produce a canonical element in c,
and then apply I, to this canonical element to produce the numerical invariant,
L(M).

The definition of I;(M) requires the following four part digression: Part 1
of the digression recalls the observation of Atiyah [1] that a compact, oriented
3-manifold has a canonical homotopy class of framing of T*M & T*M. Atiyah
calls this 2-frame the canonical 2-frame. It will be denoted here by A.

A frame = for T* M @&T™* M which defines A is characterized by two conditions.
The first condition requires that = differ from a product frame (({,¢) by a map
from M into SO(6) which lifts to a map M into Spin(6).

To describe the second characterizing condition, remark first that when M
is the boundary of a compact, oriented 4-manifold, X, with boundary, then
the frame = defines a framing of (T*X @& T*X)|p since T*X |y = T*M &
€ with € being the trivial line bundle. Remark second that a framing = of
(T*X & T*X)|m has a relative first Pontrjagin number p; (T*X & T*X,E).
(This number is defined to be the first Pontrjagin number of an R®-bundle over
the space X/M obtained by crushing M to a point. The bundle in question is
trivial near M, and is isomorphic to T* X @ T* X away from M, with Z defining
the isomorphism.)

With p; (T*X @ T* X, E) understood, here is the 2nd condition that charac-
terizes Atiyah’s canonical 2-frame: For any X as above,

(2.11) n(T*XeT*X,Z) =6 signature(X)

(Note that the Hirzebruch signature theorem insures that when (2.11) holds for
one X as above, it holds for all such X.)

Part 2 of the digression serves as a reminder that every compact, oriented
3-manifold is the boundary of some compact, oriented, spin 4-manifold with
boundary [18]. Furthermore, the signature mod(8) of such a bounding 4-
manifold is an invariant of M.

Part 3 of the digression remarks that any map from a 3- manifold into Spin(6)
deforms into Spin(3) and has a natural degree. Part 4 of the digression describes
the relationship between singular framings for T*M and framings of T*M &
T*M:

PROPOSITION 2.7. Let M be a compact, oriented 3-manifold with the ra-
tional homology of S3.
1) A homotopy class of singular frame [(] for T*M naturally defines a pair,
([¢=1,[¢+]), of homotopy classes of honest frames for T*M. Here, { =
9(— where g : M — SO(3) is a map with po(g) = 2 and which lifts to
S3.
2) The assignment [(] = ([C-],[¢+]), above, induces a natural, injective map
0 from c into the set of homotopy classes of framings of T*M & T* M.

3) If M bounds a compact, oriented, spin 4-manifold whose signature is zero
mod(4), then Atiyah’s canonical 2-frame is in the image of 6.
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4) In general, there is a map g from M to Spin(6) with non-negative degree
and such that g A is in the image of 6.

This proposition is also proved below.
End the digression and consider the following definition of I,(M):

DEFINITION 2.8.Let M be a compact, oriented 3-manifold which has the
rational homology of S®. Let A denote the canonical 2-frame of Atiyah.
a) If M bounds a spin {-manifold with signature 0 mod(4), then define cpr € ¢
to be 6~ 1(A).
b) In general, define cpr € ¢ so that 0(cp) = g A, where g is a map from M
to Spin(6) whose degree is non-negative and minimal among the set of all
g such that g A € Image().

c) Define I;(M) to be the value of Proposition 2.6’s homomorphism I, on
CM-

e) I>(-) and cobordisms.

The main purpose of this article is to prove that Is(M) is an invariant of a
certain type of cobordism. A precise statement requires a two part digression.

For Part 1 of the digression, consider a pair, My and M;, of compact, ori-
ented 3-manifolds. A 4-manifold with boundary, W, will be called an oriented,
rational homology, spin cobordism between My and M; when the following re-
quirements are met: First, W is oriented and spin. Second, W’s boundary is
the disjoint union of Mp and M;. Third, let ip; : Mo; — W denote the in-
clusions as boundary components. These inclusions, plus the given orientation
of W, orient My and M;. This boundary orientation of M; should agree with
its given orientation, but the boundary orientation of My should disagree with
My’s given orientation. Fourth, the inclusions of My and M; into W should
induce isomorphisms on the rational homology.

End Part 1 of the digression and start Part 2. Let W be a compact, ori-
ented, spin 4-manifold with boundary and let M be a component of OW.
Let K(M;W) denote the cokernel of the restriction induced homomorphism
HYW;Z/2) - H'(M;Z/2). The purpose of Part 2 of the digression is to
define a homomorphism

(2.12) lw:c:»> K(M;W).

The definition of ly takes five steps: Step 1 remarks that 7*W is isomorphic
to the trivial bundle because W is spin and not a compact manifold. In partic-
ular, T*W has a frame, {. For Step 2, let ¥ be a singular frame for T*M and
let ¢’ be any honest frame for T* M which agrees with 1 on the compliment
of a ball around po. Note that 1’ defines a frame for T*W |y =~ T*M @ € by
adding an appropriately oriented frame, e, for the trivial real line bundle €. Step
3 observes that there is a unique map g : M — SO(4) which is characterized by
the equation (v',€) = g(¢|m). Step 4 observes that pull-back by g defines an
element [(y',g) € H'(M;Z/2). Finally, Step 5 observes that I(¢’, g) depends
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only on the pair (¢, g), and that the image of (', g) in K(M; W) depends only
on the homotopy class of the singular frame f and on the 4-manifold W. This
image is lw .

End the digression. Here is the main theorem in this article:

THEOREM 2.9. Let My and M; be compact, oriented 3-manifolds with the ra-
tional homology of S3. Let W be an oriented, rational homology, spin cobordism
between My and M.

1) If the inclusions of both My and M, into W induce injective maps on
H,(:;Z/2), then Io(My) = Io(M;).

2) More generally, if both the canonical homotopy class of singular frames for
My and for My (as defined in Proposition 2.8) are represented by c € c
with lW(C) = 0, then Iz(Mo) = I2(M1)

3) I(S%) = 0 and so Io(M) = 0 if M and S® are cobordant by a spin
cobordism with the rational homology of S3.

The proof of Theorem 2.9 occupies Sections 3-11 of this article, but see
Subsections 2i for the proof that I(S®) = 0 and see Subsection 2k for an
outline of the strategy for the proof of the rest of the theorem.

f) Proof of Proposition 2.5.

The proof of Proposition 2.5 uses the Pontrjagin-Thom construction; and
here is a short digression to outline how it works: Let Y be a smooth manifold
and let Z C Y be a smooth submanifold of codimension p with trivial normal
bundle N C TY|z. Note that a trivialization of Z’s co-normal bundle, N*,
defines a unique homotopy class of maps from a regular neighborhood of Z in
Y to RP which have Z as the inverse image of 0.

Indeed, a trivialization, ¢, of N* defines a (fiberwise) linear map P N> RP

which has zero as a regular value, and which has the zero section as the inverse
image of 0.
Now, call a map e : N = Y an ezponential map if it has the following two
properties:
1) e’s restriction to the zero section, Zy C N, is the identity.

2) e’s differential along Zy induces the canonical identification between
(2.13) (TN|z,)/TZy and (TY|z)/TZ =N.

It is not hard to show that exponential maps exist.

Because of (2.13), an exponential map defines a diffeomorphism between a
neighborhood of the zero section in N with a neighborhood of Z in Y. (Use
the inverse function theorem.) Furthermore, any two exponential maps are
homotopic through exponential maps. (The zero’th and first order terms in
the Taylor’s expansion off the zero section of an exponential map are fixed
completely by (2.12).)

Fix an exponential map e : N = Y. Asremarked, e defines a diffeomorphism
between a regular neighborhood, N, of Z in Y with a regular neighborhood of
the zero section in N. Thus
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(2.14) Pee =P, el:NoRP

is a map with Z as the inverse image of zero.

Because any two exponential maps are homotopic through exponential maps,
one can conclude that the coframe (, all by itself, defines an equivalence class,
c¢c, of pair (N,¢) where N is a regular neighborhood of Z in Y, and where
@ : N = RP is a smooth map with ¢~1(0) = Z. (The equivalence relation
between such pairs is analgous to the equivalence relation in Proposition 2.2.)

By the way, this construction has an inverse. Let Z C Y be an embedded
submanifold, and suppose there is a neighborhood N C Y of Z and a map
¢ : N - RP with 0 a regular value and with Z = ¢~!(0). Let dz = (dz;)i_,
denote the standard basis for T*RP. Then (¢*dz)|z defines a framing for Z’s
conormal bundle in Y.

End the digression.

The plan of proof of Proposition 2.5 is as follows: Step 1 presents an essen-
tially canonical map, ®¢, from a neighborhood of (pg,po) to R with the correct
inverse of 0. Step 2 finds canonical conormal framings for pe X (M — po) and for
(M — po) X po to be used with the Pontrjagin-Thom construction to extend ®,
along neighborhoods of p, x M and M x py. Step 3: The given singular framing
of T*M will then be used to define a conormal framing for A — (po,po) and,
finally, the Pontrjagin-Thom construction will be used to turn this conormal
framing into an extension of ®¢ to a neighborhood of A.

Step 1: Choose an oriented frame for 7*M|p, and fix an exponential map
from T*M|,, into M. This identifies a neighborhood of pp in M with a ball
of some non-zero radius in R3. To avoid complicated notation, assume the
radius is 1. This identification will be made implicitly in what follows. Use
z = (1, Z2,23) to denote the Euclidean coordinates in R3.

Note that the coordinate system so defined depends on a choice of frame for
T*M]|p, and also on an exponential map. As described above, the dependence
on the choice of exponential map is inconsequential if one is interested only in
a homotopy class of map from a neighborhood of ¥ to R®. The choice of frame
for T*M|p, is also inconsequential because two such frames differ by the action
of an element in the component of the identity matrix in GL(3; R).

The preceding coordinate system identifies a neighborhood, Ny x Ny, of
(po,po) with a neighborhood of (0,0) in R® x R3. Make this identification
implicit in what follows.

A point in R® x R?® will be written as (z,y). With this understood, po x M
intersects Ny x Np as the subspace where z = 0, while M X pg intersects No X No
as the subspace where y = 0. The diagonal A intersects No x Ny as the subspace
where z —y = 0.

Define &y on Ny x Ny by the formula

(2.15) ®o(z,y) =z Py~ |y >z
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(Dror Bar-Natan described ®¢ to the author.) Here are the salient features of
Qo:

LEMMA 2.10. The map ®¢ has the following properties:
1) | @o(z,y) I=lz[lyllz -yl
2) &, is a submersion on R® x R3 — (0,0).
3) d®g |z—0= — |y |? dz.
4) d® |y=0=| x| dy.
5) Letw=z+yandletu=z—y. Then

(2.16) d®o lu=0=2 |w |* (~du+2 |w |7? (w,du)w),
where (w,du) = £3_,w; du;.

Proof. All remarks are exercises with multivariable calculus. O

Step 2: The coordinate system on Ny identifies Ng x M with B x M, where
B C R® is a neighborhood of the origin. Map Ny x M -to B by first using the
preceding identification and then projecting onto B. Call the preceding map .
Note that 0 is a regular value of ¢ and that py x M = ¢~1(0). Thus, —p*dz
defines a frame for the conormal bundle of pg x M in M x M.

Now, restrict attention to Ny x Ng C Ng X M. The map ®¢ of Lemma 2.10
maps po X No to zero, and is a submersion along py x Ny except at pg X po.
Note that ®5dzr and —¢*dx differ along py x Np only by multiplication of a
scalar function. (This is Assertion 3 of Lemma 2.10.) In the coordinates of
Lemma 2.10, ®3dz = — | y |? dz while p*dz = —dz. Note also that the former
frame is defined for |y| < 1, while the latter is defined for | y |> 0. Take a
favorite, positive function h on [0, c0) which obeys

1) h(t)=tfort<1/2
2) h(t)=1fort > 3/4.

(2.17)

Use —h(|y|?) dz to interpolate between ®}dz where | y |< 1/2 and between
p*dz where | y |> 1 and so construct a coframe for pg X M on the compliment of
Po X po which agrees with ®5dz on po x Ny and with —p*dz on py x (M —Np). Use
the Pontrjagin-Thom construction (as described above) to extend this coframe
to a smooth map from a neighborhood of py x M in M x M to R® which agrees
with @, on a neighborhood of py x po.

Given that the coordinate system about py is fixed, the above extension will
be canonical up to homotopy.

As for M X po, introduce the switch map,

(2.18) OMxM->MxM
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which interchanges the factors. Obviously, the switch map interchanges po x M
with M x pg. Use the switch map to extend ®¢ along a neighborhood of M x
Do- O

Step 3: To extend the map ®¢ to a neighborhood of A, the strategy will be to
find a coframe, ¢, for the normal bundle of A — pg which agrees with ®jdz on
(A = pp) N Ng x No. Given such a frame ¢, one can copy the arguments from
Step 2, above, to extend ®( along A. As in Step 2, the extension will be unique
up to homotopy.

Now, A is canonically diffeomorphic to M, while the conormal bundle of A
in M x M is canonically isomorphic to T*M. (The isomorphism here is given by
ny — m}, where g, : M x M — M are the projections onto the right (R) and
left (L) factors.) So, the coframe ( is a frame for T*(M — po) with a prescribed
form near py. The constraint on ¢ near py comes from the requirement that ¢
agree with ®%dz. The latter is given in (2.16). Thus, up to the scalar factor, ¢
should be a singular frame for T*M in the sense of Definition 2.3, but with the
matrix ¢ in Definition 2.3 equal to the identity.

If g = g¢ in Definition 2.3 is not the identity for the given frame (, then
replace ¢ by g¢ ¢; this last frame will obey (2.8) with g the identity matrix.

Thus, a singular frame for T* M can be used to build a map from a neighbor-
hood of T to R® with all of the requisite properties. That said map is unique up
to homotopy follows from two already mentioned facts: First, positive determi-
nant matrices in GL(3, R) form the path component of the identity. Second, the
map in (2.14) is insensitive (modulo homotopies) to the choice of exponential
map.

g) Proof of Proposition 2.6.

To consider the behavior of I when 7y acts on ¢, remember that the action
of gy is generated as follows: Let ¢ be a singular frame for T7*M. Let g : M —
S0O(3) be a smooth map which equals the identity near to po. Then [g] € 7o
acts on the class [(] of the frame ¢ to give the class of the singular frame g (.

To compare the value of ®; on [(] and on [g (], construct the map ¢¢ : N —
R3 as described in Proposition 2.5. One could construct ¢, ¢ too, but here is
a shortcut to this map: Introduce the neighborhood Ny C N as before. Then,
define a smooth map ¥ from N, to SO(3) x R3 as follows:

1) Ifpe (Bo x M)U (M x By), then set ¥(p) = (1,¢(p))-

2) If p € Na, then set ¥(p) = (9(p), ¢ (P))-
(2.19)

Let m : SO(3) xR® — R® denote the map which describes the group action. Let
p:SO(3) x R — R® denote the projection. With m and with 3 understood,
one can take @4 ¢ as follows:

(2.20) pg¢=moy
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Equation (2.20) can be exploited with the help of the following observation:
On SO(3) x (R® - 0), the 2-forms m* wp and p* wy are cohomologous, so find a
1-form ap on SO(3) x (R® —0) such that m*wy = p*wp + dap. Make ap restrict
to 0 on 1 x (R® — 0). With ap understood, notice that g wo = piwo + P*dag
on No -X.

Let w and w' be closed 2-forms on M x M — ¥ which extend <p2w0 and cp; (wo,
respectively. There is no obstruction to extending a from Ny — ¥ as a smooth
1-form a on M x M — ¥ such that w' = w + da (See Lemma 1.1.) Then,

®5[g¢] — ®2[(] is given by

%[gq—%[q:/ (3da A w A w

MxM-X
+3da A da A w +da A da A da)

(2.21)

Here is how to evaluate the right side of (2.21): Let S C R® denote a ball
of small radius about 0 and which is in the image of ¢ on Na — 7~ 1(By)
and which is transversal to ¢¢ on Na — 77 1(Bp). (One can assume, with no
loss of generality, that such a 2-sphere exists.) Look carefully at the proof of
Proposition 2.5. Introduce S to denote cpc_l(Sz). This is a two sphere bundle
over Nao — m71(Bp). Because ag vanishes on By x M and on M x By, Stokes
theorem equates the right hand side of (2.21) with

(2:22) #2(9 ¢ - #(0) = [ ¢*(00 A dag A pun).

(One uses here the fact that wg A wp = 0 and that 2dag A p*wo is equal to
—dag A dag.)

Introduce i : SO(3) — SO(3) x S? to be the inclusion as a fiber of the
projection, p, to S?. Then, the integral in (2.22) can be evaluated by pushing
the integrand forward to SO(3) x S%, and then by doing the S2 integration first.
The result is

(2.23) ®2(g9¢] — ®2[¢] = pooly] /so(a) i*(ao) A di*(a0)-

The factor of poo[g] in (2.23) is due to the fact that g* maps the fundamental
class of M to poo[g] times the fundamental class of SO(3).

Now, the integral in (2.23) is simply a Hopf invariant, and can be computed to
be equal to 1/2. (Restrict m : SO(3) x S? — 52 to mp : SO(3) xn — S?, where
n is the north pole. Then di*ap = mjwe. But, mo defines a principal SO(2)
bundle with Euler class equal to 2, so 2i*ap will integrate to 1 over the fiber
of myg, while wyp integrates to 1 over the base. Thus, the value of the integral in
(2.23) is equal to 1/2.) So, ®2[g (] = 27! poo[g] + P2[(] as claimed. a

h) Proof of Proposition 2.7.
A singular frame, ¢, for T*M defines a 2-frame for TM as follows: Choose
a coordinate system around pp and introduce the matrix g as in (2.8). Then
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¢' = g ¢ obeys (2.8) with g replaced by the identity. Thus, on a small ball about
Do, ¢’ differs from the frame § of (2.7) by a small amount, and so there is a
canonical homotopy of ¢’ so that it agrees with § on a small ball, B, about py.

Now, m3(SO(3)) vanishes, so there is no obstruction to deforming 4 inside
B so that the result, §’, agrees with § near B’s boundary, and agrees with the
constant framing dz on an even smaller ball, B’ C B. Such a deformation would
change ¢’ to an honest framing of TM. Unfortunately, n3(SO(3)) =~ Z, so a
topologist might argue that there is no canonical way to get an honest framing
from ¢'.

However, the frame § is rather special (Kevin Walker pointed this out to
the author); restrict it to the 2-sphere boundary S? C B. Compare § with the
constant framing to define a map from S? — SO(3). Lift this map to S3 =
SU(2) and one has the inclusion of S? in S® as the equator which is invariant
under multiplication by £1 on S%. And, there are precisely two canonical
deformations to a point of this equatorial embedding of S? in S3. Indeed,
consider taking the family of two spheres of decreasing latitude starting from
/2 and going to 0. Or, take the family of increasing latitude, starting from
m/2 and going to .

Thus, there are two canonical ways to obtain an honest framing from the
singular framing (. Denote these two honest framings by (4. By construction,
¢4+ = g(_ where g : M — SO(3) has degree 2 and lifts to map M into S3. This
exhibition of ¢+ completes the proof of the first assertion of Proposition 2.7.

To prove Assertion 2 of Proposition 2.7, take (4 above and produce the 2-
framing O = (4 ®(-. (Note that {; ®(_ is homotopic to {_ & (; as a framing
of TM®TM.) Clearly, if (o and (; define the same equivalence class of singular
framing for T*M, then ©¢, and ©¢, will be homotopic as framings of TM &T M
and so define the same 2-framing of T M.

To prove that the map © is injective on ¢ , consider first a 4- manifold X
which bounds M. Let Z,Z' be frames for T*M & T*M. Then = is homotopic
toZ onlyif p)(TX dTX;E) =p(TX & TX;E).

With the preceding understood, let ¢ and ¢’ be a pair of singular frames for
T*M. Then ( = g(' where g :— SO(3). A direct computation reveals that

(2.24) n(TXdTX;0,)=p1(TX®TX;0¢) +4pco|g]-

This shows that the map © is injective and completes the proof of Assertion 2
of Proposition 2.7.

To prove Assertion 3 of Proposition 2.7, consider a compact, oriented 4-
manifold, X, with boundary M. Suppose that X is connected, spin, and that
X'’s signature is even. Define

3
(2.25) Xo(X) = > (-1)* dim(H*(X;R)).

i=1

Now xo is even because M is a rational homology sphere, and because the
signature of X is assumed even. With this understood, then one can assume,



320 CLIFFORD HENRY TAUBES

with no loss of generality that xo = 0. (Indeed, if o is initially positive, connect
sum with xo/2 copies of S! x S® to obtain a compact, oriented, spin 4-manifold
with xo(-) = 0. If xo < O initially, connect sum with xo/2 copies of S? x S? to
obtain a compact, oriented, spin 4-manifold with xo(-) = 0.)

Choose an embedding of the closed unit 4-ball in B C X and let X, denote
the compliment of this 4-ball. This X, has two boundary components, one M
and the other S3. Since xo(X) = 0, the boundary splittings, T* Xo |pr= T* M ®e
and T*Xp |s3= T * S @ ¢, extend over X as a splitting T*Xo = V @ ¢. Here,
V is an oriented 3-plane bundle over Xy. Furthermore, because Xj is a spin
manifold, V is a spin 3- plane bundle, and so trivial; V = ®3e.

Let h be a singular frame for 7*S3, and construct the frames hy for 7*S?
as instructed above. The fact that V is trivial implies that the frame h; for
V |ss extends over Xo; so does h_. Restrict these frames to M C 8X, to give
frames, (4, for T*M3 =V | 3. Notice that (4 = g({_ for some g : M — SO(3)
which lifts to a map into S3.

The point of the preceding is this: The extendability of hy over X implies
p1(TB®TB,0,) = p1(TZ®TZ,0;). Now, for S3, one can compute rather
explicitly that p,(TB & TB;0;) = 0 mod 8. Indeed, one can compute with
the following choice for hy: Take hy to be the Lie group framing given by the
left-invariant 1-forms, and take h_ to be the Lie group framing given by the
right invariant 1-forms. For hy as above, p;(TB @& TB;0;) = 0.

Since, ;1 (TZ ® TZ;0¢) = 0 mod (8), Atiyah’s canonical framing will be
realized by O if Z’s signature is 0 mod(4).

Assertion 4 of Proposition 2.7 follows from Proposition 1 in

[1]. o

i) I(S?).

The purpose of this subsection is to provide a proof of the assertion in Theo-
rem 2.9 that I;(S®) = 0. (Dror Bar-Natan taught the author this proof.) This
fact is needed later and so, for future reference, is stated as

LEMMA 2.11. I(S3) = 0.

Proof. The strategy has two parts: Part 1 extends the map @, in (2.15) to
define a map, ®;, from S® x S% to R® with inverse image X gs. Given that such
an extension exists, take ¢ in Proposition 2.2 to be the restriction of ®; to a
regular neighborhood of ¥¢s and use w, = ®7p in (2.4). The integrand is then
zero so the integral in (2.4) is zero.

Part 2 observes that d®; |gssxp, and d®; |, xss define linear maps from the
respective normal bundles of S x pp and py x S3 to R®. Part 2 also observes that
d®;|a defines a linear map from the normal bundle of A = Ags into R®. With
these facts understood, the fact that I;(s) = 0 is established by demonstrating
the following two points:

1) d®;|ssxp, and d®;|, xss define respective normal bundle framings of
(S® — po) x po and py x (S® — py) which are homotopic (rel neighbor-
hoods of py % py) to the normal bundle framings which are respectively
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induced by the projections, mg r, on the right and left factors of S2 in
S3 x S8,

2) d®,|a defines a normal bundle framing of Ags — (po,po) which is gives
Definition 2.8’s canonical singular framing of T*S3.

Part 1: To exhibit the map ®,, agree first to use stereographic projection
from the north and south poles of S2 to cover S by two coordinate patches, U,
and U,. (So, the north pole is the origin in U,, and the south pole is the origin
in Us). Agree to take the point py to equal the south pole.

Define ®; by

1) OnU, x U, : @1(z,y) = (J2* + 1)~ (Jyl* + 1)~ |2y — |y[*2).

2) OnUnxUs:®i(z,y) = (|2* + )7 (jy? + )7 (y + [yl*a).
3) OnU, xUpn: &1(z,y) = (|2 + D7 (ly* + )~ (|2l — 2).
4) OnUn xUp:®i(z,y) = (2 + )7 (jyI* + 1) (z - p).

(2.26)

It is left to the reader to verify that ®; is consistently defined, and that
®71(0) = Zgs.

Part 2: Using line 1 or line 2 of (2.26), one finds d®; |gs «p, to be proportional
to the pull-back by 7g of the constant frame on R3. Likewise, using line 1 or
line 3 of (2.26), one finds that d®, |,,xss is proportional to the pull-back by
7r, of the constant frame.

As for d®; |a, compute on U, x U, to find that d®; |a is equal to
(% — 73)(=(1+ | = |?)"%2dz). Remember that S* — py = U, and thus
—(1+ | = |*)72dz is a framing for T*U, which extends as a singular fram-
ing for T*S3. The image of this framing under the map © of Proposition 2.7
is the pair (¢—,(4+) where (4 are the Lie group framings given by the left and
right invariant 1-forms on S® as SU(2).

Let B C R! denote the unit 4-ball. It is left as an exercise to check
that ({—,(;) stabilizes to give a framing of (T'B & T B)|p which extends over
B. O

k) Outline of Theorem 2.9’s proof.

Here is a simplified outline for a proof of Theorem 2.9: One would like
to find a smooth, oriented, 7-dimensional manifold Z whose boundary is the
disjoint union of M; x M; and My x My, with the latter oriented in reverse.
This Z should contain an oriented, dimension 4 subvariety, ¥z, (a union of
submanifolds) whose boundary is the union of Xs, and X, with the latter
oriented in reverse. (Here, X is defined in (2.1) as the union of submanifolds.
Each submanifold has its fundamental class; these are oriented so that the
inclusion s = M x M sends [Ap] — [M % po] — [po X M] (a linear combination
of fundamental classes) to zero in H3(M x M;R).)

Given a singular frame for M; and an appropriate singular frame for My, one
would like to find a smooth 2-form wz on Z — Xz and then use Stokes’ theorem
to compare the integrals in (2.4) for M, and for M;.
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Unfortunately, this simplified strategy has not been realized. However, there
is a modification of this strategy which can be carried out. Here are the steps:

Step 1: Find a smooth, oriented manifold Z with boundary, and suppose
that 87 is the disjoint union of M; x M3 and My x My (with the latter oriented
in reverse) plus some number of copies of S® x S3. Label these extra boundary
components by a finite set, crit.

Step 2: Inside Z, find an oriented, dimension 4 subvariety Yz with
0¥z = Ym, UEXMp Upecrit (Esa)p.

Step & Make sure that there is a closed 2-form, wz, on Z — £z with the
choice of a singular frame for My and an “appropriate” singular frame for M;.
(See Step 4, below, for the definition of “appropriate”.) Require the following:

(2.27)

1) The 2-form wz should restrict to Mo x My — X, as the 2-form used in
(2.4) to compute I, for My. It’s restriction to M; x M1 — Xy, should give
the 2-form used in (2.4) for the computation of I for M;.

2) "The 2-form wz should restrict to each copy of S x S3 as the 2- form used
for (2.4) with the singular frame that gives I,(S3) (see Lemma 2.11).

3) The wedge product wz A wz should vanish near ¥.

Step 4: If the canonical frame (Definition 2.8) was chosen for My, check that
the “appropriate” frame for M; is M;’s canonical frame.

Step 5: Given that wz exists as prescribed above, use Stokes’ theorem to
prove that the values of I, in (2.4) for My and for M; agree:

(2.28) 0= / dlwz AN wz A wgz) =/ wz AN wz A wgz
A M1 XM)

—/ wz \Nwz N wz +/ wz Nwz N wz .
M(]XMO Bﬂz

Here, N is the closure of a regular neighborhood of £z in Z (with smooth
boundary) on which wz A wz = 0. Thus, the last term in (2.28) vanishes.

Section 3 begins the proof of Theorem 2.9 with the definition of the space
Z. Later sections construct ¥z and carry out the remaining steps of the proof.
The construction of wyz is completed in Section 11.

3 Morse theory. This subsection reviews various Morse theoretic con-
structions which will be used in subsequent sections. The final two subsections
define and explore the space Z for Section 2k’s first step in the proof of Theo-
rem 2.9.

Suppose here that M, and M; are both compact, connected, oriented 3-
manifolds whose rational homology is the same as that of S3. Let W be
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an oriented, spin cobordism between My and M;. Assume that W is con-
nected. By surgery on embedded circles, one can modify W so that H'(W;R) =
H3(W;R) = 0. This will be assumed as well.

a) Good Morse functions.

A function f : W — [0,1] will be called a good Morse function if the criteria
below are met:
1) Mo = f"1(0) and M; = f~1(1).

2) df |m, and df |m, are never zero.

3) The critical points of f are non-degenerate.

4) There are no critical points of index 0 or 4.

5) Let ¢ be an index 1 critical point. Then | f(c) — /4 |< 1/100.

6) If ¢,c’ are distinct critical points of f, then f(c) # f(c').
(3.1)

It is shown in [12] (for example) that W has good Morse functions.

When f: W — [0,1] is a good Morse function, use crit(f) C W to denote
the set of critical points of f. Use critg(f) C crit(f) to denote the set of critical
points of index k.

Let p € critg(f). There is an almost canonical coordinate system on a
neighborhood of p. This coordinate system is an embedding ¥, : R* - W
with the following properties:

1) ¥,(0) =p.
2) There exists § > 0 such that 1 f restricts to the radius § ball about p as
the function

(3.2) Yhf = -z} —Ti +Thyy +o- + T3

(See, e.g. [12].) These coordinates will be called Morse coordinates. The image
of R* under 7 will be called U,,.

b) Pseudo-gradient vector fields.

Aside from a Morse function and Morse coordinates, the standard machinery
for Morse theory requires the choosing of a pseudo-gradient vector field for f.
This is a vector field, v, on W with the property that v(f) > 0 on W — crit(f).
Also, require of v that it have the following form near p € critg(f) : The
pushforward by (1,) ™! of v should restrict to a small ball about the origin in
R? to equal

(3.3) —1101 - — TkOk + T4+10k+1 + -+ + T404.

A pseudo-gradient vector field for f will often be called a pseudo- gradient, for
short.
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A gradient flow line of a pseudo-gradient v is a map +, of a closed interval,
I, into W with the following properties:
1) I =]{a,b] with —o0o <a <b< +oo.
2) If a = —oo0, then vy(a) € crit(f); and if b = +o0, then y(b) € crit(f).
3) If a > —oo, then y(a) € Mp; and if b < +o0o, then ~(b) € M;.
4) 7(0r) =v |y foralltel

(3.4)

(Here, 8 differentiates the coordinate ¢ to give 1.)

If 7 is a gradient flow line of a pseudo-gradient, v, say that v begins at y(a)
and ends at y(b).

There is a great deal of flexibility in the choice of a pseudo- gradient. And,
there are specific constraints which can be imposed on a pseudo-gradient which
simplify some subsequent constructions.

c) The Morse complex.

With the help of good Morse function f and an appropriate pseudo gradient,
v, one can define a finite dimensional complex whose homology is naturally iso-
morphic to the relative homology H*(W, My;Z). (See, e.g. [12].) The complex
is written

(3.5) 0—0-5c-5o—o

To describe the {Ck} in (3.5), it is necessary to first digres§ to review the
construction of ascending and descending disks: As described in [12], one can
use v to define, for each p € crity(f), a pair of open subsets, B, C int(W)
and Bpy C int(W), which are embedded disks of dimension k and 4 — k,
respectively. Here, By, is the ascending disk from p, and B,_ is the descending
disk from p.

As a subset, B, is the union {p} with the set of points of int(W) — crit(f)
which lie on gradient flow lines which end at p. And, B,y is the union of {p}
with the set of points in W — crit(f) which lie on gradient flow lines which start
at p.

Note that (3.4) implies that

1) d’p(Bp— nUp) = {(171,“‘ ;934) € R Tkl == Tg = O}a
2) wp(Bp+nUp)={($1,"‘,$4)€R43$1="'=13k=0}-
(3.6)

These disks intersect at one point, p, and there transversally. Otherwise,

(3.7) f1(Bp——p) < f(p) < f | (Bp+ — )
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As W is assumed oriented, an orientation for B,_ orients B,, so that their
intersection number, [B,_] - [Bp4], is equal to {1}.

End the digression.

One defines Cy in (3.5) from the free Z-module, Cy, on the set of pairs

(3.8) {(p,€) : p € critx(f) and € is an orientation for B,_}

Indeed, set Cr = C/ ~, with the equivalence relation (p,€) ~ —(p, —¢). (The
Cy for different choices of pseudo-gradient are canonically isomorphic.)
To define the operator 0 in (3.5), it is necessary to make a two part digression.
Part 1 of the digression introduces some constraints on the pseudo-gradient
v. These are described next.

DEFINITION 3.1.Let f be a Morse function on W. A pseudo-gradient v will
be called good if the following criteria are met:

1) Ifp,q€ crity(f) and if p# q, then Bp N B,— = 0.

2) Ifp € crity(f) and q € crity1(f) then Byt intersects B,_ transversely.
Furthermore, By, NBgy_ is a finite union of gradient flow lines, the closure
of each starts at p and ends at q.

3) Ifp€ crity(f) and q € critz(f), then Byt intersects B,_ transversally.

4) Ifpo € My and p; € M; have been apriori specified, then require that pg
start a gradient flow line with end at p;.

(By the way, because of their definitions in terms of v’s flow lines, descending
disks from distinct critical points do not intersect, and likewise, ascending disks.)

See [12] for a proof that good pseudo-gradients exist. Henceforth, assume
that v is a good pseudo-gradient.

Part 2 of the digression considers the intersections of ascending and descend-
ing disks. Start the discussion with the introduction of Mgr—1 =
f~'(47'k—1/8). Due to (3.1), one can conclude that df is nowhere zero along
M k-1, so this subspace is an embedded submanifold of W. Furthermore,
M -1 is naturally oriented by using df to trivialize its normal bundle.

Because of (1) in Definition 3.1, each B,_ intersects My x—1 in its interior as
a (k — 1) sphere S,- which is oriented (by df) when B,_ is oriented. Likewise,
By intersects My, in a sphere, S,y , of dimension 3 — k which is oriented
when B,_ is oriented.

Note that Definition 3.1 implies (in part) the following assertion: If p €
crity(f), then S,- has transversal intersection in My x—; with any S,+ from
q € critg_1(f). With the preceding understood, use [S,-] - [Sy+] € Z to denote
the algebraic intersection number of S,- with Sy+ in My ;.

End the digression.

Here is the definition of the boundary map 8 in (3.5):

(3.9) O(p,e) = E ([Sp-1- [Se+]) (g, €9)-

qeCir 1

See [12] for a proof that (3.5) with d as in (3.9) is a chain complex whose
homology is isomorphic to H * (W, My; Z).
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Note that there is a dual complex to (3.5),
(3.10) o—cr 5o Sor—o

which is defined using —f and —v when (3.5) is defined from the pair f and
v. The homology of (3.10) computes H*(W, M;;Z). Poincare’ duality identifies
H*(W, My; Z) with H*=*(W, Mo; Z), hence the duality between (3.10) and (3.5).

d) Factoring the cobordism.

The purpose of this subsection is to indicate how to factor the cobordism W
into two simpler cobordisms. The following proposition summarizes:

PROPOSITION 3.2. Let My, My be compact, oriented 3-manifolds with the
rational homology of S3. Suppose that there is an oriented, spin cobordism, W',
between My and My. Then there exists an oriented, spin cobordism, W, between
My and My which decomposes as W = W; U W, U W3, where

1) oWy =—-M, UM6,6W2 = —M(I)UM{, and OW3 = — M U M;, where M(l)
and M/ are compact, oriented 8-manifolds with the rational homology of
S3.

2) Wia,s are oriented, spin manifolds.

3) Both Wi and W3 have the rational homology of S3. Meanwhile, Wy has
vanishing first and third Betti numbers.

4) Wi and W3 have a good Morse functions with no index 3 critical points.
Meanwhile, W, has a good Morse function without indezx 1 and index 3
critical points.

5) If W' has the rational homology of S, then W above can be assumed to
have the rational homology of S3. And, one can assume that M} = M]
and that Wy is the product cobordism.

6) Let lw and lw be as given in (2.12). Suppose that cp, or ca, (as in
Definition 2.8) is represented by ¢ in ker(ly+). Then lw(c) =0 too.

7) The intersection forms of W and W' are conjugate by an element of

Gl(-,Z).

In particular, Assertions 5 and 6 of the preceding proposition allow one to
prove Theorem 2.9’s statements concerning 4- dimensional spin cobordisms with
the rational homology of S® between a pair of 3-manifolds with the rational
homology of S3 by restricting to the following special case:

Special Case: Let My, M; be compact, oriented 3-manifolds with the rational
homology of S®. Let W be an oriented, spin cobordism between My and M;.
Assume that W has the rational homology of S? and assume that W has a good
Morse function f with no index 3 critical points.

(3.11)

The remainder of this subsection proves Proposition 3.2.
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Proof of Proposition 3.2. First of all, let W' be the original spin
cobordism between My and M;. Then, surgery on W' will produce an oriented,
spin cobordism W which has vanishing first and third Betti numbers. The
surgery removes tubular neighborhoods of embedded circles and replace them
with copies of B2 x S2. (Here, B? is the unit ball in R?.)

Given such W, find a good Morse function f on W and a good pseudo-
gradient, v; and then define the complex in (3.5). Label the critical points of
index 1 as {a1,-- ,ar}, label those of index 2 as {b1, - ,by+s+t}, and label the
index 3 critical points as {c1,-- ,¢:}. Here, s = dim(Hy(W;R)). (Remember
that W has, by assumption, vanishing rational homology in dimensions 1 and
3.) Fix orientations for the descending disks from all of these critical points.
With this understood, this set of critical points defines a basis for the complex
{Ck} in (3.5).

Now, it is convenient to relable the basis for C; as follows: Since the map
0@ 0* : C; — C1 @ C3 is a surjection, one can relable the critical points {by}
so that

(3.12) 0: Span{b;}",_, = Cy,

0* : Span{brysti}i—; = Cs,

are both isomorphisms over Q. At the same time, one can require that the
projection of Span {b,4+:}?_, onto C2/(0*C; @ 9C3) is an isomorphism.

With (3.12) understood, one can use 4.1 in [12] to find a new good Morse
function f pew which has the following three properties: First, f ,ew agrees with
f outside small neighborhoods of the points in crity(f). Second, f new has the
same critical points and pseudo- gradient as f. Third, there exists small € > 0
such that

1) frew({b1,---,b:}) € (1/2-2¢,1/2-¢),
2) fnew({br+17 e vb'f‘+3}) € (1/2 ) 1/2 + 6)’
3) fnew({br+8+l U »br+s+t}) € (1/2 te 1/2 + 26)

(3.13)

Note that (3.12), (3.13) indicate that W = W; U W, U W3, where
1) wi=f£7Y(0,1/2—¢])
2) Wazf([1/2-e1/2+6)
3) Wi=f1([1/2+¢,1))

(3.14)

The boundaries of W, 2 3 are compact, oriented 3-manifolds with the rational
homology of S3. This is guaranteed by (3.12). Meanwhile, the inclusion of any
boundary component of Wj 3 into W 3 induces an isomorphism of rational
homology. This is not true for Wy; this W5 has the zero first and third Betti
numbers, but the second Betti number of W5 is equal to s.
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Note that the function f new can be used as a Morse function on W; 2 5. On
W1, it has no critical points of index 3, on W3 it has no critical points of index
1, while on W5, it has only critical points of index 2.

The preceding remarks prove Assertions 1-5. To prove Assertion 6, suppose,
for the sake of argument that cps, is represented by ¢ in ker(lw:). Let &
be a singular frame for T*Mj in the class ¢ and let £ be a smooth frame
for T*M, which agrees with £ on the complement of a ball about py. Write
T*W' |My= T*Mo @ R, where R, is the trivial bundle, spanned by df |-
With this understood, ¢' extends to a frame (¢',df) for T*W' |p,. Note that
lw(c) is the obstruction to extending this frame over W'. Likewise, Iy (c) is
the obstruction to extending ({’,df) over W. With this understood remark
that Assertion 6 will be proved by demonstrating that (¢',df) extend. over W
if it extends over W'. This demonstration requires four steps.

Step 1: Fix a frame e’ for T*W' which extends (¢, df).

Step 2: Let 0 C W' be an oriented, embedded circle whose fundamental class
is a generator of Hy(W';Z)/Torsion. Suppose a surgery is done on W' to kill
the class generated by o. Such a surgery will replace a tubular neighborhood
of o in W' with B? x S3. Because 12(SO(3)) = 0, all framings of T*(B? x S?)
are mutually homotopic. A framing of T*(B? x S?) restricts to the boundary
where it can be written as he’, where h = h(e') is a map from S* x 5% to SO(4).
If h lifts to SU(2) x SU(2), then the frame (¢',df) will also extend over the
manifold which is obtained from W' by surgery on o.

Step 8 With this last point understood, suppose that h does not lift as
required. The strategy is to abandon e’ and find a new extension, €' for (¢', df)
so that the resulting h(e") does lift to SU(2) x SU(2).

Step 4: To construct €”, let s : ¢ — S! be a degree 1 map. Since the
restriction map H'(W';Z) — H'(0;Z) is surjective, the map s extends as a
smooth map from W' to S'. Since My has vanishing first cohomology, the map
s can be taken to map My to point, 1 € St. Let j : S — SO(4) be a map which
generates 71 (SO(4)) and which takes 1 to the identity matrix. The composition
k = jos maps W' to SO(4) and maps My to the identity. Thus, " = ke’
defines an extension of (¢/,df) over W', and h(ke') = h(e) k=1 will'lift to map
S! x §? into SU(2) x SU(2).

Thus, Assertion 6 follows from this last remark with Step 3.

As for Assertion 7, it is directly a consequence of the fact that W is obtained
from W' by surgery on a set of circle generators of H!(W'; Z)/Torsion. O

e) A basis theorem for the Special Case.

Assume here that W is a cobordism which satisfies the assumptions of (3.11).
In particular, W has the rational homology of S, and also W has a good Morse
function f with only index 1 and index 2 critical points. Fix a good pseudo-
gradient v for f.

Introduce the complex in (3.5) for W. This is a 2-step complex, and the
boundary map 0 : Co — C} is an isomorphism over the rationals. Let {a;,--- ,a,}
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label the index 1 critical points and let {b;,---,b.} label the index 2 critical
points. Orient the descending disks from these critical points so that these sets
of critical points can be considered as a basis for C} 2, respectively.

With the basis for C;2 chosen as above, the boundary maps in (3.5) are
simply integer valued matrices. That is, 8b; = X;5; j aj, where S = {S; ;} is
an integer valued, r X r matrix.

Here is a useful observation: The precise form of the matrix S is determined
by the choice of good pseudo-gradient v. With this fact understood, one can ask
whether there is a choice of peudo- gradient for f which gives a ”nice” matrix
S. The answer to this question is given by Milnor’s basis theorem (Theorem 7.6
in [12]):

PROPOSITION 3.3. Let W be a cobordism which satisfies (3.11). Then W has

a good Morse function, f, with no indez 3 critical points and with the following

additional properties: There ezists a labeling, {a1,--- ,a,} and {b1,---b,}, for

the respective index 1 and index 2 critical points of f. And, there exists a good

pseudo- gradient for f and a choice of orientations for the descending disks from
f’s critical points. And, this data is such that

1) Forallie{l,---,r},

2) 0Ob; = %;S; jaj, where S = {S;;} is an upper triangular, integral matriz

with positive entries along the diagonal.

8) Foralli€ {1,---,r —1}, one has f(a;) > f(aix1) and f(b;) > f(bit1)-

(3.15)

The remainder of this subsection is occupied with proving this proposition.

Proof of Proposition 3.3.  Start with a good pseudo-gradient, v, for
f. Fix orientations for the descending disks so that the boundary operator in
(3.5) can be represented as a matrix, T', so that 9b; = £;T; j a;. Note that the
matrix T is integral and invertible over the rationals.

Now, a fundamental result in algebra (see, e.g. [11]) states that there exists
a unimodular, integral matrix V such that VT = T’ has only zeros below the
diagonal. Let b = {b; = £;V; ; b;}. Thisis a new basis for C>, and ob=VTa=
T a.

With V and 7" understood, appeal to Theorem 7.6 in [12] to find a pseudo-
gradient for f,v', for which the resulting descending disks represent the basis b
for C,. For this pseudo-gradient, the boundary operator in (3.5) is given by the
matrix 7'. By changing the orientations of the descending disks if necessary,
one can change the signs of the diagonal elements of T" so that they are all
positive. Call the resulting matrix S.

The given arrangement of the critical values of f can be insured by making
an appropriate, small perturbation. O

By the way, if the boundary 8C; — C; is an isomorphism over Z, then the
matrix S in Propostion 3.3 can be taken to be a diagonal matrix.



330 CLIFFORD HENRY TAUBES

As alast remark, note that the matrix for the adjoint complex, 8* : C; — Cs,
will be the transpose of the matrix S in Proposition 3.3. This matrix, ST, will
be lower triangular. O

f) Morse theory on W x W

The manifold W x W is a manifold with boundaries and corners. Here it is:

M x M, WxM, M x M
1 1
I ®
M, x W WxW Mx W
¢ —e
MxM
Mx M, W x M 17 Vo

(3.16)

The reader is invited to formalize a “manifold with boundaries and corners”,
but the picture above should be self explanatory.

The good Morse function f on W can be used to illuminate (3.16) near the
corners. To do so, one must note first that Properties 1 and 2 in (3.1) make it
possible to use the pseudo gradient to give W its product structure near OW.
To be precise, there is a diffeomorphism,

(3.17) Xo: £71([0,1/8)) = M, x [0,1/8)

which restricts to f~1(0) as the identity and which has A} f given by projection
to [0,1/8). There is a corresponding

(3.18) A FH((7/8,1]) = My x (7/8,1].
Using (3.17), a neighborhood of My x Mp in W x W is mapped by Ao X Ao
to

(3.19) (Mp x [0,1/8)) x (Mo x [0,1/8)) =~ Moy x My % [0,1/8) x [0,1/8).

Of course, Ag X A1, A1 X A\g and A; X \; give similar structure to the other corners
of WxW.
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With a good Morse function, f, chosen for W, introduce the function F :
W x W — [-1, 1] which sends (z,y) to

(3.20) F(z,y) = f(y) - f(z).

This is a function with properties that are listed in the next lemma. The
lemma’s statement uses the following notation: First, introduce the projections,
7 WxW = Wand g : WxW — W which send (z,y) to z and to y,
respectively. Second, when v is a vector field on W, introduce the vector fields
vy and vg on W x W which are defined so that

(3.21)

1) dnpvy =v and drgvy = 0;
2) drpvr =0 and drgug = v.

LEMMA 3.4. Let f be a good Morse function for W and let v be a good
pseudo-gradient for f. Then, the function F' of (3.20) has only non- degenerate
critical points. Furthermore:

1) crity(f) = Ur(eritayk—n(f) x crite(f)).

2) The vector field vg — vy is a pseudo-gradient for F' which obeys 1- 8 of
Definition 3.1.

3) The pseudo-gradient vg — vy, gives the following descending and ascending
disks for (p,q) € critarr—n(f) x crite(f) C crit,(f):

(3.22) B(p,q)_ = Bp+ X Bq_,

B(p,g)+ = Bp- X By

4) The pseudo-gradient vg — vy, is nowhere tangent to a boundary or a corner
in (3.16).

Proof. The proofs of these assertions are left as exercises. But, for Assertion
3, note for example that near My x My, (Ao X o)~} (Of (3.19)) pulls back F
to send the point ((z,t), (y,s)) in (Mp % [0,1/8)) x (Mo x [0,1/8)) to

(3.23) ((Ro x X0) ™) F((2,1), (y,5) = s - t.

Note, by the way, that (3.22) indicates how to orient B(,q)_ given ori-
entations for B,_ and Bgy. And, with orientations to the descending disks
{B(p,q)- : (p,q) € crit(F)}, one can consider the analog to the chain complex C
in (3.5) as constructed for W x W using the function F' and the pseudo-gradient
vr —vr. The following lemma describes the homology of this complex. O
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LEMMA 3.5. The analog of the chain complex C in (3.5) as constructed
for W x W using F and the pseudo-gradient vg — vr gives a chain com-
plex, CF¥, which is canonically isomorphic to C* ® C, where C* is the com-
plex in (3.10). The homology of the complex C¥ is canonically isomorphic to
Hx (W x W, (W x My)U(M; x W);Z).

Notice that the relative homology above is that of the square in (3.16) relative
to the union of its bottom and right sides.

Proof. This follows from Lemma 3.4 and (3.22). O

g) The space Z.

As outlined in Section 2k, the first step to proving Theorem 2.9 is to construct
an oriented, 7-dimensional manifold Z whose boundary is the disjoint union of
My x Mo, M; x M; and some number of copies of S3 x S3. The purpose of this
subsection is to construct such a Z using the cobordism W and a good Morse
function f on W. To begin, construct F from f as in (3.16). Use F' to define

(3.24) Z=F710)={(z,y) e W x W : f(z) = f(y)}.

This subspace Z plays a central role in subsequent parts of the story, and the
purpose of this subsection is to describe some of Z’s properties.

To begin, note that both My x My and M; x M; lie in Z since f is constant
on My and also on M;. Near these corners, Z is a manifold with boundary
given by the disjoint union of My x My and M; x M;. See (3.19).

Unfortunately, Z is not a manifold everywhere unless f has no critical points.
This is because 0 is not a regular value of the function F'. Fortunately, the sin-
gularities of Z are not hard to describe; they occur at the points of crit(F)N Z,
that is, points of the form (p,p) C W x W where p € crit(f). (Remember that
the critical points of f are assumed to have distinct critical values.) Further-
more, the neighborhoods of these critical points are relatively easy to describe.
The picture is given in the following lemma. The lemma introduces the no-
tion of a cone on a manifold V. This is the space which is obtained by taking
[0,1) x N and crushing {0} x N to a point.

LEMMA 3.6. Let f be a good Morse function on W. Let p € crity(f). Then,
a neighborhood of (p,p) in Z is naturally isomorphic to the cone on S x S3.
In fact with v, and U, = Yp(R?) as in (3.2), then the map (Y, X ) " 'maps
Z N (Up x Up) to a subset of R* x R which intersects a ball neighborhood of
(0,0) as the set of (z,y) which obey

(3.25)

i+ tyi itz =2l 4T b yi, oYL
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Warning: As indicated by (3.25), the cone on S® x 83 here is not induced by
the obvious product structure on W x W. The product structure which induces
(8.25) is the product structure in

(3.26) Bp.p)- X B(p,p)+>
with B, )+ as in (3.22).
Proof. Equation (3.25) is an immediate consequence of (3.2). |

The manifold (with boundary) Z in Section 2k will be found inside Z; it
is obtained by excising from Z a small ball about each of the singular points
(p,p) for p € crit(f). More precisely, one fixes some small r > 0. Then, the
intersection of Z with U, x U, is mapped by %, x 1, to the set of (z,y) which
obey

(3.27) |z >+ |y [*>r

With (3.27) understood, 8Z NU, x Up, is mapped by 9, X 9, to the set of (z,y)
which obey

) v+ +yi+zi,+-+ai=r,

2) i+ +rityp, o tyi=r

(3.28)

As the precise value of r here is immaterial (as long as r is small), the precise
value will not be specified.

There is an alternative approach to defining Z. Here, Z is a "blow up” of
Z at the points of the form (p,p) € crit(f). In this case, Z maps to Z by a
map 7. Each point in Z — {(p,p) € crit(F)} has a single point in its inverse
image. But, the inverse image of any point (p, p) € crit(F) is the corresponding
53 x S® C 0Z. This blow up corresponds to resolving the cone point in N =
([0,1) x N)/({0} x N) with the tautological projection 7 : [0,1) x N = N.

h) Properties of Z.

With Z now defined, here are its salient features:
A manifold: Z is a manifold with boundary,

(3.29) 8Z = (Mo x Mo) U (My x My) Upecrit(s) (S® x S%),.

Orientation: The manifold int(Z) has a natural orientation. Indeed, W x W
has a natural orientation. Then, int(Z) C F~!(0) is open, and dF # 0 on
int(Z), so the 1 form dF trivializes the normal bundle to int(Z) C W x W.
This serves to orient Z. The induced orientation on M; x M; C 0Z agrees
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with its canonical orientation, but the induced orientation on My x My C 62
disagrees with the canonical orientation.

To orient (S3 x S3%),, use the inclusion of W ~ Ay C W x W to orient Aw
and hence Az. The boundary of Az intersects (S% x S3), as Ags(= (Ags)p)
Give (Ags)p the induced orientation from Az. Then, orient the left factor of
S3% in (S® x S3), so that the composition of 7 : Ags — S and then the
inclusion S® — (S® x point) C (S3 x S3), is orientation preserving. Orient the
right factor analogously and use the product orientation to orient (S® x $3),.
(Remark that the induced orientation on (S3 x S®), as a boundary component
of Z agrees with this orientation if index p is odd, and it disagrees if index p is
2.)

Homology: The rational homology in dimensions 0-3 of Z is of some concern
in subsequent sections. Consider

LEMMA 3.7. Suppose that W has the rational homology of S3. Then the
rational homology of Z is as follows:

1) Ho(Z)=R.
2)" Hy(Z)=~ Hy(Z) =0.
3) There is a surjection
(3.30) 0+ H3(Z)+ L_o® L, ® H5(02).

Here L_ is freely generated over R by

(3.31) L_={B{,,_NZ:(p,q) € crita(F) and F(p,q) > 0},

while L is freely generated over R by

(3.32) L, ={B{p+ N Z: (p,q) € crita(F) and F(p,q) < 0},

Note that the intersections which define L in (3.31), (3.32) are all embedded
3-spheres.

Also note that the inclusion of Z in W x W gives an isomorphism on m; and
2.

Proof. Note first that Ho 1 2(Z) and Ho1,2(Z) agree, and that

(3.33) H3(Z) = H3(Z) ®pecrit(s) H3((S3 % S3)p)

This follows using Meyer-Vietoris for the cover of Z by the union of Z and
the cones on the (S® x S3), in ((3.25).

Next, pick € > 0, but small so that F' has only critical points of the form (p, p)
in F~1((—¢,€)). Let V = F~1((—¢,¢)) observe that V strongly deformation
retracts into Z. Thus, H;(V) = H;(Z).



HOMOLOGY COBORDISM 335

To compute H;(V'), observe that W x W can be constructed from V by a
sequence

(3.34) VVaCcVaCcVsCVe=W x W,

where Vi4; is obtained from V;, by the attachment of disjoint handles, (B* x
B3—%)’s  on disjointly embedded (S*~! x B®~*)’s in the boundary of Vj.
To be precise, V; contains all of F’s index 4-critical points,

(3.35) V= F71([-1/8,1/8));

and Vs contains all index 3,4, and 5 critical points,

(3.36) Vs = F~1([-3/8,3/8)).

The attaching 3-spheres for the handles that change V3 to Vj are given by
(3.31), (3.32). Meanwhile, the attaching 4-spheres for the handles that change
V4 to V5 are

(3.37) {Bp,9-N F™1(1/8)}(p,g)ecrits (F)

U{B(p»q)+ n F—l(_1/8)}(p,q)€crit3(F)-

The 5-spheres for the attachments that change V5 to Vs should be obvious.
The resulting Meyer-Vietoris sequences from (3.34) read, in part,

(3.38) Hs(L,)® Hs(L_) = H3(V3) = H3(Vy) = 0,

The third assertion in Lemma 3.7 follows from (3.38) and (3.33). The other
assertions follow by Meyer-Vietoris from (3.34)-(3.37). a

4 Homological constraints. In this section, Mo and M; will both be
oriented, 3- dimensional manifolds with the rational homology of S®. And,
W will be an oriented, connected, spin cobordism between Mo and M;. Let
f : W — [0,1] be a good Morse function. Use f to construct the space Z
as described in Sections 3g and 3h . The proof of Theorem 2.9 is a five step
affair which is outlined in Section 2k. The manifold (with boundary) Z of
Sections 3g, h realizes the first step in the proof. The next step in the proof is
to construct a subvariety £z C Z with various properties as outlined in Steps 2
and 3 of Section 2k. The purpose of this section is to reformulate some of these
requirements in a purely homological way.
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a) The homology of ¥) and M x M.

In order to understand the homological constraints on ¥z, it proves useful
to digress first with a homological interpretation of some of the constructions
in Section 2. Return then to the milieu of Section 2 where M is a compact,
oriented 3-manifold with the rational homology of S® and where £)y C M x M
is defined by (2.1).

The inclusion £3f C M x M induces a surjective homomorphism on the
respective rational homology groups in dimension 3, with a one dimensional
kernel.

(4.1) om = [Am] = [po x M] — [M X po]

This o bounds (rationally) in M x M, and a bounding cyle defines a class,

(4.2) pm € Hy(M x M,X ).

(Here, H.(X,Y) for a space X and subspace Y C Xdenotes the relative ho-
mology with rational coefficients.) The Poincare dual of pas is the generator of
Hy(M x M — X)) which figures so prominently in Section 1. End the digression.

b) Homological constraints on ¥z from wz.

Return to the bordism milieu of the introduction. The subvariety X5 should
have a physical boundary (as a cycle, for example) which is given by

(4.3) 0%z = Zm; U B, Upecriv(f) (Es53)ps

where (Zg3), is the obvious Zgs in the boundary component (S% x S3), of Z.
Finding Xz to satisfy (4.3) would satisfy Step 2 in Section 1h.

However, there are certain cohomological constraints on a solution to (4.3)
which must be satisfied before it can solve the constraints which are implicit
in Step 3 of Section 2k, and in particular, Parts 1 and 2 of (2.27). These are
expressed by the following lemma:

LEMMA 4.1. Let £z C Z be a subvariety which obeys (4.8). Then, there is a
closed 2-form, wz, on Z — ¥z which restricts to any componentY C 8Z — 0%z
to generate H2(Y') if and only if Hy(Xz,0Xz) contains a class 0z which obeys:

1) The image of oz in Hy(Z,07) is zero.

2) 0oz in H3(0Xz) obeys
(4.4) Ooz = o — oM, + Z (a'sa)p.
pEcrit(f)

(The absence of signs in the last term in ({.4) stems from the convention of Sec-
tion 3h for orienting the right and left factors of S® in the boundary component
(S3x83),coz.)

The third constraint in (2.27) is the most difficult of all to satisfy. The strat-
egy for satisfying the third constraint in (2.27) has two parts, one homological
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and the other geometric. For both parts, fix Nz C Z, a regular neighborhood
of £z. The homological issue is to characterize a closed 2-form on Nz — £z
which is the restriction from Z — ¥z of a closed 2-form wz from Lemma 4.1.
The geometric issue is to find such an w which obeys w A w = 0.

The following lemma resolves the homological issue:

LEMMA 4.2. Suppose that Conditions 1 and 2 of Lemma 4.1 are obeyed.
Let Nz C Z be a regular neighborhood of ¥z. A closed 2-form, w, on Nz — Xz
is the restriction to Nz — Xz of a closed 2-form wz on Z — Xz as described in
Lemma 4.1 if the following occur:

1) The connecting homomorphism from H*(Nz — Xz) to H3,,,,(Nz) sends
w to a multiple of the Poincare dual of 07 € Hy(Nz, Nz N dZ).

2) The restriction homomorphism H?(Z) — H%(Xz) is surjective.

This lemma is proved below. The last subsection in this section discusses the
strategy for finding an appropriate w near ¥z with w A w = 0.

Proof of Lemma 4.1. To prove necessity, start with the observation that
the cohomology class in H%(Z — £z) of the 2-form in question has Poincare
dual

(4.5) pz € Hs(Z,52U07).

The requirements in (2.27.1) and (2.27.2) concerning the restriction of wz to
0Z imply the following homological condition on dpz

(4.6) Opz =pmy, —pm, + D, (ps3)p — 02,
pEcrit(f)

where

(4.7) oz € H4(Ez,azz)

is a class which obeys (4.4) (so that 8%2pz will vanish).

To prove the sufficiency assertion of the lemma, start with pz as described.
Represent oz as a cycle on £z. By assumption, one has 0z — 7 = 8pz, where
T is a 4-cycle on 8z, and where pz is a 5-cycle on Z. Note that 97 is equal to
the right side of (4.6) also. Thus,

(4.8) T— (o — P+ Y (ps3)p)
pecrit(f)

has zero boundary, and so defines a class in H4(0Z). However, this group is
zero (H4(0Z) ~ H?(0Z) = 0 (see Section 2). Thus, (4.6) holds for some 5-cycle
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pz on Z. The Poincare dual of pz is a class in H?(Z — £z) with the required
properties. O

Proof of Lemma 4.2. The question of extending a closed 2-form on Nz —
Yz over Z — Y.z is described by part of the Meyer-Vietoris sequence for the
cover of Z by (Z —Xz)U Nz. The relevent part is:

(4.9) H*(Z) - H(Z-Xz)® H*(Zz) = H*(Nz - Xz) - H*(2)

The last arrow in (4.9) factors through the inclusion induced map Hg,,,,(Nz) =
H3(Z). So, if the image of w in H3,,,(Nz) is Poincare dual to a multiple of
oz as a class in Hy(Nz, Nz N8Z), then the image of w in H3(Z) is zero if the
image of oz in Hy4(Z,0Z) is zero. This is the first condition in Lemma 4.1.
Thus, under Condition 1 of Lemma 4.2, the class w maps to zero in H3(Z).
When Condition 2 of Lemma 4.2 holds, then w must be in the image of
the restriction homomorphism from H?(Z — Xz) because of the exactness of

(4.9). O

c) Satisfying Lemma 4.1’s constraints.

The second constraint in Lemma 4.1 will be satisfied by construction; as it
is essentially a restatement of (4.3) with orientations taken into account. The
first constraint in Lemma 4.1 is more subtle. Here is a strategy for finding a
solution: The variety £z will be constructed from a union of varieties,

(4.10) Y2 =AzUELUERUE_UE,.

Each variety on the right side of (4.10) will carry a fundamental class. (Here,
a variety is a union of embedded submanifolds. If the constituent submanifolds
are oriented, then the variety has a fundamental class which is the sum (in
the relevent homology group) of the fundamental classes of the constituent
submanifolds.) And, for a particular integer N > 0, the class oz will be given
as

(4.11) 07 = [Az] = [EL] - [ER] - N7'[E_] - N7} [E4].

In (4.10), (4.11), Az and Ej g are honest submanifolds; these will be defined in
subsequent subsections. Meanwhile, E4 will be honest varieties unless N =1
in (4.11). The construction of E4 is quite lengthy and starts in the next section
with the completion in Section 10. But, see subsections 4f, g below.

With (4.11) understood, the first constraint of Lemma 4.1 will be solved with
the help of Lemma 4.3, below. (The statement of this lemma reintroduces L,
from (3.31), (3.32).)

LEMMA 4.3. Suppose that W has the rational homology of S®. LetV C Z be
a union of dimension 4 submanifold with boundary such that 8V C 0Z. Suppose



HOMOLOGY COBORDISM 339

that each component of V carries a fundamental class. Then [V] € Hy(Z,0Z;R)
vanishes if:

1) [8V] =0 in H3(0Z;R).

2) 'V has zero intersection number with any component £ C (L_UL,).
(The intersection number of V with an embedded, 3-dimensional submanifold

of Z is defined to be the sum of the intersection numbers of the components of
V.)

Proof. Poincare duality equates Hy(Z,0Z) with H3(Z). Intersection theory
makes this explicit, as the intersection pairing between Hy(Z,8Z) and H;3(Z)
becomes, under Poincare duality, the dual pairing between H3(Z) and H3(Z).
Now, use this fact with Assertion 3 of Lemma 3.7. O

d) The subspace Az Let Ay C W x W denote the diagonal. Clearly, Ay C
Z. Let Az denote the intersection of Aw with Z C Z. (Alternately, if Z is
thought of as the blow up of Z, then Az can be defined as the inverse image of

Aw under this blow up.) Note that Az is a submanifold with boundary in W,
and

(4.12) 0Az = Ap, UAp, Upecrit(£) (Asa)p.

The orientation of W defines an orientation for Aw and thus for Az. The
orientation of (Ags), is induced from the orientation of Az in Section 3h as a
boundary component of Az. With this understood, one has:

LEMMA 4.4. Let [Az] € Hy(Z,0Z) denote the fundamental class of Az.
Then

(4.13) 0lAz) = —[Ar] + [Ba]+ Y [(Ass)y):

pEcrit(f)

as a class in H3(0Z).

Proof. This is left as an exercise.
As a final remark, note that

(4.14) AzN(L-ULy)=9.

This is a consequence of Condition 1 in Definition 3.1. O
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e) The submanifolds Eg . By assumption (see 4 of Definition 3.1), there is

a gradient flow line for the pseudo-gradient v which starts at pp and which ends
at pg. Let v denote this line. Define

1) Eg=(yxW)nZ

2) EL=(Wx~y)NZ

(4.15)

Here are the properties of these spaces:

LEMMA 4.5. Both Er and EL are embedded submanifolds (with boundary)
of Z. Also,

1) BER = (po X M()) U (p1 X Ml)

2) OEp = (Mo xpo)U (M; X p1).

3) Let mp and wr denote the respective right and left factor projections from
W xW toW. Then g : Eg & W and w : EL =& W are both diffeo-
morphisms.

4) ErnNAz = E,NAz =EgNEL = (y%xvy)NAz. Furthermore, this
subspace (y X ¥Y) N Az has a neighborhood U C Z with a diffeomorphism
(of manifold with boundary) Yy : U = [0,1] x R® x R® which obeys
(a) Yu((yx7)NAz)=[0,1] x (0,0).

(b) Yu(Er)=1[0,1] x {0} x R*.

(c) Yu(EL)=[0,1] x R® x {0}.

(d) Yu(Az)=10,1] x Ags.

(6) wu(Mo X Mo) = {0} x R3 x R3.
(f) Yu(M; x M) = {1} x R® x R3.
(9) The interchange map (z,2') — (2',z) on Z is mapped by Yy to

(tz,y) = (t,y,2).

5) Both Eg and Ej, have empty intersection with the components of L_U L,

of (8.80), (3.81).

6) Orient Eg and Ep, by 71, and g, respectively. Then
(416) 6[ER] = —'[po X Mo] + [pl X Ml],

O[EL] = —[Mo x po] + [My x p1].
The remainder of this subsection is occupied with the proof of this lemma.
Proof. Since 7 is a flow line of v, it has a parametrization
(4.17) v:[0,1] W

with (y*f)(t) = t. This implies that the function F of (3.16) restricts with-
out critical points to v x W and to W x v ; therefore, both Er and Ej, are
submanifolds of Z.
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Assertions 1 and 2 of the lemma follow because v is assumed to miss crit(f).

To prove the third assertion, use vy to view Eg as the graph of f in [0,1] x W,
where 7R restricts as the obvious projection to W. The proof of Assertion 3 for
E}, is analogous.

To prove Assertion 4, note that -y, being embedded, has a neighborhood U, C
W with a diffeomorphism 3, : U, — [0,1] x R’ which obeys f(y;'(t,z)) = ¢
and v, (y(t)) = (¢,0). (Use the implicit function theorem to construct such a
%y .) Take U = U, x U, and take ¢y = ¥ x 9., . The verification of (a)-(g)
follow immediately. O

f) The varieties E, .

With Az and Eg,; defined in the preceding section, the solution oz of
(4.11) to Lemma 4.1’s constraints is missing still [E_] and [E,]. Indeed, the
class [Az] — [ERr] — [EL] is a class in H4(Z,0Z) whose boundary is equal to

(4.18) —omtom + Y, [Assp,
pEcrit(f)

which is only a part of the right side of (4.4).

As remarked earlier, the construction of E4 is quite lengthy. To simplify
matters, the decomposition given in Proposition 3.2 will be invoked to break
the discussion into two parts so that the cobordism W can be assumed to obey
the conditions of (3.11). That is, W will be assumed to have the rational
homology of S® and W has a good Morse function with no index 3 critical
points.

The construction of Ex for W given by (3.11) is started in the next section
with a digression to describe certain constructions on such W. The construction
of Ex for (3.11) is completed in Section 9.

With W understood to be given by (3.11), here is a rough description of E:
Fix a good Morse function f : W — [0, 1] with no index 3 critical points. Let
ay, -+ ,a, and by,--- ,b, label the index 1 and index 2 critical points of f.

Now fix a good pseudo-gradient, v, for f, and fix orientations from the de-
scending disks from crit(f) such that the conclusions of Proposition 3.3 hold.
That is, with the orientations implicit, the points a1, - ,a, and by, - ,b, de-
fine a basis for C; and Cs, respectively. And, with respect to this basis, the
boundary map in (3.5), 8 : C; — C,, is represented by an upper triangular
matrix, S, with positive entries on the diagonal.

A pair E., of subvarieties (with boundary) of Z will be constructed with
OFEy C 0Z. The variety E_ is obtained as the intersection with Z of a subvariety
of W x W; this subvariety is constructed by performing various surgeries on
multiple copies of products of the ascending disks from points in crit; (f) with
the descending disks from the points in crito(f). Meanwhile, the variety E, is
obtained as the intersection with Z of a different subvariety of W x W. In this
case, the subvariety is constructed by surgery on multiple copies of the product
of the descending disks from crit,(f) with the ascending disks from crit; (f).
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The varieties E+ will be naturally oriented and seen to define classes [E4] C
Hy(Z,0Z). The boundaries of these classes are

(4.19) S[E.]=N > [$%,-,
peEcrit(f)

OE =N Y [S%,
pEcrit(f)

where (4.19) has introduced the following shorthand: When p is a critical point
of f, use [S3],- to denote [S? x point] € H3((S® x S%),), and use [S3],+ to
denote [point x S3} € H3((S® x S3),),. Here, the orientations on (S* x point)
and (point x S3) are defined in Section 3h. (The diagonal in (S® x S%), is
oriented as a component of the boundary of Az and then the right and left
factors of S3 in (S3 x S3), are oriented by using the canonical identification of
S3 with Ags.)

The [E4], of (4.19) will be constructed to have zero intersection pairing with
the classes in L4 of (3.30). This will insure that oz of (4.11) satisfies both
requirements of Lemma 4.1. (See Lemma 4.3.)

g) Constraints from wz A wz = 0.

With Xz in (4.10) constructed so that both requirements of Lemma 4.1 are
satisfied, there is a 2-form on Z — ¥z which is a candidate for the form wz in
Step 3 of Theorem 2.9’s proof.

The issue then arises as to whether oz can be found to satisfy the conditions
in (2.27). The construction of a closed 2-form which satisfies-the conditions of
(2.27) is carried out in Section 10. However, to motivate some of the intervening
contortions, here is a rough summary of the difficulties:

Remark 1: As long as E. in (4.10) have empty intersection with My x My
and with M; x M, then there is no obstruction to finding wz which obeys
(2.27.1). (See Lemma 2.1)

Remark 2: The remaining requirements of (2.27) are harder to satisfy. In
particular, the second requirement in (2.27) will require that for each p € crit(f),

(4.20)

1) E_N(S¥x8%),=83xgz,
2) E;fN(S®xS3),=1x,xS3.

This requirement and (4.19) are incompatible unless N = 1 or unless E. are
singular. Together, (4.19), (4.20) force the use subvarieties for E. instead of
submanifolds.

Given (4.20), the second constraint in (2.27) can also be satisfied. (See
Lemma 2.1 again.)

Remark 3: The first condition of Lemma 4.2 is not easy to satisfy with a
2-form w which obeys w A w = 0. In the case where N =1 in (4.11) (so E. are
manifolds) the strategy will be to find a regular neighborhood Nz C Z of £z
and a map
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(4.21) 0z : Nz - R3

which obeys ¢'(0) = £z and which pulls back the generator of H3,,,,(R®) to a
non-zero multiple of the Poincare dual in HJ, . (Nz) to
0z € Hy(Nz,NzN3Z). In this case,

(4.22) wz = 95" (1)

with g as in (2.3).

In the case where N > 1 in (4.11), the preceding strategy will be modified.
When N > 1in (4.11), then ¢z, as in (4.21), will be defined only in a neigh-
borhood of Az U Ef, U Egr C Xz, and wz will be defined near Az U E;, U Eg
by (4.22). But, near the remainder of ¥z (i.e. near most of E.), the form wz
will be defined somewhat differently. (The basic difference being that wz will
be defined locally as the pull-back of a closed 2-form from a space of dimension
less than 4. However, the space in question will not always be S%. In some
places, the space will be the compliment in S? of N + 1 distinct points.)

This strategy for constructing a closed, square zero solution to Condition 1
of Lemma 4.2 requires Az, Er r and the constituent submanifolds of E1 to
have trivial normal bundles in Z. (See Remark 4, below.) The success of this
strategy also requires that the mutual intersections of Z, Ef, g and E have a
canonical form. (See Remark 5, below.)

Remark 4: The normal bundle of Az in Z is trivial if and only if Z is a
spin manifold. Indeed, H*(Az) = 0 and therefore, an oriented 3-plane bundle
over Z is classified by its 2nd Stieffel-Whitney class. Since Z has trivial normal
bundle in W x W, the Stieffel-Whitney classes of the normal bundle to Az in
Z are the same as those of the normal bundle to Az in W x W. The latter are
the restrictions of the Stieffel-Whitney classes of the normal bundle of Aw in
W x W. And, this last normal bundle is naturally isomorphic to the tangent
bundle of W. Finally remember that W is said to be spin if the 2nd Stieffel-
Whitney class of its tangent bundle vanishes.

The normal bundles to Ej g are trivial, since they are isomorphic to the
normal bundle to the path vy in W.

A constituent submanifold of E; (or E_) has a normal bundle in Z. If care
is taken in constructing F., then these normal bundles will be trivial too.

Remark 5: The construction of a square zero w to satisfy the first condition
of Lemma. 4.2 seems to require that E; do not intersect each other or Az and
EL g in a complicated way. Infact, the E; that are finally constructed will have
empty intersections with Er g, while

(423) E_ OE+ =E_OAZ =E+OAZ =U:=1'U1',

where {€;}7_, are disjoint, embedded paths in Az. In fact, fix the label i €
{1,---,r} and let a = a; and b = b; be the 7’th pair of index 1 and index 2
critical points of the Morse function f as described by Proposition 3.3. Then, v;
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will start at the point (z4,7,) € (S® x S%), and will end at the point (z4,z3) €
(53 X 53)[,.

Assertion 4 of Lemma 4.5 describes the intersections amongst Ep g and Az.
Assertion 4 of Lemma 4.5 and (4.23) (with some conditions on normal bundle
framings) insure that the intersection of E; with Az has the appropriate form
for the construction of a square zero w to satisfy the first condition of Lemma
4.2.

Remark 6: The second condition in Lemma 4.2 will be satisfied by taking
care to construct E4 to have vanishing H2. Note that Z, Az and E g all have
vanishing H2. (See Lemmas 3.7, 4.4 and 4.5, respectively).

Care must also be taken to insure that F4+ do not intersect each other or Az
and Er, g in a complicated way. Infact,

LEMMA 4.6. Suppose that £z is given by (4.10) with Az and EpL r as
described in Sections 4d and 4e, respectively. Suppose that EL C Z are varieties
which have empty intersection with Er g and which intersect each other and
Az as described in (4.23). Suppose, in addition, that H?>(E+;Q) = 0. Then
H?(Xz;Q) = 0 and the homomorphism H*(Z;Q) — H?*(X2;Q) of Lemma 4.2
is surjective by default.

Proof. Because the intersections of Az, Er g and E4 with each other are
a union of line segments (which have vanishing H'), the Meyer-Vietoris exact
sequence shows that H2(Xz) is isomorphic to the direct sum of H2(-) for (-) =
Az,Ep g and Ey. By assumption H?(Ey) = 0. Meanwhile, H%(Az) =~ 0,
since Az is the compliment in Ay ~ W of a finite union of disjoint (open)
4-balls. And, H*(EL g) ~ 0 since EL g = W. O

Remark 7: In summary, the construction of Ey for the case of (3.11) will
proceed with care taken with:
1) Normal bundle framings.

2) Intersections with Az, Er g and with each other.
3) Keeping H%(E+) equal to zero.

(4.24)

5 Disk intersections for the Special Case. The construction of Ey
for W given by (3.11) starts in this section with a digression to describe certain
constructions on such W. The constructions here serve to modify the ascending
disks from index 1 critical points and also descending disks from index 2 critical
points.

With W understood to be given by (3.11), begin the discussion by fixing a
good Morse function f : W — [0,1] as described by Proposition 3.3. As in
Proposition 3.3, let a;,--- ,a, label f’s index 1 critical points and b;,--- ,b,
label the index 2 critical points.
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Fix a good pseudo-gradient, v, for f, and fix orientations from the descending
disks from crit(f) so that the conclusions of Proposition 3.3 hold. That is, with
the orientations implicit, the points a;,--- ,a, and by,--- , b, define a basis for
Ci and Cy, respectively. And, with respect to this basis, the boundary map
in (3.5), @ : C1y = C,, is represented by an upper triangular matrix, S, with
positive entries on the diagonal.

The matrix S gives a certain amount of algebraic information about the in-
tersections of the descending disks from crit2(f) and the ascending disks from
crit; (f). That is, the intersection of the descending disk from b; and the ascend-
ing disk from a; is a discrete set of flow lines which start at a; and end at b;.
Each such flow line carries a sign, £1. And, the matrix element S; ; computes
the sum of these £1’s. In particular, Proposition 3.3 insures that the algebraic
intersection number of the descending disk from b; and the ascending disk from
a; is zero if i > j.

However, even when i > j, the point a; may lie in the closure of the de-
scending disk from b;. This is an unpleasant fact which must be circumvented
in order to facilitate certain constructions in the subsequent subsections. The
purpose of this subsection is to modify the descending and ascending disks so
as to make this eventuality irrelevent. The expense here is to replace the disk
with a more complicated submanifold of W.

a) Past and future.

The purpose of this subsection is to introduce some terminology which will
arise in the modification constructions below. To begin, focus on a subset
U C W. Define the past of U, written past(U), as follows: A pointz € past(U)
if there is a gradient flow line +y : [a,b] - W and times ¢,t' € (a,b] with t' > ¢
and with

D ) =1,
2) ~(t)eU.
(5.1)

Define the future of U, written fut(U), as the subset of points z in W for which
there is a gradient flow line which obeys (5.1) but where ¢,t' € [a,b) and ' > t.
Note that past(U)N fut(U) = U.

For example, if p € W is not a critical point, then past(p) is the set of
points which are hit before p on the gradient flow line through p. However, if
p € crit(f), then past(p) = B,-—.

b) Tubing descending disks from crit,(f).

This subsection begins the modification process; it describes a construction,
tubing, which modifies the descending disk from an index 2 critical point b; so
that the closure of the modified submanifold is disjoint from any index 1 critical
point a; for j < 1.

To make the tubing construction, focus first on some index 2 critical point
b = b; and a particular index 1 critical point a = a; for j < i. A descending
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disk from the index 2 critical point b will intersect a neighborhood, U, of a in
a finite set of components. Each of these components contains the intersection
of U, with a gradient flow line which starts at a and ends at b. To be precise,
let V C By— NU, be a component. After a small isotopy, one can find Morse
coordinates for U, so that

(5.2) Yo (V) = {(z1,22,%3,24) : T2 > 0 and z3 = =4 = 0}.

With (5.2) understood, the flow line between a and b which lies in V' is given
in the Morse coordinates by intersecting 1, (V') with the ray {(z1,z2,z3,z4) :
zo >0 and z; = z3 = z4 = 0}.

To consider the full intersection of By_ with a neighborhood of a in W, it
is convenient to first intersect 1,(B,+) with a small radius sphere in R* about
the origin. Call the result S;; in Morse coordinates, this S, is a small radius
2-sphere in the 3-plane where z; = 0. The intersection By_ N S, is transverse,
and is a finite number of points, By NSy = {e,}. Because j < i and the
matrix S is upper triangular, the 2-sphere S; has zero algebraic intersection
number with B,_. This means that the points {e,} of By_’s intersection with
S+ can be paired so that each pair contains one point with positive intersection
number and one with negative intersection number. Write this pairing as

(5.3) {ea} = {{e1,e2}, -+, {e2n—1,€2}}.

Since S, is a 2-sphere, the two points of any pair can be connected by a path
in S;. These paths can be drawn so that paths coming from distinct pairs in
B,_NS+ do not intersect. The paths should also be drawn to avoid intersections
of S with any other descending sphere from critz(f). Let {(,}/i—; be the set
of paths just defined.

The value of f on Sy is some constant, fo > f(a). Then, introduce M =
f~1(fo) NU,. This will be a smooth 3-manifold given by

(5.4) Yo(My) = {(z1, - x4 : =7} + 25 + 55 + 25 = fo}-

With M, understood, thicken each { € {{,} to a thin ribbon in M; call
this ribbon ¢ ~ I x I, where I = [0,1]. (The ribbon should be thin so that
it’s only intersection with a descending disk from crity(f) is with 8¢.) Thus
parameterized, I x {1/2} = ¢, while 8I x I is embedded in By N M. To be
explicit, parameterize as ((7) € S for 7 € [0,1]. Then, to a first approximation,
¢ should be parameterized by (7,7') as

1) == (}/26(27"—1),

(55) 2)  (22,23,74) = (1 + €2 (27 — 1)2)/2 (1)}

for small € > 0.

Let no- denote the past of ¢(0,0); it is part of a gradient flow line which
starts on My. Let 19+ denote the past of {(0,1), part of another gradient flow
line starting on M. -
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The union 1y = 19— U{(0,-) Une+ is a piece-wise smooth curve in B,_. Here
is a picture of 7 and past(no):

VAN

Mo Past(no)

(5.6)

Let 7, - denote the past of ((1,0) and let 7,4 denote the past of {(1,1). Set
m = m- U{(1,) Umy. This is a piece-wise smooth curve in B,_.

With the preceding understood, here is a surgery on By_: Delete from By_
the set past(ro)U past(r1) to get a manifold with piecewise smooth boundary
MoUmn1, and then glue on to this boundary image ({)U past(¢(-,0))U past(¢(-, 1)
Call the resulting space Bj_. See the following picture:

AN

—«—— Bi_

(5.7)
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The surgery just described is the tubing construction on a cancelling pair of
intersection points of By with S

Effect this tubing construction for all the pairs in (5.3) which comprise By_’s
intersection with S;. Because the surgeries are constructed using gradient flow
lines, the surgeries from different pairs in (5.3) do not interfere (or intersect)
each other.

After all n surgeries are performed, the result is a piecewise smooth subman-
ifold of W whose closure misses the critical point a;. This submanifold can
be smoothed after a small perturbation and will henceforth will be assumed
smooth.

Effect the same tubing construction for all pairs of intersection points for
all a; with j < i. Use Byp— to denote the result of doing this surgery. (Note:
Because the surgeries are defined using gradient flow lines, the surgeries which
come from different index 1 critical points do not interfere nor intersect with
each other.)

Finally, effect this same tubing construction for all b; in crito(f). Note that
this can be done so that the resulting set of submanifolds {Bs— : b = b;}7_;
are disjoint in W. (The point here is that the paths ¢ and the ribbons ¢ in (5.5)
have only the two boundary points of ¢ as intersection points with descending
disks from critz(f). The rest of the tubing construction uses only gradient flow
lines—and so won’t create intersections with descending disks.)

c) Normal bundles.

Let b = b; € crite(f). The submanifold By C W is oriented as the negative
disk from the degree 2 critical point b = b;. As an oriented submanifold of
W, By_ has a canonical trivialization of its normal bundle (up to homotopy).
Simply flow the trivialization of the normal bundle of B,_ at b along Bj_ using
the pseudo-gradient v.

The preceding subsection described the construction of a submanifold By
from By_ by doing surgery on embedded arcs in B, with endpoints on By_ N
Mj. The resulting 2-dimensional submanifold can be seen to be orientable, and
it inherits a canonical orientation from B,_. (Note that each surgery that is
performed on By is constrained to lie in a 3-dimensional ball in W. One dimen-
sion of this ball is the pseudo-gradient flow direction, the other two dimensions
can be parameterized by the ribbon coordinates on ¢ in (5.5).)

As Bj,— is not closed in W, the normal bundle to By will be a trivial
bundle, and the claim is that there is an essentially canonical trivialization up
to homotopy. The point is that in constructing B;s— from B,_ one does a
large number, say N, of essentially identical, non-interfering surgeries. So, one
need only check that the canonical normal trivialization of B,_ extends over
any one of these surgeries to give a normal trivialization of the postoperative
manifold which agrees with the normal trivialization of B,_ away from the area,
of surgery. That such is the case is easy to check, since each individual surgery
can be performed inside a 3- dimensional ball inside of W.



HOMOLOGY COBORDISM 349

d) Tubing ascending disks from crit;(f).

Let a = a; C crity(f). The closure of the ascending disk from a will typically
intersect many of the points in crity(f). The purpose of this subsection is to
modifies the ascending disk so that the closure of the resulting submanifold
of W is disjoint from {b;};>;. This modification procedure will also be called
tubing.

To begin the tubing construction, focus attention first on an index 2 critical
point b = b; with j > 4. Introduce the Morse coordinates, ¢, of (3.2), on a
neighborhood-of b. Let S_ C R* denote a small radius circle in the (z,z2)-
plane, centered at the origin. This is a small radius circle in the inverse image
by ¢ of the descending disk from b.

The submanifold B, intersects S_ transversely in a finite set. The alge-
braic intersection number here is zero because the transpose of the matrix S in
Proposition 3.3 is lower triangular. Thus, the intersection points can be paired
off so that the one member of each pair is a positive intersection point and the
other member is negative. However, care must be taken in making this pairing.

The pairing process is an inductive one, where each induction step pairs off
some non-zero number of points until all points have been paired. To describe
the pairing process in an induction step, remark that the n’th induction step
will pair up a non-zero number of points and leave a subset, Y41 C S— of
points which have not yet been paired. Here, Y, 41 contains an even number
of points, half are points of positive intersection and half are points of negative
intersection. By definition, Y; = B, N S_. ,

Being points on the circle, the points of Y;,4+; have a cyclic ordering. Break
this ordering by choosing one point, e;, as the fiducial point. With e; chosen,
there is a decomposition of Y, 1 into subsets of consecutive points,

(58) Yn+1 =A1 UA2 U"'UA],

where the points in A; can be described as follows:

(5.9)
1)  The signs for all points in A; agree, and for j > 1, disagree with those
in Aj_l .
2)  In clockwise order, A; starts with e;.
3)  The points in A; follow clockwise those in A;_;.

The (n + 1)’st round of pairings is obtained by assigning the last point in A;
to the first point in Aj;1; doing this for j =1,---,J — L.
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See the following diagram:

A3

«¢----> = pairing

A;
(5.10)

Let P41 C Y,41 denote the set of points just paired. This P,4+; contains
at least two points (i.e., one pair) unless Y,;; is already the empty set. If
Y.i1 # 0, then Y, 2 = Y41 — P41 contains strictly fewer points then Y, 1;.
Thus, iterating the pairing process as just described will eventually pair up all
the points of B, NS_.

With the pairing process complete, turn to the tubing process. Start the
discussion by considering the set P; of points which were paired on the first
round. By construction, P, decomposes as a union of nearest neighbor pairs,
with a pair, {e,e'}, in the decomposition composed of one point with positive
intersection number and one with negative intersection number. Write {e, e’}
with e’ clockwise from e on S_. Let ¢ denote a (closed) interval of S_ which
sits clockwise between e and e'.

The value of the function f on S_ is some constant, fo. One can assume,
with no loss of generality, that M_ = f~1(fo) is a smooth submanifold of W
near the critical point b. Indeed,

(5.11) Yo(M_) = {(1,- - ,z4 : —23 — T3 + 25 + 23 = fo}.

With M_ understood, thicken ¢ to an embedded I x D? inside M_. Here,
I = [0,1) and D? is the standard 2-disk. The embedding sends I x {0} to
¢ with {0} x {0} going to e and with {1} x {0} going to e’. Meanwhile, the
embedding should embed &I x D? into M_ N B,4 as neighborhoods of {e,e'} in
M_. Only I x {0} should intersect S_ and only 81 x D? should intersect Bg..
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Agree to identify I x D? with its image inside M_. See the following picture:

/
I x D?
(A .,
R e - Y

Picturein M
B, -

(5.12)

With I x D? understood, perform the following surgery on B,y : Delete fut({0} x
D?)U fut({1} x D?) from B,+. The closure of the resulting space has a new
“boundary” which is piecewise smooth, being the union

(5.13) fut({0} x 8D?) U fut({1} x 8D?) U ({0} x D?) U ({1} x D?).

With this deletion complete, glue onto the boundary above the set fut(I x 8D?)U
(I x D3). The result will be a piece-wise smooth manifold (in its interior) which
can be smoothed to give a smooth manifold (in its interior) whose closure has
two less intersections with S_. Let B;, denote the resulting smoothed manifold.
See the following diagram:

(5.14)

Notice that the B;, intersects S_ in the set Y2. And, the subset P; of points
paired on the second round consists, by construction, of nearest neighbor pairs
on S_. One can therefore repeat the preceding tubing construction to obtain
a sub-manifold B;, C W whose intersection with S_ is precisely the set Y3.
Clearly, an iteration of the tubing construction (as described above) will re-
sult, finally, with a sub-manifold of W with no intersections with S_. See the
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following diagram:

%.’// O
c:::(:'-—_i.-_._._.__: 3 :__:__:::_::.:-

A

One can make the same tubing constructions simultaneously at all of the
points in {bj+1, - ,b,}. This is because tubings from distinct critical points
will not interfere with each other. (They are defined by gradient flow lines so do
not intersect each other in W— crit(f).) Use Bj,+ to denote the submanifold
of W which results from doing these tubing surgeries near all of the points in
the set {bi+1, te ,br}.

Complete this tubing construction for each a € crity(f). The resulting set
{Bia+ : a € crita(f)} may contain pairs which mutually intersect, but notice
that these intersections will occur only in small ball-neighborhoods of the points
of crita(f).

(5.15)

e) Normal framings for B;,+

The purpose of this subsection is to point out that the submanifolds {Bi.+}
all come with a canonical normal bundle framing. Indeed, B,+ is oriented and
the tubing constructions do not destroy the orientability of B, and it is left
to the reader to check that B;,+ inherits a natural orientation from B,,. An
orientation for Bj,4 induces one on the normal bundle of By,4+. And, since
Bia+ C W has codimension 1, the act of orienting the normal bundle of B,
gives that bundle a trivialization.

f) The flow line ~.

There is a flow line, <y, which starts at pp € Mp and which ends at p, € M;.
(See 4 of Definition 3.1.) One can assume that all B;,4 and Bj,_ constructed
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here are disjoint from -y. Here is why: The flow v must avoid all of the critical
points of f. Since W is compact, there is an open subset of U C W which
contains crit(f) and is such that past(U) and fut(U) are disjoint from . Given
such a set, one can assume without loss of generality that

1)  Big+ C fut(U) for all a € crity (f).

(5.16) 2) Bj,_ C past(U) for all b€ crity(f).

6 The first pass at E,. This section will construct submanifolds E1+ C Z
which plug into (4.10), (4.11) to solve the constraints of Lemma, 4.1 in the case
when W is described by (3.11). (So W has the homology of S and W has a
good Morse function with no index 3 critical points.)

a) The submanifolds Y ;.

As in the preceding section, fix a good Morse function f on W with no
index 3 critical points, and label the index 1 and index 2 critical points of f
as {a1,---,a,} and {by,- - ,b.}, respectively. For each a € crit;(f), construct
the submanifold By,4+ C W as directed in the preceding section. Also, for each
b € crity(f), construct the submanifold By, C W as directed in said section.

When 1 <4 <j<r,seta=a; and set b =b;. Now define

(6 1) 1) }/’i,j— =ZN (B1a+ X Blb—)
’ 2) Y;’j_{_ =ZnN (Blb— X Bla+)

These subspaces will be used to construct the varieties F1 of (4.10). (See
also (6.3) and Definition 6.4, below.)
Lemmas 6.1 and 6.2, below describes some of the salient features of Y; ;.

LEMMA 6.1. Let1<i<j<r, and seta =a; and b = b;.

1) After (arbitrarily) small isotopies of Bia+ and Biy_, the former the iden-
tity near a and the latter the identity near b, the subspaces Y; j+ C Z will
be closed, embedded, dimension 4 submanifolds (with boundary).

2) 0Yijx=01ifi#].

8) e C (S° x 594U (S x S

4) 9Yi;— N (S x S®), is the disjoint union of embedded 3-spheres, each iso-
topic to (S3x point). Likewise, 8Y; ;— N (S® x S3), is the disjoint union
of embedded 3-spheres, each isotopic to (S®x point).

5) 0Y; iy N(S3 x S3%), is the disjoint union of embedded 3-spheres, each iso-
topic to (point xS3). Meanwhile, 8Y; ;1 N (S® x S%), is the disjoint union
of embedded 3-spheres, each isotopic to (point x S3).

6) AllY; j+ are orientable.

7) The product normal framings of Biay and Byy— in W induce a framing
of the normal bundles to Y j+ in Z.

8) All Yi,j:l: have H2(Yi,j-_¢:) =0.
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9) AllY; ;i are disjoint from Eg 1 in (4.15).

(Remark that Assertions 8 and 9 are not needed until one reaches the part
of Theorem 2.9’s proof where (2.27.3) must be verified.)

The proof of this lemma is deferred to Subsection 6c.

Since all the Y; j+ are orientable, one can consider their intersection numbers
with the generators of H3(Z). These intersection numbers are computed in
Lemma 6.2, below.

Lemma 6.2 uses the following notations and conventions: Let p and p’ be
critical points of f with the same index, and for which f(p) > f(p'). Consider
Lppy+ = (Bp- X Byy)NZ € L,. This is the boundary of the subset of
Bp_ x By 4 where F < 0. (The latter is a manifold with boundary.) Orient
Bp_ x Bp 4 with the product orientation and then agree henceforth to orient
L(p,p')+ with the induced orientation as the boundary of the subset where F' < 0.

Consider now the 3-sphere L, ) = (By4+ X B,_)NZ € L_. This is the
boundary of the subset of By x Bp_ where F' > 0. (The latter is a manifold
with boundary.) Orient By 4 x Bp_ with the product orientation and then agree
henceforth to orient L, ,_ with the induced orientation as the boundary of
the subset where F' > 0.

LEMMA 6.2. Add the following to the conclusions of Lemma 6.1: The
submanifolds {Y; j+} have transversal intersections with the 3- spheres in L
and Y;;_NL_=0andY;;y NL, =0, where L, are given by (3.31), (3.32).
Furthermore, the {Y; j+} can be oriented so that

1) The intersection of Y; j_ with L,y € L, is empty unless p = a; or
p' =bj. If p=a; and p' = ai, then the intersection number is —S; . If
p=br and p' = bj, then this intersection number is Sk ;.

2) The intersection of Y j+ with Ly ) € L_ is empty unless p' = b; or
p = ai. If p' =b; and p = by, then the intersection number is Sy ;. If
p = a; and p' = ay, then the intersection number is Sj .

3)

(6.2) A[Yi,i-] = (Si4) ([S%)a- + [S®)s-),
AlYiit+] = (Sii) ([S%las + [S%]54)-

Here, S;; > 0 is given in (8.15). (For p = a or b, the classes [S®],+ are
defined subsequent to (4.19).)

The proof of this lemma is deferred to Subsection 6d, below.

b) The construction of [E.].

With the orientations of Lemma 6.2, the submanifolds {Y; ;1 } of Lemma 6.1
will define homology classes in H4(Z,0Z) and linear combinations of these
classes will produce classes [E4] which fit into (4.11) to solve the constraints
of Lemma 4.1. To be precise here, introduce the matrix S of (3.15) and the
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integer valued matrix T' = det(S) S~!. Note that T = (T} ;) is upper triangular
(when ¢ > j, then T;; =0) with T} ; = det(S)/Si,;.
With T understood, introduce

(6.3) [Ei-]=) Tij[Yi;-] and [Ery] = Y Ty Vi)

i, 1,J

(In (6.3), the sums are over all pairs 4,j with 1 < i < j < r.) Here are the
salient features of these classes:

LEMMA 6.3. Define the classes [Er4] by (6.3). Then

(6.4) OE1-] = det(S) > [S%],-.
pE crit(f)

OlEr] = det(S) D [S°]ps-
pE crit(f)

Furthermore, [Ey1+] have zero intersection pairing with the classes which are
generated by the 3-speres in L of (3.81) and (3.32).

It follows from this lemma that Lemma 4.1 is satisfied if the classes [E4] in
(4.11) are set equal to [E14] from (6.3). In this case, (4.11)’s integer N must
equal det(S). (In later constructions, it proves convenient to take [Ey] in (4.11)
to be some multiple of [E14] from (6.3).)

Proof. Consider first the properties of [E;_]. It follows from Assertion 1 of
Lemma 6.1 and Assertion 1 of Lemma 6.2 that O[E;_] obeys (6.4). This is
because the boundary annihilates all terms in (6.3) save those for which ¢ = j.
Then, (6.4) follows from (6.2) and the fact that T; ; = det(S)/Si .

According to Assertion 2 of Lemma 6.2, [E;_] is represented by the funda-
mental classes of submanifolds with empty intersection with the classes from
L_. To study the intersection pairing between [E;_] and a class from L, fix
integers m and n with 1 < m < n < r. Let a = a,, and let @’ = a,. Con-
sider the pairing between [E;_] and the class of L(, 4/)+. Using Assertion 3 of
Lemma 6.2, one finds that this number is equal to

(6.5) > Tk Sk,
k

which is zero because m # n and T is proportional to S~!.

Next, let b = b,, and let b’ = b,, and consider the pairing between [E;_] and
the class of L 5, . Using Assertion 3 of Lemma 6.2 again, one finds that this
pairing is equal to

(6.6) > kSm i Thm,
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which is also zero, because m # n and T =det(S) S~!.
Thus Lemma 6.3 is proved for [E;_]. The proof for [E;] is analogous and
is left to the reader.

c) Proof of Lemma 6.1

Fix ¢ and j such that 1 <4 < j < r and let a = a; and b = b;. For
Assertion 1’s proof, note that Y; ;_ N int(Z) will be a submanifold of int(Z) if
F’s restriction to Bja4+ X Bjp— has zero as a regular value. This will follow if
f’s restriction to Bj,4+ has disjoint critical values from its restriction to Byp—.
With an arbitrarily small isotopy, of By, near f~!(f(a)), one can insure that
f(a) is not a critical value of f on By,_. Likewise, an arbitrarily small isotopy
of Bi,+ near where f = f(b) will insure that f(b) is not a critical value of f
on Bj,+. With this understood, a small isotopy of B;,4+ which is the identity
near a will insure that the critical values of f on B;, are disjoint from those
of f on Byp_.

Argue as follows to prove that Y;;_ is closed: The closure of Byy— in W
adds only the descending disks from {ax}xr>;. However, f(Biat+) > f(ai) >
f({ax}r>i) (see Assertion 2 of Proposition 3.2). Therefore, where (77 f) < 3/8,
the closure of (By,+ X B1p—) N Z adds nothing unless i = j, and then, only the
point (a,a) is added.

Likewise, B1,+ is not closed in W, but its closure adds only ascending disks
from {bi}r<i. (By construction the closure of B, misses {bx}x>i.) How-
ever, f(Bis-) < f(b;) < f({bx}r<;) because of Assertion 2 in Proposition 3.2.
Therefore, where (7] f) > 3/8, the closure of (B1a+ X B1p—) N Z adds nothing
except when i = j, in which case only the point (b, b) is added.

The preceding proves that (B4 X Bip—) N Z is closed.

A similar argument proves that Y; ;; is closed.

Note that the preceding argument proves Assertions 2 and 3 also.

To prove Assertion 4, consider first the neighborhood U, of a in W as de-
scribed by the Morse coordinates (3.2). The submanifold B;,— intersects this
ball in at least S;; components; and a typical component, say V, has the fol-
lowing form: There is a unit vector v with coordinates (0,v2,vs,vs4) and

(6.7) V ={(z1,tv1,tvg,tvs) : z1 € Rand t > 0.}.

(The unit vectors (i.e. v) are distinct for distinct components of By NU,.)
Equation (3.6) describes B;,4 near a since near g, it is identical to Bgy
Consider next the neighborhood U, x U, of (a,a) in W x W, and use the

coordinates of (3.25). One sees that near (a,a), each component of By, X

Bjy— has the form Bj,+ x V, where V C Bj,— is given by (6.7). Thus,

the intersection Bj,+ X V with Z near (a,a) is given by the set of points

((z1,z2,%3,74), (Y1,Y2,¥3,¥4)) € R* x R* where

1) Iy = 0
2) (y25y37y4)=tvfort>0a
3) t2=y?+ai+2%+22
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6.8)
Note that this set intersects (S® x $3), C 8Z as S° x p,, where
(69) Dy = (O,TUZaTU3aTU4)'

Equations (6.7) and (6.8) establish the first part of Assertion 3 concerning
the intersection of ¥; ;_ with (S% x S3),,.

An analogous argument shows that the intersection of ¥; j_ with (S3 x S3),
has the following form: The coordinate chart U, describes a neighborhood of b
in W. A component, V, of the intersection of By,+ with Up is given as

(6.10) {(z1,Z2,73,74) € R : (x1,25) = tv, fort >0

and v € R? with |v |=1}.

Use Uy x Up to describe a neighborhood of (b,b) in W. The intersection of
Bia+ X B1p— with this neighborhood will be a union of components, each of the
form V x Bj,. with V as above. With this understood, V' x By, intersects Z
as the set of points in R* x R* of the form ((z1, 22, *3,4), (Y1, Y2, ¥3, ¥a)) Where

(6.11)

1) (z1,z2) =tvfort>0and |v|=1
2) y3=ys=0
3) t2=y?+y?+ 2% +al

The preceding equation demonstrates that V x By,_ intersects (S x S3), C
0Z as S® x p,, where p, = (rvi,7v2,0,0) . The proof of Assertion 5 of the
Lemma, 6.1 follows essentially the same arguments which prove Assertion 4. The
details for Assertion 5’s proof are omitted.

Consider now the proof of Assertion 6: Both By, and Bj- are orientable
(as described in the previous section), and so their product is orientable. Then,
the restriction of dF' to the product trivializes the normal bundle of Y; ;_ in
Bjo+ x Byp— and similarly that of Y; ;1 in Byy— X Biay.

To prove Assertion 7, remark that both By, and B;,— were constructed with
canonically trivial normal bundles. Thus, their product has a canonical (up to
homotopy) trivialization of its normal bundle in W x W. With this understood,
remember that Z is cut out of W x W as part F~1(0), while Y; ;_ is cut out of
Biay X By as part of F~1(0), so the trivialization of (B4 X B1p—)’s normal
bundle in W x W defines, upon restriction to F~1(0), a trivialization of the
normal bundle to Y; ;_ in Z.

Once again, the argument for Y; ;1 is analogous and omitted.

To prove Assertion 8, first remember that Bj,4+ and Bjp— are constructed
from B,, and By_, respectively by surgery. The surgery on By_ occurs near
where f = 1/4, while the surgery on Bj,y occurs near f = 1/2. This implies
that Y; j_ can be seen as the result of a surgery on the 4-sphere which is the
intersection of the descending disk from F’s index 5 critical point (a,b) with
F~1(1/8). The surgery is on embedded S° x B*’s in said 4-sphere. The number
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of these surgeries is the combined total of the surgeries which make Bj,4 from
B+ and Bjp— from By_. Each such surgery increases the rank of H;(-; Z) by
one, but leaves Hy(-; Z) = 0.

Assertion 9 follows from (4.15) and (5.16). O

d) Proof of Lemma 6.2.

Consider first that the 3-spheres in L, do not come near the critical points
(p,p) of F. This follows from Proposition 3.2. Therefore, an (arbitrarily) small
isotopy of Bja4 or of By will result in transversal intersections between Y; j+
and any of the spheresin L.

Remark next that the intersection of Y; ;_ with some L, ;) is non-empty
only if Bia+ N By 4+ # 0 and also Bys— N B,— # 0. The former is empty if p and
p' have index 2, while the latter are empty if p and p' have index 1.

To prove Assertion 1, one should consider orienting Y; ;j_ as follows: Orient
B o+ X B1p— with its product orientation. Then, note that Y; ;_ is a codimension
zero part of the boundary of the subset of By,4 X B1p— where F' > 0. Give Yj ;_
the induced boundary orientation. Use o to denote said orientation. With the
orientation o, the intersection number between Y; ;_ and some L, ;)4 € L,
is equal to the coefficient in front of (p,p’) in the expression for the 9(a,b)
in the complex CF of Lemma 3.5. (Note that By, x Bjp— is homologous
to the descending 5-disk from (a,b).) The computation of this coefficient is
straightforward and leads to Assertion 1. (The fact that the intersection in
question is empty unless p = a; or p' = b; follows from the fact that when a
and a' are index 1 critical points of f, then Bjg4 N By~ = @ unless a = ad'.
Likewise, when b and b’ are index 2 critical points of f, then By N By = 0
unless b =1b'.)

The proof of Assertion 2 is analogous. Here, the orientation o for Y; ;4 is
defined by considering Y; ;4 as a codimension zero part of the boundary of the
subset of Byy— X By,+ where F' < 0.

Consider now the proof of Assertion 3. There is a proof along the lines of the
proof of Assertion 1, but a direct proof is had by the following argument: Let
a = a; and b = b;. An intersection point, g, of (Ba4 N M3/5) with (B, N M3/s)
corresponds to one boundary component of (B4 X By—-)NZ in (S x §3%), and,
likewise, to one boundary component in (S x S3),. (And vice-versa.) The
orientation of these boundary components relative to the given orientations of
(S%)a- and to (S%),_ will be found equal, but opposite the local intersection
number at q of (Bat N M3/g) with (By— N M3/g) in M3/s.

Step 1: This step compares the local intersection number at ¢ with the
orientation of the corresponding boundary component of (B,+ N By—) N Z in
(8% x §%),. To begin, take the Morse coordinates near a of (3.2) so that
B.+ = {z = (21,%2,%3,24) : z; = 0}. Orient B,y by 8,8:04 € A*TB,,.
A neighborhood, U C Ms/s of Mjs’s intersection with B, is isotopic to
{z : -z + 23 + 2% + 22 = R?} for some R > r. This U is oriented at
qeE (O,R,0,0) eU by —618384.

Now ¢ lies in B, 4, but suppose that g is also a point of intersection B,_ and
B, +. Suppose further that the local intersection number at q of (B,+ N M; /8)
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with (By— N M3/s) is equal to € = £1. Without loss of generality, By can be
assumed to intersect a neighborhood of U as {z : z; > 0 and z3 = z4 = 0}.
To obtain the correct intersection number at g, it is necessary to orient Bj_
using —e 910;. (Note that df = dz at g, so (Ba4 N M3/3) is oriented near g by
0304, while (By— N M3/3) at g is oriented by —e ;. Then, their intersection at
g has local orientation —e0; 9304 which agrees or disagrees with the orientation
—010304 of M3;5 depending on whether € = £1.)

With the preceding understood, it follows that B,4 X By_ is oriented near
(g,9) by —€8203040; 8%; here the prime indicates a vector field from the second
factor of W in W x W, while the absence of a prime indicates a vector field
from the first factor of W. Now, at the point (g, ¢), the 1-form dF = dz), — dz»;
this implies that € (0, + 04)83048; orients (Bay X By—) N Z in (S% x §%), near
(¢, ¢)- Finally, the boundary of the component of (B,+ x By—)NZ in (S® x S3),
which corresponds to the point g is oriented by contracting this last frame with
—dzy —dzo which yields —ed39,0;. This disagrees with the orientation of (S2),—
when ¢ = +1 and it agrees with said orientation when € = —1.

Step 2. This step compares the local intersection number at g with the
orientation of the corresponding component in (S% x $3); of the boundary of
(Bat+ X By—) N Z. To begin, take the Morse coordinates of (3.2) around b.
Then, By = {z : z3 = 4 = 0}. Orient By— by 8;8;. A neighborhood, U,
of the point ¢ in Mj3/g is isotopic to the subset given in Morse coordinates as
{z : —2? — 3 + 2% + z2 = —R?}. Here R >> r and ¢ is the point (0, R,0,0).
The orientation of M3/g is determined from the fact that df at q is —dz2. Thus,
010304 orients M3g.

Meanwhile, a neighborhood of ¢ in B,y can be assumed given by the set
{z : 1 = 0 andzy > 0}. This part of B,y is oriented by € 329304. (Thus,
(Ba+ N M3/g) is oriented at ¢ by —e 3304 while —0; orients (By— N M3/s) at q.
Their intersection gives €d;09304 for the orientation of Mjz/g as it should.) The
orientation for B,y X By near (g,q) is thus given by € 8205048 05.

The 1-form dF at (g, q) is given by —dz} + dz,, and this means that € (02 +
04)030,0; orients the part near (g, q) of (Be+ N Bb—) N Z. With this last point
understood, it follows that —e 030,48 orients the part of 3((B,+ NBy—)N Z) in
(S3 x S3%), which corresponds to q. Note that this orientation disagrees with
the given orientation of (S3),— when € = +1, but it agrees when € = —1. In
particular, note that this anti-correlation with the local intersection number at
q is the same as that for components of 8((B,+ X By—) N Z) in (S3 x S3),.

It follows from the preceding calculations that (6.2) holds if the orientation
—ois used on {Y; ;_}.

A similar argument shows that the second line of (6.2) is correct if the {Y; 4}
are also oriented with —o. The details here are left to the reader.

e) Push-offs.

The next task is to provide a representative of each [E;+] as the fundamental
class of a smoothly embedded submanifold (with boundary), E1+ C Z. Here,
O0E,4+ C 0Z.

The construction of E;4+ requires the introduction of a procedure, called
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push-off, for making copies of embedded submanifolds. The following digression
described the push-off procedure.

Start the digression by considering the following abstract situation: Let X be
a compact manifold with boundary, and let Y C X be a compact submanifold
with boundary, which intersects 0X transversally as Y. Let Ny — Y denote
the normal bundle to Y in X. (Note that Ny restricts to dY as the latter’s
normal bundle in X.) Suppose that Ny admits a section, s, which never
vanishes. Let e : Ny — X be an exponential map which maps Ny |sy to 0X.
(See (2.13).)

Together, e and s and a real number A # 0 define a map,

(6.12) e(As()) : Y = X,

whose image is disjoint from Y. If A has small absolute value, then the image,
Y, of (6.12) will be an embedding of Y into X, where dY" is an embedding of
Y into 0X. This image, Y', is called a push-off of Y. Here are some properties
of the push-off:

(1) Y is disjoint from Y, but smoothly isotopic to Y. (The obvious isotopy
is to consider A — 0 in (6.12). This isotopy will isotope dY’ to 8Y in 90X.)

(-) If Y comes with some apriori orientation, then Y’ has a canonically in-
duced orientation which makes [Y] = [Y'] in H*(X,8X).

(-) Let V C X be a submanifold which intersects Y transversally. Then V
will also intersect Y’ transversally if A in 6.12) has sufficiently small absolute
value.

(-) Let V C X be a closed submanifold with empty intersection with Y. Then
VNY'=0if Xin (6.12) has sufficiently small absolute value.

(-) f Y has a framed normal bundle, then this framing naturally induces a
framing of the normal bundle to Y.

(6.13)

Note also that one can define any finite number of disjoint push-offs of Y by
using different values of X in (6.12). Alternately, one can use different sections
{s1,-} of Ny with fixed A as long as the {s;} are no-where vanishing and no
two are anywhere equal.

In the sequel, assume the following conventions:

(-) Any pair of distinct push-offs of the same submanifold are mutually dis-
joint.

(-) Suppose that the normal bundle Ny is trivial, and that an apriori trivi-
alization has been specified. (Call it the canonical trivialization.) In this case,
agree that all push-offs of ¥ will be defined by using for s in (6.12) a constant
linear combination of basis vectors for the canonical trivialization.

(-) When the precise choice of exponential map or parameter A or section
s in (6.12) are irrelevent to subsequent discussions, their presence will not be
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explicitly noted. (But, keep the preceding convention on the section s when the
normal bundle to Y has been trivialized.)

(6.14)

(The last two conventions in (6.14) allow one to speak of a push-off of Y’
with-out cluttering the conversation with a list of irrelevent (but necessary)
choices.)

End the digression.

f) E;4+ as submanifolds.

The purpose of this last subsection is to define [E;4] of (6.3) as the funda-
mental class of a closed, embedded submanifold (with boundary) of Z. Consider

first [El..].
This [E;_] is a sum of fundamental classes of the {Y; j_}. The first observa-
tion is that each Y; ;_ NY, »_ = @ unless m = j. This is because the various

{B1b-}be crito(s) are mutually disjoint. There may be non-empty intersections
between Y;;_ and Yj ;_ when i # k. These can be avoided if the following
convention is used: Remember that each By,_ has trivial normal bundle in W.
And, remember that said normal bundle has a canonical trivialization up to
homotopy. For each b € crito(f), choose a trivialization of the normal bundle
of Bjp— which is in the canonical homotopy class. Then, fix j and when i < j,
define Y; j_ as in (6.1) but where Bj,_ is replaced by a push-off copy. For each
such i, use a different push-off copy. This will make Y; ;_ disjoint form Yi i
when i # k.

Now, generalize this process of separating the {Y; ;_} as follows: Reintroduce
the matrix T' = (T} ;) which appears in (6.3). For each pair (i,7) with 1 <7 <
Jj<r,let a =a; and b =b;. Take | T;; | distinct push-off copies of By, and
use these in (6.1) to define | T} ; | distinct push-off copies of ¥; ;_. It will prove
convenient to require that all such push-off copies are disjoint from the flow line
v of Part 4 in Definition 3.1. (One can make all such copies in past(U), where
U C Wis an open subset which contains crit(f) and whose past and future are
disjoint from v . See (5.16).)

Since the various {Bis- }se crity(s) are mutually disjoint, one can make all of
these push-offs so that each copy of Y; ;_ is disjoint from each copy of Y-
when (i, j) # (k,1).

With the preceding understood, consider:

PROPOSITION 6.4. Define Ey_ C Z as an oriented submanifold of Z (with
boundary) as the union over all pairs (i,j) (with 1 < i < j < 1)) of the
| T;;j | push-offs of Yij— as defined above. Take these copies with the fol-
lowing orientations: Orient the copies of Y; j— as in Lemma 6.2 if T; ; > 0; and
oriented them in reverse if T; ; < 0. Define E1y C Z as a submanifold to be
the image of Ey_ under the switch map on W x W which sends (z,y) to (y,z).
(This map preserves Z.) Then these oriented submanifolds can be assumed to
have the following properties:

1) The fundamental classes of E;1+ obey (6.3).
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2) E, i intersect 0Z transversely in OF; 4.
3) Ei+ have empty intersection with My x My and M; x M, .

4) Ei+ have trivial normal bundles in Z, and said normal bundles have
canonical trivializations up to homotopy.

5) Hz(Eli; Z) =0.
6) Ei+ have empty intersection with Eg 1, of (4.15).

The proof of this proposition is left to the reader.

7 The second pass at E;. Assume here that W obeys the constraints
of (3.11). If E1 in (4.10) is E;4 of Proposition 6.4, then the resulting ¥z
satisfies Steps 1 and 2 plus Part 1 of Step 3 in Section 2k’s outline of the proof
of Theorem 2.9. However, the completion of Step 3 requires modifications of
E;+. The problem is that E;4 intersect the various (S® x $%), C 8Z too many
times, and they intersect each other too many times, and they intersect Az too
many times.

The change of E; 1 into E is a multi-step process which begins in this section
and ends in Section 10. Then, Section 11 constructs a 2-form wz to satisfy
(2.27). This section starts the process by modifying E; 4+ to make a submanifold,
E,., with simpler intersections with the (S% x $3), C Z.

a) The submanifold Ej_.

To begin the modification process, fix i € {1,--- ,r} and, as usual, set a = a;
and b = b;. Make 2det(S) additional push-off copies of By,—. Make these copies
so that they are disjoint from all other push-off copies of {Byy— : b' € crit2(f)}
which have so far been constructed. Use these 2det(S) push-off copies of Bj,—
to make 2det(S) copies of Bis+ % Bip— and then 2det(S) copies of Y;;— as
describe in (6.1). Orient the first det(S) of these Y; ;— canonically, and orient
the remaining det(S) of these copies opposite to their canonical orientation.
The first det(S) copies of Y; ;— (the ones with the canonical orientation) will be
called the special Y; ;_.

Define E{_ to be the union of Proposition 6.4’s E;_ with the (oriented)
submanifold which is comprised of the union of the preceding 2det(S) copies of
oriented Y; ;—. Notice that this Ej_ still obeys the conclusions of Lemma 6.3
and Proposition 6.4.

b) Tubing near (a,a)

Consider now the intersection of E}_ with (S3 x $3),: As described in (6.8),
(6.9), this intersection is given as

(7.1) S3 x AL,

where A, C S® is a finite set of points. Each point in A/, comes with a sign
(£1), and there are det(S) more plus signs than minus signs. This means that
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the set A}, can be decomposed as A, UT,, where the points in T, can be paired
so that the signs in each pair add to zero.

It proves useful to take some care in defining the set A,. Here is how: To
begin, note that the intersection of By_ N f~1(3/8) with B, N f~1(3/8) is
transversal, and has intersection number S; ;. Pick a point in this intersection
where the local intersection number is positive. Such a point lies on a gradient
flow line, (= ;) which starts at @ and ends at b. The intersection of u x p with
(53 x §3), is a point, p, X p,, where p, € S3. With p, singled out, note that
the intersection of any push-off copy of ¥;; with (S® x $3), contains a unique
(53 x pl,) where p/, is the push-off of p,. (There is a canonical isotopy between
the push-off copy and the original (shrink A to zero in (6.12), and under this
isotopy, p;, moves to p,.) In particular, each of the det(S) special copies of Y; ;
defines such a point p}, and these det(S) points are the points that comprise
A,.

As remarked above, the points in T, can be paired up so the signs of each
pair sum to zero,

(7.2) T, = Ua{ea’ezx}

For each pair {eq,e,} in (7.2), E;- induces orientations on S® x e, and
S3 x e!,, and these orientations are opposite.

Now, for each pair, {e, €'} on (7.2)’s right side, embed [0, 1] into S® to have
boundary {e,e’'}. (Do this in such a way that the embedded intervals from
distinct pairs do not intersect.) The associated S® x [0, 1] has boundary (S® x
e) U (S3 x €') and the orientations here agree with those which are induced
by Ei_. Hence, S3 x [0,1] C (S® x S3), can be surgered to E;_ along their
common boundaries, (S® x e) U(S® x e). The result is a topological embedding
in Z of a smooth, oriented manifold with boundary, where the boundary embeds
(smoothly) in 8Z. (The embedding has ”corners”, these being the components
of S® x {eq,€!,} where the surgery took place.) The point is that this new
manifold has two less boundary components then Ej_. Here is a picture:

E,

O ) EEEEEzEEEEZ) )

S3xe $* x[0,1] S3xe

(7.3)

Make the preceding construction for each pair on the right side of (7.2). The
result is a topological embedding of a surgered E{_. (The “corners” of the
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embedding are the components of S® x T,.) The embedding of this surgered
E|_ intersects (S® x $3), in S x A, (where it is the same as E|_) and also in
a copy of S% x [0, 1] for each pair on the right in (7.2). (The copies of S x [0, 1]
for distinct pairs will not intersect if one takes care to insure that the embedded
[0,1]’s from different pairs do not intersect.)

Now note that the copies of S® x [0, 1] can be isotoped normally off (S3 x $3),
(push radially outward in the coordinates of Lemma 3.6 so that the resulting
embedding of the surgered E|_ intersects (53 x $3), in S% x A,. And, note that
all of the ”corners” in the resulting embedding can be readily smoothed so that
the result is an embedded submanifold of Z. The following diagram illustrates:

__ g
p
\ 7

smoothed

(7.4)

The preceding construction can be done at all a € crit; (f). The result is a
submanifold, Ei' C W. Note that E{_ has a minimal number of intersections
with any (S3 x S3), C 0Z as its intersection is equal S x A,, a set of det(S)
push-off copies of S® x p,. Note also that E}_ agrees with Ej_ away from

{(S? x $%)a}ae crita (£)-

c) Tubing near (b,b)

Let b=b; € crit(f). Consider now the intersection of Ej’_ with (53 x §3),:
As described in (6.8), 6.9), this intersection is given as

(7.5) S3 x A},

where A} C S3 is a finite set of points. Each point in A} comes with a sign
(£1), and there are det(S) more plus signs than minus signs. This means that
the set Ay can be decomposed as Ay U T}, where the points in T} can be paired
so that the signs in each pair add to zero.

It proves useful to take some care in defining the set A,. Here is how: The
flow line p(= p;) which starts at a and ends at b. The intersection of u x u with
(83 x S3), is a point, p, X py, where p, € S3. With p, singled out, note that
the intersection of any push-off copy of Y; ; with (S3 x S3), contains a unique
(83 x p}) where pj is the push-off of p,. (There is a canonical isotopy between
the push- off copy and the original (shrink X to zero in (6.12), and under this
isotopy, p, moves to py.) In particular, each of the det(S) special copies of Y; ;
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defines such a point pj, and these det(S) points are the points that comprise
Ap.

As remarked above, the points in T, can be paired up so the signs of each
pair sum to zero,

(7.6) T, = Ua{ea,e;}

For each pair {eqs, €, } in (7.5), E{"_ induces orientations on S3 x e, and S3 x e/,
and these orientations are opposite. With this understood, one can repeat the
tubing construction as described in the previous subsection (see (7.4), (7.5))
to surger E{_ near (b,b) and then isotope the result to obtain an embedded
submanifold of Z which intersects (S® x S%); in S x Ay. Furthermore, this last
construction can be done simultaneously near all (b,b) for b € crit2(f). Use
E,_ to denote the resulting submanifold of Z.

d) The intersection of E;+ and Eg .

The next four subsections describe various properties of E24. The purpose
of this subsection is to prove

LEMMA 7.1. The submanifolds Ey+ C Z can be constructed as described
above so that they do not intersect Er r of (4.15).

Proof. Let U C W be an open neighborhood of crit; (f) and let U' C W
be an open neighborhood of critz(f). Then Es4 can be made (as described
above) so that they are supported in Z’s intersection with (fut(U)x past(U")).
The latter set is disjoint from Epg 1, if U and U’ are not too big; this is because
the flow line v misses f’s critical points. a

e) The intersection of E,; with Az:

Fixi € {1,---,r} and let a = a; and b = b;. By construction, E_ intersects
(83 x §%), in S x A,. It intersects (S x S3), in S3 x Ay. Here, A, and A, are
sets of det(.S) points.

Now, there is a natural way to pair the points in A, with those in A, and
here it is: When p € A, and p' € A, are partners, then (p,p) and (p,p’) are
the endpoints of a transversal component of E>_ N A, which is an embedding
of [0,1].

Such a pairing exists for the following reasons: If p € A,, then S® x p is a
component of the intersection of a push-off copy of Y;;— with (S® x S3),. By
design, there exists a unique p' = p'(p) € Ay for which S3 x p' is a component
of the intersection of the same push- off copy with (S% x $3),. This is another
definition of the pairing between A, and A,.

To finish the story, remark that the afore-mentioned push-off copy of ¥; ;_ is
(Biat+ X Bj,_)NZ, where Bj,_ is a push-off copy of B1;—. And, both p and p’
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lie on a push-off copy, ' C Biaq N By,_, of a chosen flow line, u(= p;), which
starts at a and ends at b. Finally, (1’ x pu') intersects Z transversally in Az
and (4’ x p') N Z is an embedded interval in Az and a transversal component
of E2_NAZ)

With the preceding understood, one sees that

(7.7) Es_NAgz= (U, UC,

where I'; is the union of det(S) push-offs (in Az) of (u; x p;) N Az, and where
C C int(Az) is compact. Infact, after an (arbitrarilly small) isotopy of the
push-offs of the {Bjs— : b € crit(f)} (with support away from crit(f)), one
can arrange for the intersection in (7.7) to be transversal. In this case, C is a
disjoint union of embedded circles in int(Az).

f) Normal framings.

Consider now the normal bundle to E;_. Of particular interest in subsequent
sections is the fact (see Lemma 7.2, below) that E,_ has trivial normal bundle.
Also of interest is the behavior of a framing of this normal bundle on E;_ and
along the components of {I';} from (7.7).

Two digressions are required before Lemma 7.2: The first digression defines
the notion of a product framing of the normal bundle of a submanifold in Z:
This is a framing of the normal bundle with the property that each basis vector
is annihilated by the differential of either 7 or mr. The same definition works
to define the product framing of a submanifold of W x W.

A second digression is required to set the stage for a discussion of the normal
framing near 0F,_ and {[';} . To start, consider i € {1,---,r}. As usual, let
a =a; and b =b;. Let p C I'; be a component and define p,p' by requiring
(p,p) = uN (S x S3), and (p',p') = pN (5% x S3),. Associate to p the subset
of Ez._

(7.8) (S® xp)U(S® xp YU p.

Note the following: Let u' C I'; be any other component. Then, E;_ near the
4" version of (7.8) is naturally defined as a push-off of E,_ near the p version of
(7.8). (Near the p-version of (7.8), E,_ is a push-off copy of an open neighbor-
hood of (Big+ X B1pb~)NZ. And, near the p'-version, E,_ is a different push-off
copy of the same open neighborhood. Infact, each of these push-off copies is
constructed as Bjq+ X (push-off copy of Byp—).

These last observations give a natural method of comparing a given normal
framing of E,_ along the p and p' versions of (7.8). See (6.13).

End the second digression.

LEMMA 7.2. The submanifold E5_ has trivial normal bundle in Z. Further-
more, the normal bundle to E;_ has a framing with the following properties:
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Leti € {1,---,r} and let p € T';. Then the frame is a product frame along (7.8)
and it restricts as a constant frame along S x p and S® x p'. Furthermore, let
u' C T; be a different component. Then the push-off which identifies Eo_ near
the p and p' versions of (7.8) will identify the restriction of the frame to the u
and p' versions of (7.8).

Proof. Because E;,_ is constructed by surgering E;_ and the latter is a union
of (6.1)’s {Y; ;_}, the proof starts with a description of the normal bundles to
(6.1)’s {Y; j+}. To begin, consider i,j € {1,---,r} such that ¢ < j. Let a = a;
and b = b;. Then By X Byy— C W x W has trivial normal bundle with a
natural product framing. This implies that ¥; ;_ in (6.1) has a natural product
framing of its normal bundle in Z. (See Lemma 6.1.)

Consider now 7 = j and the induced normal framing of a component of

0Yi,i_. O

LEMMA 7.3. Let c denote either a; or b;. Let S® x p be a component of
9Y;i— N (S® x S3).. Then the product normal framing of Y ;— in Z induces
a product normal framing of S® x p in (S® x S§%). and this induced normal
framing is homotopic through product framings to the constant normal framing
as defined by choosing a fized basis for TS® |, and using the projection g to
write the normal bundle in question as S® x T'S3 |,.

Proof. Consider first the case ¢ = a;. Here, p is described by (6.9). Think
of the vector v = (ve,vs,v4) as a point in the unit 2-sphere-about the origin in
the 3-plane spanned by the coordinates (y2,y3,y4). With this understood, then
(6.9) implies that a product normal frame to Y; ;_ restricts to (S% x p) C 8Y;.i—
to have the form &,,, ez, e3), where the vectors ey 3 € T'S? |,, and where 8z;
is tangent to the z; axis. In particular, this is a normal frame for S® x p in
(S® x S2).. Furthermore, it is homotopic through product frames to the trivial
frame because 73(S0O(2)) = 1. (In fact, the vectors ez 3 depend only on the y;
coordinate.)

Next, consider the case where ¢ = b;: Here, S x p is described in (6.11).
Think of the vector v = (v, v2) in (6.11) as a point in the unit circle in the
plane z3 = 4 = 0. Then, a product normal frame from Y;,_ restricts to
(S% x p) C 8Y; ;- to have the form (e1,y,, Oy, ), where e; € T'S? |, and where
dys . are tangent to the y3 and y4 coordinate axis, respectively. This frame
is evidently homotopic through product frames to the constant frame; simply
homotope e; to a constant length vector.

End the digression. O

To complete the proof of Lemma 7.2, remember that E;_ was constructed
from E;_ by taking a pair, S® x e and S3 x €/, in the same boundary component
and gluing to them a boundary S® x I. Here I is an embedded interval in S3
with boundary {e, e'}. According to Lemma 7.3, the induced normal framing on
any boundary component is homotopic to the constant framing; and so there
is no obstruction to connecting the normal framing on S3 x e to the normal



368 CLIFFORD HENRY TAUBES

framing on S3 x e’ over the interval S® x I. The following diagram illustrates
the procedure:

3 -
2144 1AW

AT TR

p

(7.9)

The aforementioned argument shows that E>_ has a framing for its normal
bundle. But, the argument above also shows that there is a framing for the
normal bundle of E>_ which agrees with Lemma 7.3’s product framing for E; —
near (7.8) for any i € {1,---,7} and any p € I';. (Remember that near (7.8),
E,_ and E;_ agree.) This last observation plus Lemma 7.3 imply the final two
statements of Lemma 7.2.

g) Further properties.

Define E,_ as above. Then, define E;; C Z to be the image of E,_ under
the switch map which sends (z,y) C Z to (y,z). The following proposition lists
the salient features of Fo.:

PROPOSITION 7.4. Define Esy as above. These submanifolds can be con-
structed and oriented so that the following hold:

1) The fundamental classes of Eoy obey (6.3).

2) E,4 intersect 0Z transversely in 0FEq4

3) E,+ have empty intersection with Mo x My and M; x M,.

4) Ifpe€ crit(f), the intersection of Eo_ with (S® x S3), is S x A, where
A, C S3 is a set of det(S) points. Similarly, the intersection of Eoy with
(S3 x 83), is Ap x S3.

5) The normal bundle of E2_ are described by Lemma 7.2 and the normal
bundle of Eo4 is described by Lemma 7.2 if (7.8) is replaced by its switched
version, (p x S3) U (p' x S3) U p.

6) H?*(E;1+;Z)=0.

7) Ea+ have empty intersection with Er 1 of (4.15).

Proof. The only assertion which is not already proved is Assertion 6. To prove

Assertion 6 for E,_, remark first that Ej_ has vanishing H2?. (See Propo-
sition 6.4.) Then, note that E;_ is constructed from E;_ by gluing various
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copies of S3 x I onto boundary (S% x §°)’s. This sort of surgery will decrease
HP or increase H', but it can not change H2. O

8 The third pass at E;. The submanifolds E,4 of the preceding section
intersect the diagonal as described in (7.7), with C C int(Az) being a finite
union of embedded circles. The purpose of this subsection is to modify some
number of like oriented, push-off copies of E»4 so that the result, Es4, intersects
Az as in (7.7) but with C = 0. To be precise, consider:

PROPOSITION 8.1. There are oriented submanifolds (with boundary) E33 C
Z with the following properties:
1) Esy is the image of FE5_ under the switch map on Z sending (x,y) to
(y, 7).
2) The fundamental classes [E3y] are equal to N [Ey4] for some integer N >
1. Here, [E14] are described by (6.8) and Lemma 6.3.

3) Es4 have empty intersection with My x My and M; x M;.
4) Esi have empty intersection with Ey, g of (4.15).

5) Ifpe€ crit(f), then the intersection of Es_ with (S® x S3), has the form
S® x Ap, where A, is a set of N points. Similarly, the intersection of Es,
with (S3 x S%), is A, x S5.

6) Es_NAz=U[_T;, where'; C Az is as follows: There is a flow line y;
which starts at a; and ends at b;. With the canonical identification of Aw
with W understood, T'; is the union of N like oriented, disjoint, push-off
copies of a closed interval, I C p;. And, each of these N push-offs of I
starts in (Aqg X Ag) N Az and ends in (Ap X Ap) NAz.

7) Both E31 have trivial normal bundles in Z. The normal bundle of E5_
has a framing, ¢, which restricts to a product normal framing on a neigh-
borhood of (U_,Ts) U {S® X Ap}pe crig(s)- Furthermore, this framing ¢
restricts to {S® X Ap}pe crig f) as a constant framing. The normal bundle
to E3y in Z is described by applying the switch map to the preceding.

8) H?*(E3:+;Q) =0.

(Compare with Proposition 7.4.)

The rest of this section is devoted to the construction of E;_. The first
subsection below (8a) introduces some of the basic tools. Subsections 8b — 8e
apply the tools from 8a to the proof of Proposition 8.1. The final subsections,
8f — 8h, contain the proofs of three propositions that are stated in 8a.

a) Deleting circles.

In comparing Propositions 8.1 and 7.4, one sees that the essential difference
between F,;_ and F3_ is that the intersection of both are described by a form of
(7.7), but that E3_ N Az has no compact components. With this understood,
remark that E3_ will be constructed from some number of like oriented, disjoint,
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push-off copies of Es_ by surgery, with the point of the surgery to eliminate
the unwanted compact components of the intersection with Az. Of course,
this must be done so as not to destroy any of desired properties of E;_-i.e.,
Assertions 2-5 and 7, 8 of Proposition 8.1.

In abstraction, the problem is to remove circles which are components of
the transversal intersection between two four dimensional submanifolds inside
a seven dimensional submanifold. Here is the model:

MODEL: Let X be a connected, oriented 7-manifold, and let A,B C X be
oriented, dimension 4 submanifolds which intersect transversally. Let O C X
be an open set and let ¢ = (AN B) N O. Suppose that o is compact; a disjoint
union of oriented, embedded circles.

(8.1)

Given the model, here are the problems:

PROBLEM 1: Find an oriented, dimension 4 submanifold A’ C X with the
following properties:
1) A'Nn(BNO)=0.
2) A—(ANO)=A"-(A"Nn0O).
3) [A]l=[A4]in H4(X,X - O).
PROBLEM 2: Find A’ as in Problem 1 with H%(A';Q) = 0.

PROBLEM 3: Assuming that A — (A N O) has trivial normal bundle, find
A’ solving Problems 1 and 2 with trivial normal bundle. And, given, apriori, a
frame ¢ for A’ as normal bundle over A — (ANO), extend { over A’ as a normal
bundle framing.

(8.2)

These three problems will arise a number of times in the subsequent two sections
and will be solved under various assumptions on A4, B and O.
The solution to Problem 1 begins with the following basic surgery result:

PRrROPOSITION 8.2. Let X, A,B, and O be as described in (8.1) and in
Problem 1 of (8.2). If the class, [0, of o is zero in H; (B N O;Z), then there is
a solution to Problem 1.

Problem 2 can be solved when extra conditions are added:

ProPOSITION 8.3. Let X, A, B, and O be as in (8.1) and Problems 1 and
2 of (8.2). Assume that
a) [0]=01in H(BNO;Z).
b) The map HS,,  (A;Q) — H3(A;Q) is injective. And, assume either

comp
¢) Hi(0;Q) = Hi(A;Q) is injective, or else assume
d) BnNO is connected and [0] # 0 in H,(A;Q), Then, there exists A' C X
which solves Problems 1 and is such that H2(A'; Q) ~ H?(A;Q). Thus,
Problem 2 is solved by A’ if H2(A;Q) = 0.
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Remark that Condition b of this proposition will be true automatically if
AN O is the interior of a manifold with boundary, A, whose boundary, 8A4,
obeys H2(0A;Q) = 0.

To solve Problem 3 of (8.2), it is necessary to digress first to define a Z/2
valued invariant for homologically trivial, normally framed circles in an oriented
4-manifold with even intersection form. (This is invariant is well known to 4-
manifold topologists.)

To start the digression, let B denote the oriented 4-manifold. To say that
B’s intersection form is even is to say that the self- intersection number of any
embedded, orientable surface in B is an even number. (Note that B need not
be compact.)

Let o0 C B be the finite union of disjointly embedded, oriented circles which
represents the trivial element in H;(B;Z). The invariant in question, xB,(-),
assigns £1 to the various homotopy classes of framings of the normal bundle to
o in B. (If o is a single circle, then there are precisely two normal framings up
to homotopy since m;(SO(3)) = Z/2.)

To calculate xp s, first choose an oriented surface with boundary, R C B,
such that R = o. An oriented frame { = (e;, ez, e3) for the normal bundle to
o in B will be called an adapted frame when the vector e is the inward pointing
normal vector to R along OR.

LEMMA 8.4. Let B,o and R be as described above. Let ( be an oriented,
normal frame for o C B. Then ( is homotopic to an adapted frame.

Proof. On a component, C, of o, two normal frames differ by a map from S*
to SO(3). With this understood, note that =1 (SO(3)) = Z/2, so there are two
homotopy classes of normal frames along C. Two normal frames for which e3 is
the inward normal to R differ by a map from S* to SO(3) which factors through
a map from S? to SO(2) C SO(3). With the preceding understood, the lemma
follows because the induced homomorphism from m;(SO(2)) to m1(SO(3)) is
surjective. O

The important feature of an adapted normal frame is that an adapted nor-
mal frame allows one to make an unambiguous definition of the mod(2) self-
intersection number, (R - R)2, of R. Here is how: Take a section of R’s normal
bundle in B which agrees with e; on JR. Perturb the section away from R
so that it has transverse intersection with the zero section. Then, count the
number of such intersection points mod(2).

One can also define R - R € Z by counting intersections with sign, but only
the mod(2) intersection number is required for the definition of xp,o.

LEMMA 8.5. If two adapted frames are homotopic in the space of all normal
frames for o, then the corresponding values of (R - R)2 agree.

Proof. Adapted, normal frames to a given component C' C ¢ can be found
which differ by a degree one map to SO(2) and are such that the corresponding
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push-offs of R are identical save for a small open set near a point in C. With
this understood, one need only check the lemma for the case where R is a planar
2-disk in R?. See, e.g Section 1.3 of [7]. O

It follows from Lemmas 8.4 and 8.5 that the surface R defines a map, xB,(:),
from the set of homotopy classes of normal frames of ¢ C B to Z/2. By
definition, xp,+(¢) assigns to ¢ the number (R - R)2 that is computed by using
an adapted frame which is homotopic to (.

Consider the dependence of xg(-) on the surface R:

LEMMA 8.6. Suppose that B has even intersection pairing in its second
homology. Then xB o (-) is the same for all surfaces R bounding o.

Proof. Let ¢ be a framing of the normal bundle to ¢ in B. Let R; 2 C B be
a pair of surfaces which bound o. The task is to show that R; - Ry = Ry - R»
mod(2).

One can assume, with no loss of generality, that ¢ is adapted to R;. Since
m1(S?) ~ 0, the surface R, can be isotoped, with o fixed, so that ez is the
outward pointing normal vector to Ry. With this understood, R; and R can
be joined together along o to obtain a C' immersion of a closed, oriented
surface, R, in B. (The lack of smoothness occurs across o.) The surface R
may not be embedded because R; and R,, though individually immersed, may
intersect each other. Any way, with a small isotopy of R; (away from OR;), the
intersections of R; with Ry can be made transverse.

An embedded surface in B has a well defined self-intersection number. An
immersed surface has a well defined intersection number also. In this case,

(8.3) R-R=R;-Ri+ Ry Ry —2(R;: - Ry)

The number in (8.3) is the intersection number for the embedded surface
that is obtained by resolving all of the double points of R.

Given that (8.3) is the self intersection number of an embedded surface in
B, the assumptions in Lemma 8.5 require that (8.3) be an even number. Thus
R; - Ry = Ry - Ry mod(2) as required.

(Here is how to resolve a double point of an immersed surface: In local coor-
dinates the transveral intersection of the two sheets of the surface is described
by the zeros in C?> = R* of the equation

(8.4) 2129 =0.

The resolution of the intersection point replaces the solution to (8.4) with the
solution to the equation 2; z; = €. Here, € € C is small but not zero.) O

With the invariant xp +(-) of Lemma 8.6 understood, end the digression.
Here is a solution to (8.2)’s third problem:
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PRrOPOSITION 8.7. Let X, A, B, and O be as in (8.1) and Problems 1 and 2
of (8.2). Assume that Conditions a,b and either c or ¢' of Proposition 8.3 hold.
Suppose that B has even intersection form and that A C X has a trivial normal
bundle. Let ¢ be a given frame for A’s normal bundle in X.

1) The restriction of  to o = (ANB)NO defines a normal frame, {, = € |4,
too in B.

2) If xB,o({s) =0, then there is a solution, A' C X, to Problem 1 such that
the normal frame ¢ over A — (AN O) extends over A'.

3) Thus, if H?(A;Q) = 0, then A’ solves Problems 1-8 of (8.2).
The proofs for Propositions 8.2, 8.3 and 8.7 are given in Subsections 8{-8h.

b) The proof of Proposition 8.1.

Let E}_ denote the disjoint union of some number N > 1 disjoint copies of
E,_. The goal is to apply Propositions 8.2, 8.3 and 8.7 to remove the compact
(circle) components, C, of the intersection of Ej_ with Az. With this goal
understood, Proposition 8.2, 8.3 and 8.7 will be considered with the following
identifications: Take

(8.5) X = int(Z), A= int(E)_), B= int(Az).

Take O to be the compliment in int(Z) of the closure of a regular neighborhood
of

(8.6) 0Z U (Ui_p,) UERU EL.

Here, p, = (i X ;) N Az with p; as in Section 7b. This regular neighborhood
should contain {T';} in (7.7) of E2_NAz, and it should also contain the push-off
copies of {I';}which comprise the interval components of E;_ N Az. Needless
to say, O should contain the compact components of E5_ N int(Z).

With this choice of X, A, B and O, the assertions of Proposition 8.1 will
follow from Proposition 7.4 if the hypothesis of Propositions 8.2, 8.3 and 8.7
can be verified for a suitable N. (Remember that Ej_ is comprised of N push-
off copies of E,_.) Note: With regard to Proposition 8.7, the normal framing,
¢, of any push- off copy of E»_ C Ej}_ should be the normal framing of E5_
which is described by Lemma 7.2.

Subsections 8c-8e verify that there exists N > 1 for which the hypothesis of

these three propositions are satisfied. a

c) Removing circles in E;_ NAz .

The purpose of this subsection is to verify that there exists an integer N; > 1
which is such that the hypothesis of Proposition 8.1 can be verified when Ej_
is any multiple of N; push-off copies of E,_.

The discussion begins with a digression to study the first homology of BNO.
(Equations (8.5) and (8.6) define B and O.) The projection 71, (or mg) identifies
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B with int(W). This projection identifies BN O with the compliment in W' of
a regular neighborhood of 8W U crit(f) U (Uj_; i) Uy, where v is the flow line
in 4 of Definition 3.1.

Now consider ¢ C BN O, a finite union of embedded, oriented circles. After
a small isotopy, the circles in ¢ can be arranged to have empty intersection
with the descending disks from crita(f). With this isotopy understood, the
pseudo-gradient flow will isotope the circles in ¢ so that the resulting circles,
01, lies in the open submanifold W3 = {z € W : 3/4 < f(z) < 1}. That is,
f(o1) is larger than any critical value of f.

The pseudo-gradient flow defines a diffeomorphism between W3 and
M; x (3/4,1). By assumption, M; is a rational homology sphere, which means
that the homology class, [01], of o is zero in H; (W3 — W3 N ~;Q). (Note that
WsN+vy =p; x(3/4,1).) Alternately, one can conclude that

(8.7 Ny [o1]=0€ Hi(Ws - Wsn~v,Z)

for some integer Ny > 1. This means that N; push-off copies of o; bounds
an embedded surface in W3 — W3 Nvy. (Orient all N; push-off copies of o,
identically.)

Thus, N; push-off copies of o will bound an embedded surface in BN O.

End the digression.

To verify Proposition 8.2’s hypothesis for E}_, consider the discussion of the
preceding subsection where o is equal to C in (7.7). This choice of o determines
the integer N in (8.7). If Ny = 1 in (8.7), then Proposition 8.1 can be directly
applied to A = E5_ so that the result, A’, intersects Az C Z as described by
(7.7) but with C = 0.

However, the case N; > 1 in (8.7) can not be ruled out. In the case that
N; > 1,let m > 1 and let E}_ denote the disjoint union m N, disjoint, push-off
copies of E,_, all oriented as E5_. (Use the normal framing of Section 7f when
making these push-offs.)

With Ej}_ understood, observe that

(8.8) E;_NAz= (UL I)ul,

where C' in (8.8) is, by design, m N; disjoint, push-off copies of C from
(7.7). In (8.8), each I'; is the union of m N; det(S) push-offs (in Az) of
Bi = Az 0 (pi X pi).

By construction, the homology class of C' in H,(BNO;Z) is zero. (Because
[C'] = m N1 [C] and the class of C is N;-torsion.)

With the preceding understood, then Proposition 8.1 can be applied with
X, A, B and O as described by (8.5) and (8.6) so long as the number NV is a
multiple of N; in (8.7).

d) Constraining H2.

Proposition 8.2 constructs a submanifold A’ C Z from some number N > 1
push-off copies of E,_. (Here, N must be a multiple of N; from (8.7).) This
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A' is constructed so that it misses Ej g and a form like E;_ near Z. And,
the intersection of A’ with Az is the union U_;I';, where I; is the union of
N det(S) push-off copies of the path B, If Proposition 8.1’s E3_ is this A’, then
A’ will have to have vanishing 2nd cohomology That is, A’ must be a solution
to Problem 2 in (8.2).

Proposition 8.3 will be used to solve Problem 2 in the case at hand; this is
the subject of the present subsection.

The task here is to verify that the conditions of Proposition 8.2 can be met
for A = E;_ N X with E}_ some number, N, of like- oriented, push-off copies
of E_. (Note that Assertion 6 of Proposition 7.4 asserts that H?(4;Q) = 0.)
Taking Conditions a — ¢ in order, remark that the previous subsection has
established that Condition a is satisfied when N is divisable by a certain integer

Condition b is satisfied because of Assertion 4 of Proposition 7.4. That is, A
has closure a manifold with boundary, and the boundary is a number of copies
of S3. Since H?(S3) = 0, the required injectivity holds.

Condition c is established by the following lemma:

LEMMA 8.8. Let C denote the union of the compact components of Ea_NA .
The inclusion of C into E,_ induces a monomorphism from H,(C;Z) into
Hy(E2—;Z).

Proof. Remark that E,_ is obtained via ambient surgery (in Z) on various
embedded (S° x B*)’s in disjoint unions of {Y; ;- : 1 < j € {1,---,7}} (see
(7.3)).

As remarked earlier, Y; ;- can be viewed as the result of ambient surgery
(in F~1(1/8)) on various embedded (S° x B*)’s in the 4-sphere which is the
intersection of the descending 5-disk from (a;,b;) with F~1(1/8). For a given
S% x B*, the S° x {0} is a pair of algebraically cancelling intersections of said
descending 4-sphere with the ascending 4-disk from some (a;, ax) or (bg,b;) in
crity (F).

Thus, E,_ is obtained from a disjoint union of embedded 4- spheres in

~1(1/8) by ambient surgery on embedded (S° x B*)’s. It follows from the
preceding that Hy(Ej_) is a summand of some number of Z’s. And, it follows
that a union, o, of oriented, embedded circles in E,_ injects its first homology
into H1 (Ez_; Q) if:
1) An added I x S3 which intersects o has intersection number +1 with
{point} xS3.
2) Each component of o intersects at least one I x S3.

(8.9)

In the present circumstances, o is the union of the compact components of

E,_ N Az. To understand o, remember that E,_ is constructed from E;_ by
ambient surgery. The reader can check that this surgery is disjoint from any
compact components of E;_ N Az. Indeed, the surgery from E;_ to E,_ takes
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place on push-off copies of {Y; ;—}!_,, but the compact components of E;_NAZ
are the components of the various push-offs of U;;(Y; ;- N Az).

Thus, the compact components of E;_ N Azare of two types: A Type 1
component is a compact component from E;_NAz. And, a Type 2 component
is created by the surgery which changed E)_ into E,_. (The latter are made
in the surgery on the various push-off copies of {Y;;_}/_;.)

To understand the Type 1 components, use 7y, or mg to identify Aw with
W and this intersection is identitified with Bjo+ N Byp—. (Here, a = a; and
b =b;.) To see the latter, start with B,y N By_. This is a disjoint union of flow
lines which start at a and end at b. The surgery which changes By— to Bip-
effects the intersection with B,,. The effect is to surger the flow lines near a.
See the following picture:

Blb— ﬂ Ba+ /‘

{

‘ Bib-

A similar picture occurs near b when B,y is surgered to produce Bi,4. The
resulting intersection By, N Byp— differs from B,y N By_ in that the ends of
the flow lines in the latter have been tied together near a and near b to produce
a compact intersection with some number, n; j, of components. (This n; ; is at
least one, but no more than half of the number of components in B,y N Bp_.)

(8.10)



HOMOLOGY COBORDISM 377

See the following (very schematic) picture:
surgery to By_

B, < By.
NN
1
=+ | | el *
Thuhbbdih 8 i :
AT U HH - Bat
= 1 x
+ ' H"‘
=X 1 e
+ 1 Lt Surgery to B,y
Lil RN ERNE] K
ARl S SN ERNEE]

(8'11) Ba+ = By~ nBa+

The effect of the preceding picture for the intersection with Az of one push-
off copy of Y; ;_ is as follows: Each surgery ties together an end of one flow line
(for f’s pseudo-gradient) in Az with the nearby end of a second flow line in Az
the tie being across the associated I x S3. (Here, the canonical identification of
Aw with W is taken implicitly.) See below:

Added by surgery

\ AZ ‘-H-‘-H-H— =1/i,i—nAz

e g

(8.12)

Thus, each copy of Y ;— in E;_ (for i < j) produces n; ; components in o.
And, (B.9) is satisfied for each such copy.

As (8.9) is obeyed for each copy of Y; j—, and as the surgeries on the different
copies of Y; ; are independent, it follows that (8.9) is satisfied by the set of all
Type 1 components. That is, (8.9) is satisfied by the union of the compact
components of E,_ NAz.

Consider now the Type 2 components. To understand these components,
remember that E,_ was constructed from E;_ by ambient surgery on various
push-off copies of {Y;;—}. The surgeries do not connect a push-off of ¥; ;— with
one of Yj;_ if j # 1.
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Fix ¢ € {1,---,r}. The union of push-off copies of a given Y;; intersects
Az in the union of the corresponding push-offs of the set of flow lines which
is Ba+ N By—. (Use a = a; and b = b;). As far as these copies of Y;;_ are
concerned, E,_ is constructed from them by surgery on embedded (S° x B*)’s.
The result surgery changes the afore mentioned intersection with Az; each such
surgery near (a,a) ties the ends near (a,a) of two of flow line copies across the
added I x S3. There is a similar effect near (b,b). See (8.12).

It follows from the preceding picture that (8.9) holds for all of the Type 1
flow lines also, and since the added (I x S3)’s which effect Type 1 flow lines are
disjoint from Type 2 flow lines, the lemma is established in total. a

e) Prescribed framing.

The purpose of this subsection is to establish that the conditions of Propo-
sition 8.7 can be met for X, A, B and O of (8.5) and (8.6) if the number N (of
copies of E»_ in E}_) is an even multiple of the integer N; in (8.7). Here, the
framing ¢ of the normal bundle in Z to each push-off copy of E, C E}_ is
described by Lemma, 7.2.

To begin, observe first that B has vanishing rational homology in dimension
2, so the condition on B’s intersection form is trivially satisfied. Also, as A is
some number of push-off copies of E5_, it has trivial normal bundle in Z.

Next, remember that an integer N; > 1 has already been found which has the
following properties: If N > 1 is divisible by N; and if A is taken to be NV push-
off copies of E,_ (all like oriented), then o is the boundary of an embedded,
oriented surface R C B.

With the frame o as described above, let {, = { |,. The final question is the
value of xB,,({,). Here is the answer: If N is an even multiple of N, then
XB,s(¢s) = 0. This assertion follows from the following lemma.:

LEMMA 8.9. Let X be an oriented 4-manifold with even intersection form.
Let 01,02 C X be compact, oriented, embedded 1-manifolds which are disjoint.
Let ¢; and (2 be normal frames for 012, respectively. Let 0 = o1 U oy and let
e by the normal frame for o which is given by ( |, ,= C1,2. Then xB,,(¢) =

XB,01(C1) + XB,0, (C2)-

Proof. By assumption, o; bounds an embedded, oriented surface, R; C X.
Likewise, o2 bounds a similar surface, R;. If R; and R; are in general position,
then Ry Nos = O and vice- versa. Meanwhile, R; will intersect Ry transversally
in a finite set of points. Resolve the double points in R; U R, (as in (8.4)) to
obtain a compact, oriented, embedded surface, R C X, with boundary o.

Now, no generality is lost by assuming that (; 2 are adapted frames for R; o,
respectively. In this case, { will be an adapted frame for R. Then, R- R is given
by (8.3), and the lemma follows. O
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f) Proof of Proposition 8.2.

The proof starts with a digression for some constructions on a neighborhood
of B in X. To start the digression, define N — B to be the normal bundle to
B in X. Fix an exponential map,

(8.13) e:N-o X

which maps N |, into A. Put a smooth fiber metric on N with the property
that e embeds the set

(8.14) N'={veN:v|<2}

onto a neighborhood N C X of B. Agree now to identify N with N’ using e.
Introduce the 2-sphere bundle S — B,

(8.15) S={veN:|v|=1}.

Identify S with its image by e in X. This S is the boundary of a tubular
neighborhood of B in X,

(8.16) T={veN:v|<1l}

End the digression.

The proof proper of Proposition 8.2 starts by remarking that o, by assump-
tion, is the boundary of a smooth, oriented, embedded surface (with boundary),
R C BNO. Find such an R for which int(R) has no compact components. Be-
cause o has codimension 3 in B, one can require that int(R)No = @. (The local
model for R near o is given by taking o to be the line ; = 3 = 3 = 0 in R?,
and R the half plane z; = z; = 0 with z3 > 0.)

Let Sg = S |r . This is a smooth oriented 4-manifold (with boundary) which
is embedded in X. The boundary of this 4-manifold is S, = S |,. Note that
Ss C A is the boundary of T, = T |,, the embedded image of o x B3 onto a
tubular neighborhood of ¢ in A.

With the preceding understood, introduce the following surgery on A:

(8.17) Al = (A - int(T,)) U Sg.

Note that Ay C X is a C° embedding of a smooth, oriented manifold; the
embedding has a corner at S, where Sg and A — int(T,) overlap. See the
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following picture:

m‘J

A neighborhood of this corner of Aj is embedded in Tr. Smooth Aj in Tg
along the corner, and one obtains a smoothly submanifold, A’ C X which solves
Problem 1 in (8.2). Indeed, the first two requirements are met by construction.
As for the third, remark that [T |g] defines a 5-dimensional cycle in O whose
boundary is [A'] — [A]. O

g) Proof of Proposition 8.3.

Consider first the proof of the proposition under the Assumption a — ¢. Let
A’ be as described above (see (8.17)). Then, H?(A') can be computed using
the following homology exact sequences for the pairs (A4,T,) and (A4’, Sgr):

(8.19)

1) HY(A) - H\(T,) » H(A,T,) - H*(A) —» H*(T,) .
2) HU(A') » HY(Sg) - H%(A', Sg) — H2(A") - H%(Sg) — H3(4', Sg).

(Use rational coefficients please.)

In Sequence 1, the first arrow is surjective because of Assumption c. And,
H?(T,) =~ 0 because T}, is a tubular neighborhood of a disjoint union of circles.
Thus

(8.20) H%(A,T,) ~ H%(A).

To analyze the second sequence of (8.19), note that its first arrow is surjective.
This is because R is path connected, thus forcing Sg to be a topologically trivial
2-sphere bundle. For the same reason, H2(Sg) ~ H?(8T,). Meanwhile, excision
identifies H*(A’,Sgr) = H*(A,T,). Thus, with (8.20), the second sequence in
(8.19) implies
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(8.21) 0 — H?(A) » H*(A') - H*(8T,) —» H*(A,T,).

Poincare’ duality plus Assumptions b and c¢ of Proposition 8.3 imply that the
last arrow in (8.21) is surjective, thus establishing an isomorphism between
H?(A) and H%(A").

Now consider Proposition 8.3 with Assumptions a,b and ¢’. Remark here
that when o is connected (i.e. just one circle), then Assumption ¢’ implies
Assumption ¢. With this fact understood, here is the task ahead: Under As-
sumptions a,b and ¢/, find an ambient (in O) surgery on A so that the result,
A, has the following properties:

(8.22)

1) [A]=[A] in Hy(X,X - O;Z).
2) H2(A) ~ H2(A).
3) H2,.,(A) — H3(A) is injective.

4) A intersects B inside O in a single compact component which is not trivial
in H;(A, Q) but which bounds in BN O.

A solution to (8.22) will validate Proposition 8.3.

Here is an algorythm for constructing A: To begin choose a pair of compo-
nents, C12 C o. Fix p; € C; and p; € C;. By assumption, BN O is path
connected, so there is a path in B (a smoothly embedded interval), 7, which
starts at p; and ends at p,. Make sure that int(7) has empty intersection with
A. Also, arrange 7 so that it is not tangent to A along its boundary. The choice
of p; as the starting point and p, as the ending point orients 7.

Let V — 7 denote the normal bundle to 7 in B. This is an oriented 3-plane
bundle over 7. Note that T'Cy |p,C V |p,~ R® and also TC> C V |p,~ R?
are oriented lines. As S? is path connected, there is an oriented, dimension 1
sub-bundle Vy C V whose restriction to p; is TC; and whose restriction to ps
is the line T'C,, but oriented in reverse.

With Vy understood, remark that Vo & N — 7 is an oriented 4-plane sub-
bundle of the normal bundle to 7 in O. Also note that this bundle restricts to
p and as TA |,,, and it restricts to p, as the 4- plane T'A |,,, but with its
orientation reversed.

The normal bundle to 7 in X is isomorphic to V & N. Fix an exponential
map e, : V@®N — X which restricts to N as e in (8.13), which restricts to map
V into B, and which maps Vj |, , into C 3, respectively. (Thus, e, |y is an
exponential map for 7 in B.) Put a fiber metric on the bundle V, @ N such that
e, embeds the subspace of vectors v with norm less than 2. Let S C Vo & N
denote the radius 1 sphere bundle, and identify S with its embedded image
under e;.

Let T C Vo @ N denote the radius one, 3-ball bundle. Identify T with its
embedded image under e,. Note that T |, is a tubular neighborhood in A of
p1, while T |, is a tubular neighborhood of p; in A.
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Now define the following surgery on A:

(8.23) Ao = (A= int(T |, UT |,)) US.

This is a C° embedding of a smooth manifold, A;, in X. Here, the embedding
is smooth away from S |, US |p,, where there is a corner. Near this corner, Ao
is embedded in Vp ® N. Smooth out the corner in V5 & N and the result is an
embedding of A; into X:

(8.24)

With A; understood, consider its properties with respect to (8.22): First,
the homology classes of A; and A agree are equal in H4(X,X — O). This is
because A; and Ag define the same class and the 5-manifold T defines a cycle
in O with boundary [4¢] — [A].

Second, H?(A;) = 0, because A; has been obtained from A by surgery on
an embedded S° x B* (i.e. T |p, UT |p,).

Third, H3,,,(A1) = H?(A;) is injective. Both are either equal to their A
counter-parts, or are obtained from their A counter parts by the addition of 1
generator which is dual to the 3-sphere S |,,. (Prove this with Meyer-Vietoris.)

Fourth, the intersection of A; with B in O has one less component then that
of A with B in O. This is because the surgery from A to A; has surgered C; to
C- by removing an embedded S° x B! from C1UC; (i.e. (TNV) |p, U(TNVo)p,);
the missing S° x B! is replaced by SN Vp. (See (8.24).)

Note that the homology class in H; (BN O) of 1 = A; N BN O is the same
as that of 0 = AN BN O. Indeed, o, defines the same homology class as
0o = AoNBNO, and T NV, as a 2-cycle in B N O has boundary [o¢] — [01].

If 0 had only two components to start with, then set A = A; and stop,
because (8.22) has just been verified for this A. If o had more than two compo-
nents, iterate the preceding procedure by renaming A; = A and o1 = 0. The
iteration stops with A which obeys (8.22). d
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h) Proof of Proposition 8.7.

The construction of A’ from A for solving Problem 1 (and Problem 2) of
(8.2) via Propositions 8.2 and 8.3 is described in the preceding two subsections.
The construction involves two types of ambient surgeries in X. The first type
of surgery gives the smoothing, A;, of Ap in (8.23). The second type of surgery
gives the smoothing, A’, of the Aj in (8.17), (8.18).

Type 1: Eaxtending frames for surgery on S° x B*.

Consider the smoothing, A;, of Ap in (8.23). Let U C A be an open neigh-
borhood of T |p, UT' |p,.

LEMMA 8.10. Let { be a normal frame for A in X. Then there is a normal
frame for A, in X which agrees with { on A —U.

Type 1: Extending frames over surgery on S* x B3.

The assumption here is that A’ is obtained from A by smoothing the surgery
Ap in (8.17). (See (8.18) too.) Let ¢ be a normal frame for A in X, and let
U C A be a neighborhood of T,.

LEMMA 8.11. The normal frame { on A — U extends as a normal frame
over the smoothing, A', of (8.17) if and only if ¢ |, is homotopic to an adapted
frame for which (R - R) no42) = 0.

If B has even intersection pairing, then according to Lemma 8.6, the Z/2
number (R - R) moq(2) is the invariant xp ,(( |)- Thus, Lemmas 8.10 and 8.11
with the constructions in the two preceding subsections prove Proposition 8.7.

The remainder of this section is occupied with the proofs of the preceding
two lemmas.

Proof of Lemma 8.10. The strategy is to first define a normal frame,
(1, for int(S) in X. Having done so, the final step proves that there are no
obstructions to connecting ¢; to ( on A —U.

To construct (i, first fix a normal frame, (e;, 2, e3), for the normal bundle
(V) of 7 in B. One can arrange such a frame so that e is tangent to the sub-line
Vo. Then, (e;,e3) orient V/Vj.

Use the exponential map e; : V& N — X to identify a neighborhood of
the zero section of V @ N with a neighborhood of 7 in X. With this iden-
tification understood, then the normal bundle to int(S) in X is spanned by
¢1 = (e1,e2,¢€h), where e € T (Vo @ N) |s restricts to the fiber over z € 7 as
the inward pointing normal vector to S | in (Vo & N) |;.

With ¢; understood, consider connecting {; to ¢ near 0S. To make such a
connection, introduce the tangent vector, v to 7. Let v denote a lift of v to
VeN.

At p; or py, the triple (e;,ez,v) defines a normal frame for A in X. The
normal frame ¢ for A in X can be homotoped inside U so that it agrees with
(e1,e2,v) at p; and p, and equals (er,e2,v) on a neighborhood, U’, of T' |, ,
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with compact support in U. Thus, 2/3 of the normal frame ¢, i.e. (e1,e2), have
been extended over A;.

The compliment in the normal bundle to A; of the 2-plane span of (e1,e3)
is an oriented line bundle which is framed by v on U — U’ and by e} on int(S).
There is no obstruction to framing this compliment by a frame which agrees
with v on U — U’ and with e} on the compliment in S of an apriori specified
neighborhood of 8S. a

Proof of Lemma 8.11. The strategy for extending ¢ on A - U as a normal
frame for A’ will be to construct a normal frame, (i, for Sg in X, and then
consider whether ¢ and (; can be joined.

To construct (;, introduce the normal 2-plane bundle, V', to R in B. Since
R is oriented, V is an oriented bundle and so trivial because int(R) has no
compact components. Let e, e; be a frame for V.

Note that V&N — R is the normal bundle to R in X. Choose an exponential
map eg : V & N = X which restricts to N as e in (8.13). Use eg to identify a
neighborhood of the zero section in the bundle V & N with a neighborhood of
Rin X.

Let e3 be the inward pointing normal vector to Sg C T C N |g. Then the
triple (; = (e1, €2, e3) span the normal bundle to Sg in X.

With the normal frame for S understood, consider its extension to a normal
frame for A on the compliment in U of a neighborhood U’ of T,. For this
purpose, introduce v to denote the inward pointing normal vector field to R
along o. Lift v to a vector field v on (V & N),. Since A near o is identified
by (8.13) with a neighborhood of the zero section of N |,, it follows that a
normal frame for A near o is given by the triple (ejeq,v). Furthermore, there
is no obstruction to joining this frame on the compliment of a neighborhood U’
of T, with the frame {; = (e, ez, e3) on the interior of Sg. (The pair (e, esz)
define 2/3 of the extension, and v and e3 define the same orientation for the
complimentary line.)

With the preceding understood, then one can conclude that the normal frame
¢ extends from A—U to A’ if the restriction of ¢ to o is homotopic to the normal
frame (e, e2,v). Now the latter frame is an adapted frame and, by construction,
R-R =0 for (e1,ez,v). Thus, (|, is homotopic to (e;, ez,0) if and only if ¢ |,
is homotopic to an adapted frame for which the corresponding R - R is even.
(See Lemma 8.5.) O

9 The fourth pass at E.. The submanifold E3_ of the preceding section
intersects Az as described by Assertion 6 of Proposition 8.1. Let © : Z — Z
denote the switch map which sends (z,y) to (y,z). Since E3; = ©O(FE;_),
the intersections of E3_ with Az are also intersections of E3; with Az. Un-
fortunately, there may be compact components to E3_ N E3, which occur in
Z — Az. Such extra components are troublesome and must be eliminated, and
their elimination is the goal of this section.

As will be seen, surgery on E3; will result in oriented submanifolds (with
boundary) E44 C Z which have the following properties:
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PROPOSITION 9.1. There are oriented, embedded submanifolds (with bound-
ary) E4x C Z with the following properties:
1) There is an open neighborhood U C Z of Az UBZ such that E4 NU and
Ey_NU are images of each other under the switch map on Z.

2) The fundamental classes [FE44] are equal to N [Ey 1] for some integer N >
1. Here, [E14] are described by (6.8) and Lemma 6.3.

3) FEjs+ have empty intersection with My x My and My x M;.
4) Eas+ have empty intersection with Ep, g of (4.15).

5) Ifpe€ crit(f), then the intersection of E4_ with (S® x S®), has the form
S3 x Ap, where A, is a set of N points. Similarly, the intersection of Eq4
with (5% x S3%), is A, x S3.

6) EsyNAz =UL_,Ii, where I'; C Az is as follows: There is a flow line
W; which starts at a; and ends at b;. With the canonical identification
of Aw with W understood, T'; is the union of N like oriented, disjoint,
push-off copies of a closed interval, I C p;. And, each of these N push-
offs of I starts in (A, X Ag) N Az and ends in (Ay X Ap) NAz. Likewise,
EqenAz =V Ty

7) Es_ N Eyp = U_ T}, where I'; C Z is the union of I'; with N — 1 like
oriented, push-off copies of T'; in Z — Ag.

8) Both E,y have trivial normal bundles in Z. The normal bundle of E4_
has a framing, {, which restricts to a product normal framing on a neigh-
borhood of (Ui_,T';) U {S® X Ap}ye crie(s)- Furthermore, this framing {
restricts to {S® X Ap}pe crit(s) s @ constant framing. The normal bundle
to E4y in Z has a framing which restricts to E44 NU as the image of ¢
under the switch map.

9) H?*(Es;Q) =0.

(Compare with Proposition 8.1. The only essential change is in E4_ N Ey4 .
But note that the integer NV, the points {A,} and the line segments {I';} which
appear here may be different from those which appear in Proposition 8.1.)

The rest of this section is devoted to the construction of Eyy.

a) E3_NEs3; on Z - Ag.

Isotope E34 in Z — (Az UJZ) so that its intersection on Z — Az with
E3_ is transversal. (Still use E34 to denote the after isotopy submanifold.)
This intersection is now a finite union of disjoint, embedded, oriented circles,
o, with N — 1 like oriented, push-off copies of {I';} in Z — Az. (These push-
offs of {I';} are disjoint from ¢.) There is a natural inclination to remove
the circle components, o, by apply the techniques from the previous section
(Propositions 8.2, 8.3 and 8.7). However, either

(9.1) [c] =0 € Hi(E3+;Q)

or not; but [o] is never non-trivial in one and trivial in the other. (Because,
before perturbing E34, one was the image of the other under the switch map.)
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If (9.1) holds, then one can not (directly) apply Proposition 8.2 to remove the
intersection o. If (9.1) does not apply, then Proposition 8.2 can be applied, but
not (directly) Proposition 8.3. So, whether or not (9.1) holds, some preliminary
work must be done before the techniques from Section 8 can be employed.

Consider the case where (9.1) holds.

LEMMA 9.2. Let O = Z - (AzUHZUEL U ER). There is an ambient
surgery (in O) of Es_ which results in an oriented submanifold (with boundary)
E4_ C Z with the following properties:

1) Assertions 2-8 of Proposition 8.1 hold when E}_ is substituted for E3_.

2) There is a tubular neighborhood, Uan C Z, of Az which intersects E5_ N
E;y, as U_,T;, where '} is the union of I'; with N — 1 disjoint, like
oriented, push-off copies of T';.

3) E3_NEj, intersects Z — Ua as a disjoint union, o', of oriented circles
which obey

(a) [0']#0€ Hi(E3_;Q).

(b)) [0']=0€ H.1(E34;Q).

9.2)

(Note that there is no E3,; the symmetry under the switch map will be
broken here.)

The proof of this lemma will be given shortly.

Consider the case where (9.1) is false. The goal here is to modify Es; as
described in the following lemma:

LEMMA 9.3. Let O = Z - (0ZUAzUELUER). There is an ambient
surgery (in O) of some number n > 1 of like-oriented push-offs of E3y which
results in an oriented, embedded submanifold, (with boundary) E3, C Z with
the following properties:

1) Let E5_ denote the union of n like-oriented, push-off copies of E3_. The
Assertions 2-8 of Proposition 8.1 hold when Ej3 . are substituted for Es. .

2) There is a tubular neighborhood, Un C Z, of Az which intersects E5_ N
E3, is U_T;, where T} is the union of I'; with N — 1 disjoint, like
oriented, push-off copies of T';.

3) E3_NEj, intersects Z — Ua as a disjoint union, o', of oriented circles
which obey

(a) [0']#0€ Hi(E3_;Q).

(6) [0']=0€ H_1(E34;Q).

(9.3)

This lemma will also be proved shortly.
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Proof of Proposition 9.1.

When (9.1) is true, take E3_ from Lemma 9.2 and set Ej, = E5;. When
(9.1) is false, take Ej, from Lemma 9.3. Use o' to denote the intersection
in O =Z-(0ZUUaUELU Eg) between Ej,. Use (9.2b) or (9.3b) in the
respective cases, to find an integer N3 > 1 with the property that N3 [0'] =0 €
H,(Es34;2).

Take 2 N3 push-off copies of E}_, all with the same orientation as E3_, and
let A denote the interior of the resulting union. Take 2 N3 push-off copies of
Ej3., all oriented as Ej, , and let By denote the interior of the resulting union.
Let X = int(Z) and let O be as before. Now, Proposition 8.2 can be invoked
using By for B, but not Proposition 8.3 because Assumption ¢ has not been
shown to hold, and because Assumption ¢’ will be false because By will not be
connected. However, there is a surgery which remedies this problem: O

LEMMA 9.4. Let By, A, X and O be as described above. Then, there is an
ambient surgery in O — A on some finite number of embedded (S° x B*)’s in By
such that the result, B is path connected. This surgery does not change either
H,(-;Z) or H2(-;Z). Finally, if ¢ is a normal frame for By in X, and if U C By
is a neighborhood of the (S° x B*)’s, then { |go_y extends smoothly over B as
a normal frame for B in X.

The proof of this lemma is given below.

With Lemma 9.4 understood, Propositions 8.2, 8.3 and 8.7 can be applied
using X, O, A and B as described above. Use E4_ to denote the closure in Z of
the promised solution, A’, to Problems 1-3 in (8.2). Relable E4; to denote the
closure in Z of B. The pair F44+ will satisfy the requirements of Proposition 9.1.

b) Making [0'] # 0 € Hy(E}_; Q).

This subsection is concerned with the construction of Ej_ of Lemma 9.2.

This construction requires a preliminary digression to introduce another
surgery tool. The digression concerns the abstract model of (8.1). Proposi-
tion 9.5, below, summarizes the digression.

The statement of Proposition 9.5 requires the following remarks to set the
stage: When S — A is an embedded 2-sphere, let vs — S denote the normal
bundle to S in A. Suppose that P C X is an embedded 3-dimensional ball with
boundary S. (The local model here takes S to be the plane z3 = --- =27 =0
in R” and then P is the half plane z3 > 0,24 = --- = 7 = 0.). Use Np to
denote the normal bundle to P in X. The natural inclusion

(9.4) 0—wvs— Np|s
plays an important role in Proposition 9.5.

PROPOSITION 9.5. Let A,B,0,X and o be as described in (8.1). Assume
that:
a) H3 . (4;Q) — H3(4;Q) is injective.

comp
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b) [0] = 0 € H1(A;Q). Suppose that there exists an embedded 2-sphere
S C (AN O) — o which bounds an embedded 3-ball P C O, and:

c¢) The fundamental class of S is homologically trivial in Ha(A; Q).
d) int(P)NnA=0.

e) P intersects B transversally.

f) With respect to some orientation on P,[P N B] # 0 € Hyo(P;Z).

g) (Np|s)/vs —= S is a trivial 2-plane bundle.
Let U C X be an open neighborhood of P. There ezists an embedded,
oriented, 4-dimensional submanifold A' C X with the following properties:
1) A’ intersects B transversally in o', and [0'] # 0 € H;(A';Q).

2) H*(4;Q = H*(4,Q.

3) H3,..(A;Q) — H3(A';Q) is injective.

4) A'=AonX—U and [A] = [A"] in Hy(X,X - O0).

5) [o'] = [o] € Hi(B;Q). Furthermore,

6) If A has trivial normal bundle in X, then so does A'. And, if { is a frame

for the normal bundle to A in X, then { |a—u extends over A' as a frame
for the normal bundle to A’ in X.

This proposition will be proved in the next subsection. Consider now its
application to (9.2).

Proof of Lemma 9.2. The lemma will be proved by applying Proposi-
tion 9.5. For this purpose, take X to be int(Z) and then define O = Z — (0Z U
UaUEL UER). Take A = int(Es_) and, likewise, take B = int(E34). Given
that the assumptions of Proposition 9.5 hold when (9.1) is true, one should take
Ej_ to be the closure in Z of the submanifold A’ of Proposition 9.5. As for the
validity of the assumptions of Proposition 9.5, remark that Assumptions a — b
are satisfied by construction; see Proposition 8.1. (Assumption b holds since
E;_ is a manifold with boundary whose boundary is a union of 3-spheres; and
H?(S%) =0.)

The remaining assumptions of Proposition 9.5 will be verified with the ex-
hibition of a 2-sphere S C A N O with the requisite properties. To find the
appropriate 2-sphere, it is important to remember that E3_ was constructed
from E}_. Here is a brief summary: The compact components of E5_ N Az
bound a connected, oriented, embedded surface (with boundary) R C Az. Let
N — Az be the normal bundle. A fiber metric was chosen for IV, and an ex-
ponential map e : N — Z was chosen so that e mapped the radius 2 ball fiber
bundle in N diffeomorphically onto its image in Z. (This ball bundle in N was
identified using e with a neighborhood of Az in Z.) Also, e was constrained to
map N |sg into Ej_.

Next, the radius 1 sphere bundle, Sg C N |g was introduced, as well as the
radius 1 ball bundle, T C N |g. Finally, E5_ was defined to be the result of
smoothing the corner in the surgery
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(9.5) (E3_ —Tsr) U Sk.

By the way, no generality is lost by assuming that the surgery in (9.5)
occured. Indeed, if E;_ = E3_ and no such surgery occurs (in which case
E>_ N int(Az) has no compact components), then there are isotopies of E 4 so
that the resulting submanifolds obey the conclusions of Proposition 9.1. Or, if
E,_ = FE3_, then one could add two push-off copies of Y7 ;- to E{_ of Section
7a, one oriented positively and the other oriented negatively. Then, the tubing
construction of E,_ will insure that E,_ N int(Az) has a compact component.

With (9.5) understood, remark that E3, is obtained from ©(FE;_) by an
isotopy. Let R' C R denote the complement of a (small) collar of R. Near
R',E5_ is S |r and this coincides with ©(E5_) near R'. (Thus, ©(E3_) and
E5_ do not intersect transverally.) Choose the isotopy to obtain E5 from
©(Es5-) so that F34 near R’ is a sphere bundle Sgy C N |p of radius greater
than 1.

Pick a point z € R’ and let

(9.6) S, = Sk |rC Es_.

This is a homologically trivial, embedded 2-sphere in E3_. This S, bounds
the 3-ball T, C N |, which is the unit ball in the fiber of N at z. Notice that
this 3-ball has empty intersection with E3, since the latter intersects the fiber
at z in a sphere of radius larger than 1.

However, the ball T, intersects Az transversally in a single point, namely
. This intersection with Az will now be traded for IV transversal intersections
with E34. (This is the same N as in Proposition 8.1.) The technique used
here is called ”connect summing with a transverse sphere” (see, e.g. Chapter
1 of [7]). This technique proceeds as follows: Fix p € crit(f) and then fix a
point ¢ € S® — A,. Observe that the sphere S® x ¢ C (S® x S®), intersects
Az transversally once (at g X ¢), and it intersects E3. transversally N times,
at ¢ x A,. Orient S3 x g and all N intersections with E3; will have the same
sign. (See Assertion 5 of Proposition 8.1.) Because g € Ap, this S3 x g will have
empty intersection with Fs_.

Take this S3 x g C (S% x S3), and push it off 8Z so that it is an embedded
submanifold, Y C int(Z). Push if off only slightly, so that Y still intersects
E34 in the N points of the push-off of ¢ x Ap, and so that Y intersects Az in
the push-off of ¢ x q. Also, do not let Y intersect E5_.

Remark that N is an oriented vector bundle, and thus 7, is an oriented 3-
ball. Orient Y so that its intersection number with Az is the opposite of that
for T, N Az. Now, one can “tube” Y to T, to obtain a new 3-ball, P C Z with
the following properties:

1) 0P=S5,,
2) Pﬂ(AzU@ZUELUER) =0,

3) int(P)NE;_ =0,
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4) PN Ej3, is N distinct points, all homologically the same in Ho(P).
(9.7

Abstractly, P is the connect sum of Y and T,. Realize this connect sum in
Z by choosing a path, 7, between z and 2’ =Y N Az in int(Az). Make sure
that 7 avoids the paths {I';}7_; of Assertion 6 in Proposition 8.1. Modify the
exponential map e : N — Z so that e maps N |,/ into Y. Let S; C N |, denote
the radius 1/8 sphere bundle. Let T2 C N |, and T, C N |+ denote the radius
balls of radius 1/8. Then Y is obtained by smoothing the corners of the surgery

(9.8) (¥ =T U Ty - T USS,.

Here is a picture:

Ea+

(9.10)

The 3-ball P and the 2-sphere S = S, satisfy Assumptions ¢ — f of Propo-
sition 9.5. To apply Proposition 9.5 to prove Lemma 9.2, it is only necessary
to check that Assumption f of Proposition 9.5 is satisfied. For this purpose,
let 7 : S; = « denote the projection. Then, the normal bundle to S, in A
is isomorphic to 7*TR |,. Meanwhile, the normal bundle to P in X along S,
is the same as the normal bundle to T} in X along S, which is isomorphic to
m*TAgz |;. Thus, the quotient (Np |s)/vs =~ 7n*((TAz |z)/(TR |¢)), which is
trivial, as required. O
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c) Proof of Proposition 9.5.

Since [S] is homologically trivial in A, vs — S is a trivial 2- plane bundle.
Since P is a 3-ball, so Np — P is a trivial 4-plane bundle. And, because
(Np |s)/vs is a trivial bundle, there are no obstructions to extending vg over
P as a 2-plane subbundle of Np. Use v — P to denote this 2-plane bundle.

Fix an exponentional map ep : Np — X with the following properties:
First, ep should restrict to vs as a map into A. And, e, should restrict to map
Np |pnp into B. Fix a fiber metric on N, with the property that ep, embeds
the interior of the unit ball bundle in N, onto a neighborhood of P in X. Then,
use ep to implicitly identify the unit ball bundle in Np with its e,-image.

With the preceding understood, let so C v denote the 1-sphere bundle
of radius 1/4. Let t; C v denote the ball bundle of radius 1/4. (Thus,
9(to | int(P)) = 50 | int(pP)-)

Introduce the surgery

(911) AO = (A—to |S)U80,

which is a C° embedding of a smooth, oriented 4-manifold, A’ into X. This
embedding is smooth away from the corner at so |s and it can be smoothed
inside v to produce a smooth embedding of A’ into X. Note that A’ can
be arranged to agree with A on the compliment of any apriori specified open
neighborhood U C X of P.

With A’ understood, consider the various assertions of Proposition 9.5: To
prove Assertion 1, consider that

(9.12) U'E(AIQB)00=SO IPOBU .

This is a transversal intersection because P intersects B transversaly. The
fact that [0'] # 0 in H,(A’;Q) follows via Meyer- Vietoris and the fact that
[PNB] # 0in Hy(P). (Use the Meyer- Vietoris sequences for the decompositions
A=(A-s0|s)U(to|s) and also A’ = (4 — s¢ |s) U s0.)

Meyer-Vietoris also proves Assertion 2, namely H2(A'; Q) = H%(4;Q) . (Use
the same sequences as above.)

Assertion 3 is true because one can interpret ¢y as a cycle, and this cycle
obeys Otg = [A] — [A].

Assertion 4 is true because the circles in so |pnp bound the discs to |pnB-

To prove Assertion 5, the strategy will be to find a framing of the normal
bundle to int(sp) in X which is compatible with the framing ( on A — S. To
begin, introduce the notation v to denote the vector field along so C to which
points radially inward on each 2- ball fiber of t; - P. With v understood,
the normal bundle to sp in X is isomorphic to (Np/v)® Span(v). The bundle
Np/v — P is a trivial 2-plane bundle (because P is a ball), and so it has
a global frame, (ej,ez). Thus, (e1,ez,v) is a frame for the normal bundle to
int(so) in X.

Now consider the normal bundle to A along S. For this purpose, let e3 denote
the inward pointing tangent bundle to P along S. (So e3 spans the normal
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bundle to S in P). Then, along S, the normal bundle to A in X is isomorphic
to (Np/v) |s ® Span(es). Thus, Np |s & Span(eg) — S is isomorphic to the
normal bundle of S in X. Let es : Np |s @ Span(ez) = X be an exponential
map which maps vg into A and which maps v |s @ Span(es) into P. Use eg
to identify a neighborhood of S in X with a neighborhood of the zero section
of the bundle Np |s & Span(esz) — S.

Because m2(SO(3)) = 0, there are no obstructions to homotoping the given
normal frame ( in a neighborhood of S so that the restriction of ¢ to said neigh-
borhood is(e; |s,e2 |s,es3). Thus, two thirds of the frame ( can be extended
over A' from A — S. As usual, there is no obstruction to homotoping v near
so |s to equal e3 on the compliment of a neighborhood of S in A.

d) Making [0] =0 in H;(E34).

This subsection is concerned with the construction of E3, of Lemma 9.3. The
construction requires a preliminary digression to introduce a modified version
of Proposition 8.2. Here is the scenario: As in Proposition 8.2, X is a smooth,
oriented 7-manifold and A, B are oriented, 4-dimensional submanifolds of X.
Let O C X be an open set which contains a component, o, of AN B.

PROPOSITION 9.6. Let X,0,A,B and o be as described above. Suppose
that

a) [o] #0 in Hi(B;Q).

b) [0] =0 in H:(0;Q).

¢) H3,.,(B;Q) — H3B;Q) is injective.

d) B has trivial normal bundle in X with a given normal framing (.

e) O is path connected.
Then there exists n # 1 and there exists an oriented, dimension 4 sub-
manifold B' C X which obeys:

1) Let By denote the disjoint union of n distinct, like oriented push- off copies
of B. Then B' =By in X — O.

2) B’ intersects A transversally, and o' = (B' N A) N O is compact.

3) [0']=0in H(B';Z).

4) lo'1=nlo] in Hi(4;Q).

5) H*(B';Q) = H?*(By; Q).

6) [B']=n[B]in Hy(X,X — O;Z).

7) B’ has trivial normal bundle in X and the push-off normal framing, (, of
By extends from By — Bo N O to a smooth normal framing of B' in X.

This proposition is proved below. Consider its application first.

Proof of Lemma 9.3. The strategy is to apply Proposition 9.6. For this
purpose, set X = int(Z) and O = Z - (0ZUUa UEL UER). Set A =
int(E3-) and set B = int(Es;). Assumption a of Proposition 9.6 holds under
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the assumption that (9.1) is false. Assumption b of Proposition 9.6 holds for
the following reason: The vanishing of H,(Z;Q) is guaranteed by Lemma 3.7.
The vanishing of H;(O; Q) then follows using Meyer-Vietoris. (Remember that
Az and Ej g are codimension 3 in Z.) Assumption c of Proposition 9.6 holds
because B is the interior of a manifold (E34) with boundary a disjoint union of
3-spheres. (Remember that H?(S3) = 0.)

Thus, the assumptions of Proposition 9.6 hold when (9.1) is false. Take
Ej, in Lemma 9.3 to be equal to the closure in Z of the submanifold B’ of
Proposition 9.6. O

Proof of Proposition 9.6. By assumption, there exists an integer n such
that n[o] = 0 € H1(O;Z). Use the given framing of B’s normal bundle in X
to push-off n parallel copies of B, all with the same orientation as B. Let By
denote the union of these n disjoint submanifolds. Make these push-offs close
to the original, so that g9 = (Bp N A) N O will be equal to n like oriented,
push-off copies of 0. Then [0p] = 0 in H;(O;Z). This means that og is the
boundary of an oriented, embedded surface with boundary, R C O. Since A
and B have codimension 3 in O, one can arrange R so that int(R)NA =0
and int(R) N B = @. One can also arrange R to be connected because O is
connected.

Here is the local picture of R near a component of og: Let C be a component
of 0g. Let vc denote the normal bundle to C in R, an oriented line bundle.
Then, the normal bundle to C in O splits as the direct sum ve ® L |¢ T By |c,
where L — o¢ is an oriented 2-plane bundle, and so trivial. (Thus, the normal
bundle for B in X along oo splits as v¢ ® L |¢.) Choose a framing, (g, for
T By |c and also choose a framing (e, ez) for L. If a frame, ¢, has been given
for B’s normal bundle in X, then choose (e;,ez) so that with the addition of
an oriented frame, ez, for vc, the triple (e;, ez, e3) defines an adapted frame to
C which is homotopic to ¢ |¢. (See Lemma 8.4).

Choose an exponential map, ec, from the normal bundle along C into X
which maps the positive axis in v into R and which maps T By |¢ into By. Use
this exponential map and the given framings to identify an open neighborhood
of C in X with one of C x (0,0) in the triple product C x R® x R3.

Then R near C is identified with the subspace of points (t,z,y)in C x R3 x R?
where £, = z3 = y = 0 and z; > 0. Meanwhile, By near C is identified with
the subspace of points (t,z,y) with z = 0. And, A near C is identified with the
subspace of points (t,z,y) where

(9.13) z=At)y+0(y ",

where A : C — GI(3,R).

Because R is connected and has non-trivial boundary, the normal bundle
Ngr = R to R in X is isomorphic to the trivial 5- plane bundle. On oy, this
bundle has a splits as Ng = L & T By |s,- a

LEMMA 9.7. The subbundle L C Ng |,, eztends over R as an oriented,
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2-plane subbundle, Lgr, of Nr. Furthermore, given a framing (ej,ez) for L,
there ezists an exstension Lr — R of L over which the framing (e1, e3) extends.

Proof. Choose a trivialization for Ng to identify this bundle with R x R3.
Then L C Ng |, is defined by a map from og into the space of oriented
2-planes in R®. The space of such oriented 2-planes deformation retracts onto
SO(5)/(SO(3) x SO(2)); thus, L is defined by a map, n : ag = SO(5)/(SO(3) x
SO(2)). Note that the choice of an oriented frame (e, e2) for L defines a lift of
n to a map 7 : o9 = SO(5)/SO(3).

With the preceding understood, the question here is whether or not this
map 7 can be extended over R. The answer is that 7 can be extended because
SO(5)/S0(3) is simply connected. a

With Lemma 9.7 understood, pick an extension, Lg — R of L over R over
which the given frame (e, e;) for L extends. Introduce Vg ~ Ng/Lg and
choose a splitting Ng ~ Lr @ Vg with the property that Vg |,, agrees with
TB |og-

Fix an exponential map er : Ng — X with the property that egr on Ng |s,
agrees with the restriction of egg to L @ TBy |,,- Choose a fiber metric on
Npg so that eg embeds the interior of the radius 2 ball bundle onto an open
neighborhood of int(R) in X.

Let € > 0 and let Tp C Vg denote the radius € ball bundle. Let Sg C Tr
denote the sphere bundle of radius € . Since Vj is oriented, both T and Sg
are isomorphic to trivial fiber bundles.

With all of the above understood, define the surgery

(9.14) By = (Bo — int(TR |oy)) U Sk.

This B, is a C° embedding of a smooth, oriented manifold into X. The em-
bedding fails to be smooth at the corner, Sg |,,. Smooth B; inside Vg on a
neighborhood of this corner to produce a smoothly embedded, oriented sub-
manifold, B’ C X.

The claim now is that B’, as described above, will satisfy Assertions 1-7 of
Proposition 9.6: Assertion 1 is true by construction. To prove Assertion 2, use
(9.13) to see that ¢’ is a push-off of op. Indeed, for small €, the copy in ¢’ of
the component C'in (9.13) is given, to order €2, as the set of (t,z,y) with

(9.15) z=(c( Y, |A™;11%)7"20,0)

1<5<3

and y = A™!(21,0,0) . Here A jl are the components of the inverse to 4 in
(9.13). Note that this identification of o/ confirms Assertion 4 as well.

To prove Assertion 3 of Proposition 9.6, observe first that (9.15) identifies o’
as a section of Sg over a push-off into int(R) of 6. Thus, ¢’ bounds in B’ if the
section in question, s, extends as a section over R of Sg. Now, Sg is a trivial
2-sphere bundle so isomorphic to R x S2. Such an isomorphism identifies the
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section s, with a map, also called s, from ¢ to S%. Since m;(S?) = 0, any such
map extends over R.

To prove Assertion 5, invoke the Meyer-Vietoris exact sequences for the de-
composition By = (By — Tgr |s,) U TR |s, and for the decomposition of B; in
(9-14). (Note that B; and B’ are homeomorphic.)

To prove Assertion 6, remark that B’ and B; are C°-isotopic by an isotopy
with support in O, so [B'] = [B;] in H4(X,X — O;Z). Meanwhile, Tg, as a
5-cycle in O satisfies 0Tgr = [B1] — [Bo).

Finally, consider Assertion 7. To begin, remark that the normal bundle to
Sk in X is isomorphic to Lg & 7, where 7 — Sg is the trivial line bundle which
is Sgr’s normal bundle in V. Now, by construction, Lg has a frame, (e},e5})
which extends (e;, e2).

Meanwhile, the normal bundle, Ng, to B in X splits upon restriction to o
as L @ vy, where v,, is the normal bundle to oo in R, an oriented line. And,
the frame ¢ is homotopic in a neighborhood of o so that the result restricts
to og as (e1, ez, e3), where (e1, e2) frame L and where e3 is the inward pointing
normal vector to og in R. Thus, two thirds of the normal frame ¢ can extended
from the compliment of a neighborhood of a¢ in By over B'. As usual, there
are no obstructions to extending the remaining third of ¢ over B'.

e) Proof of Lemma 9.4.

If there are some number ¢ > 1 components of By, label the components
of By as {Bo,a}l_;. Pick yo € BoN (O — A) for each index a > 1. Also,
choose g — 1 distinct points {Za}a>2 C Bo,. Since O is path connected, so
O — A will be path connected; and so one can find, for each a > 2, a path
pa (an embedding of [0, 1]) which starts at y, and ends at zo. Choose the set
{pPa}az2 to be distinct. Now, for each a > 2, mimick the surgery in (8.23) to
make an ambient connect sum of By, with Bp 1. Since the {p,} are distinct,
these connect sums can be made with out interfering with each other. Use B
to denote the result, after smoothing near the corners. The verification that
B does the job is left to the reader as an exercise. (For the framing issue, see
Lemma 8.10.) a

10 The last pass at E1. It is the purpose of this section to explain how
to make E4 from E44 of the preceding section. The metamorphasis from E;4
to E4 will be called melding.

This melding operation only changes E;4 in a neighborhood of Az U 0Z,
and the neighborhood in question can be as small as desired. In particular,
in this neighborhood, E44 should be the image of E4_ under the switch map
© : Z — Z which sends (z,y) to (y,z). (See Assertion 1 of Proposition 9.1).
Furthermore, in this neighborhood, E4— (hence, E4 ) should consist, locally, of
N parallel push-off copies (see Assertions 5 and 6 of Proposition 9.1).

The effect of the melding will be to push all of these parallel copies together
on some smaller neighborhood of Az UdZ. The cost of the melding is that E4
will not be a manifold (unless N =1 in Proposition 9.1).
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a) F4_ near Az UJZ.

Consider E4_. The following construction will be done r times, once for
each pair in {(a;,b;)}/_;. These r versions can be done simultaneously, so fix
attention on one index %, and simplify notation by setting a = a; and b = b;.

The set I'; C E4_ N Az is a set of N embedded .intervals which connect
the N components of S3 x A, = E4;_ N (S% x $3), with the N components of
S3 x Ay = E4— N (S3 x S3),. Near

(10.1) (S® x A)UT; U (S3 x Ap),
E4_ consists of N components (sheets), {Y,}X_,. Here is a picture:

(53 X 53)0

ZA D Rl Y

E,_ (

._.
e -
‘—/
~
-

-
i S
~—d
D
N

L (S x 8%,
(10.2)

The sheets {Y,}a>2 are push-off copies of Y;. As for Y3, it is an embedded
image in Z of the compliment in the open, unit 4-ball of the interiors of a pair of
disjoint 4-balls, By, of radius 1/8, respectively centered at (+1/4,0,0,0). Note
that the boundary of B_ is mapped to S3 x p, C S3 x A,, and the boundary of
B, is mapped to the corresponding S x p, C S® x A. Furthermore, Y; N Az
is the segment of the z; axis between (+1/8,0,0,0) € dB=+. Here is a picture
of Yq:

(10.3)
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As remarked, the {Yy}q>2 in (10.2) are push-off copies of Y;. To be precise
here, remember that Y; has a framing, { = (e, ez, €3), to its normal bundle,
Ny, , which is a product framing that restricts to both (S x p,) and (S® x ps)
as a constant framing. (See Assertion 8 of Propositio 9.1.) Fix an exponential
map,

(10.4) e: Ny, —» B,

which maps Ny, ’s restriction to (S® x p,) into (S3 x S%),, and which likewise
maps Ny, ’s restriction to (S3 x pp) into (S® x S%),. Fix a metric on Ny, which
makes the frame ( orthonormal, and fix ¢ > 0 such that (10.4) embeds the
interior of the radius 2¢ ball bundle onto a neighborhood of ¥; in Z. Use e in
(10.4) to identify the interior of this ball bundle with its image in Z.

With the preceding understood, the copy Y, of Y] can be taken as the image
of the section s4 : Y3 = Ny, that is given by

(10.5) so(z) = (@ ~1)N71lee;.

b) The meld.

With the preceding picture E4_ near (10.1) understood, here is the meld:
Fix a function 3 : [0,1] — [0, 1] which has the following properties:

(10.6)

1) B=1lon[5/8,1].

2) f=0on][0,1/2].

3) B is nondecreasing.
As described in (10.3), identify Y; with a subset of the unit ball about the origin
in R*. Use z to denote the Euclidean coordinate in R*, and, by restriction, a
point in Y;. By the way, note that the assignment to = € Y; of the number
B(] = |) defines a smooth function on Y; which vanishes in a neighborhood of

(10.7) B_U {(21,0,0,0): —=1/8 < z; <1/8}UB,.

For a > 2, define the deformation, Y, of Y, as follows: Y is the image in
Ny of the section s!, which sends z € Y; to
(10.8) sh@) =(@—-1)N'B(|z|)eer.

Notice that Y, agrees with Y, on the compliment of a regular neighborhood
of (10.1) in Z; but that Y, coincides with Y; on a smaller neighborhood of
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(10.1). Here is a picture for a > 1:
!
Yz
\ / )

In (10.9), the shaded region marks where Y, and Y intersect.
Here is a picture of all the {Y}4>1:

Y3
Y2
Y,

Use E_ to denote the result of applying the preceding meld operation to E4_
in a neighborhood of (10.1) for each i € {1,---,r}.

As for E4, remember that F4y coincided with ©(E,_) near each of the r
versions of (10.2). This neighborhood can be assumed to include the regions
that are depicted in (10.2). With this understood, set E; = E4, outside of
the ©-image of the regions in (10.2), but inside the ©-image of each region in
(10.2), declare

(10.9)

(10.10)

(10.11) E, = O(E.).

c) Properties of E,.

The following proposition describes some of the salient features of E4:

PRrRoOPOSITION 10.1. Construct Ex C Z as described above. Then:
1) There is an open neighborhood U C Z of Az UOZ such that E, NU and
E_NU are images of each other under the switch map on Z.

2) The fundamental classes [Ey] are equal to N [Eiy] for some integer
N > 1. Here, [E;4] are described by (6.3) and Lemma 6.3.

8) E4 have empty intersection with My x My and M; x M;.
4) Ex have empty intersection with Ep g of (4.15).
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5) Ifpe€ crit(f), then the intersection of E_ with (S® x S®), has the form
S3 x z,,, where x, is a single point. Similarly, the intersection of E with
(83 x 83), is z, x S3.

6) EiNAz=Ul_v;, where v; C Az is as follows: There is a flow line y;
which starts at a; and ends at b;. With the canonical identification of Aw
with W understood, v; is a closed interval in a push-off copy of u;. And,
v; starts at (T,,1,) € (S® x S%), and v; ends at (zp,z3) € (S x S3),.
Here, a = a; and b = b;.

7) E_NE; =UL_v;.

8) H*(Ey;Q) =0.

The proof is straightforward and left to the reader. (See Proposition 9.1.
Also, use Meyer-Vietoris to compute H?(E.).)
Here is a picture:

Eq- Az H) E_ Az

Eyt

2

(10.12)

11 Completing the proof. The purpose of this last section is to complete
the proof of Theorem 2.9. The strategy here will be as follows: Suppose that
My and M, are cobordant via a spin 4-manifold, W, with the rational homology
of S3. Factor the cobordism as in Assertion 5 of Proposition 3.2 into two pieces,
Wi N Ws. Both W, and W3 are given by (3.11). Here, W; is a cobordism from
My to a rational homology sphere M, while W3 is a cobordism from M to M.
In both cases, the manifold with boundary, Z. (= Z, 3), has been defined, and
Sections 4d, 4e and 10 describe the variety ¥z. C Z. (The latter require a choice
of base point p € M.) Let Z = Z;UZ3 and ¥z = ¥z, UX z,, where the common
boundary components in both cases are identified (these being M x M in the
former and X,/ in the latter).
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With Z and ¥z understood, the proof plan from Section 2k will be complete
with the completions of Steps 3 and 4 in Section 2k. These steps are considered
below.

Completing Step 3 requires the construction of a 2-form wz on Z — ¥z which
satisfies (2.27). This 2-form will be constructed first on the compliment of ¥z
in a regular neighborhood Nz C Z of ¥£z. The extension to Z — Xz will be
made by appeal to Lemma 4.2.

Step 4 of Theorem 2.9’s proof (from Section 2k) will be completed during
the construction of wz.

Let Nz, = NzNZ; and define Nz, analogously. The 2-form wz on Nz — Xz
will be constructed first on Nz, — ¥z, and second on Nz, — Xz,. The case of
Nz, —Xz, is considered in Subsections 11a—h and that of Nz, —X3 is considered
in Subsection 11i. These two constructions are matched in Subsection 115 where
Step 4 of Section 2k is verified. Section 11k completes the proof of Theorem 2.9
with a discussion of the conditions in Lemma 4.2.

To avoid cumbersome notation, the subscript “;” will be dropped in Sub-
sections a — h. Thus, in these sections, Z will denote Z;,Xz will denote Xz,
etc.

a) Preliminary remarks.

Construction of wz on Nz — ¥z is accomplished in two steps. The first step
defines wz near Az U Ej, U Eg by using (4.22), but where ¢z is a map which
is defined only on a regular neighborhood, N', in Z of Az U E;, U Eg. This ¢z
has go}l(O) = Yz N N'. The second step constructs wz on Nz — N'.

The construction of ¢z occupies Subsections b — f, below. The construction
of wz on Nz — N' occupies Subsections g and h.

b) Near Ep N ERg.

The purpose of this subsection is to construct ¢z near E; N Eg. To be
precise, a neighborhood U C Z of Ef N Er will be described with a map

(11.1) pv:U— R

which obeys

(11.2) ¢y (0) = (ELUERUAZ)NU.

Then, ¢z | U will be declared equal to ¢y .

A digression on framings begins the construction of ¢y . To start the digres-
sion, fix a frame for TM |,. This frame can be thought of as a frame for the
normal bundle to p in TM. Use the pseudo- gradient flow to extend this frame
as a normal framing to the flow line v C Z. This normal framing to 7 induces
a framing of T Mp |p,. End the digression.

Parameterize that flow line v so that f(y(t)) = ¢. Let N, — v denote the
normal bundle to v in W and select an exponential map e, : N, - W which
maps Ny |p,,p into My, M, respectively. Require that
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(11.3) foeyp =t

Use this exponential map and the normal framing with the afore- mentioned
parameterization of v to define a diffeomorphism, %.,, from a neighborhood,
O., C W of v onto [0, 1] x B, where B C R? is a ball-neighborhood of the origin.

Using the preceding identification, build ¥y = (u4 X u,) |z of the neighbor-
hood U = Z N (04 x Oy) of Er N Eg with [0,1] x B x B. This U and 9y
obey the conclusions of Assertion 4 in Lemma 4.5 except that B C R® should
everywhere replace R® and B x B should everywhere replace R3 x R3.

With the preceding understood, define ¢z on U to be the composition of the
map Yy with the map from [0,1] x R® x R3 which sends (¢,z,y) to ®o(z,y)
with ®¢ given by (2.15).

Note that ¢z |v agrees with Proposition 2.5’s map ¢ when restricted to a
neighborhood of pg X pp in My X My, or to a neighborhood of p x pin M x M.

Note also, for reference below, that the map ¢z |y is invariant under the
switch map © : Z — Z which sends (z,y) to (y, ).

c) Near E; U ER.

The purpose of this subsection is to construct ¢z near Er, U Eg. To begin,
remark that the normal bundle Ng — Eg to Eg in Z is naturally isomorphic
to 7; N,. Thus, said normal bundle has a natural framing.

Take the dual to this natural framing to frame the dual bundle, N; and
choose an exponential map eg : Ng — Z. The framing of Ny and er together
define a map, g, from a neighborhood of Eg in Z into R3 which has Er as
the inverse image of zero. (See (2.14).) Choose this exponential map so that
it sends Ng |m,xm, into Mo X My and likewise sends Ng |amxa into M. (The
exponential map e, : N, — W of the preceding subsection induces such an
exponential map in a natural way.)

On Eg N U, the differentials of the maps g and @y are scalar multiples of
each other, and so there is a homotopy of g near U which has it agree with
¢z |u on U and so extend ¢z |y to map a neighborhood of Eg in Z to R3® with
the correct inverse image of zero. See the Step 2 of the proof of Proposition 2.5
for the details.

With ¢z |y now extended over Eg, extend it further over Er U Er, by using
the switch map © : Z = Z. Use ¢z |rL to denote this extended map.

Note that ¢z |r,L can be made so that its restriction to a neighborhood of
(pox Mo)U(Mp xpo) in Mo x Mo agrees with the map ¢ for Mg in Proposition 2.5.
Likewise, its restriction to a neighborhood of (p x M) U (M x p) in M x M can
be arranged to agree with the analogous ¢ for M

d) Near E; NAgz.

The intersections between E and between these varieties and A z form a set
of disjoint line segments, {v;}I_;. (Note that E. are manifolds near these line
segments.) The purpose of this subsection is to define the map ¢z near each
(B
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To start, fix i € {1,---,r}. Let a = a; and b = b;. Note that v; has end
points (z4,7,) C (S% x $3), and (zp,7) C (S x S3),. Also, the identification,
using 7 or g, of Az with a subset of W identifies v; with a subinterval in a
pseudo-gradient flow line which starts at @ and ends at b.

Remember that E_ is the result of melding E4_ of Proposition 9.1. This
means, in particular, that (S% x $3), Uv; U (8% x S3), has a neighborhood,
U; C Z, such that E_NU; is the same point set as a component, Y, of E;_NAz.
Meanwhile, E, NU; = O(Y).

Remark next that E4_ has, according to Assertion 8 of Proposition 9.1, a
special normal framing, (. And, E4; has a special normal frame, ¢’, which
restricts to U; as the image of ¢ under the switch map ©. The pair of frames
(¢, ¢") restrict to v; to frame the normal bundle N; — v; of v; in Z.

Notice that © fixes Az and the differential of ©® (denoted ©*) acts on N;
and interchanges Span(¢) with Span(’).

Fix an exponential map e : N; = v; with the following properties:

(11.4)

1) . e:Span(¢) = E_.
2) e:Span({') —» Ey.
3) At (z,,7,),e maps N; into (S3 x $3),.
4) At (zp,z3),e maps N; into (S3 x S3%),.
5) Qoe=eo00*.
Together, the map e and the frames (¢, (') define a map

(11.5) Vv xR xR = U

with the following properties:

(11.6)
1) There is an open ball B C R® about 0 and 3 embedds v; x B x B.
2) 4 is the identity on v; x (0,0). '
3) v YE-)={(t,z,0) €v; x R® x R®}.
4) v~ YE;) ={(t,0,y) € v; x R® x R3}.
5) %1 (Az) ={(t,r,z) € v; x R® x R3}.
6) Y((Ta,rs) x R x R3) C (83 x §%),.
7 Y((zp,zp) X R3 x Rs) C (53 X 53)(,.
8) ¥(t,z,y) = O@(t,y,z)).

Given the preceding, define the map ¢z on a neighborhood of v; in Z by
declaring that

(117) (‘PZ Od))(t,él:,y) = (I)O(z,y)a
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where ®¢ is given in (2.15).

e) Near (S3 x S3),,.

The next step is to define the map ¢z near Z’s boundary components
{(S® x S®)p}pe crit(s)- So, fix i € {1,---,r} and let p denote either a; or
b;.
A neighborhood, V, C Z, of (S® x S3), is diffeomorphic to the product
(8% x 83), x [0,1) as a manifold with boundary. Furthermore, there is no
difficulty in finding such a diffeomorphism so that

(11.8)
1) E_-NV,=(S%xz,) x[0,1).
2) EinNV,=(z, xS%) x[0,1).
3) AzNV,=Ags x [0,1).
4) The switch map acts by O(z,y,t) = (y,z,1).

In V,, the variety E_ is smooth and it agrees with a component, Y, of
Ey_ NV, Also, Ef NV, = O(E-NV),). Also, E4_ has the normal frame, ¢,
which restricts to Y as a constant frame. And, E;; has the normal frame ('
which restricts to ©(Y) as © (.

Use these constant frames to define frames for the dual bundles to the normal
bundles of Y and ©(Y) in Z. Then, use these frames for the conormal bundles
to extend ¢z | U; of (11.7) to a neighborhood of E+ NV, by mimicking Step 2
in the proof of Proposition 2.5. (Exploit the product structure on V, in (11.8).)

Meanwhile, 7*S3 has its singular framing which gives (see Proposition 2.7,
Definition 2.8 and Lemma 2.11) the canonical homotopy class of singular fram-
ing for which the value of I5(S%) is zero. As in Step 3 of Proposition 2.5's
proof, use this framing to obtain a singular framing of the normal bundle to
Ags x [0,1) in Z.

(Remember that (S® x S®), has two obvious projections to S3, these are
given by the product structure in (3.26) and are denoted n+. To be explicit,
introduce the coordinate sytem v, of (3.2) and introduce U, = 9,(R*). Note
that U, x Up, is a neighborhood of (p,p) in W x W. With this understood, 74+
are the restrictions to (S® x S3), of the maps from U, x U, to R which are
given by

(119) 7r_(x,y) = (y1,$2,$3,$4) and 7T+($’y) = (-’L'l,yzy y3>y4)

when p € crity(f); and by

(1110) 7!'_(113,:1/) = (ylnyZ;zS’m4) and 1r+(1:,y) = ($1,-’l32,y3,y4)

when p € crita(f). Then, the map n} — n* identifies T*S3 with the normal
bundle to Ags in (S x S3),.)
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As in Step 3 of the proof of Proposition 2.5, use the induced framing of the
normal bundle to A% x [0,1) in Z and the product structure of V}, as described
in (11.8) to extend ¢z | U; over a neighborhood of the intersection of Az N V.

Note that this extension of ¢z to a neighborhood of £z NV, has the property
that its restriction to (S3 x S3), is equal to a map ¢ in Proposition 2.5 (for S%)
that gives I = 0. See Lemma 2.11.

f) Near Az.

At this point, the map ¢z is defined on a neighborhood of Ef g and on
a neighborhood of each {(S® x 53),},¢ crit(s) and on a neighborhood of each
{v:}i—;. The purpose of this subsection is to extend ¢z to a neighborhood of
Ag.

As a preamble, remark that ¢z has already been defined near some parts
of Az, specifically, near {v;}7_; and near v and near Ags in each {(S® x
S3)p}pe crit(f)- The extension over a full neighborhood of Az is obtained by
mimicking the constructions of Step 3 in the proof of Proposition 2.5.

To be more precise about this strategy, it is necessary to first introduce
N3 — Az, the dual to the normal bundle to Az in Z. A particular framing over
Az — (vU(Ul-,v;)) will be chosen for N7, and an exponential map, e : Nz = Z
as well. These give a map ¢a, as in (2.14), from a neighborhood in Z of
Az — (yU (U_,vu;)) to R®. The singularities near v U (Ul_,v;) of the chosen
framing will be constrained so that pa can be readily homotoped near v and
(Ui_,v;) and each {A% C (83 x S§3),}7_; to match up with ¢z where the latter
is already specified.

The framing x for N7 over Az — (v U (U}, v;)) will have the following form
near v: Write x = (e1, eq, e3) and use the coordinates near v that are given by
the map 1y of Section 11a, above. Write £ = v+ u and write y = v — u so that
u = 0 signifies Az and u = v = 0 signifies 4. Then,

(11.11) X l(t,v,0)= 2 (v, du) v— | v 12 du,

where (v, du) = Z2_,v; du;.

The singularity of x near each v; will have the form of (11.11) when the
coordinates of (11.5), (11.6) are used.

Also, x is constrained on the diagonal Ags in each (S3 x $3), so that the
inverse of the natural identification (73 — 7*) between T*S3 and the conormal
bundle of Ags C (S® x %), sends x to a singular coframe which gives S$3’s
canonical singular frame.

With the preceding understood, agree now to further constrain x along Ay,
as follows: The inverse of the natural identification (7}, — 7} ) between T* M,
and the conormal bundle to Ay, C My x My should send x to a singular frame
for T*My. (See Definition 2.3).

This x, as constrained above, will extend over the rest of Az when the
following condition is met:
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LEMMA 11.1. Let

(11.12) T = (yU (UjZ1vi) U (Upe crigs)(Ass)p) U Apg,) C Az,

and let x be a frame for N; — (Az — (y U (Ui~ vi)) which is defined on a
neighborhood of T as described above. If the homotopy class of T* My ’s singular
frame () —73) " (x | Am,) is in ker(lw) (see (2.12), then the frame X extends
over Az —T as a frame for N3.

Given that Lemma 11.1 is true, the extension of the map ¢z near Az is
obtained by using (2.14) and a singular frame x as described above for which
(m5 —m3)~ (x| Am,) gives Proposition 2.7’s canonical homotopy class of sin-
gular frame for T* My. (Theorem 2.9 assumes that the canonical singular frame
for My is annihilated by the homomorphism lw, uw;; and this implies that this
homotopy class is also annihilated by lw,.) The construction of ¢z near Az
using x can be made with a straightforward appropriation of the arguments in
Step 3 of the proof of Proposition 2.5. These final details are left to the reader.

Proof of Lemma 11.1. The singular framing x has been defined near the
point p € Apn by
(11.11). First, choose any extension, X', of x over the remainder of Ay so
that (75 — 7)1 (X' | Am,) is a singular frame for T*M as described in Defi-
nition 2.3.

Because W is a spin manifold, the bundle N; — Az is a trivial bundle, so
it has a framing, h. If hy o are a pair of framings of NV, then h; = g hy, where
g:Az = SO(3).

Let Uy C Az be a regular neighborhood of Aps, U~y U Ap. This Up can
be taken so that the boundary of its closure in Azis a submanifold which is
diffeomorphic to the connect sum of My with M. One can also take Uy so that
the extension x' is defined on the boundary of its closure.

Fix i € {1,---,7} and set @ = a; and b = b;. Let U; C Az be a regular
neighborhood of (A gs)aUv;U(Ags)p. This U; can be taken so that the boundary
of its closure in Az is a submanifold which is diffeomorphic to S3. One can also
take U; so that x (and so x’) is defined over the boundary of its closure.

Let X = Az — (Up U (U;U;)). By construction, X is a smooth manifold with
boundary, and x' is defined over 8X. Let h be a frame for N over Az. Then
X' = g(h|ay) where g : X — SO(3). Extending x' over int(X) is the same as
extending g. Obstruction theory shows that the map g will extend if:

(11.13)
1) g.: H1(8X;Z/2) - H,(SO(3);Z/2) annihilates the kernel of the inclu-
sion induced homomorphism i* : H;(0X;Z/2) - H,(X;Z/2).
2) g.: H3(0X;Z) - H3(SO(3);Z) annihilates the kernel of the inclusion
induced homomorphism * : H3(0X;Z) — H3(X;Z).

These two conditions can be satisfied for some extension x' of x provided that
the restriction of x to A, — po differs from h by a map go : (Mo —po) = SO(3)
for which
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(11.14) gos : H1(Mo;Z/2) — H1(SO(3);Z/2)

annihilates the kernel of i, : Hy(My;Z/2) -+ H1(W;Z/2). That is, if the
invariant Iy (-) of (2.12) vanishes on the homotopy class of T*Mp’s singular
frame (7} — 75) " (x | Am,). This proves the lemma. O

g) wz Near E_.

The map ¢z has now been defined near all of £z save for the compliment
in E4 of a neighborhood of Az. Let N' C Z denote a regular neighborhood of
AzUELUER over which ¢ is defined. With this understood, define wz = p%p,
where p is the 2-form of (2.3). The task in this subsection and the next is to
extend wz over the rest of Xz.

In order to accomplish this task, it proves useful to focus first on E_. There
are three distinguished regions of E_. Regions 1 and 2 each consist of r compo-
nents. Each such component is labeled by 7 € {1,--- ,r}. To describe the 7’th
component of Region 1 or 2, it proves convenient to return to the notation and
coordinates that are used in Section 10 to describe the meld region in E_ near
v; and (5% x S3), and (S® x S3); for a = a; and b = b;. In particular, return
to (10.7) - (10.10).

With the preceding coordinates understood, the i’th component of Region 1
is defined to be the compliment in the interior of the ball of radius 15/32 in R*
of the balls By of radius 1/8 and center +1/4, respectively.

The i’th component of Region 2 is the transition region between the fully
melded part of E_ and the part of E_ which agrees with E4_. Here is a 5 step
definition of the i’th component of Region 2: Step 1: Introduce the annulus
A C R* which is given as the compliment of the radius 13/32 ball about the
origin in the ball of radius 1 about the origin. This A is identified as an open
subset of the sheet Y of E4_. (In Section 10, Y] is identified w'th the subset
of R* that is the compliment interior of the radius 1 ball of the balls By.) Step
2: In R*, intoduce the rays {ro}Y_, by

(11.15) ro = {(t,y) :y =0 and ¢t < 0}.

{ra={(t,y) :y=N"'(ax—1)ee; and t > 0}.

Here, e, is the unit vector along the first axis in R®. Step 3: Take the function
B of (10.6) and define a map 1 from R* x R? into R* by setting

(11.16) ¥(z,y) = (B( = 1),y)

with B as in (10.6). Here, R* is written as R x R3. Step 4: Introduce ‘the
projection
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(11.17) m R x R® — R

Step 5: The i’th component of Region 2 is given as

(11.18) P HUN_ore) N1 (A)

Region 3 contains the compliment in E_ of Regions 1 and 2. And, Region 3
intersects the i’th component of Region 2 in

(11.19) Y™ (UpZora) Ny H(A)

where A’ is the compliment of the radius 7/8 ball in the interior of the radius
1 ball.

‘wz in Region 3

With the preceding understood, Here is a four step definition of wz in Region
3: Step I: Note that E_ in Region 3 (= R3) agrees with E4_ which has framed
normal bundle. Use the framing, {, from Assertion 8 of Proposition 9.1. Step 2:
Choose an exponentional map to map said normal bundle into Z. Step 3: Define
a map, , from a neighborhood of Rj3 into R® by using (2.14). The map ¢ will
have ¢~1(0) = R3. Step 4: Define wz on Region 3 to be

(11.20) wz = N1o 1 (p),

with 4 as in (2.3) and with N as in Assertion 2 of Proposition 10.1.
wz in Region 1

The definition of ¢z in Region 1 is almost as simple: In each component of
Region 1, E_ coincides with a sheet of E4_ and so has framed normal bundle.
Use the framing ¢ again. Again, pick an exponential map for the normal bundle,
and define a map ', using (2.14).

This ¢, will not necessarily match up where ¢z has already been defined, i.e.
near each v; and near each (S% x z,) C (S® x $3),. However, the differentials of
¢z and ¢, differ at most by a scalar multiple along E_ where both are defined,
so it is a straightforward proceedure to modify ', to match up with ¢z where
the two disagree. See the argument in Step 2 of the proof of Proposition 2.5.

With this matching complete, define wz in Region 1 by

(11.21) wz = ;' (W),

where p is as specified in (2.3).
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wz in Region 2

Fixi € {1,---,7} and consider the definition of wz near the i’th component
of Region 2, i.e. near (11.18). The 2-form wz will be defined near (11.18) in
R* x R? as the pull-back via the map 9/ | % | of a 2-form on S® —UN_,(S3Nry).
This 2-form py, is given as follows: First, let {p, = S*Nra}Y_,. Then, employ:

LEMMA 11.2. Let N > 1 be given as well as N +1 distinct points {pa}N_, C
S3. For each a € {0,---,N}, let By C S® be an embedded 3- ball with B, N
(Ua'Par) = pa- Orient B, by the normal directed towards p,. Let wy be a
closed 2-form on B, — p, with the following property:

1) fBBow():l'

2) fBB,, wa=1/Nifa>1.
Then, there is a closed 2-form, un, on S3 — Uﬁzopa which, for all a, restricts
to By — po GS Wq .

Proof. Use Meyer-Vietoris.

The lemma gives py once suitable {w,}N_, are specified. These should be
chosen so that (¢/ | ¥ |)*u~n agrees with wz where Region 2 overlaps Regions
1 and 3. (The overlap with Region 1 determines wy and the N components
of the overlap with Region 3 determines {ws}e>1. In this regard, remember
that E_ in Region 2 is made by modifying the amounts of push-off of N sheets,
{Ya}Y_,, of E4_. These push-offs are all parallel and in the e3 direction with
respect to the frame ¢ of E4_. On the sheet Y,, the frame ( is the push-off
copy of the frame ¢ on Y;. Thus, the frame ¢ on each sheet of (11.21) agrees
with the constant frame (e;,es,e3) for R®.) The details here are left to the
reader. d

h) wz near E;.

Where E; and E4, differ, E; = ©(E_). In fact, E; can be divided into
three regions, which are Region 3 and the image by © of Regions 1 and 2in-E_.
On Region 3, E, and E4, agree. With this understood, the form wz should
be defined near the © image of the E_ regions 1 and 2 by pull-back using the
map ©. The definition of wz on Region 3 of E; mimics the definition of wz on
Region 3 of E_ and the details are left to the reader.

i) The form wz on Zs.

Remember (from this section’s introduction) that the original cobordism,
W, between My and M; was split in half as W; U W3, and this resulted in a
corresponding split of Z = Z; U Z3. The preceding subsections defined wz on
Nz, — Z1, and it is the purpose of this subsection to describe wz on Nz, — Z3.

But for an obvious change of notation, the construction of wz on Nz, — Z3
repeats the constructions of the previous subsections (a- h). (The notation
change replaces W = W, by W = W3 and (Mo, po) by (M1,p1).)
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j) Continuity of wz.

Let Z = Z3 U Z3 as in the introduction to this section. Likewise, let W =
W1 UWs. Let £z = Xz, UXz, and let Nz be the corresponding union of Nz,
and N, Z3-

The continuity of wz cross (Nz — Xz) N (M x M) is a concern because wz
has been separately constructed on Nz, — Xz, and Nz, —¥z,. Let wz, denote
the restriction of wz to Nz, — ¥z, and let wz, denote the analogous restriction
to Nz, — Xz,. The constructions in Subsections 11b, and 11c insure that wz,
and wz, match up nicely near p x M and M x pin M x M. At issue is the
match between wz, and wz, near Apyy C M x M.

Subsection f describes wz, and wz, near Aps. The form wz, is constructed
with the help of a singular frame for M which is an extension over W; (see
Lemma 11.1) of the canonical singular frame for M,. Likewise, wz, is con-
structed near A s with the help of a singular frame for M which is an extension
over W3 of the canonical singular frame for M;. At issue is whether these
two singular frames can be chosen to agree. The purpose of this subsection
is to prove that these frames can be assumed equal under the assumptions of
Theorem 2.9.

To begin, consider W) and remark that the singular frame in question which
defines wz, near Ajps comes from a frame x; for the conormal bundle N7 for
Az, — (m U (NX;v1;)) as a submanifold of Z,. Here, the notation is from
Lemma, 11.1 except that subscripts “1” now appear to signify subsets of Z;. In
particular, x; has the prescribed singularity of (11.11) along v U (UJX,v1:).

Likewise, wz, is defined with the help of a frame, x3, for the conormal bundle
N3, of Azy — (v3 U (N;2,vsi)) with the prescribed singularity of (11.11) along
v3 U (Ui=17303i).

Theorem 2.9 assumes that (2.12)’s homomorphism Iy annihilates the canon-
ical singular frame for M. This implies that the proof of Lemma 11.1 can be
repeated with minor notational changes to prove that x; extends over

(11.22) Az — ((m U Uik v1)) U (13 U (U2, v35)))-

as a frame for the conormal bundle N7 for Az in Z. Likewise, Theorem 2.9
assumes that ly annihilates the canonical singular frame for M;; and so x3
extends over (11.22) also.

With the preceding understood, then the following lemma implies that x;
and x3 can be chosen to agree. Thus, the lemma below resolves the continuity
issue.

LEMMA 11.3. Let x = xa or x3- If (mh — n}) " (x | Am,) gives Defi-
nition 2.8’s canonical homotopy class of singular frame for T* My, then Defi-
nition 2.8’s canonical homotopy class of singular frame for T*M, is given by
(mp —71) 7 (x | Amy)-

Proof. To start the argument consider the following three remarks: Remark
1 is that the dual, Ny, to the normal bundle of Ay C W x W is canonically
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isomorphic to T*W. The isomorphism is 7] — 7} : T*W — T*(W x W) |a.
(The image of the preceding map annihilates TAy,.)

Remark 2 is that the restriction of Ny, to Az has a natural line subbundle,
namely Span(dF) C Nw, where F is the function in (3.20). The quotient
bundle is naturally isomorphic to N3. Thus, Ny, splits over Az as

(11.23) Ny = Nz & Span(dF)

Remark 3 is the observation that, as in Proposition 2.7, there are, up to
homotopy, two canonical, honest framings, (x+,x-), of N; = Az which can
be obtained from the singular framing x. (Copy the construction of {4 in the
proof of Proposition 2.7 and use the fact that the singularity of x along any
of the paths v, U~s or {vy;};L; or {v,;};2, are independent of the parameter

along that path. See (11.11).) O

Given the following three remarks, it follows that x with dF gives a framing
of Ny, @ Ny, over Az, namely ((x+,dF), (x—,dF)).

LEMMA 11.4. The framing ((x+,dF),(x—,dF)) extends to a framing of
Ny ® Ny, over Aw.

Accept this lemma and here is how to finish the proof of Lemma 11.1’s second
assertion: It follows from Lemma 11.4 that the framing for Ny, & Ny, over
A, given by ((x1+,dF), (x1—,dF)) extends over all of Aw to give a framing,
((X14,dF), (xi_,dF)), for Ny, & Ny, over Ay, .

Suppose first that (x14,Xx1-) gives Atiyah’s canonical framing on the nose.
(See, e.g. Assertion 3 of Proposition 2.7.) Then, because W has index zero,
(X14,Xx1_) must give Atiyah’s canonical framing for M;.

Now, suppose that (x1+,Xx1-) = g 4, where g is a map from M, to Spin(6)
with minimal, non-negative degree, and where A is a frame which gives Atiyah’s
canonical frame. There is no obstruction here to extending g over Ay as a map
to Spin(6). With this extension understood, it follows that g~ (x},,x}_) must
give Atiyah’s canonical frame for M;. (This is because W has signature zero.)

By definition, there exists a map h from M; of minimal non- negative degree
such that hg™ (x14,x1-) = (X3+,X3-). This implies that degree(hg~!) < 0.
(Note that the degrees of g’s restrictions to My and to M; must agree.)

Now, reverse the roles of My and M; and also x; and x3 in the preced-
ing argument. The inevitable conclusion has degree(gh~!) < 0. However,
deg(hg™!) = — deg(gh™!), so g and h must have the same degree. This im-
plies the lemma in the general case.

Proof. The framing ((x+,dF), (x-,dF)) is defined over each {(Ags)p} pe crit(s)
and the task is to extend this frame over the open 4-ball components in Ay —Az
which are bounded by the 3- spheres in {(Ags)p}pe crit(s)- For this purpose, fix
p € crit(f) and introduce the coordinate sytem 1, of (3.2) and let U, = v,(R*).
Note that U, x Uy is a neighborhood of (p,p) in W x W. The projections 74
of (11.9), (11.10) define a second product structure on U, x Uy.
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Let 7 denote the 1-form on R* which is the exterior derivative of the square
of the distance function from the origin. Then, note from (3.25) that

(11.24) (nf —72)T =dF |a

Thus, the inverse of (7} — 7*) over Aga is a map which identifies Ny, with
T*Ags. This map identifies the frame ((x+,dF), (x-,dF)) with a frame for
(T*R* ® T*R*) |ss which gives Atiyah’s canonical 2-frame (see Definition 2.8
and Lemma 2.11). Atiyah’s canonical 2- frame for S extends over the 4-
ball, and so the image of this extension under the map (7} — 7*) extends

((X+’dF)a(X—adF)) O

k) Verification of Lemma 4.2.

Define wz on Nz — Az as above. If wz can be shown to extend to Z — Xz as
a closed form, then (2.28) completes the proof of Theorem 2.9. The extension
will be made by appealing to Lemma 4.2.

As previously remarked, the second condition of Lemma 4.2 follows from
Proposition 10.1 so only Condition 1 of Lemma 4.2 is at issue.

To verify Condition 1 of Lemma 4.2, remark first that the image of the class
of wz in H3,,,(Nz) is represented by a closed 3- form, 5, which is obtained as
follows: Let p: Nz — R be a smooth function which has compact support and

which takes the value 1 near ¥z. Then

(11.25) n=—dp A wz.

Clearly, this form integrates to zero over any closed 3-cycle in Nz. But, to
decide whether 7 is Poincare dual to oz, one must compute the integral of
over cycles which represent certain classes in H3(Z,Z — Nz).

To identify the relevant cycles, remark that

(11.26) H3(Z,Z — NZ) =~ H3(Z,,Z, — Nz,) ® H3(Z3,Z3 — Nz,).

It is therefore permissable to concentrate on each factor in (11.26) separately.
Since the arguments are the same for either factor in (11.26), the notation will
be simplified starting in the next paragraph by using Z to denote either Z; or
Z3.

To begin the verification of Condition 1 of Lemma 4.2, remark that it is
convenient to replace oz by a homologous cycle. For this purpose, remark
that an isotopy of E4+ pushes this space into Nz if it is not there already.
With E,4 in Nz, note that the class oz in Hy(Nz, Nz — Lz) is the same
as o' = [Az] = [EL] — [Er] = N™Y([E4-] — [E4+]). The latter is obviously
a sum of classes which are represented as the fundamental classes of oriented
submanifolds of Nz which have trivial normal bundles. As such, there is an
unambiguous intersection pairing between o' and classes in H3(Z,Z — Nz).
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With the preceding understood, note that the Poincare’ dual of ¢’ is charac-
terized by the following fact: Its integral over a cycle in H3(Z,Z — Nz) is the
same as the intersection number of said cycle with ¢’.

Since the Poincare dual of ¢' is equal to the Poincare’ dual of oz, it is
sufficient to consider the integral of the 3-form 7 over cycles with boundary in
Z — Nz and compare the value of said integral with the intersection number
of the cycle with ¢'. This last task is straightforward because one can consider
each of the constituent submanifolds (i.e., Az, Er r and E4. ) separately. The
task is left to the reader as an exercise.
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