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Rectifiability of the singular sets of multiplicity 1
minimal surfaces and energy mininimizing maps

LEON SIMON

Introduction. The question of what can be said about the structure of the
singular set of minimal surfaces arises naturally from the work of the pioneers in
the field of geometric measure theory/geometric calculus of variations, including
De Giorgi [6], Reifenberg [21], Federer [8], [9], Almgren [1], [2], and Allard
[3]. During the 1960’s and 70’s these authors established a partial regularity
theory and existence theory for minimal submanifolds. An analogous theory for
energy minimizing maps between Riemannian manifolds was later established
by Schoen and Uhlenbeck [24] and (in case of image contained in a single
coordinate chart) by Giaquinta & Giusti [11], and similar questions about the
structure of the singular set of such minimizing maps naturally arise from their
work.

In recent years some progress has been made on these questions, and this
paper has two main aims: First, we want to make a brief survey of these recent
results and, second, we want to give a proof of the fact that the singular set
of a minimal submanifold in a “multiplicity one class” M (see the discussion
in §1 below for the terminology) locally decomposes into a finite union of locally
m-rectifiable locally compact subsets, where m is the maximum dimension of
singularities which can occur in the class M. The proof of this, given in §7,
exactly parallels the proof of the corresponding result (described in Theorem 2
below and first proved in {32]) for the singular set of energy minimizing maps
into a real-analytic target; thus the reader will see that the proof given in §7
follows almost exactly, step by step, the proof of the main theorem of [32] (to
the extent that even the labelling system is almost identical).

The methods used in the proofs of all the recent results on the structure of
the singular set (as presented in Theorems 1-7 below) are a mixture of geo-
metric measure theory and PDE methods. The PDE methods involve in part
ideas originating in quasilinear elliptic theory, developed by C. B. Morrey, E. De
Giorgi, O. Ladyzhenskaya, N. Ural’tseva, J. Moser, and others, principally dur-
ing the period from the late 1930’s to the mid 1970’s.

A precise outline of the present paper is as follows:

§1: Basic definitions, and a survey of known results.
§2: Basic properties of mulitiplicity one classes of minimal surfaces.
§3: A rectifiability lemma and gap measures for certain subsets of R™.
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of Adelaide, and ETH, Ziirich. The author is grateful for the hospitality of these institutions.
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§4: Area estimates for multiplicity one classes of minimal surfaces.
§5: L? estimates.

§6: The deviation function.

§7: Proof of Theorem 4.

§8: Theorems on Countable Rectifiability.

1 Basic Definitions and a Survey of Known Results. k,¢,m,n will
denote fixed positive integers with n = £ +m > 2, and k¥ > 0. n will be the
dimension of the minimal submanifolds or the domain of the energy miminizing
maps under consideration. In the case of the minimal submanifolds, k will be
the codimension, and £ will be the “cross-sectional” dimension of the cylindrical
tangent cones, as described below, and in the case of the energy minimizing
maps £ is the dimension of the domain of the cross-section of the approprate
“cylindrical tangent maps” again as described below; in the energy minimizing
setting we always take k = 0.

B(z) denotes the open ball with center z and radius p in R?; B,(z), B, will
often be used as an abbreviation for By+*(z), B7+¥(0) respectively.

1., Will denote the map z — p~!(z — 2). Thus n,,, translates z to the origin
and homotheties by a factor p—1.

H? will denote j-dimensional Hausdorff measure.

First we consider energy minimizing maps:

N will denote a smooth compact Riemannian manifold, which for convenience
we assume is isometrically embedded in some Euclidean space R?; of course this
involves no loss of generality because of the Nash embedding theorem.

Wh2(Q; RP) will denote the space of R? functions u = (ul,...,uP) such
that each u’/ and its first order distribution derivatives D;u? are in L2(f2); the

energy of such a map is
£w= [ IDuf,

where |Dul|? = Zl ) 1 (Dsu?)?. If Q is equipped with a smooth Riemannian

metric Y g;;dz’ ® da? (so that (gi;) is positive definite and each g;; is smooth),
then the corresponding energy £9) is defined by

ED (u /Zg (z)Diu - Dju+/gdz,

(9) = (gi;)7, V9 = det(gi;).

For a measurable subset A C Q,

Ealu) = /A |Dul?.

W22 (Q; RP) denotes the set of u € L2 (Q; RP) such that u € W2(Q; RP) for

loc - X
every bounded Q with closure contained in (i-e., for every open 2 CC ).
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W12(Q; N) will denote the set of functions u € W2(Q; RP) such that u(z) €
N for ae. z € Q, and W.?(; N) denotes the set of u € W22(Q; R™) with
u(z) € N for a.e. z € Q.

u € WE(Q; N) is said to be energy minimizing in Q if

loc

gﬁ (u) < gﬁ (U) )

whenever @ CC Q and v € W,22(Q; N) satisfies v = u a.e. in Q\Q. For any
such energy minimizing map we define the regular and singular sets, regu and
sing u, by

regu = {z € Q : u is C* in a neighbourhood of z},
singu = Q\ regu.

Notice that by definition regu is open, and hence singu is automatically rela-
tively closed in €. 5

If u € WH2(Q; N) is energy minimizing, then for any @ CC € the energy &
is evidently stationary in the sense that

d
(1.1) E;EQ(us)h:o =0,

whenever the derivative on the left exists, provided up = u and us € W22 (Q; N)

with us(z) = uo(z) for z € Q\Q and s € (—¢, €) for some € > 0. In particular, by
considering a family u, = II(u+ s¢) where II denotes nearest point projection of
an RP-neighbourhood of N onto N and ¢ € C°(2; RP), we obtain the system
of equations

(1.2) Ap-u + Z Au(Dju,Dju) =0,

i=1

(weakly in ), where Agnu = (Arnu!,... ,Ar~uP), and A, denotes the second
fundamental form of N at any point z € N.

On the other hand if us(z) = u(z + s{(z)), where ¢ € C°(Q;RP), then 1.1
implies the integral identity

Ja 2ot =181 Dul* — 2D;u - Dju)D;¢? = 0,

(1.3)
¢=(¢"...,¢") e C2 (Y RY).

Notice that 1.3 implies (for a.e. p such that B,(z) C Q)

/B ( > (6i|Dul? - 2D;u - Dju)Di¢?

(1.4) o1 ij=1 .

= / > (6:|Dul? - 2Dsu - Dju)mic?
0B,(z)

i,j=1
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for any ¢ = ((1,... ,(n) € C®°(U;R™), where = |z —2|~!(z—2) is the outward
pointing unit normal for 0B,(z). In particular {(z) = = — 2z implies

15  (n—2) / Duf? = p / (Duf? = 2ur. ) ae.p,
By,(2) d

B, ()

provided B, (z) C €, where ug, = (|z — z|~(z — 2) - D)u. This can be written

d [ o / |R.ug, |*
— n Dul? =2/ =z =l R,=|z-2z]|,
dp <p B,,(z)l | ) oB,(z) 1% | |

whence by integration

2
(16) P77 / |Duf? - g*7" / |Duf? = 2 —‘R‘“j}'
»(2) B.(2) B,(:)\Bo(z) 1%

for any 0 < o < p with B,(z) C Q. Notice in particular this implies
(1.7) p2_"/ |Du|? is an increasing function of p,
B,(z)

so the limit

(1.8) Ou(z) = lim p>" / | Dul?
pio B,(2)

exists at every point z € Q. O, is called the density function of u. Letting o | 0
in 1.6 we obtain

2
(1.9) P / |Duf? - ©,(2) = 2 / l—li”;%l—’
B,(2) By(z)  fiz

and by using 1.5 we have the alternative identity

IRZU’R: |2 —_

2 [ Bl g [ (Duf - 2un?) - 0ue)
(110) B, (2) z 0B, (z2)

<(n-2)"tp* " 05,0 |Du|? — ©,(2).

We also want to consider “multiplicity one classes” of minimal submanifolds
here, the theory of singularities of which are entirely analogous to the theory
for energy minimizing maps. First we introduce the basic terminology.

M will denote a set of smooth n-dimensional minimal submanifolds, each
M € M is assumed properly embedded in R™** in the sense that for each z € M
there is 0 > 0 such that M N B, (z) is a compact connected embedded smooth
submanifold with boundary contained in 0B, (z). We also assume that for each
M € M there is a corresponding open set Ups D M, such that H*(MNK) < oo
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for each M € M and each compact K C Uy, and such that M is stationary in
Uy in the sense that

(1.1 / divay ®dp =0.
M

whenever & = (®1,...,®"**) : Uy — R"* is a C™ vector field with com-
pact support in Up. Here dyp denotes integration with respect to ordinary
n-dimensional volume measure (i.e., n-dimensional Hausdorff measure) on M,
and div,s ® is the “tangential divergence” of ® relative to M. Thus

n+k
divir @ = (e; - VM),
Jj=1
where e, ... ,entk is the standard basis for R™**, and VM denotes tangential

gradient operator on M, so that if f € C'(U) then VM f(z) = P, (gradg~++ f(z)),
with P, the orthogonal projection of R™** onto the tangent space T, M for any
T €EM.

We assume that the M € M have no removable singularities: thus if z €
MNU,s and, there is o > 0 such that MNB,(z) is a smooth compact connected
embedded n-dimensional submanifold with boundary contained in 8B, (%), then
z € M. Subject to this agreement, the (interior) singular set of M (relative to
Upr) is then defined by

sing M = Uy N M\ M,
and the regular set reg M is just M itself. (We give examples of such M in 1.12
below.)

The monotonicity and density results for energy minimizing maps given
in 1.5-1.10 have analogues for such stationary minimal submanifolds; viz. using
analogous arguments (starting with 1.1’ rather than 1.3—see e.g. [25] for the
detailed arguments) we have the identity

(L) p™"M N By(2)| = oM N Bo(2)| = / Uz 2y
MNB,(z)\Bo(z) |z — 2|

for any £ € M N U for all o, p with 0 < 0 < p < R, provided Bgr(z) C Un.
In particular
p~"|M N B,(z)| is increasing,

and the density function

(1.8") Om(z) = lpif(}(wnr")'ﬂM N B,(2)|

exists for all z € M. (Of course the density is identitically equal to 1 on M,
because M is a smooth n-dimensional submanifold.)
Letting 0 | 0 in 1.7' we obtain

(1.9 w‘I/ M =w lp "M N B,(2)| — Om(2)
n MNB,(2) Ix _ z|n+2 n P
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for all z € M and p € (0,R), provided Br(z) C Up, where (z — 2)t =
pr.myL(z — 2) (ie., (z - z)% is the orthogonal projection of  — z onto the
normal space of M at z). By multiplying through by p™ and differentiating
with respect to p we also get the following analogue of 1.10:

o[ Mea
(1.10") " Juns, ) lo -2t
= (nwn)~1p' " IVlz — 2|| - ©m(2).
Mn8B,(z)

We assume here also that the class M is closed under appropriate homoth-
eties, rigid motions, and weak limits—we shall call such a class a “multiplicity
one class”; more precisely, we assume:

1.11(a) M € M = gon, ,M € Mand qon, ,Um = Ugon, ,m for each z € Uy,
each p € (0, 1], and for each orthogonal transformation g of Rk,

1.11(b) If {M;} Cc M, U C R™F* with U C Uyp; for all sufficiently large
j, and sup;5; H™(M; N K) < oo for each compact K C U, then there is a
subsequence M; and an M € M such that Uy D U and Mj» — M in U in the
measure-theoretic sense that [ M, f(z)dH™(z) = [, f(x)dH™(z) for any fixed

continuous f : R™* — R with compact support in U.

(Notice that 1.11(b) is a strong restriction, in that it precludes, in particular,
the possibility of getting varifolds with multiplicity greater than one on a set of
positive measure as the varifold limit of a sequence M; C M with each Uy; DU
for some fixed open U; for this reason we refer to such a class as a multiplicity
one class.)

1.12 Examples. In view of later applications, we should mention here a couple
of important classes M which satisfy the conditions imposed above. One such
class consists of the interior regular sets of the mod 2 minimizing currents
described as follows: If T is an n-dimensinnal locally rectifiable multiplicity one
current in R™**_ if spt, 8T denotes the mod 2 support of 0T, if T' is mod 2
minimizing in R"** (in the sense that for each bounded open U C R™** the
mass of T L U is < the mass of S L U for any multiplicity one current S such
that support of T — S is a compact subset of U and such that T'— S has zero
mod 2 boundary in U), and if reg, T is the mod 2 regular set of T' defined in the
usual way as the set of all z € sptT'\ spt, T such that T is mod 2 equivalent
in a neighbourhood of z to multiplicity one integration over a *mooth properly
embedded n-dimensional submanifold containing z, then the collection 72 of
all such sets M = reg, T is a class M satisfying all the conditions imposed
above, provided we take Up = R™+*\ spt, OT. Indeed by the Allard theorem
spt T\ (reg T U spt, T) has H"-measure zero, and it follows that M = reg, T
satisfies 1.1, and, using the notation introduced above in our discussion of the
general class M, we have sing M = sptT'\(regT U spt, 0T'), which coincides
with the usual definition of the (interior) singular set of such mod 2 minimizing
currents T. The property 1.11(b) (plus an existence theory) is true by the
compactness theorem for flat chains mod p (see e.g. [8]).
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Another such class is the collection 73 = {reg; T'} of the interior regular
sets of n-dimensional multiplicity one currents T which are mod 3 minimiz-
ing in R™** (defined analogously to the mod 2 case); if M = reg; T then M
satisfies 1.1 with Upr = R™"*\ spt, T, and sing M = spt T\ (reg T U spt, 7).
Again the property 1.11(b) (plus an existence theory) is true by the compactness
theorem for flat chains mod p.

Notice that these classes 73, 73 have dim sing M < (n — 2), (n — 1) respec-
tively by [9], [25].

A third class which has the form of M above is the collection 7; of all
submanifolds M of the form M = regT, where T is an n-dimensional oriented
boundary of least area in some open U = Ur C R™* in the usual sense that
T = 0[V] in U (in the sense of currents) for some measurable V C U and
T L U has mass < than the mass of SL U, for any multiplicity one locally
rectifiable current S in R™** with support S — T equal to a compact subset
of U and with 8(S —T) = 0 in U. In this case, with M = regT, we take
Um = U, singM = U nNsptT\(regT UsptdT), and the singular set satisfies
dim sing M\ spt 0T < n — 7 (see e.g. [9] or [25] or [10]). The property 1.11(b)
in this case is discussed in e.g. [10], [8] or [25].

We now want to state the main theorems about the singular sets of energy
minimizing maps and minimal submanifolds. To do this we first need to recall
the definition of rectifiability of subsets of Euclidean space:

A subset A C R" is said to be m-rectifiable if H™(A) < oo, and if A has an
approximate tangent space a.e. in the sense that for H™-a.e. z € A there is an
m-~dimensional subspace L, such that

lim de'”=/ fdH™, fe CORM),
740 Jo. «(A) L.

where, here and subsequently, 7, ,(z) = 0~!(z — z) and H™ is m-dimensional
Hausdorff measure. The above definition of m-rectifiability is well-known (see
e.g. [25]) to be equivalent to the requirements that H™(A) < oo and that H™-
almost all of A is contained in a countable union of embedded m-dimensional
C'-submanifolds of R™.

A subset A C R™ is said to be locally m-rectifiable if it is m-rectifiable in a
neighbourhood of each of its points. Thus for each z € A there is a ¢ > 0 such
that AN{z : |z — 2| < o} is m-rectifiable. Similarly A is locally compact if for

each z € A there is ¢ > 0 such that AN {z : |z — 2| < ¢} is compact.

Now we give a brief survey of the known results about the the structure of
the set of singularities of energy minimizing maps and minimal submanifolds in
multiplicity one classes.

First we discuss energy minimizing maps:

In the theorems concerning energy minimizing maps we continue to let Q
denote an arbitrary subset of R™, equipped with the standard Euclidean metric,
but the reader should keep in mind that all theorems readily generalize to the
case where (1 is equipped arbitrary smooth Riemannian metric g;; dz* ® dz’.
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The most general result presently known concerning the structure of the
singular set of energy minimizing maps is the following, which was proved (for
1 C R equipped with arbitrary Reimannian metric) in [32]:

Theorem 1. Ifu is an energy minimizing map of ) into a compact real-analytic
Riemannian manifold N, then, for each closed ball B C ), B Nsingu is the
union of a finite pairwise disjoint collection of locally (n — 3)-rectifiable locally
compact subsets.

Remarks. (1) Notice that being a finite union of locally m-rectifiable sub-
sets is slightly weaker than being a (single) locally m-rectifiable subset, in that if
A= UleAk, where each Ay, is locally m-rectifiable, there may be a set of points
y of positive measure on one of the A, such that H™ ((UgzeAr) N B, (y)) = oo
for each ¢ > 0. (This is possible because A has locally finite measure in a
neighbourhood of each of its points, but may not have locally finite measure in
a neighbourhood of points in the closure Ay and this may intersect A, £ # k.)

(2) It is also proved in [32] that ©,(z) is a.e. constant on each of the sets
in the finite collection referred to in the above theorem, and that singu has a
(unique) tangent plane in the Hausdorff distance sense at H™-almost all points
z € singu, and wu itself has a unique tangent map at 7™-almost all points of
singu. (See the discussion of [32] for terminology.)

There is an important refinement of Theorem 1 in case

(1.13) dim singu <m

for all energy minimizing maps into N.
In this case the conclusion of Theorem 1 holds with m in place of n — 3:

Theorem 2. Ifu, N are as in Theorem 1, m < n — 3 is a non-negative integer,
and (1.13) holds, then for each closed ball B C Q, B Nsingu is the union of a
finite pairwise disjoint collection of locally m-rectifiable locally compact subsets.

Remarks. (1) As for Theorem 1, again ©,(z) is constant a.e. on each of
the sets in the finite collection referred to in the statement, sing v has a tangent
space in the Hausdorff distance sense, and also u has a unique tangent map, at
H™-almost all points of singu.

In [26], [28] there are also results about singular sets (albeit for special classes
of energy minimizing maps and stationary minimal surfaces), which, unlike the
results here, were proved using “blowup methods”. In particular we have

Theorem 3. If N = S? with its standard metric, or N is S? with a metric
which is sufficiently close to the standard metric of S? in the C* sense, then
singu can be written as the disjoint union of a properly embedded (n — 3)-
dimensional CY*-manifold and a closed set S with dimS < n —4. Ifn = 4,
then S is discrete and the C** curves making up the rest of the singular set
have locally finite length in compact subsets of 2.

For further discussion and proofs, we refer to [27].
There is an analogue of Theorem 2 which applies to an arbitrary submanifold
M in a mulitiplicity one class M of stationary minimal submanifolds:
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Here and subsequently we let
(1.13") m = max{dim sing M : M € M};

this maximum exists and is an integer € {0,... ,n — 1}, as shown in the discus-
sion following 2.7 below.

Theorem 4. Suppose M is a multiplicity one class of stationary minimal sur-
faces asin 1.11, supposem is asin 1.13', and M € M. Then for each = € sing M
there is a neighbourhood U, of = such that sing M NU, is a finite union of locally
m-rectifiable locally compact subsets.

1.14 Remark. Analogous to the remarks after Theorems 1, 2 we have in
addition that ©ps(z) is constant a.e. on each of the sets in the finite collection
referred to in the statement of the theorem, sing M has a tangent space in the
Hausdorff distance sense, and also M has a unique tangent map, at ‘H™-almost
all points of sing M.

We give the detailed proof of Theorem 4 and Remark 1.14 in §7 below; as
we pointed out in the introduction, the proof involves only very minor technical
modifications of the proof of Theorem 2 given in [32].

In view of the examples in 1.12, we thus have in particular the following:

Theorem 5. (i) If M is the regular set of an n-dimensional mod 2 mass min-
imizing current in R™** (n, k > 2 arbitrary), then the singular set sing M is
locally a finite union of locally (n — 2)-rectifiable, locally compact subsets.

(ii) If M is the regular set of an arbitrary n-dimensional mass minimizing cur-
rent in R™*!, then sing M can locally be expressed as the finite union of locally
(n — 7)-rectifiable, locally compact subsets.

(Except for the local compactness result, part(i) of the above theorem is also
proved in [26] by using “blowup” methods, which are quite different than the
techniques used in the proof of Theorem 4.)

In addition to the above results, there are also more special results, proved
using blowup techniques in [26], analogous to the results for energy minimizing
maps described in Theorem 3. For example, we have the following:

Theorem 6. Suppose the m of (1.13) is equal to (n —1). If M € M, C© =
C(()O) x R € C N Tang, M with C(()O) a 1l-dimensional cone consisting of an odd
number of rays emanating from 0, and ©¢()(0) = mincer ©¢c(0), then there
is p > 0 such that sing M N B,(z¢) is a properly embedded (n — 1)-dimensional
CY'* manifold.

Theorem 7. IfV is an n-dimensional stationary integral varifold in some open
set U C R"*, and o € U with 1 < Oy (zo) < 2, then sing V N B, (o) is the
union of an embedded (n — 1)-dimensional C*® manifold and a closed set of
dimension < n — 2. If n = 2 we have the more precise conclusion that there
is p > 0 such that either sing V N B,(z) is a properly embedded C*** Jordan
arc with endpoints in 0B,(zo) or else is a finite union of properly embedded
locally C*© Jordan arcs of finite length, each with one endpoint at zo and one
endpoint in 0B,(z¢).
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For some special (but important) classes of minimal surfaces Jean Taylor [33]
and Brian White [35] used methods based on the “epiperimetric” approach
of Reifenberg, and, for the special classes to which they apply (for example
for 2-dimensional “(M, ¢, d)-minimizing” surfaces), these methods yield a more
complete description of the singular set than even that given in Theorem 6.
(Theorem 6 refers only to the “top-dimensional” part of the singular set, so
does not entirely subsume the results of [33], [35].)

2 Basic Properties of Multiplicity 1 Minimal Submanifolds. Here
M continues to denote a multiplicity one class of n-dimensional minimal sub-
manifolds in R*** and M € M with Uy, the corresponding open set as in 1.11.
C will denote the set of all cones in M; thus

C={CeM:Uc=R""* andn\C=CVI> 0}

where 1, is the homothety = — Az. T will denote the “cylindrical” elements
of C with singular axis of dimension m; thus

T ={C e : 3 an m-dimensional
subspace Lc C R"* with z+ C=C Vz € Lc},

where m is as in 1.13'; notice that for technical reasons we include the case
where C is an n-dimensional subspace, in which case singC = . In all other
cases, singC = L¢.

An important consequence of the Allard regularity theorem ([3]—see also [25]
for an alternative presentation of this theory) is that the singular set sing M of
M can be characterized in terms of the density ©js as follows:

(2.1) z€singM < Oum(2) >1+a <= Oup(2)>1,

where a = a(M) > 0 is independent of M. (Of course it is true that Op(2) > 1
at all points of Ups N M; this follows for example from the fact that ©ps(z) = 1
on M together with the upper semicontinuity of ©s(z) decribed in 2.3 below.)

We shall often use the quantitative part of the main regularity theory of [3].
To state this, assume z € M, B,(z) C Un and either (a) w,;'p™"|M NB,(z)| <
l1+aor (b) 3 > 0 is given and both p™"|M N B,(z)] < B and
infr p™"2 [3/n B, (=) dist(z, L)? < a, where the inf is taken over all n-dimensio-
nal affine spaces in R"**. Then the main theorems of (3] tell us that if either
hypothesis (a) with suitable @ = a(n,k) > 0 or hypothesis (b) with suitable
a = a(n,k, B, M) > 0 implies M N B,/»(z) C M and

(2:2) sup /Y| Diu| < Cjal/?, >0,
LﬂBP/z(z)

where C; depends only on j, L is an n-dimensional affine space containing z, and
u : LN Bs,4(z) = L+ is such that Bj,/4(2) ﬂgraphu = Bs,/4(2z) N M. Indeed
the conclusion subject to the first hypothesis (that w;1p~"|M NB,(z)| < 1+a)
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is just one of the standard versions of the Allard theorem and the conclusion
subject to the second hypothesis is easily checked to follow from the Allard
theorem together with the compactness assumption 1.11(b) on M.

By the monotonicity 1.7' it is easy to check that ©,s is an upper semi-
continuous function:

(2.3) Oum(2) > limsup O (25)

zZj—z
for any sequences of points z; — z and submanifolds M; € M with M; - M
in the sense of 1.11(b). 2.2 and 2.3 will be used frequently in the sequel. For
the present, notice that if we define

Mz,a = nz,cha

for any given z € Uy N M and o € (0, 1], then, according to monotonicity 1.7',
we have that M, , has bounded area in any ball Br(0) as o | 0, and hence
the compactness assumption 1.11(b) implies that for any o; | 0 there is a
subsequence o;: such that M, ,, — C, where C € M with Uc = R™k. Any
such C is called a tangent cone of M at z. Using the monotonicity 1.7’ it is
easy to check (see [3] or [25]) that any such C is a cone with vertex at 0, so C
is invariant under homotheties; that is,

(2.4) m0,,C=C, ¢>0,
and also that ©7(z) = ©¢(0). An important property of cones C in M is that
(2.5) 0¢(0) = max{O¢(z) : z € C},

and the set of points z where equality is attained form a linear subspace L¢
(possibly the trivial subspace {0}), and we also have the translation invariance

(2.6) z+C=C, z€Lg.

These facts are easily checked by using 1.7" (with C in place of M) and 2.4.
We emphasize that 2.5 and 2.6 automatically hold for C € M which are cones;
i.e., which have Uc = R"** and n0,C = C.

There is another way in which such cones C € C arise, which is a slight
variant of the idea of tangent cone. We let M € M, z € M and take arbitrary
sequences z; — z with @ (z;) > Om(2), 05 | 0. Then (again using monotonic-
ity to justify the local boundedness of the area) by the compactness assumption
of 1.11(b) we can take a subsequence {j'} C {j} such that M, -, converges to
C, which again satisfies the invariance 2.4. We shall call such a map a pseudo
tangent cone of M at z. Notice that if z; = z for each j, then this procedure
is the same as the procedure above for constructing tangent cones, hence the
terminology “pseudo tangent map”. (The proof that 2.4 holds in this case forms
part of the argument in the proof of Lemma 2.16 below.)

From now on m is defined by

(2.7) m = sup{dim singM : M € M}.
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Notice by Federer’s dimension reducing argument or by the more refined method
of Almgren (see the discussion following 2.17 below) it is automatic that m is an
integer, and that m < n — 1. Indeed to begin we can define my = maxdim L¢c
over all cones C € C with singC # (. Since clearly singC C Lc (by 2.6), we
must then have m > my. The fact that m < mg follows direct from 2.16 below
(see Remark (3) following 2.16, keeping in mind that the proof of 2.16 used only
that dim Lc < m for each cone C € M with sing C # 0). Thus the m of 2.7
automatically satisfies

me€ {0,...,n—1}, m = maxdim L¢,

where the maximum is over C € C with sing C # .

Of course if C € C with singC # 0, and dim Lc = m (i.e., dim L¢ max-
imal), then we must have that singC = L¢, because otherwise by the ho-
mogeneity 2.4 and the translation invariance 2.6 sing C would contain some
(m + 1)-dimensional half-space, contradicting 2.7. Cleary then, letting g be an
orthogonal transformation of R™ which takes Lc to {0} x R™, such C must
satisfy, for (z,y) € R  x R™ =Rk (L =n—-m > 1),

(2.8) q(C) =Cp x R™,
where Cy is a minimal cone in R¢* with
(2.9) ConsStr-l =3

with ¥ a compact (¢ — 1)-dimensional embedded submanifold of S¢~1** (or a
finite set of points if £ = 1); thus for £ > 2 we have in particular that

(2.10) Hy =0,

where Hy, is the mean-curvature of ¥ as a submanifold of S¢~1+*; thus for £ > 2
¥ is a compact minimal submanifold of S¢++-1,
For given 8 > 0 we define

(2.11) Ts={C€eT :06¢c(0) <p}

where T denotes the set of cylindrical C € C as defined at the beginning of this
section. Using 2.2, 2.7, and the compactness 1.11(b), it is easy to check that the
set 73 is sequentially compact in M with respect to convergence as in 1.11(b),
and that

3
(2.12) Y _sup|DiAc,|<C, CeTs 3§20,
=

j=0

where C = C(¢,k,8), Co, ¥ are as in 2.8, 2.9, and Ac, is the second funda-
mental form of Cy.

Finally we need a Lojasiewicz type inequality for the area functional on
(¢ — 1)-dimensional minimal submanifolds of S¢~1**; we begin by noting that,
according to Lojasiewicz [20], if f is a real-analytic function on some open set
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U of some Euclidean space R?, then for each critical point y € U of f (i.e.,
each point y where Vf(y) = 0) there is a € (0,1] and C, ¢ > 0 such that

(2.13) |f(@) = f)I'™*/? < OV ()|

for every point £ € B,(y). There is an infinite dimensional analogue of this
inequality which applies to the area functional Ay over a given compact (£—1)-
dimensional submanifold £ of S¢~1**. Specifically, for any such ¥ c S¢-1+k
let Ay denote the area functional over ¥ defined by

Az (¥) = HH (G (),

where ¢ is a C® section of the normal bundle over X, and Gx(¢) means the
“spherical graph” of v defined by

Ge(W) = 1+ W) (w+pw), wes.
Then there is a = a(X) € (0,1], C = C(X), and o = (X) > 0 such that
(2.14) |As () — Az (0)' /% < CllQz(¥)ILs,

whenever |¢|cs < o, where Qy is the Euler-Lagrange operator of the functional
As. Thus Qy is characterized by being an operator taking C? sections of the
normal bundle over ¥ to C° sections of this bundle such that

—%A(w + sn)|s=0 = (Q=(¥),n) L2,

where the inner product is the usual L? inner product given by (f, g)2 = fz 9.
For the proof of 2.14 (based on the Liapunov-Schmidt reduction to reduce to
the finite dimensional case 2.13) we refer to [30] or [31].

Now take any M € M, 2¢ € sing M, and define

(2.15) Sy ={z€M : Op(2) > Om(20)}.

Then we have the following lemma:

2.16 Lemma. If M € M, m is as in 2.7, and S; is as in 2.15, then for
each ¢ > 0 there is po = po(€,2z0, M) > 0 such that S; has the following
affine approximation property in B,,(2): For each o € (0,po] and each z €
S, N'B,,(20) there is an m-dimensional affine subspace L, , containing z with

S+ N B,(z) C the (eo)-neighbourhood of L, .

Remarks. (1) The conclusion here might be termed a “half Reifenberg”
property; Reifenberg’s topological disc theorem requires such an hypothesis
together with the reverse inclusion L, , N B,(z) C the (eo)-neighbourhood of
S, in which case S; N B,,(2o) is a topological disc.

(2) On the other hand one should keep in mind that even the full Reifenberg
condition will not ensure any rectifiability properties for Sy, as is shown for
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example by the “Koch curves” in fractal geometry. For a fuller discussion of
this, we refer to [31].

(3) But the reader should also keep in mind that the e-approximation prop-
erty of the above lemma does imply, as one can easily check by using succes-
sively finer covers of S, by balls (see [28] for the detailed argument), that
H™HB() (S, N B,y (20)) = 0, where () | 0 as € L 0, and hence dim S+ <m by
the definition of Hausdorff dimension.

Proof of Lemma 2.16. If the lemma is false, then thereis € > 0, 2y € singu,
pr 10, ok < pi, and 2 € By, (20) N S+ such that

(1)  Bi(0) N1, 0. S+ ¢ e-neighbourhood of any m-dimensional subspace.

Choose Ry | 0 with Ri/pr — co. Then by monotonicity 1.7 we have, for all
p€(0,Rr]and all k =1,2,...,

Om(z) Sw,'p™"|M N B,(2i)| < wy'Ry™|M N Br, (21)]
< w;IRI:nlM n BRk+Pk (zO)I'

In terms of the rescaled submanifolds My = 7, ,, M this implies
Onm(zk) < wy'p™"|Mi N By(0)| < wy' Ry™|M N By 1, (20)]

for every p € (0,Rx/ox) and all sufficiently large k (depending on p). Since
pr/Rr = 0 we have R "|M N Bgr,4,.(20)] = ©m(20), and since Opr(zx) >
O (20) by hypothesis, we then obtain

(2) O (20) < wi'p™" Mk N By(0)] < One(20) + e,

where €z — 0 as k — oo. In particular the M} have uniformly bounded area on
any fixed ball in R"*¥ so by the compactness of 1.11(b) there is a C € M and
a subsequence M such that My — C locally on R™** in the sense of 1.11(b).
But then (2) guarantees

wy'p ™™ |CN B,(0)] = Om(z0), Vp>0,
and by the monotonicity formula 1.9 applied to C we thus conclude that
zt =0, zeC,

and hence (by the argument of [3] or [25]) that C is a cone:

(3) Cec.
Now let a = Op(z0)(= ©¢(0)). By 2.6 and 2.7,
(4) Lc={z€R" : O¢(z) =a}

is a subspace of dimension < m, and hence is contained in an m-dimensional
subspace L of R™. Then (with ¢ > 0 arbitrarily given), by the upper semi-
continuity 2.3 of ® we see immediately that this implies

(5) {z € B1(0) : Op,,(2) > a} C L.
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for all sufficiently large k', where L. denotes the e-neighbourhood of L. Indeed
otherwise there would be a subsequence {k} C {k'} and z; € B1(0)\L, = z €
B1(0)\Le and with O, (z;) > . But then by the upper semi-continuity 1.13
we have O¢(z) > a with € B;(0)\L., which contradicts (4). Thus (5) is
established. But evidently (5) contradicts (1), so the lemma is proved.

Now let S; be the set of zp € sing M such that the conclusion of 2.16 holds
with po = 1/j. Then for each w € S;, there is a sequence {wg}e=1,2,.. C
B%(w) N S; with Op(we) = inf{Oum(2) : 2z € B%(w) N S;}; if this inf is
attained at some w, € B%(w) N S;, then we select wy = w, for each £. Thus

Byi(w)NS; =UgEi{z € Bx(w)NS; : Oum(z) > On(wye)}
C Uf‘;l{z € B%('wg) ﬂS]‘ : @M(z) > @M('wg)},

which has #™+#(¢)_measure zero by 2.16 and Remark (3) above, because w, €
S; for every £. In view of the arbitrariness of w and the fact that sing M = U;S;
by 2.16, we have H™+5(¢)(sing M) = 0, and therefore

dim sing M < m,

since € > 0 was arbitrary.

Now let sing, M denote the set of z € sing M such that Op(z) = ©¢(0)
for some C € C as in 2.4 with dim Lc = m. Then we can apply exactly the
same argument as in the above lemma and the subsequent discussion, with
sing M\ sing, M in place of sing M; notice that at each stage of the discussion
we obtain affine spaces of dimension m — 1 instead of affine spaces of dimension
m. Thus in place of the conclusion dim sing M < m we have

(2.17) dim (sing M\ sing, M) <m — 1.

We shall use this fact in §7 below. By a slightly different argument, involving
only the use of tangent cones rather than pseudo-tangent cones as in the above
proof, one can prove a refinement of 2.17. Viz., dim S < j for each j =
0,...,m, where SU) is the set of z € sing M such that all tangent cones C of
M at z have dim Lc < j. We shall not need this refinement here, so we shall
not discuss the proof, which is given in [26] by modifying the corresponding
argument in [1] for area minimizing currents.

3 A Rectifiability Lemma, and Gap Measures on Subsets of R".
Let B,,(zo) be an arbitrary ball in R™, and suppose that S C B,,(zo) is
closed, that €, § € (0,1) with € < §/8 (in the applications below we always have
€ << 6), and that S has the e-approximation property satisfied for S; in 2.16.
Thus for each y € S and each p € (0, pg] we assume

SN By(y) C the (ep)-neighbourhood of some

(3.1) m-dimensional affine space L, , containing y.
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In all that follows we assume that L, ,, corresponding to each y € S and p < po,
is chosen. Then, relative to such a choice, we have the following definition.

Definition. With the notation in 3.1 above, we say S has a d-gap in a ball
B, (y) with y € S if there is z € Ly , N B(1_4),(y) such that Bs,(2) NS = 0.

With notation as in the previous definition, we recall the general rectifiability
lemma established in [32], which gives sufficient conditions for an arbitrary
subset of R" to be m-recifiable, as defined in the introduction. This rectifiability
lemma will be crucial in our later proof of Theorem 4.

The reader should keep in mind that the results here will be applied in R*+*
(rather than R™) in the proof of Theorem 4.

3.2 Lemma (Rectifiability Lemma). For any § € (0, %), there is ¢¢ =
€o(m,n,8) € (0, %) such that the following holds. Suppose € € (0, €], po > 0,
To € S C B,y (z0), and S has the e-approximation property 3.1 above. Suppose
further that, for each £, € S and p; € (0, po], either S has a %-gap in B,, (z1)
or there is an m-dimensional subspace L(x1,p;) of R" and a family F,, ,, of
balls with centers in S N B, (z1) such that the following 2 conditions hold:

(a) 2.BeF., ,, (diam B)™ < ep",
and
(b) SN B,(y) C the ep-neighbourhood of y + L(z1, p1)

for every y € SN B, /2(x1)\(UFz, ,,) and every p € (0, p1/2] such that S has
no d-gaps in any of the balls B (y), p < 7 < p1/2. Then S is m-rectifiable.

3.3 Remarks: (1) It is important, from the point of view of the application
which we have in mind, that the property (b) need only be checked on balls
B,(y) such that S has no d-gap in any of the balls B, (y), p < 7 < p1/2.

(2) Notice that if S does not have a %-gap in B,,(z1) (so that the first
alternative hypothesis of the lemma does not hold), then, provided ¢ is suffi-
ciently small relative to 6, no ball B, (y) for 7 € [&, 4] and y € SN B, />(x1)
can have a d-gap, so in particular condition (b) always has non-trivial content
in this case.

(3) In order to establish the Theorem 4 we are going to show that this lemma,
can be applied with sets S of the form S = B,(y) N {z € sing M : Op(z) >
Onm(y)} with suitable y € sing M and with p sufficiently small. Notice that
Lemma 2.16 of §2 already establishes the weak e-approximation property, which
is required before the above lemma can be used. Most importantly, we are able
in the discussion of §§4-6 to get much more control on sing M in balls which
do not have d-gaps. This is the key point which makes it possible to check the
hypothesis (b) and hence to prove the main theorems stated in the introduction.

For the proof of 3.2 (which is based on a covering lemma), we refer to [32].

Next we want to establish the existence of a certain class of Borel measures
on subsets S C R™ having the e-approximation of 3.1 above.
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Let e >0and m € {1,2,...,n -1}, By(2) = {x e R" : |z — 2| < p}, and
let 0 € S C B1(0) be an arbitrary non-empty closed subset of R™ with the
e-approximation property 3.1.

With the affine spaces spaces L , fixed as in 3.1, and assuming € < §/2 €
(0, ), we make the following definition.

3.4 Definition. If z € S and p € (0, 1], the ball B,(z) is said to be a 6-bad
ball for S if either there is w € L, N B(;_4),(2) such that Bs,(w) NS = @, or
I(Lz,p = 2) = Loall > d/2.

Now we are going to define a family of subsets {T)} ¢ (o, 1 as follows:

3.5 Definition. For p € (0, 1], we define T, to be the union over all balls
B,(z) such that z € S and no ball B,(2), 0 € [p,4] is a -bad ball for S.

3.6 Remarks. (1) Of course the sets T, depend on S and 4, but for
convenience this is not indicated by the notation. Notice also that T, C S,,
where S, = {z € R" : dist(z,S) < p}; intuitively one should think of T, as
being some sort of refinement or reduction of S,, taking into account J-gaps
and J-tilts.

(2) It is possible to check the following properties direct from the definition
of the T),:

(a) The o-neighbourhood of T, C T,4, for each p,oc > 0 with
p+ 0 < 3 (so that in particular we have dist(T,, R"\T)4,) >
g).
(b) Vze S\T,, p€(0,}], there is 0(z) > p such that B,(,)(z) is
a d-bad ball for S.
(c) Thel £-neighbourhood of T,\T} is contained in Tx,\T, p €
5l

Notice that taking p = 27¢ and 0 = 27% — 27¢ in (a) we have in particular

that
(d) dist(Th—e, R*\Tp-x) > 2% 1 for £>k+1,k>2.

Proof of (a). Take any w € o-neighbourhood of T,. Then by definition of
T, there is a 2 € S such that w € B,;,(z), where no B;(z) is a d-bad ball,
7 > p. Thus w € T,4, by definition of T},,.

Proof of (b). Suppose z € S\T,. Then some B,(z),c > p, must be a
d-bad ball, otherwise B,(z) C T, by definition, contradicting the hypothesis
that z ¢ T,.

Proof of (c). By (a), the §-neighbourhood of T is contained in T}, and
hence the £-neighbourhood of R"\T% is contained in R™\Tz. Also, again
by (a), the £-neighbourhood of T, is contained in T,. The ‘combination of
these mclusxons then gives (c) as claimed.

3.7 Lemma. There is 8y = o(m,n) € (0, ] such that if0 <e < § < & S , and
S, {Ts}se(0,1) are as introduced above, then there is a Borel measure [t on S

with the properties u(S) = 1 and, for each o € (0, %],

C™'p™ < u(B,(2)NS) < Cp™, pe[6/%0,L), z€T,NS,
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where C = C(n,m). The measure p has the general form

00 Qk
p= 015M/2 22—mk ZI[Zk,j]j + CoH™ L Ty,

k=2 j=1

where [2] denotes the unit mass (Dirac mass) supported at z, To = Np>0oT,,
Ci1, C; depend only on n, m, and the zxj € SN Ty-k\Ty-k-1, j = 1,...,Qx,
k > 2, with

SN Ty-x\Ty-x-1 C uktl (k—2,2) U?él B51/22-¢(Ze,j), k>2.

£=max

For the proof of this lemma, we refer to [32].

3.8 Remarks. (1) It is important for later application that C does not
depend on 4, nor indeed on S. Of course one has to keep in mind that if the set
S is very badly behaved (like a Koch curve for example), then the sets T, can
all reduce to the empty set for sufficiently small p, in which case the lemma has
correspondingly limited content.

(2) As part of the proof given in [32], it is shown that T} is contained in the
graph of a Lipschitz function defined over {0} x R™ and with Lipschitz constant
< Cé, so automatically H™ L Ty has total measure < C.

4 Area Estimates for Submanifolds in M. Here we continue to assume
that M € M. Points in R** will be denoted (z,y) € R** x R™, and we
continue to use the notation r = |z| and w = |z| "'z € S***~! for z € R¢HF\{0}.

We are often going to use the variables (r,y) = (|z|,y) corresponding to a
given point (z,y) € R* x R™, and it will be convenient to introduce the
additional notation

Bf ={(r,y) : 7> 0,7 +jy* < p*}, B} (o) ={(r,y) : v >0, ly—yol* < p°}

for given yo € R™ and p > 0.
Also,
B)(y) = M N B,(y),

and we let v, vy be defined on M by
V,-(-’L',y) = pT(t‘y)M(lzl‘lst); Vyi = pT(t’v)M(el+k+j)1 j=1...,m,

where Pri M denotes orthogonal projection of R"** onto the normal space
z,y

T(;,,)M. Notice that we thus have
m m
2 =1V, =30 = Y e wlenni) = S (-IVYY).
Jj=1 Jj=1 j=1
In particular, if e is any vector in {0} x R™, then
prs, (@) < lefs].

The main inequality of this section is given in the following theorem:
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4.1 Theorem. If ( € (0,1), 8 > O then there are C = C(B,k,n) > 0,
n=n(B,k,n,{) >0 and a = o8, k,n) € (0,1) such that the following holds: If
| BM(0)] < 8,0 € M, w7 p=" B (0)| O (0) < nand p="2 [y ) r(v2+
V;) < n, then there is C € T with singC C {0} x R™, satisfying

p? / dist((,y), C)? < ¢,
BM(0)

Om(0) — ¢ < O¢(0) <w,'p™"|BY(0)| +¢ and

[, el day <o [ i)
o2 B;1(0)

1/(2—a)
+Cp" <p'”/ r2(v? + ug))
BM(0)\{(z.,y): |z|<p/2}

)

where M (r,y) = M NS, .

In proving Theorem 1 we shall need three lemmas, each of which is of some
independent interest. The first of these gives some important general facts
about C € T; we use the notation of 2.11, and define

723(0) ={X: X is a compact (¢ — 1)-dimensional
(4.2) embedded minimz! submanifold of S¢+*~1
with {(Qw,y) : A>0,y € R™, w € I} € Ta}.

If ¥ is a compact (£—1)-dimensional embedded minimal submanifold of S¢+*-1,
and if ¢ is a C7 section of the normal bundle of C over ¥ (we write ¢ €
CJ(%; C1)), then we continue to let Gx(v) denote the “spherical graph” defined
in §2 and Asx (%) the corresponding area functional as in 2.15. Notice that if
|h|cs is small enough (depending on X), and if j > 1, then Gx() will be an
embedded C7-submanifold of S¢+*-1.

Under suitable circumstances, we can also express appropriate parts of M €
M as a spherical graph taken off a cone C € C. specifically, if 2 C C is open and
if u is a C7 section of the normal bundle of C over Q (we write u € C7(Q; C1))
with 23=0 r7~1|DJu| < «, with v sufficiently small depending only on C (and
not depending on the domain (2), then we can define the spherical graph Gc(u)
(analogous to 2.14) by

Ge(w) = {(1+ |2 ?[u(z,y)I*) 7 *((2,y) + u(z,9)};

Gc(u) is then an embedded C7-submanifold of R™**. We can also define the
area functional Ac(u) (analogous to 2.15) over C for such u € C1(Q; Ct) by

Ac(u) = |Gc(u)|.

Then we have the following:
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4.3 Lemma. For each 8 > 0, 7;3(0) is compact in the sense that if ¥; € 72,(0),
then there is a subsequence converging in the Hausdorff distance sense to an

element ¥ € 7;(0). Also, there is 1 = (1(B,n,k) € (0, %] such that, if £, Ty €
7-ﬁ(0) and ¥ can be expressed as a spherical graph G, 1 of a C® function v taken
off £; with |p|cs(x,) < (1, then |Z1| = |Zq|. Furthermore there are constants
G = G2(B,n,k) € (0,%] and & = a(B,n,k) € (0,1) such that if T, € T, and
if ¥9 (not necessarily in 7;,(0)) can be expressed as a spherical graph Gy, v of a
C? section v of the normal bundle of £, with |v|cs(z,) < (2, then

2_
154] = 1a]] “s/z 105,912,
1

where Oy, denotes the minimal surface operator on X, (i.e., Qs, () is the
Euler-Lagrange operator of the area functional A(y) = |Gx, (¥)| of spherical
graphs over ¥, ).

Remark. Thus we have a uniform Lojasiewicz inequality for a whole C3
neighbourhood of 723(0), and also, by the first part of the above lemma, the area

is constant on the connected components of of 7;3(0), and there are only finitely
many values of the area corresponding to £ € 72,(0).

Proof of Lemma 4.3. The compactness of 7}(0) is a direct consequence of
the estimates of 2.12 and the compactness 1.11(b) for M. Next suppose there
is no such ¢;. Then there must be sequences %;, flj in 72,(0) converging in the

Hausdorff distance sense to a common limit ¥ € 72,(0) but with

) =51 # 155 V4.

According to the Lojasiewicz inequality of 2.14 we have a = a(X) € (0,1) and
o = o(X) > 0 such that

() |IGz, (¥)| = 121l| < CllQs,(DllLamy),  Wlos(m) <o

Therefore for all sufficiently large j we can apply this with graphy, () = X, ) j
in order to deduce that |Z;| = |X2|, thus contradicting (1).

Now if the inequality of the lemma fails, then there are sequences X; € 7}(0)
and 9; € C? sections of the normal bundle of C; over ¥;, with C; the cone
determined by X;, with X; converging to a given ¥ € 7;3(0) and with |1;|cs but
such that

3) |G, (¥3)] = 1351 > j119s; (¥i)llL2(z;)»

where a; | 0 as j — co. Thus |X;| = |Z| for all sufficiently large j by the first
part of the proof above, and (3) contradicts (2), because ||Qx, (¥;)|lL2(x;) is
geometrically the L2-norm of the mean curvature vector of Gx; (¢;) integrated
over ¥; and (since X; is approaching ¥ in the C'-norm) this is proportional
to the L? norm of the mean curvature vector of ¥; = Gx, (1;) when f)j is
expressed as a spherical graph taken off X.

1—a/2

1—aj/2
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4.4 Lemma. Let o € (0,1] and 8 > 0. There is n = n(n,k,B) € (0,1) such
that if B%/S(O)\{(z,y) : |z) < 0/16} = Geu with C = Co x R™ € T3, u a
C3*(C N Br,/s(0)\{(2,y) : || < 0/16}; C*) function and
3
sup > oi7|Diu| <
CNB1,/8(0)\{(.9) : |z|<0/16} ;=9

then

sup / |Qc(u)?dHi ™t < Ca_"_Z/ rz(uf+uz)
B;’,M\{(r,y):rsa/S} z BM\{(z,y):|z|<o/16}

and

Sup Ivr,y(rl_qM(r, y)|)|
BF, \{(ry):r<o/8}

< Ca_l_"/ 7'2(1/3 + 1/3).
BM\{(z,y): |z|<c/16}

Here V,,, means the gradient with respect to the variables (r,y) € B}, C =
C(B,n, k), and u(r,y) denotes the function on ¥ defined by u(r,y)(w) = u(rw,y),
and ¥ = Co N StHk-1,

Proof. As discussed in §2, the Euler-Lagrange operator Qxv for
v € C%(Z; C1) is characterized by the integral identity

2 1Gs(w+s0)limo = - [ QOs(0)-CaHT, v, (€ CHEZCH),
S b))

so in particular

(1) Vool M(ry)| = V|G (u(r )] = - /E Qn(u(r,y)) - Vryu.

Also (see, e.g., the discussion of [26]) the Euler-Lagrange operator Q¢ of the
area functional over C has the form

Qc(v) = Aryv +172Q5u(r,y) + 1 2R(v),
where A, v = r—}_—l% (r“lﬂ’a%”—’)-) + Z;’;l %"Z(,I)’—’{l, and
2)  IR@)| < Cr?(|Vor|[+|Vuy )| Vol +Cr (|vp |+ vy |) (1 [v] +| Vol +7|V?0]).
Notice that if Qcu = 0 in some region @ C C, then by definition,
(3) r=2Qsu(r,y) = —A,yu—R(u) on .

We also recall that the linear operator

d
Lyv = EQC(U + tv)|t=0
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is a linear elliptic operator of the form
Ly = Ar,yv + T_sz;,u'U,

where Ly , is a linear elliptic self-adjoint operator on functions v € C?(Z; C1).
In particular (using the notation introduced prior to 4.3) if M = Ggu with
u € C*(Q;Ct) for some Q C C, then since M; = M — tegyx+; is a minimal
surface for each ¢, and M; = graphg us, where u;(z,y) = u((z,y) + testr+s),
then we have Qcu; = 0 on a domain Q; = Q — tegy+;, and hence v = Uyi =
2 u((z,y) + tesrk+i)|e=o is a solution of

L,o=0

for each j = 1,... ,m. Also since M, = (1 +t)M is a minimal surface for each
t with |t| < 1, and M; = graph,, where ut(a: y) = 1+ ) u( + t)(z,v)),
then we have similarly that v = Rug —u = tutlt_o is also a solutxon of this
equation. But Rug —u = ((z,y)-D)u —u =r(u/r), + 2]:1 y7uy;, so we have
the equations

(4) Lu(uys) =0, Ly(r(u/r),) = —L,y (Zy uys) = —204u.

Notice that the operator £,w has the form
Aryw+ r2Asw+rla-VEw+r2b-w

with |a|, [b] < C(n,k,B) on Br,/5(0)\{(z,y) : |z] < ¢/16}. Then the standard
C'* Schauder theory for such linear operators ([12]) gives

1
(5) sup Z lo? DI, |* < Ca_”/ ul,
B \M(z.): [z]<a/9} 520 BE ,o\M(=,y): |z|<o/10}

where BS = CN B, (0). By means equation (4) for 7%(u/r), and again the C»®
Schauder theory (this time using also (2) to estimate the sup norm of Ayu), we
deduce that 72(u/r), satisfies

sup 07D 5% /) )P
(6) 3.:/4\{(1'71/) |$|<a/8}§

S Co™" [po\((w):lal<o/1e) T (U7 + ug)-

Next we note, by the notation introduced above, that tegyr+;+(z, y)+ut((z,y)) €
M for all small |t|, and hence by differentiating with respect to t and set-
ting ¢t = 0 we have eqprtj + Uyi (€,Y) € T(o,y)+u(z,y)M, Whence (egyr4i)t =
—(uyi(z,y))t, where v1 means the orthogonal projection into the normal space
of M at the point (z,y) + u(z,y) € M. Since u is already normal to C, and C
is invariant under translations in the direction esyr4; we also have

(7 %Iuyi (:r,y))l < |(uy1' ('Tay))ll = |(el+k+j)l| < |in (zay)l’
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for (z,y) in the domain of u, provided the constant 7 of the lemma is chosen
small enough (depending on n, k, ).
By a similar argument using M; and 4; we obtain

®) ((@y) +u@,y)" = -r*((u/r),)" =Yy (uy)* (= (-R*(u/R)R)*).
j=1

Since C is invariant under homotheties of the z-variable, we whence have
L 2 1
I @/r)e] < 1((2,y) +u(z, 9)) 7| + lylfuy -

But ((z,y) + u(z,9))* = prom((z,0) + u(z,y)) + Xj=; ¥ €pip4jr SO We also
have |((z,y) +u(z,y))*| < o(Jvr|+m|yy|) on M NB,(0), where the right side is
evaluated at the point (Z,y) = (z,y) +u(z,y)—note that || = /72 + |u(z,y)|?
at this point (£,y)). Also, by definition of v, |ez'-+k+j| < vy on M. Then (7)
and (8) yield

(9) luy| + Ir(u/r)r| < Cm)(Jvr] + 1y))-
Now (1), (2), (5), (6), and (9) evidently imply the inequalities of the lemma.
Next we have a lemma which gives important information about approxima-
tionof M e Mby CeT.

4.5 Lemma. Let 8 > 1, ( > 0. There are constants n = n(8,(,n,k) >
0, a = a(n,k,B) € (0,1) such that if p~"|M N B,(0)] < B, 0 € M, and
w;'p™™|M N B,(0)| — ©(0) < 7, then the inequality

p—"—z/ ri(v? + Vf,) <n
MNBs,;4(0)\{(z,y) : |z|<p/2}

implies that there is a C € T with

SingC = {O} X Rm’ @M(O) - C < QC(O) < @M(O) +n,

and
u € C*(C N Bisy/16(0)\{(z,y) : || < p/16}; ch)
with
M N Bis,/16(0\{(z,9) : |z| < p/16} = Gcu
and

p—n—2/ dist((z,y),C)* < ¢,
MnNBys,/16(0)

3
sup P~ Diujos < ¢.
B-ﬁ/g(o)\{(zwy) : IZISP/IG} j=0
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Also there is ¢ = {(n,k, 8) < min((1,¢2), (1, (2 as in Lemma 4.3, such that, in
addition to the above, we have

sup [rt = M (r,y)| - |Z]|

By, \(ry):r<p/4}
1/(2-a)
=¢ (”/ P07 +5})
BM\{(z,y):|z|<p/8}

)

where M(r,y) is as in 4.1.
Proof. First notice that the inequality

3
(1) sup > P 1DIulga < C¢
BE . (0\{(z.,9): |2<p/16} ;2o

is implied by the other inequalities

Om(0) — ¢ < O¢(0) < OM(0) + 1,

2
-n—2 3 2
p fB{Vs’p/lG(O) dlSt((.’lJ,y),C) < Cv
together with the estimates of 1.12 and 2.12, so we only need to check (2). By
rescaling it is enough to check (2) in case p = 1. If there is no such 7 for some
given (, then there must exist a sequence M) € M with |[M7 N B;(0)| £ B,

|M3 1 By (0)| - 8%, - 0,0 7, and
/ (9 + (4% > 0
MB350\ {(z,y): =<3}
yet such that, for every C € T with singC = {0} x R™, at least one of the
inequalities in (2) fails if p =1 and M = MU),

By the compactness 1.11(b) there is a subsequence (still denoted M (4)) such
that M) — C, where v€ = 0 and Vf = 0 on Bs;3(0)\{(z,y) : |z| < 1},
O¢c(0) = |CnN B;(0)](by (2.3)). The monotonicity 1.7' yields that C extends to
give an element of 7" with sing C C {0} x R™. Since M) = C we have

©c(0) = |C N By (0)| < liminf [M@ N B (0)| = lim inf © 5, (0),
Jj—o0o j—oo

and from the upper-semicontinuity 2.3 of the density function we also know
that
©¢(0) > limsup O p(» (0),
j—oo

and hence (2) is satisfied with p = 1 and with M) in place of M for j sufficiently
large. Evidently this is a contradiction, so the required inequalities (2) (and
hence also (1)) must hold for some C € T with sing C = {0} x R™, provided
is sufficiently small.
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We now need to establish the final inequality of the lemma. By virtue of
Lemma 4.3 we have that there is & = a(n,k,8) € (0,1) and ¢ = {(n,k,3) >0
such that (1) implies

1-a/2

P! M (r, )| - 2| < CllQsu(r, »))lIiz(x)

for each (r,y) € B;;/S(O) with 7 > p/16, where C = C(n,k,(). Then the

required inequality holds by virtue of Lemma 4.4; notice that the hypothesis

3
BE 5 (0\{(z,y):|z|<p/16} 5=

required in Lemma 4.4 is satisfied (with C¢ in place of n) due to 2.12 and the
inequality (1) above.
We shall need the following corollary of the above lemma later.

4.6 Corollary. For any given ¢ > 0, 8 > 1 there is 5o = no((, 3,n, k) > 0 such
that the following holds. Suppose C € T with singC = {0} x R™, M € M
with p~"|M N B,(0)| < B, wy'p™™|M N B,(0)| — ©m(0) < 1o, 0 € M, and also

—n—2/ dist((z,y), C)* < no.
BY (0\{(z.y):|z|<%}

Then
p=2 / dist((z,9), C)? < ¢
Bg:“(o)

and
sing M N B,;2(0) C the ({p)-neighbourhood of {0} x R™.

Proof. By the regularity estimates 2.2 and 2.12 we have immediately that
M N Bs,/4(0)\{(z,y) : |z| < £} = Gcu for some u € 02(35/4(0)\{(1,!/) :
l2] < 8};C*) with

3
>" P71 Diu| < Oy on By,ya(O\{(z,) : |z] < £}.
j=0

Since C € T with sing C = {0} x R™, we have in particular that for any given
¢ > 0 the hypotheses of Lemma 4.5 above hold, provided 19 = 10(8,{,n, k) €
(0,¢) is sufficiently small. Thus that lemma yields

o | dist((z,), &)? < ¢
MnNBj3,,4(0)

for suitable C € T with sing C C {0} x R™ and hence, the the triangle
inequality

p 2 [, dist((z,y), C)* < C¢
CNB3,/4(0)\{(z,y): |z|<§}
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which leads to
o dist((z, 1), C)? < C¢
MﬁBap/4(0)

since both C, C are cones. The first conclusion of the Corollary is now clear.
To prove the final conclusion, we argue as follows:

Suppose z € sing M with dist((z,y), C) > 2(n5'¢)*/("+2) p, where no € (0, 1]
is to be chosen shortly. Then, in consequence of the above proof,

o | dist?((z,), ©) < ¢,
MnNBj;,/4(0)
which, together with the fact that Bg,,(2) C Bs,/4(0), implies that

(Cop) ™2 / dist?((z,),C) < Cro, C = C(n, B).
MnB(op(z)

Thus by the monotonicity 1.7’, dist(z,C) < Cné/ 2(o,o. Since C € T3, we have
bounds |Ac| < Cr~! on the second fundamental form of C at distance r from
{0} x R™. So by the regularity theorem, z € reg M, a contradiction.

Proof of Theorem 4.1. Let { = {(n, k,8) and n = n(n,k,(,8) > 0 be as in
Lemma 4.5. Then Lemma 4.5 implies that there is a C € 7 with C = Cy x R™,
¥ = CoNS**=1 smooth compact, and a u € C*(CN Bys,/16(0)\{(z,y) : |z| <
p/16}; C1) with

M N Bis,16(0)\{(z,y) : |z| < p/16} = graphc u

which
3 . .
(1) sup ij_lleu(ryy)IC3 S Cv
CNB.,/s(O\{(z.0) : |2|<p/16} =
and
sup |M(r,y)| = 13|
B;/q\{(r,y):r<p/4}
(2)

1/(2—a)
<Clp™ / r? (v} +v§)>
BM\{(z,y):|z|<p/8}

Notice that by (1) and the estimates 2.12 we then have
3
(3) sup > F|Du| < CB.
CNB3,/4(0)\{(z,y): |z|<p/16} j=0
For each y € R™ with |y| < p/2 we let

oy =sup({0} U {o € (0,p/2] :

) o P2 +12) 2 1)),
BX(0,y)\{(z,y) : |z|<o/8}
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Since p™" [}/ B,(0) r?(v2 + v2) < 7, automatically
(6) supoy < 107%p

if n is sufficiently small (which we subsequently assume). By the “five times”
covering lemma (see e.g. [8] or [25]) we can find a countable pairwise-disjoint
collection {B4a,j (0,y;)} such that

(7) Ulyl<p/2,,>0B40, (0,%) C U;Baog,,, (0,;).

In particular, that (by definition of o, we have

g—"/M r2(v? + V;) <n
BM(0,9)\{(z,y): |z|<o/8}

for each o € (oy,p/2], and so for exactly the same reasoning (involving the
first part of Lemma 4.5 and 2.12) which we used to conclude (1), (3) above,
and keeping in mind that ¢="|M N B,(0,y)| < 8 by the monotonicity 1.9, by
taking a smaller n = n(n, k, 8, ¢) if necessary, we can deduce that

3
sup o-j—lleul S C,B
B%/S(O,y)\{(z,y) :|z|<o/16} =0

for any o € (0y,p/2] and |y| < p/2. Hence by Lemma 4.4, for each yo € R™
with |yo| < p/2, and for all o € [0y, p/2], we obtain

Sup Ve (M ()|
(9) Bim(yo)\{(r‘y) :7<g/8}
< Ca'_"/ 7.2(”3 +l/;).
BM(0,y0)\{(z,y): |z|<0o/16}

We now want to define a Whitney-type cover for B:'/z(O), as follows. For j > 2
let B,/2i+2(0,25%), k = 1,...,Q; be a maximal pairwise disjoint collection of
balls with centers (0, z;x) € B,/2(0) N {0} x R™. Then for j > 2:

(10) UZ2 1 B,y2i (0, 2jk) D B,2(0) N {(z,y) : |z| < p/29%}
for any point (z,y) € B,/2(0), and
(11) # {k : (Il),y) € Bp/2j‘5 (Oazj,k)} S Ca C = C(n)’

for any (z,y) € R", where #A4 denotes the number of elements in the set A.
Next let @, = B:'/z(O)\{(r,y) cr < p/8}, Q1 = B (0)\{(r,y) : 7 < p/16},
and @; = 1, and define for j >2and k=1,...,Q;

(12 U = Bl (20M(ry) 7 < p/277),



RECTIFIABILITY OF THE SINGULAR SETS 273

and
(13) Dk = B sa (z )\ (1) : 7 < p/27+%}.

Notice that all points (r,y) € Q; 4 satisfy p/2i+3 < r < p/2°~!, and in particu-
lar
QieNQie=0, [i-j]>4,
so (11) it follows from that
(14)  V(ry) € BF(0), #{G.k) : (ny) €Qu} <C, C=C).
Also, by (10),
U5, Uin1 Qjk D B,,/z(o) N (U522{(=,y) : 271" 2p <r <279 1p}
(15)
U{(r,y) : 7 > §}) D B},(0).

Now, by (6), {1, intersects no By, (y), while for each (j, k) such that ©;x does
not intersect Ba,j k(zj,k) we must have p/27%2 > 0z, Thus, in any case, if

§2; & does not intersect B,.,, (zj,6) we can apply (9) with o = p/2971, y = z; &
(so y =0 in case j = k = 1), to deduce

| Ve )] o4 drdy
Qj k

< C/ / (v + VZ) dwrttdrdy.
5,;,, Se-1

On the other hand if Q2 does intersect B} . (2j,k), then j > 2 (by (6)) and

(16)

ojk>277"2p,50 Qjx C B4‘7 L(zik) C UiF;oa; (y:). Hence by summing in (16)
and using (14), (15), we conclude that

/ P Vg (P4 M (r,y)])| 7 drdy
(17) 0)\ U; B 20p (yJ))

<C r2(v2 + vy 2) dxdy.
B} (0)

Notice also that using the monotonicity 1.7 and the definition (5) of o, we
have that for each j
r? (V2 + uj)

7 By, 0w v /BM (0w)\{(@.9) :[2]<0;/8}

a_—n—2/ 2 S C S Cn—la,—ln—2
Hence by summing on j, and using the disjointness of the B,yj (0,y;), we deduce
that

(18) Z(a"“ / r)<C (W} +vl).

B, 5 (0:35) B} (0)
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Now we want to use the collection { B40¢,yj (0,y5)} to construct a cut-off function.
For each j, let ¢; : (0,00) x R™ — [0,1] be a C* function with ¢;(r,y) =1
outside B;Zvvj (¥3), Gi(r,y) =0 in B3y, (y;) and with

(19) sup |V(;| < C/oy;.
B}

Now evidently, since the {By,;(y;)} are pairwise disjoint, at most a finite sub-
collection of the Baoo,, (0,y;) can intersect a given compact subset of R™\ ({0} x
R™), so we can define a smooth function ¢ : (0,0) x R™ — [0, 1] by

¢ = I;¢G;.
By construction ¢ = 0 on U,'B;(,,,yj (y;) D UIyISp/Z,ay>OBIo,, (y). In particular
¢(r0,y0) > 0 = 19 > 0y, and hence

—n—2

To Pl +v)) <,

/B%(O,yO)\{(I,y) :|z|<ro/8}

which (since 3 - L = I) guarantees by Lemma 4.5 and the estimates 2.12 that u
is smooth on each of the subsets By, /6(0,%0)\{(z,¥) : |z| < ro/2}, and hence

in particular the function r'~¢|M(r,y)| — || is smooth in a neighbourhood of

(r0,Y0). Thus
flry) =L y) (e M (r,y)| - Z)

is a smooth function of (r,y) € BJ(0).
Next we note that since f is smooth on {(r,y) : 7 € (0,p/2], |y| < p/2},
integrating by parts with respect to the r-variable gives

/ |flr" drdy < / |f|rt drdy
B;),(0) lyl<p/2,r<p/2

(20) <C |f|rt~t drdy
lyl<p/2,p/4<r<p/2

+¢71 =
lyl<o/2,r<p/2 | OT

We emphasize that this is valid even if f is not bounded near r = 0, be-
cause we can first prove (by integration by parts) an inequality as in (20)
with r. = max{r — ¢,0} in place of r, and then let ¢ | 0. Since ( = 1 on
B}, \ UL, Bf,,, (43) and Di¢ = 32, DiGillji(;, we obtain, in view of (17),

(19), (6) and the fact that r < p/2, |y| < p/2 = /72 + |y|? < 3p/4,

[ o P M = 2] e dray
p/2

rt drdy.

<C [rt =4 M (r,y)| — [Z|] r¢~! drdy
B (O\{(r,y):r<p/4}
+C/ 7'2(V2+y2)+c (a,nj+-2+/ 7‘2),
B} (0) r T %y ; Y; BY,, (0.;)
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which proves the theorem, in consequence of (2) and (18).

5 L? estimates. Here we are going to use the area estimates of the previous
section together with the monotonicity identities 1.7’, 1.9’ (and some variants
of these) to obtain L? estimates for u. These will be needed in the next section
for proving the decay properties of the deviation function introduced there.

M continues to denote an element of the multiplicity one class M, and we
assume that B,(0) C Ups and that

(5.1) 0€singM, Oum(0)>6o, |B3(0) <4,

where 3 is a given constant and 6, € {©¢c(0) : C € T}. Notice that by
monotonicity 1.7’ this implies

(5.2) pMB () <CB, Vp €(0,1], 2| <1.
With 6 as in 5.1
(53) S+ = {Z € §1(0) : @M(Z) > 90}

S+ will be assumed to satisfy a weak e-approximation property, with € < €y =
€o(n,k,B) > 0 to be chosen, like that in 2.16; thus for each p € (0, 1] and each
z € S4 we assume that

(5.4) Sy N B,(z) C the (ep)-neighbourhood of L, ,,

where L, , is an m-dimensional affine space containing z. We henceforth fix
these affine spaces L, ,. We also here assume that, with R, (z,y) =| (z,y) — 2 |,

_ L2
(5.5) sup / MM_;# <e, sup w;lp""|Bf,V1(z)| <6+,
z€S4 JBM(0) z 2€84

where 6 € {©¢(0) : C € T} is asin 5.1, and p € (0, 5] is given. (Of course
by 1.7', the latter inequality in 5.5 implies sup,g L OMm(2) <6 +e.)

Remark. We show in §7 below that for every given ¢ > 0 and wo € sing M
with ©pr(wo) =00 € {O¢(0) : C € T}, thereis o > 0 (depending on M, wy, €)
such that all of the above conditions are satisfied, by Lemma 2.16 and mono-
tonicity 1.7'-1.10’, with the rescaled surface 7y, ,, M in place of M for any
w1 € B,/2(wo) N{z : Oum(2) > Om(wo)} and o1 < 0. These facts are of
crucial importance in the eventual applicability of the results of the present
section.

We also here suppose that 2o € Sy, p € (0,%], ¥ € (0,1], and that there
exist points 2y,...,2m in S4 N B,(20) such that

{zj — 20}j=1,... ,m are linearly independent and
m

(5.6) > ((zj — 20) - @)* > vp*|a|* Va € L,

=1
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where L is the m-dimensional linear space spanned by 2; — 20,...,2m — 20-
Notice that this states that the z; — 2o are in “uniformly general position”, up

to the factor +, in B,(20) N L.
The main result of this section is the following:

5.7 Theorem. There is €p = €o(n, k,3) > 0 such that if 5.1, 5.4, 5.5, 5.6 hold
with € = €g, then for all z € S

/ I((z,y) = 2)*]?
Bﬂ;(Zo) RZY?

n+2 1 1/2 C!)
<o [ Sl -2+ 0 (F) x

M(20) j—o

1 & z,y) — 2) P \1=e
<[, (g 2 ) =+ L))
BM (zo\{(e.0): la—Exol<§} P?d" 15 R
where a = a(n, k,8) € (0,1), C = C(n,k,B,7), and d = p + |z — 20|.
We shall need the following three lemmas in the proof:

5.8 Lemma. Suppose L, zy,... ,2m are as in 5.6 (although here we do not
need to assume that z; € Sy). Then for any n-dimensional embedded surface
M (we do not need M € M here) we have

m
I(TLVTL+p |VL| Z _ZJ |2<C(TLVTL+p IULl )1[] M)
7=0
where C = C(m,n,7), rp(w) = dist(w,20 + L), rp = radial distance from
20+ L = |pps((z,y) — 20)|, and where |vz* = |lpry a0 pll®, 137, =

(z,y)

pre  mPLe((,9) = 20))|*. Ifo € (0,p] and (o, ... ,(m are any other points

in B (20) with (1, ... ,(m € Bo((o) and with

S (G - ¢) - a)? 2 yo’laf’, a€lL,

=1
then

C i (riv?, +a%v}) CZdlst (C],zo+L)<Z|(zy) G2

j=0

< C(riv:, +0*v}) +CZdlSt (¢, 20 + L) on BM (%)
=0
for suitable C = C(n,m,v). In particular, on BM((o),

m

EI(($ y) = ) < Clp/0)* Y (I((z,y) = G)*I? + dist® (¢, 20 + L))

j=0 i=0

&)
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Remark. Notice that the inequality 37", ((2; — 20) - a)® > 7p°|al*,a € L,

means that zp,..., 2, must be in unlformly general position” in zg + L up
to the factor ; 11kew1se the condition Z (G = &) - a)? > vo?al?,a € L,
requires that the nearest point prOJeCtIOIlS Co, .y G, of the (; onto L should

be in such uniformly general position in By ((p).

Proof of Lemma 5.8. By definition

1) (w-z)t=(w-w)"+ @ -z)*t=rLv, + pram(pL(w — z;)),

so in particular
(w = z;)* — (w—20)" = (20 — 2;)*,

and by the hypothesis we then have that on M
(2) VPVL<C§:( w — ;) — (w—2)").

On the other hand using (1) with j = 0 we also have on B34 (z) that
3) Chriv?, < |(w—20)* + o

Combining (2) and (3) we then have
rivi +p'vi <C’Z|(w—z )P

as claimed. Notice that the reverse inequality

m

CY |(w = 2z) M < (rowey)® + 070vi
=0

follows directly from (1) on B34 (zo).
Next notice (Cf. (1) above) that at any point w € BM({o)

(=)t = =)t + @ -+ (G- )
=TLVr, + (pL(w C]))-L (C]_C]) :

Taking differences in (4) we see that
(G — )t = —(w =G+ (w—=Go)" + (¢ = &)t — (¢ — o)™

Since |(} — ¢j| = dist(j, 20 + L), by using the given hypothesis on the (; we
then see that on U

(4)

(5) auL<CZ|(w PP+ CY dist® (¢, 20 + L)

=0 Jj=0
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Going back to (4) again we thus also conclude that on BM(¢)

riv?, < CY |(w— ¢ +C Y dist? (G, 20 + L),

j=0 Jj=0

which proves the required upper inequality for r2v2, + o2|Dpv|*.
The reverse inequality follows directly from (4) and the triangle inequality.
The final inequality of the lemma is simply a matter of combining two of the
previous inequalities, so this completes the proof of the lemma.

In the proof of Theorem 5.7 we shall want to apply the main area estimate
established in Theorem 4.1 of §4, and this requires that we check the hypothesis
that M is L2-sufficiently close to some C € T with sing C = {0} x R™ in the
appropriate ball.

5.9 Lemma. For any given ( > 0 there is ¢ = €o(n, k,3,¢) > 0 such that
if 5.1, 5.4, 5.5, 5.6 hold with € < €, then

P [ O ) < Ce
p \%0

where the notation is as in 5.8, and u € C3((z0 + C) N Ba,/3(20)\{(z,¥) :
diSt((IL‘, y)a Z0 + L) < p/16}’ CJ-)’

2 / dist?((z,9), 20 + C) < ¢,
B/, (20)

3
sup > P DIules <¢

(20+C)NBa,3(20)\{(z,¥) : dist((z,y),20+L)<p/16} ;oo

for some C € T¢cp with singC = L, ©¢(0) = 6o. Furthermore there is g =
eo(n, k, B) > 0 such that if 5.1, 5.4, 5.5, 5.6 hold with € < o, then for all z € S+

dist?(z,20 + L)
e<Cp™ / (1202, + (p+ |2 — 20])*0% + |((z,9) — 2)* )
{(z,9)€B]i 4 (z0) : L. 2p/4}

< Celp+ |z — 20)?

Remark. It is not assumed that |z — 29| is small here; zo, z are unrelated
points in S;.

Proof of Lemma 5.9. Evidently we can assume without loss of generality
that L in 5.6 is {0} x R™. To prove the first inequality, notice that by Lemma 5.8
above we have

m
3 +p*2 < C Y _|(zy) — 2)* P,
j=0
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where 79 = |z — &, |, ToVr, = 2T Mm@ — &:,0), 20 = (&2957M2)- Integrating
this inequality over the ball B (zo) and noting that 5.5 implies

(1) S (@) - =) < Ce,

BM(Z() ]_0

we then have the first inequality as claimed.

In view of the first inequality, the first part of Lemma 4.5 guarantees that
the second and third inequalities of the lemma hold for some C € 7T with
sing C = {0} x R™ and

(2) [ICNB1(0)] <CB, 6p—(<Oc(0) <bp+e,
and
Q sup S Do < .

(204+C)NBzp/3(20)\{(2,9) : |2 —&:0|<p/16} ;oo

We agree that € and ( are chosen smaller than the minimum distance between
distinct elements of {O¢(0) : C € T3}. Then (2) gives Oc(0) = 6. We next
claim that (for ¢ small enough in (3)), for any ¢ € R!¥,

@ er <o [ €0 P,

(z,9)EM : ly—n24|<p/2,p/4<T0<p/2
where C = C(n, k, 8) is fixed (independent of &, u), provided ¢p = €o(n, k, 8) >
0 is small enough. Indeed otherwise by (2) and (3), after rescaling and trans-
lating so that p = 1 and 2y = 0, we would have a sequence M; € M, with
0 € sing M;, C; € Tcp with singC; = Cg_o) x R™, and points &; € S'+#~1 such
that

|C; N B,(0)| < B, sup zp |Diujlcs — 0 as j — oo,
C;NB3/3(0)\{(z,y): |z|<1/16} ;54
and
6 gogestr, [ (&5, 042 = 0.
(z.w)eM; :|y|<},i<|z|<}

Notice we also have

(6) liminf ©¢; (0) > 1
j—oo

by virtue of 2.1. Using 1.11(b) we can assume that C; — C locally in the
Hausdorff distance sense in R™"*, M; — C in By/3(0)\{(z,y) : |z| < 1/16}
and that (£,0)+ = 0 on C. But this, together with stationarity of C, implies
that C is invariant under translations in the direction of (£,0), which means
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sing C contains the line through 0 in the direction of (¢,0), contradicting the
fact that sing C = {0} x R™. (Notice that C is not a linear subspace because
©¢(0) > 1 by (6) and upper-semicontinuity 2.3.) Thus (4) is established.

On the other hand we have, using the notation zo = (€20, 720), 2 = (&2,72),

(EZO - éuO)L = ((z,y) - Z)J_ - ((z,y) - ZO)_L - (an - nz)la
and hence
(€20 — €2,0) 1% < 3|((z,y) — 2)*1* + 3|((z,9) — 20)*|* + 310,y — o)t
Integrating this identity over M and using (4) with & = &, — &, yield

l&z - EZ::)I2

<Cp™™ (122 + (p + |z — 20))2v2 + (2, 9) = 2)* %)
ly—nz01<p/2, p/4<T0<P/2
< Celp+ |z — ])*

by 5.5 and Lemma 5.8, as claimed.
The third lemma is as follows:

5.10 Lemma. For any C € T with singC = {0} x R™ and any Lipschitz ¢
on B with 9(r,y) =0 for r?2 + |y|*> = p?, we have the identity

L st = f roe= [ o)
+2/B},W TV?%"'/BLW TVr'g;”y”/’y"

Proof. We begin by recalling the identity 1.3, which is valid for any Lipschitz
¢ = (... ,¢" : B, » R" with ( = 0 on 9B,. Taking ¢ = ¥(r,y)(z,0)
(where r = |z|) in this identity, we thus obtain

n t+k n £+k
pij5i'¢=—/ 72 D;[¥(r,y)),
/Bs’ 2,5;: J 33‘;; .

where (p*) is the matrix of the orthogonal projection of R"* onto T, M.
Since Di[4(r,y)] = rziyp, for i < £+ k, Di[p(r,y)] = Dyi-e-sdp for i =
{+k+1,...,n+k,and

+k - n+k . n+k n+k
Y= 3o §aomend
i=1 i=1 i=0+k+1 i=£+k+1

we have

L+ 02 =—/ r|Vr|? r+/ r* Vyi Py -
[ v == [ et [ 3 ey

p j=1
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On the other hand by direct integration by parts in the r-variable we obtain

£ Y= TYr,
CnB, CnB,
so by adding this to the previous inequality we conclude the identity claimed
in the statement of the lemma.

Proof of Theorem 5.7. By rotating if necessary, we may assume that
the subspace L of 5.6 is {0} x R™. If zp = (,7m0), then z; = (éo,n;) for
j = 1,...,m. By the monotonicity inentity 1.10', for any C € 7 such that
©¢(0) = 6p and sing C = {0} x R™, and for any z € S+ N B,(z), we have

— \12 1-n
/ ez y)n+2z) | <? (/ |Vr|dH™ ™" — H""1(C N DB,(2))),
BM (2) Rz n MnN8B,(z)

where we have used the fact that @ ps(z) > O¢(0) =6p = n~!|Z|. Lety : R —
[0,1] satisfy (t) = 0fort > p, ¢(t) = 1for t < gl%ozp, ' < 0 everywhere,
and |¢'(t)] < C(8)p~!. Multiplying each side of this inequality by v (p) and
integrating over [fp, p], for any 8 € (0,1) we get

[((z,y) = 2)*? -n _
@ 2/B£z<z) R = (/Brmw(RZ) /<z+C)an(z)¢(RZ))'

On the other hand the identity of Lemma 5.10 above implies (after a translation
taking z to 0)

[ IRGEATCARY. b(R:)
BM(z) (24+C)NB,(2)
= [ RRWEnE - [ PR (Re)|
B} (z) (24+C)NB,(z)

m
+2/ r2R;Y ¢ (R.)|V2, +2/ 2:(113‘/12,,)7',,117z v Y (Ry),
BY(2) BM(:) o

where C depends on 6. Replacing ¥ by 9? and using the Cauchy-Schwarz
inequality we obtain

®)
RCAR Y(R.)
BM (z) (z+C)NB,(2)
<C( / rIRTY(R)|Y (R:)| [Vra? — / rZR;‘:p(Rz)lw'(Rz)l)
(2+C)NB,(2)
ol » )(R, (R ()] + (9 (Ra))r2od

P

On the other hand, for any non-negative continuous g on B,],” (2), the coarea
formula tells us that

/ gJ = / ( / gdH) drdy,
BM(z) B} (0) JM(ry)
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where J = \/det(dp o (dp)*) , dp : TM — R™*! is the induced linear map
of the transformation ¢ : (z,y) € M — (r;,y — 1) € (0,00) x R™, and

M(r,w) ={(z,y) € M : p(z,y) = (rw)} ={(z,9) €M : 1. =1, y—n. = w}.

Notice that then J is given explicitly by

J= \/det(VMf,' - VM f3)ii=0,1,... ,m»

where fo(z,y) = |z| and f;(z,y) = %%, j = 1,... ,m. But VMf; . VMf; =
Df;-Dfj—(Df:)*-(Df;)t, where Df is the full gradient of f on R"** and, at
the point (z,y) € M, v means the orthogonal projection of v onto (T(;, ) M)™*.
Thus we deduce that

(VMf VM f)iiz0a,.. m = I+ (€ij)ij=o.1,....m»
where
leis| < CYIDHMP = COE, +)).
i=0
Hence we conclude that

1<J+CW? +V§),

Tz

so that using the above coarea formula in (2) and combining the resultant
inequality with (1) yield

|((z,y) 'Z)J'|2 - -2/ 2(,,2 2
—_— < Cp™" ro(ve +vg)
~/B::(z) Rzn+2 B‘I,"(z) ? * v

3)
+C’p“”_2/+ |7‘2(‘r1-t|Mz(7‘ay)| - |2|)| r"ldrdy,
BP

where M,(r,y) = (M - z) N {(z,y) : |z| = r}. Now by 5.5, 5.8 and 5.9 (with
2p in place of p) we have

Ifz _fzol2
<Cp (r§vi + (p+ |z — 20]) V2
4) Bap(20)\{(z.,) : [z —£xo|<p/2}

+((z,y) = 2)*1?) < Celp + |z — 20]).

(Notice that for the present we need this only for the case z € S;NB,(z0), but in
fact Lemma 5.9 shows that it is valid for al 2z € S,.) Since
Tf”?, = I(.’B _€z’0).L’2 = I(:l: —€z°,O)J' + (ﬁz -Ezo,o)llz < 273”30 + 2|€z - £zo |2a



RECTIFIABILITY OF THE SINGULAR SETS 283

by (4), 5.2 and the first part of 5.9 obtain

e [ R )
BM(z2)

<[, A+
B3 (2)

- / (r§vie + %0y + 1((@,9) = 2)*P)
B} (20)\{(z,y) : |2—£24|<p}

S/ (r§v7e + P°V)
B;’:/z(zo)
+/ (rovey +p*vy +1((z,9) = 2)* )
B2 (20)\{(z,y) : [z—£20|<p/2}

< Cep™*?,

assuming z € Sy N B,/2(20). In particular with € small enough we can apply
the main area estimate 4.1 with 2p in place of p on the right side of (3), thus
obtaining (after selecting § = 2)

L2
/ |((.’l),y) n+§) l S Cp—n—2/ ,,.z(ufz + 1/5
BM (2) R, BM(z)

1/(2—a)
+C (p"n—2/ r2(vi + 1/3 ) .
B (2)\{(z.9) : [z —€:|<p}

Using (5) again on the right of (6) and also replacing p by 3p/4 yield, for all
z € 54 N By, /8(20),
(7)

T,y) — 2)*|? e
[, Mo [
B";4(zo) z BM(20)

e (” / (32, + P°03) + (@) - z)ﬂz))
B} (20)\{(z,y): |2—£20|<p/4}

Notice that here we have used the fact that |£, — £,,| < § for z € S4 N B,(20),
by (4), and also used the inclusions Bj,/3(2) C Ba,(20), B,/a(20) C Bs,s(2)
for z € BSp/S(ZO)-

Now we want to consider |z — 29| > 3p/8. Then, with z = (£;,7,), we have

I((z,y) = 2)* 1 = |(z = £4,0)" + (0, — n2)* + (€20 — &, 0) 42
< C("'g”fo +ly— nzlez + 1€ - &zolz)

(6)

1
(2—a)
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By integrating this inequality over the ball B, 4(20) (keeping in mind that we
have the bound p’"|B},"’ (z0)| < CB by 5.2), and using (4) (with p/2 in place of
p), we obtain

/ (2, y) - 2)
BY ,(20)

<C (i, +dv)) +C |((z,y) — 2)*1%,
BM (20) BM (20)\{(z,y) : |z—€24|<p/4}

where d = p + |z — 2o|. Since |z — 2| > 3p/8 this implies

/ |((z,y) = 2)*
B} ,(20) R;*?

<cam [ v v i)
B} (20)

+oan2 [ ((29) — 2P
BM (z0)\{(z.y) : |z—£20|<p/4}

1-(1/(2-a
<Cd "2 (riv: +d*v)+C e o
- BM(z) v dn

1/(2—a)
X (d_"_Z/ I((z,y) —2)L|2>
BM (20)\{(z,y) : |z —€:4|<p/4}

)

where we have used the fact that [pu .\ [((2,9) - z)*+]?2 < Cp™ by 5.2. Using
r
this and (7) for the case |z — 29| > 3p/8 we thus have

/ |((z,y) — 2)*?
3374(%) R?+2

—n— P B
(8) <Ccd "2 y (T3V30+d2'/§)+0(d—n)1 1/(2—a)
sz(ZO)
rovi, + d2u§ |((z,y) — 2)*|? [e=0)
X dnt+2 nt2 )
BM (20)\{(z,9) : |z —&z0|<p/4} R”

for every z € Sy.

The proof is now completed by means the first conclusion of Lemma 5.8 (with
L = {0} x R™) in each of the integrals on the right side of this inequality (8)
and then replacing p by p/2.

6 The deviation function 4. Here we use the gap measures of §3 in
order to construct a certain deviation function v, where 9(z,y) is the mean
over z € S; (S, as in §5) of the quantity |(z,y) — 2|~ 2|((z,y) — 2)*|? (which
appears on the left of the main inequality 5.7) with respect to a gap measure
constructed as in §3, with S, in place of S.
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We continue to assume the hypotheses 5.1 (hence 5.2) and 5.3, 5.4, 5.5 of §5.

Let p € (0,3], 6 € (0, 1) (smaller than the 8y(m,n) of Lemma 3.7), and let
St, T}, u* correspond to S,, T}, u of §3 with S, in place of S. By definition
of T,;", dist(z, 21+ Lo,1) < Cépforz; € T,NS; and z € S NB,(z1). Henceforth
we assume without loss of generality that Lo; = {0} x R™, as we did in the
proof of 3.7. Than

(6.1) €z = &4 | < Cdp, 2z = (21572) € T,N Sy,
2= (&,m2) € By(21)N Sy, p€ (0, 5]

Now define the deviation function ) by

— )L
6.2) v = [ @y = v,

Rz*? (z.y)

Since for given (z,y) € B;(0)\ sing M, the integrand in 6.2 is an analytic func-
tion of z € S, ¥ is certainly well-defined on B;(0)\ sing M.
The main result concerning this function is the following:

6.3 Theorem. Suppose 3 > 0. Then there is 6y = do(n, k,3) > 0 such that
the following holds. If 5.1-5.5 hold, and 8¢ < § < &, then for any p € (0, &]

) 16
we have the estimate
1/(2—a)
[vsc [
T} TTS,

op

where o = a(n, k, 8) € (0,1) and 6 = 0(n, k, 8) € (0, 35].

Proof. The proof is based on the L? estimates of the previous section. As
mentioned above, we assume

(1) LO,l = {O} x R™.

Take p € (0,1]. If T =0, then we have nothing further to prove, so assume
that T,f # 0, and take an arbitrary point wo € T} N S;. By definition of
T (c Tz't,), there is a point Wy € B,(wp) N Sy such that

2) B, (o) NS4 C {w : dist(w,do + {0} x R™) < 26p}
and

(3) B3sp(w)NSt #0 Vw € (W + {0} x R™) N Ba,(wyo),
So that

4) B,y(wo) NSy C the (6dp)-neighbourhood of we + {0} x R™,
and

(5) Besp(w) NSy #0 YV w e (wo + {0} x R™) N B,(wo).
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Also since any w € B,(wp) N Sy is in T;;, NS4, by Lemma 3.7 we know that
(6) C7lo™ < p*(Bs(w)NS4) < Co™,

Vo€ [461/2p, 15] and for any w € (wo+{0}xR’")r‘1B (wo), where C = C(m,n).
Now let wy, ... ,wm be any points in (wo + {0} x R™) N B,(wo) such that

) 3 ((w; — wo) Z%|a|2 Vae {0} x R™.

j=1

Let § € [86'/2, ;] be arbitrary for the moment. (We choose 8 = 8(n,k, 3)
below.) In view of (5) and (6), for each j € {0,... ,m} we can select points
zj € B,/32(wj) N Sy such that

/ (=, ) = z)*|?
BM (wo)\{(z,9) : [£—uwo|<0p/8} R3?
< Cpt(Byys(w))) ™! .
T,yYy)— =2
|((z,y) — 2)" )dlﬁ(z)

R?+2

o <[, (/
B:’;s(wi) BP(WO)\{(zry): |2—6w0|<0p/8}

<Cp™™ / ¥(z,y) dzdy.
BM (wo)\{(2,) : [2—€wo |<0p/8}

Here we have used the general principle that for any Borel set U x V' C B, (wo) X
S+ and any I > 0 we have

/I((ac,y)—é)ﬂ2
U R2+2
<Tpt(v)~ / (/ I—i-y)TnAdH"(m y)) dut(2)

_ / (/ (= ,yn:;) 2 (z)) ™z, )

<Tpt(V)~ /;w(x,y)dﬂ"(z,y)

(9)

for all ¢ € V except for a Borel set E C V with p*(E) < I'ut(V). (This
implies that if Uy, U, are two subsets of B,(wo), and I' > 2, then there exists
at least one point ¢ € V such that we simultaneously have (9) with each of the
choices U =U,, U =Us.)

Also, since |z; — w;| < p/32, by (7) we obtain

m 2
(10) > (- ) ) 2 ElaP, aelL,

=0
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where L is the linear subspace spanned by z; — zp, j = 1,... ,m. On the other
hand, automatically L satisfies

(11) IL - {0} x R™|| < C&

by virtue of (2), (10) and the fact that z,... ,zm € Sy N Bz,(wo).
Similarly, for arbitrary given w € (wo + ({0} x R™)) N B,(wo), and any set
¢9,...,¢% € Bo,(w) N (wo + {0} x R™) with

(12) (@ - -2 L2, ae (o) xRm,
3=0

we can again use the general principle (9). This time we in fact use (9) with
the choices U = Byg,(w) and U = B,(wo)\{(z,¥) : |z — &w,| < p/8}, in each
case taking V' = By,/4((]) N Sy. Then, keeping in mind (5), (6), the fact
that § > 85'/2 and the remark immediately following (9), we can select (; €
By,/s(¢7) N Sy such that for each j =0,... ,m

—_ L2
/ I((z’y)n+§.7) I S C(ep)—m/ w’
Bgp (w) R B a(w)
/ [((=,9) =GP
BM (wo)\{(z,y) : |z—€wq|<p/8} RZ-+2

<Cp)™™
By(wo)\{(zyy) : |z_£wo |Sﬂ/8}

(13)

where C' = C(n, k, 8). (We emphasize that the choice of {; depends on w, but
C only depends on n,k,3.) Since |(; — C?| < 8p/8, from (11) and (12) it also
follows that

m 22
(14 > (G- a2 T, ael
j=0

In view of (10) and (14) we can apply Lemma 5.8 in order to conclude that

(15) i ((z,9) = 2) > < CO~* i I((z,9) = ¢)* 1> + CO~2 dist? (¢, 20 + L)



288 LEON SIMON

on By (w), so that

/B S () - )P

6p (w) 7=0

sco-/ 3 1((z) - )P

P (w) Jj=0

+C6~2| B} (w)| dist®(¢;, 20 + L)

(16) = 1((9) = )
< C6~*(6p)"* / L
P P

+C072(8p)™ dist®((j, z0 + L)

swﬂmm/

B;‘:(w

P+ CO72(0p)" dist?(¢j,20 + L)
)

by the first inequality in (13).

Hence 5.8 and 5.9 together with (8) and the second inequality in (13) yield
(17)

dist?®(¢;, 20 + L)

m
|((2,y) — Zj)llz (2,9) = G
<Cp? ( )
B (wo)\{(2.): [z~ wo | < §} ,;0 RLF RZ?

< Cp*6p)™ /

BY (wo)\{(z,¥) : |£—€w, |<0p/8}

By combining (16) and (17) we conclude

o (W) j=0

< Calp£+2/ v+ Cet—2pl+2/ ¥
B (w) BY (wo)\{(2,) : | —6wo | <0p/8}

for each w € (wo + ({0} x R™)) N B,(wo).

The presence of the factor #¢ < 6 in the first term here is crucial, as we shall
see below.

Now we are going to use the main L?-estimate from Theorem 5.7 with p/2
in place of p. Since |20 — wo| < p/32| and hence B,/16(20) D B,/32(wo), or
B,/2(20) C By(wo), we have

[ Sl -5
(18)



RECTIFIABILITY OF THE SINGULAR SETS 289

/ [((z,y) — 2)*?
Bx”(wo) ?+2

m n\ 1-1/(2-a)
(19) <opa [ Y i@ =)o (5)

BM (wo) =0 dn

- — L2 | i
(e S ) L) =y 2

(],
( BM (wo)\{(z,¥) : |t —€wo|< &} pran Jj=0

for each z € S.
Then we want to integrate this with respect to the measure p*. First notice
that, using the notation p*(4) = u* (4N Sy,),

/ L dut < KT (By(wo)) " i B (B(i+1)p(wo)) — pt (Bjp(wo))
St dn = pn = (]p)"
(20) SCpt+Cp™™ Yt (Biinnyp(wo)) G = (G +1)77)
.1;1
<Cpt+cpty i < cpt,
i=1

where we have used summation by parts and the fact that u* (B(j+1)p(wo)) <
Cj™p™ by virtue of Lemma 3.5. Thus integrating in (19) and using the Holder
inequality and (20) we deduce that

(21)

/ Y < Cp"'z/ Y (@) — z)? +C(pm) V@)
B:;az(w") M

B} (wo) ;=9

n o
< [ (P @n) -2 )|
B, (wo)\{(z,y) : |z —Ewq|<p/16} j=0

If we select points wy, ... ,wq (with @ = Q(m,0)) in Bs,/4(wo) N (wo + ({0} x
R™)) such that {By,/16(w;)} are pairwise disjoint and {Bjp,/4(w;)} cover the
% -neighbourhood of Bj,/4(wo) N (wo + ({0} x R™)), then (21) implies

(22)

Q m
b < Cpt=2 / ((z,9) — )
/Bﬂaz(wo) ; BM  (wi) on

6p/4

S ((@,y) = )P+ C(p™) T

=0

1/(2—a)
m

<[ oY (@) - )+ .
BM (wo)\{(z,y) : |z—€wo IS #} j=0

ropts
BM(wo)\{(z,y) : |z —Ewo|< 5}
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Now we use (18) with w; in place of w, estimating the terms
fB:,:“(w‘) Yo l((z,y) - z;)1|? on the right. At the same time we can use (8)

in the remaining terms on the right. Thus from (22) it follows that

Q
[, wscey [ w+o .
B, (wo) BY ,(w;) BM (wo)\{(2.:9) : [e—Ewo|< %}

j=1

1
(2-a)
(23) G (pm) T ( / w)
BY (wol\{(2.3): la—€wo IS %} /|

where C = C(n,k,p) is independent of § and C; = C1(8,n,k,B). On the
other hand, we have B,(wo) NS4+ C {(z,y) : |z — &;| < 4dp} by (4), and
p™ < Cut(B,(wo)) by Lemma 3.7, where we continue to use the convention
ut(A) = pt(AN Sy). Hence, assuming 46 < 6/16, we see that (23) implies

/ P < Co Y+ C N (U
(24) B3, (wo) B} (wo) By (wo)\Sy, /16 .

(2—a)
+Cy (ut (BM (wp))) " &= ( lb) ’
1(/‘ ( p ('WO) ) /;gl(wo)\sjp/lﬁ

where ST = {(z,y) : dist((z,y),S4+) < o}. Notice that this was all valid
starting with an arbitrary wo € T, N S4. Now choose a maximal pairwise-

disjoint collection {B,/128(Pk)}k=1,...,p With px € Sy N T:/‘i' Then UB,/32(pk)
covers all of the £ neighbourhood of S;. N T:} 4~ By Remark 3.4(2)(a) of §3 we

have also that UB,(px) is contained in T3,. Since any point of T;, lies in at
most C(n) of the balls B,(px), replacing wo by p in (24) and summing over k

yield
/ ¥<Ch / v+ C / ¥
T:; T;; T;’\S:p/w

1/(2—a)
+C + T+ 1-1/(2-a) /
l(lu ( 2p)) T;;\S"’ 1/)

8p/16

509/ ¢+ce/ ¢+o/
T} TENTS, THT,

+
6p/16

1/(2—a)
+Oy(uH (T 1) ( / w)
g TH\SS, /16

<co| y+cC /
T:; T;;:\T;:/m

1/(2—a)
+C1 (u* (T) /@) ( / w)
TN /|
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so that, in consequence of p+(S,) =1 and S} D T},
1/(2—a)
[, wsc ( / w)
Tat/le \ 6p/16 ,

provided 8 = 8(n, k, B) € [46'/2, 614 is chosen to satisfy C8 < . By changing
a notation (taking 6/16 to 26) and replacing p by p/2, we ﬁnally obtain the
required inequality.

7 Proof of Theorem 4.
Let 8> 1 and let 6y € {©¢(0) : C € T3} be arbitrary, and suppose

(7.1) wp € sing M with ©ps(wp) = 6.

Recall that, by the monotonicity identity, for each € € (0,1) there exists o9 =
oo(€, u,wp) > 0 such that

(7.2) Onm(wo) < o7 ™|BM(wp)| < Oum(wo) +¢, o€ (0, 00)-

Also, by monotonicity 1.9" we have the identity

(7.3)  wi? /B e ——'((“gn:j)ﬂz = w07 BM(2)| - Om(2)

for each z,r such that B,(z) C Upy. Since B,(z) C B(14¢)0(wo) for any
z € BM(wy), from 7.2 we deduce that

= / (@0 =DM o1 pM ()1~ 4(2)
" Jem(z i i

R;l+2
Wi (14 €™((1 +€)p) "Bl 4, (wo)| — Om(2)
( )Be,

z € BM(wo), o < 09/2, provided that ©p(z) > Opr(wo) and that oo =
oo(M,wo,€) > 0 is sufficiently small. Let

I/\ I/\

St = {2z € Byyy2(wo) : Om(z) > 6o},

take w1 € S N Beyy/a(wo), 01 € (0,€00/4] and define

—_—

(74) M = nwl,al M7

where 7y, 0, (,¥) = 07 *((x,y) — w1). Then the above inequality gives

- |((z,y)—z) I 1 —nipM _ c
(7.5) “’"I/BM(Z) T piT o SWn 'p7MBY (2)] - ©(2) < Ce,

z € Sy(wy,01), pe€(0, Z]’
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where
(76) 0e S+(1U1,0'1) = {Z € FI(O) : @M(Z) > 00} = §1(0) ﬂnwl,als.,_.

Notice that S, (w;,01) corresponds exactly to the S, of §§5, 6 with M in place
of M. Also, recall that by Lemma 2.16, we can, and we shall, assume that
oo = 0o(M,wo,¢€) is chosen small enough so that Sy has the e-approximation
property of 2.16 and hence Sy (w1, 01) does also. Thus (Cf. 5.4)

(7.7 S+ (w1,01) N B,(z) C the (eo)-neighbourhood of L, ,,

for each z € Sy(wi,01) and each o € (0,1], where L, , is an m-dimensional
affine space containing z. We fix these affine spaces in the sequel. Without loss
of generality we assume

(7.8) Loy = {0} x R™.

We emphasize that 7.5 and 7.7 hold automatically if o9 = oo(€,u,wp) is
chosen sufficiently small. We henceforth assume og (€, u, wp) has been so chosen,
and we continue to take M as in 7.4. Notice also that by 7.4 (choosing a new
€ if necessary) 5.1, 5.3, 5.5 all hold with S;(w;,01) in place of Sy and with
6o = ©pr(wo). Thus we can apply the results of §5, §6 with Min place of M,
and with S, = S;(w1,01), 6o = O p(wo).

Before we begin, we need to establish the following lemma, which is a simple
inequality for real numbers:

7.9 Lemma. If0<a<b<1,a€(0,1), 8> 0 and a>~® < B(b — a), then
a—1+a/2 _ b—1+a/2 > Ca—a/2, C = C(ﬁ,a) > 0.

Proof. In case b/a > 2 we have trivially that
a—1+a/2 _ b—1+a/2 > Ca—1+a/2 > Ca—a/Z,

so the required inequality holds in this case. In case b/a < 2 we have

a~1te/2 _p=1+e/2 = (1 — /2)c"2+*/2(b— a) for some ¢ € (a,b)

1-—a/2 -
> /2 ~a/2 22_2 since a > b/2

> !1(1_“4_a/i)a—a/2 since a®~* < B(b — a),

so again the required inequality is satisfied, and the lemma is proved.

Proof of Theorem 4. ~
Let T}, ut (corresponding to given § with € < §/8, and with M asin 7.4 in
place of M) be as in §6. § < do(n,k,8) and € < §/8 will be chosen later.

Now, with M as in 7.4, by virtue of 7.3, 7.5, we can apply all the results of §6
to M, and hence

1/(2—a)
(1) A+¢SC(/71;\T$¢>

8p
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with ¢ the deviation function of §6 with M in place of M, where 8 = 6(n, k,3) >
0, and a = a(n, k,B) € (0,1).
In view of Lemma 7.9 we can use (1) to get

—1+a/2 —1+a/2
@) (/T w) - (/T w) > o1,

where Iy = [+ 1. Then starting with p = § we can iterate the inequality (2)

in order to obtain

—14a/2
/+ Y > G, j=12,...,
Tei/4

3) / V<O, =12,

and hence

+
TaJ’ /4

where 2y = a/(2 — @) > 0. Since (j + 1)!*7 — 51+ > C}7, this implies

o] [e e}
S@+vr-in [ wserryirson.
=0 T55 14 i=1

Using summation by parts we obtain that

o0
¥ % < CLY,
Jj=1 T:i—l/q\Tat /4
so that
) [ hogdi+y < or,
T
1

where d is defined on T by
4

27k if (z,y) € T\ ey, k22,
5 d(z,y) = ’ 2
(5) (,9) {0 if (z,y) € Ty .

Now for z € Sy NT; and (z,y) € T we claim that
4 4

(6) d(z,y) < 4R:(2,), (z,9) € Ty \Bux (2),

where R, (z,y) = |(z,y) — 2|. Here we include z € Ty, in which case d(z) =0
so (6) says d(z,y) < 4R.(z,y), Y (z,y) € T+. To prove this we can of course
4
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assume d(z,y) > 0, so take any w = (z,y) € T+,,\ " «_1 for some k > 2, and
consider cases as follows:

Case (a): z € T}, for some ¢ > k + 2. (If z € Ty, then this case will be
applicable V¢ > k + 2.) Then by Remark 3.4(2)(d) of §3 we have |{w — 2| >
2-k=2 = 9-k /4 = d(w)/4.

Case (b): z € T,-,\T;t,_, with ¢ < k+ 1. In this case, if we assume that
w ¢ Bi(zil (2), then (keepmg in mind that z € Sy and d(z) = 277 in case
z € T,F \T) . 1), we have |w — 2| > 27971 > 27F=2 = d(w) /4.

Thus (6) is always satisfied as claimed. Now inequality (4) states that

— )12
@ [ o [ MDD g oy < o,
T

] Sy R;l+2
so that by interchanging the order of integration we deduce that

,y) — 2) L2
® [ nogap+ BB I 4oy < 5,
i Z

for all z € S with the exception of a set of p*-measure < CIj. (We must keep
in mind here that there will in general be lots of points z € Sy which are not
in the support of u*, and these have u*-measure zero, so in particular (8) need
not hold for them.)

In view of (6), (8) implies

z,y) — 2 12
(9) /T g 0 Ilongll“I—((——%:—z—)—L dzdy < I,
i‘ d(z

for all z € S} with the exception of a set of u*-measure < CIj.
Next note that according to Lemma 3.7 we have a countable set S = {z;
i=1,...,Qk k>2} C Sy NT{ such that
4

(10)  zik € TEN\T oy, sod(zip) =27%, j=1,...,Q k>2,

00 Qx
1) p=Cid™2Y 2™ N [k ]+ CH™ LT, Ci=Ci(m), i=1,2,

k=2 j=1
and
(12) SﬂT+ \ “rk-1 C Ul—max(k —2,2) U] 1 Bsir2g-n(2e,5) Vk2>2.

Now let £, C S be the collection of all z; ; € S such that

(13) / . |log R,,,,1+7 (& yiznf;' O gy > 13,
TI\Ba(z, ;) (2j.k)
E s AL

Zj.k
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and let & C T0+ be the collection of all z € To+ such that

L2
(14) |log Rz|1+7|-((ﬂﬂ)7¢z)—' dzdy > I].
T;\Bd_g,_l(z) R;

Since ut (& U &) < CIY by (9), by (11) we have that

(15) > dw)™ +H™ () < CI, C=C(n,k,0).

we&

Now take any z € T; NS4 \Ty . From (12) it follows that z € Ba(z; 2)/4(Zi.k)
1 .
for some z; € S; if this z;x ¢ & then by (9)

z, zik)t|?
(16) /+ |10ngj‘k|1+7'(( y;ﬁ,‘g»k) | dzdy < I7.
Ti “Bd(zs- o) (2ik) Zik

Regardless of whether z;x € & or not, by (10) and Remark 3.4(2)(d) (with
k + 2, k + 1 in place of £, k) we have that z € By, ,)/4(zjk) C R"\T,C._; so
that
(17) d(z) > 271 = %d(zj,k).
Thus by (16), (17), for any z € Sy N T \Tt,

4

either z € S; N (U, kegDBd(zJ ») /4(zJ k)
or 3% (= some z;x € Sy ﬁT1 \(Tg" U &)

(18) with d(z) > 3d(2), z € Bd(z)/4(z) anL \

T, z
[ egrierlED DT goy < 1y
T* \Big;;)_(z) 3
On the other hand if z € T;"\&}, then by definition d(z) = 0, and (9) implies
0

_ L2

(19) /+ |longll+7|((i%-)—l—dzdy <Ij.

T{\Ba() () z

(18) and (19) are the main estimates. Using them we now want to check that
we have all the hypotheses needed to apply the rectifiability lemma of §2 (in
case p=1and S = S;). For this purpose, we first assume

(20) no ball B,(z) with z € Bs3(0) NS4 and p € [3, %] has a §-gap.
By the definition of é-gap in §3, from (20) it follows that

(20)’ S, has no 46-gaps in the ball B;(0).



296 LEON SIMON

Also by Definition 3.1 and the definition of d(Z) we have

1 —
(20)" d(z) < 33 € Bss(0) NSy,

provided e is sufficiently small (depending on €, 7, k, 8), which we subsequently
assume. Using (20), 7.7, 7.8, and the fact that e < §/8 we obtain

(21) Bss(0) N {(@9) : lsl < §} C TF

In this case (19) implies

(22) |log R |1+‘1M dzdy < I
QB (2) ? R;*? -

for any z € T, \&1, where Q = Bs/5(0) N {(z,y) : |z| < %}, and (18) implies
that for any z € (Sy N B1/2(0)\T5")\(Uz; wego Ba(z; x) /4(2i,k)) there is always a
point Z € S; NTF\Ty such that

4

_ 3\1)2
/ ) |logR;|l+7|—£%,w:)—I— dzdy < 17,
(23) Q\Ba) (%) R3

z € Byzy,a(2), d(2) > 3d(2).

Now take an arbitrary point z € (St N By/2(0)\Tg")\(Uz; » €0 Baz; 1) /4 (21 .k))
and let Z be as in (23).

Sy = Sy4(wi,01) has no §-gaps in B,(%) for p > d(Z), and hence for all
pE [%ﬂ, 1] we can select z1,... ,zm € St N B,(Z) such that 5.6 holds with z
in place of zp and with v depending only on n,k,3. Let n € (0,6%] be given
and let L be as in 5.6 (with Z in place of zo). For € small enough (depending

on 7,n,k,B) and for p € [%ﬂ, %] we have all the hypotheses needed to apply
Lemma 5.9 with 2p in place of p and with 5 in place of (. Hence there is
C®) € Top with singC®) = L and u® € C3((2 + CW) N By, (B)\{(z,9) :

dist((z,y), Z + L) < p/8}; (C(P)*L) such that

M 0 Byys(I\{(2,) : dist((z,), % + L) < p/8}

(29)
= graphu(®) N By,/3()\{(z,y) : dist((z,y),Z + L) < p/8}
and
3 .
(25) S sup /7 DIWP)| < 1,

=0

provided that e is small enough depending only on n,n,k,3. Since for p >
d(%)/4, by 3.1, 3.5 and 7.8 we have automatically

(26) IL - {0} x R""?[| <46,  |IL - Lz,ll < Ce.
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Using (24), (25), (26) with p = } we then can select a maximum interval
[P0, ] € [%2, 1] such that there is w € C3(C N By /5(2)\(B,o (2) U K (8)); C*)
such that

B0 Buys(I\(Bo(2) U (2 + K) = graph(w) 0 By/s(\(Byo () U (2 + K),
and
3 .
(27) > D] < 3,
, =
where C € T¢p with singC = {0} x R™ (we can take C = ¢(C(1/?)) with ¢

orthogonal such that g(sing C(!/®)) = {0} x R™ and ||g — 1g~+|| < Ce), and
where

1
K= {(zvy) : |$| < Zl(z’y)l}
By (20), 3.1, (24), (25) it is clear that
po < 2

so long as € is small enough. Further, from (27) and (24), (25), (26) with p €
[00, 5], it follows that w can be extended to give & € C3(CN (B 3(2)\ (B, /2(2)U

(2 + K)); C1) with

M 0 (Bys(2)\(By2(2) U (2 + K))

(28) = graph(w) N (By /s (2)\(Bpo/2(3) U (2 + )
and
3
(29) Y sup |Di| < CpPl3,
j=0
where

R ={@y) : lel < o)),

On the other hand by the identity (8) in the proof of Lemma 4.4, applied
with @ in place of u and with C?/? in place of 5, C as in (29), we have

(30) 31((z,y) +0(z,y) — £)*| < |R}(u/R:)r.|,

provided 7 is small enough depending on n, k, 8.
Now let

[ =CnS"1\(z + K),
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and let (o) denote the L?(T) function given by w(s)(w) = W(Z + sw), w € T,
Then by direct integration, the Cauchy-Schwarz inequality, and (30) we obtain
(31)

16(0) — d()llz2ry < / I lILz(r)dS

s 1 T —1- 1/2
/ |log s|* 7| ()||L2 se-1y ds) & (/ s7!|logs|™! 'Vds)/
o

1/2

_ Rsig, | _
<[ st L) g
Q\Bua(z)/2(%) RE

< c1y?|logr|™?

for any po/2 < 0 < 7 < 1/8. Taking 7 = § and using (24)—(26) with p = 1/8,
and also (27) again, we then deduce that

lw(o)llL2ry < Cn

for o € (&2, ]. Thus

(32) sup |1I)|2 < Cp,

n—2 /
p€lpo. 1] BM (3)\(B,g/2(2)U(i+K))

and hence by PDE estimates we can improve the estimate (29) to

3
(33) >/ sup| D] < Cn <n*/?,

=0

provided 7 is small enough depending on n, k, 3. However this contradicts the
maximality of the interval [po, 1] unless po = d(2)/4. Thus po = d(Z)/4 and, in
consequence of (32),

(34) sup p7" dist®((z,y),C) < Cn.

n—2 /
(42 1 BY(2)(\{(z.v) : |2—5|<9p/40}UBa(z)/8(%))

Since z € By(z)/4(Z) and 1d(2) < d(z) < =, from (34) it follows that

SUP [24(z), 310" dist?((z,y), C) < Cn,

/1?:;2<z>\{<z,y) :le—¢1<p/5}

where ¢ is the projection of z onto its first £+ k coordinates; in other words, by
writing p in place of p/2,

(35)  sup [yayP "0 dist?((z,),C) < Cn.

/B},"’(Z)\{(wyy) |lz—£1<2p/5}
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If ¢ € (0,47 is given and e is sufficiently small, depending on é,n, k, 3, then
(35) combined with Corollary 4.6 gives

(36) S N B,(z) C the ({p)-neighbourhood of z + {0} x R™, p¢€ [1(252,-;— .

So, using the definition 3.3, we would have z € T;Ez) /2 unless one of the balls
By(2), p € [2d(2), 3] has a o-gap.
But of course z € Tgﬂ contradicts the definition of d(z) for d(z) > 0, so we

conclude finally, keeping2 in mind (20),

Vz € (S:\T5") N B1/2(0)\(Us; v eeo Buz; 1) /4(25,8)),
(37) Jdo, € [ﬂ,‘,ﬁ, %] such that Sy has a é-gap in By, (2).

Next notice that since T0+ is a subset of the graph of a Lipschitz function
over {0} x R™ with Lipschitz constant < C4, in view of (15) we can select a
{Bg,(2r)} such that

(38) ok €(0,3), & CUBo(z), Y of <CIJ.
k

For z € Sy N Ty \ Uk, By, (21) we have again

(31’ lo(0) = d(n)llz2ry < CL3"*[log ="/

(w as in (31) with 2z in place of z), and

(36)) Sy NB,(z) C the ({p)-neighbourhood of z + {0} x R™, p € (0,3],

by the same argument used to derive (31) and (36), except that we use (22) in
place of (23) and z in place of Z everywhere. In view of (15), (36), (37), (38),
and (36)’ it is now evident that, provided (20) holds, we can take the collection
{Ba(z;..)/4(2i,k) }z; €60 U {Bo, (2k)} to be the collection corresponding

to Tzo,00 in the rectifiability lemma of §2 in case we use ( in place of €, and then
hypothesis (b) of that lemma is satisfied in case z; = 0 and p; = 1.
On the other hand if (20) fails, then some ball B%(y) with y € By 0)n

{0} x R™ must have a %-gap, and so the first alternative hypothesis of the
rectifiability lemma holds in case z; = 0 and p; = 1.

Thus, provided e is sufficiently small, depending on 6, n, k, 3, we have shown
that Sy (w1, 01) satisfies the hypotheses of the rectifiability lemma 2.2 for z; =
0,p1 = 1. But then trivially any closed subset of Sy (w;,o1), including
Nwy 04 (FGUO s4(wo) N S4), also satisfies such hypotheses. That is, in view of
the arbitrariness of w;, g1, we have shown that S = B,,, /a(wo) NS satisfy the
hypotheses of 2.2 for any z; € S, p1 € (0, po], where py = €oo/4.

Thus the rectifiability lemma 2.2 implies that B, /4(wo)NSy is m-rectifiable.

Finally, let B be any closed ball contained in Ups. Then by monotonicity 1.7
there is a fixed 8 > 0 such that ©p(y) < 8 for each y € B. In particular
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©¢c(0) < B for any tangent cone of M at any point y € B, and by Lemma 4.3
we know that {Op(y) : y € sing, M N B} is a finite set oy < -+ < an of
positive numbers, where sing, M is as in 2.17. Let

S; ={z€singM : Op(z) = a;},

S]7L = {z €singM : Op(2) > a;}.
Notice that Sf is closed in 2 by the upper semi-continuity 1.13 of @js. For
any j € {1,...,N} and any y € S;, according to the above discussion, there is

p > 0 such that B,(y) N Sf is m-rectifiable. Thus, in view of the arbitrariness
of y, the set S; has an open neighbourhood U; such that

(41) S;' NU; is locally m-rectifiable.

Of course the Sf N Uj are also locally compact, because S]'-" is closed and Uj is
open. Now let

Vi={z€singM : Om(2) <ajp}, 7=0,...,N—-1, Vy=Q.
Then the V; are open in by the upper semi-continuity 1.13 of @, and with
ap =0, any1 = 00, S()* = sing M, and Uy = (), we can write

Bnsing M = U;'V:O{z € BNsing M : a; <Op(2) < ajp1}

=UY,BNSnV;

= (UNLo(BN S nU; NV;)) U (ULe(B N SF\U;) NV;).
This is evidently a decomposition of B Nsing M into a finite union of pairwise
disjoint locally compact sets, each of which is locally m-rectifiable; in fact for
each j the set (BN S].+\U,~) NV; C sing M\ sing, M, and hence has Hausdorff

dimension < m —1 by 2.17, and the set BN S,  NU;NVj is locally m-rectifiable
by (30). This completes the proof of Theorem 2.

Proof of Remark 1.14. We have to show that for H™-a.e. z € sing M

there is a unique tangent space for sing M at 2 in the Hausdorff distance sense,
and also that M has a unique tangent cone at z.

For the former of these we have to show that, for H™-a.e. z € sing M, there
is an m-dimensional subspace L, such that for each ¢ > 0

(1) B1(0) N7, s (sing M) C the e-neighbourhood of L,
and
2) B,(0)N L, C the e-neighbourhood of 1, , (sing M)

for all o € (0,00) where oo = go(¢,M,2) | 0 as € | 0. Using the notation
in the last part of the proof above, let z € S; be any point where Sf has an
approximate tangent space. Then there is an m-dimensional subspace L, with

3) lim fdH™ =/ fdH™ V feCoUR™).
L.

740 Jn, o (s})
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(Notice such L, exists for H™-a.e. z € S; because S; is locally m-rectifiable.)
We show that (1) and (2) hold with this L,. In fact the inclusion (2) is evidently
already implied by this, so we need only to prove (1). Let o | 0 be arbitrary,
and let C be any tangent cone of M at z with 7, ,,, M — C for some subse-
quence oy . By (3) it is evident that the €; neighbourhood of B;(0) N7 4, S+
contains all of L, N B, /5(0) for some sequence € | 0, so that, in consequence of
the upper semi-continuity 2.3,

Oc(y) > O©¢c(0) = Op(0) everywhere on L. N By /5(0).

Thus by 2.5 and 2.6 we have L¢c D L, and since L, has maximal dimension m,
this shows that Lc = L,, so C € T with Lc = L,. But then by 4.6 we have

B1(0) N n;,q,, (sing M) C the ex-neighbourhood of L,

for some sequence € | 0. In view of the arbitrariness of the original sequence
or we thus obtain (2) as claimed.

Finally we want to show that there is a unique tangent cone of C at H™-
a.e. z € singM. Let S; = {z € singM : Oum(z) = a;} as above. For each
€ > 0, we can subd1v1de S; into U2, S;;, where S;; denotes the set of points
z € S;j such that the conclus1ons ( ) and (2) hold with o9 = 1. Provided the

original wy, 03 in the definition 7.4 of M are selected with wg € Sj; and 0, =
o1(€, M,wo,i) < 1, by (1) and (2) we then have that all points of z € Nuq,s, Sj,i
are contained in the set T, in the proof of Theorem 2 above. Hence by (31) of
the above proof we conclude that there is a unique tangent cone of M at each
point z € S;; N By, (wp) with the exception of a set of H™-measure < eo*. In
view of the arbitrariness of €, wg here (and keeping in mind that we have already
established that S;; is locally m-rectifiable) this shows that there is a unique
tangent cone of M for H™-a.e. points z € S; ;. Since H™ (sing M'\(U;,;S;:)) = 0,
the proof is complete.

7 Theorems on Countable Rectifiability. Recall that a set is countably
m-rectifiable if it can be written as the countable union of m-rectifiable sets.

There are some theorems about countable rectifiability of the singular set
even without the hypotheses 1.13, 1.13' (i.e., without assuming that we are in
the top dimension of singularities over the entire class of maps or surfaces under
consideration). For minimizing maps such theorems are established in [32].
Here we want to establish such a result for M € M.

We are going to prove that S(™) is countably m-rectifiable, where, for a given
M e Mandm e {1,...,n—1}, S(™ is the set of points z € sing M such that
all tangent cones C of M at z are such that dim sing C < m.

In fact we shall prove the stronger result that T(™) is countably rectifiable,
where T(™) is the set of points z € sing M such that all tangent cones C of
M at z have dimLc < m and singC = L¢ if dim Lc = m. Since trivially
S(m)  T(m) this will also prove the above claim about S(™).

For each 6 > 0, let Td(m) denote the set of pomts z € sing M such that,
whenever C € C with inf, ¢ (g ) fBl(O)nn, M dist®((z,y), C) < 6, then we have
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dim Lc < m and singC = L¢ if dim Lc = m. We claim that

(1) T C U2, T,

Indeed if z ¢ U;?‘;ITI(;';.), then for j = 1,2,... we can find C; € C and o €
(0,1/5] with

@) / dist*((z, ), C;) < 1/
31(0)01];_,:’. M

and

3) either dim Lgc; > m or both dim Lc; =m and singC; # Lc;.
Notice that the latter alternative here implies that

(4) sing C; D Hj,

where H; is an (m + 1)-dimensional half-space. Now by (2) some subsequence
of C; (still denoted C;) converges to a tangent cone C of M at z, and by (3),
(4), 2.1, and 2.3 we have that

dim Lc > m or both dim Lc = m and singC # Lc.

Hence z ¢ T(™ by definition, and (1) is proved.
Next we define Té(;';) , for B8 > 0, to be the set of all z € Tts(m) such that

3
5 sup DiAc,| < B
(5) o, 21D e,

for all C € C such that inf,¢(0,6) [|C — 72,6 M||L2(B,(0)) < 6 and dim Lg = m,
where Cy is such that sing Co = {0} and ¢(C) = Cy x R™ for some orthogonal
g, and Ac, is the second fundamental form of Cy. (Notice that by definition of

T‘;(m) there is such a Cy corresponding to each such C.)
Now

(6) Té(,'g) is a closed subset of sing M

for each 4, 8 > 0, because if z; — z € singM, with z; € T§$) Vj, and
if C € C with fannBl(o) dist?((z,y),C N B;1(0)) < 6 for some o € (0,d],
then, with this o, fm. . MNB1(0) dist?((z,y), C N B1(0)) < & for all sufficiently

large j. Since z; € T‘s(,';), we have dim Lc < m, and also singC = L¢ and
SUPggn-m-1 Y mg DI Ac,| < B in case dim Lc = m. That is, z € T{}y and
hence (6) is proved.

All the arguments used in the proof of Theorem 4 now carry over to the

present setting essentially without change provided we use T‘,(";) N S+ in place
of S;. (Whenever we needed 2.12 before, we can now use instead (5) above.)
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Thus we conclude that for each given §, 8 > 0 and for each z € Ta(fg) with
Orm(z) = O¢(0) for some C € C with singC = L¢ of dimension m, there is
p > 0 such that B,(z) N {w € Ta(,?) : Op(w) > Opm(2)} is m-rectifiable, and
then the argument in the last part of the proof of Theorem 2 shows that T‘,("g)
locally decomposes into a finite union of locally m-rectifiable subsets. In view
of (1) and the fact that Td(m) = U]?";ITJ(,';), which proves that 7(™) is countably
m-rectifiable as claimed.
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