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The Formation of Singularities in the Ricci Flow

RICHARD S. HAMILTON

1 The Equation. We have many cases now where some geometrical object
can be improved by evolving it with a parabolic partial differential equation.
In the Ricci Flow we try to improve a Riemannian metric g(z,y) by evolving it
by its Ricci curvature Re(z,y) under the equation

% 9(X,Y) = —2Rc(X,Y).

In local geodesic coordinates {z'} at a point P where the metric is
d52 = g”dmzdzj

we find that the ordinary Laplacian of the metric is

2
B9 = 9" gy 9u = T2RAXY)

so the Ricci flow is really the heat equation for a Riemannian metric

8 4 ”»
ot? Alg.

In this paper we will survey some of the basic geometrical properties of the
Ricci Flow with a view to considering what kind of singularities might form.
This has proven to be a useful technique even where we want to prove conver-
gence; sometimes if we know enough about the singularities we can see there
aren’t any. It is also the first step toward continuing the flow through essen-
tial singularities where the topology of the manifold may change, and hopefully
simplify.

2 Exact Solutions. In order to get a feel for the equation we present some
examples of specific solutions.
(a) Einstein Metrics

If the initial metric is Ricci flat, so that Rc = 0, then clearly the metric
remains stationary. This happens, for example, on a flat torus T™ = Slx .- x
S or on a K3 Kiihler surface with a Calabi-Yau metric.

If the initial metric is Einstein with positive scalar curvature, the metric will
shrink under the flow by a time-dependent factor. For example, on a sphere Sy
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of radius r and dimension n, the sectional curvatures are all 1/r% and the Ricci
curvatures are all (n — 1)/r2. This gives the ordinary differential equation
dr n-1

at -~

with the solution
r’=1-2(n-1)t

which starts as a unit sphere r = 1 at t = 0 and shrinks to a point as
t—=T=1/2(n-1).

Any Einstein metric of positive scalar curvature behaves the same way, and
shrinks to a point homothetically as ¢ approaches some finite time T', while the
curvature becomes infinite like 1/(T — t).

By contrast, if we start with an Einstein metric of negative scalar curvature,
the metric will expand homothetically for all time, and the curvature will fall
back to zero like —1/¢. For example, on a hyperbolic manifold of constant
curvature —1/r% we get the ordinary differential equation

dr n-1

dt—r

which has the solution
r=1+2(n-1)t,

with K = —1 at ¢t = 0. Note that now the solution only goes back in time to
T = —3(n — 1), when the metric explodes out of a single point in a big bang.
(b) Product Metrics

If we take a product metric on a product manifold M x N to start, the
metric will remain a product metric under the Ricci Flow, and the metric on
each factor evolves by the Ricci Flow there independently of the other factor.
Thus on S? x S! the S? shrinks to a point in a finite time while the S! stays
fixed; hence the manifold collapses to a circle. On a product S? x S? with
different radii, the sphere of smaller radius collapses faster, and shrinks to a
point while the other metric is still non-degenerate, and the limit manifold is
S2. If the radii start the same, they remain the same, and the whole product
shrinks to a point in finite time.
(c) Quotient Metrics

If the Riemannian manifold N = M/T is a quotient of a Riemannian manifold
M by a group of isometries I' at the start, it will remain so under the Ricci
Flow. This is because the Ricci Flow on M preserves the isometry group. For
example, a projective space RP™ = S™/Z, of constant curvature shrinks to a
point the same as its cover S™. The S2? bundle over S* where the gluing map
reverses orientation can be written as a quotient W2xS! = §2? x S!/Z, where
Z, flips S% antipodally and rotates S by 180°. The product metric on S? x S!
induces a quotient metric on S2xS which evolves under the Ricci Flow to
collapse to S*.
(d) Homogeneous Metrics
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Since the Ricci Flow is invariant under the full diffeomorphism group, any
isometries in the initial metric will persist as isometries in each subsequent
metric. A metric is homogeneous when the isometry group is preserved; hence
if we start with a homogeneous metric the metric will stay homogeneous. For
a given isometry group there is only a finite dimensional space of homogeneous
metrics, and the Ricci Flow can be written for these metrics as a system of a
finite number of ordinary differential equations. In three dimensions there are
eight distinct homogeneous geometries; in [8] the Ricci Flow has been worked
out on each. We give two examples typical of the phenomena that occur.

The Berger spheres are homogeneous metrics on S% which respect the Hopf
fibration over S? with fibre S!. Under the Ricci Flow the metrics on S$? and
on S! shrink to points in a finite time, but in such a way that the ratio of their
radii goes to 1.

There is a torus bundle over the circle which is made with a Dehn twist in
the fibre. This manifold admits a nilpotent homogeneous metric. It evolves
under the Ricci Flow by stretching some ways and shrinking others, but so as
to reduce the total twisting. As ¢ = oo the curvature falls off to zero like 1/t.
(e) Solitons

A solution to an evolution equation which moves under a one-parameter sub-
group of the symmetry group of the equation is called a soliton. The symmetry
group of the Ricci Flow contains the full diffeomorphism group. A solution to
the Ricci Flow which moves by a one-parameter group of diffeomorphisms is
called a Ricci soliton. The equation for a metric to move by a diffeomorphism
in the direction of a vector field V' is that the Ricci term Rc is the Lie derivative
Ly g of the metric g in the direction of the vector field V'; thus

Rc= l:vg or Rij = gikD,;Vk +gjkDin

is the Ricci soliton equation. If the vector field V is the gradient of a function
f we say the soliton is a gradient Ricci soliton; thus

Rc=D*f or Ry =D;D,f

is the gradient Ricci soliton equation. In two dimensions [22] the complete
metric on the zy plane given by

dz? + dy?
ds? = — TV
1+ 22 4 y2
is a gradient Ricci soliton of positive curvature with the metric flowing in along
the conformal vector field

V =9/0r =z28/0z +y 3/8y.

This metric is asymptotic to a cylinder of finite circumference 27 at co, while
R falls off like e™*. Robert Bryant [3] has found a complete gradient Ricci
soliton metric on R® with positive curvature operator by solving an ordinary
differential equation up to quadrature. The metric now opens like a paraboloid
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so that the sphere at radius s has diameter like /s, while R falls off only like
1/s. (Presumably the same is true for n > 3.)
On a Kahler manifold the equation for a gradient Ricci soliton splits into two
parts:
R,5=DoD5f and D.Dgf =0.

The first equation says f is a potential function for the Chern class; the second
says that the gradient of f is a holomorphic vector field, so that the flow along
the vector field preserves the complex structure. The gradient Ricci soliton on
R? = C' given above is a gradient Ricci-Kihler soliton in the usual complex
structure, and the conformal vector field is of course holomorphic. Cao [5] has
found similar gradient Ricci-Ké&hler solitons on C* with positive holomorphic
bisectional curvature. The sphere S*"~! at radius s looks like an S! bundle
over CP™~! where the CP"~! has diameter on the order of /s while the S!
fibre has diameter on the order of 1 (it remains finite as s & o0). He has also
found a gradient Ricci-Kéhler soliton on the tangent bundle T'S? to the sphere
52 = CP! where the metrics on the R? = C! fibres also are asymptotic to
a cylinder of finite circumference. Again these are found by quadrature of an
ODE.

More generally, we can look for a solution to the Ricci Flow which moves by a
diffeomorphism and also shrinks or expands by a factor at the same time. Such
a solution is called a homothetic Ricci soliton. The equation for a homothetic
Ricci soliton is

Rc=pg+Lvg or Rij=pgij+gixD;V* + gjxDiV*

where p is the homothetic constant. For p > 0 the soliton is shrinking, for
p < 0 it is expanding. The case p = 0 is a steady soliton discussed before;
the case V = 0 is an Einstein metric discussed before. We only have a few
examples, but there should be more. Koiso [33] has found a shrinking gradient
Ricci-Kéhler soliton on a compact Kahler surface. If we enlarge the category
of solutions from manifolds to orbitfolds, we can find shrinking gradient Ricci-
Kahler solitons on the teardrop and football surface orbitfolds (see [22] and
[45]), which are quotients of S® by and S! action with one or two exceptional
orbits.

3 Intuitive Solutions. It is always good to keep in mind what we expect,
as well as what we know (provided we keep the distinction clear). In this
section we will show the sort of behavior which is likely for the Ricci Flow in
some general settings where exact solutions are not available, based on drawing
pictures, using computer models, and making analogies with other equations
(particularly the Mean Curvature Flow). Beware that these results here are
conjectures, not theorems.

First consider a metric on the two-sphere S? shaped like a dumbell. (We
draw it in R3, but the Ricci Flow is for the intrinsic metric and has no relation
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to the embedding.)

Sz
S! x BY

At the ends of the dumbell the curvature is positive and the metric will
contract, while in the neck in the middle, which looks like S! x B! and has
slightly negative curvature, the metric will expand slightly. Thus we expect
the sphere S? to round itself out. (Note that in the Mean Curvature Flow the
neck would shrink because S® has extrinsic curvature, but in the Ricci Flow it
doesn’t because S! has no intrinsic curvature.)

By contrast, if we take a dumbell metric on S3 with a neck like S? x B!, we
expect the neck will shrink because the positive curvature in the S? direction
will dominate the slightly negative curvature in the B! direction. In some finite
time we expect the neck will pinch off. There may be a weak solution extending
past the pinching moment when the sphere splits into two spheres. (Weak
solutions are known to exist for the Mean Curvature Flow, but have not even
been defined for the Ricci Flow.) The movie would look like this.

S? x B!
SS

:

neck

pinch

v

round round

€

The picture above is symmetric; we could however pinch off a little sphere
from a big one. If we let the size of the little sphere go to zero, we expect to get
a degenerate singularity where there is nothing on the other side. The movie

e
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would now look like this.

5 neck

pinch

@ round

We could also imagine a three-manifold with a toroidal neck 72 x B! formed
by joining two complete hyperbolic manifolds of finite volume where each has
a single toroidal end. Since T2 has no intrinsic curvature the neck is flat or
has slightly negative curvature and should expand slowly, while each hyperbolic
piece should expand more rapidly. The solution should exist as ¢t — oo with
the negative curvature falling back to zero like —1/¢. Thus no collapse should
happen, unless we rescale the solution to see the geometry better. If we rescale
to keep the volume constant and the curvature about -1 in each hyperbolic
piece, then the toroidal neck should become very long and thin as in this movie.

short and fat

long and thin

We can summarize these observations with the remark that a neck N? x B?
in a manifold M™ (with m = p+ ¢q) will only pinch if the BP has some positive
intrinsic curvature to shrink it. Thus in two dimensions we can do surgery

S%x B! - B®x S°
because S? has intrinsic curvature, but not the surgery
S'x B?*— B*x St

because S! is intrinsically flat. When surgeries only occur in one direction the
topology of the manifold must get simpler each time.
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We can ask about similar neck pinches in higher dimensions. In dimension 4
we expect the Ricci Flow could perform surgeries

S$3xB' 3 B*xS° and S?xB? -5 B®xS!

but not the reverse; this gives hope the Ricci Flow may provide topological
information on 4-manifolds also. But already in dimension 5 we expect the
Ricci Flow to perform the surgery

S?x B® - B®x $?

which is its own inverse; this destroys any hope of getting purely topological
results. Now it is exceedingly fortunate that this is just the dimension where
the h-cobordism theory kicks in, so the Ricci Flow can only work where the
topology doesn’t!

4 Evolution of Curvature. Whenever a Riemannian metric evolves so
does its curvature. It is best to study the evolution of the representative of the
tensor in an orthonormal frame F'. Since the metric evolves, we must evolve the
frame also to keep it orthonormal. If the frame F consisting of an orthonormal
basis of vectors

F = {Fl,...,Fa,...,Fn}

given in local coordinates by

evolves by the formula 5

ot
it will remain orthonormal in the Ricci Flow. We will use indices a,b,... on
a tensor to denote its components in an evolving frame, and D; to denote the
change of the components with respect to time in the evolving frame. The
Riemannian curvature tensor has components

F; = g7 R Fy

Rm = {Rapca} where Rapea = RijuFyF]F¥F}
in a frame which evolve by the formula ([24])
Dt¢Rabed = ARabed + 2(Babed + Bacbd — Babde — Badbe)
where

Babed = Raebecedf-

This is a diffusion-reaction equation. The problem of singularity formation
is related to the competition between the diffusion, which tries to spread the
curvature evenly over the manifold, and the reaction, which concentrates the
curvature causing it to blow up in finite time.
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We can understand the geometry of this equation better if we think of the
curvature tensor Rgpcq as a symmetric bilinear form on the two-forms A? given
by the formula

Rm(p, ¢) = RabcaPab¥Ped-

A form in A% can be regarded as an element of the Lie algebra so(n), in which
case it is an infinitesimal rotation; or as an infinitesimal loop, in which case
it is a sum of primitive two-forms each of which is a little loop in a place
where enclosed area is the coefficient of the primitive two-form, and the sum
of the primitive two-form is the composition of the loops, modulo an obvious
equivalence. Then the curvature tensor is the infinitesimal generator of the local
holonomy group; going around an infinitesimal loop represented by ¢ € A? gives
rise under parallel translation to an infinitesimal rotation Rm(yp) € A? where

Rm(g, ¢) = (Rm(p), ¢)

turns the bilinear form into a symmetric operator. In order to treat the curva-
ture tensor as a bilinear form on A2, we choose an orthonormal basis

d = {cpl, RN, .,cp"("_l)/2}
where in the frame F' we have
% (Fa, Fy) = g}
and write the matrix Mg of the curvature operator in this basis, so that
Rabea = Maﬁ‘f’gb‘Pfd-

Let copy be the structure constants of the Lie algebra so(n) in this basis, so
that
Cafy = ([‘Pa;‘PB] :‘/ﬂ)-

Then the evolution of the curvature operator M is given by
DiMag = AMag + M25 + M7,
where M2 is the operator square
Mgﬁ = Moy Mpy
and M fﬁ is the Lie algebra square
M, = carcepinMysMcy.
As an example, on a surface the curvature is all given by the scalar curvature

R, which evolves by

OR _ ,
S = AR+ R
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On a three-manifold the sectional curvatures are given by a 3 x 3 matrix Myg.
Since the Lie structure constants are always given by c¢;93 = 1, the matrix M#
is just the adjoint matrix of determinants of 2 x 2 cofactors.

We can now use this representation of the curvature to derive the following
result.

THEOREM 4.1. If the initial metric has its local holonomy group restricted
to a subgroup G of SO(n), it remains so under the Ricci Flow.

Proof. We refer the reader to [21] for details. The idea is that the local
holonomy is restricted to G if and only if the image of the curvature operator
M at each point is restricted to the Lie algebra G of G. In this case since M
is self-adjoint, the orthogonal complement G is contained in the kernel of M.
Then the same properties hold for both M? and M#, and hence are preserved
by the Ricci Flow by the maximum principle. O

As an example, the local holonomy of a Riemannian manifold of even dimen-
sion reduces from S0(2n) to U(n) if and only if there is a complex structure
with respect to which the metric is Kahler. Also, the local holonomy reduces
from S0(n) to SO0(p) x S0(¢q) with p+ ¢ = n if and only if the metric is locally
a product. (It need not be a product globally, as we see from S2xS?.)

5 Preserving Curvature Conditions. A number of curvature pinching
inequalities, mostly representing some form of positive curvature, are preserved
by the Ricci Flow. It always happens that if we start with a metric satisfying a
weak inequality, either for all ¢ > 0 it immediately becomes a strict inequality
or else the curvature is restricted everywhere; this is a consequence of the strong
maximum principle. (The reader will find the details in [21].)

The proof that a weak inequality is preserved is always by the maximum
principle, usually for a system. If a tensor F' evolves by a diffusion-reaction

equation
oF
— = AF + ®(F
5 (F)
and if Z is a closed subset of the tensor bundle which is invariant under parallel
translation and such that its intersection with each fibre is convex, and if Z is
preserved by the system of ordinary differential equations in each fibre given by
the reaction.
dF
dt
then Z is also preserved by the diffusion-reaction equation, in the sense that
if the tensor lies in Z at each point at the start, then it continues to lie in Z
subsequently. For preserving curvature inequalities in the Ricci Flow we take Z
to be a subset of the bundle of curvature operators M which is convex in each

8(F)
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fibre, and check that Z is preserved by the curvature reaction

am

=M%+ M*
= M2+ M

(a) Positive Scalar Curvature
The Ricci Flow preserves positive scalar curvature R > 0 on a manifold in
any dimension. This follows from the evolution of the scalar curvature

OR
— = 2|Rel?
5t AR+ 2|Rc|

and the observation that |Re|? > 0. Note that the scalar curvature immediately
becomes strictly positive R > 0 everywhere unless the manifold is Ricci flat
everywhere.
(b) Negative Scalar Curvature on a Surface

In dimensions n > 2 negative scalar curvature is not preserved; however on
a surface n = 2 it is, since

Re(X,Y) = -;—Rg(X, Y)

gives

OR

— = AR+ R

ot
In this case the scalar curvature immediately becomes strictly negative unless
R = 0 and the metric is flat. This is the only case we know where negative
curvature is preserved by the Ricci Flow.

(c) Positive Sectional Curvature on a Three-Manifold

In dimension n = 3 (but no higher) positive sectional curvature is preserved.
Indeed since every two-form is primitive in this dimension, positive sectional
curvature is the same as positive curvature operator. In an orthonormal frame
where M is diagonal

(6
M=| 8
Y

the square M2 and the adjoint M# are also both diagonal
a? y
M? = B2 and M¥#* = ay
0a af

and the reaction equation for M (in the space of 3 x 3 matrices) descends to
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the reaction on the diagonal terms (a, 3,7) € R® given b
g g y

( dc — 2
E o’ + By
Jd,ﬁ — 732
dt_ﬂ + ay -
d — A2
(ar +ab

Clearly the set of positive matrices @ > 0,8 > 0,v > 0 is preserved by this reac-
tion. If the sectional curvature starts weakly positive, it immediately becomes
strictly positive unless the manifold is flat, or locally a product of a surface of
positive curvature with a line.
(d) Positive Ricci Curvature on a Three-Manifold

In dimension n = 3 positive Ricci curvature is equivalent to 2-positive curva-
ture operator; in terms of the eigenvalues a, 3,7 of the curvature operator this
gives the inequalities

a+p20, a+y20, B+720

which are clearly preserved by the reaction. Again if the Ricci curvature starts
weakly positive, it immediately becomes strictly positive unless the manifold is
flat, or locally a product of a surface of positive curvature with a line.
(e) Positive Curvature Operator
In every dimension positive curvature operator M > 0 is preserved by the
Ricci Flow. To see this we must check the reaction
dM

—— = M?+ M#*,
dt +

Choose an orthonormal frame where M,z is diagonal with
Moo =Xs and My =0 for a#p

with eigenvalues A\; < Ag < -+ < Ap(n—1)72- Now ), is Lipschitz-continuous as
a function of M, but may not be differentiable; however we have an inequality

dv _ d
— > =M

dt = dt
in the sense of the lim sup of forward difference quotients (as explained in [21]).

Now d
Et'Mll =M% + Mﬁ =+ Zcfﬂ'y)‘ﬁ/\’Y
By
soif 0 < A; < A2 <... then d)\;/dt > 0 and the result is true.
If the curvature operator is weakly positive to start, it becomes strictly pos-
itive immediately unless the holonomy group reduces to a proper subgroup
(again the details are in [21]).
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(f) Two-Positive Curvature Operator
A symmetric bilinear form is called, 2-positive if the sum of its two smallest
eigenvalues is positive. Chen ([12]) has observed that two-positive curvature
operator is also preserved by the Ricci Flow. To see this, we must show the
reaction preserves
A1+ X2 >0.

Now as before d p
—(A1+A2) > E{(Mu + M)

dt
and d
Et-(Mll + M22) = )\f + /\g + Z(C%pq + cgpq)AP/\Q‘
Pq
Now we do not know if A; is positive, but surely Mg, ..., A, are. Hence we only

need to worry about terms A,\; with p or g equal to 1, and then c¢i,q = 0 so
we only have to worry about the terms

2
chq’\l /\q

where p = 1 (or actually twice this because we could switch p and q). Then
g > 3 and we also have a positive term when p = 1 coming from c;p, of the
form

C%zq)\zx\q.

Recall that for the Lie structure constants ca14 = —c124. Grouping these we get
d
7 (M1 + M) = AN +2) M+ XA+ D (g + 30 AN
q>3 P23

and since A; + A2 > 0 we see d(A; + A2)/dt > 0 which proves the result.
(g) Positive Holomorphic Bisectional Curvature
A Kaéhler metric has positive holomorphic bisectional curvature if

R(Z,Z,W,W) >0

for all complex vectors Z and W. Mok [38] has shown that positive holomorphic
bisectional curvature is preserved by the Ricci Flow. To check this result it is
only necessary to check that

%R(Z,ZW,W) >0

when R(Z,Z,W,W) = 0. Now for all vectors U and V
RZ+U,Z+UW+V,W+V)>0
and it follows that the part quadratic in U and V

R(Z,Z,V,V)+R(Z,U,W,V)+ R(Z,U,V,W) + RU,Z,W,V)
+R(U,Z,V,W)+RU,V,W,W) >0
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for all U and V. Replace U by iU and V by —iV and average; then
R(Z,Z,V,V)+ R(2,U,V,W)+R(U,Z,W,V)+ R(U,V,W,W) >0
for all U and V. Let us write

L(X,Y)=R(X,Y,Z,2)
M(X,Y)=R(X,Z,W,Y)
N(X,Y) = R(X,Y,W,W).

Note that L =t T and N =t N are Hermitian. Then the above says
LV, V)+ MU, V)+MU,V)+N@U,U) >0
or in matrix form

L
(tMN 20

as we see by applying the matrix to the vector of V and V.
Conjugate the above matrix by
0-I
I0

N M
(—H L )50

N M
(7)o

Now if two Hermitian matrices are positive, the trace of their product is also

positive; so
L M N M
”(tMN (—M {) 20

and the trace has two equal parts because the trace of a matrix equals the trace
of its transpose, making

to see that we also have

and taking conjugates

tr(LN — MM) > 0.
This makes _ _
L(U,V)N(V,ﬁ) -MUV)M(V,U) >0

where we adopt the summation convention that whenever a complex vector
and its conjugate appear together in an expression we sum over the vector in a
Hermitian basis.

Writing this in terms of the curvature tensor gives

R(U,V,Z,Z)R(V,U,W,W) - R(Z,U,V,W)R(V,Z,W,U) > 0.
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We also have o o

R(U,V,W,Z)R(V,U,Z,W) >0
since it is a sum of products of numbers with their conjugates. Now the reaction
equation for the curvature tensor in the Kéhler case simplifies using the Kéhler
identities to

%R(Z, Z,W,W) = 2[R(U,V, Z, Z)R(V,T, W, W)
-R(Z,U,V,W)R(V,Z,W,U)+ R(U,V,W,Z)R(V,U,Z,W)]

and we have seen this is a sum of two positive terms. This completes the proof.

6 Short-Tine Existence and Uniqueness. Short-time existence for so-
lutions to the Ricci Flow on a compact manifold was first shown in [20] using
the Nash-Moser Theorem. This sophisticated machinery was employed because
the Ricci Flow itself is only weakly parabolic, since it is invariant under the
whole diffeomorphism group. Shortly thereafter De Turck [16] showed that by
modifying the flow by a reparametrization using a fixed background metric to
break the symmetry the equation could be replaced by-an equivalent one which
is strictly parabolic, and the classical inverse function theorem suffices. Here
we present a version of De Turck’s Trick by combining the Ricci Flow with the
Harmonic Map Flow.

Eells and Sampson [17] evolve a map F : M — N from a Riemannian
manifold M of dimension m with coordinates {z'}, 1 < i < m, and metric g;;
to a Riemannian manifold N of dimension n with coordinates {y*},1 < a < n,
and metric hog by the formula

OF
E_AF

where AF is the harmonic map Laplacian, defined as follows. The tangent
bundle TM of M has the Levi-Civita connection Ffj of the metric g;j, the
tangent bundle TN of N has the Levi-Civita connection A}, of the metric
hop and the pull-back bundle F*T'N of TN by F' is a bundle over M with the
pull-back connection

. oy”
F'Ajy =A%y 55
The derivative DF given locally by
oy©
D;F* = Fy

is a section of the bundle L(T'M, F*TN) of linear maps of TM into F*TN.
The second derivative D?F is the covariant derivative of DF using the induced
connection in the bundle L(T'M, F*T'N) coming from the connections on M
and F*TN, and is given locally by

_ a2ya ok aia
~ 9zidxi U Hgk

oyP oy

2 pa
Py oa B

+ F*Ag,
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The harmonic map Laplacian AF is the trace if D?F; locally
AF® = giijjF".

The Harmonic Map Flow is strictly parabolic, so solutions with any initial
data exist for a short time. When the target manifold N has weakly negative
sectional curvature Eells and Sampon prove the solution exists for all time and
converges to a harmonic map, one with AF' = 0, homotopic to the initial map.

Now we want to combine the Ricci Flow on M with the Harmonic Map Flow
for the map F' from M to N, keeping the metric on the target N fixed. This
gives the system of equations

0
a = —2RCg
0
EF = Ag,hF

where we write Rc, to denote the Ricci curvature of g, and A, to denote
the Laplacian using the metrics ¢ on M and h on N. The first equation is
independent of the second. There is at least one interesting advantage; now if
we look at the evolution of the energy density

e =g hasD;F*D,FP

we find that the usual term involving the Ricci curvature of g is cancelled by
the Ricci Flow, and we just get
% = Ae — 2|D*F|* + 2Rm(DF, DF, DF, DF)
where o
|D*F|* = g*g’*hap D}; F* D} FP
and o
Rm(DF,DF,DF,DF) = ¢**¢"* Ry 3,sD; F*D; FP Dy FYD, F*.

Consequently if N has weakly negative sectional curvature the maximum of the
energy density e is weakly monotone decreasing in time regardless of the sign
of the Ricci curvature on M. (In the classical case where the metric on M is
fixed we would need weakly positive Ricci curvature on M for this to hold.)

Consider now the case where M and N have the same dimension and the
initial map F is a diffeomorphism. Then F will stay a diffeomorphism at least
for a short time. Let us write § = F.g for the push-forward of the metric g
from M to N; then locally § = {gap} where

. Oy 9P
95 = 88 347 Bu7
We can now ask how § evolves under the dual Ricci-Harmonic Map Flow. The

answer is
0

E =£vg—2Rc
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where V is the vector field V = ir(T — A)
v =g (T, - Al)

formed by training the tensor which is the difference between the Levi-Civita
connections I' of § and A of h with the inverse §* of the metric gog, Lv§ is
the Lie derivative of § in the direction V' and where Re is the Ricci tensor of g.
In local coordinates

% 9op = 9ay DV + gpyDaV" — 2Rag
where D is the Levi-Civita connection of §. Note this flow now only talks of
the manifold NV, not M, and only uses the metric §, not g, and the background
connection A, which need not have come from the Levi-Civita connection of
a metric h. However since it does use A, it is no longer invariant under the
diffeomorphism group.

Now a straightforward computation in local coordinates shows we can write
the Ricci-De Turck Flow as

o ~

— g=tr DD

ot g9 g

where D is the covariant derivative using the connection T of g and D is the
covariant derivative in the background connection A and tr is the trace using
the metric g; locally

o . s B .
a 9op = g‘yéD'yD&gal%

This is a quasilinear equation because D is independent of § and D only involves
first derivatives of §. Its symbol o(£) in the direction of a covector £ is

a(€) = §*Pats - I

where I is the identity on tensors §. It follows that the Ricci-De Turck flow
is strictly parabolic. If the initial metric is smooth, then there exists a unique
smooth solution for at least a short time.

We can recover the solution g for the original Ricci Flow on M from the
solution § for the Ricci-De Turck flow on N as follows. The vector field V' on
N pulls back to the vector field of motion F/8t in F*T N; thus

8F/6t=VoF
or locally 5
W _ e

Now once we know V® on N, this is just a system of ordinary differential
equations on the domain M. Hence there is no problem with the existence of
a solution. If the initial metric for g is C* smooth, the initial metric for §
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will be € smooth; then the solution for § will be smooth, and the map F
constructed by solving the ODE system will be smooth. We can then recover g
as the pull-back g = F*§; locally
_ . Oy 8P
95 = 808 3g7 G

and g will be a smooth solution of the Ricci Flow as desired.

Now we claim the solution with given smooth initial conditions on a compact
manifold is unique. For suppose g; and g, are two solutions which agree at t = 0.
We can solve the Ricci-Harmonic Map Flow for maps F; and F, with the metrics
g1 and g2 on M into the same target N with the same fixed h, and starting
at the same map, as there is no problem with existence for the Harmonic Map
Flow even with a time-varying metric on M as long as this metric is known.
This gives two solutions §; and g, to the Ricci-De Turck flow on N with the
same initial metric. By the standard uniqueness result for strictly parabolic
equations §; = go. Then the corresponding vector fields V; = V5. Thus the two

ODE systems
%IVIOFl and %?:VgoFg
with the same initial values must have the same solutions, and hence the induced
metrics
g =Fg and g =F;§
must agree also.

There is one case where it would clearly be desirable to have weak solutions to
the Ricci Flow. It is possible to construct geometrically metrics on triangulated
manifolds which are constant on each simplex, continuous on the interfaces,
and satisfy certain curvature conditions in terms of angle defects. It would
be nice to smooth out these metrics to smooth metrics by running the Ricci
Flow for a short time, and convert the angle defect curvature condition to
some Riemannian curvature condition. Of course the initial curvature is now
concentrated as §-functions on subvarieties and zero almost everywhere, so the
initial curvature is not even in L? for any p.

7 Derivative Estimates. Whenever we have a bound on the curvature,
the smoothing property of the parabolic equation gives us a bound on the
derivatives of the curvature at any time t > 0.

THEOREM 7.1. There exist constants Cy, for R > 1 such that if the curvature

1is bounded
|Rm| < M

up to time t with 0 <t < 1/M then the covariant derivative of the curvature is
bounded
|DRm| < C,M/t*/?
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and the kt* covariant derivative of the curvature is bounded

|D*Rm| < C,M/T*/2.

Proof. We need to apply the maximum principle to the right quantity. We
denote by A x B any tensor product of two tensors A and B when we do not
need the precise expression. We have a formula

D;Rm = ARm + Rm * Rm
which gives a formula
D¢|Rm|? < A|Rm|* - 2|DRm|?* + C|Rm|?

for some constant C. Taking the covariant space derivative of the first formula
yields
D;DRm = ADRm + Rm * DRm

which leads to a formula
D{|DRm|* < A|DRm|? — 2|D?*Rm|? + C|Rm||DRm|>.
Now let F' be the function
F = t|DRm|* + A|Rm/|?

where A is a constant we shall choose in a minute. Then discarding |D?Rm|? > 0
we find that

D\F < AF + (Ct|Rm| — 24)|DRm|* + CA|Rm/|?

for some constant C. Now we assume |Rm| < M and tM < 1; then if we take
A > C we get
D,F < AF +CM?3

for some constant C. Also
F < CM?

at t = 0 (since t{DRm|? = 0!) and hence by the maximum principle
F <CM? + CtM3.
Now as long as tM < 1 this gives F < CM? for some constant C, and
t{DRm|? < F < CM?

yields
|DRm| < CyM/t!/?

for some constant C;.
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The general case follows in the same way. Differentiating k times gives a
formula

D,D*Rm = AD*Rm + Z D?*Rm * D?Rm « ---x D’» Rm
where the sum extends over p > 2 with
0531 £52<--<jp <k

with
Jit+je+-+jp=k+4-2p

If we have bounds
|D*Rm| < Cp M /tF/?

we get an estimate (using tM < 1)
D;|\D¥*Rm|* < A|D*Rm|? - 2|D*~' Rm|? + C M3 /tF
and another estimate (using tM < 1)

D¢|D*¥*'Rm|? < A|D*¥*'Rm|? — 2|D¥*2Rm|? + CM|D**+! Rm/?
+ CM? D*1 Rm|/t*+D/2 4 O M3 [th+1,

Now we can bound
M?|D*+ Rm|/t:+D/2 < M|D*+ Rm|? + C M3 /tk+1
and discard |D**2Rm|? > 0 to get
Di|D***Rm|? < A|D¥*'Rm|? + CM|D**'Rm|? + C M3 /t*+1,

Now we let
Fi, = t|D**'Rm|? + Ax|D* Rm|?

where A is a constant we shall choose soon. Then
DFy, < AFy, + (CtM — 2A4,)|D***Rm|? + CA M3 /t*
and if we take tM <1 and A > C then
D.Fy, < AFy, + CM/t*
for some constant C. Alsoatt =0
F, < CM?/tk
so by the maximum principle for t > 0

F, < CM?Jtk + M3/t
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Now since tM < 1 we just get Fy, < CM?/tk, and then
t|D**'Rm|? < F, < CM?/t*

gives
le+1Rm| < CRM/t(k+l)/2

which is the induction step we need. This completes the proof of the Theo-
rem. O

COROLLARY 7.2. There exzist constants C;y such that if the curvature is
bounded |[Rm| < M then the space-time derivatives are bounded

|DID*¥Rm| < Cj M/t7+k/2),

Proof. We can express DiRm in terms of ARm = trD?Rm and Rm *
Rm. Likewise we can differentiate this equation to express any space-time
derivative D] D¥ Rm just in terms of space derivatives, and-recover the bound
above. 0

8 Long Time Existence. We now get the following result on the maximal
existence time for a solution.

THEOREM 8.1. For any smooth initial metric on a compact manifold there
ezists a mazimal time T on which there is a unique smooth solution to the Ricci
flow for 0 <t < T. Fither T = oo or else the curvature is unbounded ast — T.

Proof. Any two smooth solutions agree, so there is a unique smooth solution
on a maximal time interval 0 < ¢t < T for T' < co. Suppose T < oo and |Rm|
remains bounded as ¢t — T'. Then so do all the space-time derivatives D;D* Rm.
We claim that the metric g and all its derivatives, i.e. ordinary derivatives in a
local coordinate chart, also remain bounded, and g remains bounded away from
zero below. Then the metric g; at time ¢ converges to a smooth limit metric g,
as t & T. Once we know this, we can continue the solution past T', and so T'
was not maximal after all.

To see that g remains bounded above and below, consider the evolution of
the length of a vector from

V2= g(V, V).

By the equation
-g—tg(V, V) = —2Rc¢(V,V)
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and if [Rm| < M then
|Re(V, V)| < CMg(V,V)

for some constant C' depending on the dimension only. Thus

0
| 9v)| < CMay)

and it follows that
e~ Migo(V,V) < g:(V, V) < e“Mtgo(V, V)

and the metrics g; are uniformly bounded above and below for 0 <t < T. As a
result, it does not matter what metric we use to measure the length of a vector
or tensor from now on in the argument.

Fix a background connection T (i.e. the zero connection in a local chart) and
let D be the covariant derivative in T (i.e., an ordinary derivative). Then the
difference T' — T is a tensor, and in fact

_ 1, — — _
(r-T); = 59“(Diyjk + Djgir. — Drgij)-

We can then compute its evolution

0 = — — —
5 (T - T);, = ¢* (DeRij = —DiR;x — D Rax)

Since there is a formula
DRc=DRc+ (T -T) *Rc

we get a formula
’% (T - f)‘ < C|DRc| + C|Rc| IT - T.
Bounds on |Rc| and |DRc| give
s (r-T)|<C+Cr-T|
ot -

from which we get at most exponential growth in I' — T'. In finite time we
bound I' — I'. Hence from now on in the argument all covariant derivatives are
equivalent. Bounds on Dg can be recovered from

Digjk = gee(T = T); + ge(T — D).

We can now recover the second derivatives D" g from a formula for their time
evolution

O D*g = —2D°Re
ot 97
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and a formula
D°Rc= D?Rc+D g Re + Dg xDg * Rc

contracting tensors with g, to see that
0 |—= —
T |D2g’ <C+C lngl

and again we get at worst exponential growth, giving bounds on D g. Higher
derivatives of g are the same. This proves the Theorem. O

9 Convergence. In a number of cases the solution to the Ricci Flow con-
verges, often after rescaling, to an Einstein metric. This is the most important
application of the Ricci Flow to geometry. Here we discuss the known results
and likely conjectures.

(a) Dimension Two

If a compact surface has Euler class x = 0, then with any initial metric the
solution to the Ricci Flow exists for all time, and converges (without rescaling)
to a flat metric. This applies on the torus or the Klein bottle.

If a compact surface has Euler class x > 0, then with any initial metric the
solution to the Ricci Flow exists up to a finite time T' when the metric shrinks
to a point, and the metrics can be rescaled to converge to a metric of constant
positive curvature. This applies on the sphere or the projective plane.

If a compact surface has Euler class x < 0, then with any initial metric the
solution to the Ricci Flow exists for all time. As ¢t — oo the diameter goes
to oo and the curvature R falls off like 1/t, and the metrics can be rescaled
to converge to a metric of constant negative scalar curvature. This applies on
surfaces of higher genus.

In each case above the limiting constant curvature metric is conformal to the
initial metric, so this reproves the classification of surfaces and the Uniformiza-
tion Theorem. The results for x < 0 and x > 0 with R > 0 are in [22], and the
final case of x > 0 with any R is due to Chow [14].

(b) Dimension Three

If the initial metric on a compact three-manifold has strictly positive Ricci
curvature, then the solution to the Ricci Flow exists up to a finite time T' when
the metric shrinks to a point, and the metrics can be rescaled to converge to a
metric of constant positive curvature. It follows that the manifold is diffeomor-
phic to the sphere S? or a quotient by a finite linear group $3 /T. This result is
in [20]].

(c) Dimension Four

If the initial metric on a compact four-manifold has positive curvature opera-
tor ([21]) or even 2-positive curvature operator ([12]), the solution to the Ricci
Flow exists up to a finite time T when the metric shrinks to a point, and the
metrics can be rescaled to converge to a metric of constant positive curvature.
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It follows that the manifold is diffeomorphic to the sphere or the projective
space of dimension four.
(d) Positive Curvature Operator

We know that positive curvature operator is preserved in all dimensions.
It is reasonable to conjecture that the solution shrinks to a point, and can be
rescaled to converge to constant positive curvature. A proof similar to the three
and four dimensional cases may suffice. This would involve showing that any
given compact subset of the set of positive curvature operators M is contained
in a convex subset Z of positive curvature operators such that Z is invariant
under the reaction IM

2= — M2 #
el M*+M

and such that if a matrix M in Z is large enough then it is pinched as close to
constant positive curvature as we wish. It would be necessary to find the right
invariants of M using the Lie algebra structure of so(n).

It might even be true that the Ricci Flow converges, after rescaling, for 2-
positive curvature operator?
(e) Positive 6-Pinched Curvature

Huisken [29] has shown that if the initial metric has positive sectional cur-
vatures which are sufficiently pinched pointwise, in the sense that for any two
planes P, and P, at the same point X the sectional curvatures satisfy

1-6 < K(z,P)/K(z,P,) <1+6

for ¢ sufficiently small depending only on the dimension, then the solution to
the Ricci Flow exists for a finite time 7' when the metric shrinks to a point,
and the metrics can be rescaled to converge to a metric of constant positive
curvature.

Hence the manifold is diffeomorphic to a sphere S™ or to a quotient S™/I" by
a finite linear group. This improves on the é-pinching theorem from classical
geometry (see [9]) because the pinching hypothesis is only pointwise, and does
not compare sectional curvatures at different points.

10 Kiahler Metrics. H.-D. Cao[4] has studied the Ricci Flow on Kahler
manifolds. He introduces the hypothesis that the Chern cohomology class is a
multiple of the Kihler cohomology class in H!'!, so that

[Re] = plg]-

This condition is preserved by the Ricci Flow, and must hold if the flow can be
rescaled to converge to an Einstein metric. Hence for studying convergence it
is appropriate to assume it holds for the initial metric.

We can understand the importance of this condition by considering product
metrics g = g; x g2 on S? x S? where each factor is a sphere. Then the
cohomology splits as a direct sum

Hl,l(SZ x Sz) — Hl,l(s2) @HI’I(S2)
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and so do the Kahler and Chern classes [g] = [¢1]®[g2] and [Rc] = [Re1]® [Rez)-
On S? the Kihler class [g] is just the area, while the Chern class [Rc] is a fixed
element 27[1] by Gauss-Bonnet. Hefice the condition on S? x S? that

[Re1] @ [Rez] = p([91] @ [g2])

is just that g; and g2 have the same areas. Now the Ricci Flow on the product
S? x S? is just the Ricci Flow on each factor, as we observed before, and the
area of each sphere shrinks at a fixed rate

dA
E——/Rda——4ﬂ'.

So the spheres have the same area if and only if they shrink to points at the
same time. Now if each S? is round, the product metric is Einstein if and only
if the radii are the same. Even though S% x S2 has an Einstein metric, the Ricci
Flow even after rescaling will not approach it for a product metric unless the
two spheres start with the same area.

Under the condition [Rc] = p[g], Cao has proven the following results. If
p = 0 the solution to the Ricci Flow exists for all time and converges to a Ricci
flat metric (for example on a K2 surface). If p < 0 the solution to the Ricci
flow exists for all time, the diameter goes to co and the curvature Rm falls
off like 1/t. We can rescale the metrics to converge to a limit metric which is
Kahler-Einstein. (The existence of these K&hler-Einstein metrics in the case
p < 0 was known from previous work of Yau on the complex Monge-Ampere
equation.) If p > 0, the solution to the Ricci Flow exists up to some finite time
T. As t — T the volume goes to zero. (This is much stronger than the usual
assertion that the curvature is unbounded.)

Not much else is known in the case p > 0. The Koiso soliton [33] shows that
it may be impossible to rescale the metrics to converge to an Einstein metric;
indeed Koiso’s manifold has p > 0 but no Einstein metric exists. We hope that
in many cases the rescaled metrics will converge to a compact Ricci soliton.

There is a useful normalization of the Ricci Flow to study convergence on
Kahler manifolds. If [Rc] = p[g] we consider the normalized Ricci-K#hler flow

2 9(X,¥) = 209(X,Y) - Re(X,Y).

Now the volume remains constant and the scaling factor p remains constant
also. The solution to the normalized flow differs from the usual one only by a
change in the space and time scales. Whenever Rc = p[g] Cao’s result shows
that the normalized flow has a solution for all time, and if p < 0 it converges to
a Kahler-Einstein metric.

There is a further modification that is useful for studying approach to solitons
other than Kahler-Einstein metrics. We can choose a potential function f so
that

2 o _
Dagf = Ra;‘a— = P9,3

by the cohomology condition [Rc — pg] = 0, and f is unique up to a constant
at each time. If we choose the constant right, the potential f varies by the
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equation

of _
B?—Af-}-pf.

If the metric is a Ricci-Ké&hler soliton then it moves along the holomorphic vector
field which is the gradient of f. Since f is determined up to a constant, its
gradient V f is determined uniquely. The way to best see approach to a soliton
metric is to modify the Ricci-Kéhler flow by also flowing by the diffeomorphism
generated by the gradient vector field Vf, as in De Turck’s trick. In real
coordinates this gives the modified Ricci Flow

0
ag(xa Y) = 2pg(X7 Y) - 2RC(X> Y) - 2D2f(X, Y)

However, unless we are on a soliton already, the gradient vector field V f will
not be holomorphic, so the complex structure will change, although only by a
diffeomorphism. In complex coordinates the components of the metric tensor
and the Ricci tensor

0 0 0 0
9ap =9 (a_ a_ﬂ) and - Rog = Re (a— 57’)

satisfy gop = 0 for a Kéhler metric and R,3 = 0 also, so the normalized Ricci
Flow takes the form

0 2 o]
agaﬁ = —-2Da[—3f and Egag =0.

Now for the modified Ricci Flow we get

ggaﬁ = 2D§l,f and

at 5 =0

ot 7ep
Thus for the normalized flow the complex structure is preserved and the sym-
plectic structure changes, while for the modified flow the symplectic structure
is preserved and the complex structure changes.

It is well known that if we give the Teichmiiller space of equivalence classes of
complex structures (under conjugation by diffeomorphism) its quotient topology
may not be Hansdorff, particularly at a complex structure which has a nontrivial
holomorphic vector field. Thus if the modified Ricci-Kéhler flow does converge
to a soliton, it may be one with a complex structure not equivalent to the
original one by any diffeomorphism.

The only case where we know the modified Ricci-Kéhler flow converges is
in one complex dimension, not on a smooth surface but on the teardrop and
football orbifolds, by work of Lang-Fang Wu[45].

When p > 0, the only case where we always expect to have the rescaled flow
converge to a Kihler-Einstein metric is when we start with positive holomorphic
bisectional curvature. Mok [38] showed this is preserved by the Ricci Flow as
we mentioned earlier, and we already know from the Frankel conjecture, proved
by Siu and Yau, that the manifold is biholomorphic to CP™. There is however
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a problem with trying to prove this in the usual way. There is a solution to the
reaction ODE
dM

dt
which emerges unstably at ¢ = —oo from the curvature operator matrix of CP?2
and approaches the curvature operator matrix of S2 x R? as t — +o00. To
see this, consider the three-parameter family of curvature operator matrices
in dimension four, decomposed by splitting A2 into self-dual and anti-self-dual
forms A% = A% @ A2, in the form

0 0

=M+ M*

Y

These matrices have image in su(2) and so are compatible with a Kahler struc-
ture, and satisfy the first Bianchi identity. We get CP? withz =1,y =1,u=0
and S? x R? with £ = 0,y = 1,u = 1. The reaction ODE system shows the
matrix remains in this form and reduces to the system

dz 2

E—x + 2zy

d
d—:l;=2:1:2+yz+u2
du
Et-—2:vu+2yu

as we can easily compute from the formulas in [21]. This is a 3 x 3 system ho-
mogeneous of degree 2. The way to study the solution curves of a homogeneous
system

dv
bl
o V)
is to consider an associated system
dv
e (V) - ANV)V

where A(V) is a scalar function of V; the solution curves of the original system
and the associated system are projectively equivalent (i.e., define the same curve
in projective space). This is enough if we only wish to study the ratios of the
components of V. If we take A = 2z + 2y the associates system keeps u constant;
if we then take u = 1 we get the system

dz 2
Et- =
dy
dt

u=1

=2z —2zy—y? +1
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whose solutions are projectively equivalent to those of the original system.
Starting with £ =~ y near 1 and u small but positive is equivalent to start-
ing with £ = y large and u = 1. The associated system clearly has solutions
where £ — 0 from the first equation and then y — 1 from the second. This
implies that the original system has solutions with z/u — 0 and y/u — 1, so
we emerge from CP? and approach S? x R? in the reaction system.

By no means does this imply the same for the Ricci Flow, but we must
hope to have CP? become attractive under the effect of the diffusion on the
curvature because the reaction above is unstable. Notice that Cao’s hypothesis
that [Rc] = p(g) prevents the solution from forming a singularity looking like
S? x R?, because the S? carries a non-zero element in the Chern class [Rc] and
hence an analytic S? in the manifold can only shrink proportional to the total
volume of the manifold. However the reaction ODE just happens pointwise and
knows nothing about this cohomology condition.

11 Metrics with Symmetry. Any symmetries present in the initial met-
ric will be preserved by the Ricci Flow. This fact can sometimes be used to
simplify the equations and prove convergence in the special class of metrics with
a given symmetry. We will give a very simple example to illustrate the idea, but
there are many potential applications to finding new Einstein metrics (or Ricci
soliton metrics), particularly on manifolds where the orbit space of some group
action is one dimensional. Even though the Einstein equations reduce in this
case to a system of non-linear ordinary differential equations, a parabolic flow
can be a useful approach to prove the existence of a solution. This is the case,
for example, in the Kervaire spheres studied by W.-Y. Hsiang and A. Back [2].

For our simple example, consider a 3-manifold M3 where the torus group
T? = S x S! acts freely. Then M?® is a T? bundle over the circle S*. There
is a larger group G which is the isometry group of the square flat torus R?/Z2,
containing T'? as a subgroup. For any point P in the square torus the stabilizer
Gp is a copy of the group D4 of isometries of the square. Consider metrics on
M3 which have G as their isometry group with the subgroup 72 acting freely.
We call these metrics square torus bundles over the circle. For any point P in
the bundle, the stabilizer Gp is again a copy of Dy, and the fixed point set of
Gp defines a global section of the bundle M3 which must be totally geodesic
and hence horizontal (because Gp contains an element which acts as -I on the
normal bundle to the fixed point set). Therefore the bundle is trivial, and the
connection on the bundle is trivial. Topologically M3 is T, whose universal
cover is R3. Choosing coordinates (z,y, z) on R? so that z is a coordinate on the
orbit space S! and, for each fixed z, y and z are coordinates on the fibre so that
each section where y and z are constant is horizontal, and translation in y and
z is an isometry, we get coordinates which are unique up to a diffeomorphism
in z and a translation in y and 2

(z,y,2) = (a(z),y + b(z), 2 + ¢(2))-
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In such a coordinate system the metric on a square torus bundle takes the form
ds® = f(z)%dz® + g(z)?[dy® + dz?).

Note that ds = f(z)dz is the arc length for the quotient metric on the orbit
space S1, and g(z) is the length of the side of the square fibre over z. If the
initial metric has this form, it must continue to have this form under the Ricci
Flow because the symmetry group G is preserved. We can see this directly by
computing the Ricci tensor. Just as the metric g defines a quadratic form

ds® = g,-jdzidzj
the Ricci tensor Re defines a quadratic form
do? = R,-jd:vidxj.
For a square torus bundle over the circle we compute

do? = p(z)dz? + q(z)[dy® + d2?]

where 5 o2 2 9 8
—_299_ <« 0J0og
p= g x2+fg z Oz
__9 P9, 9088 1 (3
7= f2 0x2  f3 Or 0z f2 \0z)

It follows that the Ricci Flow on M? reduces to the system of evolution
equations

dg 1 8% 1 0fdg 1 (dg)°
8t f? 9z® f3 Oz Oz E(a_z) '
for two functions f(z,t) and g(z,t) periodic in z with initial conditions at ¢ = 0.
Note the equation for g is parabolic, but the second derivative of f does not
even enter the equations because f is just the arc length on the orbit space and
has no intrinsic geometric meaning up to diffeomorphism, while g is the size of
an orbit so g does.
We can simplify these equations by introducing the unit vector field on the

orbit space

a 10

ds  f ou
whose evolution is given by the commutator

0 0] _ 10f 0
wal-i

Then the Ricci Flow takes the form of the parabolic equation

99 _ &g 1 (8g)°
ot 0s2 g \0Os
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on a circle whose unit vector field /s varies by the commutator

9 0]__2990
ot’ 8s| g 0s? Os’

Now we make some interesting geometrical observations before proving con-
vergence.

LEMMA 11.1. The length L of the orbit circle always increases.
Proof. The arc length ds on the orbit circle varies by

0 2 0%
a ds—g @ds

L=/1ds

dL 2 9% 1 (8g\?
—_— - — — —— —_ > 0.
dt g Os? ds 2/92 (63) ds 20

and the length

varies by

a
LEMMA 11.2. The total volume V of the bundle always decreases.
Proof. Since
V= / g’ds
we compute
dv dg\?
—_—=- — ) ds<0.
dt 2/ (63) s<0
O

LEMMA 11.3. The size of the largest square torus fibre decreases, and the
size of the smallest one increases.

Proof. At the maximum of g

Og 8%g
= il A
s 0 and 352 = 0
s0 8g/0t < 0 and the maximum decreases. Likewise at the minimum
2
99 _ 0 and &g >0

ds 0s? ~
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so 8g/0t > 0 and the minimum increases. O

COROLLARY 11.4. The length of the orbit circle remains bounded above.

Proof. Since V is bounded above and g is bounded below, L must be bounded
above. 0O

THEOREM 11.5. The Ricci Flow on a square torus bundle over a circle has
a solution which ezists for all time and converges as t — oo to a flat metric.

Proof. Using the commutator relation

989 _ 0 89 2 (9)\°
Ot s 0s2 s g2 \Os

which shows that the maximum of dg/8s decreases. Since g is bounded above,
the maximum principle shows that the maximum value

dg

Os

w = max

satisfies an ordinary differential equation

dw
— < —cw?
dt —

for some constant ¢ > 0, and hence satisfies an estimate
9g
=l <oVt
185 <0/

for some constant C' < oo. O

Differentiating the equation once more gives

999 _ 029 _2(9\"_6 ()& 4 (9g)*
Ot 9s2  0s20s2 g \ 0s? g2 \0s) 0s2 g3 \0s/)
Since g is bounded above by a constant C and 8g/8s is bounded above by C/+/t

we find that
8.8 & g  (d9) C
Ot 0s? — 0s? Os? Os? t2

for some constants ¢ > 0 and C' < co. Again the maximum principle shows that

the maximum value
0%g

0s?

Z = max
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satisfies an ordinary differential equation

dz _C 2
E _<_ 't—z' —Cz
from which we get an estimate
2
o9l C
0s?| ~— t

for some constant C.
In terms of the arc length the sectional curvature has components

1 (dg 2 _19%
KV——-g-—j(E;) and KH——Ea—sj

where Ky is the sectional curvature of a horizontal plane and Ky that of a ver-
tical one. Note that Ky must be negative in general but zero somewhere while
Ky must have both signs. Now the estimate above shows that the curvature
remains bounded, so the solution exists for all time ¢ < co.

Moreover since the maximum value g,,,, of g decreases while the minimum
value g,,, of g increases, and since

9y
Ivmax — 9min S/‘g;

we see that g must converge to some constant value g as t — co. Moreover

ds < C/Vt

|Kv| < C/t and |Ku|<C/t

so the curvature goes to zero. We can do even better. We can compute

(@) o=/ 5 ()

and use Wirtenger’s inequality

() o= () 12

and even throw away the term with (8g/8s)* and get

d dg9\> 8n? ag\*>

Since L is bounded above, it follows that

ag 2 —ct
/(a) dSSCC
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for some constants C < oo and ¢ > 0. Then

9 1/2
ds < L'/? {/ <@> ds}
Os

shows that g approaches the constant g exponentially. A little more work along
these lines would show all the derivatives of g, and hence the curvature and its
derivatives, go to zero exponentially as well.

Oy
Imax — 9min < / ’5;

12 Geodesic Loops and Minimal Surfaces. Consider a loop v of length
L in a manifold. If T is the unit tangent vector to the loop and ds is the arc
length along the loop, the length L evolves by the formula

oL
a‘ = —/YRC(T, T)dS

under the Ricci Flow if we keep the loop fixed. If the loop 7 varies in space
with a velocity V' and if the loop has curvature k in the unit normal direction
N then the length L varies at a rate

%=Q£—/KN-Vds.
dt ot J,
When the loop varies so as to remain a geodesic loop the curvature k£ = 0 and
the last term drops out, so dL/dt = OL/0t.
Now fix the time and consider a one-parameter family of loops with parameter
r starting at the given loop 7 at t = 0 with a point P on the loop moving with
velocity
"OP
— ="
or

We can always parametrize the loops so V' is normal. If v is a geodesic loop
the first variation OL/0r = 0 and the second variation is given by the standard

formula 2
0%L ov
m = / {(a) —Rm(T, V,T, V)}ds

Consider first the case where the geodesic loop lies on a surface. If the loop is
orientation preserving, we can choose V to be the unit normal vector N. Then

%—JZ =0 and Rm(T,N,T,N)=K

where K is the Gauss curvature. This gives

oL %L
—B—t—_/de—b_r_z
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Thus L satisfies a kind of heat equation! If y is weakly stable then 82L/8r? > 0
and OL/0t > 0. If we vary the loop 7 to keep it a stable geodesic then dL/dt > 0
also. If the maximum curvature on the manifold is M, then any loop with
L < 27/v/M is stable. This gives the following result.

THEOREM 12.1. On a surface evolving by the Ricci Flow a weakly stable
geodesic loop which preserves orientation has it length increase. (Of course if
the loop is not strictly stable it may disappear.)

COROLLARY 12.2. For a solution of the Ricci Flow on a compact surface
we can find a constant py depending only on the initial metric such that if the
solution subsequently has sectional curvatures bounded above by M then the
injectivity radius p is bounded below by

p > min{po, 7/2VM}.

Proof. Any loop of length L < 27/ VM is strictly stable, so there is a smooth
1-parameter family of loops varying over time that contains it. Their length L
is not decreasing if they preserve orientation. Hence it was never longer at an
earlier time, and there must have been a stable geodesic loop that short in the
initial metric. But we can bound its length by 2p for pp small. If the loop does
not preserve orientation, at least its double cover does, and if L < 7/ VM the
previous argument applies. Now the injectivity radius can be bounded by the
smaller of 7/ v/M and half the length of the shortest geodesic loop. Note our
result is precise on P2, O

The argument extends to three dimensions but the result is not as nice.
We can choose an orthonormal frame V; and V, for the normal bundle to an
orientation-preserving loop -, and consider two one-parameter families of loops
with parameters r; and r, where

dP _
d7‘1 -

dP _

Vl and d_’f'z- =

Va.

For the best result, choose the frame {V;, V2} to rotate at a constant rate 7 so

that v, dv;
1 _ ava _ _
g = TV2 and ds T‘/l.

The rotation rate 7 is related to the holonomy angle of rotation around the loop
n by n = 7L. Then we can compute

2 2 2
_oL 8L=29—-/RC(T,T)ds
Y

AL—_BTf-I-B_T% I

and get the formula

oL n?
T = AL — 2f'
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If the geodesic loop <y is weakly stable then AL > 0. This gives the following
result.

THEOREM 12.3. A weakly stable orientation-preserving geodesic loop in a
three-manifold has its length L shrink at a rate
2
b o
dt — L
where 1 is the holonomy angle of rotation around the loop. (Of course if the
loop is not strictly stable it may disappear.)

Finally consider a surface £2 in a three-manifold M3.
Under the Ricci Flow the area A of the fixed surface ¥2? changes at a rate

% - —/Z{2Rm(T) + Re(N)}da

where Rm(T) is the sectional curvature of the tangent plane T' and Rc(N) is
the Ricci curvature in the normal direction N. If we move the surface over time
with a velocity V, the area A changes at a rate

£i-{l-:a—A—/ =HN -V da

dt ot Z

where H is the mean curvature. If ¥ is a minimal surface, H = 0 and the
latter term drops out. So if we move I 50 as to keep it a minimal surface then
dA/dt = 0A/0t.

Assume ¥ has an orientable normal bundle, and consider at a fixed time a
one-parameter family of surfaces with parameter r starting at the given surface
¥ at r = 0 and moving in the normal direction N (choose one side) with velocity
1. If ¥ is minimal then JA/8r = 0, and the second variation is given by the
standard formula

%jé - //Z {2det B — Re(N)} da

where B is the second fundamental form of ¥. The Gauss curvature K of ¥ in
the induced metric is given by

K = det B + Rm(P)

and by the Gauss-Bonnet theorem

/ K da =27y

2

where x is the Euler class of Y. This gives the formula
0A  0*A

Bt " oz X
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which is also a heat equation! If ¥ is a weakly stable minimal surface then
02A/8r? > 0. This gives the following result.

THEOREM 12.4. On a three-manifold a weakly stable minimal surface with
orientable normal bundle has its area A vary by

dA > _4
— > —4rw

at = X

where x is the Euler class of the surface. If x < 0 the area of the surface
increases. (Of course if the surface is only weakly stable it may disappear.)

Suppose for example that the three-manifold contains an incompressible torus
(so that its fundamental group injects). Then there will always be a minimal
surface of least area A representing the incompressible torus, and it will always
have Euler class x = 0. The surface may not be unique or vary continuously,
but its area must. It now follows that the least area A must increase. This
shows that a toroidal neck cannot pinch off (except by rescaling). A spherical
neck can pinch since x > 0, but only at a controlled rate.

13 Local Derivative Estimates. It is often useful to be able to estimate
the derivatives of curvature just from a local bound M on the curvature, without
requiring the curvature to be bounded by M everywhere. Such estimates were
given by W.—X. Shi ([43]). We give the estimate for the first derivative, higher
derivative are similar.

THEOREM 13.1. There ezists a constant C < oo, depending only on the
dimension, with the following property. Suppose we have a smooth solution to
the Ricci Flow in an open neighborhood U of a point P in a manifold for times
0 <t <T. Assume that the curvature is bounded

[Rm| < M

with some constant M everywhere on U x [0, T], and assume that the closed ball
of some radius r at time t = 0 is a compact set continued in U. Then at the
point P at time T we can estimate the covariant derivatives of the curvature by

11
|DRm(P,T)|? < CM? (;2- +gt M) .

Proof. Without losing any generality, for any constant ¢ > 0 depending only
on the dimension we can assume r < ¢/ VM by reducing the radius r, and
T < ¢/M by starting the argument later and translating in time; in each case
we would only increase the constant C in the Theorem by a fixed amount
depending on c¢. Moreover we can assume that the exponential map at P at
time ¢ = 0 is injective on the ball of radius r, by passing to a local cover if
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necessary, pulling back the local solution of the Ricci Flow to the ball of radius
r in the tangent space at P at time t = 0. a

LEMMA 13.1. We can choose constants b > 0 and B < oo, depending only
on the dimension, such that the function

F = b(BM? + |Rm|?)|DRm|*/M*

satisfies the estimate
OF

— < AF - F*+ M?
T F* +
on the set U x [0,T] where |[Rm| < M.
Proof. We have equations

D:Rm = ARm + Rm *x Rm
D,DRm = ADRm + Rm * DRm

where * denotes some tensor product. From this we find that the function
S = (BM? + |Rm|?)|DRm/|?
satisfies an inequality

DS < AS — 2BM?|D?*Rm|? — 2|DRm|*
+ CM|DRm|*| D*Rm| + CBM® DRm|?

for some constants C depending only on the dimension. Using the inequality
2zy < z?2 4+ 92

if we choose B large enough compared to C,B > C?/4 to be exact, we can
bound first the term

CM|DRm|*|D?*Rm| < 2BM?|D*Rm|* + %|DRm|4
and then the term

CBM?*DRm|? < =|D*Rm|* + %02B2M6.

N =

This gives
DS < AS — |DRm|* + CB*M?"

for the appropriate B. Now
S < (B +1)M?|DRm|?

and this yields
S?

2 6
m-FCBM.

DS < AS -
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If we take F' = bS/M* we get

2

D,F < AF — 5 + CbB>M?.

(B + 1)
Taking b < 1/(B +1)? and b < 1/cB? leads to
D,F < AF — F? + M?

as desired. O

LEMMA 13.2. There exists a constant A < oo depending only on the dimen-
sion such that we can construct a smooth function ¢ with compact support in
the ball of radius r around P at time t = 0 such that

(P)=r

and
0< @< Ar, |Dp| < A, |D*p| < Afr.

Proof. Introduce harmonic coordinates (see [32]) and take ¢ to be a suitable
function of the radius in these coordinates. A bound on the curvature in C*
gives a bound on the curvature in L? for p < co. In harmonic coordinates the
Euclidean Laplacian of the metric is minus twice the Ricci curvature, so the
metric has two derivatives bounded in LP for p < oo from the C° bound M
on Rm. This gives C' bounds on the metric, and hence C° bounds on the
connection, and the second covariant derivatives of the harmonic coordinate
functions are given by the components of the connection. This yields bounds
on the second covariant derivatives of ¢ in terms of M and r. Forr < ¢/ VM the
precise form follows from the case r = 1, M < r by a scaling argument. a

Now extend ¢ to U x [0,T] by letting ¢ be independent of time. Choose a

constant A = 12 + 44/n and introduce the barrier function
2
oMLy
p t

which is defined and smooth on the set where ¢ > 0 and ¢ > 0. Let V denote
the open set in U where ¢ > 0. Then V is contained in the ball of radius r
around P at t = 0, and H is defined and smooth on V x (0,T]. As the metric
evolves, we will still have 0 < ¢ < A,; but |Dy|? and ¢|D?¢| may increase. By
continuity it will be a while before they double.

LEMMA 13.3. As long as

|Dp|? < 24% and |D*p|* < 242
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we have the reverse strict inequality

%1;{>AH—H2+M2.

Proof. Since none of the terms is zero

2 A4
’\‘p’f ! + M2,

2
H* > t—2

+

Now
( 1 ) 6|Dy|? — 2pAp
M=
@ @
and so the hypothesized bounds on |Dy| and |D?y| give

6|Dyp|? — 20Ap < (12 + 44/n) A% = AA2,

Then

2 44
AH = )\A2A <%) < ’\(p‘f
d
" _OH _ 1
ot 2
SO
H? > am -8 + M?
ot
which is equivalent to the conclusion of the Lemma. a

Since H — oo ast — 0 or as ¢ — 0, it is clear that F < H at least for
0 < t < ¢ for some positive time 4.

LEMMA 13.4. If the constant ¢ > 0 is small enough compared to b, B, A, A
and the dimension n, it will have the following property. As long asr < c/vM
andt < c¢/M and F < H we will have

|Dp|> <24% and ¢|D?*p| < 2A%.

Proof. In the frame {F,} which evolves so as to stay orthonormal under the
Ricci Flow we have
DtDa(P = DaDt‘p + RabDb‘p

for any function ¢ where D,y are the components of its derivative in the frame
{F.} and D, is the time derivative in the moving frame with the term in Rc
from the motion of the frame. Since D;p = 0,

)
5;1D¢l* < CM|Dy|*
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and for |[Dp|SA? at t = 0 we get
|DQD|2 < A2eCMt

for t > 0. Now if t < ¢/M with ¢ < (In2)/C then |Dy|? < 242.
We also have the formula

Dt-DanSO = Da-DthSD + RacDch‘p + RbcDaDc(p
+ (DcRa.b — DoRp. — DbRac)Dc‘P

with the terms in Rc coming from the motion of the frame and the terms in
DRc coming from the motion of the connection. This formula gives a bound

8
5:1D°¢| < CIRm||D*¢| + C|DRm||De|.

We can use the bound |Rm| < M as before, but we get a bound on |DRm| from
F < H. In particular

2 2 20pa o M1
gives a bound (for t < 1/M at least)
|[DRm| < CM (l + —1—)
- ¢ Vi

with a constant C depending on b, B, A and A. This yields the estimate

d 1 1
—|D?p| < CM|D? +CM(—+—> Dol.
at| ¢l < | D] st | Dy

We can estimate |Dp|? < 242 from before. Since ¢ is fixed in time and ¢ < Ar,

0 r

—p|D%p| < CM |p|D? 1+ —|.

51Dl < [<p| el +1+ \/Z]

Now viewing this as an ordinary differential inequality at a fixed point, we see
that @|D?p| < 2A? if ¢|D?p| < A% at t = 0 and t < ¢/M for a suitably small

constant ¢ > 0.
To see this, consider the ordinary differential equation

du r
— < -
dt"CM(u+1+\/Z)

for u = | D%yp| at a fixed point. Then

:—te‘CM‘u < CMe= Mt (1 +—

)
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Since e~ “Mt < 1 we get

d —-CMt

Since u < A2 at t = 0, we have

u < eCMt

t
A2+ CM (1+—r—) dt].
=0 \/E

The latter improper integral is finite and gives

u < eCMt [A2 +CM (t + 27‘\/%)]

and if r < ¢/v/M and t < ¢/M for a suitably small ¢ then u < 242 as de-
sired. a

LEMMA 13.5. We have F < H for 0 <t < T on the set V where p > 0.

Proof. Since H — oo for t — 0 or ¢ — 0, the set where F' > H is a compact
subset of V x (0,7T)]. Unless it is empty, the continuous function ¢ assumes its
minimum t* > 0 on this set at some point P*. Then F < H on all of V for
t < t*, while F' = H at P* at time t. This forces

8F>6H

= >= <
5 2 ot and AF<AH

at P* at time t*. But since

oF

< - F2. 2

5 < AF -F*+ M
and

OH | AH - B + M?

ot
we have a contradiction. Thus the set F > H is empty, and F < H every-
where. O

We conclude that
|DRm|? < CM? (w—lz + % + M)

on V x (0,T] for some constant C' depending only on the dimension. Since
¢ =r at P we are done.
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14 The Harnack Inequality. There is an interesting differential Harnack
inequality for the Ricci Flow (see [24]). In addition to the curvature tensor
Rg,icq we consider the tensors

Pabc = DaRbc - DbRac

and 1
Mab = A-Rab - §DanR + 2RacbdRcd - RacRbc—

For any two-form U,; and one-form W, we form the quadratic
1
Z= (Mab + ﬂRab) WaWs + 2PapcUapWe + RabcaUabUca-

THEOREM 14.1. Suppose we have a solution to the Ricci Flow for t > 0
which is either compact or complete with bounded curvature, and suppose the
curvature operator is weakly positive. Then the Harnack quadratic Z is also
weakly positive for all two-forms U, and one-forms W, for all t > 0.

The proof is given in the reference quoted, and uses the maximum principle.
The Harnack quadratic is found by the fact that it vanishes identically on a
homothetically expanding soliton, which shows it is a delicate and precise es-
timate. Now there probably exists a homothetically expanding soliton which
is rotationally symmetric and can be found by solving an ordinary differential
equation, but no one has bothered to do this yet as far as we know. It would
represent a solution emerging from a cone. There may also be non-rotationally
symmetric ones, which would be more interesting.

In the proof, assume for simplicity the manifold is compact. Then there will
be a first time the quadratic is zero, and a point where this happens, and a
choice of U and W giving the null eigenvector. We can extend U and W any
way we like in space and time and still have Z > 0, up to the critical time and
we can profit by extending them with

1 1
Danc = 5 (Rach - Rach) = +E (gach - gach)

and
DWWy =0

at the critical point where Z = 0. This is an optimal choice for the following.
We also take

(D — A)W, %Wn and (Dy — A)Uy =0

at the critical point. We then compute
(Dt - A)Z =(Pachc + Rabchcd) (PabeWe + Raberef)
+ 2Racbd McaWo Wy — 2PocaPoacWaWh
+ 8Radce Pabe Uach + 4Raechbedf UabUcd
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and indeed this computation is most of the work in the proof. We then check
algebraically that if Z > 0 then (D; — A)Z > 0 and apply the maximum
principle. Because of the factor 1/t in Z we have Z positive for small ¢, and
then it must stay positive.

There is an interesting interpretation of this formula which follows from a
remark by Nolan Wallach. Suppose we have a Lie algebra G with Lie bracket
[,] and with an inner product <,>. We can then define a system of ordinary
differential equations for an element M in the symmetric tensor product G ®, G
as follows. Choose any basis {¢*} for G. The Lie bracket is given by the Lie
structure constants

(6%, ¢°] = 5P ¢
and the inner product is given by a matrix
(¢, ¢°) = g°°
while the element M € G ®, G is given by
M = Map¢® @ ¢°

for some matrix M,3. Then the ODE is given (independently of the choice of
a basis) by

d

T Map = 97 Moy Mps + cLcl Mys My,
This is the reaction system in the Ricci Flow for the evolution of the curvature
operator M when we compute (D; — A)M and drop the Laplacian and replace
D;— A by d/dt. Here the Lie algebra is the two-forms A% which can be identified
as the Lie algebra of the rigid rotations So(n), regarding M = Rgpcq as an
element of A2 ®, A2. The inner product used on A? is the standard one.

Now the Harnack quadratic can be regarded as an element of

(A2oA')® (A’ AY)

and A2 @ Al, the space of pairs of a two-form and a one-form, is the Lie algebra
of the group of rigid motions, which is a natural extension of the group of
rigid rotations, with the group of translations as kernel. The Lie bracket on
A? = ®A! is given by

UewW, Ve X]|=[U,V]e U)X - V]W).
We can also introduce a degenerate inner product on A? @ A! by letting
UeW, Ve X)=(U,YV)

ignoring the A! factor. Now if we form the ODE on the Lie algebra A2 @ A!
according to the rules above for a quadratic Z, we get exactly the reaction
system for (D; — A)Z as given above! The geometry would seem to suggest
that the Harnack inequality is some sort of jet extension of positive curvature
operator on some bundle including translation as well as rotation, and this is
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somehow all related to solitons where the solution moves by translation. It
would be very helpful to have a proper understanding of this suggestion.

At any rate, we can see why the Harnack expression stays positive.

Write the Harnack quadratic Z as a sum of squares of linear functions (eigen-
values) weighed by constants (eigenvectors)

Z=" M ((Var, U) + (Xnr, W))* .
M
Then the previous formula yields

(D= 8)Z =3 At (i, U) + {Xat, W) Via|

+ Z AMAN (([VM, VN],U)
MN

+ (VMJXN - VNJXM,W))2 .

This gives the identification of (D; — A)Z in terms of the Lie algebra. Now if all
Aum > 0 then clearly (D; — A)Z > 0, which is all we need to prove the Theorem.

H.D. Cao([6]) has shown that the same conclusion holds if instead of a Rie-
mannian metric with weakly positive curvature operator we have a Kihler met-
ric with weakly positive holomorphic bisectional curvature (a weaker hypothesis
in the Kéahler case). This suggests trying to prove a Harnack inequality with
other curvature hypotheses. For example, does there exist a Harnack inequality
on three-manifolds with positive Ricci curvature?

In two dimensions we can rewrite the Harnack inequality using the identifi-
cation of two-forms with scalars and the rotation by 90° on the tangent space
using a local orientation.

THEOREM 14.2. If we have a solution for t > 0 to the Ricci Flow on
a surface which is compact, or complete with bounded curvature, and if the
curvature R is weakly positive, and if we let
1

Nop = D,DyR + ER Jab
and define the quadratic

1

Z= (Na,, + 2—th05) XoXy+2D,R-X,-V + RV?

then Z > 0 for all vectors X, and all scalars V for all t > 0.

Proof. We substitute

1
W, = \/§I—lfa.bXb and Uy = _E/‘abv
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in the original formula where pgp is the volume 2-form in a local orientation.
Note the choice of orientation disappears when we square. O

In all cases we can trace the Harnack inequality by writing U = V AW and
summing over an orthonormal basis of W to get the trace Harnack inequality

OR 1
5 + ?R +2D,R-V, + RV, Vp 20
for all vectors V, for all £ > 0. This has the consequence, letting V = 0, that
OR 1
~— 4+-R>
ot TR0
or
0
— >
T (tR) >0

which implies that tR is increasing at each point! This is very useful if we
combine it with the local derivative estimate of Shi.

COROLLARY 14.3. Suppose we have a solution to the Ricci Flow fort > 0
which is compact or complete with bounded curvature, and has weakly positive
curvature operator or is Kahler with weakly positive holomorphic bisectional cur-
vature. Suppose moreover that at some time t > 0 we have the scalar curvature
R < M for some constant M in the ball of radius r around some point P. Then
the derivatives of the curvature at P at time t satisfy a bound

|DRm(P,t)|? < CM? (le + -1— + M)

for some constant C' depending only on the dimension.

Proof. Since tR increases, we get a bound R < 2M in the given region for
times between ¢/2 and ¢t. The positive curvature hypotheses each imply a bound
on all the curvatures |[Rm/| from a bound on the trace R. The result now follows
from the standard estimate. Likewise we get bounds on higher derivatives.

Such instantaneous derivative estimates are more like what we expect for
solutions of elliptic equations. We will use them subsequently in a variety of
ways. O

15 The Little Loop Lemma. The following result gives a bound on the
injectivity radius at a point in terms of a local bound on the curvature.

LiTTLE LooP LEMMA 15.1.There exists a constant 8 > 0 such that for
any initial metric go on a compact manifold which either has positive curvature
operator or is Kdhler with positive holomorphic bisectional curvature, we can
find a constant v > 0 depending on go with the following property. If g; is the
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subsequent solution of the Ricci Flow with initial value go and if P is a point
where
R<B/W?

in the ball around P of radius W at time t, then the injectivity radius of the
metric g; at P at time t satisfies

inj(P,t) > y/W.

Proof. Since the injectivity radius at P can be estimated in terms of the
maximum curvature in a ball around P and the length of the shortest closed
geodesic loop starting and ending at P, it suffices to get a lower bound on
the length of the loop. The Lemma then follows from the following statement,
which is what we actually prove. O

THEOREM 15.2. There exists a constant 3 > 0 such that for any initial
metric go on a compact manifold which either has positive curvature operator or
is Kdhler with positive biholomorphic sectional curvature, we can find a constant
B < oo with the following property. If g; is the subsequent solution of the Ricci
flow and if P is a point where

R<B/(W —s)?

in the ball of radius W around P at time t where s is the distance of a point in
the ball from P, then any geodesic loop starting and ending at P at time t has
length L with

W/L < B.

Proof. If go has either positive curvature operator or is Kahler with positive
holomorphic bisectional curvature, then the subsequent solution g; does also,
and hence g; has positive Ricci curvature. Moreover from [24] or from [6] we
know that g satisfies a trace Harnack inequality

%1} + % +2DR(V) + Re(V,V) >0
for all vectors V at any time ¢ > 0. Any solution of the Ricci flow satisfying
the trace Harnack inequality will also satisfy the Little Loop Lemma, as this is
all we use in the proof.

Since the Ricci curvature is always positive, distances always shrink as time
increases. This makes it easier to control the geometry. Moreover since all the
Ricci curvatures are positive, we have all the Ricci curvatures bounded by the
scalar curvature, so

0 < Re(V,V) < Rg(V, V),

and we can control the rate at which any distance shrinks by controlling
R from above. ]
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The first step is to check that we can find a constant B; which works in the
Theorem up to some time 7 > 0. The reason is that the control on R from the
Harnack estimate is not so good for small ¢.

LEMMA 15.3. For any 8 > 0 and any initial metric go as above, we can
find 7 > 0 and a constant B, with the following property. If at some subsequent
time t with 0 <t < 7 we have

R<B/(W —s)?

in the ball of radius W around some point P, then any geodesic loop at P at
time t has length L with
W/L < B;.

Proof. Let My be the maximum curvature at ¢ = 0, and let M; be the
maximum curvature up to time ¢. Since

OR

— =A 2 2

ot R + 2|R¢|
it follows from the maximum principle that

QM<CM2
dt —

for some constant C (in the sense of the lim sup of forward difference quotients)
and hence if we take 7 = ¢/M, for some small constant ¢ > 0 then

MtS2M0 for OStS’T‘.

Since R > 0, we can let mg > 0 be the minimum value of R at ¢ = 0; then by
the maximum principle
R Z mo -

everywhere for all t > 0. Since at the center point P at time ¢

RpW? < B
we see that
W < V/B/Mo
gives an upper bound on W. O

Suppose now that there is a short loop at P of length L with
W/L > B;.
Then

L < VB/M, [ B
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and if B, is large enough we can make

L S 5/\/ Mo
for any € > 0 we like. Now as long as

L<c/vV/Mo

for an appropriately small constant ¢ > 0, the standard existence theory for
geodesics tells us that in any nearby metric there will exist a geodesic loop
starting and ending at P close to the original one; this is just an application of
the inverse function theorem together with the observation that for LM, < ¢
there are no nonvanishing Jacobi fields on the loop which vanish at the end
points. Thus we get a family of geodesic loops parametrized by ¢ and varying
smoothly, at least for some time backward.
Under the Ricci flow the length of the loop varies by

dL
- = /Rc(V, V)ds

where we integrate the Ricci curvature in the tangent direction V with respect to
the arc length over the loop. (Since the loop is kept geodesic, the first variation
in L from the motion of the loop is zero, and we only get the contribution from
the change in the metric.) This gives an estimate

dL

> _

7 2 CMyL
showing the loop does not shrink too fast. In fact the length L; at ¢ is related
to the length Lg at @ for 8 <t by

LG S LteCMo(t—e)

and hence in time 0 < ¢t < 7 with 7 = ¢/Mp for a suitably small ¢, if the loop
ends with length L < €/+/M, it is never more than twice as large for as far
back in time as we can continue it as a perturbation. But then we can do this
all the way to ¢t = 0 taking € > 0 small. Hence then must have been a geodesic
loop at t = 0 of length at most 2¢/v/My. Now for any go we can take ¢ so small
this is false. Then making B; large compared to € gives us a contradiction if
W/L > B;. Thus W/L < By, and we have established the Lemma.

This Lemma has one very useful consequence. It is a Corollary of the trace
Harnack inequality that for a solution of the Ricci Flow for ¢ > 0 the quantity
tR is pointwise increasing in t. Now we only have to worry for t > 7 with 7 > 0.
Moreover we can find a time T depending on go (in fact IT' = C/mg for some
constant C, since by the maximum principle the minimum m; of R at time ¢
grows by a rate

—my > em?
dat ="
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for some constant ¢ > 0) such that the solution cannot exist longer than time
T. Then for any time ¢; and t; with

0<7<t1 <ty <T
and any point X we have
R(X,t1) < CR(X,t,)

for the constant C = T'/7.
The next step is to find a constant By which works if W is not too small.

THEOREM 15.4. For any > 0 and any initial metric go as above and
any Wy > 0 we can find a constant By with the following property. If at some
subsequent time t > 0 we have

R<B/(W —s)?

in the ball of radius W around some point P with W > Wy, then any geodesic
loop at P at time t has length L with W/L < Bs.

Proof. If we take B; > By, we can assume t > 7. Suppose W/L > Bs; then
if Bs is large we can make
L<eW

for any € > 0 we like. Since distances shrink, if a point X has distance s at
most W/2 from P at some earlier time 0 < ¢, it also has distance s at most W/2
from P at the later time ¢. By assumption

R<B/(W —s)?
and hence

R(X,t) < 48/W?2.
Now for 7 < 0 <t <T we have

R(X,0) < 48T /TW?

Putting C = 48T /7 we get

R(X,0) < C/W?
on the ball of radius W/2 around P at times § in 7 < 0 < t. O

Now from the existence of a short loop at P at time ¢ we can deduce the
existence of a short loop at earlier times 6, just as before. As long as the loop
at P has length L < W, it must stay in the ball of radius W/2 around P where
we have a curvature estimate R < C/W?2. Then again the loop shrinks at a
rate

% = —/Rc(V,V)ds > -CL/W?



THE FORMATION OF SINGULARITIES 55

and for 7 < @ < t the length L, of the loop at time ¢ is related to the length of
the loop L@ at time 6 by
Ly < AL

for the constant
A = CT-7)/W5

sincet—0<T—-7and W >W,. Ife <1/A and L; < eW then Ly < W and
we can continue backward all the way to time 7.
Now at time 7 we have L, < eAW and we still have R < C/W? in the ball

around P of radius W/2. Letting W = 6W for an appropriate d > 0 gives
R<B/(W ~s)?

in the ball of radius W around P at time 6.
Let L = L, be the length of the loop at P at time 7 we constructed by
continuation.. Then

W/L > 6W/eAW =6/eA > B,

if e < §/AB;. This contradicts our first estimate, which proves W/L < B, if ¢
is chosen small compared to Bs.

COROLLARY 15.5. For any B > 0 and for any initial metric go as above
and any a > 0 there exists a constant Bs with the following property. If R <
B/(W — s)? in a ball of radius W around some point P at some time t with
W?2 > at, then any geodesic loop at P at time t has length L with W/L < Bj.

Proof. Choose 7 > 0 from Lemma 15.3 and let W¢ = a7 in Theorem 15.4.
Then take B; to be the larger of By or Bs. If t < 7 then 15.3 gives the result;
while if t > 7 and W2 > at then W > W, and 15.4 gives the result. O

Now we come to the important case where W2 < at.

LEMMA 15.6. For any constant B > Bz, if there ezists a loop of length L
at the center of a ball of radius W with R < B/(W — s)? and W/L > B, then
there ezists a first such time t, > 0, and at t. there is a point P, with a loop
of length L, and a ball at P, of radius S, as above with W, /L, = B. Moreover
W2 < at.

Proof. Pick a decreasing sequence of times t;, and points P; with loops of
length L; at P; and balls of radius W; with R < B/(W; — s;)* on the ball,
where s; is the distance to P; at time ¢, such that ¢; converges to the greatest
lower bound t. of all such ¢t. For a subsequence, P; =& P, and s; — s, the
distance from P, at time ¢,.. Since B > B3, we know t; > 7> 0sot. > 7> 0.
Also W; < Wy so a subsequence W; — W, with W, < W,. Now for t < ¢
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there is some § > 0 such that every geodesic loop has length L > §; so L; > 4.
This makes W; > 6B > 0, so W, > 0.

If S;/L; = B; with B; > B, we have B; < w/4, and a subsequence B; — B,
with B, > B. Thus L; — L, where L, = W, /B,. a

Choose a subsequence so that the initial unit velocity vectors V; of the loop
at X; at time t; of length L; converge to a vector V, ; then V, is the initial unit
velocity vector of a loop at X, at time ¢, of length L.. Moreover in the ball of
radius W, at X, at time ¢, we have R < 3/(W., — s.)? by continuity. This gives
a loop of length L, in a ball of radius W, at time ¢, with W, /L. = B,. Since
B, is large enough, there is still a loop of almost the same length at X, at a
slightly earlier time in a ball of radius almost as large where R < 8/(W — s).
This would contradict the minimality of ¢, unless B, = B. Finally W2 < at.
follows from Corollary 15.5.

Now in reality we always have W/L < B above. To see this, we suppose
not, pick the first time ¢, when W, /L. = B, and get a contradiction. The
contradiction will come from demonstrating a loop and a ball as above at P,
just a little before ¢, with W/L > B.

First we show there will be a loop L at P, at earlier times which is not
much longer. Since R < 8/(W. — s.)? in the ball of radius W, around P, at
time t, where s, is the distance to P, at time t,, we can bound R near P, at
earlier times ¢t < t,. using the Harnack inequality. Recall that tR is pointwise

increasing, so that
tR(X,t) < t.R(X,t.)

for t < t.. Now if s(X,Y,t) denotes the distance from X to Y at time ¢, since
lengths shrink we have
s = s(X, P,,t) > s(X, P, t,) = sa
and W, —s < W, — s, and
BI(W. = 5.)* < B/ (W — 5)°.

This makes o
R< —. B
—t (W.—3s)?
in the ball of radius W, around X, at times t < t,.

Thus R stays small compared to L2 in a ball of radius large compared to L,
at times a little earlier than t,, so by the theory of geodesics there will exist
unique loop at X, near the original one for times t a little less than ¢,. Moreover

the length L of this loop varies by
dL
i —/Rc(V,V)ds

integrating over the loop. As long as L < W, the loop will stay in the ball of
radius W, /2, and as long as t > t,/2 we have ¢, /t < 2. Then on the loop

Re(V,V) < R < 88/W?
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and
dL/dt > —8BL/W?

from estimating the integral. If L does not shrink fast and ends at L., it was
not much larger than L, a little before t,. In fact

d
— > 2
T logL > —83/W;

and
L S L*ESﬁ(t.—t)/Wf

for t a little earlier than t..

Finally, we want to show that at a time ¢ a little before t. the curvature is
small enough in a ball of radius W around P, with W appreciably larger than
W.,, so that W/L > B. This will finish the proof.

LEMMA 15.7. At each time t < t. there is a largest W such that if s is the

distance to P, then
RW —5)* <8

on the ball of radius W around P, at time t. Moreover there is at least one
point X where the equality is attained with 0 =< s < W.

Proof. Since the manifold is compact, the function
s+ +vB/R

attains its infinimum W at some point X. (Even if it were not compact but
complete, this would hold since s = 0o as X — 00.) Clearly W > 0and s < W.
Since s is conelike at P, but R is smooth, the minimum is not at P, so s > 0.
Now W is a function of ¢t. O

Choose a minimal geodesic v from P, to X at time ¢, and let Y be its unit
tangent vector at X pointing away from P,. The distance function s along the
geodesic 7 is realized by the arc length, so

Ds(Y)=1.
Now on vy
RW -s)* <8
and equality is attained at the end X, so
2R
> .
DR(Y) > W s

The Harnack Estimate [24] in section 14 tells us that for all V

%_f + % +2DR(V) + Re(V,V) > 0
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and since Re(V,V) < R|V|? we have

%? + % +2DR(V)+ R|V|* > 0.
Choose V = \Y where Y is the unit tangent vector at the end of the geodesic

above. Then
OR R 4R

_5t_+7+/\W—s

for all A. Choose A = —2/(W — s); then

OR (R 4R
ot  t = (W-s)?
Now (W —5)? < W2, and we can choose a so that if W2 < at, and ¢ is near t,
and W near W, then W2 < 2t (as long as o < 2). This gives

@ S 2R
ot = (W —s)2.

This inequality holds at any time ¢ a little before . at any point X where
R(W — s5)? = 3, and there is at least one such point.

Now the distance s from X, must decrease as t increases.

Then W must decrease fast enough to keep R(W — s)? < 3 at the point X
above. The function W may not be differentiable,

so we proceed carefully. We know

W <s++vB/R

at each point and time with equality at X at time ¢, and W depends only on ¢

while s decreases. Then at X at time ¢
W(t+ h) —W(t) < __1-
h - W

+XR>0

lim inf
hl0
holds for all ¢ a little before t,.
Since we end up with W, at t,, the usual argument gives us that
W2 > W2 +2(t, —t)
for all ¢ a little before t.. Combining this with our previous estimate

L< L*esﬁ(t' —t)/W?

shows that for small 3 we get W/L > W, /L.. To see this, expand in power
series to get

WeW.+ 2t Lo -ty
and ’
L<L‘+§%+O(t*—t)2
and ’

W/L > W./L.+ (1 - Sﬂ)% 40t — 8)?

showing we need 3 < 1/8. This completes the proof.
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16 Limits of Solutions to the Ricci Flow. Given a sequence of man-
ifolds X; with origin O;, frames F; at O; and Riemannian metrics g;, we say
that the sequence (X;,0;,F;,g;) converges to the limit (X,0,F,g) if there
exists a sequence of compact set K; exhausting A’ and a sequence of diffeomor-
phisms ¢; of K in X to X; such that ¢; takes O to O; and F to Fj, and the
pull-back metrics ¢}g; converge to g uniformly on compact sets together with
all their derivatives. This is the topology of C'™° convergence on compact sets.
If the limit exists, it is unique up to a unique isometry preserving the origin
and frame.

If (X;,0;, F;, g;) converges to (X,0, F, g), then we clearly have the following
properties:

(a) for every radius s and every integer k there exists a constant B(s, k)

independent of j such that the k** covariant derivative of the curvature
Rm; of the metric g; satisfies a bound

|D*¥Rm;| < B(s, k)

on the ball of radius s around Oj; in Aj in the metric g;; and
(b) there exists a constant b > 0 independent of j such that the injectivity
radii p; of X; at O; in the metric g; satisfy the bound

pj 2 b.

Conversely we have the following existence result.

THEOREM 16.1. Given any sequence of manifolds (X;,0;,F;, g;) satisfying
the bounds that |D*Rm;| < B(s, k) on balls of radius s and p; > b > 0, there
ezists a subsequence which converges in the C* topology on compact sets to a
manifold (X,0,F,g).

Proof. This is slightly more general even than what we did in [26], but follows
again from an easy modification of the argument in Greene and Wu[19]. The
only essential new feature is to bound the injectivity radius below at points
at a large distance s from O, in terms of the bounds on the curvature in a
slightly larger ball. A lot of the subtlety of getting convergence using only
bounds on curvature Rm and not its derivatives DRm is entirely unnecessary
for solutions to parabolic equations which are automatically smoothing, such as
the Ricci Flow. We have already seen how estimates on Rm give estimates on
DRm. O

Now if we have a sequence of solutions to the Ricci Flow on some time
interval, we can take a limit (if we have the appropriate bounds) and get another
solution to the Ricci Flow. At each time ¢ the metric in the limit solution is
the limit of the metrics at the same time in each solution in the sequence. To
extract the limit we only need bounds on the curvature at each point at each
time, and bounds on the injectivity radius at the origins at time 0 (see [26]).
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Consider a maximal solution g to the Ricci Flow on a manifold X for 0 <
t < T, where either X is compact or at each time ¢ the metric g is complete
with bounded curvature, and either ' = oo or |Rm/| is unbounded as t — T.
We let M (t) denote the maximum curvature at time ¢, i.e.,

M(t) = sup{|Rm(P,1)|}.

We need to assume a bound on the injectivity radius in terms of the maximum
curvature. Let p(t) denote the infimum of the injectivity radii at all points at
time t.

DEFINITION 16.2. The solution satisfies an injectivity radius bound if there
ezists a constant ¢ > 0 such that

p(t) 2 c// M(t)

at every time t.

We classify maximal solutions into three types; every maximal solution is
clearly of one and only one of the following three types:

Type L: T < oo and sup(T — t)M(t) < oo.

Type II(a): T < oo but sup(T — t)M (t) = oo.

Type II(b): T = oo but suptM(t) = oo.

TypeIII: T = oo and suptM(t) < oo.
For each type of solution we get a different type of limit singularity model.

DEFINITION 16.3. A solution to the Ricci Flow, where either the manifold
is compact or at each time ¢ the metric g is complete with bounded curvature,
is called a singularity model if it is not flat and of one of the following three
types:

Type I:  The solution exists for —oco < t <  for some § with

0 < Q< 400 and

|Rm| < Q/(Q—1)

everywhere with equality somewhere at ¢t = 0.

Type II: ~ The solution exists for —oo < ¢t < +00 and |[Rm| <1
everywhere with equality somewhere at t = 0.

Type III:  The solution exists for —A4 < t < oo for some constant
A with 0 < A < 00 and

|[Rm| < A/(A+1)

with equality somewhere at t = 0.

We always take the equality to hold at some origin 0 at time 0.

THEOREM 16.4. For any mazimal solution to the Ricci Flow which satisfies
an injectivity radius estimate of the type above, of Type I, II, or III, there exists a
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sequence of dilations of the solution which converges in the limit to a singularity
model of the corresponding type.

Proof. For Type I, let
2 = limsup(T — t)M(t) < oo.
There is some € > 0 such that we always have > ¢; for M (t) satisfies an ODE

ﬂ<CM2
dt —

and hence M(t) couldn’t go to oo at time T if (T —t)M(t) < e atanyt < T
when ¢ is small compared to this constant C. Pick a sequence of points P; and
times ¢; with t; -+ T and

lim(T — t;)R(Pj, t;) = Q.

For each of these solutions, let P; be the origin 0, translate in time so that ¢;
becomes 0, dilate in space by a factor A so that R(P;,t;) becomes 1 at the origin
at t = 0, and dilate in time by A? so it is still a solution to the Ricci Flow. The
dilated solutions exist on a time interval

—Ajst<Qj

where
Qj = (T - tj)M(tj) - Q

and
AJ' = thj/(T - tj) — 0.

Moreover, they satisfy curvature bounds. For any € > 0 we can find a time
7 < T such that for 7 < t < T we have

|Rm| < (2 +¢)/(T - t)
by assumption, before dilation. After dilation this becomes a curvature bound
|Rm| < (2+¢€)/(Q; —t)
for times —6; <t < Q; where
6; = (t; — 1) /(T —t;) = oo.
Consequently the limit exists on the time interval —oo < t < Q and satisfies
|Rm| < Q/( —t)

everywhere, while |Rm(0,0)| = 1.

For Type II(a), we have to be a little more subtle. We start by picking a
sequence T; < T < oo with T; — T. If the manifold is compact we can pick
points P; and t; where

(Tj — t;)|Rm(P;, t5)| = Sup (T = O)|Bm(P,t)|

7
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as the latter goes to zero as t ~ T;. If the manifold is not compact, we can
take v; 1 and find P; and t; so that at least

(T; - tj)|IRm(P;,t;)| > v; sup (Tj — t)|Rm(P,t)|.
P<T;

Now pick P; to be the origin O;, translate in time so t; becomes zero, dilate in
space by a factor A so R(P;,t;) becomes 1 at the origin at ¢t = 0, and dilate time
by A% so that we still have a solution to the Ricci Flow. The dilated solution
exists for A; <t < Q; where

Q; = (Tj — t;)|Rm(P;, t5)| = o0

and .

Aj= ! i = tj|Rm(Pj,t;)| =+ oo
also. To see {2; = oo for Type II(a) where T < oo, note that T; /T, P; and t;
are chosen maximally and

lim sup(T — t)|Rm(P,t)| = co.

To see A; = oo for Type II(a), use the fact that 2; — oo forces t; - T and
|Rm(Pj,t;)| = co. We also get a bound on curvature. We have for 0 <t < T}

(T; — t)|Rm(P,t)| < T;(Tj — t;)|Rm(P;, ;)|

where I'; = 1/v; — 1 also, before dilation. After dilation this becomes for
—A]‘ <t< Qj
(@ — t)|[Rm(P,t)| < T;Q.

Write this as
|Rm(P,t)| < T';Q;/(; —t).

As j = o00,T'j = 1 and Q;/(Q; —t) — 1 for any fixed ¢t. Hence the limit exists

and satisfies
|[Rm(P,t)| <1

everywhere for —oo < t < 400, while |Rm(0,0)| = 1.
For type II(b), we again choose a sequence T; /T = oo, but now we pick
P; and t; so that

t;(Tj — t;)|Rm(Pj, t;)| > ; Sup t(T; — t)|Rm(P,t)]|

where again v; 1. Pick P; to be the origin O, translate in time so ¢; becomes
zero, dilate in space by a factor A so that R(P;,t;) becomes 1 at the origin at
t = 0, and dilate time by A? so it is still a solution of the Ricci Flow. Suppose

T; dilates to 2; and 0 dilates to —A;. The solution now exists after dilation on
a time interval —A; <t < §); where by dilation invariance

A 45T -

tj)
A a = L IRm(Byt)| - oo
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since by assumption
lim sup t|Rm(P, t)| = oo.

This forces A; = oo and Q; = oo as well since

zy 1
z+y l/z+1/y

Before dilation we have an estimate for 0 < ¢t < Tj
t(T; — t)|Rm(P,t)| < T;t;(T; — t;)|Rm(Pj,t;)]
where again I'; = 1/; — 1. After dilation this becomes for —A4; <t < §;
(t+ 4;)(Q; - t)|Rm(P,1)| <T;A;Q;.
Write this as
(t+4;)(Q - 1)

As j — o0o,T'; = 1 and A;9Q;/(t + A;)(R; —t) = 1 also for any fixed t. Hence
the limit exists and satisfies

|Rm(P,t)| <

|[Rm(P,t)| <1

everywhere for —oo < ¢t < oo while |[Rm(0,0)| = 1.
Finally we come to Type III, where T' = co and

A =limsuptM(t) < oo.

First we claim A > 0. Indeed if ¢{{Rm(P,t)| < € for large t then the diameter L

satisfies an estimate
dL

7 < CeL
for a constant C independent of ¢ and L. This makes L grow at most like t©¢
while |Rm)| falls off at least like 1/t. If Ce < 1/2 we see that L2M — 0, which
means that after rescaling the curvature collapses with bounded diameter. By
a well-known result of Gromov the manifold is nilpotent; more to the point the
injectivity radius bound we assumed would fail. Thus A > 0.
Now pick a sequence of points P; and times t; so that t; — co and

limt;|Rm(P;j,t;)| = A.

Choose P; to be the origin Oj, translate in time so t; becomes Oj, dilate in
space by a factor A so that |[Rm(P;},t;)| becomes 1 at the origin at time ¢t = 0,
and dilate in time by a factor A% so we still have a solution of the Ricci Flow.
After dilation the solution will exist for times —A; < t < oo where time 0
dilates to

Aj = t;|Rm(P;,t;)| - A.
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Moreover for any € > 0 we can find a time 7 < oo such that for t > 7
t|lRm(P,t)| < A+e
by hypothesis, before dilation. After dilation this becomes a bound
(t+ A)|Rm(P,t)| < A+e
for time ¢ > —6; where
0; =(t; —1)A;/t; =+ A

since t; = oo and A; - A > 0 while 7 is fixed. Hence we get a limit which
satisfies
|Rm(P,t)] < A/(t + A)

on —A <t < oo while [Rm(0,0)| = 1. This completes the proof of the Theo-
rem. g

In the case of manifolds with positive curvature operator, or Kihler met-
rics with positive holomorphic bisectional curvature, there is a small modifica-
tion which is quite useful for Type II and Type III. Because we have positive
curvature, we can bound the Riemannian curvature tensor just by the scalar
curvature, with a bound

|Rm| < CR

for a constant C depending only on the dimension. Then if we repeat the
previous argument we get the following result. Note that we do not need to
assume an injectivity radius bound this time; if the solution is compact the
injectivity radius bound follows from the Little Loop Lemma in section 15,
while if the manifold is complete but not compact and has positive sectional
curvature the injectivity radius bound follows from the argument of Gronmoll
+ Meyer (see [9]) in the real case.

THEOREM 16.5. For any mazimal solution to the Ricci Flow with strictly
positive sectional curvature on a compact manifold, or with a metric which is
complete with bounded curvature at each time with strictly positive sectional
curvature, or on a compact Kdhler manifold with strictly positive holomorphic
bisectional curvature, there ezxists a sequence of dilations which converges to
a singularity model. For Type I solutions the limit exists for —oo < t < Q
and has R(P,t) < Q/(Q —t) with R(0,0) = 1, for Type II the limit exists for
—o0 <t < oo with R <1 and R(0,0) = 1, and for Type III the limit exists
for —A <t < oo with R < Af/(t+ A) and R(0,0) = 1. These limits will have
weakly positive curvature operator, or weakly positive holomorphic bisectional
curvature.

COROLLARY 16.6. In the real case such a Type II limit must be a Ricci
soliton with
Rc = D?f.
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Proof. This follows from the result in [25] on eternal solutions have weakly
positive curvature operator and where the scalar curvature assumes its maxi-
mum, which happens by our construction at the origin at time zero. The proof is
by applying the strong maximum principle to the Harnack inequality. O

CONJECTURE 16.7 . In the Kdihler case such a Type II limit must be a
Ricci-Kahler soliton with Rec = 80f and 80f = 0.
Proof. Try to use the strong maximum principle on Cao’s Harnack inequal-

ity. O

CONIECTURE 16.8 . In the real case such a Type III singularity must be a
homothetically expanding Ricci soliton with Rc = D?f + pg for some constant
p > 0. In the Kihler case such a Type III singularity must also be an expanding
Ricci-Kahler soliton with Rc = 80f + pg and 00f = 0.

Proof. Apply the strong maximum principle to the Harnack inequality for
solutions on ¢ > 0 with the extra term (1/2t)Rc. We haven’t checked the
details, but it must work. |

Unfortunately we don’t have injectivity radius bounds available in many
cases; in fact in many cases we expect them to fail, particularly as ¢ — oo for
example on a nilmanifold or two hyperbolic manifolds of finite volume joined
along their cusps. However, recent work of Cheeger, Gromov and Futake ([11])
suggests that we should be able to get some kind of limit anyway. The manifolds
will collapse to a lower dimensional manifold (or orbifold). However the solution
to the Ricci Flow on the limiting manifolds may not converge to a solution to
the Ricci Flow on the lower dimensional limit manifold (or orbifold). Rather
there will be some extra information in the fibres that collapse, which should be
represented by some information in a bundle over the lower dimensional limit
manifold (or orbifold), and there should be a system for the joint evolution of
the metric on the base and the information in the fibre reflecting the Ricci Flow
in the limiting manifolds.

17 Bounds on Changing Distances. It is useful to see how the actual
geometry changes under the Ricci Flow. For this purpose we need to control the
change in the distance d(P,Q,t) between two points P and @ at time ¢ when
P and Q are fixed but ¢ increases. The basic obvious estimate is the following.

THEOREM 17.1. There ezists a constant C depending only on the dimension,
such that if the curvature Rm is bounded by a constant M

|Rm| < M

then
e"CMta=t) (P, Q, 1)) < d(P,Q, ) < e“MBTM4(P,Q, 1)

for any points P and Q and any times t; and ts.

There is a more subtle bound on how fast distances can shrink which is much
better when the distance is large compared to the curvature.
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THEOREM 17.2. There exists a constant C depending only on the dimension
such that if
|Rm| < M

then
d(P,Q,t;) > d(P,Q,t:) — CVM(t; — t)

for any points P and QQ and any times t; < t,.

The second estimate says that the rate at which a distance shrinks can be
bounded independently of how large it is. It is due to the fact that on a long
minimal geodesic there cannot be too much positive curvature along its middle
or it would be unstable.

Both theorems are proved by the following observation. For any path 7 its
length L changes at a rate

dL
i —LRC(T, T)ds

where T is the unit tangent vector to the path vy and we integrate along the
path with respect to the arc length s. The function d(P, @, t) is the least length
L of all paths. In general it will not be smooth in ¢ for fixed P and @, but at
least it will be Lipschitz continuous. Hence we can estimate its derivative above
and below, in the sense of giving an upper bound on the lim sup of all forward
difference quotients and a lower bound on the lim inf of all forward difference
quotients.

LEMMA 17.3. The distance d(P,Q,t) satisfies the estimate

—sup/ Re(T, T)ds < id(P,Q,t) < 0inf / Re(T,T)ds
~er ~ dt ~yer v

where the sup and inf are taken over the compact set ' of all geodesics v from
P to Q realizing the distance as a minimal length.

Proof. We can restrict our attention to the compact set of geodesics of some
large but finite length and apply the argument in [21]. O

For the first theorem we apply the bound

_CMA(P,Q,t) < / Re(T, T)ds < CMd(P,Q, )
Y
to conclude

—-CM < %logd(P,Q,t) <CM

and integrate and exponentiate to get the result. For the second theorem we
apply the following result, which is an integral version of Meyer’s Theorem.



THE FORMATION OF SINGULARITIES 67

THEOREM 17.4. On a Riemannian manifold suppose we have a geodesic
from P to @ of length L with arc length s and unit tangent vector T. For
0<o<L/2

(a) if Re(T,T) > 0 along -y then

L—o _
/ Re(T, T)ds < 22 =1

o
(b) if Re(T,T) > (n — 1)p? then

2(n—1)p
tan po

L—-o
/ Re(T, T)ds <
(c) if Re(T,T) > —(n — 1)p? then

L—-o _
/ Re(T,T)ds < 2(n—Dp
- tan hpo

We give the proof shortly for convenience, but first we finish the proof of
Theorem 17.2. We can bound the integral over the whole path - in three pieces

L 4 L—-o
/ Re(T,T)ds < / Rc(T,T)ds+/ Re(T, T)ds
0 0 o

L

+ [ Re(T,T)ds.
L—o

We bound the first and third piece using the maximum of the curvature

o L
/ Re(T,T)ds < CMo and Re(T,T)ds < CMo.
0 L—-o

We bound the middle piece using Theorem 17.4

L
Vi
Re(T,T)ds < — Y% __
L, el Dds < o o)

If we take 0 = 1/v/M both bounds are the same and we get
L
/ Re(T,T)ds < CV M.
0
Using this bound in Lemma 17.3 gives the result in Theorem 17.2. Now we

prove Theorem 17.4.
Consider a geodesic from P to @ of length L with arc length s and unit

tangent vector T. Choose an orthonormal frame Fy, F,...,F,_, at P with
Fy =T, and extend it along the geodesic by parallel translation so that
d

—F,=0 for 0<a<n-1
ds
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Then F, continues to be T' and the frame continues to be orthonormal.
Jacobi’s equation for a normal vector field V to the geodesic representing an
infinitesimal geodesic perturbation is

d2
<d—s,_,v, W> +R(T,V,T,W)=0

for all normal vectors W. Choose a basis V;,...,V,_;1 for the Jacobi’s fields
vanishing at P by choosing

Va=0 and %azFa at P for 1<a<n-1.

In terms of the parallel frame we can write
Va=Vng for 1<a,<n-1.
Then Jacobi’s equation becomes

d2
2Vﬁ7 + R()o,()—yvéY =0

Tav gz

for the functions Vj/(s) for 0 < s < L, with initial conditions

Vi=0 ad SVi=I3 at s=0

where
ROaO‘y = R(F07Fa,F0,F'7)

so that Rpa0q is the sectional curvature of the plane spanned by the tangent to
the geodesic and the at" normal frame vector. Of course Roao4 is symmetric in
a and 7.

LEMMA. The matriz d

— ]
is symmeltric.
Proof. We compute
d d d
ZoSa =1L = Vo - Evg — Roy0sVV§

using Jacobi’s equation. This shows the derivative of S5 is symmetric. But
Sep =0 at s =0, so Sap is always symmetric. O

Now by definition if the geodesic has no conjugate points to P before @), then
any Jacobi field vanishing at P does not vanish again before ). Consequently
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the matrix V7 is invertible on 0 < s < L with an inverse we call W Define
the matrix

Zag = Iy W, V&

d
Since

Zog = WIWES,s
we see that Z,g is symmetric also. The formula for the derivative of the inverse
of a matrix is J

d
W = ana Vo
ds A % ds

and we can easily compute

d
Ezag + I’Y&ZOWZQ(; + Roaop =0
using Jacobi’s equation. The trace
Z=1Z.5 = Llogdet V2
ds @

represents the rate of growth of the transversal area along the geodesic. The
function Z is defined and smooth on the interior 0 < s < L, while Z — +o00 as
s =+ 0,and Z -+ —oo as s — L also if and only if @ is a conjugate point to P.
The usual inequality gives

1
IaﬂImsZong& > mz‘z

with equality when Z,p is a multiple of the identity. Taking the trace of the
equation above gives the inequality
d 2
—Z + Z + Re(T,T) <
ds
where I “BROC,og = Rc(T,T) is the Ricci curvature in the direction T tangent
to the geodesic. The only fact we use for the following estimate is that there is
some smooth function Z finite on 0 < s < L for which this inequality holds.
Since Z2 > 0 we always have
dz

s + Re(T,T) <

and hence .
-0
/ Re(T,T)ds < Z(o) — Z(L — o)

for any 0 in 0 < 0 < L/2. If Re(T,T) > 0 along the geodesic then

d 1,
— _ <
=Z+—=2"<0
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and we find that

Z(o)sn- and Z(L—O’)Z—n;I
so we get L
/ Re(T, T)ds < 2(—"3‘—1)
If Re(T,T) > (n — 1)p? then
d 1, 9
—Z 4 — - <
dsZ+n—1Z +(n-1)p* <0
and we find that
- -1
Z(o) < (n = 1)p and Z(L—U)Z—-(—n—)p
tan po tan po
so we get L
— _
[ rems < 2=
- tan po
Finally if Re(T,T) > —(n — 1)p? then
d 1, 5
— —(n - <
dsZ+n—1Z (n-1)p* <0
and we find that
(n-1)p (n-1)p
< L-0o)>—-———
2(0) < tanh po and  Z( o) 2 tanh po
so we get
L-o _
/ Re(T,T)ds < M
- tanh po

This completes the proof.

18 Geometry of Complete Manifolds at Infinity. Given a complete
Riemannian manifold, we define its aperture in the following way. Pick an
origin 0, and let S(s) be the sphere if radius s around the origin, the set of
points whose distance to the origin 0 is exactly s. Its diameter diam S; is the
maximum distance between two points in the sphere. The aperture a of the
manifold is defined as

a =limsup diam S,/2s.
$—00
Clearly « is invariant under dilation. We note that the aperture is independent
of the choice of the origin. To see this, suppose 0 and 0' are two origins. Choose
points P and @ on the sphere S; around 0 with s very large compared to the
distance r between 0 and 0', and so that d(P,Q) is nearly as where a is the
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aperture at 0. Then P and @ are nearly at distance as from (', and by making
one shorter we can make the distances equal, and at least s — r. For s large we
can make

as/(s—r)

as close to a as we like. Then the aperture o' at 0' is at least the aperture a at
0. By symmetry a = a'. Note the aperture of the paraboloid is 0, the aperture
of a convex cone is between 0 and 1, the aperture of Euclidean space is 1, and
the aperture of hyperbolic space is oco.

In much the same way we can prove the following result. For a solution to
the Ricci Flow the aperture a = a(t) is defined for each t.

THEOREM 18.1. For a complete solution to the Ricci flow with bounded
curvature and weakly positive Ricci curvature the aperture a is constant.

Proof. Suppose Rc > 0 and |Rm| < M. In time At > 0 the distance
between two points shrinks but not by more than CvMAt. Let a be the
aperture at time t. For any @ < a and any ¢ < oo we can find s > ¢ and two
points P and @ such that

d(0,P,t) =s d(0,Q,t) =s and d(P,Q,t) > as.
Then
s — CVMAL < d(0,P,t + At) < s+ CvVMAt
s— CVMAt < d(0,Q,t+ At) < s+ CVMAt

and
as — CVMAt < d(P,Q,t + At) < as + CVMAL.

Now depending on which is further from 0, we can more P or @ back toward
0 by no more than Cv M At and make the distances of P and @ from 0 equal
again, without reducing the distance between P and @) by more than Cv M At.
Since

as — CvVMAt .

—————— — & as §— ©

s+ CvMAt
we see that the aperture at time ¢ + At is at least a also. Hence the aperture
is constant. O

THEOREM 18.2. Suppose we have a solution to the Ricci Flow on a complete
manifold with bounded curvature. If |[Rm| — 0 as s = oo att = 0, this remains
true for t > 0.

Proof. Suppose |Rm| < M for some constant M. For every € > 0 we can
find o0 < oo such that |Rm| < € for s > 0. The curvature tensor evolves by a

formula
Di;Rm = ARm + Rm x Rm
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which gives a formula
%lRmP’ = A|Rm|?> — 2|DRm|* + Rm * Rm * Rm

and an estimate 5
52|Rm|2 < A|Rm|? + C|Rm|?

for some constant C' depending only on the dimension. For any é > 0 choose
p=0+ (M>-€?)/s

and choose the continuous function

M? if s<o,
Y= M2-4(s—0)=e?+6(p—3s) if o<s<p,
€2 if s>p.

where s is the distance from some origin at ¢ = 0. Then 9 is Lipschitz continuous
since s is, and since |Ds| < 1 almost everywhere we also have | D] < § almost
everywhere.

Now we can smooth v locally and patch together with a partition of unity
to get a function 9) which is smooth and has

—e2<yp<M?+€* and |DyY| <20 everywhere

and ; ;

v>M?—¢? for s<o and P <e? if s>p.
Lastly take ¢ = 1 + 2¢2. Then

e2<p<M?+3% and |Dyp| <25 everywhere

and
e>M? if s<o and <3 if s>p.
Now define ¢ for t > 0 by solving the scalar heat equation
Op
YA
ot ~ =7

in the Laplacian of the metric evolving by the Ricci Flow. By the maximum
principle we still have €2 < ¢ < M? everywhere for t > 0. The derivative D,¢
evolves in an evolving orthonormal frame by the formula

DiDop = ADqyp

and hence 5
5110¢1” = AlDg|* — 2|D?p]?.

Note this formula does not involve the curvature. Hence |Dy| < 248 everywhere
for t > 0 by the maximum principle.
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The second derivative D, Dy evolves by the formula
D:D,Dyp = ADyDyp + 2Rsc0aDcDayp

and hence
%|D2<p|2 = A|D?p|* — 2|D3¢|* + 4Rycba Do DypD Dy
which gives an estimate
9 2, 2 2 12 2 12
507" < AlD¢|” + CM| D¢
for some constant C depending only on the dimension. Let us put
F=t|D*p* + |Dy|?

and compute
OF 2 19
B < AF — (1 - CMt)|D*p|*.
Then if t < ¢/M where ¢ = 1/C depends only on the dimension, we have

o s
and the maximum of F' decreases. But
F < 46?
at t = 0, and hence for ¢t > 0 also. Thus
|D%p| < 26/vt for 0<t<c/M.

Since |Ayp|? < n|D%p|? and ¢ solves the heat equation,
Oyp
3t <CoVt for 0<t<c/M

where this constant C' = 2/n depends only on the dimension n. Now 1/+/% has
an improper integral which is 2v/¢ which is finite, so for all P

lo(P,t) — o(P,0)| < 2C6vt for 0<t<c/M.
Since & > 0 is arbitrarily small, we can take
s <e*vVM/2C/e

so that 2C8v/t < €% for t < ¢/M. Then ¢ < 4e? at times t < ¢/M on the set
where s > p at t = 0. Now distances can expand, but only at an exponential
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rate governed by M. In particular if s = s(P,0,t) is the distance between a
point P and the origin 0 at time ¢, we have
Os

=<
Bt‘CMs

and
s(t) < s(0)eCMt,

This gives us a constant C depending only on the dimension such that if s > Cp
at P at time t < ¢/M then s > pat P at t =0, and ¢ < 4€? at P at time ¢.
Now at t = 0 we have

IRm?<M?*<¢ if s<o

and
IRm2<e’<y if s>0

so |[Rm|? < ¢ everywhere at t = 0. Since
9 2 2 3
-a—tIRm| < A|Rm|* + C|Rm|

we have 5
(—9—£|Rm|2 < A|Rm|* + CM|Rm|?

while
17}

a (GCMt(p) =A (eC'Mt<p) +CM (BCMtQO)

so |Rm|? < e®Mtp by the maximum principle. For t < ¢/M this gives |[Rm/|? <
Cp for some other constant C depending only on the dimension. Hence at time
t we have

|[Rm|?> < Ce®* for s>Cp

where these constants C depend only on the dimension and are independent of
. Thus |[Rm| — 0 for t < ¢/M also as s — co. Since the time interval can
always be advanced by ¢/M as long as |[Rm| < M, we get the result until |Rm)|
becomes unbounded or ¢ — oo.

Next we define the asymptotic volume ratio. Again let s denote the distance
to an origin 0 in a complete manifold of dimension n, let B, denote the ball of
radius s around the origin, and let V(B;) be its volume. If the manifold has
weakly positive Ricci curvature, then the standard volume comparison theorem
tells us that V(B;)/s™ is monotone decreasing in s. We define the asymptotic
volume ratio

v = lim V(B,)/s".
§—00

In Euclidean space v is the volume ¥ of the unit ball, otherwise v < ¥. For all
s, V(B,) > vs™. In the same way as for a before, the value of v is independent
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of the choice of the origin. (We omit the details.) Hence the lower bound holds
on any ball around any point P

V(Bs(P)) 2 vs™.

Often a volume bound can substitute for an injectivity radius bound. Of course
we also have
V(Bs(P)) <vs™

THEOREM 18.3. Suppose we have a complete solution to the Ricci Flow
with bounded curvature and weakly positive Ricci curvature, where |Rm| — 0 as
s = oo (a condition preserved by the flow). Then the asymptotic volume ratio
v is constant.

Proof. Let v be a small constant we shall choose soon, and consider the
annulus
Ny ={yo <s<oc}.

Since
Ny, = B; — By,

we have
V(Ny) = V(Bs) — V(Bye).

If the asymptotic curvature ratio is at least v, then
V(N,) > (v - 7"D)o™

When « is small, v — "7 is nearly v and most of the volume of the ball is in
the annulus. O

The volume of the annulus changes at a rate
Ly, =- / R dv
a N '

For every € and every 7 we can find oo so that if ¢ > 0¢ then |Rm| < € on N,.
This makes

i—d—V(N,) < eV(N,).

dt

If V1(N,) is the volume at time ¢; and V5(N,) is the volume at time ¢, we have

Va(N,) > eclt2=t1ily (N,).

Let v; be the asymptotic volume ratio at time ¢; and v, the ratio at time 5.
Then
Vi(Ns) 2 (v1 —y"D)o™

for all o and all v > 0. If V2(B,) is the volume of B, at time t; then

Va(Bg) = V2(No).



76 RICHARD S. HAMILTON

Together these make

Va(B,) > e~cl2=tl(y; — 4"p)0™.
Fix v > 0 and let ¢ — 0. Then £ — 0 and

vy = lim V3(B,)/0” 2 vy — 7D

Since this is true for all v > 0, > v;. But we can switch ¢; and ¢3, so v; = v
and v is constant.

19 Ancient Solutions. There is one other geometric invariant we shall
consider. Let O be an origin, s the distance to the origin, and R the scalar
curvature. We define the asymptotic scalar curvature ratio

A = limsup Rs.

8—00

Again the definition is independent of the choice of an origin and invariant
under dilation. This is particularly useful on manifolds of positive curvature
where R bounds |Rm|. On Euclidean space A = 0, on a manifold which opens
like a cone 0 < A < oo, and on a manifold which opens like a paraboloid
A = co. Eschenberg, Shrader and Strake ([18]) have shown that on a complete
odd-dimensional manifold of strictly positive sectional curvature A > 0; it is
unknown whether this is true in even dimensions.

THEOREM 19.1. For a complete solution to the Ricci Flow with bounded
curvature which is ancient (defined for —oo < t < T'), and either with weakly
positive curvature operator or Kdhler with weakly positive holomorphic bisec-
tional curvature, the asymptotic scalar curvature ratio A is constant.

Proof. In either positive curvature case the Harnack estimate holds, and we
conclude that the scalar curvature R is pointwise increasing. If the asymptotic
curvature ratio is 4 at time ¢ then for any finite A < A and any 5 we can find
a point P at distance s > § from 0 at time ¢t where Rs® > A. At a later time
t + At with At > 0 the scalar curvature R at P is at least as big, while if M is
a bound on the curvature everywhere the distance s of P from 0 will not have
shrunk by more than Cv/MAt. Since

s—CVvVMAt
fﬁl as s — 00

we see that the asymptotic scalar curvature ratio is at least A still at time t+ At.
Hence A does not decrease.

To see A does not_increase either, first suppose at some time ¢ that A is
finite. Then for any A > A we can find § > 1/\/M so that Rs? < A for s >3
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at time ¢. Moreover for any § and any A < A we can again pick a point P at
time t with Rs® > A and s > 25. Consider any point Q at distance

d(P,Q, 1) < 5/2
for any 7 < t. Since Rc > 0, distances shrink and
d(P,Q,t) < s/2

also. Then
d(Q,0,t) >s/2>5

and by our choice of § R
R(Q.t) < 44/s®

and since R increases pointwise
R(Q,7) < 44/s

also. Our interior derivative estimates allow us to bound DR and also D?R,
and hence dR/0t. Recall from section 13 that if |[Rm| < M at all points at
distance at most r from P for all times between 7 — r2 and 7 with Mr?2 < 1
then

4 2
- <
5t Rm| CM/r

with a constant C' depending only on the dimension. We can bound |Rm/| by R

and take N
M= CA/s2.

When A < 1/C we can take r = s/2; when A > 1/C we can take r = 1/2V/M <
s/2. In the first case we find that

E(P’ T) <CA/s

and in the second case we find

OR

OR 2.4
5 (P,7) < CA®/s

for some constant C' depending only on n, at all 7 < t. Use A + A? for either

case.
Pick At > 0. Then

R(P,t — At) > R(P,t) — C(A + A?)At/s*.

Also
d(P,0,t — At) > d(P,0,t) = s.

Taking s very big compared to At and A and A4 so that
R(P,t) > A/s* > C(A + A?)At/s*
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we have

- A
s4

Rt - a0 - oy > | - CAERI

as s = oo. Hence lim sup Rs? > A at time t — At as well.
In the case where A = oo at time ¢, so that

limsup R(Q, t)d(Q,0,t)% = oo

8§—00
we have to be more careful. For any A < 00 choose the largest § so that
sup{R(Q,1)d(Q,0,1)* : d(Q,0,1) < 3} < 4.

That a largest § exists is clear since if ) is any point at distance § we can find
Q; at distance §; with 5; /5 and Q; = Q. Moreover since the sphere of radius

§ is compact, there must exist a QQ with
d(Q,0,t) =3

and 5 _ 5
R(Q,1)d(Q,0,t)> = A

or else § would not be maximal. Now choose P so that
d(P,0,t) >3

and .
R(P,t) > 5 sup {R(Q,1) : d(Q,0,¢) > 5}

which is possible since R is bounded. Since é is a possible choice

and then
R(P,t) d(P,0,t)* >

If Q is any point with
d(P,@,7) < 7d(P,0,1)

at some time 7 < ¢, then since distances shrink

d(P,Q,t) < 5d(P,0,1)

N =

as well, and
54(P,0,0) < d(@,0,1) < 2d(P,0,0)
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Either
d(Q,0,t) < §

in which case

R(Q,t)d(Q,0,t)* < 4
by our choice of §, and
R(Q,t) < 24/d(P,0,t)* < 4R(P,t);

or else
d(Q,0,t) > 5§

in which case
R(Q,t) <2R(P,t)

by our choice of P; and so in either case

R(Q,t) < 4R(P,t).
Since R increases pointwise,

R(Q,T) < 4R(P,t)
for 7 <t whenever

d(P,Q,7) < 7d(P,0,1).

Now we can use the interior derivative estimate again, for A>1 we get

O% (p,r) < X /a(P,0,0)"

and as before

R(P,0,t — At)d(P,0,t — At)2 > =A — CA2At/d(P,0,t)>

DO =

where d(P,0,t) is large compared to At and A. As d(P,0,t) = oo we see that
lim sup Rs? = oo
a time t — At as well. This finishes the proof of the Theorem. O

Now we prove several results that show an ancient solution with positive
curvature operator whose scalar curvature R falls off rapidly in space and time
behaves like a cone at infinity.

THEOREM 19.2. Suppose we have a solution to the Ricci Flow on an ancient
time interval —oo < t < T, complete with bounded curvature and strictly positive
curvature operator. Assume

limsup(T — t)R < o0

t——o0
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(as happens in Type I) and assume the asymptotic scalar curvature ratio (which
we saw is constant in time) is finite

A = limsup Rs? < o0.

8§—00

Then we get the following results:
(a) The asymptotic volume ratio (which we saw is constant in time) is strictly

positive
v = lim V(By)/s" > 0; and
8— 00

(b) for any origin 0 and any time t there exists a constant ¢(0,t) > 0 such
that at all points at the time t

Rs? > 4(0,1).

Proof. We begin with a good estimate giving an upper bound on the curvature
at all pairs of points and all time. O

LEMMA. There exists a constant C such that for all points P and Q at all
times t < 0 we have

min[R(P, t), R(Q,t)]d(P,Q,t)> < C
where d(P, Q,t) is the distance from P to @) at time t.
Proof. Since A < oo, some constant Cp works at t = 0, so
min[R(P,0), R(Q,0)]d(P,Q,0)* < Co
for all P and Q. Since R increases pointwise,
R(P,t) < R(P,0) and R(Q,t) < R(Q,0)
for t < 0. Since R < C/(T —t), we can use Theorem 1.72 to get
d(P,Q,t) <d(P,Q,0) +CVT — ¢ .

This makes
d(P7 Qa t)2 S 2d(P,Q10)2 + C(T - t)

Thus
min[R(P, t), R(Q,t)]d(P, Q,t)*

< 2min[R(P,0), R(Q,0)]d(P, R, 0)?
+Cmin[R(P,t),R(Q,t)|(T -t) < C

for some constant C using the bound on the first term at ¢ = 0 and the bound
R < C/(T - t) everywhere. a
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LEMMA. There ezists a constant ¢ > 0 such that for every t < 0 we can find
a point P; where
R(P,t) > /(T —1).
Proof. The maximum R,y of R satisfies the ordinary differential inequality

d
ERmax S Cernax

for some constant C, by applying the maximum principle to the evolution of R.
If Rmax(t) were even smaller than ¢/(T —t) for ¢ small, it could not make it up
to Rmax(0) in time. O

Now fix an origin 0 and let s = d(P,t) = d(P,0,t) be the distance of P to
the origin at time ¢.

LEMMA. There ezists a constant C* so that Rs? < C* for all t < 0.

Proof. Since
R(P;,0) > R(P;,t) > ¢/(T - t)

while
min[R(P;,0), R(0,0)]d(P;,0,0)* < Co

we get an estimate

d(P,,0,0) < CVT — ¢

(where the case R(P;,0) > R(0,0) can be handled separately because R(0,0) <
C/T anyway while T — ¢ > T'). Then using our distance shrinking bound

d(P.,0,t) <CVT —t

for a larger constant C. For any P

d(P,0,t) < d(P, P;,t) + d(P;,0,t)
by the triangle inequality. We already have

min[R(P,t), R(P;,t)ld(P, P, t)* < C
for some constant C independent of ¢. If
R(P,t) 2 R(P,,t) 2 ¢/(T — 1)

then the same argument that worked for P; proves that

d(P,0,t) < CVT -1t
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and since R < C/(T — t), Rs? < C* for some C*. The other case when
R(P,t) < R(P, 1)

gives .
R(P,t)d(P,P,,t)* < C

in the estimate above, and since
d(P,0,t) < d(P, P, t) + VT — ¢
and R(P,t) < C/VT —t, we get
R(P,t)d(P,0,t)> < C*
also for some C*. This proves this Lemma. O

Now we turn to the volume estimate. It is useful first to look at annuli.

LEMMA. There exists a constant ¢ > 0 such that the annulus att =0
Ny = {0 <5< 30}
has volume

V(Ny) > co™.

Proof. Let € > 0 be a small constant we can choose later. Look at time

T = —€0?

at the annulus R
N, = {20 <5< 30}.

Since distances shrink as ¢ increases from 7 to 0, the outer sphere of ﬁ, surely
lies inside the outer sphere of N,. But we have seen

d(P,0,7) > d(P,0,0) —CVT - 71

and so if ¢ is large (which is our only concern), in particular o > 1/T/e, then
T — 7 < 2|7| < 2e0? and

d(P,0,7) > d(P,0,0) — Cv2% o.
Choose € so small that Cv/2¢ < 1. Then
d(P,0,7) > d(P,0,0) — o

so no distance from the origin shrinks by more than o. Hence the inner sphere
of N, lies outside the inner sphere of N,, and N, C N,. (Of course we don’t
need these to be topological annuli, we only estimate distances.) O
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Next we claim we can find § > 0 (depending on the £ we choose) so that N,
has volume R
V(N,) > da™
at time 7 = —eo?. Since the curvature (for 0 > 1/T/e again) satisfies a bound
R< C/|7| £ Clea?,

this remark follows from the following result by dilation, with § = ((e/C)™/2.

LEMMA. For every p > 0 there ezists a { > 0 so that if a complete manifold
with positive sectional curvature has 0 < R < 1, then the annulus

ﬁp={2p§s$3p}

has volume R
V(N,) > ¢.

Proof. Since the manifold is complete with positive curvature but not com-
pact, we can bound the injectivity radius by some apriori constant ¢ > 0 below.
The annulus contains a minimal geodesic of length p, as we see by intersecting
it with a ray to infinity. If p < ¢/2 the result is easy using geodesic coordinates
at the origin, while if p > ¢/2 we can put a ball of radius ¢/2 inside the annulus.
(In fact for large p we see the area is at least a constant times p. This is the
best we can do if the manifold opens like a cylinder.) O

Now we want to see that V(]V,) still has a large area at t = 0. At each time
7 < t < 0 we still have all of N, outside the ball of radius o, where R < C*/o2.
Therefore we can estimate the rate at which the volume shrinks by

d = c*
— = — > - .
5V (No) /,v Rda> -5 V(N,)

This makes R
V(No)

—_C* 2 -~
oz TR
=7
Since 7 = e0? we get

V(N,) =0 > cV(N,)

> coo™.
t=1

But at t = 0,V (B,) > V(N,) > V(N,) so 19.2(a) is done. Next we look at
19.2(b). Given a point P at distance ¢ = d(P,0,0) from the origin at time
t =0, we let 7 = —e0? as before and find P, where

R(P;,7)>¢/(T—7) and d(P,0,7) <cvT —7.

The Harnack inequality on a manifold with positive curvature operator in its
integrated form (see [29]) gives

R(P,0) > R(P,, 1)e~Cd(Pr-Pir)*/I7]
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for some constant C. The triangle inequality gives
d(P.,P,7) <d(P;,0,7) +d(P,0,7)

and
d(P,0,7) < d(P,0,0) =o.

Then
d(P;,P,7) <o +CVT —1.

Again if 0 > /T /e we have T — 7 < 2|7| and
d(P;,P,7) < Co
for some constant C, making
d(P,,P,7)/|r| < C

for some other constant C' depending on e. This yields R(P,0) > c/o? as
desired. For o < /T /e some constant ¢ > 0 works because R > 0. Hence the
Lemma is proved. A similar bound can be derived at any time.

20 Ricci Solitons. We will now examine the structure of a steady Ricci
soliton of the sort we frequently get as a limit.

THEOREM 20.1. Suppose we have a complete Ricci soliton with bounded
curvature, so that
'D%f = Re

for some function f. Assume the Ricci curvature is weakly positive
Rec>0

and assume the scalar curvature attains its mazimum M at an origin. Then
the function f is weakly conver and attains its minimum at the origin, and
furthermore

IDf*+R=M

everywhere on the soliton. The soliton is not compact unless Rc = 0.
Proof. We show the equality first. Since
DiD;f = R;;

we have
D;D;Dyf = D;Rj;

and
D,'DjDkf - D]‘Dkaf = D,;Rjk - DjRik
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and
D;D;Dyf — DjD;Dy f = Rijke Do f
S0
D;Rjr — DjRix = RijreDef.
Taking a trace on j and k, and using the contracted second Bianchi identity
DjRij = %D,R
we get that
D;R+2R;;D;f =0.
Then
Di(|IDf|* + R) =2D;{(D:D;f — Rij) = 0
so |Df|? + R is constant. Call it M*.

If M* = M, then Df =0 at the origin. Since D;D;f = R;; > 0, along any
geodesic through the origin z* = z*(s) parameterized by arc length s we have

df dzt
ds Dif- ds
d d*f dzt dzf
rt dz
ds? =DiD;f - ds ds ~

so f is convex and hence least at the origin. Since any point can be joined to
the origin by a geodesic, we are done in this case. _ ‘
If M* > M, consider a gradient path of f through the origin z* = z*(n)
parametrized by the parameter u with z* at the origin at v = 0 and
dzt y
=g“D,f.
w9 f
Now |Df|> = M* — R so |[Df|*> > M* — M > 0 everywhere, while |Df|? is
smallest at the origin. But we compute

d L
%'Dfl2 =2¢* g/ RijDifDef >0

since R;; > 0 and |[Df|? > 0. Then |Df|? isn’t smaller at the origin, and we
have a contradiction.
If the solution is compact then

Af=R>0
implies f is constant, so Rc = D?f = 0. O

THEOREM 20.2. For a complete Ricci soliton with bounded curvature and
strictly positive sectional curvature of dimension n > 3 where the scalar curva-
ture assumes its mazimum at an origin, the asymtotic scalar curvature ratio is
infinite;

A =limsup Rs® = o0
§—00
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where s is the distance to the origin.

Proof. Suppose Rs? < C. The solution to the Ricci Flow corresponding to
the soliton exists for —0o < t < oo and is obtained by flowing along the gradient
of f. We will show that the limit

9i(z) = lim g;;(z,1)

exists for z # 0 on the manifold X and is a flat metric on X — {0} which is
complete. Since X has positive curvature operator it is diffeomorphic to R®,
and X — {0} to S"~! x R!. For n > 3 there is no flat metric on this space, and
this will finish the proof. O

To see the limit metric exists, note that unless Rs?> — oo as s — 00, surely
R—0as X - oco0so|Df|?— M as X — oo, at least at t = 0. The function f
itself can be taken to evolve with time, using the definition

of _

which pulls f back by the flow along the gradient of f. Then we continue to
have D;D, f = R;; for all time, and |Df|?> - M as s — oo for each time.

When we go backwards in time, this is equivalent to flowing outwards along
the gradient of f, and our speed approaches VM. If s is the distance from 0,
then s/|t| = VM. Since Rs? < C for some constant C, R < C/s?, and starting
outside of any neighborhood of 0 we have R < C/M|t|? and hence

0
594 = ~2Rij 2 ~2Rgy;

gives
0> 0 2C

i > ———2 g...
- atgt] = M‘t|2 gz]
If V is a tangent vector and |V|; denotes its length at time ¢, so
VI = g;($)V'V?

then

> dtlvlt > lelt

SO 2C
<

0% G oelVI < 57

with ¢ < 0 decreasing and |¢| increasing. This makes |V'|? increasing in |t| with

d 2C
—lloglV|2+ =2 ) <
ﬂﬂ(%|“+MM)‘O

2C
Mt

so that
log |V|f +
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is actually decreasing. This shows |V|; has a limit as ¢t - —oo.

Since the metrics are all essentially the same, it always takes an infinite length
to get out to co. On the other hand, any point X other than 0 will eventually
be arbitrarily far from 0, so the metric in the limit is also complete away from
0in X — {0}. Using the derivative estimates of W.-X. Shi [43] on the curvature
it is straightforward to see that the g;;(X,t) converge in C* to a smooth limit
metric g;;(X) as t - —oo. Since R < C/s® and s = VMt we have the result
that the limit metric is flat. This proves the theorem.

21 Bumps of Curvature. We shall show an interesting fact in this sec-
tion about the influence of a bump of strictly positive curvature in a complete
manifold of weakly positive curvature. Namely, minimal geodesic paths that
go past the bump have to avoid it. As a consequence we get a bound on the
number of bumps of curvature. This principle will be important for studying
the behavior of singularity models at infinity when we do a dimension reduction
argument.

We begin by reviewing Toponogov’s Theorem as given in Cheeger and Ebin
[9]. Let M be a complete Riemannian manifold with all sectional curvatures
K bounded below by a constant H. Suppose we have a geodesic triangle A in
M with sides of lengths a, b, and ¢, and let a be the angle opposite the side of
length a.

al K > H

We make the following assumptions

(1) the geodesics of lengths a and b are minimal

(2) ¢ < a+ b (surely true if the geodesic of length c is also minimal) and
(3) c < w/VH if H > 0.

THEOREM 21.1. There exzists a traingle 2\ in the space M with constant
curvature H whose sides have length a,b and c, such that the angle @ in A
opposite the side of length a satisfies @ < a.

THEOREM 21.2. There ezists a unique triangle A in M with sides b and ¢
and angle a, such that the length @ of the side opposite a satisfies @ > a.

REMARK. . It is not necessary to have sectional curvatures x > H in all of
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M; it suffices to have this hold in the ball of radius a + b around any point in
the triangle; because the construction only uses £ on minimal geodesics joining
two points on A, and these all lie in such a ball. To see this, consider a geodesic
triangle with sides a,b, and ¢ < a+b. If we join a point on the side a to a point
on the side b with a minimal geodesic of length ¢, clearly £ < a + b. If we join a
point on the side a to a point on the side ¢ with a minimal geodesic of length
¢, and if the first point divides the side a into pieces a = ajag, and likewise the
second point divides the side c into pieces ¢ = ¢; + c2, then

[+
£<a;+c and {<ay+b+cy and by averaging

ES%(a+b+c)£a+b

as claimed.

LEMMA 21.3. For every € > 0 there exist A < oo and § > 0 such that if M
is complete with K > 0, P is a point in M and K > ¢/r? everywhere in By, (P),
if d(P,P') =7 and if d(P,Q) > Ar, if PP', PQ and P'Q are minimal geodesics
and if
LP'PQ < % +6

then
d(P',Q) < d(P,Q).

Proof. Pick a point Q' on the geodesic PQ at distance r from P, and choose
a minimal geodesic from P’ to Q’. O
Pl

P

Let h = |P'Q'|,u = |P'Q| and v = |QQ’| and let = ZP'PQ and 3 =
£ZPQ'P'" and ' = m— . We make three applications of Toponogov’s Theorems.
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(1) First note for every ¢ > 0 we can find § > 0 and > 0 such that if
@ < Z+6then h < (V2—n)r. This is because K > ¢/r? in Ba.(P) and
we can compare the triangle P'PQ’ to the triangle with two sides equal to r
and angle a in the sphere of curvature H = ¢/r? using T2. All the sides are
minimal, and we only need to check that

h§2r§7r/\/f_1

if ¢ < 1 < {m/2)2. Hence the comparison can be made.

Now on the sphere of radius 1, take an isosceles triangle of equal sides £ < 1
with angle o < 7 + 4 between them and call the length of the third side k. In
an isosceles right triangle k is strictly less than the Euclidean value of v/2 ¢,
and hence depending on £ we can find § > 0 and 7 > 0 such that if « < 7 + 6
then still k < (v/2 — n)€. If we scale the result to a sphere of radius r/1/¢ with
curvature H = ¢/r?, then taking £ = /€ gives the desired result.

(2) Now we just use K > 0. We compare the triangle P'Q'P with two sides
equal to 7 and one equal to h < (v/2 — n)r to the Euclidean triangle with the
same three sides using T'1. again all the sides are minimal, and we can do the
comparison. We find that there exists a § > 0 depending on 7 only so that
B > % + 0. By scaling it suffices to observe that an isosceles Euclidean triangle
with two equal sides 1 and the third side less than v/2 — 5 has the equal angles
at least § + 6.

(3) Finally we use T2 again to compare the triangle P'Q’'Q to the Euclidean
triangle with sides h and v and angle 8’ < Q{T" — 0. Again all the sides are
minimal, and we find

u? < h? +v?® — 2hvcos 3.

Now h < V2r while )
cosfB > ——+¢

V2

for some ¢ > 0 depending only on 6 > 0.
Therefore
u? < (v+71)% +7r[r — 2V2C0]

and for every ( > 0 we can choose A < oo so that if
v+r=|PQ| > Ar

then v > (A — 1)r and 2v/2¢v > r. Thus |P'Q| = u < v + r = |PQ)| as desired.
Now we prove an important repulsion principle.

THEOREM 21.4. For every € > 0 we can find A < oo such that if M is
a complete Riemannian manifold with K > 0, if P is a point in M such that
K > ¢/r? everywhere in Bs,(P), if s > r and Q1 and Q2 lie outside Bxs(P)
and v is a minimal geodesic from Q, to Q2, then -y stays outside Bs(P).

Proof. Let X be the closest point on Q;Q2 to P. Draw a minimal geodesic
from X to P and let its length be o. Extend the geodesic X P an equal length
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o beyond P, ending at a point Y. Draw minimal geodesics 1Y and QY. We
claim
|@:1Y| < |@:1X| and |Q2Y] < |Q2X]|
which will show Q@2 is not minimal, provided o < s.
Y

Q: Q2

X

Since both halves of the argument are the same, we drop the subscripts 1
and 2.

Consider the geodesic triangle QXY with P the midpoint of XY, where QX
and QY and PX are minimal and ZQXP = /2.

Q Y

L/
X

Choose the point Z at distance r from P towards X, and draw minimal geodesics
QPand QZ. Let o = ZQZX and o' = m—a, whiley = ZQPY and v = 7 —+.
Again we make several applications of Toponogov’s Theorems.
First note that
|QP| > Xs and |PX|<s

SO
1QZ| 2 |QP| - |PZ| 2 (A -1)s

and
|QX| < |QP|+|PX| < (A +1)s.

Therefore comparing the triangle QZX to the Euclidean one with the same
three sides, we find by T2 that for every § > 0 there exists a A < oo such that
a > 5 — 4, as is easily seen by first comparing the Euclidean triangle to one
of sides proportional to A + 1,A — 1, and 1 with a more extreme angle «, and
observing o — m/2 as A = co. Consequently o/ < % + 4.

Now choosing 8 small and X large compared to €, and noting that if K > ¢/r?
in B3,(P) then

Bs,(P) 2 By (2),

we see that Lemma 1 implies [QP| < |QZ|. Now if we also had ' < Z + 4
we would also have QZ < QP by Lemma 3, and we cannot have both. Hence
7" > % + 6 and this gives v < I — 4.
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Now we apply Toponogov’s Theorem 21.2 to the triangle Q PY to compare it
to the Euclidean triangle of sides |QP| and |PY| and angle v. We do not know
if PY is minimal, but QP and QY are by construction, and

|PY|=0<s while |[QP|> \s
and hence |PY| < |QP|+|QY|, which is all we need. Then by the law of cosines
QY[? < QPP + |PY[* = 2|QP| - |PY] - cos.

But we also have
IQP)* < |QX|* + |PX|?

by T'1 on the triangle of sides QX and PX and angle 7/2. Then

IQY[? < QX[ + |PX[ + |PY[* - 2|QP| - |PY] - cos.
Use |[PX|=|PY|=0<s and |QP|>Asand~y < Z -4 toget

2 2 2 [ _ T_
QY% < |QX|? + 20 [1 Acos (2 5)] :
Picking A large compared to &, we get
U .
A cos (—2- —6) =Asind > 1

and |QY| < |@X]| as desired. This proves the theorem. O

We apply the previous repulsion theorem to prove a result on remote curva-
ture bumps in complete manifolds of positive curvature.

DEFINITION 21.5 . A ball B.(P) of radius r around P is a curvature 8-bump
if K > B/r? at all points in the ball. The ball is A-remote from the origin 0 if
d(P,0) > Ar.

THEOREM 21.6. For every § > 0 there exists A < oo such that in any
complete manifold of positive curvature there are at most a finite number of
disjoint balls which are A-remote curvature 8-bumps.

Proof. If the ball B,(P) is a A-remote curvature S-bump, and if Q is any

point such that
d(0,Q) > 2d(0, P)

then if we take minimal geodesics 0P and OQ), we claim that for any 3 > 0 we
can find A < co and € > 0 such that

ZPOQ > 8.

To see this, let X be the point on OQ with OX = OP. Since K > 0 everywhere
and AOPQ has minimal sides, if the angle ZPOQ is < 6,then for every A < oo
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we can find 6 > 0 such that PX < OP/A. But this contradicts the repulsion
theorem.

o) :

[ 1]
X

Note there is a curvature S-bump at P, OP > APX and
PQ >0Q -0OP >0P

so the theorem applies (with ¢ = /9 to get K > €/p? on the ball of radius

p=r/3).
Now pick any sequence P; of curvature S-bumps with

d(0, Pj4+1) > 2d(0, P;)
and we find for j < k the angle
ZP;OP; > 6

for a fixed # > 0. This is impossible. Hence there cannot be an infinite se-
quence of A-remote disjoint curvature S-bumps; for since K is bounded on any
compact set and r > /e/K on each bump, we can only get a finite num-
ber of disjoint bumps into any compact set, and this lets us find P;;; with
d(Pj+1,0) > 2d(P;,0). Thus the theorem is proved.

22 Dimension Reduction. There is a general principle of dimension re-
duction which has proved useful in minimal surface theory and also the theory
of Harmonic maps. The idea is that having first taken a limit of a sequence
of dilations to model a singularity, we should study this limit by next taking a
sequence of origins going out to infinity and shrinking back down to get a new
limit of lower dimension. On a complete manifold the idea is that in dimension
at least three, as we go out to infinity the radial curvatures will fall off faster
than the meridian curvature, so the new limit of the contractions will be flat in
the radial direction. We will illustrate this idea by proving a result on solutions
with positive curvature operator, where the Little Loop Lemma gives injectiv-
ity radius control; but the same idea will work in any other case where we can
control the injectivity radius.

THEOREM 22.1. Suppose we have a solution to the Ricci Flow on a compact
manifold M™ of dimension m with weakly positive curvature operator for a
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mazimal time interval 0 < t < T. Then we can find a sequence of dilations
which converge to a complete solution of the Ricci Flow with curvature bounded
at each time on an ancient time interval —oo < t < Q with scalar curvature R
bounded by

R<Q/(02-1)

everywhere and R = 1 at some origin O at time t = 0, which again has weakly

positive curvature operator. Moreover the limit splits as a quotient of a product

N™ x R* with m = n + k flat in the directions R* with k > 0, and where the

interesting factor N™ either is compact or has finite asymptotic curvature ratio
lim Rs? = A < oo.

$—00

Moreover the limit factor N™ will still satisfy a local injectivity radius estimate.

Of course we conjecture the only possible limit is the round sphere S™ or
a quotient of it shrinking to a point. In dimension 3 or 4 we have pinching
estimates that keep the curvature operator strictly positive if it starts strictly
positive, that prevent limits N™ x RF with k > 0. We do not know any examples
of complete non compact ancient solutions of positive curvature operator with
Rs? < 0o and R|t| < 0o, and we conjecture none exist, since the curvature has
had plenty of space and time to dissipate.

Proof. The Little Loop Lemma gives us a bound on the injectivity radius in
terms of the local maximum of the curvature; if R < 1/r2 in the ball of radius r
around a point P, then the injectivity radius at P is at least ér for some § > 0.
This allows us to take limits by dilating to make the maximum curvature 1.
From the results in section 16 we get a limit solution of Type I or Type II .
Any such limit will split as a product N™ x R* with k > 0 as large as possible,
and where N™ has strictly positive sectional curvature; for any zero sectional
curvature is a zero eigenvector of the curvature operator, producing a reduction
of the holonomy to the nilgroup O(n) € O(m). Among all possible Type I
or II limits choose one where k is maximal. We shall then get a contradiction
unless N™ has finite asymptotic scalar curvature ratio A < oo. We have seen
in Corollary 16.6 that a Type II limit with weakly positive curvature operator
must be a Ricci soliton, and in Theorem 19.2 we have seen that in dimension
n > 3 such a Ricci soliton must have A = co. In dimension n = 2 the only Ricci
soliton is the cigar 3.2 (see [22]) which does not satisfy the local injectivity
radius bound, since R goes to zero exponentially in the distance s from the
origin, while the circumference of the circle at distance s approaches 1 as it
opens like a cylinder. Thus if we prove N™ is compact or has A < oo, it must
be Type I. Suppose therefore that N™ is not compact and A = oo, and we shall
contradict k¥ maximal.

We shall pick a sequence of dilations of N™ which converges to a limit with
a flat factor. We need the following result.

LEMMA 22.2. Given a complete noncompact solution to the Ricci Flow on
an ancient time interval —oo < t < T with T > 0 with curvature bounded at
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each time and with asymptotic scalar curvature ratio

A = limsup Rs? = o0
8—00
we can find a sequence of points P; — oo at time t = 0, a sequence of radii r;
and a sequence of numbers d; — 0 such that
(a) R(P,0) < (1+ 6;)R(P;,0) for all P in the ball B,(P;,0)
of radius r; around P; at timet =0
(b) rfR(Pj,O) — 00
(c) if s; = d(Pj,0,0) is the distance of P; from some origin O at
timet =0, then \; = s;/r; = 00
(d) the balls Br;(P;,0) are disjoint.

Proof. Pick a sequence ¢; — 0, then choose A; — oo so that A;e? — oo as
well. As in Theorem 18.2, let o; be the largest number such that

Sup{R(Q’O)d(QaO,O)Z : d(Q,O’O) < aj} < Aj-

Then
R(P,0)d(Q,0,0)* < 4; if d(P,0,0) <o,

while there exists some Q; with
R(Q;,0)d(Q,0,0)* = 4; and d(Q,0,0)=0;

(or else o; would not be maximal). Now pick P; so that d(P;,0,0) > o; and

R(P;,0) > sup{R(Q,0) : d(Q,0,0) > o;}

1+€j

which is possible since even on a noncompact set we can come as close to the
sup as we wish. Finally pick r; = ¢;0;.

First we check (a). If P is in the ball of radius r; around P; at time t = 0,
either d(P,0,0) > o; or d(P,0,0) < ¢;. In the first case we have from the
choice of P;

R(P,0) < (1 +¢;)R(P;,0)
which satisfies condition (a) with §; = €;. In the second case, we have from the

choice of o;
R(P1 0) < AJ/d(P,O’O)z

and
d(P,0,0) Z d(Pj,0,0) - d(P,P]‘,O) Z g5 —T; = (1 - €j)0’j
so ) 4
<— .2
R(P,0) < i=c, a]?
On the other hand, from the choice of Q;
A
R(QJ"O) = _2])

g;
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and from the choice of P;
1
P:0)> —— .
R(P,0)2 7~ R(@5,0

since Q; is a possible choice of @, then

1 A
R(PJaO) Z 1+Ej : ;‘;‘
j
and
1+4¢;
R(P,0) < mR(E,O)
j
which satisfies condition (a) with
1+e¢;
6; = ——1_ _
Sy !

and in either case §; -+ 0 as ¢; — 0.
Next we check condition (b). We have from our previous estimate

2

E%
2
riR(P;,0) > ] +J6jAj — o0

by our choice of A;. To check condition (c) note s; > o; so that A; > 1/e; — oo.
Finally note that (a), (b) and (c) continue to hold if we pass to a subsequence.
Any point P in B;;(P;,0) has distance from the origin at time 0

d(P,0,0) > d(P;,0,0) — d(P, P;,0) > (1 —¢;)0;

and since A; — oo we must have o; — oo. Thus any fixed compact set does
not meet the balls Br;(P;,0) for large enough j. If we pass to a subsequence,
the balls will all avoid each other. This proves the Lemma. O

The next step is to take a sequence of dilations of the limit factor N™ around
a sequence of points P; which we take as our new origins O;, only now we
shrink down instead of expanding to make R(P;,0) dilate to R(O;,0) = 1. The
points P; are chosen at time ¢t = 0 according to the previous Lemma. The balls
B, (P;,0) dilate to balls of radius #; — oo by condition 4(b).

Condition (a) gives good bounds on the curvature in these balls at time ¢t = 0,
while the same bounds for ¢ < 0 follow from the Harnack inequality, which has
as a Corollary that R is pointwise increasing on an ancient solution with weakly
positive curvature operator. The Little Loop Lemma provides a bound on the
injectivity radius at a point in terms of the maximum curvature in a ball around
the point, in a form invariant under dilation. Hence this local injectivity radius
estimate survives into the limit N, and gives an injectivity radius estimate at
each P; from the estimate on R in the ball of radius r;. We now have everything
we need to take a limit of the dilations of the Ricci Flow around the (P;,0),
dilating time like distance squared and keeping t = 0 in N™ as t = 0 in the
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new limit, which we call N". This new limit will be a complete solution to the
Ricci Flow on an ancient time interval —oo < ¢t < 0 with bounded curvature
and weakly positive curvature operator. (Note our bounds on R do not hold for
¢t > 0. Once we have N we could extend it for t > 0 by Shi’s existence result
[42].) Moreover N" has an origin O and R(0,0) = 1, while R < 1 everywhere
for t < 0 since §; — oo.

We claim a cover of N splits as a product with a flat factor. To show this,
it suffices to show that N has a zero sectional curvature at (O, 0). Suppose it
does not. Then we have some lower bound > 0 on the sectional curvatures at
(0,0). This means that there will be a uniform lower bound ' (say 7' = v/2)
so that we have a lower bound K > 4'R(P;,0) on the sectional curvatures at
the (P;,0) for all large enough j. The bounds on R in the balls Br;(P;,0) give
bounds on R backwards in time by the Harnack inequality (as we mentioned),
and now since R bounds |Rm| the interior derivative estimates give bounds on
the first derivatives |DRm| in smaller balls. Since these bounds are dilation
invariant, we find that the sectional curvatures all have a uniform lower bound
7" (say 7'/2) so that we have a lower bound K > +"R(P;,0) in balls around
the P; at time t = 0 of radii

pi = c/1/R(P;,0)

for some constant ¢ > 0 depending only on the dimension. Thus there exists a
B > 0 such that for large j every P; at t = 0 is the center of a 8-bump, and
these bumps are all disjoint. Moreover since

pr(Pj,O) =c? and T?R(Pj,o) — 00

we see 7;/p; = 00; and also s;/r; — oo where s; is the distance of P; from the
origin O in N™ at time t = 0, so for any A < oo the 8-bumps at P; are A-remote
for large j. But this contradicts Theorem 21.6. Hence a cover of N splits as a
product and R

N" = N? x RYT
with p+ ¢ =n and ¢ > 0, and T’ is a group of isometries. (Is I' = 07)

The limit factor N? may not be yet of Type I or II because we did not choose
it in the usual way. What we can do is to take a further limit of dilations of
NP , also by shrinking, to get yet another limit % NP which will be of Type I
or II. We get a Type I limit when the backwards limit is

2 = limsup |t| sup R(P,t) < 00
t——o0 P
and Type II when this limit is infinite.

To extract the Type I limit we choose a sequence of points P;= and times
t; — —oo so that the lim sup is attained

|t;|R(Pj, t;) = Q

and then make P; the new origin O;, translate in time so t; becomes 0, dilate in
space so R(Pj,t;) becomes 1 and dilate time like distance squared. To extract



THE FORMATION OF SINGULARITIES 97

the Type II limit we choose a sequence Q; — oo, pick 7; with |7;| as large as
possible so that
sup{|t|R(P,t) : 7; <t <0} < Q;

and pick P; and t; < 7; so that

R(P; 1) 2 - sup{R(P,) < 75)

where €; — 0, and dilate the same way. In both cases we have an injectivity
radius estimate coming originally from the Little Loop Lemma on M™ and
surviving all the dilating and limiting procedures. The rest of this argument
proceeds as before.

Now a sequence of dilations of M™ converges to N" x R*, and a sequence
of dilations of N converges to NP x R, and a sequence of dilations of N?
converges to Y NP which is Type I or II. R

Thus a sequence of dilations of N" x RF converges to N? x R** and a
sequence of dilations of N? x R1+* converges to - N? x R9+*. Now a dilation
of a dilation is a dilation, and a limit of limits is a limit by picking an appropriate
subsequence. Thus a limit of dilations of M™ converges to % NP x R9+* where
g+ k > k. This contradicts the hypothesis that k is maximal, which proves the
Theorem. a

There is another case where the blow-down argument can be used.

THEOREM 22.3. Suppose we have a complete Ricci soliton solution
DiD;f = R

in odd dimension 2n + 1 with bounded curvature and strictly positive curvature
operator. Then there erists a sequence of dilations around origins P; at time
0 which converges to a limit which splits as a product of R' with a solution of
even dimension 2n which is ancient and complete with bounded curvature and
weakly positive curvature operator.

Proof. In section 19 we say that |Df|? approaches the maximum curvature
M as s = oo where s is the distance from some origin. Thus for every § > 0
we can find ¢ < oo so that for s > ¢

(VM - 6)s < f < (VM +6)s
which makes f comparable to s. Hence on the level set
Sy = {f = 90}
the distance s is nearly @/v/M for large r, in particular. Hence on the level set

Sy ={f=un}
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the distance s is nearly p/v/M, in particular
u/(VM +8) < s < p/(VM - §)
for large p. O

Now choose the point P; and radii r; as before and let R; = R(P;,0) and
p; = f(Pj,0). Then the curvature R at any point P on any sphere S, at time
= 0 with

= il < 75/VM
satisfies an estimate
R<(1+¢j)R;

for large j, where again
Rjr? 200 and ¢ —0.

We can argue as before if we can control the injectivity radii p; at (P;,0) with

an estimate
pi 2 c¢/\/R;.

We get this estimate in odd dimensions as follows.
Each level set S, for large p is a smooth submanifold which is strictly convex
since f is convex. The second fundamental form II of S, is given by

II(X,Y) = D*f(X,Y)/|Df|
on vectors X and Y where
Df(X)=Df(Y)=0

makes them tangent to S,. Since |Df| = v'M and D?f = Rc, we can control
the second fundamental form on S, by the maximum of Rc on S, hence by
Rj. Thus

|II| < CR,;/VM

onall S, with |u—pu;| < r;/v/M. Each S, has positive sectional curvature in the
induced metric by the Gauss curvature equation, and each S, is orientable since
the whole soliton is diffeomorphic to R>"*! and the normal bundle is oriented
by Df > 0. If the dimension 2n + 1 of the soliton is odd, the dimension 2n of
S, is even. Then by a theorem in [9] the injectivity radius of S, in the induced
metric can be bounded > ¢/+/R;.

This gives a similar bound on the injectivity radius of the soliton at P; in
the following way. Since the curvature is positive it is bounded below, and
it suffice to show that a ball around P; in the soliton of radius a/,/R; has

volume > ¢/ /R?"+1 for some a > 0 and ¢ > 0 independent of j. We do this by

taking a coordinate chart inside the ball and estimating its volume. First go a
distance a//R; from P; in the direction of +D f. This moves us out and back

some comparable distance. Then take the exponential map of radius a/\/R;
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out from each point on this curve in the spheres S, in their induced metric.
Start with a frame on the tangent space at P; and parallelly translate it along
the curve in the direction Df to get a frame at each point on this curve, and
use it to refer the exponential map on a standard ball in R?" into S, for each
p. Then this gives a coordinate chart in a neighborhood of P; on the soliton.
Since each curvature in the soliton and each second fundamental form on the
hypersurfaces S,, can be controlled by R;, for a suitable small a the coordinate
chart will inject with derivative close to an isometry. This shows the image

has volume > ¢/, /Rf"‘“. The rest of the proof proceeds just as before, up to

taking the first limit. Unfortunately we cannot do the backward limit in time
without more injectivity radius control.

23 An Isoperimetric Ratio Bound in Dimension Three. In this sec-
tion we shall prove an isoperimetric ratio bound for solutions to the Ricci Flow
in dimension three in the special case of a Type I singularity where we have a
solution for 0 <t < T < oo with

|Rm|(T - ) < ©

for some constant £ < oo, and where we also assume a bound below on the
total volume V(t) of the form

V> oT —t)%/?

for some constant a > 0. The first assumption is special; but the second is not
so important, since if |[Rm|(T —t) < Q < oo but V/(T — t)3/2 — 0 (at least
for a subsequence of times) then |[Rm|V?/3 — 0, and since |Rm| controls all the
curvatures, the curvature collapes with bounded volume; and it follows from
the work of Cheeger and Gromov [10] the manifold has an F-structure, and
hence its topology is understood already.

THEOREM 23.1. For every 8 > 0,p < 00,T < 00, < 00 and a > 0 we
can find a constant v = v(8, p, T, Q, &) with the following property. If an initial
metric go has the property that every surface which bounds a volume at least V
on each side has area A > BV?2/3, and the initial metric has scalar curvature
R > —p, and if the subsequent solution if the Ricci Flow exists for 0 <t < T
with

|IRm|(T—t) <Q and V> a(T —1t)*?,

then at any time t any surface which bounds a volume at least V on each side

has area
A > ymin(T —t,V?/3).

Proof. Let G(V,t) be the function defined for 0 <t < T and 0 <V < V()
which for 0 < V < V(¢) is the infimum of the areas of surfaces of any type
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which divide the manifold into regions of volumes V and V — V', with G = 0 if
V =0or V = V. Then so much is known about the theory of minimal surfaces
(see Almgren [1]) that we know G is continuous in V' and ¢, and for any ¢ in
0<t<Tandany Vin 0 <V <V the infimum is attained on a smooth surface
of constant mean curvature H. Moreover if 8 < Bg where Bg is its Euclidean

value
B = (36m)'/°

then for any metric on a compact manifold we can find § > 0 depending on the
metric so that any surface bounding a volume V < § has area A > BV?/3. This
means we do not need to concern ourselves with very small volumes. O

We shall prove a lower bound of the form G > F for 0 < V < V where the
function F(V,t) is chosen of the form

l—e%”t Q + B + B
F~ T—t V23 [V()-V]2/3

for some suitably large constants ) and B which we are free to choose later.
Since e?* < e?T we can find v > 0 in terms of T, A and B, which will prove
the Theorem. If B is large enough, then by the previous remark we do not have
to worry when V or V — V is very small.

If this estimate fails, there will be a first time t* and a volume V* with
0 < V* < [a(T - t)]*/? when G = F, and G(V*,t*) will be attained by the
area of a smooth surface ¥* of constant mean curvature H. Consider a one-
parameter family of smooth surfaces ¥(r) for r near 0 by taking the parallel
surface to X* at distance r, with X(r) inside the part with volume V* for r < 0
and outside for r > 0. Note that ¥(0) = X*. Define the smooth functions
A(r,t) and V(r,t) for r near 0 and ¢ near t* by letting A(r,t) be the area of
¥(r) at time ¢, and letting V' (r,t) be the volume enclosed by X(r) at time ¢ on
the side of the part with volume V*. Note that A(0,¢*) is the area of £* which
is G(V*,t*), while V(0,t*) = V*.

It is clear we have the inequality

A(r,t*) > G(V(r,t%), %)

since G is the least area among all surfaces enclosing the given volume at the
given time. But G > F up to time t*, so

A(r,t*) > F(V(r,t*),t")

for all r near 0, and equality is attained at r = 0 where G = F at time t*. Since
A and F are both smooth, at 7 =0 and t = t* we get

oA _ oF ov
dr ~ dV or
and
A #F (0VY' or oV
or? — 0V2 \ or oV or?’
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In addition, it is also clear that we have the inequality
A(0,t) > G(V(0,t),t)

for t < t*, and since G > F up to time t* we get
A(0,t) > F(V(0,t),t)

for t < t*, with equality at ¢t = ¢t*. Thus at r = 0 and t = t*,

94 OF OF 9V
ot — 0t 8V ot

Now at r = 0 and t = t*,
ov

or —A=F
and )
0V 0A
52 =5 = HA=HF
where H is the constant mean curvature. Then the equality
04 _ 0P OV
or 0V or
makes oF
— =H.
ov
From this we get
PV _ LOF
or2 T oV’

Now our inequality on 8%A4/dr? becomes

2 2 2
A 2(‘315'+F(aj.rr) _

or:2 —  9V?2 ov
The volume V shrinks at a rate

ov
- = _ <
e /Rdv_pV

(since the inequality R > —p, which we assume at t = 0, is preserved by the
Ricci Flow). Since both F' and G are symmetric in V — V(t) — V, it is no loss
to assume V* < V(t)/2; and this makes 0F/0V = H >0 atr =0 and t = ¢*.
Then our inequality on A/t becomes

0A < oF V@F

=t P av

These are the inequalities we need.
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The remaining fact we use comes from section 12, where we showed that for
a family of parallel surfaces X.(r) we have

04 oA,
ot orz X

where x is the Euler class of £*. We claim that for a suitably large constant @
in the definition of F', which makes

FS(T_t)/Qa

we can make x < 0, so that ¥* is not a sphere or a projective plane. What is
required for this? We have

2y = /E‘ [Rm(P) + K]da

where Rm(P) is the ambient curvature of the tangent plane P to £*, and K is
the determinant of the second fundamental form. We have

Rm(P) < CQ/(T -1
for some constant C. Then

Rm(P)da < CN/Q
2!

which is as small as we like for @ large. Also K < H%/4 and H = 8F/8V so

1_[(O0F\?
<-Fl=—] .
E_Kda_4p(av>

Now we claim that by making B large we can make F(0F/0V)? as small as we

like. Recall
l — e%pt { Q B + B } .

F T3¢ VB T Y@ - VER
Differentiate implicitly to get

OF 2 3, ., 1 1

av =38 \veE T wm v

Since we have assumed V < V(t)/2,

0< Bedrtp2|y5/3

Q:,Q:
B

<

Wi

and
F < V23/Bed*t,

This makes

OF\?
F(a_v) < 16 / (9B%*)
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which is indeed as small as we like when B is large. Thus x < 1, and since it is
an integer we must have x < 0. This makes
2
04, 24
ot — or?
Now we can combine our inequalities to include that
2
OF OF 2 O°F 4 F (6F>

ot T VBVZFBV 1%

at V = V* and t = t*. However, we claim if ) and B are large enough the
opposite inequality holds everywhere. This contradiction implies G > F for all
t < T, which will prove the Theorem. O

LEMMA 23.2. If Q and B are large enough then the function F defined by

_l_—e%l’t Q + B + B }
Fo Tt vn T v

satisfies

ot v = V2 ov
for0<t<T and0<V <V(t)/2.

2 2
oF  wi < anF—f-F(?—F—)

Proof. We look for a function F in the form F = 1/H. Then we need
O0H O0H 0H 0’H

3= > H——.

H <8t + Vav>+3(av> By

If H takes the form
H = e3PtK

then K must satisfy
4,1 13 ?_Ii 0K 0K > 0’K
e3PK [Bt ( K+V6V +3 5V K—avz'
Our K has the form

. Q 1 1
K—_t+B[V2/3+(V—V)2/3J‘

We compute

oK (2 oK Q 2 Q
et (3K+V6V) T—12 "3T—¢

1 oV
58 v (V%)
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Since R > —p makes

ESPV
we have BK oK 0
Bt ( K+Vav) T2

Since €37 > 1 it is sufficient to verify

3 Q@ 0K O’°K
Ky +3(av) 2 K5

and now we can forget about p.
We consider two cases. The first is where V' < €V for some small absolute
constant ¢ we shall choose shortly. We have

OK _ 2pf1 1
oV~ 37 |Vs/3 (Y -V)5/3
and
PK_10 71 1
avz — 97 VB3 T (V-V)8/3
Then ,
0K 12 510 5/s 1
3(5) 228 -
and 52
K 8/3 1
——BV2<—B[1+6 ] 75
Also ) 0
2/3
B s SK< = +B[1+e¥] .

Therefore our inequality will hold if we choose € > 0 so small that
1= > had
o 1= 25 [1+e ]+ g

and if in addition we have
1 1 1
- + -B? 0

3 — o — —
B°Q (T— t)2v6/3 9 y10/3 2 9

BQ [+ e .

Since € is small we can take
—_ <
9 [1 + € ] 2

and then this inequality holds if B® > 3Q. Thus we have the estimate for
V <e(V - V) by making B large compared to Q.
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Consider the other case where V > £(V — V). This is easier because we can
compare everything to V and

V3 > (T - t)

for some a > 0 by our hypothesis. With various constants C < oo and ¢ > 0
independent of B, (@, and a (but depending on € > 0 which is fixed) we have

’K 1
V2 <CB- V8/3
and ]
Our estimate holds if 02K 0
< K?
ov? — (T —t)?

which holds if V > a(T — t)*/? and
BQ > C’/a‘l/3

for some constant C' as above. This is easily arranged also, and the Theorem is
established. O

COROLLARY 23.3. If |[Rm| < Q(T —t) and V > o(T — t)*/® as before then
the injectivity radius r satisfies an estimate

r>0vT —t
for some 6 > 0 depending on 8,p,T,Q, a as before.

Proof. If the injectivity radius is very small compared to the maximum cur-
vature then the isoperimetric ratio 4/V?2/3 will also be very small for a torus
of area A enclosing a volume V very small compared to the maximum curva-
ture. |

24 Curvature Pinching in Three Dimensions. In three dimensions we
can extract more information from the explicit form of the curvature reaction.
Recall from 5(c¢) that when the curvature operator matrix M is diagonal

A
M = 7
v

where
M(X,Y)=Rg(X,Y) —2Rc(X,Y)
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and the trace of M is the scalar curvature R the reaction ODE system becomes

aA 42
7 A+ pv
dp _ 9
7~ H + v
dv 2
E—V + Au

Any closed convex set of curvature operator matrices M which is SO(3) in-
variant (and hence invariant under parallel translation) and preserved by the
reaction ODE is also preserved by the Ricci Flow.

Since the system of ODEs is homogeneous, it is natural to first study the
radial motion, and then examine the solution curves projectivly. The radius p
is given by

e N

and we compute
d
% N+ 4+ = A +p+0) [D+p)*+ A +v)2 + (p+v)?].

which shows the radius p increases for positive scalar curvature
R = A+p+v > 0, and decreases for negative scalar curvature R = A+ pu+v < 0.
Next note that if a vector V € R™ evolves by a system of ODE s
av
dt
then this system and the associated system

% = a(V)F(V) = b(V)V

F(V)

have the same oriented family of solution curves in the projective sphere S"~! =
R™ — {0}/R;, for any scalar valued functions a(V) and b(V). We take V
(A, p,v) and

a= (A% +p?+17)
b=X+p®+ 03+ 3w .

Then the associated system keeps A? + u?v? constant, so we can restrict our

attention to the unit sphere p = 1. It has the explicit form

B =X~ A=)~ PO ).
Clearly it has fixed points A = p=vand A=p=0A=v=0,u=v =0.
This gives eight fixed points on the sphere p = 1.

It is easiest to display the flow on the front of the sphere R > 0 and on the
back R < 0. We denote the circles A = 0, 4 = 0,v = 0 with solid lines, and the
circles A\ + p = 0,A + v = 0,u + v = 0 with dotted lines. In the hemisphere



THE FORMATION OF SINGULARITIES 107

R > 0 the region of positive sectional curvature lies inside the solid triangle, the
region of positive Ricci curvature inside the dotted one; similarly for negative
sectional and Ricci curvature on the other.

R>0 R<O

D2 NS

The center point A = u = v > 0 represents the sphere S%, and the center
point A = u = v < 0 represents the hyperbolic space H3. Note S3 is attractive
while H?® is repulsive. The three vertices A\ >0,y =v=0and 4 > 0,A=v =0
and v > 0, = u = 0 represent the cylinder S? x R!, while the three vertices
A<O,p=v=0and pu<0,A=v=0and v <0, = u = 0 represent H2 x R!.
These are degenerate fixed points which all attract in one direction from one
side, and repel in the opposite direction on the other side. Of course the picture
on the back R < 0 is the reverse of the picture on the front.

We can examine the degenerate fixed point at the cylinder S? x R! where
A = p = 0 more precisely by taking instead the associated system with

a=v and b=124+ A

which preserves the planes where v is constant. Restricting to v = 1 gives the
associated system

dA 9
-y = — )2
pril A+ A n
dp 2 2
— == -A
dt Bt p M
with a degenerate fixed point at A = g = 0. If we substitute
A=z+y p=z-—y
we get the system
%% =z’ +y’ —z(a’ -7
% =-[21-2)+2*-y*]y.

When we are close to the origin z increases and |y| decreases. On the parabola

¥’ +3z=0
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we have

d 4 2

- 0" +32) =3z (1+2%) <0
so if we start inside this parabola we must stay inside, and if we start close to
the origin we must appraoch the origin. But on the parabola

v’ +4zx—€e=0

we have d
a(y2+4z—-s) =4z%(1+ 1) +2 (e — 4z — 2%) > 0
when —1 < z < 0, so if we start outside this parabola but close to the origin
with £ < 0 we must stay outside until > 0, after which = becomes large before
y reaches 0. The envelope of all the solution curves attracted to the origin will
again be a solution curve between the parabolas y? + 3z = 0 and y2 + 4z = 0,
so this separatrix has a vertical tangent near the orgin.

On the other hand, near the origin

dz

dy
priak +y“ and 7 2y

to a good approximation. If z < 0 and 0 < y << |z| then

dz 2 dy
ik and pr

which gives solution curves

~ -2y

y ~ Ce?/®

which keep y << |z| and approach the z-axis very fast. We expect the solution
curves inside the separatrix to look like these. In fact we expect the solution
curves of the original system and the simple approximation are conjugate by a
diffeomorphism. This gives the following picture for the solution curves near
S? x R where A = 0, = 0,v = 1, projected radially onto the plane v = 1.
(Recall z and y are rotated 90° from A and p.)

Note that a sizable region in A, y, v space is attracted into the fixed radial line
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A = p = 0 while the rest flows past it, on towards S® along the fixed radial line

A=p=v.

Tom Ivey has used a computer to produce a picture of the solution curves for
the associated system obtained by projecting radially on the plane A+pu+v = 1.

The picture looks like this

S? x R

5% x R!
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Hopefully some geometric insight into the following pinching results.

THEOREM 24.1. For any € in 0 < € < 1/3, the pinching condition R > 0

and
Re(z,y) > eRg(z,y)

is preserved by the Ricci Flow in dimension three.

Proof. If the curvature operator M has eigenvalues A > u > v, the pinching
conditions become p + v > 0 and

p+v >\

with § = 2¢/(1 —2¢). Since ) is a convex function of M while p+ v is a concave
function, the inequalities define a convex set of matrices, so we only have to
check that this set is preserved by the ODE system. So we must check

4

dt/\

d
— >
dt(u+1/) >46

or
P+ v+ 0%+ Ap > 6 (A2 + pv)

on the boundary where
p+v=24612>0.

This is equivalent (solving for §) to
Ap?+ 2w+ 02+ ) > (p+v) (V2 + )

which reduces to
N(p+v) > pr(p+v)

which clearly holds if pu+v >0and A > pu > v. O

THEOREM 24.2. For any 8 > 0,B < oo, and v > 0 we can find a constant
C < oo depending on 3,B and v with the following property. If a solution to
the Ricci Flow in dimension three has

Bg(z,y) < Re(z,y) < Bg(z,y)

at the beginning t = 0, then for all subsequent times t > 0 we have

1
Rc—gRg‘ <yR+C

as a bound on the trace-free part of the Ricci tensor.
Proof. Depending on 3 and B we can choose § > 0 so that

A<u+v
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at t =0, and hence for t > 0 by the proof of the previous theorem. Choose the
constant A so that the inequality

A-v<Ap+v)s
holds at t = 0, which is possible since
A—v<A+pu<B and p+v>p

at t = 0. We claim this inequality is also preserved by the Ricci Flow. Clearly
it defines a convex set of matrices M with eigenvalues A > x> v and p+v > 0.
So we only must check that the inequality is preserved by the ODE system.
Now d

—A=v) =N 4w -2 -\

dt
S0
iln(z\—u)—/\— +v
dt —ATH
while p
E(,u+u)=u2+/\u+uz+/\p2,\(,u+1/)
S0
—d—ln( +v)> A
at HTV=A
Then

A=)/ +v)' ] <X = (u+v) <O
so the ratio (A —v)/(u+v)!~¢ decreases. If it is less than A to start, it remains
so.

We can estimate

Re— %Rg| <CO—v)
for some constant C, and
p+v<CR

for some the constant C. For any ¢ > 0 we can find yet another constant C(¢)
with
R <(R+C(Q)

for all R > 0. Then we get

Rc - %Ry‘ <C(R+C(()

and we only need to take ¢ < /C to finish the proof. O

COROLLARY 24.3. For any 8> 0,B < 0o and § > 0 we can find a constant
C < oo with the following property. If a solution to the Ricci Flow in dimension
three has

B9(z,y) < Re(z,y) < By(z,y)
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at the beginning t = 0, then for any subsequent T > 0

max max|DRm(P,t)| < § max max|Rm(P,t)[*? + C.
t<r P t<r P

Proof. We can recover this result by a limiting procedure; an explicit estimate
using the maximum principle is given in [20]. Suppose the estimate fails for all
C. Pick a sequence C; — oo, and pick points P; and times 7; such that

|DRm(Pj’Tj)| > elgéar'x mgx[Rm(P,t)|3/2 + CJ"

Choose the P; to be the origin, and pull the metric back to a small ball of radius
r; proportional to the reciprocal of the square root of the maximum curvature
up to time 7. Clearly these go to infinity by our derivative bounds. Dilate the
metrics so

max max |Rm(P,t)|
t<T; P

becomes 1 and translate so time 7; becomes time 0. Then C; dilates to zero,
but in the limit metric
|DRm(0,0)| > 6.

However the limit metric has
1
—-Rg=
Rc 3 g=0

by the previous theorem. But then it has constant curvature, which is a con-
tradiction. This proves the corollary. O

We can now see that the solution to the Ricci Flow on a compact three-
manifold with positive Ricci curvature becomes round. Since R, > 0, Ry«
goes to infinity in a finite time. Pick a sequence of points P; and times 7;
where the curvature at P; is as large as it has been anywhere for 0 <t < 7;.
Since |[DRm| is very small conpared to R(P;,t;) and |Rc — %R g| is also, the
curvature is nearly constant and positive in a large ball around P;. But then
Myer’s Theorem tells us this is the whole manifold.

Our next result is even more interesting, because it applies to any three-
manifold regardless of the sign of the curvature tensor. It was also observed
independently by Ivey [30]. Consider the function

y=f(z)=zlogzr —z

for 1 < z < o0, where it is increasing and convex with range —1 < y < co. We
let f~!(y) = z be the inverse function, which is also increasing but concave and
satisfies
. -1 _
Jim f (y)/y=0.

THEOREM 24.4. Suppose we have a solution to the Ricci flow

0
5194 = —2R;;
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on a compact three-manifold which satisfies the inequalities R > —1 and
M;; + f~'(R)gi; > 0
att = 0. Then it will continue to satisfy‘ them for t > 0.

Note that since f~!(y) > +1 always, any matrix with eigenvalues at least —1
and trace at least —1 satisfies the inequalities. For any metric we can achieve
this by dilation. Then the inequalities will continue to hold under the Ricci flow.
Then if the curvatures go to infinity, the most negative will be small compared
to the most positive.

LEMMA. The set P of matrices My, defined by the inequalities

Adp+rv<-1
v+ A+ p+v)>0

is closed, conver and preserved by the ODE.

Proof. P is closed because f~! is continuous. The function A+pu+v is just the
trace, which is a linear function. Therefore the first inequality defines a linear
half-space, which is convex. The function v is concave, and f~! is concave and
increasing, so the second inequality defines a convex set as well. O

Under the ODE

%(z\+u+1/)=)\2+u2+l/2+/\u+/\u+;w

and this quadratic can be written as
1
2

so it is clearly non-negative. Thus the first inequality is preserved. The second
inequality can be written as

[A+ )+ O +) + (p+v)?]

At p+v> f(-v)
which becomes
A+ p > (—v)log(—v).

It is easier to keep track of the signs if we let n = —v, and write it as
A+ pu>nlogn.

To show the inequality is preserved we only need to look at points on the
boundary of the set. f v+ f!(A+p+v)=0thenv=—f"'A+p+v) < -1
since f~!(y) > 1 for all y. This makes n > 1, so nlogn > 0and A+ u > 0.
Since A > u we must at least have A > 0. But u may have either sign.
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We deal first with the case where 4 > 0. Then we need to verify

d\  du dn
2 ES =
7 + I 2 (logn + 1) o
when A + u = nlogn. Solving for
_A+p
logn = —

and substituting above, we must show

M —pn+p?-An> (/\%+1) (=n? — Ap)

which reduces to
M +p®)n+dpA+p+n)+n®>0

and since A, 4 and n are all positive or zero we are done here.
In the other case where ;1 < 0 we again change the sign by letting p = —m.
Then the inequality becomes

A >m+nlogn.

To show the inequality is preserved we must verify that

% > -(Z—T + (logn + 1)?1_::
when A = m + nlogn. Solving for
logn = Azm
n
and substituting above, we must show
MNimn>AIn-m?+ (,\—m +l) (Am — n?)

when A > 0and 0 < m < n (and n > 1). This simplifies algebraically to
showing
A0+ dm? + m?n +nd > Xm + Amn

which is equivalent to

(M =dm+m?)(n—m)+m*+n>0
which must hold because

MN-Adm+m?>0 and n—m>0.

Hence the proof is complete.
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COROLLARY 24.5. For any constants B < oo and § > 0 there exists a
constant C < oo with the following property. If any solution to the Ricci Flow
on a complete three-manifold with bounded curvature satisfies |Rm| < B at
t =0, then for t > 0 it satisfies the estimate

M(X1 Y) 2 —(5R+ C)g(XaY)

on the curvature operator M. Hence when the curvature R is big, any negative
curvature is very small in comparison.

The following refinement of these techniques gives a curvature pinching result
useful for classifying Type I singularities on a three-manifold.

THEOREM 24.6. Suppose we have a solution to the Ricci Flow on a compact
three-manifold on a mazimal time interval 0 <t < T which is Type I, so

limsup(T — t)|M| < o0
t—T

and suppose the manifold never acquires positive sectional curvature everywhere.
Then there exists a 8 > 0 such that for every 7 < T and every 6 > 0 we can
find a timet in T <t <T and a point P where (T —t)|M| > 0 and a frame at
P in which

\M - RE| < §|M|

where the scalar curvature R = trM 1is the trace of the curvature operator M
and E is the curvature operator matriz of a round cylinder S® x R! given by

1
E= 0
0

COROLLARY 24.7. The limit of dilations of the solution around these points
and times gives an ancient solution with bounded non-negative sectional curva-
ture whose holonomy reduces. Consequently it splits as a product of a surface
with R!.

Proof. Since the minimum of R increases, we can choose a constant p > 0 so
that
R+p>0

for all ¢t > 0. The pinching estimates imply that for large |M| any negative
eigenvalues M may have are not nearly as great in absolute value as some
positive one; and hence there is some constant A < 0o so that

|M| < A(R + p)

for all t > 0. O
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We shall prove the converse of the Theorem. Suppose that for every § > 0
there exist 7 < T and § > 0 such that at every point and in every frame at any
time t with 7 <t < T we always have

(T -t)|M| <8 or else |M—RE|<M]|.

We shall then show the manifold shrinks to a point and becomes round. We
shall let C < oo and ¢ > 0 denote various constants which may depend on A
and p (as well as the dimension n = 3) but which for now are independent
of the parameters 6, 7,4d,7,e which we will choose as follows. We pick # small
enough to start, choose 7 and § depending on # from the new hypothesis, pick
7 depending on 4, and finally choose £ depending on {. The exact choices of
8,7,d,n,€ will be explained as the proof evolves.
Using R + p > 0, consider the function

F=(T-t)°| = MP/(R+p)**

where 1
SIM=M- gm

is the trace-free part of M when I is the identity matrix in an orthonormal
frame. The matrix M evolves by

DM =AM + M'

()

in an appropriate frame then

A2+ v
M = 2+ v .
v+ A

The trace R evolves by

where if

DtR = AR + R’
where R’ is the trace of M’, and the trace-free part = M evolves by
Did3M=A3M+S5SM
where > M is the trace-free part of M’.
Using the identity
Afl S MP/(R+ p)>]
+2-¢) [DR/(R+p)] D [| 5 MP/(R + p)*~*]
=23M-A3M/(R+p)?°-(2-¢) > M?2AR/(R+ p)3~
o MDR|?

D Mm-S MDE

+{E|D-3>M|2+(2—e) R+,

} (R+p)?
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and discarding the last term in braces which is clearly positive, we can compute
the evolution of F as

DF = AF + (2—-¢)[DR/(R+ p)] - DF + F'
where F' is computed from the ODE’s as
F'=2T-t)*3M > M /(R+p)?*°c—eT—-t)?
| = MP? /(R+p)*~ = (2—e)(T - t)|
> M|*R'/(R+ p)®~=.
We can regroup this as
F' = (T - t)°[X - 2Y]/(R+p)*~*
where
X=203M 3M +¢|>MPR —e(R+p)| > MP?*/(T-1t)

and

Y=|3MP’R-RIM SM.
(Note Y is the only term we would have if ¢ = 0 and p = 0.) Using the ODE’s
we compute explicitly

Y =Xp-v)?+»2A-v)? +° (A - p)®

and note Y = 0 on the symmetric spaces 53,52 x R', R®, H?> x R!, and H®
where \ = p=vordA=p=0o0orA=v=0orp=v=0, whileY >0
elsewhere.We can estimate X from above as follows. The matrix > M has
diagonal entries like

S0- )+ (-]
so | > M| is comparable to
A-mw+A-v)+(-v)

up to a constant factor above and below. The matrix > M’ has diagonal entries
like 1
O =WA+a=1)+ A=) A +v - p)]

so | > M'| < C|M|| > M| for some constant C. This gives a bound on the

first term in X
203 M- 3 M' < Cp|M|| > M|2.

We also have a bound
IM'| < CIM|?

and R’ is the trace of M', so we get a bound on the second term in X

e| > M]’R' < Ce|lM|*| > M|
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Finally |M| < A(R + p) so we get a bound on the third term
e(R+p)| = MI*/(T —t) > ce|M|| = M|*/(T —t).
This gives a bound
X < Cp|M|| > M|? + Ce|M|?| > M|? — ce|M|| > M*/(T - t).

on the quantity X.
We can also estimate Y from below.

LEMMA 24.8. For every § > 0 there exists an { > 0 such that if the matriz
M satisfies
|M — RE| > §|M|

in every frame then
Y > (IM°| =M%

Proof. We saw Y > 0 if we avoid the lines where M = RE or M = 3RI.
Hence by homogeneity Y > ¢|M|* for some ¢ > 0 if

1

|M —RE|>6§|M| and |M - ngt > 8| M.

If IM - $RI | < §|M| for é small, we surely have all the eigenvalues of the same
sign with comparable magnitudes, and

M(p—v)? +p2(A = v)? + 2 (X - p)?
>+ + ) [A -+ (A -v) + (—v)?

for some ¢ > 0. Hence in either case we are done.
Given ( as above, choose € > 0 so small that Ce < ( for the constant C in
the bound on X. If |M — RE| > §|M| then

X —2Y < Cp|M|| = M* - (| M|*| > MP>.
On the other hand, if (T — t)|M| < 0 then neglecting Y > 0 we have
X —2Y < CplM|| S M|? - (g - C) M| S M)

and if we pick 6 > 0 at the beginning with § < ¢/(C + 1) then ¢/6 — C > 1.
Since ¢ is small compared to ¢, we have

X —2Y <Cp|M|| > M|® —¢|M|?| > M|?
in either case. As a consequence
C2p 2 [
X -2y < |- - Z|M)? 2,
<(FZ-5mr)15 M
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Having come this far, since ¢ is now chosen we loose nothing to let our constants
C and ¢ depend on € from now on . Then we can write this as

X -2Y < (Cp—cM)| > M2

We summarize our argument so far.

LEMMA 24.9. There ezist constants p > 0,A < 00,C < 00,¢ >0 ande >0
such that R+ p > 0 and |[M| < A(R + p), and if

F=(T-t)°| 5 M/(R+p)**

then
DiF =AF+V - -DF + F'
where
V=(2-¢)DR/(R+ p)
and

F' < (T = t)°[Cp” — c|MP*)| = M|*/ (R + p)*~*.

COROLLARY 24.10. We have F -+ 0 ast —» T.
Proof. Choose any A > 0. When
(T -t)M| < A
since | > M| < |M| and |M| < A(R + p) we have
F < A7)
which is as small as we like if A is small enough. But when
(T -t)M| = A

we have |M| quite large for t near T, so
2 1 2
C — M| 5——2-c|M|

and 1
F' < —§c|M|2F/(R + p).

On the other hand, now that |M]| is large

R+p< V3 |M|+p<2M|
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SO

F' < -iqum|F.
4
Using |M| > A/(T —t) we get
, 1
F' < —Zc/\F/(T —t)

for t near T. Thus when the maximum F,,,, of F exceeds A27¢)\¢ it must
decrease at a rate
d
Et-FMAX < _pFMAx/(T - t)

where p = 7cX > 0. This implies
d -p
E(T_t)) FMAX <0

so if (T —t)"PF,,x = B at some time 7 close enough to T for the above
estimates to hold then subsequently

F,

MAX

<B(T -t or F,, <A¥@™X
and so when ¢ is even closer to T the second holds. But A > 0 is arbitrary, so
F —0.

Now we can show that the manifold shrinks to a point and becomes round.
By assumption

(T - )M < Q

for some constant 2. On the other hand there exists a constant w > 0 such
that at each t we have

(T - )|M| > w
somewhere, or else |M| could not go to infinity as t — T because
DM = AM + M? + M#

would not allow such rapid growth. Hence the maximum of |M]| is always
proportional to 1/(T —t). The quantity F is dilation-invariant, so when we
form the Type I limit (which must exist by our injectivity radius estimate
which we proved in Corollary 23.3) we have F' = 0 on the l:mit. Hence the limit
metric has = M = 0, and hence has M = %RI . But this implies the curvature
is constant, (as we have had occasion to observe before from the contracted
second Bianchi identity). Since the curvature is positive, the limit is a sphere
S3 or a quotient space-form S3/T". This proves the theorem. O
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25 Limits with Strictly Positive Curvature Operator. Given a se-
quence of complete solutions to the Ricci Flow with uniformly bounded cur-
vature on some time interval, we can extract a convergent subsequence by the
result in [26] provided we can control the injectivity radius at the origin points.
In general this may be hard, but there is one important case where we get it
for free. This is based on the observation that for a complete non-compact
manifold with strictly positive sectional curvature we can bound the injectivity
radius by the maximum of the curvature.

The situation we consider here is not quite that simple, but with some work
it is also possible to estimate the injectivity radius. We have a sequence of
solutions to the Ricci flow where the sectional curvatures are bounded, where the
lower bound is negative but increases to zero (as we have seen always happens
after dilation if n = 3), and where the sectional curvatures at the origin points
are uniformly bounded positive away from zero, and where the diameters go to
infinity. In this case when we are far out in the sequence the curvature stays
positive a long way out, and is never very negative. This is enough to produce
a neighborhood of the origin which is convex and contains a ball of enough size
to give a good lower bound on the injectivity radius. We now make this precise.

THEOREM 25.1. Suppose we have a sequence of solutions to the Ricci Flow
given by metrics G; on manifolds M; with origins O; and frames F; for times
a<t<w (witha <0 < w) which are all complete, and such that for some
p>0

(a) all the sectional curvatures of all the metrics G; are at most 1/p*

(b) there is a sequence 6; — 0 such that all the eigenvalues of the curvature
operator Rmj of the metric G; are at least —4;/p?

(c) there is an € > 0 such that all the eigenvalues of the curvature operator
Rmj; of G; at the origin O; are at least €/p?

(d) the diameters d; of the metrics G; go to oo.

Then there is a subsequence of the metrics such that all the injectivity radii at
the origins are at least this p > 0. Hence a subsequence converges to a solution
G of the Ricci Flow on a <t < w.

Proof. The first step is to extract a subsequence which would want to converge
if we could control the injectivity radii. To do this we introduce the notion of a
geodesic tube in a manifold M with origin. Given a frame F = (F1, Fs, ..., Fy)
at the origin O and a length L, we begin by constructing the geodesic of length
L out of O in the direction F; and its opposite. Then we parallelly translate
the frame F along this geodesic, and take the geodesic out of each point in the
direction F; and its opposite of length p. Parallelly translate F along these
also, and take the geodesic out of each of these points in the direction F3 and
its opposite of length p, and so on. Notice that only in the first direction do we
go a long way L, while in the other directions we don’t go farther than p. The
curvature satisfies | K| < p, so this construction gives a local diffeomorphism of

(=L,L) x (=p,p) X -+ x (=p,p) — M.
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Consider the pull-back metrics. For the Ricci Flow a bound on the curvature
gives a bound on all the derivatives of the curvature. Then by ordinary differ-
ential equations we get bounds on the pull-back metric and all its derivatives
with respect to the tube coordinates. (Here we omit the details.)

If we consider a fixed reference frame F; at the origin in each M; and take
an element A of the orthogonal group, then A¥; is a frame at the origin in Mj,
and we can take the pull-back metric for the geodesic tube on AF;. For a fixed
A and a fixed L, we can always find a convergent subsequence of the pull-back
metrics. By choosing a countable dense set of A’s and a sequence of L’s going
to infinity, and by a diagonalization argument, we can find a subsequence of
metrics so that the pull-back metrics to the tube on the frames AF; of length L
converge for every A and every L. In this case we say the metrics preconverge
along geodesic tubes. (Note any convergent sequence would be preconvergent.)
The advantage of preconvergence is that we do not need to control the injectivity
radius to get it. Form now on we only deal with such a preconvergent sequence.

We can strengthen the notion of preconvergence to compare one tube with
another. For any two vectors X and Y in R"™ (which we identify with the
tangent spaces at the origins 0; in the M; with the frames ;) we can consider
the sequence of distances

dj = dj(exp; X,exp; Y) < |X| + Y|

in M; ; by picking a subsequence we can assume the d; converge. If we do
this by diagonalization for a countable dense set of pairs (X,,Y,) then in fact
d; will converge for every pair (X,Y). To see this take any € > 0. Choose a
sequence of pairs with X, = X and Y, — Y. Since we have preconvergence in
geodesic tubes in the directions X and Y, the metrics G; converge to a limit
GX in the tube on X, and to a limit G¥, in the tube on Y. We can find a
constant ¢ > 0 depending only on the dimension so that for any ¢ > 0 small
enough, if | X — X| < ¢(p then in the metric GX

d (expi‘o X, expl, X) <¢p
and likewise if |¥ — Y| < ¢(p then in the metric G¥,
dy (exp3,’c V,expl, Y) < ¢p.
Given (¢ > 0, choose a so large that
[ Xa = X[ <clp and [Yo—-Y]|<c(p.

Then
dX (expX Xo,expX X) < ¢p

and
d¥, (expl, Ya,expl, Y) < (p.

Now choose j large enough depending on X,Y,a, 7, and p so that
|d;(exp; Xo, exp; X) — df (expd X, expd, X)| < (p
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and
|dj (exp; Ya,exp; Y) — dX (expl, Ya,expl, Y)| < (p.

Finally make j large enough also depending on X, Y, a,( and p so that
dj(exPj Xo,exp; Ya) < (p

since X, and Y, are in the countable set for which the sequence is preconvergent
in distances. Then
dj(exp, X,exp; Y) < 5(p.

Since ( is arbitrary, the sequence is preconvergent in distances for all X and Y
as claimed.

In fact we can do a little better along the lines of [H]. Using the geodesic tube
coordinates at t = 0, we can also consider the pull-back of the metric at earlier
or later times, which we can bound using curvature bounds, since we know the
metric evolves by the curvature under Ricci Flow. Then we can actually make
the pull-backs of the Ricci Flow converge to a solution of the Ricci Flow in every
geodesic tube. We can also keep the solutions preconvergent in the distances
d;(exp,, X, exp; Y)(t) for all X and Y at every time ¢. O

LEMMA 25.2. For every length L we can find (L) > 0 and J(L) > oo such
that all eigenvalues of the curvature operator on M; at points within distance L
of the origin have k > €(L) when j > J(L).

Proof. Suppose not. Then we can find a sequence of points X; = expy(¢;V;)
at distances £; < L from the origin in some directions V; with |V;| = 1 such that
some eigenvalues of the curvature operators at the X; are not bounded away
from 0 on the positive side. Since on M; we have there eigenvalues > —4,/p?
with § — 0, they in fact go to zero.

Find a convergent subsequence V; — V and £; — £ and pick a geodesic tube
in each M; starting in the direction V. By preconvergence we get a limit which
solves the Ricci Flow in the tube and the limit will have some eigenvalue of
the curvature operator equal to zero at the point £V with £ < L. But in the
limit all the eigenvalues of the curvature operator are > 0, so by the strong
maximum principle (see[29]; the argument works locally also) there must be a
zero eigenvalue of the curvature operator everywhere in the tube at every time,
in particular at the origin at t = 0. But for the sequence we had the eigenvalues
of the curvature operator at O; > ¢, so this holds in the limit also. Since this
is a contradiction, the Lemma is established.

In a manifold M with origin 0, we define the function £(V') on unit tangent
vectors V at 0 with values in [0, co] to be the distance to the cut locus in the
direction V. If exp is the exponential map at the origin, then

£(V) = max{¥¢; d(exp £V,0) = £}.

It is well-known (see Cheeger and Ebin [9]) that the distance to the cut locus
is a continuous function. Moreover if £ = ¢(V) then either the geodesic exp(sv)
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for 0 < s < £ has a non-zero Jacobi field vanishing at the ends, or there exists
another W # V write exp({W) = exp(£V).

The choice of frames F; at the origins O; in M; allows us to identify the
tangent spaces at the origins with R™. We define the set D of distinguished
directions as those in which we can go off to infinity as ;7 — oo. To see this is
well-defined, let £;(V') for a unit vector V in R™ be the distance to the cut locus
in Mj; in the direction V relative to the frame F;.

LEMMA. For any sequence V; — V, the limit £ (V) = lim ¢;(V}) exists
j—oo

and depends only on V and is a continuous function of V, when the sequence
of manifolds is preconvergent.

Proof. First we show the limit exists. We can always define
ls(V) = — liminf ¢;(V;). Choose a subsequence of j’s for which the lim
j—o0

inf is attained as a limit. If liminf = oo we are done. Otherwise for each j,
either there is a non-zero Jacobi field J; or an alternate geodesic in the di-
rection W;. By passing to a subsequence, there is always either one or the
other. a

If there is always a Jacobi field J;, we can take its derivative dJ;/ds at
the origin to be a unit tangent vector X;. By choosing a subsequence we can
make X; converge to some unit tangent vector X. The metrics preconverge
in the geodesic tube around V', so the limit metric has a non-zero Jacobi field
J vanishing at 0 with dJ/ds = X, and J vanishes again at exp. (sV) with
s = £ (V). This means that the index form

I(J,J) = / [[DJ]? = R(T,J, T, J)] ds

on the geodesic exp,,(sV) on 0 < s < £,(V) has a null space, and hence has
a strictly negative direction on 0 < s < €o(V) + € for any € > 0. Then it also
has a negative direction on 0 < s < £ (V) + € in any metric G; when j is large
enough, and thus

KJ'(V) <Loo(V) +e.

Therefore £;(V) — £o(V) for all 5 — oo, not just for the subsequence.

Otherwise we find a subsequence where exp;(¢;W;) = exp;(¢;V;) for some
sequence W; # V; with £; = ¢;(V). By taking a subsequence we can assume
W; - W. If W =V, then the limit metric in a geodesic tube in the direction
V again has a non-zero Jacobi field on exp, (sV') vanishing at s = £,,(V), and
we are done. This Jacobi field J can be bound by taking J = 0 and dJ/ds = X
at the origin 0 where for some subsequence

Wi — V.
X = lim 21— .
A
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Since exp;(sV) and exp;(sW;) are geodesics in the metrics G; and G; — G in
the tube on V = W, we can check that

. exp.(sW;) — exp,(sV;)
J(s) =1 1 J
&)= =,

converges for the subsequence chosen above to the desired Jacobi field, with
J = 0 again at s = (V). If W # V, we take two geodesic tubes in the
directions V and W. Then for our subsequence

d; (exPj (4;V5), exp; (¢;W;)) =0

and since £; = £ = £(V) and V; = V and W; — W we also have in the tube
onV
dj(exp;(£;V;),exp;(£V)) = 0

and in the tube on W
dj(exp;(£;W;),exp;(¢EW)) = 0

which makes
dj(exp;(¢;V;),exp;(€W)) = 0

for our subsequence. But this sequence is defined for all j, and the limit ex-
ists because we have made our metrics preconvergent in distance. Hence this
sequence not just the subsequence, goes to zero for all j.

Now consider the picture in the geodesic tube in the direction V for each M;
with j large. There is the geodesic out of V from the center, and close to it
is the geodesic out of V;. At distance £ out the tube there is another geodesic
passing through the tube which came out of W, and at a distance £ out of W
it is close to the point at distance £ out of V. The metrics converge in the
tube, and the geodesics out of W will converge in the tube to a limit geodesic
which we call 4. Now v passes through the point P at distance £ out along
the geodesic ¥ down the center which came out of V. But we claim v cannot
coincide with 7. For if it did, the corresponding v; out of W; and ¥, out of V;
in M; for the subsequence of j would be close, and hence both in the tube in
direction V, and their starting vectors V; and W; would be as close as we like.
But V; - V and W; — W with W # V. Hence v and 7 are distinct.

Now the argument is a little subtle, because 7 is only defined in the tube
around 7. If we had a limit metric, then v would be a geodesic out of W,
and the distance to the crossing point P would be the same along v and 7.
In this case it would be a shorter path, once we are beyond P along %, to go
in a perpendicular from 7 over to v and then follow 7 back to the origin. For
short distances beyond P, the savings in distance is on the order of a fraction
given by the sine of the angle between v and 7. (This would be exact for the
flat metric.) Since we have a uniform curvature bound, for short distances
beyond P we still save almost this much. Now if we take j large enough, since
the metrics converge in the tube our savings in cutting over from the geodesic
7, out of V; to the geodesic 7; out of W will still be almost this much. Thus
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for every € > 0 we can find J(g) so that if j > J(g) then £;(V;) < £n(V) +¢,
since the geodesic out of V; does not minimize length at distance much past
£ = £ (V). This proves the assertion that

(V) = lim &(V})
always exists.

It follows easily that £.,(V) is independent of the choice of the sequence
V; — V. For if we have two different sequences, we can collate them to get a
new sequence by odd and even j and the odd and even subsequences cannot
have different limits.

It also follows that £.,(V') is continuous in V. For let Vi be any sequence
which converges to V. For each k choose ji so large that in Mjx we have

145, (Vi) — Loo(Vi)| < 1/E

if £oo(Vk) < 00, otherwise we make £;, (V&) > k if £oo(Vx) = oo. Then for the
subsequence jr we have

lim ¢; (Vi) =L€eo(V)

k—oo "k

by the previous argument. Hence

lim £o (Vi) = oo (V)
k—o00
also, and we are done proving the Lemma.
Now we let D be the set of directions in which we can go off to infinity
without hitting the cut locus in M; as j = oo; specifically

D={V eSS :4y(V)=00}.

Since the diameters of the M go to infinity, the set D is not empty. To see this,
pick a sequence V; with ¢;(V;) — oo and find a subsequence with Vi — V;
then £oo(V) =00 so V € D.
Moreover

lim inf £;(V) = oo.

j—oo VED
For if not, pick V; € D with £;(V;) < £ < oo for some subsequence j and some
¢ < oo. For another subsequence V; = V. But £o(V) = Jllglo 250 (V;) since £

is continuous, and £« (V;) = oo since V; € D, 50 £ (V) = oo also and V € D.
But £;(V;) — £x (V) also, which is a contradiction. Now recall that all sectional
curvatures on M; have k; < 1/p? for some p > 0 independent of j. We define
the set N; in Mj in the following way:

N;j = {exp;(sW):|[W|=1 andfor s<{;(W);
andforall VeD,s'<s and r<{;(V)
we have d;exp;(s'W),exp,(rV) > r — p}.
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First note that N; is closed and not empty; for N; is defined as an intersection
of closed sets, and contains the ball of radius p around the origin O; in M;.

LEMMA 25.3. There exists an L < oo such that for all large enough j the
set N; lies in the ball of radius L around the origin O; in M.

Proof. If not, we could pass to a subsequence of j’s and find a sequence
sj — oo and W; in the unit sphere with

exp; (Sj’l.Uj) € N;.

For another subsequence we have W;h — v for some V. Now s; < ¢;(W;) and
8j = 00 50 £oo(V') = 00 and V € D. However if we take any s’ > p fixed then

dj(exp;(s'W;),exp;(s'V)) = 0
and we get a contradiction, since we must have
dj(exp;(s'W;),exp;(s'V)) > s —p>0
once sj > s'. a

Among all geodesic loops starting and ending at the same point and lying
entirely in the compact set N; there will be a shortest one. Call it v;, and
suppose j starts and ends at a point we call P;. If v; has length at least p
for all j, we are done. When +; is shorter than p we consider two cases (and
rule them both out). The first case is when ; makes an angle = with itself at
P;, hence forming a geodesic circle. For any r no matter how large and any
V € D we can take j large enough to make ¢;(V) > r. Consider the point
X; = exp;(rV), and find the point Y; on v; closest to X;. Let Y; = exp;(sW)
with [W| =1 be an exponential representation of Y; in N;. Then taking s’ = s
we get

d(Xj’Yj) 2T —p.

Now we can find € > 0 depending on L + p so that all sectional curvatures
k; on Mj in the ball of radius L + p around the origin O; have k; > ¢/p?
independent of j, by our previous Lemma. Take a shortest geodesic (; from
X; to Y;. Then along (; for a distance p from Y; we have all x; > ¢/p? > 0.
Moreover by taking j large we can make all sectional curvatures k; > —§;/p?
for J; as small as we like, and we can make r as large as we like. In this case
the standard computation shows the second variation of the arc length of the
geodesic 7; fixing one endpoint at X; and the other on +; is strictly negative.
Indeed let Z; be the unit tangent vector to «; at Y; and extend Z; to ¢; by
parallel translation. Choose a function ¢ to be identically 1 within distance p
of Y; along n; and then to drop linearly to zero. The second variation of arc
length in the direction ¢Z; is

I(pZj,0Z;) = / [IDo|? — k;¢%] ds
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where
kj = Rm(T}, Z;,Tj, Z;)

is the sectional curvature of the plane spanned by the unit tangent vector T} to
¢; and by Z;. Considering the separate contributions from the part of n; within
p of Y; and the past beyond

I(pZ;,0Z;) < —€/p+1/r +6;r/p°.

First take r so large that
1/r <e/3p

and then take j so large that
§r/p” <¢€/3p

and we still have
I(pZj,pZ;) < —€/3p

so the second variation is strictly negative. But now we see Y; is not the closest
point on v; to X, which is a contradiction. Thus «; cannot be a geodesic circle.

However if v; makes an angle different from 7 at P; , we are no better off.
For now we can shorten the geodesic loop ;. Since its length is no more than
p, and all sectional curvatures satisfy x; < 1/p?, there will be a geodesic loop
4; close to ; starting and ending at any point P close to P;. If we take P to
be along +; itself then the loop ¥; is shorter than 7, since for angle less than
7 the first variation in arc length of this motion is strictly negative. Moreover
P; is still in N;. If the whole loop #; is in N then +; wasn’t the shortest. On
the other hand if 4; doesn’t stay in IN; there must be a point ij on ¥; lying
outside of IV;.

Now if 13 is close to P;, then é] cannot lie far from NV; Vj, S0 in particular its
distance from the orlgm can be kept less than L+ p. Let Q, = exp; (s,W ) with

|W,| =1land§; < ZJ(W]) be some exponential representation of QJ and let
0 = {expj(st) :0< s <55}

be the corresponding geodesic from O; to Qj. Since @j is not in N;, we can
find some V; € D and some #; < £;(V;) and some §; < §; such that

dj(exp;(3,W;), exp; (7;V;)) < 7 — p.

In fact we may as well take 7; = Zj(f}j) since the inequality gets stronger as 7;
increases. Choose € > 0 depending on L+ 2p so that all the sectional curvatures
kj on Mj in the ball of radius L +2p around the origin O; in m; are at least 5/ p?
mdependent of j. The previous argument shows that the closest point on 0 to
X i = exp(F; J) cannot be an interior point for large j. We only need observe
that 7; is as large as we want when j is large by our previous observation.
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Moreover the closest point is not the origin, since there the distance is #; while
at exp](s W, ;) it is less than 7; — p. Hence the closest point is at the end QJ, so

d;(X;,Q;) <75 —p
while surely
d;(X;, By) > 7
since 13J lies in V;. Thus the closest point é; to X j on %; is not its end point
Pj. But now the second variation of arc length from X; to @} will be negative,

giving a contradiction as before. Hence the only possibility is that the shortest
loop v in N; has length at least p, and we have our injectivity radius estimate.

26 Singularities in Dimension Two and Three. The Ricci Flow on a
compact surface cannot form any singularity except for the sphere or projective
plane shrinking to a point and becoming round. One way to prove this now is
to examine the possible singularities and see there are no others. We have an
injectivity rdius estimate in terms of the maximum of the curvature valid for
all time. So unless the solution exists for all time with curvature decaying like

|R| < C/t

as t = oo, we can form a singularity model of Type I or II. We examine Type
I first.

THEOREM 26.1. The only solutions to the Ricci Flow on a surface which
are complete with bounded curvature on an ancient time interval —oo <t < T
and where the curvature R has

lim sup(T" - t)|R| < o0
t——o0

are the round sphere S* and the flat plane R?, and their quotients.

Proof. Since |R| < C/(T —t) and the minimum of R increases, R > 0.
Moreover by the strong maximum principle R = 0 everywhere and it is flat, or
R > 0 everywhere. If the solution is compact with R > 0, either it is the sphere
or it is the projective plane RP? = S%/Z, whose double cover is the sphere.
Assume it is the sphere, and we shall see it is round. Then RP? must be round
also since its cover is.

We know from [22] that the sphere shrinks to a point at some future time
which we can take to be T, when it becomes round. Its area A shrinks at a

constant rate dA
—_— = / Rda = -8
dt

so A = 8r(T — t). On an even dimensional oriented manifold the injectivity
radius can be bounded by the maximum curvature. Since

R<C/(T-1)
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by hypothesis, we must have injectivity radius p with
p>2cVT -t

for some c. Now the diameter L has
L<CA/p<CVT -t

as a bound also. Hence the diameter, the injectivity radius and the maximum
curvature all scale proportionally to the time to blow-up.
The scaled entropy

E:/Rmmw-mm
is monotone decreasing in ¢. Since
R(T-t)<C and /Rda=87r

we have an upper bound
E<8rInC

SO
E_ o= lim E;
t——oo

exists. Pick a sequence of points t; =+ —oo and points P; where the curvature
is as big as anywhere at time t;. Then it was never larger anywhere at any
earlier time, since an ancient solution with R > 0 has R pointwise increasing
by the Harnack inequality. Make P; the new origin and t; the new time 0 and
T the same blow-up time by translation and dilation. We can then take a limit
using the curvature and injectivity radius bounds. The backwards limit is still
compact by the diameter bound. Moreover the scaled entropy is now constant
at the value E_,,. But the only way this happens is on a shrinking soliton, and
(except for orbifolds) the only one is the round sphere. Then E has its minimal
value at t = —o0, so it was constant all along. hence the sphere was round all
along.

There remains the case where the surface is complete but not compact. Since
R > 0, the surface is diffeomorphic to the plane. We proceed to examine such
a surface until we learn enough about it to get a contradiction.

Recall first that the asymptotic scalar curvature ratio

A = lim sup Rs?

8$§—00

is constant on an ancient solution with weakly positive curvature operator by
Theorem 18.3.

LEMMA 26.2. For our solution A < oco.

Proof. Suppose A = oo. Then as in the dimension reduction argument of
Lemma 22.2 and the following, we can choose a sequence of points P; at t =0
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and radii r; which give A\; remote S-bumps for a fixed 8 > 0 and A\; — oco. This
works in dimension 2 only, because the only curvature is the scalar curvature,
so when it is big every curvature is big. But now this contradicts Theorem
21.6. (Once the dimension is 2 we cannot reduce it further, since everything in
dimension 1 is intrinsically flat.) Thus A < oo.

From our previous results in the proof of Theorem 18.3 we know that an
annulus
Ny = {0 <5< 30}

has an area
A(N;) 2> co?

for some constant ¢, and the scalar curvature at distance s falls off at most by
R >c/s?

for some other constant c.
Now we can explain how we get a contradiction. For a complete surface with

R > 0 we have
//Rda$47r

by the Gauss-Bonnet Theorem since the surface is exhausted by discs bounded
by convex circles with geodesic curvature k > 0 and on a disc

//Rda+2/kds=41r.
7]

However on our surface we claim

/ R da = oo.

This is because each annulus N, makes a contribution

c
// Rdaz—g'chch
N, o

for some constants ¢ > 0, using R > ¢/s? and A(N,) > co?. But we can take
an infinite sequence of disjoint annuli, and their contributions add up to oo.
This finishes the proof of the Theorem. 0

Next we examine Type II limits. Since R > 0 it must be a soliton which
assumes it maximum at an origin.

THEOREM 26.3. The only complete Ricci soliton on a surface with bounded
curvature which assumes its mazimum 1 at an origin is the “cigar” soliton ¥2
with metric

o dz? +dy?
ds* = ————.
1+z2 4y
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Proof. The soliton moves along a vector field V = Df. Since the Ricci Flow
preserves the conformal structure, which gives a complex structure J, the vector
field V is holomorphic. Then it turns out that JV is a Killing vector field; this
trick works on any Ricci-Kéhler soliton. This gives a circle action on the soliton
which makes it rotationally symmetric, and the Ricci soliton equation reduces
to an ordinary differential equation which we can solve. We refer the reader to
[22] for details. g

In our paper [28] we prove the following isoperimetric estimate, which is
similar to our study of minimal geodesic loops on a surface. Suppose a loop vy
of length L divides the surface into two pieces of areas A; and Az. Define the
isoperimetric ratio I(7y) of the loop v by

- (he3)

and let
I =inflI(y)
¥

be the infimum over all v of any length or shape.
THEOREM 26.4. On the sphere S? the isoperimetric ratio I is increasing.

It follows that we cannot form the cigar as a limit on S2, because the cigar
opens like a cylinder. If the surface develops a piece like a long thin cylinder it
will have a short curve in the cylinder with a comparably large area on either
side, and the ratio I will be close to 0 . If we approach the cigar as a singularity
forms, I must decrease to zero. But on the sphere I increases. The projective
plane RP? can be treated by looking at its cover S2. Other surfaces have Euler
class x < 0 and can be treated directly (as in [22]) or as a special case of Kahler
manifolds with [Rc] = p[w] with p < 0 (as in [4]). The rescaled flow converges
to a constant curvature metric.

It is very interesting to see how much we can say about the formation of
singularities in dimension three.

THEOREM 26.5. Suppose we have a solution to the Ricci Flow on a compact
three- manifold, and suppose R becomes unbounded in some finite time T'. Then
there ezists a sequence of dilations of the solution which converges to S or
S2 x R! or £%2 x R' (where X2 is the “cigar” soliton) or to a quotient of one of
these solutions by a finite group of isometries acting freely (these quotients are
the space forms S%/y, RP? x R, and RP? x R! and S? x S!,RP? x S} and
%2 x S} for circles S! of any radius r), exzcept possibly for the case of a Type
I singularity where the injectivity radius times the square root of the mazimum
curvature goes to zero.

Proof. When we get an injectivity radius estimate valid for finite time we
can always for a singularity model of Type I or II. First consider Type I. If
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the sectional curvature ever becomes positive everywhere, it becomes round
and our limit is S or S3/vy. Otherwise in Type I we get a limit which is an
ancient solution with bounded non-negative sectional curvature which splits as
a product of a surface with R!. For the surface, if (T — t)R < C it must be
a round sphere or projective plane by Theorem 26.1. Otherwise we can take a
backwards limit as ¢ =+ —oo to get a Type II limit, which must be the cigar 2.
Since a limit of a limit is also a limit, we get £2 x R! or £2 x S! as a limit of
the three-manifold solution.

In order to take this backward limit we need an injectivity radius estimate
on the surface in terms of the maximum curvature R at the current time. Since
R > 0 this is easy. There are three cases. If the surface is compact and oriented,
it is S? and the result follows from a theorem for positive sectional curvature
in even dimensions of Klingenberg ([9], 5.9). If it is compact but not oriented,
it is RP? and the double cover can be handled as before. If it is not compact,
it is diffeomorphic to R? and we can use the estimate for complete noncompact
manifolds of positive sectional curvature.

If the limit is Type II, it must be a Ricci soliton of weakly positive sectional
curvature from our pinching result in Theorem 24.4. If the sectional curvature
is not strictly positive, it splits as a product of a surface soliton, which must
be X2, with a flat factor R? or S! (of any radius). Even if it does not split, we
know the asymptotic curvature ratio is infinite

A =limsupRs® = 00
8§—00
by Theorem 20.2, and by Theorem 22.3 since the dimension n = 3 is odd, we can
do dimension reduction to find a limit of a limit which splits as a product with
R! of an ancient solution with bounded positive curvature on a surface. Again a
limit of a limit is a limit, and we can classify the surface as a round S (not RP?
because it is oriented) or £2. This finishes the proof of the Theorem. a

Of course S3 or S3/~ can actually occur as limits from the homothetically
shrinking solutions, and we expect to get S? x R! from a neck pinch (or a
degenerate neck pinch after dimension reduction). We even expect RP? x R}
as the limit from doing a neck pinch on S® shaped like a dumb-bell and then
quotienting by Z,;. Some of the other quotients are harder to picture. For
example if S? x S! has a product metric, the S? factor shrinks but the S!
factor does not. Hence the limit of its dilations is S? x R!, not S? x S!. We
conjecture S? x S! cannot form.

More importantly, we conjecture ¥? x R! and £2 x S! cannot form as limits
of dilations of a compact solution. Here are the reasons for our belief. First, 2
cannot form starting from a compact surface. Second, we could rule out ¥2 x R!
on a three-manifold the same way we can rule out 2 occuring as a factor in
limits coming from compact manifolds with positive curvature operator, because
%2 violates the local injectivity radius estimate coming from the Little Loop
Lemma. Moreover the Little Loop Lemma only depends on having some kind
of backwards control on the scalar curvature R locally. This control came from
the Harnack estimate, which uses positive curvature operator. But in three
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dimensions our pinching estimates show that we only miss positive curvature
by a little bit. This gives hope that we can get an approximate Harnack estimate
giving some backwards control on R as desired. Backwards control means that
R does not fall off too rapidly.

This raises the following interesting problem. If we almost have a degenerate
neck pinch, but at the last moment the little bubble on the end of the neck gets
pulled through, leaving a little bump, how fast can the curvature of this little
bump decay?
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