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Reflections on Geometry and Physics

MICHAEL ATIYAH

1 Philosophical reflection. In this lecture I will discuss in general terms
what has been happening to the theoretical physics/mathematics frontier over
the past 15 years.

Specifically I refer to the geometric and topological aspects of quantum field
theory which have now spread in a variety of directions. New terms such
as quantum groups, quantum geometry, quantum cohomology are appearing.
These indicate the scope and significance of the interaction, but it is premature
in my view to try to force everything into a particular mould. Time will tell
what the significant aspects really are and then the right title to adopt will be
clearer.

However, there has been unease expressed in certain quarters, most recently
by Jaffe and Quinn, about the doubtful mixture that is emerging. Not tied
closely to experimental physics nor to rigorous mathematics, standards are en-
dangered and warning signs should be erected! Like a ship exploring unchar-
tered seas, with inadequate maps and faulty compasses, catching glimpses of
beautiful tropical islands: mirages or reality?

We can distinguish perhaps four different types of reaction by mathemati-
cians towards these developments

(A) Take the heuristic results “discovered” by physicists and try to give
rigorous proofs by other methods. Here the emphasis is on ignoring the physics
background and only paying attention to mathematical results that emerge
from physics. Like Ramanujan who intuited marvelous formulae that defied
mathematical proof so physicists are viewed in the same light. The task of
the mathematician is to start from scratch and aim to prove these marvelous
“intuited truths”. This is, of course, the minimalist reaction: the mathematician
reacting in his own terms to an externally posed problem. We cannot ignore
such challenges and we would all agree that a rigorous proof is a desirable
objective.

(B) The second approach is try to understand the physics involved and enter
into a dialogue with physicists concerned. This has great potential benefits
since we mathematicians can get behind the scenes and see something of the
stage machinery. This may provide clues for possible proofs, it may enable
us to generalize the story and it may help us to see unexpected links with
other areas. We may also be able to assist the physicists in their task, by
pointing out relevant bits of mathematics or suggesting new points of view.
This dialogue has, in fact, been developing widely in recent years, so that a
whole new generation of mathematicians and physicists have begun to speak a
common language. The worry of Jaffe and others is that this is a kind of pidgin
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English, with little grammar and no literary merit. But in its own terms it
has been a remarkable success. The “results” keep growing in scope and depth
and inevitably attract the incoming generation. The question is: where is it all
leading?

(C) Following on from (B), one natural road for mathematicians to take is to
try to develop the physics on a rigorous basis so as to give formal justification
to the conclusions. This is the traditional role of the “mathematical physicist”,
of whom Jaffe is a fine exponent, and who have made rich contributions in the
past. While undeniably the “right” approach for a respectable mathematician,
it is sometimes too slow to keep up with the action. Depending on the maturity
of the physical theory and the technical difficulties involved, the gap between
what is mathematically provable and what is of current interest to theoretical
physicists can be immense. Moreover, proofs are not always constructed from
the bottom up. They may start from the top, or from the side, and only emerge
after many hesitant steps and experimentation. Moreover, the right framework
has to be established before rigorous work can begin, just as an architectural
plan is necessary before the builders move in.

(D) Finally, and most ambitions of all, we may try to understand the deeper
meaning of the physics-mathematics connection. Rather than view mathemat-
ics as a tool to establish physical theories, or physics as a way of pointing to
mathematical truths, we can try to dig more deeply into the relation between
them. This may lead us into the perennial problem of deciding whether math-
ematical results are invented or discovered. This investigation may only have
philosophical or theoretical interest but it could lead to better understanding
and even to new insights and genuine progress.

These four approaches are not, of course, mutually exclusive but many people
will only dip their toes into this whole area and are happy to stick with (A). A
sizeable community goes as far as (B), while (C) and (D) are definitely minority
tastes. I do not disguise my attraction to (D) and this lecture will try to develop
my ideas in that direction.

2 A Survey. Having set the philosophical scene, and raised some ques-
tions, I want to spend some time surveying briefly some of the new ideas and
results in mathematics that have emerged from the interaction with theoretical
physics.

2.1 Index Theory. The index theorem for the Dirac operator on compact Rie-
mannean manifolds has turned out to be of great interest and relevance in gauge
theories, since it measures the difference between left-handed and right-handed
spinors or other physical entities. Various new proofs emerged naturally from
the physicist’s viewpoint. In particular, supersymmetry, an algebraic formalism
that is increasingly used to bring fermions and bosons onto an equal footing,
has led to useful simplifications. Moreover, a whole range of generalizations,
including the study of the dependence of the Dirac operator on background
gauge potentials, have been suggested by the physics. These have subsequently
been given rigorous proofs by Bismut and others.
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2.2 Elliptic Genera. Quantum field theory (for one space dimension) led Wit-
ten to introduce an appropriate Dirac operator on loop spaces. This has shed
light on elliptic genera: these are generating functions for an appropriate se-
quence of Dirac operators coupled to bundles associated to the tangent bundle.
It turns out that they are modular forms and the physics gives a natural inter-
pretation of modularity as a consequence of (2-dimensional) relativistic invari-
ance. Moreover a conjectured rigidity theorem (for compact group actions) also
followed naturally from the physics and was eventually given rigorous proofs by
Bott and Taubes.

2.3 Topological Quantum Field Theories. A number of extremely interest-
ing topological theories, including Jones‘ work on knot invariants and Donald-
son‘s work on 4-manifolds, have been given quantum field theory formulations
by Witten. This has provided a unifying framework and has also led to gener-
alizations of the original work. Thus the Jones invariants of knots in S2 have
now been extended to knots in general closed 3-manifolds.

Theories of this type, in dimension 2, have led to very precise and new
information about the moduli space of flat unitary bundles on Riemann surfaces.

2.4 Conformal Field Theory. The representation theory of certain infinite-
dimensional algebras, related to the circle, has a globalization over Riemann
surfaces. The original circle here appears as the boundary of a “puncture” on
the surface. Such “conformal field theories” are reasonably precise algebraic
objects which connect representation theory to topology, via the topological
Jones theory of (2.3).

2.5. Quantum Cohomology. Quantum field theory leads to a natural defor-
mation of the ordinary cohomology ring of a manifold. This may briefly be
referred to as “quantum cohomology”. For example, for the complex projective
line P; the ordinary cohomology is generated by x € H?(P,) with z2 = 0, while
the quantum cohomology has z? = 3, where 3 is a real number ( a parameter
of the theory so that 8 — 0 is the classical limit).

These “quantum cohomologies” are of considerable mathematical interest.
For projective spaces and more generally Grassmannians they are related to
the “Verlinde algebra” which plays a key role in conformal field theory and
related topics. For 3-dimensional Calabi-Yau manifolds it contains informa-
tion about the numbers of rational curves. This information is consistent with
known results but does not yet have a rigorous mathematical proof. The physi-
cist’s “proof” involves the intriguing notion of dual or mirror manifolds, a pair
of Calabi-Yau manifolds which are supposed to yield the same quantum field
theory, but in dual ways.

2.6 2-dimensional gravity. The examples so far all fall within the class of
gauge theories for forces other than gravity. However, there have been interest-
ing developments related to gravity in 2-dimensions. These are closely involved
with the moduli spaces of Riemann surfaces. In particular, triangulations of
these moduli spaces link up with the combinatorial techniques of Feynman dia-
grams. The most exciting developments in this direction are due to Kontsevich
and they also link up with the topology of 3-manifolds.
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2.7 “Twisted” theories. Witten has shown how many physical quantum
field theories can be “twisted” to yield topological theories. The twisting in-
volves changing the spin of various fields. Certain correlation functions of the
physical theory can be identified with some of the correlation functions of the
twisted topological theory. This link has potentially important consequences.
For example, Witten has suggested that the presence of a mass gap for N = 2 su-
persymmetric Yang-Mills theory in 4-dimensions may be related to conjectural
properties of the Donaldson polynomials (which are derived from the topological
Yang-Mills theory).

3 Interpretation. All these examples of fruitful interaction between quan-
tum field theory and topology indicate that something substantial and wide-
spread is involved. How should we interpret all this, what does it imply for
“real” physics, and how are we to deal with its mathematical aspects?

Perhaps it is helpful if we recall the role of symmetry (and group theory) in
physics. Over the years symmetry has come to be recognized as a crucial guid-
ing principle in large parts of fundamental physics. Starting with finite symme-
tries (as in crystals) and then moving on to continuous symmetries of compact
groups, quantum physicists eventually introduced Hilbert space representations
of non-compact Lie groups. This introduces extra analytical difficulties and, at
first, there was no systematic mathematical theory to build on. However, math-
ematicians such as Gelfand and Harish-Chandra soon moved in to establish a
base and develop an elaborate theory. Infinite-dimensional representations are
now regarded as a vital part of many branches of mathematics including those
like Number Theory, which are far removed from Physics.

I suggest that we are now seeing a similar, but more elaborate story involving
the impact of Topology on Quantum Theory. Early topological ideas go back
to Dirac (and even to Maxwell) but have only played a major part in the
past decade or two. Again we are essentially dealing with infinite-dimensional
phenomena (quantum fields) and it is the topology of these infinite-dimensions
that is making itself felt. Topology and Symmetry have close analogies and
relations, but Topology is inherently broader and more complex. For this reason
we should not be surprised if Quantum Topology is a difficult subject which will
take many years to mature.

Topology and Group Theory have something in common in their relation to
Physics. Both interact, in principle, via Analysis but for many purposes the
Analysis can be by-passed and replaced by Algebra. This is why so much of
the Physics literature is filled with formulae. In the absence of a fully-fledged
theory able to handle all the difficult analysis, physicists work formally and
heuristically with algebraic formulae.

It is clear that the presence of symmetry in a physical situation imposes
strong constraints and these can be exploited algebraically. What is the cor-
responding impact of topology? As Witten has explained, topology tends to
provide information about low-energy states. For example, Hodge’s theory of
harmonic forms shows that the zero-energy states (for differential forms) corre-
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spond to the cohomology. It is worth noting that no significant topology enters
for scalar fields, but in the super-symmetric version, when differential forms
are brought in, the topological consequences become very significant. Corre-
sponding statements can be made when we pass from quantum mechanics to
quantum field theory. Interesting topology usually requires many nonscalar
fields and frequently involves super-symmetry.

Symmetry and topology can play complementary roles with topology helping
to determine the ground-states and symmetry then telling us how to build up
higher states.

Now let me return to the general question of the “meaning” of all this “quan-
tum topology”. It would be hard to deny, in the face of all accumulated evidence,
that the physicists who dabble with topology and quantum field theory are re-
ally on to something. How should we mathematicians respond, giving that a
great deal rests on heuristic calculations and physical insight? Physicists will
say that they are trying to develop quantum field theories which will explain
all elementary particles and, if they are ambitious, also gravity. They are ex-
perimenting with a wide variety of models, many of which are “toy” models in
the sense that they are grossly over-simplified in order to make them tractable.
Given the extreme difficulty of the “real” physical theories, it is not unreason-
able to focus on easier ones where one can make progress and gain insight -
science always progresses in this way, although the mark of good scientists is to
play with the right toys. A simplified model may be one in lower dimensions or
having additional symmetries which lead perhaps to exact solutions. What the
physicists typically extract is a lot of algebraic information (they like formulae!)
and a toy model usually bristles with formal algebra.

This is the conventional, and acceptable, explanation of the physicists. What
should be the reaction of the mathematician? Here we find a marked contrast,
depending on the mathematician’s background. Analysts, particularly those
who have been trying to provide a rigorous basis for quantum field theory,
dislike the algebraic superstructure which they think skirts the issue and hides
the analytical difficulties. They would prefer to concentrate on the simplest
possible theory algebraically so as to face up to analytical difficulties. Other
mathematicians, coming from algebra, geometry or topology, are attracted by
the superstructure and recognize there numerous features linked to their own
experience. They are more than happy to follow the physicists in postponing
any consideration of real analysis and concentrating on the formal structure.
The hope, and ultimate justification, is that the formal apparatus may in the
end lead the way to producing a rigorous theory. Perhaps the analysis will prove
more tractable when approached the right way. It is already clear that a more
formally complicated theory may turn out to be essentially simpler and better
behaved than an apparently elementary theory, For example, in 4-dimensions,
it is now recognized that Yang-Mills theory is better behaved than a scalar ¢*
theory.

Now let me turn to a more difficult question. What are to make of the strik-
ing results in 3 and 4-dimensional geometry that have emerged from field theory
ideas? Specifically I have in mind the Jones invariants of knots and Donaldson’s
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profound results on 4-manifolds. Is the relation with physics an accident which
will in due course be eliminated, and replaced by more conventional mathemat-
ical techniques, or is the physics here to stay?

My own view is that the quantum standpoint is essential and that we are
dealing with aspects of geometry or topology which are best understood in terms
of quantum physics. For example, the fact that the 4-dimensional phenomena
unearthed by Donaldson do not occur in other dimensions is surely an indi-
cation of their depth, and an indication that other conventional mathematical
techniques will be inadequate to explain them. In 3-dimensions the work of
Vassiliev, based on conventional homology (of a function space), has cast new
light on the Jones invariants but it has not yet displaced the quantum approach.
It provides an alternative avenue with different merits.

My conclusion is that, as in earlier episodes, mathematicians will absorb
and abstract the essential quantum theory ideas, and develop an appropriate
branch of mathematics. Because of the complexity and depth of the theories,
especially if gravity is to be included, this may take time and may develop into
an imposing edifice.
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