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A Nekhoroshev type theorem for the nonlinear wave
equation on the torus
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Abstract: In this paper, we prove a Nekhoroshev type theorem
for the nonlinear wave equation

utt = uxx −mu− f(u)

on the finite x-interval [0, π]. The parameter m is real and positive,
and the nonlinearity f is assumed to be real analytic in u. More
precisely, we prove that if the initial datum is analytic in a district
of width 2ρ > 0 whose norm on this district is equal to ε, then if ε
is small enough, the solution of the nonlinear wave equation above
remains analytic in a district of width ρ/2, with norm bounded on
this district by Cε over a very long time interval of order ε−σ| ln ε|β ,
where 0 < β < 1/7 is arbitrary and C > 0 and σ > 0 are positive
constants depending on β and ρ.
Keywords: Wave equation, Birkhoff normal form, long time sta-
bility.

1. Introduction

We consider the nonlinear wave equation

(1.1) utt = uxx −mu− f(u)

on the finite x-interval [0, π] with Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0, t ∈ R.
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The parameter m is real and positive, and the nonlinearity f is assumed to
be real analytic in u and of the form

(1.2) f(u) = au3 +
∑
k≥2

fku
2k+1, a �= 0.

Equation (1.1) is a typical model of infinite-dimensional Hamiltonian system
associated with the Hamiltonian function

H = 1
2 < v, v > +1

2 < Au, u > +
∫ π

0
g(u)dx,

where A := −d2/dx2 +m, g =
∫
0 f(s)ds and < ·, · > denotes the usual scalar

product in L2, which is well studied by many authors, such as the existence of
invariant tori by Kolmogorov-Arnold-Moser theory (see [5], [9] and [13]–[20])
and the long time stability result (see [1]–[4], [7] and [8]).

In [3], Bambusi proved a Birkhoff normal form theorem which is applied
to equation (1.1) and studied the dynamical consequences on the long time
behavior of the solutions with small initial Cauchy data in Sobolev spaces.
Afterwards, Bambusi-Grébert [6] proved that for s sufficiently large, if the
Sobolev norm of index s of the initial datum u0 is sufficiently small (of order
ε), then the Sobolev norm of index s of the solution is bounded by 2ε during
a very long time (of order ε−r with r arbitrary).

In [6], Bambusi-Grébert exploited the tame property of the nonlinear
term for some semilinear Hamiltonian PDEs, such as nonlinear Schrödinger
equation and nonlinear wave equation to prove the long time stability of the
origin by constructing a partial normal form of high order. Later, Cong-Liu-
Yuan and Cong-Gao-Liu generalized the method in [6] to prove the KAM tori
is stable in a polynomial long time for nonlinear Schrödinger equation and
nonlinear wave equation respectively, see [10] and [11].

Recently, a Nekhoroshev type theorem for the nonlinear Schrödinger equa-
tion √

−1ut = −�u + V ∗ u + f(|u|2)u, x ∈ T
d

is given by Faou-Grébert in [12] in an analytic space. The authors prove that
if the initial datum is analytic in a strip of width ρ > 0 with a bound on
this strip equals to ε then, if ε is small enough, the solution of the nonlinear
Schrödinger equation above remains analytic in a strip of width ρ/2 and
bounded on this strip by Cε during very long time of order ε−α| ln ε|δ for some
constants C > 0, α > 0 and 0 < δ < 1.

In our paper, we would like to generalize the method in [12] to nonlinear
wave equation (1.1). However, as we all know, the frequencies of nonlinear
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wave equation have worse approximations than nonlinear Schrödinger equa-
tion. Fortunately, inspired by the method in [6], we successfully estimate the
measure of nonresonance set (see section 4 for the details). In addition, The
definition of zero momentum (see (3.2)) is a little different from the one in
[12] since the Dirichlet conditions is considered here, which also leads to some
worse estimates (see Proposition 3.1 and Proposition 3.2 for details).

To state our result, we will introduce the analytic function space. For
ρ > 0, we denote by Aρ ≡ Aρ([0, π];C) the space of functions φ that are
analytic on the complex neighborhood of x-interval [0, π] given by Iρ = {x +
iy | x ∈ [0, π], y ∈ R

1 and |y| < ρ} and continuous on the closure of this
district. We then denote by | · |ρ the usual norm on Aρ:

|φ|ρ = sup
z∈Iρ

|φ(z)|.

We note that (Aρ, | · |ρ) is a Banach space. Then our main result is as follows:

Theorem 1.1. There exist 0 < β < 1/7 and ρ > 0, the following holds: there
exist constants C > 0 and ε0 > 0 such that if

u0, v0 ∈ A2ρ and |u0|2ρ + |v0|2ρ = ε ≤ ε0,

then the solution of (1.1) with initial datum u0 and v0 exists in Aρ/2 for times
|t| ≤ ε−σρ| ln ε|β and satisfies

(1.3) |u(t)|ρ/2 ≤ Cε for |t| ≤ ε−σρ| ln ε|β ,

with σρ = min{ 1
10 ,

ρ
2}.

2. Hamiltonian system

We study the equation (1.1) as an infinite dimensional Hamiltonian system.
As the phase space one may take, for example, the product of the usual
Sobolev space H1

0 ([0, π]) × L2([0, π]) with coordinates u and v = ut. The
Hamiltonian is then

(2.1) H = 1
2 < v, v > +1

2 < Au, u > +
∫ π

0
g(u)dx,

where A := −d2/dx2 +m, g =
∫
0 f(s)ds and < ·, · > denotes the usual scalar

product in L2. The Hamiltonian equations of motions are

(2.2) ut = ∂H

∂v
= v, vt = −∂H

∂u
= −Au− f(u).
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To rewrite it as a Hamiltonian in infinitely many coordinates we make the
ansatz

(2.3) u =
∑
j≥1

qj√
λj

φj , v =
∑
j≥1

√
λjpjφj ,

where φj =
√

2/π sin jx for j = 1, 2, · · · are the normalized Dirichlet eigen-
functions of the operator A with eigenvalues λ2

j = j2 + m. The coordinates
are taken from some Banach space Lρ (ρ > 0) of all real valued sequences
w = (w1, w2, · · · ) with finite norm

‖ w ‖ρ=
∑
j≥1

|wj |ejρ.

Then the Hamiltonian (2.1) turns into

(2.4) H = 1
2
∑
j≥1

λj(p2
j + q2

j ) +
∫ π

0
g

(∑
j≥1

qj√
λj

φj

)
dx

with equations of motions

(2.5) q̇j = ∂H

∂pj
= λjpj , ṗj = −∂H

∂qj
= −λjqj −

∂F

∂qj
, j ≥ 1,

where

(2.6) F (q) =
∫ π

0
g

(∑
j≥1

qj√
λj

φj

)
dx.

These are the Hamiltonian equations of motion with respect to the standard
symplectic structure

∑
j≥1 dqj ∧ dpj on Lρ × Lρ. Since the nonlinearity f in

(1.1) is real analytic in a neighborhood of zero and of the form (1.2), we have

(2.7) g(u) =
+∞∑
k=4

g(k)(0)
k! uk.

and g(2l+1)(0) = 0, l = 2, 3, . . . . Then

F (q) =
∫ π

0

+∞∑
k=4

g(k)(0)
k! (

∑
j≥1

qj√
λj

φj)kdx =
+∞∑
k=4

∑
j1±···±jk=0
j1,··· ,jk>0

Fj1,··· ,jkqj1 · · · qjk ,

(2.8)



A Nekhoroshev type theorem for the nonlinear wave equation 1743

where

(2.9) Fj1,··· ,jk = g(k)(0)
k! · 1√

λj1 · · ·λjk

∫ π

0
φj1 · · ·φjkdx.

Let Z := Z
1\{0}. Now the Hamiltonian is defined on the complex Banach

space Lρ,b collecting all the two-side sequences with norm:

‖ w ‖ρ:=
∑
j∈Z

|wj |e|j|ρ,

and the corresponding symplectic structure is i
∑

j≥1 dwj ∧ dw−j . For a func-
tion P of C1(Lρ,b,C), we define its Hamiltonian vector field by XP = J∇P
where J is the symplectic operator on Lρ,b induced by the symplectic struc-
ture. For two functions P and Q, the Poisson Bracket is defined as

(2.10) {P,Q} = ∇P TJ∇Q = i
∑
j≥1

∂P

∂w−j

∂Q

∂wj
− ∂P

∂wj

∂Q

∂w−j
.

We say that w ∈ Lρ,b is real if w̄j = w−j and that a Hamiltonian H is real if
H(w) is real for all real w ∈ Lρ,b.

Definition 2.1. For a given ρ > 0, we denote by Hρ the space of real Hamil-
tonian P satisfying

P ∈ C1(Lρ,b,C) and XP ∈ C1(Lρ,b,Lρ,b).

Clearly, for P and Q in Hρ the formula (2.10) is well defined. With a
given Hamiltonian function H ∈ Hρ, we associate the Hamiltonian system

ẇ = XH(w) = J∇H(w)

which is equivalent to

(2.11) ẇj = −i ∂H

∂w−j
and ẇ−j = i ∂H

∂wj
, j ≥ 1.

We define the local flow Φt
H(w) associated with above system. Note that if

both w and H are real, the flow is also real, i.e. Φt
H(w) is real for all t.

Now we introduce the complex coordinates

(2.12) zj = 1√
2
(qj + ipj), z̄j = 1√

2
(qj − ipj).
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It is convenient to introduce another set of coordinates (· · · , w−2, w−1, w1,
w2, · · · ) in Lρ,b by setting

(2.13) zj = wj , z̄j = w−j for j ≥ 1.

Then the system (2.5) is changed into

(2.14) ẇj = −iλjwj − i ∂F

∂w−j
, j �= 0

with Hamiltonian
H(w) =

∑
j≥1

λjwjw−j + F (w),

where λj = sgnj ·
√
j2 + m and F (w) is given by

F =
+∞∑
k=4

∑
j1±···±jk=0
j1,··· ,jk>0

Fj1,··· ,jk
zj1 + z̄j1√

2
· · · zjk + z̄jk√

2

=
+∞∑
k=4

∑
j1±···±jk=0
j1,··· ,jk �=0

1(√
2
)kFj1,··· ,jkwj1 · · ·wjk .(2.15)

Notice that Fj1,··· ,jk = F|j1|,··· ,|jk|.
Finally, we give a lemma showing the relation between the space Aρ and

the space Lρ,b.

Lemma 2.1. Let u, v be complex valued function analytic on a complex neigh-
borhood of the x-interval [0, π], and let (wj)j∈Z be the sequence of its coordi-
nates defined by (2.3), (2.12) and (2.13). Then for all μ < ρ, we have

if u, v ∈ Aρ then w ∈ Lμ,b and ‖w‖μ ≤ cμ,ρ(|u|ρ + |v|ρ),(2.16)
if w ∈ Lρ,b then u, v ∈ Aμ and |u|μ, |v|μ ≤ cμ,ρ‖w‖ρ,(2.17)

where cμ,ρ is a constant depending on μ and ρ.

Proof. Due to (2.3), it is clear to know that

u(x) =
√

2
π

∑
j≥1

qj√
λj

sin jx =
√

2
π

∑
j≥1

qj√
λj

eijx − e−ijx

2i

= 1
2i

√
2
π

∑
j �=0

sgnj · q|j|√
λ|j|

eijx,
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v(x) =
√

2
π

∑
j≥1

√
λjpj sin jx =

√
2
π

∑
j≥1

√
λjpj

eijx − e−ijx

2i

= 1
2i

√
2
π

∑
j �=0

√
λ|j|sgnj · p|j|eijx.

Then combining the transformation (2.12), (2.13) with the fact that λ|j| ∼ |j|
for |j| large enough, we can prove this lemma by a small change of the proof
of Lemma 2.1 in [12].

3. Space of polynomial and some properties

In the beginning of this section, we introduce some terminology about the
polynomial on C

Z . Let 
 ≥ 2 and j = (j1, j2, ..., j�) ∈ Z�, we define

• the monomial associated with j

wj = wj1 · · · wj� ,

• the divisor associated with j

(3.1) Ω(j) = λj1 + · · · + λj� ,

where for ji ∈ Z, λji = sgnji ·
√
j2
i + m, i = 1, 2, . . . , 
.

Besides, we also define the set of indices with zero momentum by

(3.2) I� = {j = (j1, j2, ..., j�) ∈ Z�, with j1 ± j2 ± · · · ± j� = 0}.

On the other hand, we say that j = (j1, j2, ..., j�) ∈ Z� is resonant, and we
write j∈ N�, if 
 is even and j is of the form (j1,−j1, · · · , j �

2
,−j �

2
) or some

permutation of it. In particular, if j is resonant then its associated divisor
vanishes, i.e., Ω(j) = 0, and its associated monomials depends only on the
actions

(3.3) wj = wj1 · · · wj� = wj1w−j1 · · · wj�/2w−j�/2 = Ij1 · · · Ij�/2 ,

where for all j ≥ 1, Ij = wjw−j denotes the action associated with the
index j. Finally, we note that if w is real, then Ij = |wj |2 and we remark that
for odd 
 the resonant set N� is the empty set.

Definition 3.1. For k ≥ 2, a (formal) polynomial P (w) =
∑

ajwj belongs
to Pk if P is real, of degree k, has a zero of order at least 2 in w = 0, and
satisfies the following conditions:
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• P contains only monomials having zero momentum, (i.e. such that j∈ I�
for some 
, when aj �= 0), and thus P reads

(3.4) P (w) =
k∑

�=2

∑
j∈I�

ajwj

with the relation aj = a|j|, |j| = (|j1|, · · · , |j�|),
• The coefficients aj are bounded, i.e. sup

j∈I�

|aj| < +∞ for all 
 = 2, ..., k.

We endow Pk with the norm

(3.5) ‖P‖ =
k∑

�=2
sup
j∈I�

|aj|.

The nonlinearity f in (1.1) is assumed to be complex analytic in a neighbour-
hood of zero in C. So there exist positive constants M and R0 such that the
Taylor expansion of its primary function

g(u) =
+∞∑
k=4

g(k)(0)
k! uk

is uniformly convergent and bounded by M on the disc |u| ≤ R0 of C. Hence
formula (2.8) defines an analytic function on the ball ‖w‖ρ ≤ R0 of Lρ,b and
we have

F (w) =
∑
k≥4

Pk,

where Pk ∈ Pk is homogeneous polynomial of degree k. Due to (1.2), we have
P2l+1 = 0, l = 2, 3, . . . . Using Cauchy integral formula and by (2.9), (2.15),
we obtain

(3.6) ‖Pk‖ = sup
j∈Ik

|Fj1,··· ,jk |√
2k

≤ |g(k)(0)|
k!(

√
π)k−2 ≤ MR−k

0 .

At last, in the polynomial space we will give some useful estimates in
which the zero momentum plays an important role.

Proposition 3.1. Let k ≥ 2 and ρ > 0, we have Pk ⊂ Hρ. Moreover, for
any homogeneous polynomial F , of degree k, in Pk, we have the estimates

(3.7) |F (w)| ≤ ‖F‖ ‖w‖kρ
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and

(3.8) ‖XF (w)‖ρ ≤ 2k−1k‖F‖ ‖w‖k−1
ρ , for all w ∈ Lρ,b.

Proof. Set
F (w) =

∑
j∈Ik

ajwj,

we have

|F (w)| ≤ ‖F‖
∑
j∈Zk

|wj1 | · · · |wjk | ≤ ‖F‖ ‖w‖kl1 ≤ ‖F‖ ‖w‖kρ,

where ‖ · ‖l1 denotes the l1− norm of vector. Thus the first inequality (3.7) is
proved.

To prove the second estimate, let us take 
 ∈ Z, by using the zero mo-
mentum condition, we get∣∣∣∣ ∂F∂w�

∣∣∣∣ ≤ k‖F‖
∑

j∈Zk−1
j1±j2±···±jk−1=±�

|wj1 · · · wjk−1 |.

Therefore,

‖XF (w)‖ρ =
∑
�∈Z

eρ|�|
∣∣∣∣ ∂F∂w�

∣∣∣∣ ≤ k‖F‖
∑
�∈Z

∑
j∈Zk−1

j1±j2±···±jk−1=±�

eρ|�||wj1 · · · wjk−1 |.

But if j1 ± j2 ± · · · ± jk−1 = ±
, then

eρ|�| ≤ exp
(
ρ(|j1| + · · · + |jk−1|)

)
≤

k−1∏
n=1

eρ|jn|.

Hence, after summing in j1, · · · , jk−1 and 
, we get

‖XF (z)‖ρ ≤ 2k−1k‖F‖
∑

j∈Zk−1

eρ|j1||wj1 | · · · eρ|jk−1||wjk−1 | ≤ 2k−1k‖F‖ ‖w‖k−1
ρ

which yields (3.8).

Proposition 3.2. For F a homogeneous polynomial of degree k in Pk and
G a homogeneous polynomial of degree 
 in P�, then {F,G} ∈ Pk+�−2 and we
have the estimate

(3.9) ‖{F,G}‖ ≤ 2min{k,�}−1k
‖F‖ ‖G‖.
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Remark 3.3. The zero momentum (3.2) is a little different to the one in
[12]. So we get the conclusion that have a small change. This will influence
the last result.

Proof. Now we assume that F and G are homogeneous polynomial of degrees
k and 
 respectively and with coefficients ak, k ∈ Ik and bl, l ∈ I�. It is clear
that {F,G} is a homogeneous polynomial of degree k + 
 − 2 satisfying the
zero momentum condition. Furthermore, we can write

{F,G}(w) =
∑

j∈Ik+�−2

cjwj,

where cj is expressed as a sum of coefficients akbl for which there exists a
j ∈ Z such that

j ⊂ k ∈ Ik and − j ⊂ l ∈ I�,
and such that if for instance j = k1 and −j = 
1, we necessarily have
(k2, ..., kk, 
2, ..., 
�) = j. Hence, for a given j, the zero momentum condition
on k and on l determines the value of j which in turn determines 2min{k,�}−1

possible value of j.
This proves (3.9) for monomials. The extension to polynomials follows

from the definition of the norm (3.5).
The last assertion and the fact that the Poisson bracket of two real Hamil-

tonian is real follow immediately from the definitions.

4. Nonresonance condition

In order to control the divisors (3.1), we need to impose a nonresonance
condition on the linear frequencies λj , j ∈ Z.

Recall that Ω(j) = sgnj1 · λ|j1| + sgnj2 · λ|j2| + · · ·+ sgnjr · λ|jr|, we define
a set

S� = {s : |js| = 
}
and let

k� =

⎧⎨
⎩

0 if S� = ∅,∑
s∈S�

sgnjs if S� �= ∅,

and k = (k�)�∈N. Then Ω(j) =
∑
�≥1

k�λ� and |k| ≤ r. In the following we set

k = (k̃, k̂), where k̃ = (k1, . . . , kN ) ∈ Z
N , k̂ = (kN+1, . . .) ∈ Z

N and assume
that |k̂| ≤ 2. For r ≥ 4 and j = (j1, · · · , jr) ∈ Zr, we denote the third largest
integer amongst |j1|, · · · , |jr| by μ(j), then we have the following proposition.
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Proposition 4.1. For any γ > 0 small enough, there exist a set Jγ satisfying
Meas([m0,Δ]−Jγ) → 0 as γ → 0, and a positive number ν such that for any
m ∈ Jγ one has for any N ≥ 1

(4.1) |Ω(j)| ≥ γ

Nνr6

for any j ∈ Zr and μ(j) < N .

Proof. Given γ > 0 small enough, and a positive number ν, define the reso-
nant sets Rk̃k̂ by

(4.2) Rk̃k̂ =
{
m ∈ [m0,Δ] : |

∑
�≥1

k�λ�| <
γ

Nνr6

}
.

By combining Lemma A.3 and Lemma A.4, we can get

(4.3) |Rk̃k̂| ≤

⎧⎪⎪⎨
⎪⎪⎩

C γ1/r

Nνr6 , |k̂| = 0;
C γ1/rj2r

Nνr6 , |k̂| = 1;
C γ1/rj2ri2r

Nνr6 , |k̂| = 2,

where i, j ≥ N+1, |·| denotes the Lebesgue measure of set and C is a suitable
constant.

Let

(4.4) R =
⋃

|k̃|+|k̂|�=0,|k̃|+|k̂|≤r,|k̂|≤2

Rk̃k̂.

Now we would like to estimate the measure of R. We split

K := {k̂ ∈ Z
N : |k̂| ≤ 2}

as the union of the following four disjoint sets

K0 = {k̂ = 0},
K1 = {k̂ = ei},

K2+ = {k̂ = ei + ej},
K2− = {k̂ = ei − ej , i �= j},

where

ei = (0, . . . , 0,
i-th︷︸︸︷
1 , 0, . . .)

and i, j ≥ N + 1.
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Let |k̂| = 2 and k̂ = ei + ej ∈ K2+ for some i, j ≥ N + 1. If

min{i, j} ≥ 2(r − 2)N + 1,

then it is easy to see that
∣∣∣∣∣

N∑
�=1

k�λ� + λi + λj

∣∣∣∣∣ ≥ 1,

which is not small. Namely, the resonant set Rk̃k̂ is empty. So it is sufficient
to consider

max{i, j} < 2(r − 2)N + 1,

when the estimate (4.5) is given below. In fact, we obtain

Meas
⋃

(k̃,k̂)∈ZN×ZN∩K2+

Rk̃k̂

≤
∑

(k̃,k̂)∈ZN×ZN∩K2+

MeasRk̃k̂

≤
∑

(k̃,k̂)∈ZN×ZN∩K2+

C
γ1/r

Nνr6

≤c1γ,(4.5)

where c1 > 0 is a constant.
Similarly we obtain

(4.6) Meas
⋃

(k̃,k̂)∈ZN×ZN∩K0

Rk̃k̂ ≤ c2γ

and

(4.7) Meas
⋃

(k̃,k̂)∈ZN×ZN∩K1

Rk̃k̂ ≤ c3γ,

where c2, c3 > 0 is a constant. Now let

(k̃, k̂) ∈ Z
N × Z

N ∩ K2−,
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and assume i > j without loss of generality. From λi =
√
i2 + m,λj =√

j2 + m, then we can obtain that there is a constant C > 0 such that
∣∣∣∣∣λi − λj

i− j
− 1

∣∣∣∣∣ ≤ C

j
.

Hence,
λi − λj = i− j + rij ,

with

|rij | ≤
Ca

j

and a = i− j. Then we have
∣∣∣∣∣

N∑
�=1

k�λ� + λi − λj

∣∣∣∣∣ ≥
∣∣∣∣∣

N∑
�=1

k�λ� + a

∣∣∣∣∣− |rij |.

Therefore,

Rk̃k̂ ⊂ Qk̃aj :=
{∣∣∣∣ N∑

�=1
k�λ� + a

∣∣∣∣ ≤ γ

Nνr6 + Ca

j

}
.

If j > j0, we have
Qk̃aj ⊂ Qk̃aj0

.

Then it is sufficient to consider

a ≤ 2(r − 2)N + 1,

and let
j0 = γ−1/2Nνr3/2.

By similar proof of Theorem 6.19 in [3], we obtain

(4.8) Meas
⋃

(k̃,k̂)∈ZN×ZN∩K2−

Rk̃k̂ ≤ c4
√
γ,

where c4 > 0 is a constant.
In view of (4.4)–(4.8), we let Jγ = [m0,Δ] − R, then the proposition is

proved.
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5. Recursive equation and normal form results

Now, we define the N -normal form. Fix N ≥ 1 and k ≥ 4. Recalling the
definition of μ(j) in the Section 4, we set

Jk(N) = {j ∈ Ik | μ(j) > N}.

Definition 5.1 (N-normal form). Let N be an integer. We say that a poly-
nomial W ∈ Pk is in N-normal form if it can be written

W =
k∑

�=4

∑
j∈N�∪J�(N)

ajwj.

In other words, W contains either monomials depending only on the actions
or monomials whose indices j satisfies μ(j) > N , that is, monomials involving
at least three modes with index greater than N .

5.1. Recursive equation

At first, we give a lemma which is an easy consequence of the nonresonance
condition and the definition of the normal forms.

Lemma 5.1. Assume that the nonresonance condition (4.1) is satisfied, and
let N be fixed. Also assume that H0 :=

∑
j≥1 λjwjw−j is the integrable part of

Hamiltonian (2.4) and Q is a homogenous polynomial of degree n. Then the
homological equation

(5.1) {χ,H0} −W = Q

admits a polynomial solution (χ,W ) homogenous of degree n such that W is
in N-normal form, and such that

(5.2) ‖W‖ ≤ ‖Q‖ and ‖χ‖ ≤ Nνn6

γ
‖Q‖.

Proof. Assume that Q =
∑

j∈In
Qjwj and find W =

∑
j∈In

Wjwj and χ =∑
j∈In

χjwj such that (5.1) is satisfied. Equation (5.1) can be written in term
of polynomial coefficients

−iΩ(j)χj −Wj = Qj, j ∈ In,

where Ω(j) is given in (3.1). We then define
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• Wj = −Qj , χj = 0 if j ∈ Nn or μ(j) > N ,
• Wj = 0 , χj = − Qj

iΩ(j) if j /∈ Nn and μ(j) ≤ N .

In view of (4.1), this leads to (5.2).

In the following part, we will introduce the recursive equation. The so-
lutions of recursive equation can generate a canonical transformation Φ such
that in the new variables, the Hamiltonian H0 +F is in normal form modulo
a small remainder term. To obtain the recursive equation, we consider the
problem below.

Seek polynomials χ =
r∑

n=4
χn and W =

r∑
n=4

Wn in normal form and a

smooth Hamiltonian R satisfying ∂αR(0) = 0 for all α ∈ N
Z with |α| ≤ r,

such that

(5.3) (H0 + F ) ◦ Φ1
χ = H0 + W + R.

Recall that for Hamiltonian functions χ and K, we have for all k ≥ 0

dk

dtk (K ◦ Φt
χ) =

{
χ, {· · · {χ,K}·}

}
(Φt

χ) = (adk
χK)(Φt

χ),

where adχK = {χ,K}. Also, if K and L are homogeneous polynomials of
degree respectively n and 
 then {K,L} is a homogeneous polynomial of
degree n + 
− 2. Therefore, we obtain by using the Taylor formula

(5.4) (H0 + F ) ◦ Φ1
χ − (H0 + F ) =

r/2−2∑
k=0

1
(k + 1)!adk

χ({χ,H0 + F}) + Or,

where Or stands for any smooth function R satisfying ∂αR(0) = 0 for all
α ∈ N

Z with |α| ≤ r. On the other hand, we know that for ζ ∈ C, the
following relation holds:

( r/2−2∑
k=0

Bk

k! ζ
k)( r/2−2∑

k=0

1
(k + 1)!ζ

k) = 1 + O(|ζ|r/2−1),

where Bk are the Bernoulli numbers defined by the expansion of the generat-
ing function z

ez−1 . Therefore, defining the two differential operators

Ar =
r/2−2∑
k=0

1
(k + 1)!adk

χ and Br =
r/2−2∑
k=0

Bk

k! adk
χ,



1754 Lufang Mi et al.

we get
BrAr = Id + Cr,

where Cr is a differential operator satisfying

CrOr/2+2 = Or.

Applying Br to the two sides of equation (5.4), we obtain

{χ,H0 + F} = Br(W − F ) + Or.

Plugging the decompositions in homogeneous polynomials of χ, W and F in
the last equation and equating the terms of same degree, after a straightfor-
ward calculation, we obtain the recursive equations

(5.5) {χn, H0} −Wn = Qn, n = 4, · · · , r,

where

Qn = − Pn +
n−2∑
k=4

{Pn+2−k, χk}

+
n/2−2∑
k=1

Bk

k!
∑

�1+···+�k+1=n+2k
4≤�i≤n−2k

adχ�1
· · · adχ�k

(W�k+1 − P�k+1).(5.6)

In the last sum, 
i ≤ n− 2k as a consequence of 
i ≥ 4 and 
1 + · · ·+ 
k+1 =
n+2k. Once these recursive equations solved, we define the remainder term as
R = (H0+F )◦Φ1

χ−H0−W . By construction, R is analytic on a neighborhood
of the origin in Lρ,b and R = Or. As a consequence, by the Taylor’s formula,

R =
∑

n≥r+1

n/2−1∑
k=2

1
k!

∑
�1+···+�k=n+2k−2

4≤�i≤r

adχ�1
· · · adχ�k

H0

+
∑

n≥r+1

n/2−2∑
k=0

1
k!

∑
�1+···+�k+1=n+2k

4≤�1,··· ,�k≤r
4≤�k+1

adχ�1
· · · adχ�k

P�k+1 .(5.7)

Lemma 5.2. Assume that the nonresonance condition (4.1) is fulfilled for
some constants γ, ν. Then there exists C > 0 such that for all r, N , and
for n = 4, · · · , r, there exist homogeneous polynomials χn and Wn of degree
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n, with Wn in N-normal form, which are solutions of the recursive equation
(5.5) and satisfy

(5.8) ‖χn‖ + ‖Wn‖ ≤ (C4nnNν)n7
.

Proof. We define χn and Wn by induction using Lemma 5.1. Note that (5.8)
is clearly satisfied for n = 4, provided C big enough. Estimate (5.2) yields

(5.9) γN−νn6‖χn‖ + ‖Wn‖ ≤ ‖Qn‖.

Using the definition (5.6) of the term Qn and the estimate on the Bernoulli
numbers, |Bk| ≤ k!ck for some c > 0, together with (3.9), which implies that
for all 
 ≥ 4, ‖adχ�

R‖ ≤ 2min{n,�}−1n
‖R‖ ‖χ�‖ for any polynomial R of
degree less than n, we have for all n ≥ 4

‖Qn‖ ≤‖Pn‖ + 2n
n−2∑
k=4

k(n + 2 − k)‖Pn+2−k‖ ‖χk‖

(5.10)

+2
n/2−2∑
k=1

(Cn)k
∑

�1+···+�k+1=n+2k
4≤�i≤n−2k

C(n, k)
1‖χ�1‖ · · · 
k‖χ�k‖ ‖W�k+1−P�k+1‖,

where

C(n, k) = 2min{�1,n+2−�1}−12min{�2,n+2·2−�1−�2}−1 · · · 2min{�k,�k+1}−1

and C is a constant. It is easy to know C(n, k) ≤ 4n.
We set βn = n(‖χn‖ + ‖Wn‖). Equation (5.9) implies that

(5.11) βn ≤ (CNν)n6
n‖Qn‖,

for some constant C independent of n.
By the fact that ‖Pn‖ ≤ MR−n

0 (see (3.6)), we obtain

βn ≤ β(1)
n + β(2)

n ,

where

(5.12) β(1)
n = (CNν)n62nn3

n−2∑
k=4

βk
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and

β(2)
n = Nνn6(Cn)n−14n

n/2−2∑
k=1

∑
�1+···+�k+1=n+2k

4≤�i≤n−2k

β�1 · · · β�k(β�k+1 + ‖P�k+1‖),

(5.13)

where C depends on M,R0 and γ. It remains to prove by induction that
βn ≤ (C4nnNν)n7 . Assume that βj ≤ (C4jjNν)j7 , j = 4, · · · , n− 1. Then for
C > 1, we have

(5.14) (C4nnNν)n7 ≥ 1 for all n ≥ 4,

so we get

β(1)
n ≤ (CNν)n62nn4(C4nnNν)(n−1)7 ≤ 1

2(C4nnNν)n7

for n ≥ 4 and provided C > 2.
Using (5.14) again and the induction hypothesis, we obtain

β(2)
n ≤ Nνn6(Cn)n−14n

n/2−2∑
k=1

∑
�1+···+�k+1=n+2k

4≤�i≤n−2k

(CNν4n−1(n− 2k))�71+···+�7k+1 .

Notice that the maximum of 
71 + · · · + 
7k+1 when 
1 + · · · + 
k+1 = n + 2k
and 4 ≤ 
i ≤ n− 2k is obtained for 
1 = · · · = 
k = 4 and 
k+1 = n− 2k and
its value is (n− 2k)7 +47k. Furthermore, the cardinality of {
1 + · · ·+ 
k+1 =
n + 2k, 4 ≤ 
i ≤ n− 2k} is smaller than nk+1, and hence we obtain

β(2)
n ≤ max

k={1,··· ,n/2−2}
Nνn6(Cn)n−1Cnk+24n(CNν4n(n− 2k))(n−2k)7+47k

≤ 1
2(C4nnNν)n7

for n ≥ 5 and after adapting C if necessary.

5.2. Normal form result

For any R1 > 0, we set Bρ(R1) = {w ∈ Lρ,b | ‖w‖ρ < R1}.
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Theorem 5.3. Assume that F is analytic on a ball Bρ(R1) for some R1 > 0
and ρ > 0. Assume that the nonresonance condition (4.1) is satisfied, and let
β < 1/7 and M > 1 be fixed. Then there exist constants ε0 > 0 and σ > 0 such
that for all ε < ε0, there exist: a polynomial χ, a polynomial W in N-normal
form, and a Hamiltonian R analytic on Bρ(Mε), such that

(5.15) (H0 + F ) ◦ Φ1
χ = H0 + W + R.

Furthermore, for all w ∈ Bρ(Mε),

(5.16) ‖XW (w)‖ρ + ‖Xχ(w)‖ρ ≤ 2ε3/2 and ‖XR(w)‖ρ ≤ ε2e−
1
4 | ln ε|1+β

.

Remark 5.4. In this theorem, we let β < 1/7 (see (5.17)) rather than β < 1,
because the nonresonance condition (4.1) is a little different to the one in [12].
Then we get the stability of the solutions for times that is shorter than [12].

Proof. Using Lemma 5.2, for all N and r, we can construct polynomial Hamil-
tonians

χ(w) =
r∑

k=4
χk(w) and W (w) =

r∑
k=4

Wk(w),

with W in N -normal form, such that (5.15) holds with R = Or. Now for fixed
ε > 0, we choose

N = | ln ε|1+β and r = | ln ε|β .
This choice is motivated by the necessity of balance between W and R in
(5.15): The error induced by W is controlled as in Lemma 6.2, while the error
induced by R is controlled by Lemma 5.2. By (5.8), we have

‖χk‖ ≤(C4kkNν)k7 ≤ exp
(
k
(
νk6(1 + β) ln | ln ε| + k7 ln 4 + k6 lnCk

))(5.17)

≤ exp
(
k
(
νr6(1 + β) ln | ln ε| + r7 ln 4 + r6 lnCr

))
≤ exp

(
k| ln ε|

(
ν| ln ε|6β−1(1 + β) ln | ln ε| + | ln ε|7β−1 ln 4

+ | ln ε|6β−1 lnC| ln ε|β
))

≤ε−k/8

as β < 1/7, and for ε < ε0 sufficiently small. Therefore using Proposition 3.1,
we obtain for w ∈ Bρ(Mε)

|χk(w)| ≤ ε−k/8(Mε)k ≤ Mkε7k/8
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and thus
|χ(w)| ≤

∑
k≥4

Mkε7k/8 ≤ ε3/2

for ε small enough. Similarly, we have for all k ≤ r,

‖Xχk
(w)‖ρ ≤ 2k−1kε−k/8(Mε)k−1 ≤ k(2M)k−1ε7k/8−1

and
‖Xχ(w)‖ρ ≤

∑
k≥4

k(2M)k−1ε7k/8−1 ≤ Cε−1ε28/8 ≤ ε3/2

for ε small enough. Similar bounds clearly hold for W =
∑r

k=4 Wk, which
shows the first estimate in (5.16).

On the other hand, using adχ�k
H0 = W�k + Q�k (see (5.5)) and then

combining Lemma 5.2 with the definition of Qn, we get

‖adχ�k
H0‖ ≤ (C4�k
kNν)�7k ≤ ε−�k/8,

where the last inequality proceeds as in (5.17). Thus, due to (5.7), (5.17) and
‖P�k+1‖ ≤ MR

−�k+1
0 , we obtain by Proposition 3.1 that for w ∈ Bρ(Mε)

‖XR(w)‖ρ ≤
∑

n≥r+1

n/2−2∑
k=0

4nn(Cr)3nε−
n+2k

8 εn−1 ≤
∑

n≥r+1
n2(4Cr)3nεn/2

≤ (4Cr)3rεr/2.

Since r = | ln ε|β > 2 (ε small enough), we get ‖XR(w)‖ρ ≤ ε2e−
1
4 | ln ε|1+β for

w ∈ Bρ(Mε).

6. Proof of the main result

Before giving the proof, we will introduce two important lemmata.

Lemma 6.1. Let f : R → R+ a continuous function and y : R → R+ a
differentiable function satisfying the inequality

d

dt
y(t) ≤ 2f(t)

√
y(t), ∀ t ∈ R.

Then we have the estimate√
y(t) ≤

√
y(0) +

∫ t

0
f(s)ds, ∀t ∈ R.
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Proof. The proof can be found in [12].

Fix N > 1, for any w ∈ Lρ,b, we define

RN
ρ (w) =

∑
|j|>N

eρ|j||wj |.

Notice that if w ∈ Lρ+μ,b, then

(6.1) RN
ρ (w) ≤ e−μN‖w‖ρ+μ.

Lemma 6.2. Let N ∈ N and k ≥ 4. Suppose that W is a homogeneous
polynomial of degree k in N-normal form. Let w(t) be a real solution of the
flow generated by the Hamiltonian H0 + W . Then we have

(6.2) RN
ρ (w(t)) ≤ RN

ρ (w(0)) + 4k32k−1‖W‖
∫ t

0
RN

ρ (w(s))2‖w(s)‖k−3
ρ ds

and

(6.3) ‖w(t)‖ρ ≤ ‖w(0)‖ρ + 4k32k−1‖W‖
∫ t

0
RN

ρ (w(s))2‖w(s)‖k−3
ρ ds.

Proof. Fix j ∈ Z and let Ij(t) = wj(t)w−j(t) be the actions associated with
the solution of the Hamiltonian system generated by H0 + W . Due to (3.9),
we have

|e2ρ|j|İj | = |e2ρ|j|{Ij ,W}|

≤ 2k−1k‖W‖ | eρ|j|
√
Ij | (

∑
j1±···±jk−1=±j

2 indices>N

eρ|j||wj1 · · ·wjk−1 |).

Then using the Lemma 6.1, we get

eρ|j|
√
Ij(t)

(6.4)

≤ eρ|j|
√
Ij(0) + 2k−1k‖W‖

∫ t

0
(

∑
j1±···±jk−1=±j

2 indices>N

eρ|j1||wj1 | · · · eρ|jk−1||wjk−1 |)ds.

Ordering the multi-indices such way |j1| and |j2| are the largest, and making
use of the fact that w(t) is real (and thus |wj | =

√
Ij), we obtain, after
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summation in |j| > N ,

RN
ρ (w(t))

≤ RN
ρ (w(0)) + 4k32k−1‖W‖

∫ t

0
(

∑
|j1|,|j2|≥N

j3,··· ,jk−1∈Z

eρ|j1||wj1 | · · · eρ|jk−1||wjk−1 |)ds

≤ RN
ρ (w(0)) + 4k32k−1‖W‖

∫ t

0
RN

ρ (s)2‖w(s)‖k−3
ρ ds.

Inequality (6.3) can be proved in the same way.

We are in position to prove the main theorem of section 1 in which we
will take advantage of the bootstrap argument.

Proof of the main theorem Let u0, v0 ∈ A2ρ with |u0|2ρ + |v0|2ρ = ε, and
denotes by w(0) the corresponding sequence of its Fourier coefficients which
belongs, by Lemma 2.1, to in L 3

2ρ,b
with ‖w(0)‖ 3

2ρ
≤ cρ

4 ε. Let w(t) be the
local solution in Lρ,b of the Hamiltonian system associated with H = H0 +F .

Let χ,W and R given by Theorem 5.3 with M = cρ and let y(t) =
Φ1

χ(w(t)). We recall that since χ(w) = O(‖w‖4), the transformation Φ1
χ is

close to the identity, Φ1
χ(w) = w +O(‖w‖3) and thus, for ε small enough, we

have ‖y(0)‖L 3
2 ρ

≤ cρ
2 ε. In particular, notice the facts that

RN
ρ (y(0)) ≤ cρ

2 εe−
ρ
2N ≤ cρ

2 εe−σN

where σ = σρ ≤ ρ
2 .

Let Tε be the maximum of time T such that RN
ρ (y(t)) ≤ cρεe

−σN and
‖y(t)‖ρ ≤ cρε for all |t| ≤ Tε. By construction, we have

y(t) = y(0) +
∫ t

0
XH0+W (y(s))ds +

∫ t

0
XR(y(s))ds.

So using (6.2) for the first vector field and (5.16) for the second one, we get
for |t| ≤ Tε,

RN
ρ (y(t)) ≤ 1

2cρεe
−σN + 4|t|

r∑
k=4

‖Wk‖k3(2cρε)k−1e−2σN + |t|εe− 1
4 |lnε|

1+β

≤ (1
2 + 4|t|

r∑
k=4

‖Wk‖k3(2cρε)k−2e−σN + |t|εe− 1
8 |lnε|

1+β)cρεe−σN ,(6.5)
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where in the last inequality we used σ = min{ 1
10 ,

ρ
2} and N = | ln ε|1+β .

Using Lemma 5.2, we then verify

RN
ρ (y(t)) ≤ (1

2 + C|t|εe−σN )cρεe−σN

and thus, for ε small enough,

(6.6) RN
ρ (y(t)) ≤ cρεe

−σN for all |t| ≤ min{Tε, e
σN}.

Similarly, we obtain

(6.7) ‖y(t)‖ρ ≤ cρε for all |t| ≤ min{Tε, e
σN}.

In view of the definition of Tε, inequalities (6.6) and (6.7) imply Tε ≥ eσN .
In particular ‖w(t)‖ρ ≤ 2cρε for |t| ≤ eσN = ε−σ| ln ε|β and using (2.17), we
finally obtain (1.3).

Appendix A

In this section, we will give some technical lemmas.

Lemma A.1. For any K ≤ r, consider K indexes j1 < . . . < jK ≤ N ;
consider the determinant

D :=

∣∣∣∣∣∣∣∣∣∣∣

λj1 λj2 · · · λjK

dλj1
dm

dλj2
dm · · · dλjK

dm...
... . . . ...

dK−1λj1
dmK−1

dK−1λj2
dmK−1 · · · dK−1λjK

dmK−1

∣∣∣∣∣∣∣∣∣∣∣
.(A.1)

One has

(A.2) D =
( K∏

l=1
λ−2K+1
jl

)( ∏
1≤l<k≤K

(jl)2 − (jk)2
)
≥ C

N2K2 .

Proof. By explicit computation, one has

(A.3) dnλj

dmn
=

⎧⎨
⎩

1
2n (j2 + m) 1

2−n 0 ≤ n ≤ 1,
(2n−3)!

2n−2(n−1)!2n
(−1)n

(j2+m)n− 1
2

2 ≤ n ≤ K − 1.

Substituting (A.3) in the right hand site of (A.1) we get the determinant to
be estimated. To obtain the estimate factorize from the j-th column the term
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λj = (j2 + m) 1
2 , and from the n-th row the term (2n−3)!

2n−2(n−1)!2n . Forgetting the
essential power of −1, we obtain that the determinant to be estimated is given
by

(A.4)
[ K∏
l=1

λjl

] [1
2

K−1∏
n=2

(2n− 3)!
2n−2(n− 1)!2n

]
∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
xj1 xj2 · · · xjK
...

... . . . ...
xK−1
j1

xK−1
j2

· · · xK−1
jK

∣∣∣∣∣∣∣∣∣∣
,

where we denoted by xj = (j2 +m)−1. The last determinant is a Vandermond
determinant whose value is given by

(A.5)
∏

1≤l<n≤K

(xjl − xjn).

Now we have

|xjl − xjn | =
∣∣∣∣ 1
j2
l + m

− 1
j2
n + m

∣∣∣∣ = |j2
n − j2

l |
(j2

l + m)(j2
n + m) ≥ Cxjlxjn ,

with a suitable C. So (A.5) is estimated by

K−1∏
l=1

K∏
n=l+1

Cxjlxjn = C

K∑
n=2

(n−1) K−1∏
l=1

(
xK−l
jl

K∏
n=l+1

xjn

)
= C

K∏
l=1

xK−1
jl

,

from which, using the asymptotics of the frequencies, the thesis immediately
follows.

Next we need the lemma from appendix B of [8], namely

Lemma A.2. Let u(1), · · · , u(K) be K independent vectors with ‖u(i)‖l1 ≤ 1.
Let w ∈ R

K be an arbitrary vector, then there exists i ∈ [1, . . . , K], such that

|u(i) · w| ≥ ‖w‖l1 det(u(i))
K3/2 ,

where det(u(i)) is the determinant of the matrix formed by the components of
the vectors u(i).

Proof. The proof can be found in proposition of appendix B in [8].

Combining Lemma A.1 and Lemma A.2, we deduce the following lemma.
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Lemma A.3. Let w ∈ Z
∞ be a vector with K component different from

zero, namely those with index j1, · · · , jK ; assume that K ≤ r, and assume
that j1 < · · · < jK ≤ N . Then for any m ∈ [m0,Δ], there exists an index
j ∈ [0, · · · , K − 1] such that

(A.6)
∣∣∣∣w · djλ

dmj
(m)

∣∣∣∣ ≥ C
‖w‖l1
N2K2+2 ,

where λ = (λj1 , λj2 , . . . , λjK ) is the frequency vector.

From [18] we learn the following lemma.

Lemma A.4. Suppose that g(m) is r times differentiable on an interval
J ⊂ R. Let Jγ := {m ∈ J : |g(m)| < γ}, γ > 0. If |g(r)(m)| ≥ d > 0 on
J , then |Jγ | ≤ Mγ1/r, where M := 2(2 + 3 + · · · + r + d−1).

Proof. The proof can be found in Lemma 2.1 of [18].
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