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Vanishing viscosity limit to the 3D Burgers equation in
Gevrey class

Ridha Selmi
∗

and Abdelkerim Chaabani

Abstract: We consider the Cauhcy problem to the 3D diffusive pe-
riodic Burgers equation. We prove that a unique solution exists on
time interval independent of the viscosity and tends, as the viscos-
ity vanishes, to the solution of the limiting equation, the inviscid
periodic three-dimensional Burgers equation, in Gevrey-Sobolev
spaces. Compared to Navier-Stokes equations, the main difficul-
ties come from the lack of the divergence-free condition which is
essential to handle the nonlinear term. Our alternative tool will
be to use a change of functions to estimate nonlinearities. Fourier
analysis and compactness methods are widely used.

Keywords: Existence and uniqueness, vanishing viscosity limit.

1. Introduction

We consider the diffusive Burgers system

(Bgν)
{

∂tu− νΔu + (u · ∇)u = 0, (t, x) ∈ R+ × T
3

u|t=0 = uin(x), x ∈ T
3

and the inviscid Burgers system

(Bg0)
{

∂tu + (u · ∇)u = 0, (t, x) ∈ R+ × T
3

u|t=0 = uin(x), x ∈ T
3.

For all s ≥ 1, r ≥ 0 and a ∈ (0, 1), the homogeneous Gevrey-Sobolev space
for a positive real number s is given by

Ḣr
a,s = {f ∈ L2(T3); eaΛ

1/s
f ∈ Ḣr(T3)}
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endowed by the norm

‖f‖Ḣr
a,s

= ‖ΛreaΛ
1/s

f‖L2 =

⎛
⎝∑

k∈Z3

|k|2re2a|k|1/s |f̂k|2
⎞
⎠1/2

,

where f̂k is the Fourier coefficient of f and Λ =
√
−Δ. The nonhomogeneous

Gevrey-Sobolev space is given by

Hr
a,s = {f ∈ L2(T3); eaΛ

1/s
f ∈ Hr(T3)},

endowed by the norm

‖f‖Hr
a,s

= ‖eaΛ1/s
f‖L2 + ‖ΛreaΛ

1/s
f‖L2 =

⎛
⎝∑

k∈Z3

(1 + |k|2)re2a|k|1/s |f̂k|2
⎞
⎠1/2

.

Also, we will use the notation F(·) for the Fourier transform and F−1(·)(x)
to denote the inverse Fourier transform.

Burgers equation is the simplest nonlinear model equation for diffusive
waves in fluid dynamics. In 1948, Burgers [4] was the first to develop the
one dimensional Burgers equation to shed light on the study of turbulence
described by the interaction of the two opposite effects of convection and
diffusion. Later on, the three-dimensional viscous Burger equation was con-
sidered in cosmology as the Zeldovich approximation [15]. The non-viscous
Burgers equation is perhaps the simplest equation that models the nonlinear
phenomena in a force free mass transfer as said in [1].

Mathematically, Burgers equation is the incompressible Navier-Stokes
ones, without the incompressibility condition and pressure term. This sim-
ilarity leads to think about a parallel mathematical analysis to the one done
for Navier-Stokes equations, as in [9] where authors proved that the periodic
diffusive three-dimensional Burgers equation is globally in time well posed in
Sobolev space H1/2, and in [14], where authors proved existence and unique-
ness of global in time solution to the viscous Burgers equation in critical
Gevrey class. In [6], Kato proved that the solution to the three-dimensional
Navier-Stokes equations exists on a time interval independent of the viscosity
ν and tends to the solution of the Euler equation when ν → 0, provided that
uin belongs to Hm, for m ≥ 3. Other results concerning the viscosity limit can
be found in [3, 8]. It is worth mentioning that convergence results, as a small
parameter (Rossby number) vanishes, were proved in the case of geophysical
magnetohydrodynamic systems, see for example ([11, 12, 13]) and references
therein, or also as a regularizing small parameter goes to zero [10].
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In this paper, we will prove the local-in-time existence and uniqueness of
solutions to (Bgν) and (Bg0) on the periodic domain T

3, with initial data
uin ∈ Hr

a,s, for r > 5/2. Then, we return to prove that the solution of (Bgν)
exists on a time interval independent of the viscosity ν and tends to the
solution of the inviscid Burgers equation (Bg0) when ν vanishes. Mainly, we
have the following theorems.

Theorem 1.1. Given uin in Hr
a,s(T3) where r > 5/2, then there exists a

unique local solution to (Bgν), such that

u ∈ C([0, T );Hr
a,s(T3)) ∩ L2([0, T );Hr+1

a,s (T3)).

Given uin in Hr
a,s(T3) where r > 5/2, then there exists a unique local

solution to (Bg0), such that u ∈ C([0, T );Hr
a,s(T3)).

Theorem 1.2. Let uin ∈ Hr
a,s where r > 5/2 and T > 0, then

i) there exists T0 depending on ‖uin‖Hr
a,s

but not on ν, such that (Bgν)
has a unique solution

uν ∈ C([0, T0];Hr
a,s) ∩ L1([0, T0);Hr+1

a,s ).

Furthermore, uν is bounded in C([0, T0];Hr
a,s) for all ν > 0.

ii) For each t ∈ [0, T0], u0(t) = lim
ν→0

uν(t) exists strongly in Hr−1
a,s and weakly

in Hr
a,s uniformly in t:

lim
ν→0

sup
t∈[0,T0]

‖uν − u0‖Hr−1
a,s

= 0

and
lim
ν→0

sup
t∈[0,T0]

〈uν − u0, f〉Hr
a,s

= 0

where f ∈ Hr+1
a,s , u0 is a unique solution to (Bg) satisfying

u0 ∈ C([0, T0];Hr
a,s).

Unlike prior efforts, the main difficulty in proving our results stems from
the nonlinear term. Particularly, the lack of divergence-free condition which
usually played the key role in Euler and Navier-Stokes theory prevents us from
applying the usual estimates as in [7, 6, 5]. Also, we note that as the viscosity
ν is destined to vanish when taking the limit, any estimates that depend
singularly on ν will fail to control the non-linearity as ν → 0. However, we
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arrived in the framework of Gevrey-Sobolev space to beat the odds via several
applications of change of functions and Plancherel’s identity.

The following section is assigned to prove the technical lemmas used later
on to control the nonlinear term. In the third section, we prove unique solution
to (Bgν) and to (Bg0). In the last section, we investigate the convergence
result.

2. Estimates of the nonlinear term

We denote by c a generic constant that may change from line to another.

Lemma 2.1. Let u, v and w be three-dimensional vector valued functions,
such that u and v belong to Hr

a,s and w ∈ Hr+1
a,s for r > 3/2, then there exists

a positive constant C, such that

|〈(u · ∇)v, w〉Hr
a,s
| ≤ C‖u‖Hr

a,s
‖v‖Hr

a,s
‖w‖Hr+1

a,s
.(1)

If v and w belong to Hr
a,s and u ∈ Hr+1

a,s , r > 3/2, then there exists a positive
constant C, such that

|〈(u · ∇)v, w〉Hr
a,s
| ≤ C‖u‖Hr+1

a,s
‖v‖Hr

a,s
‖w‖Hr

a,s
.(2)

Proof. By Parseval’s identity, the following holds

|〈(u · ∇)v, w〉Hr
a,s
| = |

∑
k

ea|k|
1/sF((u · ∇)v)kea|k|

1/s〈k〉2rF(w)(k)|

≤
∑
k

ea|k|
1/s |F((u · ∇)v)k|ea|k|

1/s〈k〉2r|F(w)(k)|,

where 〈k〉 := (1+ |k|2)1/2. We estimate the Fourier transform of the nonlinear
term F((u · ∇)v)k as follows

ea|k|
1/s |F((u · ∇)v)k| = ea|k|

1/s |F(u) ∗ F(∇v)|
= ea|k|

1/s |
∑
p

F(u)(p)F(∇v)(k − p)|

≤
∑
p

ea|p|
1/s |ûp|ea|k−p|1/s |k − p||v̂(k − p)|

≤
∑
p

ea|p|
1/s |û(p)|(|k| + |p|)ea|k−p|1/s |v̂(k − p)|

≤ |k|
∑
p

ea|p|
1/s |û(p)|ea|k−p|1/s |v̂(k − p)|
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+
∑
p

ea|p|
1/s |p||û(p)|ea|k−p|1/s |v̂(k − p)|,

where we used the inequality ea|k|
1/s ≤ ea|p|

1/s
ea|k−p|1/s , for all p, k in Z

3. Let
f1 = F−1(ea|k|1/s |ûk|), f2 = F−1(ea|k|1/s |v̂k|) and f3 = F−1(|k|ea|k|1/s |ûk|) for
all k in Z

3, it follows that

ea|k|
1/s |F((u · ∇)v)| ≤ |k|F(f1) ∗ F(f2) + F(f3) ∗ F(f2)

= |k|F(f1 · f2) + F(f3 · f2).

Therefore, it turns out that

|〈(u · ∇)v, w〉Hr
a,s
| ≤

∑
k

F(f1 · f2)|k|ea|k|
1/s〈k〉2r|F(w)(k)|

+
∑
k

F(f3 · f2)ea|k|
1/s〈k〉2r|F(w)(k)|.

Let f4 = F−1(ea|k|1/s〈k〉2r|ŵk|), the fact that by definition, the Fourier coeffi-
cients of f3, f2 and f4 are all non-negative real valued functions for all k ∈ Z

3

yields

∑
k

F(f3 · f2)ea|k|1/s〈k〉2r|F(w)k| =
∣∣∣∣∣∑

k

F(f3 · f2)ea|k|1/s〈k〉2r|F(w)(k)|
∣∣∣∣∣ .

Then, by applying Parseval’s identity once again, we obtain∑
k

F(f3 · f2)ea|k|
1/s〈k〉2r|F(w)(k)| =

∑
k

F(f3 · f2)ea|k|1/s〈k〉2r|F(w)(k)|

= c|〈f3 · f2, f4〉L2 |
≤ c‖f2‖L∞ |〈f3, f4〉L2 |.

By definition of f3 and f4, we have

|〈f3, f4〉L2 | = c
∑
k

ea|k|
1/s |ûk|ea|k|

1/s〈k〉2r|k||ŵk|

≤ c

(∑
k

(1 + |k|2)re2a|k|1/s |ûk|2
)1/2 (∑

k

(1 + |k|2)re2a|k|1/s |F(∇w)|2
)1/2

≤ c‖u‖Hr
a,s
‖w‖Hr+1

a,s
,

where we achieved the last step by using the Cauchy-Schwarz inequality. It
remains to estimate

∑
k

F(f1 ·f2)|k|ea|k|
1/s〈k〉2r|F(w)(k)|, to do so, we proceed
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as follows ∑
k

F(f1 · f2)|k|ea|k|
1/s〈k〉2r|F(w)(k)| =∑

k

F(f1 · f2)|k|ea|k|1/s〈k〉2r|F(w)(k)|.

Let f5 = F−1(|k|ea|k|1/s〈k〉2r|ŵk|). Then, we infer that
∑
k

F(f1 · f2)|k|ea|k|
1/s〈k〉2r|Fwk| = |〈f1 · f2, f5〉L2 |

≤ ‖f2‖L∞ |〈f1, f5〉L2 |.

By definition of f1 and f5, we have

|〈f1, f5〉L2 | =
∑
k

f̂1(k)f̂5(k)

=
∑
k

ea|k|
1/s |ûk|(1 + |k|2)r|k|ea|k|1/s |ŵk|

≤
(∑

k

(1 + |k|2)re2a|k|1/s |ûk|2
)1/2 (∑

k

(1 + |k|2)re2a|k|1/s |F(∇w)|2
)1/2

≤ ‖u‖Hr
a,s
‖w‖Hr+1

a,s
,

where we achieved the last step by using the Cauchy-Schwarz inequality. The
Fourier expansion of f2 is given by

f2 =
∑
k

F(f2)(k)eikx =
∑
k

ea|k|
1/s |v̂k|eikx.

It follows that

‖f2‖L∞ ≤
∑
k

ea|k|
1/s |v̂k|

=
∑
k

(1 + |k|2)−r/2(1 + |k|2)r/2ea|k|1/s |v̂k|

≤
(∑

k

1
(1 + |k|2)r

)1/2

‖v‖Hr
a,s
.

The series
(∑

k

1
(1 + |k|2)r

)1/2

is convergent since r > 3/2, and (1) follows.

Estimate (2) follows the same way, only the application of Cauchy-Schwarz
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on |〈f3, f4〉L2 | and |〈f1, f5〉L2 | differs. In fact,

|〈f3, f4〉L2 |=
∑
k

f̂3(k)f̂4(k)

=
∑
k

|k|ea|k|1/s |ûk|(1 + |k|2)rea|k|1/s |ŵk|

≤
(∑

k

(1 + |k|2)re2a|k|1/s |F(∇u)|2
)1/2

×
(∑

k

(1 + |k|2)re2a|k|1/s |F(w)(k)|2
)1/2

≤‖u‖Hr+1
a,s

‖w‖Hr
a,s
,

and

|〈f1, f5〉L2 |=
∑
k

|k|ea|k|1/s |F(u)(k)|(1 + |k|2)rea|k|1/s |F(w)(k)|

≤
(∑

k

(1 + |k|2)re2a|k|1/s |F(∇u)|2
)1/2

×
(∑

k

(1 + |k|2)re2a|k|1/s |F(w)(k)|2
)1/2

≤‖u‖Hr+1
a,s

‖w‖Hr
a,s
.

Remark 2.2. Let u, v and w be three-dimensional vector valued functions such
that u, v and w are all in Hr

a,s where r > 5/2, then there exists a constant
C, such that

|〈(u · ∇)v, w〉Hr
a,s
| ≤ C‖u‖Hr

a,s
‖v‖Hr

a,s
‖w‖Hr

a,s
.(3)

Proof. By Parseval’s identity, the following holds

|〈(u · ∇)v, w〉Hr
a,s
| ≤

∑
k

ea|k|
1/s |F((u · ∇)v)k|ea|k|

1/s〈k〉2r|F(w)k|.

Where 〈k〉2r := (1 + |k|2)1/2. The non-linear term can be estimated, by using
the following steps:

ea|k|
1/s |F((u · ∇)v)| ≤

∑
p

ea|p|
1/s |û(p)||k − p|ea|k−p|1/s |v̂(k − p)|,
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let
g1 = F−1(ea|k|1/s |ûk|),
g2 = F−1(|k|ea|k|1/s |v̂k|)

and g3 = F−1(ea|k|1/s〈k〉2r|ŵk|). It turns out that

ea|k|
1/s |F((u · ∇)v)| ≤ F(g1) ∗ F(g2)

= F(g1 · g2),

and hence,

|〈(u · ∇)v, w〉Hr | ≤ c
∑
k

F(g1 · g2)kea|k|
1/s〈k〉2r|F(w)k|,

Thus, by applying Plancherel’s identity once again, we obtain∑
k

F(g1 · g2)ea|k|
1/s〈k〉2r|F(w)(k)| =

∑
k

F(g1 · g2)ea|k|1/s〈k〉2r|F(w)(k)|

= |〈g1 · g2, g3〉L2 |
≤ ‖f2‖L∞ |〈g1, g3〉L2 |.

By definition of g1 and g3, we have

|〈g1, g3〉L2 | =
∑
k

ea|k|
1/s |ûk|(1 + |k|2)rea|k|1/s |ŵk|

≤
(∑

k

(1 + |k|2)re2a|k|1/s |ûk|2
)1/2 (∑

k

(1 + |k|2)re2a|k|1/s |ŵk|2
)1/2

≤ ‖u‖Hr
a,s
‖w‖Hr

a,s
,

where we achieved the last step by using the Cauchy-Schwarz inequality. The
Fourier expansion of g2 is given by

g2 =
∑
k

F(g2)(k)eikx =
∑
k

|k|ea|k|1/s |v̂k|eikx.

It follows that

‖g2‖L∞ ≤
∑
k

ea|k|
1/s |k||v̂k|

=
∑
k

(1 + |k|2) 1−r
2 (1 + |k|2) r−1

2 |k|ea|k|1/s |v̂k|

≤
(∑

k

1
(1 + |k|2)r−1

)1/2

‖v‖Hr
a,s
.
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The series
(∑

k

1
(1 + |k|2)r−1

)1/2

is convergent since r > 5/2, and (3) fol-

lows.

3. Existence and uniqueness results

3.1. Existence and uniqueness result to (Bgν)

We use Galerkin approximation. For n ∈ N, let Pn be the projection onto the

Fourier modes of order up to n, that is Pn

⎛
⎝∑

k∈Z3

ûke
ixk

⎞
⎠ =

∑
|k|≤n

ûke
ixk. Let

un = Pnu be the solution to

∂tun + Pn[(un · ∇)un] − νΔun = 0(4)
un(0) = Pnu0.(5)

This is a finite-dimensional locally-Lipschitz system of ODEs. So that, for
some Tn, there exists a solution un ∈ C∞([0, Tn) × T

3). By the Hr
a,s-inner

product, we have

1
2
d

dt
‖un‖2

Hr
a,s

+ ν‖∇un‖2
Hr

a,s
+ 〈(un · ∇)un, un〉Hr

a,s
= 0.(6)

The fact that Hr
a,s is a Banach algebra, as r > 5/2, yields

|〈(un · ∇)un, un〉Hr
a,s
| ≤ c‖un‖2

Hr
a,s
‖∇un‖Hr

a,s
.(7)

Hence, applying the Young inequality yields

d

dt
‖un‖2

Hr
a,s

+ ν‖∇un‖2
Hr

a,s
≤ C∗‖un‖4

Hr
a,s
,(8)

where C∗ is a positive constant that depends on ν. Thus,

‖un‖2
Hr

a,s
≤

‖uin|2Hr
a,s

1 − C∗t‖uin|2Hr
a,s

,(9)
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as long as t < T ∗ := 1
C∗‖uin|2Hr

a,s

. So, there exists T > 0, saying T = T ∗/2,

such that Tn ≥ T for all n. We use (8) to close the energy estimate

sup
t∈[0,T ]

‖un‖2
Hr

a,s
≤

‖uin|2Hr
a,s

1 − C∗T‖uin|2Hr
a,s

:= CT

and ∫ T

0
‖∇un(t)‖2

Hr
a,s
dt ≤ C∗

T = C∗TC2
T /ν.

These are uniform bounds on the approximate solution un in L∞(0, T ;Hr
a,s)

and L2(0, T ;Hr+1
a,s ). Then, Aubin lemma [2] allows to extract a subsequence of

un that converges strongly to u. To prove uniqueness, we suppose that u1 and
u2 are two solutions to (Bgν) that have the same initial data u0 ∈ Hr

a,s(T3)
(without loss of generality we suppose that ν = 1). Let U = u1 − u2, we have

〈∂tu1, U〉Hr
a,s

− 〈Δu1, U〉Hr
a,s

+ 〈(u1 · ∇)u1, U〉Hr
a,s

= 0,

and so on for u2. Since

(u1 · ∇)u1 − (u2 · ∇)u2 = (u1 · ∇)u1 − (u1 · ∇)u2

+ (u1 · ∇)u2 − (u2 · ∇)u2

= (u1 · ∇)U + (U · ∇)u2,

one takes the difference to obtain

d

dt
‖U(t)‖2

Hr
a,s

+ 2‖∇U(t)‖2
Hr

a,s
≤ |〈(u1 · ∇)U,U〉Hr

a,s
|︸ ︷︷ ︸

M1

+ |〈(U · ∇)u2, U〉Hr
a,s
|︸ ︷︷ ︸

M2

.

Using estimate (3), one controls M1 and M2 and infers

d

dt
‖U(t)‖2

Hr
a,s

≤ C(‖u1‖Hr
a,s

+ ‖u2‖Hr
a,s

)‖U(t)‖2
Hr

a,s
.

The Grönwall inequality yields

‖U(t)‖2
Hr

a,s
≤ ‖U(0)‖2

Hr
a,s
e
Ct supτ∈[0,t](‖u1(τ)‖Hr

a,s
+‖u2(τ)‖Hr

a,s
)
.

As u1 and u2 are in C([0, T );Hr
a,s) and U(0) = 0, uniqueness follows.
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Similar computation can be done for (Bg0) and by (3) we obtain

d

dt
‖un(t)‖2

Hr
a,s

≤ c‖un(t)‖3
Hr

a,s
,(10)

which implies that

‖un(t)‖2
Hr

a,s
≤

‖uin‖2
Hr

a,s

(1 − 2tc‖uin‖Hr
a,s

)2 .(11)

Then, compactness method applies to obtain existence of solution. Uniqueness
can be proved in analogues way to the viscous equation.

4. The inviscid limit

4.1. Uniform bound in viscosity ν

Consider uν the solution to (Bgν). In equation (Bgν), taking the inner product
〈eaΛ1/s ·, eaΛ1/s ·〉Hr(T3), we obtain

(12)
1
2

d
dt‖eaΛ

1/s
uν‖2

Hr + ν‖eaΛ1/s∇uν‖2
Hr

≤ |〈eaΛ1/s(uν · ∇)uν , eaΛ
1/s

uν〉Hr(T3)|.

Using (3), we infer

1
2
d

dt
‖uν(t)‖2

Hr
a,s

+ ν‖∇uν(t)‖2
Hr

a,s
≤ c‖uν(t)‖3

Hr
a,s
,(13)

where c does not depend on ν. Dropping the non-negative viscous term from
the left-hand side of (13), it holds

d

dt
‖uν(t)‖Hr

a,s
≤ 2c‖uν(t)‖2

Hr
a,s
.(14)

By Grönwall type estimate yields

‖uν(t)‖Hr
a,s

≤
‖uin‖Hr

a,s

1 − 2ct‖uin‖Hr
a,s

.(15)

The right-hand side in (15) is continuous on a certain interval of time [0, T0],
where T0 is uniform with respect to ν. By using an iterative argument, one
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can prove that uν can be extended over [0, T0] with estimate (15) through-
out. Furthermore, integrating estimate (13) over the interval of time (0, t)
yields

ν

∫ t

0
‖∇uν(τ)‖2

Hr
a,s
dτ ≤ cΦ(t), t ∈ [0, T0],(16)

where Φ is a continuous function independent of ν.

4.2. Zero viscosity limit of solutions to Burgers equation

Let u1 and u2 be the solution to Burgers equation respectively for ν = ν1 and
ν = ν2, where ν1 < ν2. Taking the difference and denoting w := u1 − u2, it
follows that

d

dt
w − ν1Δw − (ν1 − ν2)Δu2 = w · ∇u1 + u2 · ∇w.(17)

Taking the Hr−1
a,s -inner product, we obtain

1
2
d

dt
‖w‖2

Hr−1
a,s

+ ν1‖∇w‖2
Hr−1

a,s
≤ (ν2 − ν1)〈−Δu2, w〉Hr−1

a,s

+ |〈(w · ∇)u1, w〉Hr−1
a,s

|(18)
+ |〈(u2 · ∇)w,w〉Hr−1

a,s
|.

We use the same technicalities as the ones used in the previous section to
estimate the exponential weight, and the fact that Hr−1 is a Banach algebra
to obtain

|〈(w · ∇)u1, w〉Hr−1
a,s

| ≤ c1‖∇u1‖Hr−1
a,s

‖w‖2
Hr−1

a,s

≤ c1‖u1‖Hr
a,s
‖w‖2

Hr−1
a,s

.

Using estimate (2) yields

|〈(u2 · ∇)w,w〉Hr−1
a,s

| ≤ c2‖u2‖Hr
a,s
‖w‖2

Hr−1
a,s

.

Dropping the second non-negative term in the left-hand side of (18) to obtain

1
2

d
dt‖w‖2

Hr−1
a,s

≤ (ν2 − ν1)〈−Δu2, w〉Hr−1
a,s

+ (c1‖u1‖Hr
a,s

+ c2‖u2‖Hr
a,s

)‖w‖2
Hr−1

a,s
.

(19)
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Since ‖ui‖Hr
a,s

, 1 ≤ i ≤ 2 is uniformly bounded with respect to ν, there exists
C, such that

1
2
d

dt
‖w‖Hr−1

a,s
≤ ν2‖∇u2‖Hr

a,s
+ C‖w‖Hr−1

a,s
.(20)

Using Grönwall inequality, we obtain

‖w‖Hr−1
a,s

≤ (ν2t)1/2eCt

(
ν2

∫ t

0
‖∇u2‖2

Hr
a,s

)1/2
.(21)

By estimate (16), the right-hand side of (21) tends to zero, when ν2 goes to
zero. Consequently, there exists u0(t), such that uν(t) −→ u0(t) strongly in
C([0, T0];Hr−1

a,s ) and uν(t) −→ u0(t) strongly in L2([0, T0];Hr−1
a,s ). Estimate

(15) ensures that u0(t) belongs also to Hr
a,s. Furthermore uν(t) ⇀ u0(t) weakly

in C([0, T0];Hr
a,s), and

‖u0‖Hr
a,s

≤
‖uin‖Hr

a,s

1 − 2c′t‖uin‖Hr
a,s

.

Let f ∈ Hr+1
a,s . Then, for all t0, t ∈ [0, T0], the following holds

〈uν(t), f〉Hr−1
a,s

+
∫ t

t0

ν〈uν(t),−Δf〉Hr−1
a,s

ds

+
∫ t

t0

〈(uν · ∇)uν , f〉Hr−1
a,s

ds

= 〈uν(t0), f〉Hr−1
a,s

.

(22)

By Cauchy-Schwarz inequality, 〈uν(t),−Δf〉Hr−1
a,s

≤ ‖uν(t)‖Hr−1
a,s

‖f‖Hr+1
a,s

and

lim
ν→0

∫ t

t0

ν〈uν(t),−Δf〉Hr−1
a,s

ds = 0.(23)

Also, we have

lim
ν→0

〈uν(t), f〉Hr−1
a,s

= 〈u0(t), f〉Hr−1
a,s

lim
ν→0

〈uν(t0), f〉Hr−1
a,s

= 〈u0(t0), f〉Hr−1
a,s

.

It remains to take the limit in the non-linear term. To do so, we have

〈(uν · ∇)uν , f〉Hr−1
a,s

− 〈(u0 · ∇)u0, f〉Hr−1
a,s

= 〈[(uν − u0) · ∇]uν , f〉Hr−1
a,s

+ 〈(uν · ∇)(uν − u0), f〉Hr−1
a,s

.
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We integrate over (t0, t) and use Hölder’s inequality, to obtain

|
∫ t

t0

〈[(uν − u0) · ∇]uν , f〉Hr−1
a,s

ds| ≤ ‖uν − u0‖Hr−1
a,s

‖uν‖L∞(0,T0;Hr
a,s)Cf t,

where Cf is a positive constant that depends on f . As uν is bounded uniformly
in ν in L∞(0, T0;Hr

a,s) and uν converges strongly to u0 in Hr−1
a,s , then

lim
ν→0

|
∫ t

t0

〈[(uν − u0) · ∇]uν , f〉Hr−1
a,s

ds| = 0.

We use estimate (1) and Hölder’s inequality, to obtain

|〈(uν · ∇)(uν − u0), f〉Hr−1
a,s

| ≤ C‖uν‖Hr−1
a,s

‖uν − u0‖Hr−1
a,s

‖f‖Hr
a,s

and

|
∫ t

t0

〈(uν · ∇)(uν − u0), f〉Hr−1
a,s

dτ | ≤ ‖uν − u0‖Hr−1
a,s

‖uν(τ)‖L∞(0,T0;Hr
a,s)C

∗
f t,

where C∗
f is a positive constant that depends on f . As uν is bounded uniformly

in ν in L∞(0, T0;Hr
a,s) and uν converges strongly to u0 in Hr−1

a,s , then

lim
ν→0

|
∫ t

t0

〈(uν · ∇)(uν − u0), f〉Hr−1
a,s

ds| = 0.

At this point, we infer that u0 is a solution of (Bg0), in the following sense

〈u0(t), f〉Hr−1
a,s

+
∫ t

t0

〈(u0 · ∇)u0, f〉Hr−1
a,s

ds = 〈u0(t0), f〉Hr−1
a,s

.(24)

Taking the limit as t0 tends to 0, we infer that u0 exists within the same class
as uν with maximal time T0.
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