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Hilbert schemes of points and quasi-modularity

ZHONGYAN SHEN* AND ZHENBO QIN'

Abstract: We study further connections between Hilbert schemes
of points on a smooth projective (complex) surface and quasi-
modular forms. We prove that the leading terms of certain gener-
ating series (with variable ¢) involving intersections with the total
Chern classes of the tangent bundles of these Hilbert schemes are
quasi-modular forms. The main idea is to link these leading terms
with those coming from the equivariant setting for the complex
plane C2.

Keywords: Hilbert scheme, quasi-modular form, projective sur-
face, multiple zeta value, generalized partition.

1. Introduction

The Hilbert schemes of points on a smooth complex algebraic surface are
known to be smooth irreducible varieties. They parametrize O-dimensional
closed subschemes of the surface. A fundamental and beautiful relation be-
tween these Hilbert schemes and modular forms is given by Goéttsche’s for-
mula [8]:

2 X
gy (X = p(q)

n=0
where x(X) denotes the Euler characteristic of the surface X, X[™ denotes
the Hilbert schemes of n-points on X, and n(q) = ¢"/** - [[1>5(1 — ¢") is
the Dedekind eta function and a modular form of weight 1/2. Using the Ext
vertex operators constructed in [5, 7], Carlsson [5, 6] studied the generating
series for the intersection pairings between the total Chern class of the tangent
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bundle of the Hilbert scheme (C) and the Chern characters of tautological
bundles over (C)", and proved that the reduced series

(1.1) (chg, - -~ chgy )

(see (3.18) for the definition) is a quasi-modular form. These series may be
regarded as the generalization of the Nekrasov partition function and the
related correlation function. For a smooth projective complex surface X, Ok-
ounkov [14] conjectured that these reduced series are multiple g-zeta values.
Okounkov’s conjecture was investigated in [16] via the leading term of the
reduced series

N
Frl o (q) = () - g /X . (H G, (e, n)) (Txm)
=1

where ki, ..., ky > 0 are integers, a; € H*(X), Gy, (oy,n) € H*(XM) is from
Definition 5.1, (¢; ¢)oo = [1125(1—¢"), and ¢(T'x ) is the total Chern class of
the tangent bundle Ty(.. The cohomology classes Gy (a,n) € H*(X™) play
pivotal roles in studying the geometry of X[ [10, 11, 15].

In this paper, we will study the quasi-modularity of the series F;“j ,?]i,v (q).
Except its leading term and a universal expression obtained in [16], little is
known about lel,ffvv (q). So we will concentrate on its leading term. To state

the main result, for an integer £ > 0 and a class o € H*(X), let ©f(¢) denote

i ( — 1)in qnin 1 1
- <(1X _KX)anl n7a : ( . —x =
e(A)z—l:chz / nl;[l il (L= q")" in! (1= gn)in

IA|I=0

where A = (- (—=n)in -+ (=1)11% ... pin ...} denotes a generalized partition
with size |A| and length ¢()\) (see Definition 2.1 (i)), and 1x and Kx denote
the fundamental class and canonical class of X respectively.

Theorem 1.1. Let ky,...,kny > 0 be integers. Let X be a smooth projective
complez surface, and aq,...,ay € H*(X;Q).
(1) If (K%, a;) = 0 and 2|k; for every i, then the leading term [, 0, (q)
of Fz‘j,’;‘;’,‘j‘ﬁ(q) is either 0 or a quasi-modular form of weight >N | (ki +
2).
(ii) Let |ai| = 4 for every i. If 2 4 k; for some i, then F,. " ,?Ii,v(q) = 0.

-----
-----

If 2|k; for every i, then F‘,jj,‘j;v (q) is a quasi-modular form of weight
YLy (ki +2).



To prove Theorem 1.1, we relate the leading term of the series ng,?;vv (q)
n (1.1). This is done by writing down the equivariant Chern character opera-
tors explicitly and by applying the method in [16, Section 4] to (chy, - - - chg, )’
which has been proved to be a quasi-modular form in [5, 6] (also see [20] for
related work).

The paper is organized as follows. In Section 2, we review multiple zeta
values and quasi-modular forms. Moreover, the important function 6(q) will
be introduced. In Section 3, the equivariant Chern character operators are
expressed in terms of the Heisenberg operators. In Section 4, the leading
term of the reduced series (chy, - - - chg, )" is computed. In Section 5, we prove
Theorem 1.1.

2. Multiple zeta values, quasi-modular forms and the
function O (q)

This section is devoted to some generalities concerning multiple zeta values
and quasi-modular forms. In addition, we will define the functions ©y(¢) and

Ok(q, 2).

First of all, multiple zeta values are series of the form

1

G = X
ni>..>nE>1
where s1,..., s, are positive integers with s; > 1. Their linear span over Q

is denoted by MZV. It is known that MZV is a graded subring of R with
the degree (or weight) of ((s1,...,sx) being equal to s; + ...+ si. The ring
MZV contains the subring generated by the even Riemann zeta values

C(2K) = 5 (<1)H - G (o

where B; € Q,7 > 2 are the Bernoulli numbers defined by

=1- Bi- .
el —1 2+; bl

The graded ring QM of quasi-modular forms (of level 1 on the full mod-
ular group PSL(2;Z)) over Q is the polynomial ring over Q generated by the
Eisenstein series G2(q), G4(q) and Gg(q):

QM = Q[G>, Gy, G| = M[G]
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where M = Q[G4, Gg] is the graded ring of modular forms (of level 1) over
Q, and

(21) Gop = Garlq) = ﬁ . <_% N n; (%dzm)qn) .
The grading is to assign G2, G4, G weights 2,4, 6 respectively. By [1, p.6],
(2.2) Gy = . +Z(2),
24
Gy = ﬁ +Z(2) + %2(4),
G = —@ + %2(2) - 32(4) + Z(6)

where Z(2k) is from [14] and defined by

B (¢")*
(2.3) Z(2k) = n; eyors
It follows that
(2.4) QM = Q[Z(2), Z(4), Z(6)].

Moreover, there exists a homomorphism

QM — Q[¢(2),¢(4).¢(6)] = Q[r*] € MZV

sending a pure weight-w element f(q) € QM to

lim ((1—¢)" - f(q)).

q—1

Next, we will define and study the function ©(g) which plays a significant
role in this paper. We begin with the definition of generalized partitions.

Definition 2.1. (i) Let A = (- (=2)™-2(=1)"-11"™2™2...) be a gener-
alized partition of the integer n = ), 9m; whose part ¢ € Z has mul-
tiplicity m;. Define £(\) = S,my, [N = S;imy = n, A = [, mi!,
and

)\ = ( .. (_2)m2(_1)m11m712m72 R )
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(ii) The set of all generalized partitions is denoted by P. A generalized
partition becomes a partition in the usual sense if the multiplicity m; =
0 for all ¢ < 0. The set of all partitions is denoted by Py = P. The set
of the generalized partitions with multiplicity m; = 0 for all i > 0 is
denoted by P_.
@) @@, ()

(iii) For AU) = (- (=2)™=2(—=1)™=11"™" 2™ ...) with j = 1 and 2, define

AD ZA® = (. (mgymmmE _ymGomE gt —m i gmgY -l

with the convention that A1) — \2) = ) if mgl) < mz@ for some 1.

Definition 2.2. Fix a non-negative integer k. Define

(2.5) Oklq) = > H( 1_":) (_}?M 1 )

£(N)=k+2,]A|=0 n>1 in! (1 —qn)

where A = (- (—n)™ - (=1)"1% ... pin ... ) € P. Define O4(q, z) to be

a 1 b (_
> 11511
a,b>0 i=1 "% =1

S1yeeeySartlyeestb 21

Zjﬁlsi—i-zll ti=k+2
S| CUCESIES SU  SESL

_qnz
n1>->Ng 1= 1 ny>->ng 1= 1

t;

Let Coeff,ig(z) denote the coefficient of z* in a formal power series g(z).

Lemma 2.3. Fizx a non-negative integer k. Then,

N6 B 1 (gz)™ z m k+2'
(i) k(QaZ)—(k+2)!' Zl— _Zl—— ;

i A
(i) Ok(q) = Coeff.0Ok(q,2);
(iii) If k is an odd positive integer, then Ok(q) = 0.

Proof. (i) For a fixed positive integer s, we have

(2.6) 3 1_1 3 Hﬂ

Z“ s;=s1 niy>->nNg i= 1 B
=1
1

-5 T IR

|
S omg>04=1

1
o .
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1 2™\’
y(z (Q)m>.

m>01_q

Therefore, by the definition of (g, z), we obtain

s (s o) (s o)

(2.7)  Ok(g,2)

5,650 m>0 q" mo L — 4
sHt=k+2
k42
B 1 Z (g=z)™ Z z ™ *
(k+2)' m>01_qm m>01_qm .

(ii) Denote the positive integers in the ordered list {iy,...,in,...} by
Sq,-..,81 respectively (e.g., if the ordered list {iy,...,i,,...} is equal to
{2,0,5,4,0,...}, then a = 3 with s3 = 2, 89 = 5,51 = 4). Similarly, denote the
positive integers in the ordered list {i1,...,1,,...} by tp,..., 11 respectively.

Rewriting the right-hand-side of (2.5) in terms of s, ..., s; and t, ..., 11, we
see that ©(q) = Coeff,004(q, 2). i i

(iii) Replacing X in (2.5) by =X = (--- (=n) .-+ (=1)11% ... pin .. .) we
conclude that Ox(q) = (—1)*2-Ox(q). So Ox(q) = 0 if k is odd. O

Definition 2.4. Fix two positive integers s and ¢. Define

Usslg, 2) = 51' (Z (qz)":n) %(Z 2‘mm> .

m>01_q m>01_q

Notice that the weight of Coeff,oUs+(q, 2) is equal to s + ¢.
Lemma 2.5. lini (1= q)**" - Coeff 0Us 4(q, 2)) € MZV.
q—

Proof. First of all, let U(s,t) denote

28) ORI

Ny, ,Ns,M1, - ,me >0 =1
ni+-ns=mi+---+m

The function U(s, t) is from [2], and is a special case of the extended Mordell-
Tornheim-Witten zeta function values [3, 4, 17, 18]. By the Theorem 2 in [2],
if s >t >1, then U(s,t) is equal to

¢ 0o
1 Uit+ki—D! )
29) sl-t1-3 = Uit ki= Dl
29 ; e %: kn>1 £[1 ( git - kit k)

Jitetin=s k1t kn=t

where ((-) is the Riemann zeta function.
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Next, we have

. 1 2\ 1 2mm '
11 s e
L L IR | EEED S | £

nye s >0i=1 1Y gm0 =1 Y

Combining with (2.8) and (2.9), we conclude that

1 1
: s+t _ .
(2.10) l}gri (1 —¢q)""" - Coeff,oUss(q,2)) = R U(s,t)
€ Q[¢(2),¢(3),¢(4),¢(5), - -]
Cc MZV.
This completes the proof of the lemma. O

Let k£ > 0 be an even integer. By Lemma 2.3 (ii), (2.7) and Definition 2.4,

(2.11) Orlg) = > (=1)"- Coeff.oUs,(q, 2).
sfét:>kg>2

So we conclude from Lemma 2.5 that

(2.12) lim ((1 — ¢)*™6(q)) € MZV.

q—1

In fact, by Corollary 4.9 (i) below, O(q) is a quasi-modular form.
3. The equivariant Chern character operators

In this section, X denotes the complex affine plane C?. We will define the
equivariant Chern character operators, and express them in terms of Heisen-
berg operators. Moreover, we will recall the series (chg, ---chg,) and the
reduced series (chg, - - - chg,)’, which have been studied in [5, 6]. Unless oth-
erwise specified, all cohomology groups in this paper are in C-coefficients.
We begin with the equivariant setting. Let X = C2, and let u,v be the
standard coordinate functions on C?. Define the action of T = C* on X by

(3.1) s+ (u,v) = (su,s'v), seT.
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The origin of X is the only fixed point. This action of T on X induces natural
actions of T on the Hilbert schemes X ™. Define a bilinear form

() (HRX) @ (1) x (HAXM) 0y €(1) = C)
by putting
(3.2) (A, B) = (=1)"pu; (AU B)
where p is the projection (X™)T — pt, and ¢+ : (X")T — X[ is the inclusion

map.
A Heisenberg algebra action on the middle cohomology groups

Hy = (P H7"(x™")

n>0

was constructed in [19] (see also [9, 12, 13]). Equivalently, the space

(3.3) Hy = P H3(X™) ®cpy C(t)

n>0

is an irreducible module over the Heisenberg algebra which is generated by

the Nakajima operators a,,(a),m € Z and o € Hy(X) ®cpg C(t) = C(1) - 1x

with

(3-4) [am (), an(B)] =m0 - Om,—n - (@, B)

where (a, ) denotes the equivariant pairing (3.2). For every integer m, put
Ay = 0 (1x),

and |0) = 1 € Hi(X ) @cy C(t) = C(t). Since Hi(X) @cy C(t) = C(t) - 1x,

(3.5) v =C(t)[a_1,a_9,...] - ]0)

together with the Heisenberg commutation relation

(3.6) (O, O] =10 Oy 2.

The following operators play an essential role in this paper:

(3.7) I'1(z) =exp (Z ?aﬂ) .

n>0
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Using (3.6), we obtain

(38) r@r = (1-2)" rerw

(see also the Lemma 5 in [5]).
In the rest of the paper, we set ¢ = 1. We see from (3.5) and (3.6) that

(3.9) HYy = Cla_1,a_,...]-|0)

together with the following Heisenberg commutation relation
(3.10) [, O] =0+ G

Remark 3.1. In our setup here, we have implicitly defined

(3.11) a, =(—1)"-a"

—n
for n > 0, which is consistent with the setup in [11]. The commutation rela-
tion (3.10) is the same as the commutation relation in [6, (27)].

Let p1, p2 be the projections of X[ x X to X[ X respectively. Let Z,
be the universal codimension-2 closed subscheme of X x X i.e.,

Z, ={(& ) c X" x X |z € Supp(¢)} € XM x X.

[n]

The tautological rank-n vector bundle O%" over X 7] is defined to be p1, Oz, ,
and is T-equivariant. Let chk,T(Og?]) be its k-th T-equivariant Chern charac-
ter.

Definition 3.2. For k£ > 0, define & to be the k-th equivariant Chern
character operator which acts on H'y by cup product with ,, chy 1 (C’)[)?}).

For a generalized partition A = (---(=2)™-2(=1)"-11"2™2...) put

m—2 M-1_mj . m2

aA:Hﬂ?”:(mﬂ_z altaay® ).
i

Proposition 3.3. The equivariant Chern character operator &y is equal to

ay 1 " — 1\ 1—zm\™
> D oot () -H( )
N <k+2 N (=DM -2l g\ n n>0 n
[A|=0

where [z7 | <1, x =€, and A = (- (=2)"=2(=1)m-11m2m2 ...,
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Proof. By [6, Lemma 2 (b)] (see also the proof of [5, Lemma 6]), &, is equal
to

(3.12)  Coeff 0 ! ( L —F(xy)l“+(xy)11“(y)1f+(y)>

ST e \T— !
where |71 < 1 and z = €*. By (3.8), we have

1

Pi(ay) T (y) ' = 7= T-() Ty (a) "

Combining this with (3.12), we conclude that &y, is equal to

1

(313)  Coefluy o (1T (@) (s) T () T (W)

Next, by (3.7) and using generalized partitions, we obtain

T (zy)T—(y) "' Ty (zy) Ty (y)

— e (Z ﬂ) e (Z u)

n>0 n>0 n
" = 1)y™\" " (1—z )y ™" a
S () () S
Aep >0 n>0
" —1 1—a™ i —|A| ay
= 1+ Z HO ( ) 1_[0 - S
>\€73 n> n>

where A = (- (=2)"2(=1)m-11"™2m2...) By (3.13), & is equal to

> 31 - Coelts 1)(11_x_1) 1 (z";l)mn‘n (1_1,-”)%.

|A|=0 n>0 n>0 n

Finally, note that if £(\) = 3,~o (m—n + my,) > k + 2, then

1 g — 1\ 11—z \™"
Coeft — H ( ) . H ( ) =0.
(w o 1)(1 -z ) n>0 n n>0 n
This completes the proof of our proposition. O

The leading term of &y, is given by the following corollary.
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Corollary 3.4. The operator &y, is equal to

ax ax
) Sl > 9 N
L(N)=k+2,|A|=0 L(N)<k,|A|=0
where g_x = g\ € Q.

Proof. For |\| =3, nm, =0, we define the rational number g, to be

1 1—a\™
3.14 Coeff ,« T
(3:14) (m—l)(l—x)%( n >

= Coeff » = 1)(11 — o) H (Wn_ 1)m" _J;[O (1 _n$n>mn

n>0

where |z71| < 1 and z = €. Since |\| = 3, nm,, = 0, we have

Zn O(nmfnfnmn) 1 —p—n m_n
gA:Coeﬁ”kx - H( z > .
X n
n>0

n>0 n

B 1)(11 = 1l (=) g (1 _n“>mn

Next, a straightforward computation shows that

(1N =kt 2,
P70 i) =k 1 1.

So we conclude from Proposition 3.3 and (3.14) that

& = Z %‘F Z g)\'%-

2(N)=k+2,|A\|=0 L(N) <K, |\|=0

This completes the proof of our corollary.

mEy

1683

n

Let k1,...,ky > 0 and m € Z. Following [5, 6], define (chy, - - - chg,) to

be the series

“+o00o
(3.15) > ¢" /X . chy, (O - - chgy (O - ¢(Ttior 1)
n=0
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where Ty ,,, denotes the tangent bundle of X "] with a scaling action of C*
of character m. By the setups in [5, 6],

N
(3.16) (chy, -+ chyy) = Trq® T_(2)"Ty ()™ H By,

=1

where 0 is the number-of-points operator, i.e., 0
by the result in Subsection 4.1 of [5],

mz(xty = n1d. In particular,

2

(3.17) (1) = (g a)% "
Following [14], we define the reduced series

<Chk1 tee ChkN>
(1)

Lemma 3.5. Let ky,...,ky >0, and m € Z.

(3.18) (chg, -+~ chgy) = = (g; ) H - (chy, - - chgy ).

(i) As a function of q, the reduced series (chy, - - - chy, ) is a quasi-modular
form of weight at most Zf\il(kl +2). As a function of m, it is a poly-
nomial in m? of degree at most Y1 (| %] + 1).

(ii) If N | ki is odd, then (chy, - - - chy, ) = 0.

Proof. (i) By the formula (36) in [5], we have

AEP OeD,

(3.19) (chg, ---chgy) = Z |>\( ) H %

{=10eD,

where ¢(0J) and h(J) denote the content and the hook length, respectively,

of a cell O in the Young diagram D, associated to the partition A. So the

reduced series (chg, - - - chg, )’ can be regarded as a function of m?. Now the

statements in (i) are the Theorem 2 in [5] (see also the Theorem 2 in [6]).
(i) For a partition A € P, let A* be its conjugate partition. Then,

N N c(O)ke
H Z DXk =-11 >
¢=10€eD,« {=10eD,

(=10eD,

since Y1 k; is odd. Therefore, we conclude from (3.19) that

h(0O)% — m?
) I e

DGD)\*

(chy, -+ -chpy) = > ¢l (H o ©

A EP ¢=10€eDx
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AEP ¢=10eD,y
= —(chg, -+ - chgy).

xe(d

Hence (chg, - - chg,) = 0. It follows that (chy, - -chg,) = 0. O

The series (chy, - - - chg, ) and the reduced series (chy, - - - chg, )" have been
investigated in [5, 6]. In particular, the leading coefficient of (chg, ---chy, )’
(as a polynomial of m?) would follow from [5, Proposition 2] or [6, Propo-
sition 4]. However, we are unable to achieve this due to the complexity of
[5, Proposition 2] and [6, Proposition 4]. So instead, we will determine the
leading coefficient of (chy, ---chg, )" as a polynomial of m? by applying the
methods in [16, Section 4]. This will be done in the next section.

4. The leading coefficient of {chy, - - - chy, )’ as a polynomial
of m?

In this section, we will continue to use the setup in Section 3. So X = C2. Our
goal is to study the reduced series (chy, - - - chg,, )’ by going through the process
in [16, Section 4], and determine its leading coefficient. The quasi-modularity
of this leading coefficient is guaranteed by Lemma 3.5 (i).

By (3.16), Corollary 3.4 and (3.7), to understand (chy, - - - chg, ), we must
study

n —-n N
mz mz axe)
= Trq® exp <§ Ta_n> exp (— E - an> | I )\?i)!

n>0 =1

where \(¥) denotes a generalized partition in P. The purpose of the next two

lemmas is to remove the term I'_(z)™ from the above trace.

Lemma 4.1. Letn #0, m € Z, and \ € P be a generalized partition. Then,
ay mz"

(4.1) 3T eXP ( - a_n)

= o (M) p ) e

>0
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n

_ o) oy omE”
B DR R pe (e ) p( n )

i>0

(4.2) exp <—mZ an> : %

Proof. This is parallel to Lemma 4.1 in [16]. To prove (4.1), note from (3.10)
that for n #0, s > 0 and ¢t > 0, we have

as at min(s,t) nt at—i asfz‘
4.3 RCCRN i R — . _——n . _n
(43) sl 20 a4 =) (s—i)

To prove (4.2), we see from (4.1) that

_mz” _ (mz" a,\ (nd) mz"
exp( —n ) Z ] (n))ep< na_n>.

>0
Now (4.2) follows from replacing m,n by —m, —n respectively. O
Lemma 4.2. Let \(V, ... AV ¢ P be generalized partitions. Then, the trace

a
Trq®T_(2)"T4 (2)™ H ’\() is equal to

5 n msz ) N OyG)— (i,5)
(4 9)% Z H %Trqblﬂr(z)’mn Lozt :
R, ISIEN ! 10 = 3y )
1<z<N s>1 sn>

(i,s) (i,s)

where ,u(i’s) = (1m1 Y e ) € 75+ for1<i< N ands > 1.
Proof. For simplicity, put Q1 = Trq® T'_(2)™T, (2)™™ H C;\/zl(;), We have
N ax N S5O
_ 2\ — A
Q=TT (2¢)" ¢" T4 (2)™™ 1:[1 O Trg®Ty(2) ™" 1:[1 v L-(za)™
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1o (z mz0)" )
< * €Xp ——a_,
=1 /\(l)! n>0 n

(i,1)
- moy H 2q)")™ ﬁ ENONER
N 1 : E K ]
pDep, 1SISN (Z U =1 (A — D)
Mlcicn® n21
G,1) _ (qmitV mlD )
where p(#1) = (1™ ...p™"" ..., Therefore, Q; is equal to

Trq® Ty (2)""T_(2q )m
(4,1)
Z H )n)mn ! ﬂ a)\(i)_#(i,l)
7 . . |
pGD B, 1<z><1N ( 1)' i1 ()\(z) — N(”l))
1<i<N =

= (1—g)™ Trg F—(zq)mF+( )
(i,1)

zq)")™ N A\G@) —piD)
pliDep, 1SISN (Z 1)' =1 ()\(z) — M(z,l))
1§z‘§N nzl

where we have used (3.8) with ¢ = 1.
Repeat the above process s times. Then, @)1 is equal to

2
(q;Q)T_l-TrqDF (2¢*)" T4 (2)™™
Z H )n)msz ) ﬂ L NO Z N(i"')
RN
pim ey 1<z><1N mil i1 (A@ =378 )
e
where ;") = (1m§ T +). Letting s — 400 proves our lemma. [

Lemma 4.2 contains traces of the following form

ase
(4.4) Qs :=Tr¢® (2 H A:;‘

where A, ... AWM ¢ P are generalized partitions. Our next two lemmas
deal with Q3. The first one eliminates the term I'y (2)™™ from the trace Q5.
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Lemma 4.3. Let \U, ... . ™) € P. Then, the trace Q2 in (4.4) is equal to

—nglt= 1)n)m“ R

(=m
2 11 mSJ )

<3<
S RO, latop=0 1SSl
Nooax6) - =3 A0

¢ H
)\( R Zt>1 M(l t))

_ (irt)

where ittt = (- (—n)"™n --(—l)mli"t)) eP_for1<i<Nandt>1.

Proof. By (3.7),

_ N
_ 0 mz~" a5
Q2 = Trq° exp (— E an> 1 Gk

n>0

H (—mz—”)mn Ty Dﬁ a;\(i)_ﬂ(i,l) T (z)fm
VZ~ : SRl 1 (A0 — pen)t "
ﬂ(z,1)€p7 1§z§1N n i=1 M

1<i<N 1=

- Y I —.qzil(m“*ln—\imn
11)|

aiDep 1IN
1<i<n =1

T [[2UED o (o)
=1 (MO — a0y’

n m(l 1)
Y| #.QZL(IW*UI—\WI)
~ 11)|
(i,1) 1<i<N
o 8
1<i<n n=l

Trg®Ty(z)™™ ﬁ 0D
IR NPT

~ (4,1)

where ﬂ(i’l) = ( - <fn)m (6,1)

o (—1)™ ) € P_. Note that

Tr¢°T4(2) "a, =0
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if || > 0. If |u| = 0, then Tr¢°T'4 () a, = Tr¢°a,. So Qs is equal to

D

3 1T %.qzilomww—ﬁmo
S (3@ |=|atn <0 L SEEN e
Tr T4 (2)™™ PEE ““ =
+ (A0 — gy
( mz_n)m(l " N ase_pen
— n i) _ (4,1
+ - .r]:‘rqb %
Z H m%”! z:H1 (A0 — ﬂ(z’,l))!

N 5@ m G ) N 1<i<N
i, (AO=|atn=0 151

Repeating the process in the previous paragraph ¢ times, we see that
Q2=U(t) + V()

where U (t) is given by

N T
t 5 mlm) GO
PR S )
(4.5) > H 11 Tr),q@ =
r=11<i<N

N o t <
S(AO-Y atnp<o nxl
i=1 r=1

N G5o_y 6
(4.6) T Ty () [ — Zﬁ‘i i
i ( )\(Z) — >y A0T)

~ (i,7)

with g7 = (- (=p)™n"" . (=1)™ " r)) e P_, and V(t) is given by

n)m(”) (0] —|X@))
Z H H —qzl 1 ZZ 1 |M |
Zjv:l(ﬁ\(i)\fz |G )= "= 11<12<N

N

P H -

(A — ¢ i)

ar)

Denote line (4.5) by U(t). Since "N (]A®| =2t |a¢7]) < 0 and |a07)] <
0, U (t) is a polynomial in ¢ with coefficients being bounded in terms of
— 2N A Moreover, ¢!|U(t). Line (4.6) is contained in a finite set of traces,
which depends only on the generalized partitions A#) and is independent of ¢.
Since 0 < ¢ < 1, U(t) — 0 as t — +o0. Letting t — +o00, we see that (),
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equals

~ (it

§ : n)mn ( | (zZ)l I)‘(>|)
H H qul 1 Ze 1K

S AOIY,, [ato =0 =T SN

N axm— o)

.Tl“qt‘ H — thlli —

21 (AO =3 i00)

N t ~(0,0) [5G _ N 773,60
Replacing qzizl(zlzl O 1=12O]) by ¢ 2oima Dz 1) completes the proof
of our lemma. O

Lemma 4.4. Let \V,... . AX™N) € P pe generalized partitions. Put

Ay (4)
A)\(l)7_'_y)\(N) Tr qD H /\?z)'

Forn #0, let mv(f) denote the multiplicity of part n in X,

(1) If N 1mn)7éz 1m() forsomen#o then Ay o = 0.

(ii) Assume that SN, m{) = A m_n for everyn # 0. Then, Ay v
s a linear combination of expressions of the form:

¢ nzj\fl (71')
(9w - 1T

i=1 (L —gm)w

qniwi

where 0 < ny < --- < ng are the positive parts in XV 4+ ...+ XN and
0<w < ZJ 1 m(]) Moreover, the coefficients of this linear combina-
tion are independent of q and the integers n;.

Proof. (i) is clear. For (ii), using (4.3) to move the creation operators in
[TY, ay@ to the left, we see that Ay, v is a linear combination of the
expressions

(4.7) H ’I’LZjV:I mw*m" . a—' = H nz7 1 M, A,\
n>0 n>0
where m{Y and m,, denote the multiplicities of part n € Z — {0} in A®) and A

respectively, m, < SN, m? for every n € Z—{0}, and |A| = 0. Moreover, the
coefficients of this linear combination are independent of ¢ and the integers
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n > 0 with Y 1mn > 0. If A =0, then Ay = Trq® = (q;¢). Assume
that A # ). By (i), we further assume that m_, = m,, for every n > 0. Since
A # (0, there exists some n > 0 such that m_,, = m, > 0. Then, we conclude
that

Ay = q"-Tr& o M(m) !
M (A= (-n))

2 M—(-m) A

Ar—((—
— an)\+qn iTrqD A—((=n)n)

I
Mn (A= ((=n)n))
where we have applied (4.3) in the last step. Hence we obtain

n

Ay = M e D)

1= ( —((~n)n))’
= @ox 11 (1_q)

>0
1 nmn qnmn

= (@o< ]

Ao mal (L= gy

By (4.7), we see that Ayu)

A(v) Is a linear combination of the expressions

-----

N )
1 nzizl mgll) qnmn

(o) - 11

n>0 m—n' (1 - qn)mn

where 0 < m,, < Z - mn) for every n > 0. Deleting the factors (in the above
product) with 3%, m{) =0 completes the proof of our lemma. O

Remark 4.5. Let N be even. In the special case that A = (n;) for 1 <i < N
and n; # 0, an argument similar to the proof of Lemma 4.4 shows that

N
TrqDHam—( Z Tr¢° H ap, -

i=1 2<j<N 2<i<N
nj=—"n1 i#)

By induction, we conclude that

N
(4.8) Z Tr¢° H 2"y,

S, ni=0ni#0 =1
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N1, /270 s=1
Py

where Py runs over all the partitions of the set {1,..., N} into pairs
{in, g1ty {iny2s g2}
with i1 < ji1,...,in/2 < jnj2 and i3 < ... <ipyys (so necessarily, iy = 1).

Proposition 4.6. Let \) = (... (_n)mﬁj) e (—l)ﬁ‘m 1 nmg) ) eP

a
or1 <1< N, and let m € Z. en, Trq" T'_ +(z)™™ AW s equa
for 1 <i <N, and let Z. Then, Trq®T_(2) T4 (2 HM)" I

to

(4.9) O O DAL P BRI

(4) = (4)
11

1 g (_1>mn 1 L =
1<i<N.n>1 mg)! (1— gmymn 77%(11)! (1 —qm)mn

@ PN + (g Q)

where W is a polynomial of m with degree < SN | ((AD).

Proof. For simplicity, we put Try = Trq® I'_(2)™T4 (2)™™ H a,\m . Combin-
ing Lemma 4.2 and Lemma 4.3, we conclude that Try is equal to

(i,s)
5 (mznqsn)m
(9)% - > H TG
Sl AOYD L =, a0 =0 LS "
pI Py, 0D P

(_mz—nq(t—l)n)mgft) N Q) Z M(i s)_ Z [L(“)

: °H
m%,t)! (MO =37, >1 ,U( s) — D1 e ))

Where IU,(Z"S) = (1"77’5Z ) e nmSzi’S) .. ) and ILL(Z t = ( e (_n)ﬁls@ .. (_1)777’?@).

The sum of all the exponents of z is > | [\?]. So Try is equal to

(9

I SR\ (mg*")
(g 0)2 - 22 ML 2 I =
S A =3T s InE91=30  atop=0 TSV T
)Py, fGDEP_ -
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(—mg(t 1)n)m(”> . N XOR DITCRES SO0

-Trqg
mgz 2l i1 (MO =37 >1 M(z s) — D1 i) )

1<i<N
t,n>1

By our convention, > -, (%) 4 >l At < X9 for every 1 <i < N. Put

s21 t>1
(1)

= (- (=)

5(0) (@) (2)
..(_1)p1 1217 ... pPn )

Then, ZS>1 mT(f = and Zt>1 T (Z )~ ~(i). So Try is equal to
D DU e

> W)‘,‘M):O

DH @) X

/\(1) — )\ )
Z H qsnmg”s) Z q(t—l)m’hgf 2
) m () —p(0) 1<i<N m(z 5)! S i) —p) 1<i<N mgzl )!
s8> n >1 Pn
1<11<N w1 n2l 1t<z<N n>1 tn2l
(s—D)n\is,n 1 1
Since Z H u = H (—17> Tr) is equal to
Z >1 iSJL:i'runZl 8,7121 Zs’n' nzl ( - q )
N 3

(4.11) (g™ - i MO 3 Mo HA0)

ZN (AD] =30 )=0

a
D H A X0

(A® — 30!

H 1 qnpi) (_1)133) 1
) i O W |-
1<i<N,n>1 p%)! (1 - Qn)p" pgz)! (1 q )p"

By Lemma 4.4, Tr) is a linear combination of expressions of the form:

N i N S
(4.12) (q:)™ 1 220im ML 3 S DN )
S (M@ [-AO])=0
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N () _, @)
Z_;’:l( n; _pn ) nzwi

£ ns
1;[1 (1 —qgne)w
1 qnp%) (— 1)pgf) 1

H ( (i @O ﬁg)! ~<z‘>>

1<i<Nm>1 pn)! (1—qm)Pn (1—qm)Pn

where 0 < n; < --- < ng are the positive parts in >0 | (A® — X@) the
multiplicities of parts n and —n in 31, (A® — A®D) are equal for every
n#0,and 0 < w; < Z;V: (mS) — p;{)) Moreover, the coefficients of this
linear combination are independent of ¢ and the integers nq, ..., ng.
As a polynomial of m, the degree of (¢; ¢) " *+1.Tr,, is the largest possible
N N
STy <A,

=1 =1

So the degree of (q;q) - Try is equal to YN | £(A®), and its leading term
corresponds to the unique term in (4.11) with A® = A®) for every 1 < i < N:

NG N ;
Cr0) L D DAY S D) BARTICE)

I (T
. / @ NN
r<icinzr \mL (L —grym i (1 — gy

Combining this with (4.12), we conclude that Tr) is of the form (4.6). O

By Lemma 3.5 (ii), (chg, - - - chgy )’ = 0 if SN, k; is odd. So we are only
interested in even Zf\il k; which is equivalent to the condition that up to a re-
ordering of k1, ..., ky, there exists an even integer M such that 0 < M < N,
ki,...,kay are odd positive integers, and kps41, ..., ky are even non-negative
integers. Our next lemma deals with the leading coefficent in this situation.

Lemma 4.7. Let 0 < M < N, M be even, and kq, ..., ky be odd positive in-
tegers. For M < i < N, fix \) = (... (—n)mﬁf) e (—1)7?‘(1)1’”(1) R ).

Define Oy, .. k,, to be

-----

(4.13) (g )" Z Trg®T_(2)"T,(2)™™ H i?i)),
L) =Fk;4-2, |2 |=0
1<i<M
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Then, O, ...

Jear 1S equal to

i M N i
(q; Q)oo . ZZZ M+1 A@] mZi:l(ki+1)+Zi:1%+l L)

H 1 qnm51> (_1)7ﬁ§f) 1
) @ G - ()
M+1<i<Nn>1 ( )! ( —q )m” ()' (1 - qn)m"

nn (9) 5 1 ~(4) N
Z TrqDHanl Z H ’ /p '< 1) n/]zn.!+W1

~()
S o (RO 41 1SN (1 =gt (1—qgmyp
0 A |=—p, "1
T
1<’L<M

where A\ = (... (—n)ﬁw (= 1)7551) LR ) for 1 <i< M, and Wy

is a polynomial of m with degree < Zi:l( 1)+ N D),
Proof. We apply Proposition 4.6 and its proof to the term

)™ )=m a2 0)
Trq®T_(2)"T4 (2 H G

in (4.13). By (4.11), the contributions to Oy, __x,, of the tuples (5\(1), . ,S\(N))
defined in (4.10) satisfying 2D = XD g a multiple of

(1) ~(1)
2 11 ( 0 S, ~53>) = Ok (q)

(1)
(AD)=k; +2,]AD|=0 n>1 \ Tn ! (1 —q")mn Mp " (1 —qm)m

where AU = (- (—p)™’ .. (—1)@1mi” gm0 By Lemma 2.3 (i),

the contributions to Oy, .k, of the tuples (;\(1), . ,S\(N)) satisfying AV =
A is equal to 0. By the symmetry of the odd positive integers ki, . . ., kys, we
see that O, ., is the sum of the contributions of the tuples (5\(1), . ,X(N))
satisfying MO < AW X)) XD Ginee XD <A@ for M +1<i <N,
we conclude from (4.12) that as a polynomial of m, the degree of Oy, . ,, is
at most

N M N A

SO <N (ki +1)+ Y (D),

i=1 i=1 i=M+1
MoreoveNr, the lez}ding term in Oy, . g, comes from the contributions of the
tuples (A1) XM ABMFD) - AN gatisfying

(A =Dy — 1, (A = g(ADy — 1,
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Put A — X = (n;) for 1 <i < M. By (4.11), the leading term in O,
equals

yeemsk

N i M o, N i
(q; Q)oo . Zzz':MH IA@] . mZizl(k’+1)+Zi:A4+1 A

B | B P L
7 (4) ~ (i ~ (i)
M+41<i<N,n>1 mi1 (1 — gnyms A (1 — gryme
/

M npl D) ()8 /500
mn - mn -
S ome[[e, Y I L CUR /R
ZM ni=0 i=1 Z(S\(i)):ki+1 1<i<M (1 — q")Pn (1 — q’ﬂ) n
0 XD |=—n; "1
1<i<M

where \(0) = (- (_n)ﬁﬁf) . (_1)]5(11')

1p§i) e ++) for 1 <14 < M. Finally,

let W consist of all the terms in Oy,  j,, with degrees < S"M, (k; + 1) +

ceny

S LAD). O

The following is the main result in this section. It presents the leading
term in the reduced series (chy, - --chg, )" in terms of the function O(q, z)
from Definition 2.2.

Proposition 4.8. Let 0 < M < N. Let kq, ..., ky be odd positive integers,
and kpyri1, ..., kn be even non-negative integers.

(i) If M is an odd integer, then {(chg, ---chy, ) = 0.
(ii) If M is an even integer, then (chy, - - chy, )’ is equal to

M
o (kit2)=M | Z Coeffo....0 < Ori-1(q, z)
i—1

N
N1, /270
Pu
N M/2 ( -n
—ng)g "™ —1yns
IT ©k(a.z) ] 1_'5?(%2]-5 )" ) +W
i=M+1 s=1
where Py runs over all the partitions of the set {1,..., M} into pairs
Lin, g1}y oo Ainy2, Juye} such that iy < ji,... inge < Juye and iy <

. <ipgy2, and W ois a polynomial of m with degree < SN (ki+2)—M.
Proof. Part (i) is Lemma 3.5 (ii). In the following, we prove (ii). By (3.16),

N
<Chk;1 e Chk]v> = Tr qD I_ (Z)mF+(Z)_m H 6]@

i=1
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Furthermore, in view of Corollary 3.4, we have

(4.14) D D R

!
L(N)=k+2,|A|=0 LN <k, A|=0 A

Therefore, (chy, - --chg, )" is a Q-linear combination of

(415) (o™ Y TP ()T () [[ 2

LA =k; 42,12 |=0 i=1
icl

where I C {1,..., M}, ((AD) < k;ifie {1,...,M}—1I,and L(AD) < k; +2
if M <i < N.By Lemma 4.7, (4.15) is a polynomial in m of degree at most

N

SNhi+D+ > A+ ST (D)

..... MYy—1I i=M+1
N

< D ki+D+ D kit Y (ki+2).

iel i€{1,, M}—T i=M+1
Hence (chg, - - - chg, )’ is a polynomial in m of degree at most

M N N

d:=>Y (ki+1)+ > (ki+2)=> (ki+2)— M.

i=1 i=M+1 i=1

In addition, the degree-d term in (chy, ---chg, )’ is from (4.15) with I =
{1,...,M} and ¢(A\®) = k; + 2 for M < i < N. Combining with (4.14), we
see that the degree-d term of (chy, - - - chg, )’ is the same as the degree-d term
of

N
(416) (0" Y W L)) [ T
L) =k;4+2,|A®) |=0 =1

1<i<N

By Lemma 4.7 again, the degree-d term of (chy, - - - chg, )" is equal to

g it (1) )
(4.17) (¢;90) o - m* Z H N0) 0
AD)=k;+2 M<i<N (1 —q ) " ( ) "

IAD|=0 nz1
M<i<N
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n 2 5 (1)
P (1P /!
(4.18) : Z TI"qDHam > H O 50
S o =1 (AO)—pyt1 1Si<M (L—gm)pr (1 —qn)Pn
o A |==n; "=
1<i<M

where \() = (.. (_n)m,@ ~-(—1)m(1i)1m(i) o -+) for M < i < N, and
AD = (oo (=) (=) ) for 1< i < M. Line (4.17) s

equal to
N
(@)oo -m®- T Oni(a) = (4:9)o - m? - Coeffo .o H Ok (g, 21)
i=M-+1 i=M+1

by Lemma 2.3 (ii). Similarly, we conclude that line (4.18) is equal to

M M
Z Tr¢° H Ay, - Coeﬁ’z?.,,zgl (H Z"Ok,-1(q, zz)> .
i=1 i=1

Z{VI s =0
i=1

It follows that the degree-d term of (chyg, - - chg, )’ is equal to

(¢ @)oo - m* - Coeffo....0 (HGM q, %) H O, (g, i)

i=1 i=M+1
M
Z TrqDHzg“am .
Mo i=1
Zi:l ni—O,nﬁéO

By (4.8), the degree-d term of (chyg, - - - chg, )’ is equal to

M N
md : Z Coeﬁz?mz?v H @ki—l(Q7 ZZ') : H @kz (Q7 Zi)
nl,..‘,nM/zyé(] =1 i=M+1
P
M/2 _
/ (_ns)q s —1\ns
’ H 1_ —MNg (Ziszjs )
s=1 q
where P runs over all the partitions of {1,..., M} into pairs
{in, gads - {ingy2s Jnage}
such that i1 < ji,...,40072 < Juye and i1 < ... < ipye. Let W consist of

terms in (chg, - - - chg, )" with degrees < d. This proves (ii). O
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Corollary 4.9. (i) Ifk > 0 and 2|k, then O(q) is a quasi-modular form.
(ii) Let kq, ..., ky be odd positive integers with M being even. Then,

O T (ndag ™ 1
S —
> Cooffgg | [T Ok-alaz) - T 5= 5 G )™
n1,.mpr/270 i=1 s=1
Py

is a quasi-modular form, where Py runs over all the partitions of
the set {1,..., M} into pairs {i1,j1}, ..., {iny2, Jarj2} such that iy <
1 - - -aiM/Q < ]M/2 and iy < ... < ZM/Q
Proof. By Lemma 3.5 (i), as a function of ¢, (chg, - - - chg, ) is a quasi-modular
form. So the coefficient

M N
Z Coeﬁ‘z?mz?\, (H Gki—l((L Zi) : H ®k1(Q7 Zi)
’I’Ll,...,nAM/Q#O =1 i=M+1
Py
M/2 . —ns
11 4<1 nS)(ins (i, 27,1 )™
s=1 —4q

of mEia kit 2)=M Proposition 4.8 (ii) is a quasi-modular form.

(i) Let M =0, N = 1,k; = k and z; = 2. Combining with Lemma 2.3 (ii),
we see that O (q) = Coeff,004(q, 2) is a quasi-modular form.

(ii) Follows immediately by letting N = M. O

Example 4.10. Let Z(2),Z(4) and Z(6) be from (2.3). Recall from (2.4)
that the ring QM of quasi-modular forms is generated by Z(2),Z(4), Z(6)
over Q. By comparing the coefficients of ¢* for 0 < i < 6 and the weights, we
conclude that

©4(q) !

=5 (—2(2)2 +Z(4) —40Z(2)3 + 242(2)Z(4) — 22(6)) € QM.

5. Hilbert schemes of points and quasi-modularity

In this section, X denotes a smooth projective complex surface. As appli-
cations of the results in previous sections, we will investigate the relation
between the Hilbert schemes X™ and quasi-modular forms. We will do this

by studying the leading term in the reduced series lel ,‘:Jiv (q).

We begin with the definition of the cohomology class G (v, n) € H*(X[M).
Let ch(Oz,) be the Chern character of the structure sheaf Oz, where Z, is
the universal codimension-2 closed subscheme of X[ x X
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Definition 5.1. For n > 0 and a homogeneous class o € H*(X), let |a| = s if
o € H%(X), and let Gy (v, n) be the homogeneous component in H11+2F( X))
of

(5.1) G(a,n) = pre(ch(Oz,) - p3a - p3td(X)) € H*(X")
where td(X) denotes the Todd class of X. We extend the notion Gy(a,n)
linearly to an arbitrary class a € H*(X), and set G (a,0) = 0.

It was proved in [10] that the cohomology ring of X" is generated by
the classes Gi(a,n) where 0 < k < n and « runs over a fixed linear basis of
H*(X).

For aq,...,ay € H*(X) and integers ki, ..., ky > 0, define the series

(5.2) FPioy (q) Zq/ (Hak a;,mn > (Txim).

In particular, F'(q) = (g; q);oX(X). Following [14], we define the reduced series

Fal ----- an o Flgll,j..,kcijN(q) x(X) | Fa1 ..... an
(5.3) Fivokn (Q)—W (¢ )% ke (4)-

Problem 5.2. When is lelow (q) a quasi-modular form?

We will study this problem for the leading term of F. o 1o (q), which has

been determined in [16]. To state the leading term of F’ kl’ ’k]flv(q), we recall

the notations ©¢(q) and ©%(q, z) from [16].

Definition 5.3. For a non-negative integer k and a class « € H*(X), we
define ©¢(q) to be

i _1 in Nip 1 1

- 3 - woEea) (S s )
() =k+2 a1 (1 —g)imiy! (1 — gn)in
IA[=0

where A = (-+ (—=n)i -+ (=1)11% ... pin ... ). Define ©F(q, z) to be

_ 3 (1x — Kx)2i=1%  a ﬁ

a,b>0 =1
81,.038a5t1 et >1

Zj:] Si+ZZ)‘:1 tj=k+2

b
1
[[ﬁ
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S0 S M

n1>:>Ng = 1 m1>-->mp j 1

We see from Definition 2.2 that if a € H*(X), then

(5.4) Oi(e) = —(lx,a)-Ok(q),
Or(q,2) = —(lx,a)-Ok(q, 2).

Also, note that the weight of ©%(q) is equal to (k + 2).

Proposition 5.4. Let X be a smooth projective complex surface, and k be a
non-negative integer. Fix o € H*(X; Q). Then,

(5.6) hm (1 —q)F6¢(q)) € MZV.
Proof. By the Lemma 4.7 in [16], we have
(5.7) O7 (q) = Coeff.007 (g, 2).

In view of (2.6), ©¢(q, 2) is equal to

(5.8) - > {(lx - Kx)%,«)
s,t>0
s+t=k+2
(- (Z (a2)" ) 1 (Z o )

s! mso 1 —d" t! mso 14"

Combining with (5.7) and Definition 2.4, we see that
0%(q) = — Z ((1x — Kx)®,a) - (—1)* - Coeff ,oUs 4(q, 2).
s,t>0

s+tt:>k+2

By Lemma 2.5, we obtain (5.6). O

In the next lemma, we deal with the leading term of the reduced series
Foo ,? ™ (g). Note that the weight of T], Oy (g) is equal to SN (ki +2).

1,

Lemma 5.5. Let ay,...,any € H*(X). Then,

77777
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where W consists of terms with weights < YN (k; + 2). Moreover, W = 0
when az, ..., an € HY(X).

Proof. The first statement is equivalent to [16, Theorem 4.8]. When we have
ai,...,ay € H*(X), the proof of [16, Theorem 4.8] shows that by degree
reasons, the lower weight term W is equal to 0. O

A necessary condition for the leading term [T, ©%(q) to be a quasi-
modular form is that the weight "% | (k; + 2) must be even, i.e., the number
of odd integers among k1,...,ky is even. The next example indicates that
we may have to further assume that every k; is even.

Example 5.6. Let a € H*(X;Q) satisfy (Kx,a) # 0. By (5.7) and (5.8),

mi

o {EKx) T I
@1(Q)*T' Z 1_qm11_qm21_qm1+m2'

m1,m2>0

A tedious computation shows that ©f(q) - ©F(q) is not a quasi-modular form.

Lemma 5.7. Let « € H*(X;Q) satisfy (K%,a) =0, and k > 0 be an even
integer. Then, ©%(q) is either 0 or a quasi-modular form of weight (k + 2).

Proof. We may assume that a is a homogeneous cohomology class. If the
degree || is odd, then ©%(q) = 0 by definition. If |a| = 0, then K% = 0 since
(K%, a) = 0; again, it follows from the definition that ©¢(g) = 0. If |a| = 4,
then O¢(q) is a quasi-modular form by (5.4) and Corollary 4.9 (i).

In the rest of the proof, we assume that |o| = 2. By (5.7) and (5.8),

k+1 s
O3(0) = (o) 3 V)
(=D (k+2—3s)
where
s ms k+2—s
q" 1
AS(Q): Z 1— mi H 1 —qgni’
UL oo s 0 ooy >0 =1 q i=1 q

mi+...+ms=ni+..4+ngyo_s

Note that for 1 < s < k/2, we have As(q) = Agi2-5(q) and

(=D° ) (k+2)-(=1)°

G Dl (ht2—s)  (htl_sl-sl sl (kt2_s)
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Thus, ©%(q) is equal to

k/2 s
5.9) (Fx.0) (Z A

(k/2+1) - (-1
((k/2+ 1))

Ak/2+1(‘])> ‘

Similarly, by Lemma 2.3 (i) and (ii), we obtain

Oulg) = L Cocft [y 1T g 2 "
N N A =TT

_ 2y (e

- Agja11(q).

Combining this with (5.9), we see that

O3(q) = {x.0) - 22 04(a).

Therefore, ©%(q) is a quasi-modular form when |a| = 2. O

The following example illustrates that the assumption (K%,a) = 0 in
Lemma 5.7 is necessary.

Example 5.8. Let X be a smooth projective complex surface satisfying
(Kx,Kx) = (K%,1x) # 0. By (5.7) and (5.8), ©5(q) is equal to

<KX’ KX> . 2 ) Z qml qu qm3 ].
4 Mg >0 1— qm™ 1— qm> 1— qms 1— qm1+m2+m3
3 S 1 1
m1,maz,n1,n2>0,m1+ma=ni+ng 1- ™ 1- qme 1- qm 1- q

A straightforward computation shows that @éx (¢) is not a quasi-modular
form.

Theorem 5.9. Let kyi,...,kx > 0 be integers. Let X be a smooth projective
complex surface, and aq,...,ay € H*(X;Q).
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(i) If (K%, ;) = 0 and 2|k; for every i, then the leading term Y, 04 (q)
of F;;l " ijv(q) is either 0 or a quasi-modular form of weight S | (k; +
2).

(i) Let |az] =4 for every i [f2 J( k; for some i, then Fm’ ’aN( ) = 0.

-----

2121(7% +2).

Proof. The first statement follows from Lemma 5.5 and Lemma 5.7. For (ii),
we see from Lemma 5.5 and (5.4) that

N N N
(5.10) F e (@ = TT6% () = ()Y - J0x, ) - [T On(@)

i=1 i=1 i=1
So by Lemma 2.3 (iii), if k; is odd for some 4, then Fkl’ ’QN( ) = 0. By
Corollary 4.9 (i), if k; is even for every 1 < i < N, then F), " N(q) is a

-----

quasi-modular form of weight SN (k; 4 2). O

Note from (5.10) that if = denotes the Cohomology class corresponding
to a point in X, then the reduced series F ™~ k (q) is independent of the
surface X.

-----
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