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Categorical representation of superschemes
Yasuhiro Wakabayashi

Abstract: In the present paper, we prove that a locally noethe-
rian superscheme X� may be reconstructed (up to certain equiv-
alence) category-theoretically from the category of noetherian su-
perschemes over X�. This result is a supergeometric generalization
of the result proved by Shinichi Mochizuki concerning categorical
reconstruction of schemes.
Keywords: Superscheme, supersymmetry.

Introduction

Superschemes (or, supermanifolds) were introduced and discussed in vari-
ous works, especially in connection with the important physical applications,
which stem from superstring theory. Besides having such physical applica-
tions, the theory of superschemes will be interesting on its own from the
purely mathematical viewpoint. In the present paper, we are interested in un-
derstanding the richness of algebraic supergeometry from category-theoretic
aspects.

The main result of our study provides a supergeometric generalization of
the result proved by S. Mochizuki (cf. [5], Theorem A) concerning categori-
cal reconstructibility of locally noetherian schemes, as described below. (Note
that Mochizuki also proved a generalization of his own result to arithmetic log
schemes, see [6].) Let X� = (Xb,OX�) be a superscheme (cf. Definition 1.1
(i)), i.e., a scheme Xb together with a certain quasi-coherent sheaf of super-
algebras OX� on Xb. Suppose that X� is locally noetherian in the sense of
Definition 1.2. For each such X�, one obtains the category

Sch
�
/X�(1)

consisting of noetherian superschemes over X� (cf. (3) for the precise defi-
nition of Sch

�
/X�). The problem that we consider in the present paper is to
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know to what extent one can reconstruct the superscheme-theoretic struc-
ture of X from the categorical structure of Sch

�
/X� . Our main result is the

following assertion.

Theorem A. Let X� and X ′� be two locally noetherian superschemes.
Then,

(2) X� f∼ X ′� if and only if Sch
�
/X�

∼= Sch
�
/X′� .

(Here, f∼ denotes the equivalence relation defined in (24).)

Theorem A implies, unlike the result of [5], that isomorphism classes of
locally noetherian superschemes may not be determined uniquely from the
categorical structure of Sch

�
/X� . Indeed, suppose that X� f∼ X ′�, that is

to say, X ′� is isomorphic to a fermionic twist of X� (cf. Definition 1.7). By
definition, X ′� may be obtained by twisting the fermionic portion of X� by
means of some element a in the first étale cohomology group H1

ét(Xb, μ2). By
twisting various superschemes over X� by means of a in the same manner, we
obtain the assignment from each object in Sch

�
/X� to an object in Sch

�
/X′� ;

this assignment gives an equivalence of categories Sch
�
/X�

∼→ Sch
�
/X′� , and

hence, shows one direction of the equivalence in Theorem A (cf. Proposi-
tion 1.10 and the discussion in its proof).

On the other hand, the proof of the reverse direction (i.e., Sch
�
/X�

∼=
Sch

�
/X′� implies X� f∼ X ′�) is technically much more difficult. To com-

plete the proof, we reconstruct step-by-step various partial information of
(the equivalence class of) X� from the categorical structure of Sch

�
/X� ,

as discussed in § 2. If X� is a scheme in the classical sense, then any fermionic
twists of X ′� are in fact isomorphic to X� (in particular, X ′� is a scheme);
in this case, Theorem A is exactly the same as the result by
S. Mochizuki.

In the last section of the present paper, we shall prove further rigidity
properties concerning the category Sch

�
/X� (cf. Propositions 3.1 and

3.2).
Finally, we want to remark that, as a different type of reconstruction of a

superscheme, one may find a result by U. V. Dubey and V. M. Mallik (cf. [3]);
according to this result, Balmer’s construction of Spec of a tensor triangulated
category can be used to reconstruct superschemes from its category of perfect
complexes.
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1. Superschemes

In this section, we recall first the definition of a superscheme (cf. Defini-
tion 1.1). Basic references for the notion of a superscheme are, e.g., [1], [2].
Then, we introduce the notion of a fermionic twist (cf. Definition 1.6), and the
equivalence relation “ f∼ ” (cf. (24)) appearing in the statement of Theorem A.
One direction of the equivalence in Theorem A (which is much easier to prove
than the reverse direction) will be proved in § 1.4 (cf. Proposition 1.9).

Throughout the present paper, we denote, for any category C, by Ob(C)
the set of objects of C. Also, if both A and B are objects of C (i.e., A,
B ∈ Ob(C)), then we shall denote by MapC(A,B) the set of morphisms
(in C) from A to B. By a superalgebra, we mean a supercommutative Z/2Z-
graded algebra R = Rb⊕Rf (where Rb and Rf denote the even and odd parts
respectively) such that it includes Rb as a central subalgebra, and x2 = 0 for
all x ∈ Rf .

1.1. Superschemes

Definition 1.1. (i) A superscheme is a pair X� := (Xb,OX) consisting
of a scheme Xb and a quasi-coherent sheaf of superalgebras OX� over
OXb

such that the natural morphism OXb
→ OX� is injective and its

image coincides with the bosonic (i.e., even) part of OX� . We shall write
OXf

for the fermionic (i.e., odd) part of OX� and identify OXb
with the

bosonic part via the injection OXb
→ OX� (hence, OX� = OXb

⊕OXf
).

(ii) Let X� := (Xb,OX�) and Y � := (Yb,OY �) be two superschemes. A
morphism of superschemes from Y � to X� is a pair f� := (fb, f �)
consisting of a morphism fb : Yb → Xb of schemes and a morphism
of superalgebras f � : f∗

b (OX�)
(
:= OYb

⊗f−1
b

(OXb
) f

−1
b (OX�)

)
→ OY �

over OYb
.

In the following, let us fix a superscheme X� := (Xb,OX�).

Definition 1.2. We shall say that X� is locally noetherian (resp., noethe-
rian) if Xb is locally noetherian (resp., noetherian) and the OXb

-module OXf

is coherent.

We shall denote by

(3) Sch
�
/X�

the category defined as follows:
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• the objects are morphisms of superschemes Y � (= (Yb,OY �)) → X� to
X� such that Y � is noetherian and the underlying morphism Yb → Xb

of schemes is of finite type;
• the morphisms (from an object Y �

1 → X� to an object Y �
2 → X�)

are morphisms of superschemes Y �
1 → Y �

2 lying over X�.

Note that the fiber products and finite coproducts exist in Sch
�
/X� (cf. [2],

Corollary 10.3.9).

Remark 1.3. Let X be a scheme (in the usual sense). Then, X carries a
superschemes of the form X�

triv := (X,OX�
triv

(= OX ⊕OXf
)) with OXf

= 0.
(Conversely, any superscheme with vanishing fermionic part arises uniquely
from a scheme in this manner.) In the rest of the present paper, we shall not
distinguish between X and X�

triv.

1.2. Superschemes arising from a bilinear map

Let X� := (Xb,OX�) be a superscheme. The multiplication morphism OX�⊗
OX� → OX� restricts to a skew-symmetric OXb

-bilinear map

mX� : O⊗2
Xf

(
:= OXf

⊗OXb
OXf

)
→ OXb

.(4)

The associative property of the multiplication gives rise to the equality

mX� ⊗ idOXf
= idOXf

⊗mX� : O⊗3
Xf

→ OXf
.(5)

One verifies that the superscheme X� is uniquely determined (up to isomor-
phism) by the triple

AX� := (Xb,OXf
,mX�).(6)

To make the discussion precise, let us define

A(7)

to be the category, where

• the objects are triples (Y,F , ω) consisting of a locally noetherian scheme
Y , a coherent OY -module F , and a skew-symmetric OY -bilinear map
ω : F ⊗ F → OY on F satisfying the equality ω ⊗ idF = idF ⊗ ω :
F⊗3 → F ;
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• the morphisms from (Y,F , ω) to (Y ′,F ′, ω′) (where both (Y,F , ω) and
(Y ′,F ′, ω′) are objects of A) are pairs (f, f �) consisting of a morphism
f : Y → Y ′ of schemes and an OY -linear morphism f � : f∗(F ′) → F
satisfying the equality

ω ◦ (f � ⊗ f �) = f∗(ω′) : f∗(F ′) ⊗ f∗(F ′) (= f∗(F ′ ⊗F ′)) → OY ′ .

(8)

Then, the following proposition may be verified.

Proposition 1.4. The assignment X� �→ AX� defined above is functorial,
and the resulting functor from the category of locally noetherian superschemes
to A is an equivalence of categories.

Proof. Let us take an object (Y,F , ω) of A. Then, the direct sum OY ⊕ F
admits a structure of OY -superalgebra (where the first and second factors are
the bosonic and fermionic parts respectively) with multiplication given by

(OY ⊕F) ⊗ (OY ⊕F) → OY ⊕F(9)
(a, εa) ⊗ (b, εb) �→ (ab + ω(εa, εb), aεb + bεa).

The pair Y �
F ,ω := (Y,OY ⊕F) forms a superscheme and the resulting assign-

ment (Y,F , ω) �→ Y �
F ,ω is functorial in A. This assignment defines a functor

forming the inverse to the functor X� �→ AX� . This completes the proof of
Proposition 1.4.

1.3. From superschemes to schemes

In the following, we shall fix a superscheme X� := (Xb,OX� (= OXb
⊕OXf

)).
By considering the morphism

βX� : X� → Xb(10)

corresponding to the inclusion OXb
→ OX� , we may regard X� as a super-

scheme over the scheme Xb. The construction of βX� is evidently functorial
in X�, that is to say, βX� ◦ f� = fb ◦ βY � for any superscheme Y � and any
morphism f�

(
:= (fb, f �)

)
: Y � → X� of superschemes.

Denote by

NX�(11)
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the superideal of OX� generated by OXf
. The quotient of OX� by NX�

determines a scheme Xt equipped with a morphism

(12) τX� : Xt → X�

of superschemes. The composite

γX := βX� ◦ τX� : Xt → Xb(13)

is a closed immersion of schemes corresponding to the quotient OXb
�

OXb
/O2

Xf
(= OX�/NX�) by the nilpotent ideal O2

Xf
⊆ OXb

.
If f� : Y � → X� is a morphism of superschemes, then it induces a

morphism

(14) ft : Yt → Xt

of schemes satisfying that τX� ◦ ft = f� ◦ τY � .
Next, we denote by

Sch/X�(15)

the full subcategory of Sch
�
/X� consisting of objects of the form Y → X�,

where Y is a scheme. The assignment Y � �→ Yt (where Y � ∈ Ob(Sch
�
/X�))

defines a functor

(16) τ : Sch
�
/X� → Sch/Xt

which turns out to be a right adjoint functor of the functor

Sch/Xt
→ Sch

�
/X�(17)

“Z → Xt” �→ “Z → Xt

τ
X�−−→ X�”.

That is to say, the functorial map of sets

(18) Map
Sch

�
/X�

(Z, Y �) → MapSch/Xt
(Z, Yt)

is bijective, where Y ∈ Ob(Sch/Xt
) and Z� ∈ Ob(Sch

�
/X�). In particular,

we obtain an equivalence of categories Sch/Xt

∼→ Sch/X� (given as in (17)).
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Definition 1.5. Let X� be a superscheme and U an fppf scheme over Xb.
Then, we shall write

X�|U := X� ×β
X� ,Xb

U.(19)

By an open subsuperscheme (resp., a quasi-compact open subsuper-
scheme) of X�, we mean a superscheme of the form X�|U for some open
subscheme (resp., quasi-compact subscheme) U of Xb.

1.4. Fermionic twists

Let us define the notion of a fermionic twist of a given superscheme. In the
following, let us fix a locally noetherian superscheme X� := (Xb,OX�).

Denote by (μ2)Xb
the fppf sheaf on Xb represented by the group of square

roots of unity μ2 := Spec(Z[T ]/(T 2−1)). For each ζ ∈ μ2(Xb) (= (μ2)Xb
(Xb)),

we shall define 〈ζ〉X� to be the automorphism

(20) 〈ζ〉X� := (idXb
, 〈ζ〉�X�) : X� ∼→ X�

of X�, where 〈ζ〉�X� denotes the automorphism of OX� = OXb
⊕OXf

given by
assigning (a, εa) �→ (a, ζ ·εa). In particular, 〈ζ〉X�◦〈ζ〉X� = idX� , and if X� is
a scheme (i.e., OXf

= 0), then the equality 〈ζ〉X� = idX� holds. If, moreover,
Y � is a locally noetherian superscheme and f�

(
= (fb, f �)

)
: Y � → X� is

a morphism of superschemes, then (by regarding ζ as an element of μ2(Yb)
via fb) we have the equality of morphisms f� ◦ 〈ζ〉Y � = 〈ζ〉X� ◦ f�. Hence,
the collection of automorphisms {〈ζ〉Y �}Y �∈Ob(Sch

�
/X� ) defines a center of

Sch
�
/X� (i.e., an automorphism of the identity functor Sch

�
/X�

∼→ Sch
�
/X�).

Definition 1.6. We shall refer to 〈ζ〉X� as the fermionic involution of
X� associated with ζ.

Write AutXb
(X�) for the fppf sheaf on Xb consisting of locally defined

automorphisms of X� over Xb (i.e., the sheaf which, to any fppf scheme U
over Xb, assigns the group of automorphisms of X�|U over U). Then, we have
a homomorphism

ηX� : (μ2)Xb
→ AutXb

(X�)(21)

determined by ηX�(ζ) = 〈ζ〉X� . By applying the functor H1
fppf(Xb,−), we

have a homomorphism

H1
fppf(ηX�) : H1

fppf(Xb, μ2) → H1
fppf(Xb,AutXb

(X�))(22)
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Definition 1.7. A fermionic twist of X� is a superscheme defined to
be the twisted form of X� (over the fppf topology on Xb) corresponding to
H1

fppf(ηX�)(a) ∈ H1
fppf(Xb,AutXb

(X�)) for some a ∈ H1
fppf(Xb, μ2). We shall

refer to this superscheme as the fermionic twist of X� associated with
a and denote it by

aX�.(23)

Remark 1.8. By the definition of a fermionic twist, the set of isomor-
phism classes of fermionic twists of X� corresponds bijectively to the set
Im(H1

fppf(ηX�)). For example, if k is a separably closed field in which 2 is
invertible and Xb is proper over k, then H1

fppf(ηX�) is finite (cf. [4], Chap. III,
§ 3, Theorem 3.9, and Chap. VI, § 2, Corollary 2.8). This implies that there
are only a finite number of isomorphism classes of fermionic twists of X�.
Also, if H1

fppf(Xb, μ2) = 0 (e.g., Xb, as well as Xt, is simply connected and
2 is invertible in Γ(Xb,OXb

)) or X� is a scheme (i.e., OXf
= 0), then all

fermionic twists of X� are isomorphic.

Consider a relation “ f∼ ” in the set of locally noetherian superschemes
defined as follows:

Y � f∼ Z� def⇐⇒ Y � is isomorphic to a fermionic twist of Z�.(24)

One verifies immediately that this relation forms an equivalence relation. The
following proposition is one direction of the equivalence in Theorem A.

Proposition 1.9. Let X� and Y � be two locally noetherian superschemes
and suppose that X� f∼ Y �. Then, there exists an equivalence of categories
Sch

�
/X�

∼→ Sch
�
/Y � .

Proof. Let a ∈ H1
fppf(Xb, μ2), and suppose that Y � = aX� (i.e., Y � is a

fermionic twist of X� associated with a). If we are given a morphism f� :
Z� → X� in Sch

�
/X� , then the homomorphism H1

fppf(Xb, μ2) → H1
fppf(Zb, μ2)

induced by fb sends a to an element of H1
fppf(Zb, μ2); we write, by abuse of

notation, for aZ� the fermionic twist of Z� associated with this element. It
follows from the functoriality (with respect to X�) of 〈ζ〉X� for each ζ ∈
μ2(Xb) that f� induces a morphism af� : aZ� → Y �

(
= aX�

)
in Sch

�
/Y � .

The assignment Z� �→ aZ� is functorial, and hence, defines a functor

Sch
�
/X� → Sch

�
/Y � .(25)
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Since X� is fermionic twist of Y � associated with −a (under the natural iden-
tification H1

fppf(Xb, μ2) = H1
fppf(Yb, μ2)), the same argument as above gives

rise to a functor Sch
�
/Y � → Sch

�
/X� , which turns out to be the inverse to the

functor (25). This completes the proof of Proposition 1.9.

1.5. Fermionic twists in the Zariski topology

Denote by (Gm)Xb
the fppf sheaf on Xb represented by the multiplicative

group Gm. The Kummer sequence

0 → (μ2)Xb
→ (Gm)Xb

→ (Gm)Xb
→ 0(26)

a �→ a2

induces an exact sequence

0→μ2(Xb)→Γ(Xb,O×
Xb

)→Γ(Xb,O×
Xb

) δ→H1
fppf(Xb, μ2)

σ→ Pic(Xb)→Pic(Xb)
(27)

a �→ a2 [L] �→ [L⊗2].

Recall (cf. [4], Chap. III, § 4, the discussion following Lemma 4.10) that any
element of H1

fppf(Xb, μ2) may be represented by a collection of data

s := ({Uα}α∈I , {sα}α∈I , {tα,β}(α,β)∈I2),(28)

where

• I is an index set;
• {Uα}α∈I is a Zariski open covering of Xb;
• each sα (α ∈ I) is an element of Γ(Uα,O×

Uα
);

• I2 := {(α, β) ∈ I × I | Uα,β := Uα ∩ Uβ �= ∅);
• {tα,β}(α,β)∈I2 is a 1-cocycle of {Uα}α∈I with coefficients in O×

Xb
satisfying

the equality sβ|Uα,β
· t2α,β = sα|Uα,β

for any (α, β) ∈ I2.

The homomorphism δ (resp., σ) is given by assigning u �→ ({Xb}, {u}, {1})
for any u ∈ Γ(Xb,O×

Xb
) (resp., s �→ ({Uα}α, {tα,β}α,β) for any s as in (28)).

Now, let u ∈ Γ(Xb,O×
Xb

). We shall write

uX� := δ(u)X
�(29)

by abuse of notation. One verifies that it is a unique (up to isomorphism) su-
perscheme such that the triple AuX� associated with it (cf. Proposition 1.4)
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coincides with (Xb,OXf
, u ·mX�). (In particular, OuX� = OX� as an OXb

-
module.) Indeed, let us write Y � for the superscheme corresponding to
(Xb,OXf

, u · mX�) (hence, Yb = Xb). Also, let us take an étale covering
U → Xb such that there exists v ∈ Γ(U,O×

U ) with v2 = u. The automorphism
of the OU -module OU ⊕OXf

|U given by assigning (a, εa) �→ (a, v · εa) deter-
mines an isomorphism X�|U ∼→ Y �|U that induces the identity morphism of
Xb. This implies that Y � is the fermionic twist of X� associated with δ(u),
as desired.

Conversely, any fermionic twist of X� is, Zariski locally on Xb, isomor-
phic to uX� (for some local section u ∈ O×

Xb
), as described in the following

proposition.

Proposition 1.10. Let a be an element of H1
fppf(Xb, μ2) (hence, we have the

fermionic twist aX� of X� associated with a). Also, let ({Uα∈I}α∈I , {sα}α∈I ,
{tα,β}(α,β)∈I2) be a representative of a as in (28). Then, there exists a collec-
tion of isomorphisms

{ξ�α : aX�|Uα

∼→ sαX�|Uα}α∈I(30)

satisfying the following two conditions:

• For each α ∈ I, the morphism (ξα)b of schemes underlying ξ�α coincides
with the identity morphism of Uα;

• For each (α, β) ∈ I2, the automorphism

ξ�β ◦ (ξ�α )−1 : sαX�|Uα,β

∼→ sβX�|Uα,β
(31)

corresponds to the automorphism of the OUα,β
-module OUα,β

⊕OXf
|Uα,β

given by assigning (a, εa) �→ (a, tα,β · εa).
Proof. The assertion follows immediately from the definition of a fermionic
twist and the above discussion.

1.6. A0|1-twists

For each pair (n,m) of nonnegative integers, we shall denote by

(32) An|m

the (n|m)-dimensional affine superspace over Z, i.e., the superspectrum of
the superalgebra Z[t1, · · · , tn, ψ1, · · · , ψm], where the t1, · · · , tn are ordinary
indeterminates and ψ1, · · · , ψm are odd indeterminates. Also, let us write

A
n|m
X� := X� × An|m.(33)
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For any Y � ∈ Ob(Sch
�
/X�) and any nonnegative integers n, m, the super-

scheme A
n|m
Y � belongs to Ob(Sch

�
/X�). Also, we have a sequence of functorial

(in Y �) bijections of sets:

Map
Sch

�
/Y �

(Y �,A1|1
Y �)(34)

∼→ Map
Sch

�
/Y �

(Y �,A1|0
Y � ×Y � A

0|1
Y �)

∼→ Map
Sch

�
/Y �

(Y �,A1|0
Y �) × Map

Sch
�
/Y �

(Y �,A0|1
Y �)

∼→ Γ(Yb,OYb
) × Γ(Yb,OYf

)
∼→ Γ(Yb,OY �),

where the third bijection is given by (h�
1 , h�

2 ) �→ (h�
1(t), h�

2(ψ)). The multi-
plication and addition in Γ(Yb,OY �) correspond, via (34), to morphisms

μY � : A1|1
Y � ×Y � A

1|1
Y � → A

1|1
Y � and αY � : A1|1

Y � ×Y � A
1|1
Y � → A

1|1
Y �(35)

respectively. That is to say, the set Map
Sch

�
/Y �

(Y �,A1|1
Y �) admits a structure

of superalgebra by means of μY � and αY � (together with the decomposition
A

1|1
Y �

∼→ A
1|0
Y �×Y �A

0|1
Y � , which induces the parity), and the composite bijection

(34) becomes an isomorphism of superalgebras. In particular, each element a
of Γ(Yb,OYb

) corresponds to a morphism

(36) σ
[a]
Y � : Y � → A

1|0
Y � .

Let AutY �(A1|0
Y � , σ

[0]
Y �) denote the Zariski sheaf on Yb such that to every open

subsuperscheme U of Yb, assigned is the group of automorphisms of A1|0
Y �|U

over Y �|U which are compatible with σ
[0]
Y � |Y �|U . The homomorphism

O×
Yb

∼→ AutY �(A1|0
Y � , σ

[0]
Y �)(37)

which, to any local section a ∈ O×
Yb

, assigns the automorphism of A1|0
Y � over

Y � determined by t �→ a · t turns out to be bijective. By applying the functor
H1

Zar(Yb,−). we have an isomorphism

Pic(Yb)
∼→ H1

Zar(Yb,AutY �(A1|0
Y � , σ

[0]
Y �)).(38)
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Definition 1.11. (i) An A0|1-twist over Y � is a twisted form of
(A1|0

Y � , σ
[0]
Y �) (over the Zariski topology on Yb) determined, via (38), by

some a ∈ Pic(Yb); it may be described as a pair

(39) (Z�, σZ�/Y �)

consisting of a twisted form Z� of A1|0
Y � over Y � and a section σZ�/Y � :

Y � → Z� of the structure morphism of Z�. We shall refer to the pair
(Z�, σZ�/Y �) as the A0|1-twist over Y � associated with a.

(ii) Let (Z�, σZ�/Y �) and (Z ′�, σZ′�/Y �) be two A0|1-twists over Y �. An
isomorphism of A0|1-twists from (Z�, σZ�/Y �) to (Z ′�, σZ′�/Y �)
is an isomorphism h� : Z� ∼→ Z ′� of superschemes over Y � with
h� ◦ σZ�/Y � = σZ′�/Y � .

By (38), there exists canonically a bijective correspondence between
Pic(Yb) and the set of isomorphism classes of A0|1-twists over Y �.

1.7. The multiplication morphisms of fermionic twists

Let u ∈ Γ(Yb,O×
Yb

). Since OuY � = OY � as OYb
-modules, the multiplication in

OuY � gives rise to a morphism

(40) μY ��uY � : A1|1
Y � ×Y � A

1|1
Y � → A

1|1
Y �

over Y � under the bijection (34). The morphism μY ��uY � corresponds to
the homomorphism of superalgebras over OY � described as follows:

OY � [t, ψ] → OY � [t, ψ] ⊗O
Y � OY � [t, ψ](41)

t �→ t⊗ t + s · ψ ⊗ ψ

ψ �→ ψ ⊗ t + t⊗ ψ.

Next, let a be an element of H1
fppf(Yb, μ2) and let Z� := aY �. We shall

choose a representative ({Uα}α∈I , {sα}α∈I , {tα,β}(α,β)∈I2) of a as in (28) (of
the case where the superscheme X� is replaced with Y �). Write

(42) (A0|1
Y ��Z� , σA0|1

Y ��Z�
)

for the A0|1-twist over Y � determined by σ(a) ∈ Pic(Yb), and write

(43) A
1|1
Y ��Z� := A

0|1
Y ��Z� × A1|0.
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The multiplication morphisms μY �|Uα�sαY �|Uα
(α ∈ I) may be glued together

to obtain a morphism

(44) μY ��Z� : A1|1
Y ��Z� ×Y � A

1|1
Y ��Z� → A

1|1
Y ��Z�

over Y �. This morphism does not depend on the choice of a representative of
a. Also, the morphisms αsαY �|Uα

may be glued together to obtain a morphism

(45) αY ��Z� : A1|1
Y ��Z� ×Y � A

1|1
Y ��Z� → A

1|1
Y ��Z�

over Y �. This morphism depends only on the A0|1-twist A
0|1
Y ��Z� (i.e., the

class σ(a) ∈ Pic(Yb)). Owing to the morphisms αY ��Z� and μY ��Z� , we
have an isomorphism of superalgebras

(46) Γ(Zb,OZ�) ∼→ Map
Sch

�
/Y �

(Y �,A1|1
Y ��Z�)

which is functorial with respect to Y � ∈ Ob(Sch
�
/X�).

2. Proof of Theorem A

This section is devoted to proving the remaining portion of Theorem A,
i.e., that the equivalence class defined by “ f∼ ” of a locally noetherian su-
perscheme X may be reconstructed purely category-theoretically from the
category Sch

�
/X� . In the following discussion, we will often speak of various

properties of objects and morphisms in Sch
�
/X� as being “characterized (or re-

constructed) category-theoretically”. By this, we mean that they are preserved
by arbitrary equivalences of categories Sch

�
/X�

∼→ Sch
�
/X′� (where X ′� is

another locally noetherian superscheme). For instance, the set of monomor-
phisms in Sch

�
/X� may be characterized category-theoretically as the mor-

phisms f� : Z� → Y � such that, for any W� ∈ Ob(Sch
�
/X�), the map

of sets Map
Sch

�
/X�

(W�, Z�) → Map
Sch

�
/X�

(W�, Y �) given by composing

with f� is injective. To simplify notation, however, we omit explicit mention
of this equivalence Sch

�
/X�

∼→ Sch
�
/X′� , of X ′, and of the various “primed”

objects and morphisms corresponding to the original objects and morphisms,
respectively, in Sch

�
/X� .

In this section, let us fix a locally noetherian superscheme X�.
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2.1.

Our tactics for completing the proof of Theorem A (i.e., recognizing the struc-
ture of superscheme of X�) is, as in [5], to reconstruct step-by-step various
partial information of X� from the categorical structure of Sch

�
/X� . As the

first step, we reconstruct the set of objects in Sch
�
/X� which are isomorphic

to spectrums of fields (cf. Proposition 2.5). Of course, these objects allow us
to know the points in the topological space underlying X�.

For each superalgebra R, we denote by

Spec(R)�(47)

the superspectrum of R. Let k be a field and M a finite-dimensional k-vector
space. We shall equip k⊕M with a structure of superalgebra over k given as
follows:

• The bosonic part is the first factor k and the fermionic part is the second
factor M ;

• The multiplication is given by assigning (a, εa) · (b, εb) := (ab, aεb + bεa)
for any a, b ∈ k and εa, εb ∈ M .

We shall write

(48) A
0|M
k := Spec(k ⊕M)�.

In other wards, A0|M
k is a unique (up to isomorphism) superscheme satisfying

that A
A

0|M
k

:= (Spec(k),OSpec(k)⊗kM, 0). In particular, A0|k
k = A

0|1
k (cf. (33)).

If M1 and M2 are finite-dimensional k-vector spaces, then any morphism
A

0|M1
k → A

0|M2
k of superschemes over k coincides with the morphism induced

from a unique k-linear morphism M2 → M1. This observation shows the
following two lemmas.

Lemma 2.1. Let us write Veck for the opposite category of finite-dimensional
k-vector spaces and write

◦Sch
�
/k(49)

for the full subcategory of Sch
�
/k consisting of superschemes which are iso-

morphic to A
0|M
k for some finite-dimensional k-vector space M . Then, the

functor

Veck → ◦Sch
�
/k(50)
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M �→ A
0|M
k

defines an equivalence of categories.

Lemma 2.2. Let M be a finite-dimensional k-vector space. Suppose that
Spec(k) is an object of Sch

�
/X� , in particular, admits a structure morphism

Spec(k) → X�. (Hence, A0|M
k may be thought of as an object of Sch

�
/X� by

taking account of the composite A
0|M
k → Spec(k) → X�). Then, there exists

a natural bijection

Map
Sch

�
/X�

(A0|M
k , Y �)(51)

∼→
{
(s, h)

∣∣∣ s ∈ MapSch/Xb
(Spec(k), Yb), h ∈ Homk(s∗(OYf

),M)
}

for any object Y � of Sch
�
/X� .

Proof. The assertion follows directly from the definition of A0|M
k .

Therefore, we have the following proposition.

Proposition 2.3. A morphism f� (:= (fb, f �)) : Z� → Y � in Sch
�
/X� is a

monomorphism (in Sch
�
/X�) if and only if the induced morphism ft : Zt → Yt

is a monomorphism in Sch/Xt
and f � : f∗

b (OY �) → OZ� is surjective.

Proof. Let f� (:= (fb, f �)) : Z� → Y � be a monomorphism in Sch
�
/X� .

Suppose that f � is not surjective, or equivalently, its restriction f �|f∗
b
(OYf

) :
f∗
b (OYf

) → OZf
is not surjective. By Nakayama’s lemma (and the condition

that Z� is noetherian), there exists a point s�
(
:= (sb, s�)

)
: Spec(k) → Z�

of Z� such that (fb ◦ sb)∗(OYf
) → s∗b(OZf

) is not surjective. Hence, the
induced morphism between k-vector spaces

(52) Homk(s∗b(OZf
), k) → Homk((fb ◦ sb)∗(OYf

), k)

is not injective. It follows from Lemma 2.2 that the map

(53) Map
Sch

�
/X�

(A0|k
k , Z�) → Map

Sch
�
/X�

(A0|k
k , Y �)

given by composing with f� is not injective, and we obtain a contradiction.
Thus, f � must be surjective.
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Next, suppose that ft is not a monomorphism in Sch/Xt
, or equivalently,

there exists an object W of Sch/Xt
whose associated map

(54) MapSch/Xt
(W,Zt) → MapSch/Xt

(W,Yt)

is not injective. Since τ (cf. (16)) is a right adjoint functor of the functor
Sch/Xt

(17)−−→ Sch
�
/X� , the non-injective map (54) may be identified with the

map

(55) Map
Sch

�
/X�

(W,Z�) → Map
Sch

�
/X�

(W,Y �).

This contradicts the assumption that f� is a monomorphism. Thus, ft must
be a monomorphism.

The reverse direction may be verified immediately, and hence, we complete
the proof of Proposition 2.3.

Definition 2.4. (i) We shall say that an object Y � in Sch
�
/X� is minimal

(over X�) if it is nonempty (i.e., not an initial object of Sch
�
/X�)

and any monomorphism Z� → Y � from a nonempty object Z� ∈
Ob(Sch

�
/X�) to Y � is necessarily an isomorphism.

(ii) We shall say that an object Y � in Sch
�
/X� is terminally minimal

(over X�) if it is minimal over X� and any minimal object Z� over
X� with Y � ×X� Z� �= ∅ admits a morphism Z� → Y �.

These properties on objects in Sch
�
/X� give a category-theoretic charac-

terization of spectrums of fields, as follows.

Proposition 2.5 (Characterization of spectrums of fields). The following
assertions (i), (ii) hold.

(i) An object Y � of Sch
�
/X� is minimal if and only if Y � is isomorphic to

Spec(k) for some field k.
(ii) An object Y � of Sch

�
/X� is terminally minimal if and only if it is a

point of Xt, considered as an object of Sch
�
/X� via composition with

τX� : Xt → X�.

Consequently, the objects of Sch
�
/X� consisting of (super)schemes which are

isomorphic to Spec(k) for some field (resp., consisting of points of Xt) may
be reconstructed category-theoretically from the category Sch

�
/X� .

Proof. The assertions are formal consequences of the definitions of being min-
imal and terminally minimal.
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2.2.

Next, we shall consider the category-theoretic reconstruction of the super-
schemes A

0|k
k

(
= A

0|1
k

)
and A

ε|0
k (introduced below) in Sch

�
/X� . After recon-

structing these objects, one may use them to understand the local structure
of X� (cf. Proposition 2.9 described later).

Definition 2.6. We shall say that an object Y � of Sch
�
/X� is one-pointed

if its underlying topological space consists precisely of one element.

The following proposition may be immediately verified.

Proposition 2.7 (Characterization of one-pointed superschemes). The one-
pointed objects of Sch

�
/X� may be characterized category-theoretically as the

nonempty objects Y � which satisfy the following condition:

(A)Y � : For any two minimal objects Z�
1 → Y �, Z�

2 → Y � over Y �, the
fiber product Z�

1 ×Y � Z�
2 is nonempty.

For any field k, we shall write

(56) A
ε|0
k := Spec(k[ε]/ε2).

Proposition 2.8 (Characterization of A
0|1
k ). Suppose that we are given a

morphism Spec(k) → X� (where k denotes a field) belonging to Sch
�
/X� .

(Hence, the category Sch
�
/k may be characterized category-theoretically from

the data (Sch
�
/X� , Spec(k)), i.e., a pair consisting of a category and a minimal

object of it.) Then, the following assertions (i), (ii) hold.

(i) The set consisting of two objects

(57) {A0|1
k ,A

ε|0
k }

of Sch
�
/X� may be characterized (up to isomorphism in the evident

sense) category-theoretically as the image (via the functor Sch
�
/k →

Sch
�
/X� given by composing with Spec(k) → X�) of the set {S�, T�}

of two one-pointed objects of Sch
�
/k satisfying the following two condi-

tions (B)S�,T� and (C)S�,T� :
(B)S�,T�: S� is not isomorphic to T�, and Spec(k) is neither isomorphic to

S� nor to T�;



1652 Yasuhiro Wakabayashi

(C)S�,T�: Let V � be a one-pointed object V � of Sch
�
/k satisfying the follow-

ing two conditions:

• V � is not isomorphic to Spec(k);
• Any terminally minimal object over V � (which is uniquely

determined up to isomorphism) is isomorphic to the terminal
object Spec(k).

Then, there exists either a monomorphism S� ↪→ V � from S� or
a monomorphism T� ↪→ V � from T�.

(ii) Let U� be either A
0|1
k or A

ε|0
k , and denote by U ′� the unique object in

{A0|1
k ,A

ε|0
k } \ {U�}. Then, U� coincides with A

0|1
k if and only if for

any morphism U ′� ×k U
′� → U� ×k U

� factors through a terminally
minimal morphism over U�×kU

�. In particular, the object A0|1
k (resp.,

A
ε|0
k ) in Sch

�
/X� may be reconstructed category-theoretically (up to iso-

morphism) from the minimal object Spec(k) in Sch
�
/X� .

Proof. First, we shall consider assertion (i). Since the set {A0|1
k ,A

ε|0
k } is im-

mediately verified to satisfy both the conditions (B)S�,T� and (C)S�,T� , it
suffices to prove its reverse direction.

Note that any one-pointed object of Sch
�
/k is necessarily isomorphic to the

superspectrum of some (local) superalgebra over k. For a one-pointed object
W� in Sch

�
/k, we shall write

dimk(W�) := dimk(Γ(Wb,OW�)) (< ∞) .(58)

Now, let {S�, T�} be a set of two one-pointed objects of Sch
�
/k satisfying

both the conditions (B)S�,T� and (C)S�,T� . Suppose that one of the objects
in this set, say S�, satisfies the inequality dimk(S�) ≥ 3. By Proposition 2.3,
there does not exist a monomorphism from S� to A

0|1
k since dimk(A0|1

k ) = 2. It
follows from the condition (C)S�,T� that there exists a monomorphism from
T� to A

0|1
k , and hence, that dimk(T�) ≤ 2 (by Proposition 2.3 again). Since

T� � Spec(k) and there does not exist a monomorphism A
ε|0
k from A

0|1
k , T�

must be isomorphic to A
0|1
k . On the other hand, by a similar argument where

A
0|1
k is replaced with A

ε|0
k , T� must be isomorphic to A

ε|0
k , and we obtain

a contradiction. Consequently, we have dimk(S�) = dimk(T�) = 2. This
implies that S� and T� are respectively isomorphic to either A

0|1
k or A

ε|0
k .

Thus, we complete the proof of assertion (i).



Categorical representation of superschemes 1653

Assertion (ii) follows directly from the fact that

A
ε|0
k ×k A

ε|0
k

∼= Spec(k[ε1, ε2]/(ε21, ε1ε2, ε22))(59)

and

A
0|1
k ×k A

0|1
k

∼= Spec(
∧•

k
(k⊕2))�, (A0|1

k ×k A
0|1
k )t ∼= Spec(k)(60)

(where
∧•

k(k⊕2) denotes the exterior algebra over k associated with k⊕2, which
admits naturally a structure of superalgebra over k).

2.3.

Next, we consider the reconstruction of the schematic structure on Yt for each
Y � ∈ Ob(Sch

�
/X�) (cf. Corollary 2.10 below) and a topological structure of

the underlying space of X� (cf. Proposition 2.11 below). First, we observe
that there exists, by means of Proposition 2.8, the following category-theoretic
criterion for each object Y � ∈ Ob(Sch

�
/X�) to be a scheme (i.e., OYf

= 0).

Proposition 2.9 (Characterization of schemes). The objects Y � of Sch
�
/X�

which are schemes (i.e., objects contained in the subcategory Sch/X�) may be
characterized category-theoretically as those objects which satisfy the following
condition:

(D)Y � : For any minimal object W over X� (hence W ∼= Spec(k) for some
field k by Proposition 2.5, (i)), the map

(61) Map
Sch

�
/X�

(W,Y �) → Map
Sch

�
/X�

(A0|1
W , Y �)

induced from the morphism β
A

0|1
W

: A0|1
W → W is bijective.

In particular, the full subcategory Sch/X� of Sch
�
/X� may be reconstructed

category-theoretically.

Proof. The assertion is a formal consequence of Nakayama’ lemma and
Lemma 2.2.

Moreover, by the above proposition, one may have, for each Y � ∈
Ob(Sch

�
/X�), a category-theoretic reconstruction of the schematic structure

of Yt, as follows.
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Corollary 2.10 (Characterization of Yt for Y � ∈ Ob(Sch
�
/X�)). Let Y � be

an object of Sch
�
/X� .

(i) The object Yt ∈ Ob(Sch
�
/X�) may be characterized (up to isomorphism)

category-theoretically as the object Z� of Sch
�
/X� which is a scheme

(i.e., satisfies the condition (D)Z� in Proposition 2.9) and satisfies the
following condition:

(E)Z� : For any object W in Sch/Y � (⊆ Sch
�
/Y �), there exists uniquely a

morphism W → Z�.
(ii) The schematic structure of Yt (i.e., a topological space together with a

sheaf of rings on it), as well as the topological structure of (the under-
lying space of) Yb may be reconstructed (up to isomorphism) category-
theoretically from the data (Sch

�
/X� , Y

�), i.e., a pair consisting of a
category and an object of it.

Proof. Assertion (i) follows from the functorial bijection (18). Assertion (ii)
follows from [5], Theorem A, and the fact that the morphism of topological
spaces underlying γY : Yt → Yb is a homeomorphism. Indeed, we may recon-
struct (un to equivalence) the category Sch/Yt

(∼= Sch/Y �) from the data
(Sch

�
/X� , Y

�) by Proposition 2.9 and assertion (i).

Proposition 2.11 (Characterization of X�|U for an open U). Let Y � be
an object of Sch

�
/X� and U a quasi-compact open subscheme of Yt. Denote

by U the (quasi-compact) open subscheme of Yb with γ−1
Y (U) = U (cf. (13)).

Then, the object Y �|U of Sch
�
/Y � may be characterized (up to isomorphism)

category-theoretically as the object Z� of Sch
�
/Y � which satisfies the following

condition:

(F )Z�,U : For any object f� : W� → Y � of Sch
�
/Y � such that the image of

ft : Wt → Yt lies in U , there exists uniquely a morphism W� → Z�

in Sch
�
/Y � .

Consequently, the collection of objects in Sch
�
/X� consisting of quasi-

compact open subsuperschemes of X� may be characterized as the objects
V � such that for any Y � ∈ Ob(Sch

�
/X�), the fiber product V � ×X� Y �

satisfies the condition (F )V �×
X�Y �,U for some open subscheme U of Yt.

Proof. This is a formal consequence of the definition of a quasi-compact open
subsuperscheme.
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2.4.

Next, we consider the reconstruction (cf. Proposition 2.12, Lemma 2.13, and
Lemma 2.14 below) of the ring object A1|0

X� over X� (more precisely, the ob-
jects A1|0

Y � for various Y � ∈ Ob(Sch
�
/X�)) corresponding to the ring structure

of OXb
.

Proposition 2.12 (Characterization of A
1|0
Y � for Y � ∈ Ob(Sch

�
/X�)). Let

Y � be an object of Sch
�
/X� . Also, let

z := (Z�, σ0�, σ1�)(62)

be a triple consisting of an object Z� of Sch
�
/Y � and two sections σ0�, σ1� :

Y � → Z� of the structure morphism Z� → Y � of Z�. Then, z is isomorphic
to the triple

aY := (A1|0
Y � , σ

[0]
Y � , σ

[1]
Y �)(63)

(more precisely, there exists an isomorphism h� : Z� ∼→ A
1|0
Y � over Y � sat-

isfying the equalities h� ◦ σ0� = σ
[0]
Y � and h� ◦ σ1� = σ

[1]
Y �) if and only if it

satisfies the following three conditions (G)z-(I)z:

(G)z: The fiber product Z� ×Y � Yt is isomorphic (over Yt) to the scheme
A

1|0
Yt

(which may be reconstructed by Corollary 2.10, (ii));
(H)z: Suppose that we are given an arbitrary commutative square diagram

W�
0 Z�

W�
1 Y �

(64)

in Sch
�
/Y � such that W�

1 is one-pointed and W�
0 is terminally minimal

over both W�
1 and Z�. Then, there exists a morphism g� : W�

1 → Z�

making the diagram

W�
0 Z�

W�
1

g�

Y �

(65)

commute;
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(I)z: The fiber product Y � ×σ0�,Z�,σ1� Y � is empty.

Proof. One may verify immediately that the triple aY satisfies the three condi-
tions (G)aY , (H)aY , and (I)aY . Hence, it suffices to prove its reverse direction.

Let z := (Z�, σ0�, σ1�) be a triple satisfying the required three con-
ditions. To begin with, we shall prove the claim that Z� is, Zariski lo-
cally on Yb, isomorphic to A

1|0
Y � . Let y be a closed point of Yb and write

Y ′� := Y � ×Yb
Spec(OYb,y) and Z ′� := Z� ×Yb

Spec(OYb,y). By the condi-
tion (G)z, the fiber of the natural morphism Z ′� → Y ′� at y is isomorphic
to A

1|0
y . Let us take a morphism f� : Z ′� → A

1|0
Y ′� over Y ′� whose restriction

to the fibers at y is an isomorphism. (Such a morphism necessarily exists due
to the universal property of the polynomial ring OY ′� [t] with coefficients in
OY ′� .) To complete the proof of the claim, it suffices to prove that f� is an
isomorphism. Let z be an arbitrary point of Z ′

b lying over y. Write

(66) f �
z : (O

A
1|0
Y ′� ,fb(z)

,m
A

1|0
Y ′� ,fb(z)

) → (OZ′�,z,mZ′�,z)

(where m(−) denotes the maximal ideal) for the homomorphism of local rings
defined by f� and (for each i ≥ 1) write

(67) f �,i
z : O

A
1|0
Y ′� ,fb(z)

/mi

A
1|0
Y ′� ,fb(z)

→ OZ′�,z/m
i
Z′�,z

for the induced homomorphism. By the definition of f� and Nakayama’s
lemma for noncommutative rings, all f �

z and f �,i
z (i = 1, 2, · · · ) are surjective.

We shall show that f �
z is also injective. Suppose that f �

z is not injective. One
verifies, like as the case of commutative rings, that

⋂
i≥1 m

i

A
1|0
Y ′� ,fb(z)

= 0.

Hence, there exists i ≥ 1 for which f �,i
z is not injective. By the condition

(H)z, there exists a homomorphism

(68) g� : OZ′�,z → O
A

1|0
Y ′� ,fb(z)

/mi
Yb,y

O
A

1|0
Y ′� ,fb(z)

which makes the following diagram

(69)

O
A

1|0
Y ′� ,fb(z)

/mYb,yOA
1|0
Y ′� ,fb(z)

OZ′�,z

g�

O
A

1|0
Y ′� ,fb(z)

/mi
Yb,y

O
A

1|0
Y ′� ,fb(z)

OY ′�,y
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commute, where the upper horizontal arrow denotes the composite of the
quotient OZ′�,z � OZ′�,z/mZ′�,z and the isomorphism (f �,1

z )−1. This ho-
momorphism g� factors through the quotient OZ′�,z � OZ′�,z/m

i
Z′�,z. The

resulting homomorphism

(70) OZ′�,z/m
i
Z′�,z → O

A
1|0
Y ′� ,fb(z)

/mi

A
1|0
Y ′� ,fb(z)

becomes a split injection of f �,i
z . Thus, we have

(71) O
A

1|0
Y ′� ,fb(z)

/mi

A
1|0
Y ′� ,fb(z)

∼= (OZ′�,z/m
i
Z′�,z) ⊕ Ker(f �,i

z ),

which contradicts the fact that f �,1
z is an isomorphism. Consequently, f �

z is an
isomorphism (for any z), that is to say, f� is an isomorphism. This completes
the proof of the claim.

Finally, it follows immediately from the condition (I)z and a standard
argument that Z� is isomorphic to A

1|0
Y � . This completes the proof of Propo-

sition 2.12.

Let Y � be an object of Sch
�
/X� . We shall define a functor

(72) (Gm)Y � : Sch
�
/Y � → Grp

(where Grp denotes the category of groups) to be the functor which, to any
object Z� of Sch

�
/Y � , assigns the group of automorphisms of A1|0

Z� over Z�

that are compatible with σ
[0]
Z� : Z� → A

1|0
Z� . It may be represented uniquely

(up to a canonical isomorphism) by an object of Sch
�
/Y � , which we also

denote by (Gm)Y � by abuse of notation. (Indeed, the open subsuperscheme
A

1|0
Y � |A1|0

Yb
\Im((σ[0]

Y � )b)
of A1|0

Y � represents this functor.) Write

(73) μGm

Y � : (Gm)Y � ×Y � (Gm)Y � → (Gm)Y �

for the multiplication morphism of (Gm)Y � , and write

(74) μ†
Y � : (Gm)Y � ×Y � A

1|0
Y � → A

1|0
Y �

for the natural action of (Gm)Y � on A
1|0
Y � . The morphism μ†

Y � induces a
morphism
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(75) νY �
(
:= μ†

Y � ◦ (id(Gm)
Y � × σ

[1]
Y �)

)
: (Gm)Y � → A

1|0
Y �

which is an open immersion. It follows from Proposition 2.12 that the group
object (Gm)Y � in Sch

�
/Y � and the morphisms μ†

Y � and νY � in Sch
�
/Y � may

be reconstructed (up to isomorphism) category-theoretically from the data
(Sch

�
/X� , Y

�). The following two lemmas will be used in the proof of Corol-
lary 2.15 below.

Lemma 2.13. Denote by

(76) μ
1|0
Y � : A1|0

Y � ×Y � A
1|0
Y � → A

1|0
Y �

the morphism corresponding to the multiplication of OYb
(via the functorial

bijection (34)). Then, a morphism μ� : A1|0
Y � ×Y � A

1|0
Y � → A

1|0
Y � in Sch

�
/Y �

coincides with μ
1|0
Y � if and only if it satisfies the following condition:

(J)μ� : the equality

(77) μ� ◦ (νY � × νY �) = νY � ◦ μGm

Y �

of morphisms (Gm)Y � ×Y � (Gm)Y � → A
1|0
Y � holds;

Consequently, the morphism μ
1|0
Y � in Sch

�
/Y � may be reconstructed cate-

gory-theoretically (up to isomorphism) from the data (Sch
�
/X� , Y

�).

Proof. Since the equality μ
1|0
Y � ◦ (νY � × νY �) = νY � ◦ μGm

Y � holds, the as-
sertion follows directly from the fact that νY � × νY � is an epimorphism in
Sch

�
/Y � .

Lemma 2.14. Denote by

(78) α
1|0
Y � : A1|0

Y � ×Y � A
1|0
Y � → A

1|0
Y �

the morphism corresponding to the addition of OYb
(via the functorial bijection

(34)). Then, a morphism α� : A1|0
Y � ×Y � A

1|0
Y � → A

1|0
Y � in Sch

�
/Y � coincides

with α
1|0
Y � if and only if it satisfies the following two conditions (K)α� and

(L)α�:
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(K)α�: The square diagram

(Gm)Y � ×Y � A
1|0
Y � ×Y � A

1|0
Y �

id(Gm)
Y �×α�

(μ†
Y �×μ†

Y � )◦λ�

(Gm)Y � ×Y � A
1|0
Y �

μ†
Y �

A
1|0
Y � ×Y � A

1|0
Y �

α� A
1|0
Y �

(79)

is commutative, where λ� denotes the morphism

(Gm)Y �×Y �A
1|0
Y �×Y �A

1|0
Y � →(Gm)Y �×Y �A

1|0
Y �×Y � (Gm)Y �×Y �A

1|0
Y �

(80)

(g, a1, a2) �→ (g, a1, g, a2)

over Y �.
(L)α�: We have the equalities

(81) α� ◦ (σ[0]
Y � × id

A
1|0
Y �

) = α� ◦ (id
A

1|0
Y �

× σ
[0]
Y �) = id

A
1|0
Y �

.

of endomorphisms of A1|0
Y � .

Consequently, the morphism α
1|0
Y � in Sch

�
/Y � may be reconstructed cate-

gory-theoretically (up to isomorphism) from the data (Sch
�
/X� , Y

�).

Proof. Let α� be a morphism satisfying the conditions (K)α� and (L)α� . We
write α� : OY � [t] → OY � [t] ⊗O

Y � OY � [t] for the homomorphism of superal-
gebras over OY � corresponding to α�. The condition (K)α� implies that α�

is given by t �→ a · t⊗ 1 + b · 1 ⊗ t for some a, b ∈ Γ(Yb,OYb
). Moreover, the

equalities in (L)α� imply that a = b = 1, that is to say, α� = α
1|0
Y � . Thus, we

complete the proof of Lemma 2.14.

2.5.

By combining the results in § 2.3 and § 2.4, one may reconstruct category-
theoretically the schematic structure of Xb as follows.

Corollary 2.15 (Characterization of Yb for Y � ∈ Ob(Sch
�
/X�)). Let Y � be

an object of Sch
�
/X� . Then, the schematic structure of Yb (i.e., a topological



1660 Yasuhiro Wakabayashi

space together with a sheaf of rings on it) may be reconstructed category-
theoretically (up to isomorphism) from the data (Sch

�
/X� , Y

�). Moreover,
this reconstruction is functorial (in the evident sense) in Y � ∈ Ob(Sch

�
/X�);

strictly speaking, if we are given a morphism f� : Z� → Y � in Sch
�
/X� ,

then (the two schemes Yb, Zb and) its underlying morphism fb : Zb → Yb may
be reconstructed category-theoretically.

Proof. By Corollary 2.10 and Proposition 2.11, one may reconstruct (up to
equivalence) category-theoretically the topological structure of Xb and the
full subcategory of Sch

�
/X� whose objects are the collection

{
X�|U ∈ Ob(Sch

�
/X�)

∣∣∣ U is a quasi-compact open subscheme of Xb

}
.

(82)

Moreover, it follows from Proposition 2.12, Lemma 2.13, and Lemma 2.14
that one may reconstruct ring objects A

1|0
X�|U ∈ Ob(Sch

�
X�) (for each quasi-

compact open U in Xb) over X�|U corresponding to OU . By considering
the set of various sections X�|U → A

1|0
X�|U , we obtain the ring structure

of Γ(U,OXb
) that is compatible with restriction to open subschemes of U .

Consequently, the schematic structure of Xb may be reconstructed, as desired.
The latter assertion follows from this reconstruction procedure.

2.6.

In this subsection, we consider the reconstruction of the various A0|1-twists
associated with fermionic twists of X�, together with the multiplication and
addition maps. As a consequence, one may reconstruct (cf. Corollary 2.20)
the schematic structure of superschemes Z� with Z� f∼ X�.

Let us fix an object Y � of Sch
�
/X� .

Proposition 2.16 (Characterization of A0|1-twists). Let (Z�, σ�) be a pair
consisting of an object Z� of Sch

�
/Y � (i.e., a morphism f� : Z� → Y �) and

a morphism σ� : Y � → Z� in Sch
�
/Y � (i.e., a section σ� of f�). Then,

the pair (Z�, σ�) forms an A0|1-twists over Y � if and only if it satisfies the
following three conditions (M)Z�,σ�-(O)Z�,σ� :

(M)Z�,σ� : The underlying morphism fb : Zb → Yb of schemes (which may be
reconstructed category-theoretically from the data (Sch

�
/X� , f

�)
by Corollary 2.15) is finite;
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(N)Z�,σ� : For each minimal object W� over Y �, the fiber product Z� ×Y �

W� is isomorphic to A
0|1
W� (which may be reconstructed category-

theoretically from the data (Sch
�
/Y � ,W

�) by Proposition 2.8);

(O)Z�,σ� : Let Y ′� be an open subsuperscheme of Y � (i.e., an object Y ′�

of Sch
�
/Y � satisfying the condition (F )Y ′�,U in Proposition 2.11

for some open subscheme U of Yt). Also, let (Z ′�, σ′�) be a
pair, where Z ′� denotes an object in Sch

�
/Y ′� and σ′� denotes

a morphism Y ′� → Z ′� in Sch
�
/Y ′� , satisfying the conditions

(M)Z′�,σ′� and (N)Z′�,σ′� . Then, there exists an open subsuper-
scheme Y ′′� of Y ′� and a monomorphism h� : Z ′�×Y ′�Y ′′� →
Z� ×Y � Y ′′� in Sch

�
/Y ′′� satisfying the equality of morphisms

h� ◦ (σ′� × idY ′′�) = σ� × idY ′′� : Y ′′� → Z� ×Y � Y ′′�.
(83)

Consequently, the collection of objects in Sch
�
/Y � which are isomorphic

to A0|1-twists over Y � may be reconstructed category-theoretically (up to iso-
morphism) from the data (Sch

�
/X� , Y

�).

Proof. Let (Z�, σ�) be a pair satisfying the required three conditions. By
the existence of a section σ� and the condition (N)Z�,σ� , the underlying
continuous map of f� is a homeomorphism (hence, we consider OZ� as a sheaf
on the underlying topological space of Y �). The conditions (M)Z�,σ� implies
that OZ� is a finite OY �-module. It follows from the condition (N)Z�,σ� and
Nakayama’s lemma that one may find, locally on Yb, an isomorphism OZ�

∼→
OY � ⊕(OY �/J ) of OY �-superalgebras, where the multiplication of the right-
hand side is given by (a, b) · (c, d) = (ac, ad + cb). Moreover, the universal
property described in (O)Z�,σ� implies that I = 0. Consequently, (Z�, σ�)
forms an A0|1-twist over Y �. Since the reverse direction of this assertion may
be verified immediately, we complete the proof of Proposition 2.16.

Next, let us fix an A0|1-twist (Z�, σZ�/Y �) over Y �.

Lemma 2.17. We shall write

(84) AutY �(Z�, σZ�/Y �) : Sch
�
/Y � → Grp

for the functor which, to any W� ∈ Ob(Sch
�
/Y �), assigns the automorphism

group of the A0|1-twist (Z� ×Y � W�, σZ�/Y � × idW�) over W�. Consider
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the isomorphism

ηZ� : (Gm)Y �
∼→ AutY �(Z�, σZ�/Y �)(85)

which, to any automorphism in (Gm)Y �(W�) (where W� ∈ Ob(Sch
�
/Y �))

corresponding to the automorphism of OW� [t] determined by t �→ g · t (where
g ∈ Γ(Wb,O×

Wb
)), assigns the automorphism of (Z�×Y �W�, σZ�/Y �×idW�)

corresponding to the automorphism of OZ�×
Y �W� (which is locally isomor-

phic to OW� [ψ]) determined by ψ �→ g · ψ. Then, an isomorphism η� :
(Gm)Y �

∼→ AutY �(Z�, σZ�/Y �) coincides with ηZ� if and only if it satis-
fies the following condition:

(P )η� : Let W� be an object of Sch
�
/Y � and h� an automorphism in

(Gm)Y �(W�) such that the induced automorphism of OWb
[t](

= O(A1|0
W )b

)
is given by t �→ g · t for some g ∈ Γ(OWb

,O×
Wb

). (Such a
pair (W�, h�) may be characterized category-theoretically thanks to
Corollary 2.15.) Here, note that the section

(σZ�/Y � |W� , σZ�/Y � |W�) : W� → Z�
W ×W� Z�

W(86)

(where Z�
W :=Z�×Y �W�) determines a decomposition O(Z�

W×
W�Z�

W )b∼= OWb
⊕OWb

ε, where the multiplication of the right-hand side is given
by (a, bε)·(c, dε) = (ac, (bc+ad)ε). Then, the automorphism η�(h�)×
η�(h�) of Z�

W ×W� Z�
W induces the automorphism of OWb

⊕ OWb
ε

given by assigning (a, bε) �→ (a, g2 · bε).

Consequently, the morphism ηZ� in Sch
�
/Y � may be reconstructed catego-

ry-theoretically (up to isomorphism) from (Sch
�
/X� , Y

�, (Z�, σZ�/Y �)), i.e.,
a collection of data consisting of a category Sch

�
/X� , an object Y � of it, and

a pair (Z�, σZ�/Y �) satisfying the conditions described in Proposition 2.16.

Proof. The assertion follows from the various definitions involved.

We shall write

(87) μη†
Z� : (Gm)Y � ×Y � A

1|0
Z� → A

1|0
Z�

for the action of (Gm)Y � on A
1|0
Z� (∼= A

1|0
Y � ×Y � Z�) defined by

(Gm)Y � ×Y � A
1|0
Y � ×Y � Z� → A

1|0
Y � ×Y � Z�(88)

(g, a, b) �→ (μ†
Y �(g, a), ηZ�(g, b)).
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According to Proposition 2.12, Lemma 2.17, and the discussion preceding
Lemma 2.13, this action may be reconstructed category-theoretically from
(Sch

�
/X� , Y

�, (Z�, σZ�/Y �)).

Lemma 2.18. Let μ� : A1|0
Z� ×Y � A

1|0
Z� → A

1|0
Z� be a morphism in Sch

�
/Y �

and consider the following condition concerning μ�:

(Q)μ� : There exists a fermionic twist W� of Y � satisfying that the A0|1-
twist (A0|1

Y ��W� , σA0|1
Y ��W�

) (cf. (42)) over Y � associated with W�

coincides with (Z�, σZ�/Y �) and the equality μ� = μY ��W� holds.

Then, the above condition (Q)μ� is equivalent that μ� satisfies the fol-
lowing four conditions (R)μ�-(U)μ� :

(R)μ� : The square diagram

(Gm)Y � ×Y � A
1|0
Z� ×Y � A

1|0
Z�

id(Gm)
Y �×μ�

(μη†
Z�×μη†

Z� )◦λ�

(Gm)Y � ×Y � A
1|0
Z�

μη‡
Z�V

A
1|0
Z� ×Y � A

1|0
Z�

μ� A
1|0
Z�

(89)

is commutative, where μη‡
Z� denotes the action of (Gm)Y � on A

1|0
Z�

given by (g, a) �→ μη†
Z�(g2, a) and λ� denotes the morphism

λ� : (Gm)Y ×Y A
1|0
Z ×Y A

1|0
Z → (Gm)Y ×Y A

1|0
Z ×Y (Gm)Y ×Y A

1|0
Z

(90)

(g, a1, a2) �→ (g, a1, g, a2);

(S)μ� : The square diagrams

(Gm)Y � ×Y � A
1|0
Z� ×Y � A

1|0
Z�

id(Gm)
Y �×μ�

μη†
Z�×id

A
1|0
Z�

(Gm)Y � ×Y � A
1|0
Z�

μη†
Z�

A
1|0
Z� ×Y � A

1|0
Z�

μ� A
1|0
Z�

(91)
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and

(Gm)Y � ×Y � A
1|0
Z� ×Y � A

1|0
Z�

id(Gm)
Y �×μ�

(μη†
Z�×id

A
1|0
Z�

)◦θ�

(Gm)Y � ×Y � A
1|0
Z�

μη†
Z�

A
1|0
Z� ×Y � A

1|0
Z�

μ� A
1|0
Z�

(92)

are commutative, where θ� denotes the isomorphism

(Gm)Y � ×Y � A
1|0
Z� ×Y � A

1|0
Z�

∼→ (Gm)Y � ×Y � A
1|0
Z� ×Y � A

1|0
Z�(93)

(g, a1, a2) �→ (g, a2, a1);

(T )μ� : Let us write
(94)
p� := σ

[1]
Y � ×σZ�/Y � : Y � → A

1|0
Z� , q� := σ

[0]
Y � × idZ� : Z� → A

1|0
Z� .

Then, the following equalities hold:

μ� ◦ (p� × p�) = p� : Y � → A
1|0
Z� ;(95)

μ� ◦ (p� × q�) = q� : Z� → A
1|0
Z� ;(96)

μ� ◦ (q� × p�) = q� : Z� → A
1|0
Z� .(97)

Also, it holds the equality

μ� ◦ (q� × q�) = σ
[0]
Z� ◦ σZ�/Y � ◦ (h� × h�)(98)

of morphisms Z� ×Y � Z� → A
1|0
Z� , where h� denotes the structure

morphism Z� → Y � of Z�;
(U)μ� : The morphism

(99) ((id
A

1|0
Y �

× h�) ◦ μ� ◦ (q� × q�))b : (Z� ×Y � Z�)b → (A1|0
Y �)b

is a closed immersion of schemes.

Moreover, if these equivalent conditions are satisfied, then the fermionic
twist W� resulting from (Q)μ� is uniquely determined up to isomorphism.
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Consequently, the objects A
0|1
Y ��W� (where W� is any fermionic twist of

Y �) together with morphisms σ
A

0|1
Y ��W�

and μY ��W� may be reconstructed

(up to isomorphism) category-theoretically from the data (Sch
�
/X� , Y

�).

Proof. Let μ� be a morphism satisfying the required four conditions. It cor-
responds, Zariski locally on Yb, to a homomorphism

(100) μ� : OY � [t, ψ] → OY � [t, ψ] ⊗O
Y � OY � [t, ψ]

of OY �-superalgebras. By the conditions (R)μ� and (S)μ� , μ� may be given
by

t �→ a1 · t⊗ t + a2 · ψ ⊗ ψ + b1 · ψ ⊗ t + b2 · t⊗ ψ(101)

and

ψ �→ b3 · t⊗ t + b4 · ψ ⊗ ψ + a3 · ψ ⊗ t + a4 · t⊗ ψ,(102)

where ai ∈ Γ(Yb,OYb
) and bi ∈ Γ(Yb,OYf

) (1 ≤ i ≤ 4). The equality (95) im-
plies that a1 = 1 and b3 = 0. The equality (96) implies that b2 = 0 and a4 = 1.
The equality (97) implies that b1 = 0 and a3 = 1. The equality (98) implies
that b4 = 0. Hence, the morphism (99) corresponds to the homomorphism
OYb

[t] → OYb
⊕ (OYb

· ψ ⊗ ψ) of OYb
-algebras given by t �→ a2 · ψ ⊗ ψ. But,

the condition (U)μ� implies that a2 ∈ Γ(Yb,O×
Yb

). Thus, there exists a Zariski
open covering {Uα}α∈I of Yb such that the pair (A1|0

Z� , μ
�) may be obtained

by gluing the pairs (A1|1
Y �|Uα

, μ�
α ) together, where μ�

α denotes the morphism
A

1|1
Y �|Uα

×Y �|Uα
A

1|1
Y �|Uα

→ A
1|1
Y �|Uα

corresponding to the homomorphism

OY �|Uα
[t, ψ] → OY �|Uα

[t, ψ] ⊗O
Y �|Uα

OY �|Uα
[t, ψ](103)

t �→ t⊗ t + sα · ψ ⊗ ψ,

ψ �→ t⊗ ψ + ψ ⊗ t.

(for some sα ∈ Γ(Uα,O×
Uβ

)). If Uα,β := Uα ∩ Uβ �= ∅, then the gluing
automorphism ξ�α,β of A

1|1
Y �|Uα,β

(over A
1|0
Y �|Uα,β

) is given by ψ �→ tα,β · ψ
for some tα,β ∈ Γ(Uα,β,O×

Uα,β
). Since ξ�α,β is compatible with μ�

α and μ�
β ,

we have the equality sα = t2α,β · sβ. Hence, we obtain a collection of data
({Uα}α, {sα}α, {tα,β}α,β) representing an element a of H1

fppf(Yb, μ2) (cf. (28)).
One verifies immediately that W� := aY � becomes the required fermionic
twit of Y �. This completes the proof of Lemma 2.18.
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Lemma 2.19. We shall assume that there exist a fermionic twist W� of Y �

and an isomorphism h� : (A0|1
Y ��W� , σA0|1

Y ��W�
) ∼→ (Z�, σZ�/Y �) of A0|1-

twists. (This assumption may be characterized category-theoretically thanks
to Lemma 2.18.) Let α� : A1|0

Z� ×Y � A
1|0
Z� → A

1|0
Z� be a morphism in Sch

�
/Y � .

Then, α� coincides with αY ��W� (cf. (45)) via the isomorphism h�×idA1|0 :
A

1|1
Y ��W�

∼→ A
1|0
Z� if and only if α� satisfies the following two conditions

(V )α� and (W )α�:

(V )α� : The square diagram

(Gm)Y � ×Y � A
1|0
Z� ×Y � A

1|0
Z�

id(Gm)
Y �×α�

(μη†
Z�×μη†

Z� )◦λ�

(Gm)Y � ×Y � A
1|0
Z�

μη†
Z�

A
1|0
Z� ×Y � A

1|0
Z�

α� A
1|0
Z�

(104)

is commutative, where λ� is as defined in (90).
(W )α� : We have the equalities

α� ◦ ((σ[0]
Z� ◦ σZ�/Y �)×A

1|0
Z�)=α� ◦ (A1|0

Z�×(σ[0]
Z�◦σZ�/Y �))=id

A
1|0
Z

,

(105)

of endomorphisms of A1|0
Z� .

Consequently, the objects A
0|1
Y ��W� (where W� is any fermionic twist of

Y �) together with morphisms σ
A

0|1
Y ��W�

and αY ��W� may be reconstructed

(up to isomorphism) category-theoretically from the data (Sch
�
/X� , Y

�).

Proof. The assertion follows from an argument similar to the argument in the
proof of Lemma 2.14.

Corollary 2.20 (Characterization of fermionic twists over Y �). The col-
lection of fermionic twists over Y � (i.e., a collection of topological spaces
together with a sheaf of superalgebras) are reconstructed category-theoretically
(up to isomorphism) from the data (Sch

�
/X� , Y

�). Moreover, this reconstruc-
tion is functorial (in the evident sense) in Y � ∈ Sch

�
/X� .

Proof. The assertion follows from Proposition 2.11, Lemma 2.18, Lemma 2.19,
and the discussion in § 1.7 (especially, the isomorphism (46)).
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2.7.

We turn to the proof of the main result of the present paper, i.e., Theorem A.
Before beginning the proof, let us first mention the following rigidity property
concerning Sch

�
/X� .

Proposition 2.21. Let X� and X ′� be two locally noetherian superschemes.
Let

Isom(Sch
�
/X� ,Sch

�
/X′�)(106)

denotes the category of equivalences Sch
�
/X�

∼→ Sch
�
/X′� and

Isom(Sch
�
/X� ,Sch

�
/X′�)(107)

denotes the set of isomorphism classes of equivalences Sch
�
/X�

∼→ Sch
�
/X′�

(i.e., the set of isomorphism classes of objects in Isom(Sch
�
/X� ,Sch

�
/X′�)).

Also, let

Isom(X ′�, X�)(108)

denotes the set of isomorphisms of superschemes X ′� ∼→ X�. Consider the
map of sets

Isom(X ′�, X�) → Isom(Sch
�
/X� ,Sch

�
/X′�)(109)

which, to any isomorphism f� : X ′� ∼→ X�, assigns (the isomorphism class
of) the equivalence Sch

�
/X�

∼→ Sch
�
/X′� given by base-change via f�. Then,

this map (109) is injective.

Proof. The assertion follows immediately from the functorial bijection (34)
and the various reconstruction procedures involved.

Remark 2.22. Unlike the case of schemes proved in [5], Theorem 1.7 (ii),
the map (109) may not be surjective. Indeed, suppose that X� = X ′� = Y
for some scheme Y and there exists a nonzero element a ∈ H1

fppf(Y, μ2).
Then, the assignment Z� �→ aZ� defines an autoequivalence aφ : Sch

�
/Y

∼→
Sch

�
/Y . Since Z� is, in general, not isomorphic to aZ�, aφ is not isomorphic

to the identity functor. But, one may verify immediately that aφ cannot
arise from the base-change via any automorphism of Y . This implies that the
isomorphism class of aφ does not lie in the image of the map (109).
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Finally, by applying the results obtained so far, we prove the remaining
portion of Theorem A (cf. Proposition 1.9) as follows:

Proof of Theorem A. Suppose that we are given an equivalence of categories:

(110) φ : Sch
�
/X�

∼→ Sch
�
/X′� .

Let us take a Zariski open covering {Uα}α∈I of Xb, where each Uα is quasi-
compact, i.e., X�|Uα ∈ Ob(Sch

�
/X�). The image φ(X�|Uα) of X�|Uα (for each

α ∈ I) is isomorphic (as an object of Sch
�
/X′�) to X ′�|U ′

α
for some quasi-

compact open subscheme U ′
α of X ′

b (cf. Proposition 2.11). It follows from
Corollary 2.20 (and the various reconstruction procedures involved) that one
may find an isomorphism ι�α : Z�

α
∼→ X�|Uα of superschemes, where Z�

α

denotes a fermionic twist of X ′�|U ′
α
; such an isomorphism ι�α is uniquely

determined (thanks to Proposition 2.21) by the condition that the functor
Sch

�
/X�|Uα

∼→ Sch
�
/Z�

α
given by base-change via ι�α is isomorphic to the com-

posite functor

ιSch
α : Sch

�
/X�|Uα

φ|Uα−−−→ Sch
�
/X′�|U′

α

(25)−−→ Sch
�
/Z�

α
,(111)

where the first arrow denotes the restriction of φ to Sch
�
/X�|Uα

. For any
pair (α, β) ∈ I × I with Uα,β := Uα ∩ Uβ �= ∅, we obtain an isomorphism
ι�α,β := (ι�β )−1 ◦ ι�α : Z�

α |Uα,β

∼→ Z�
β |Uα,β

. Proposition 2.21 implies that the
collection of isomorphisms {ι�α,β}α,β satisfies the cocycle condition (in the
evident sense), and hence, the superschemes {Z�

α }α∈I may be glued (by means
of {ι�α,β}α,β) together to obtain a superscheme Z�. By construction, Z� is a
fermionic twist of X ′� and the isomorphisms {ι�α }α∈I may be glued together
to an isomorphism ι� : Z� ∼→ X�. Consequently, we have X� f∼ X ′. This
completes the proof of Theorem A.

3. Further rigidity properties

In this final section, we propose further rigidity properties concerning the
category of superschemes.

Proposition 3.1. Let X� and Y � be two locally noetherian superschemes.
Also, let f�

(
:= (fb, f �)

)
: Y � → X� be a morphism of superschemes such

that fb is quasi-compact. We shall write

(112) Sch
�
f� : Sch

�
/X� → Sch

�
/Y �
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for the functor induced by base-change via f�. Then, the following properties
hold.
(i) If there exists an open subscheme U of Xb such that 2 is invertible

in Γ(U, fb∗(OYb
)) (in particular, Γ(U, fb∗(OYb

)) �= 0), then the functor
Sch

�
f� has no nontrivial automorphisms.

(ii) If Y � is a scheme (i.e., OYf
= 0), then each automorphism of Sch

�
f� cor-

responds to the collection of automorphisms {〈ζ〉Z�×
X�Y �}Z�∈Ob(Sch

�
/X� )

for some ζ ∈ μ2(Yb) (cf. (20)).

Proof. First, let us make the following observation. Let κ be an automorphism
of Sch

�
f� , which consists of automorphisms

(113) κ�
Z�

(
:= (κZ,b, κ

�
Z)

)
: Y � ×X� Z� ∼→ Y � ×X� Z�

in Sch
�
/Y � that are functorial in Z� ∈ Ob(Sch

�
/X�). If Schfb : Sch/Xb

→
Sch/Yb

denotes the functor defined by base-change via fb : Yb → Xb, then it
makes the following square diagram commute

Sch/Xb

Schfb

Schβ
X�

Sch/Yb

Schβ
Y �

Sch
�
/X�

Sch
�
f�

Sch
�
/Y � ,

(114)

where the left-hand and right-hand vertical arrows arise from base-change via
βX� and βY � respectively. Since (W ×Xb

Y �)b = W ×Xb
Yb (for any W ∈

Ob(Sch/Xb
)), the automorphism κ restricts to an automorphism κ|Sch/Xb

of
Schfb , which is given by {(κW×Xb

X�)b}W∈Ob(Sch/Xb
). By [5], Theorem 1.7,

(i), we have (κW×Xb
X�)b = idW×Xb

Yb
for any W ∈ Ob(Sch/Xb

). In particular,
the equality (κ

A
1|0
X�

)b = id
A

1|0
Yb

implies the equality

κ�
A

1|0
X�

= id
A

1|0
Y �

.(115)

Next, let us denote by γ�1 (resp., γ�2 ) the morphism A
0|2
Y � → A

0|1
Y � in Sch

�
/Y �

corresponding to the homomorphism OY � [ψ] → OY � [ψ] ⊗O
Y � OY � [ψ] given

by ψ �→ ψ ⊗ 1 (resp., ψ �→ 1 ⊗ ψ). Note that the automorphism κ�
A

0|1
X�

of

A
0|1
Y � is given by ψ �→ ζ · ψ + a for some ζ ∈ Γ(Yb,O×

Yb
) and a ∈ Γ(Yb,O×

Yf
).
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Since γ�� : A0|2
Y � → A

0|1
Y � (for each � = 1, 2) is compatible with κ�

A
0|2
X�

and

κ�
A

0|1
X�

(due to the functoriality of κ�
Z� with respect to Z�), κ�

A
0|2
X�

is given by

κ�

A
0|2
X�

(ψ⊗1) = (ζ ·ψ+a)⊗1 and κ�

A
0|2
X�

(1⊗ψ) = 1⊗ (ζ ·ψ+a). It follows that

κ�

A
0|2
X�

(ψ ⊗ ψ) = ζ2 · ψ ⊗ ψ + ζ · ψ ⊗ a + ζ · a⊗ ψ + a⊗ a.(116)

Here, for any superscheme Z�, we shall write A
ε|0
Z� := Z� × Spec(Z[ε]/ε2).

Since A
ε|0
Y � lies in the essential image of the composite Schβ

Y � ◦ Schfb , we
have (κ

A
ε|0
X�

)b = id(Aε|0
Y � )b

But, a morphism γ�ε : A0|2
Y � → A

ε|0
Y � over Y � given

by assigning ε �→ ψ ⊗ ψ is compatible with κ�
A

0|2
X�

and κ�
A

ε|0
X�

. This implies

that κ�

A
0|2
X�

(ψ ⊗ ψ) = ψ ⊗ ψ, i.e., a = 0 and ζ2 = 1 (⇔ ζ ∈ μ2(Yb)). Since

we have obtained the equality (115), κ�
A

1|1
X�

corresponds to the automorphism

of the OY �-superalgebra OY � [t, ψ] given by t �→ t and ψ �→ ζ · ψ. Hence,
by the discussion in § 1.6 (especially, the composite bijection (34)) and the
functoriality of Z� �→ κ�

Z� , the equality κ�
Z� = 〈ζ〉Z�×

X�Y � holds for any
Z� ∈ Ob(Sch

�
/X�).

Now, we shall prove assertion (i) and (ii). Assertion (ii) follows directly
from the above observation, so it suffices to consider assertion (i). Let U be
an open subscheme of Xb satisfying the assumption. Then, since there is no
nontrivial automorphism of the initial object Y � in Sch

�
/Y � , κ�

X�|U must
be the identity morphism of Y �|f−1

b
(U). In particular, the fermionic part of

κ�
X�|U coincides with the identity morphism of OYf

|f−1
b

(U). It follows from the
assumption in (ii) that ζ = 1, i.e., κ coincides with the identity morphism.
This completes the proof of Proposition 3.1.

Proposition 3.2. Let X� be a locally noetherian superscheme. Suppose that
for any Y � ∈ Ob(Sch

�
/X�), one has an automorphism κ�

Y � of Y � (which is
not necessarily over X�) and for any morphism f� : Y �

1 → Y �
2 in Sch

�
/X� ,

one has a commutative square diagram:

(117)

Y �
1

κ�
Y
�
1

f�

Y �
1

f�

Y �
2

κ�
Y
�
2

Y �
2 .
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Then, there exists ζ ∈ μ2(Xb) such that κ�
Y � = 〈ζ〉Y � for all Y � ∈

Ob(Sch
�
/X�).

Proof. The assertion follows immediately from an argument similar to the
argument in the proof of Proposition 3.1.
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