
Pure and Applied Mathematics Quarterly
Volume 16, Number 5, 1585–1617, 2020

Regularity of fully non-linear elliptic equations on
Kähler cones
Rirong Yuan

∗

Abstract: We derive quantitative boundary estimates, and then
solve the Dirichlet problem for a general class of fully non-linear
elliptic equations on annuli of Kähler cones over closed Sasakian
manifolds. This extends extensively a result concerning the geodesic
equations in the space of Sasakian metrics due to Guan-Zhang. Our
results show that the solvability is deeply affected by the transverse
Kähler structures of Sasakian manifolds. We also discuss possible
extensions of the results to equations with right-hand side depend-
ing on unknown solutions.
Keywords: Dirichlet problem, degenerate fully non-linear elliptic
equations, quantitative boundary estimate, gradient estimate, cone
condition, Sasakian manifolds.

1. Introduction

In Kähler geometry, Donaldson conjectured in [8] that the space of Kähler
metrics is geodesic convex by smooth geodesic and that it is a metric space.
By the observation of [8, 24, 27] the geodesic equation in the space of Kähler
metrics can be deduced to a homogeneous complex Monge-Ampère equation
on a manifold of one dimension higher. In [3], Chen proved the existence of
C1,α-geodesics (∀0 < α < 1) in the space of Kähler metrics, and then solved
the second part of Donaldson’s conjecture.

In the setting of Sasaki geometry, which can be viewed as an odd dimen-
sional counterpart of Kähler geometry, Guan-Zhang [21] studied the corre-
sponding geodesic equation in the space of Sasakian metrics H and partially
verified the counterpart to Donaldson’s conjecture in Sasakian setting. As in
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[21], such a geodesic equation connecting the potentials ϕ1 and ϕ2 in H is
similarly equivalent to

(1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Ωu)n = 0, in S × (1, 3
2),

u|r=1 = ϕ1,

u|r= 3
2

= ϕ2 + 4 log(32),

where (S, ξ, η,Φ, g) is a closed Sasakian manifold of dimension (2n−1), Ωu =
ω̄+ r2

2
√
−1(∂∂u− ∂u

∂r ∂∂r), ω̄ = 1
2d(r

2η) is the Kähler form of the Kähler cone
(C(S), ḡ) = (S × R+, r2g + dr2), r is the coordinate on R+. Here

H :=
{
v ∈ C∞

B (S) : (η + dcBv) ∧ (dη +
√
−1∂B∂Bv)n−1 �= 0

}
,

and dcB =
√
−1
2 (∂B − ∂B) (where ∂B, ∂B defined as below). Furthermore, they

obtained the uniqueness of transverse Kähler metric with constant scalar
curvature in each basic Kähler class if first basic Chern class is non-positive.

In this paper, our aim is to study a class of fully nonlinear elliptic equa-
tions on an annulus M := S × (a, b) (0 < a < b < +∞),

(2)

⎧⎪⎨
⎪⎩
F (g[u]) := f(λ(g[u])) = ψ, in M,

u|r=a = ϕa,

u|r=b = ϕb,

where ψ and ϕa, ϕb are prescribed functions with appropriate regularities,
g = g[u] = χ +

√
−1(∂∂u − ∂u

∂r ∂∂r), χ is a smooth real (1, 1)-form, λ(g) =
(λ1, · · · , λn) are the eigenvalues of g with respect to ω̄, and f is a smooth
symmetric function defined in a convex Γ ⊂ Rn with vertex at the origin and
boundary ∂Γ �= ∅,

Γn := {λ ∈ Rn : σk(λ) > 0 for each 1 ≤ k ≤ n} ⊆ Γ,

where σk(λ) is the k-th elementary function

σk(λ) =
∑

1≤i1<i2···<ik≤n

λi1 · · ·λik .

For convenience we define σ0(λ) ≡ 1.
The most important equation is complex Monge-Ampère equation corre-

sponding to f(λ) = (σn(λ))1/n with Γ = Γn, as the relation to the represen-
tation of Ricci curvature on Kähler manifolds. The complex Monge-Ampère
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equation thus plays important roles in the existence of canonical Kähler met-
rics in complex geometry. A celebrated work is due to Yau [36], in which he
proved Calabi’s conjecture and showed that the existence of Kähler-Einstein
metrics on closed Kähler manifolds of vanishing or negative first Chern class.
The existence of Kähler-Einstein metric on the closed Kähler manifold with
negative first Chern class was also proved by Aubin [1] independently.

In the setting of real variables, the study of equations of this type can
be traced back to the work of Caffarelli-Nirenberg-Spruck [2] on the Dirichlet
problem on bounded domains Ω ⊂ Rn. In order to study the equation within
the framework of elliptic equations, we solve the equations in the class of
admissible functions satisfying λ(g[u]) ∈ Γ; moreover, f satisfies the following
standard and fundamental conditions:

fi(λ) := ∂f

∂λi
(λ) > 0 in Γ, 1 ≤ i ≤ n,(3)

f is concave in Γ,(4)
inf
M̄

ψ > sup
∂Γ

f,(5)

where
sup
∂Γ

f := sup
λ0∈∂Γ

lim sup
λ→λ0

f(λ), and M̄ := S × [a, b].

We also denote δψ,f := infM̄ ψ− sup∂Γ f by the constant which measures
if the equation is degenerate.

Furthermore, we assume

(6) For any σ < supΓ f and λ ∈ Γ we have lim
t→+∞

f(tλ) > σ.

The above condition allows one to derive gradient estimate by using the blow-
up argument used in [30]. Typical examples satisfying (3), (4) and (6) are as
the following: the corresponding cone of f is Γ = Γn, or if f is homogeneous
of degree one with f > 0 in Γ.

We further present some additional materials: A Sasakian structure
(ξ, η,Φ, g) consists of a Reeb field ξ, a contact 1-form η with η(X) = g(ξ,X),
and a tensor Φ with Φ(X) = ∇Xξ. Also, the metric cone (C(S), ḡ) is a Kähler
manifold with the compatible complex structure J given by

J(X) = Φ(X) − η(X)r ∂

∂r
, J(r ∂

∂r
) = ξ.

There is an important fact: Φ determines a complex structure on the contact
subbundle D = ker{η}, and (D,Φ|D, dη) further provides S with a transverse
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Kähler structure admitting with Kähler form ωT = 1
2dη. The complexification

DC of the sub-bundle D can be decomposed into its eigenspaces with respect
to Φ|D as DC = D1,0⊕D0,1. A class of C1-smooth functions v with ξv ≡ 0 are
called basic. The basic functions play crucial roles in the theory of Sasakian
geometry, as they are invariant along the Reeb field ξ. Let’s denote

Ck
B(S) =

{
u ∈ Ck(S) : ξu = 0

}
, Ck,α

B (S) =
{
u ∈ Ck,α(S) : ξu = 0

}
,

Ck
B(M) =

{
u ∈ Ck(M) : ξu = 0

}
, Ck,α

B (M) =
{
u ∈ Ck,α(M) : ξu = 0

}
, etc.

It is easy to see that the exterior differential preserves basic forms. The
transverse complex structure follows the splitting of the complexification of
the bundles of the sheaf of germs of basic p-forms Λp

B(S) on S,

Λp
B(S) ⊗ C = ⊕i+j=pΛi,j

B (S),

where Λi,j
B (S) denotes the bundle of basic forms of type (i, j). Set d|B = d|Λp

B
,

we can decompose d|B = ∂B + ∂B, where ∂B : Λi,j
B −→ Λi+1,j

B , ∂B : Λi,j
B −→

Λi,j+1
B . Furthermore, ∂2

B = ∂
2
B = 0, ∂B∂B + ∂B∂B = 0. From now on, P ∗η

and P ∗dη will be used to denote pull-backs by η and dη, respectively, where
P : C(S) → S is the natural projective map. Given a real (1, 1)-form g, let

gT (·, ·) = g|P ∗D1,0×P ∗D0,1 : P ∗D1,0 × P ∗D0,1 → C,

and λ′(g[v]T ) = (λ′
1, · · · , λ′

n−1) be the eigenvalues of g[v]T with respect to
r2ωT . In particular, g[v]T (·) = χT (·) +

√
−1∂B∂Bv(·) for v ∈ C2

B(M̄).
Observing that equation (2) involves the radial derivation of the unknown

solution u, say ∂u
∂r , we know that it is much more complicated than the stan-

dard one and draws a hard difficulty due to the two different types of complex
derivatives.

A feasible approach to overcoming the difficulty is to complexify the radial
derivation in equation. To do this we need to ensure J( ∂

∂r )u = 1
r ξu = 0 (i.e.

u is basic) under the following condition

(7) ∇ξχ = 0, and ϕa, ϕb, ψ are all basic,

where ∇ is Chern connection of ḡ. Such a condition is very natural from
the view-point of Sasakian geometry. The following lemma states that every
admissible solution of Dirichlet problem (2) is basic with assuming (7) holds.

Lemma 1.1 ([21, 26]). Suppose (3), (5) and (7) hold. Let u ∈ C3(M)∩C1(M̄)
be an admissible solution of Dirichlet problem (2), then ξu ≡ 0 in M̄ .
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The above lemma was first proved by Guan-Zhang [21] for complex Monge-
Ampère type equation with χ = 2

r2 ω̄, and further by Qiu and the author [26]
for general fully nonlinear elliptic equations. Moreover, the author showed in
[37] that condition (7) can be removed for certain fully nonlinear elliptic equa-
tions, including Dirichlet problem of complex Monge-Ampère type equation
for n = 2.

A powerful notion of a subsolution is developed to study Dirichlet problem
for fully nonlinear elliptic equations and the related geometric problems (cf.
[3, 13, 14, 18, 19, 20, 21, 22] and references therein).

For purpose of constructing the desired basic admissible subsolution,
we assume that there exists a basic function v ∈ C4,α

B (M̄) with v|r=a =
ϕa, v|r=b = ϕb such that

(8) λ′(g[v]T ) ∈ Γ∞, lim
R→+∞

f(λ′(g[v]T ), R) > ψ, in M̄.

As in [32], Γ∞ := {(λ1, · · · , λn−1) ∈ Rn−1 : (λ1, · · · , λn−1, R) ∈ Γ for some
R > 0} stands for the projection of Γ onto Rn−1. Such a condition is very
closely related to the transverse Kähler structure of the underlying Sasakian
manifold (S, ξ, η,Φ, g).

The following theorem shows that the solvability of Dirichlet problem (2)
is heavily determined by cone condition (8), thereby being deeply affected by
the transverse Kähler structures of underlying Sasakian manifolds.

Theorem 1.2. Let ψ ∈ Ck,α
B (M̄), ϕa, ϕb ∈ Ck+2,α

B (S), k ≥ 2, 0 < α < 1.
Assume (3), (4), (5), (6), (7) and (8) hold. Then Dirichlet problem (2) has a
unique basic admissible solution u ∈ Ck+2,α

B (M̄).

We stress that condition (8) can be viewed as a kind of cone condition.
Moreover, in contrast to the cone conditions in [10, 28, 29] as well as the
notion of C-subsolution in [30], our cone condition is much more easier to
check. In particular, if χT (·, r) = χT (·) (i.e. χT is invariant with varying
radial variable r) and

(9) lim
t→+∞

f(λ′, t) > σ, for any σ < sup
Γ

f, λ′ ∈ Γ∞,

then condition (8) can be replaced by

(10) λ′(χT +
√
−1∂B∂Bϕa), λ′(χT +

√
−1∂B∂Bϕb) ∈ Γ∞, in S,

which is completely determined by the given basic boundary data. Conse-
quently, we get
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Theorem 1.3. In addition to (3), (4), (5), (6), (7) and (9), we assume
χT (·, r) = χT (·) and ψ ∈ C∞

B (M̄) is a smooth basic function. Then the Dirich-
let problem (2) with basic smooth boundary data ϕa, ϕb satisfying (10) has a
unique smoothly basic solution u ∈ C∞

B (M̄).

It is noteworthy that such a condition does not rely on the right-hand side
of the equation, and the condition holds for ψ with sup∂Γ f < ψ < supΓ f
which is necessary for the solvability. There is no any other restriction to the
upper bound of the right-hand side. Hence, if (9) holds, we can solve the
Dirichlet problem with only assuming necessary fundamental assumptions
mentioned in this context. We should figure out a simple fact that, even
for the existence of a C2-smoothly basic admissible function with the given
basic boundary data, such a condition is necessary and needed. Therefore, it
is necessary for the solvability of Dirichlet problem (2) in the class of basic
admissible functions.

For degenerate equations, we have the following existence results.

Theorem 1.4. Let ψ ∈ C2,γ
B (M̄) be a basic function with δψ,f = 0 for some

γ ∈ (0, 1), and ϕa, ϕb ∈ C4,γ
B (S). Suppose (3), (4), (6), (7) and (8) hold. We

further assume f ∈ C∞(Γ) ∩ C0(Γ̄), Γ̄ = Γ ∪ ∂Γ. Then there exists a (weak)
basic solution u ∈ C1,α

B (M̄), ∀0 < α < 1, with λ(g[u]) ∈ Γ̄ and Δu ∈ L∞(M̄)
to the Dirichlet problem (2) for degenerate fully nonlinear elliptic equations.
Moreover, the solution is C4,γ-smooth in M+ := {z ∈ M̄ : ψ(z) > sup∂Γ f}.

Theorem 1.5. Suppose (3), (4), (6), (7) and (9) hold. Assume χT (·, r) =
χT (·) and ψ ∈ C∞

B (M̄) is a smooth basic function with δψ,f ≥ 0. Then the
Dirichlet problem (2) with basic smooth boundary data ϕa, ϕb satisfying (10)
has a (weak) basic solution u ∈ C1,α

B (M̄), ∀0 < α < 1, with λ(g[u]) ∈ Γ̄ and
Δu ∈ L∞(M̄). Moreover, the solution is smooth in the subset M+.

Our result is applicable for some geometric problems, as condition (10)
originates naturally from Sasakian geometry. A typical and important exam-
ple satisfying (10) is χT ≡ dη and ϕa, ϕb ∈ H, in which dη+

√
−1∂B∂Bϕa > 0

and dη +
√
−1∂B∂Bϕb > 0. This example can be applied to the above-

mentioned geodesic equations in the space of Sasakian metrics H which were
studied in [21]. Applying Theorem 1.5 or 1.4 to Dirichlet problem (1) for com-
plex Monge-Ampère type equation, one immediately obtains Guan-Zhang’s
result in [21]: the existence of a basic weak solution of the geodesic equation
in the space of Sasakian metrics. Furthermore, the results obtained in this
paper remove some additional assumptions in [26] and so extensively extend
main theorems proved there. Moreover, condition (9) allows many interesting
symmetric functions. In addition to a class of functions f =

∑N
j=1 gj with the
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cone Γk := {λ ∈ Rn : σi(λ) > 0 for 1 ≤ i ≤ k}, where k is a fixed integer
with 2 ≤ k ≤ n,

gj =
Nj∏
i=1

(
ci +

k−1∑
l=0

ci,l(
σk
σl

)
1

k−l

)αi

,

where ci, ci,l and αi are all nonnegative constants with
∑Nj

i=1 αici,0 > 0,∑Nj

i=1 αi = 1, ci +
∑k−1

l=0 ci,l > 0 for each i, condition (9) also allows

logPm(λ) =
∑

1≤i1<···<im≤n

log(λi1 + · · · + λim)

with the cone Pm := {λ ∈ Rn : λi1 + · · · + λim > 0 for any 1 ≤ i1 < · · · <
im ≤ n}. The function logPn−1 recently has received attention, as it is related
to Gauduchon’s conjecture which can be reduced to solving logPn−1(λ(χ̃ +√
−1∂∂u + W (·, ∂u, ∂u))) = ψ on closed Hermitian manifolds (see [25, 34]),

where W (·, ∂u, ∂u) is a certain real (1, 1)-form depending linearly on ∂u and
∂u. Please refer to [31, 33, 34] for series works on the Gauduchon’s conjecture,
and to [16] for related work.

It would be worthwhile to note that the constant C in (14) of Section 2 is
a uniform constant depending only on |ϕ|C2,1(M̄), |ψ|C1,1(M̄) and other known
data (but not on (δψ,f )−1). The boundary estimates of this type depending
on the C2,1-norm of boundary data is proved for equation (16) on compact
Hermitian manifolds with certain boundary, thereby posing in [39, 40] some
new phenomenon on regularity assumptions on boundary and boundary data.
Unfortunately, I don’t know if there is such new phenomenon on regularity as-
sumptions, since the second order estimate in Theorem 2.1 above relies heavily
on condition (7) in a significant way and the approximation method may not
work any more in the class of basic functions. More precisely, at least to the
best of my knowledge, I don’t know if every basic C1,1-function (respectively,
basic C2,1-functions) can be approximated by certain basic C2,γ-functions
(respectively, basic C4,γ-functions) in the sense of C1,1-norm (respectively,
C2,1-norm).

The rest of this paper is organized as follows. In Section 2 we outline
the proof of quantitative boundary estimates. In Section 3, the desired basic
admissible subsolution will be constructed there with assuming cone condi-
tion (8) holds. In Section 4 we establish the quantitative boundary estimates.
In Section 5 we further study fully nonlinear elliptic equations with the right-
hand side depending on the unknown solutions. In Appendix A, we finally
append the proof of Lemma 2.5.
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2. Outline of proof of main estimate

The central issue for proving Theorem 1.2 is to derive the a priori estimates
for the complex Hessian of the solution, so that equation (2) becomes to be
a uniform concave elliptic equation. The uniform bound of the real Hessian
can be derived directly as in [15], since C2 estimates yield that the equation
is uniformly elliptic. Finally, one can use Evans-Krylov theorem [9, 23] and
Schauder theory to establish the higher order regularity.

The proof of gradient estimate for the solutions of fully nonlinear elliptic
equations is exceedingly hard in complex setting. Our approach to deriv-
ing gradient estimate is based on a blow-up argument developed by Dinew-
Kołodziej [7], and further by Székelyhidi [30]. To achieve it we need to prove

(11) sup
M

|Δu| ≤ C(1 + sup
M

|∇u|2).

The following second order estimate was established in [26].

Theorem 2.1 ([26]). In addition to (3), (4), (5) and (7), we assume that
there is a basic admissible subsolution u ∈ C2

B(M̄) for Dirichlet problem (2)
with ψ ∈ C2

B(M) ∩ C1,1
B (M̄) and ϕa, ϕb ∈ C2

B(S). Then for any admissible
solution u ∈ C4(M)∩C2(M̄) of the Dirichlet problem, there exists a uniformly
positive constant C depending on |u|C0(M̄), |ψ|C1,1(M̄), |u|C2(M̄), |χ|C2(M̄) and
other data under control (but not on supM̄ |∇u|), such that

(12) sup
M

|Δu| ≤ C(1 + sup
M

|∇u|2 + sup
∂M

|Δu|).

Moreover, the constant C is independent of (δψ,f )−1.

Remark 2.2. Throughout this paper we say that a constant C does not depend
on (δψ,f )−1 if C remains uniformly bounded as δψ,f tends to zero, while we
say a constant κ depends not on δψ,f if κ has a uniformly positive lower bound
as δψ,f → 0.

With Theorem 2.1 at hand, the main estimate in this paper is to derive
the quantitative boundary estimates as follows.

Theorem 2.3. Let ψ ∈ C1
B(M) ∩ C0,1

B (M̄), ϕa, ϕb ∈ C2,1
B (S), and

(13) ϕ(·, r) = 1
b− a

((b− r)ϕa + (r − a)ϕb) .



Fully non-linear elliptic equations 1593

Suppose conditions (3), (4), (5), (7) and (8) hold. Then for any admissible
solution u ∈ C3(M) ∩ C2(M̄) of Dirichlet problem (2), we have

(14) sup
∂M

|Δu| ≤ C(1 + sup
M

|∇u|2),

where C is a uniformly positive constant depending on |ψ|C0,1(M̄), |ϕ|C2,1(M̄)
and other known data. Furthermore, the constant C is independent of (δψ,f )−1.

The proof of quantitative boundary estimates is based on the following
proposition.

Proposition 2.4. Fix p = (q, ·) ∈ S × {a} ∪ S × {b}. Let Xi be the vectors
given by (26) and (27), in which we choose the local coordinate around q such
that (24) and (25) hold. Let’s denote gij̄ = g[u](Xi, JX̄j) for the solution u.
Then

gnn̄(p) ≤ C(1 +
n−1∑
α=1

|gαn̄(p)|2).

The key ingredient in the proof of Proposition 2.4 is the following lemma
proposed in [39], which is a quantitative version of Lemma 1.2 in [2].

Lemma 2.5 ([39]). Let A be an n× n Hermitian matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

d1 a1
d2 a2

. . . ...
dn−1 an−1

ā1 ā2 · · · ān−1 a

⎞
⎟⎟⎟⎟⎟⎟⎠

with d1, · · · , dn−1, a1, · · · , an−1 fixed, and with a variable. Denote λ1, · · · , λn

by the eigenvalues of A. Let ε > 0 be a fixed constant. Suppose that the
parameter a in A satisfies the quadratic growth condition

(15) a ≥ 2n− 3
ε

n−1∑
i=1

|ai|2 + (n− 1)
n−1∑
i=1

|di| +
(n− 2)ε
2n− 3 .

Then the eigenvalues (possibly with an order) behavior like

|dα − λα| < ε,∀1 ≤ α ≤ n− 1,
0 ≤ λn − a < (n− 1)ε.
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Remark 2.6. We follow the argument developed in [39, 40], in which the
author derive quantitative boundary estimates for equations on Hermitian
manifolds (X,ω),

(16) f(λ(χ +
√
−1∂∂u +

√
−1∂u ∧ η1,0 +

√
−1η1,0 ∧ ∂u)) = ψ in X

with Dirichlet boundary u|∂X = ϕ, where η1,0 is a smooth (1, 0)-form. When
η1,0 = 0, this is the standard case and was studied by the author in [39]. The
corresponding proposition analogous to Proposition 2.4 was proved by the
author in [39, 40]. When (X,ω) is a closed Hermitian manifold, equation (16)
is also studied in [40]; while the special case of equation (16) corresponding
to f = (σn) 1

n (complex Monge-Ampère equation) is also studied by Tosatti-
Weinkove [35] independently. As a corollary, this partially extends some re-
sults in [37]. Moreover, as in Remark 1.2 of [35], equation (16) can be used
to study the deformation of Aeppli cohomology class of bidegree (1, 1).
Remark 2.7. We shall remark here that, when the boundary of background
Hermitian manifold is supposed to satisfy the condition in main theorem
of [39], inspired by the work [39], we can try to give a proof of gradient
estimate for Dirichlet problem of the equation corresponding to Gauduchon’s
conjecture by applying blow-up argument used in literature (cf. [7, 30, 31, 34])
in which the underlying manifolds are all closed without boundary. This
is discussed in future work∗. To do this, as in [39], we only need to prove
analogous Proposition 2.4 in this context.
Remark 2.8. Shortly after T. Collins and S. Picard posted their paper [5] to
arXiv.org, T. Collins also informed me Lemma 2.5 (in a different and weak
form) was also proved independently in [6] (see the Lemma 6.3 there). Indeed
the Lemma 6.3 in [6] was used in a different way than our application. I want
to thank T. Collins for informing me the Lemma 6.3 in their work.
Remark 2.9. We can use Proposition 5.1 of [4] in place of Székelyhidi’s Liou-
ville type theorem to derive the gradient estimate and so prove Theorem 1.2
for certain equations without obeying the additional assumption (6) but with
Γψ,ψ ⊆ −K0�1 + Γn for some K0 ≥ 0, which includes specified Lagrangian
phase equation and deformed Hermitian-Yang-Mills equation (with super-
critical phase condition) as a special case. Here �1 = (1, · · · , 1) ∈ Rn and

Γψ,ψ :=
{
λ ∈ Γ : inf

M̄
ψ ≤ f(λ) ≤ sup

M̄

ψ

}
.

∗Recently, this was done by the author, and the proof is appended in part II of
new version of [40].
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The direct gradient estimate for deformed Hermitian-Yang-Mills equation
(with supercritical phase condition) can be also derived by the argument
used in [37], as it satisfies the condition (3.5) there (see also Remark 1.7 and
proof of Theorem 1.2 in [37]).

3. The construction of a (strictly) basic admissible
subsolution

Under the cone condition (8), we can construct a basic admissible subsolution
of the Dirichlet problem. Together with Lemma 1.2 of [2] or Lemma 2.5,
condition (8) also implies the following condition in [26],

(17)
λ(g[v] +

√
−1Rθn ∧ θ̄n) ∈ Γ for some R > 0,

lim
R→+∞

f(λ(g[v] +
√
−1Rθn ∧ θ̄n)) > ψ,

where θn = dr +
√
−1rη and θ̄n = dr −

√
−1rη defined as in (28).

Given the function v ∈ C4,α
B (M̄) satisfying condition (8), we set

(18) u = v + A(r − a)(r − b).

It is easy to verify that u ≤ v in M̄ . By a simple computation, we have

(19)
√
−1

(
∂∂ − ∂∂r

∂

∂r

)
((r − a)(r − b)) =

√
−1
2 θn ∧ θ̄n.

By setting A � 1, u is an appropriate (strictly) basic admissible subso-
lution of Dirichlet problem (2). Namely,

(20)

⎧⎪⎪⎨
⎪⎪⎩
f(λ(g[u])) > ψ in M̄,

u|r=a = ϕa,

u|r=b = ϕb.

4. Proof of the quantitative boundary estimates

In this section, we will give the proof of quantitative boundary estimates,
which also extensively extends certain results in [21, 26].

The proof of quantitative boundary estimates consists of two steps:

• The proof of Proposition 2.4.
• The proof of quantitative boundary estimates for mixed derivatives.
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Firstly, we derive a priori C0-estimate and gradient estimate on the
boundary. Let w be a C2 solution to

(21)

⎧⎪⎨
⎪⎩

trω̄(g[w]) = 0 in M,

w|r=a =ϕa,

w|r=b =ϕb.

The solvability of (21) can be found in [12]. Let u ∈ C2(M̄) be an admissible
solution for Dirichlet problem (2), then trω̄(g[u]) > 0. Therefore the maximum
principle, together with the boundary value condition, yields

(22) u ≤ u ≤ w, in M.

Hence there is a positive constant C∗ depending only on |u|C1(M̄) and |w|C1(M̄),
such that

sup
M̄

|u| + sup
∂M

|∇u| ≤ C∗.

Given a point p ∈ ∂M , let ρ(z) = distM̄ (z, p) be the distance function
from z to p and

(23) Ωδ ≡ {z ∈ M : ρ(z) < δ}, 0 < δ � 1.

As in the Kähler setting, the Sasakian metric can be locally generated
by a free real function of 2(n− 1) variables. For the given point p = (q, a) ∈
S × {a} (or p = (q, b) ∈ S × {b}), we may pick a local coordinate chart
(z1, · · · , zn−1, x), zi = xi +

√
−1yi. Around q, there is a local basic func-

tion h and a local coordinate chart (z1, · · · , zn−1, x) ∈ Cn−1 × R on a small
neighborhood U around q such that

ξ = ∂

∂x
, g = η ⊗ η + 2hij̄dz

idz̄j , η = dx−
√
−1(hjdz

j − hj̄dz̄
j),(24)

hi(q) = 0, hij̄(q) = δij and dhij̄ |q = 0,

1
4δij ≤ hij̄(z) ≤ δij ,

n−1∑
i=1

|hi|2(z) ≤ 1,∀z ∈ U ⊂ S.
(25)

Moreover, D ⊗ C is spanned by

(26) Xi = ∂

∂zi
+
√
−1hi

∂

∂x
, X̄i = ∂

∂z̄i
−

√
−1hī

∂

∂x
, 1 ≤ i ≤ n− 1.
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Let

(27) Xn = 1
2( ∂

∂r
−

√
−11

r

∂

∂x
), X̄n = 1

2( ∂

∂r
+
√
−11

r

∂

∂x
).

Then
JXi =

√
−1Xi, JX̄i = −

√
−1X̄i for i = 1, · · · , n.

Hence {X1, · · · , Xn−1, Xn} is a basis of T 1,0M . Let {θ1, · · · , θn} be the dual
basis

(28) θi = dzi, 1 ≤ i ≤ n− 1, θn = dr +
√
−1rη.

The Kähler form ω̄ of (C(S), ḡ) can be written as

(29) ω̄ =
√
−1(

n−1∑
i,j=1

r2hij̄dz
i ∧ dz̄j + 1

2θ
n ∧ θ̄n).

We refer the reader to [11] for more details.
By the computation in [21], for w ∈ C2(M̄) one has

∂∂w − 2(X̄nw)∂∂r =
n∑

i,j=1
(XiX̄jw)θi ∧ θ̄j .

Moreover, if w is basic then

∂∂w − ∂w

∂r
∂∂r =

n∑
i,j=1

(XiX̄jw)θi ∧ θ̄j .

(See (2.12) of [21]). From now on, let’s denote wij̄ =
√
−1∂∂w(Xi, JX̄j), and

F ij̄ = ∂F

∂aij̄
((gpq̄)).

The linearized operator L is given by

(30) Lh = F ij̄(hij̄ −
∂h

∂r
rij̄).

In addition, if h is basic then

(31) Lh = F ij̄XiX̄jh.
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The second order boundary estimates for pure tangential derivatives is
standard. The boundary value condition implies that there exists a uniformly
positive constant C ′

1 depending on sup∂M |∂(u−u)
∂r | and other known data under

control, such that for any 1 ≤ i, j ≤ n− 1 one has

(32)
∣∣∣∣∣ ∂2u

∂xi∂yj
(p)

∣∣∣∣∣ ≤ C ′
1,

∣∣∣∣∣ ∂2u

∂xi∂xj
(p)

∣∣∣∣∣ ≤ C ′
1,

∣∣∣∣∣ ∂2u

∂yi∂yj
(p)

∣∣∣∣∣ ≤ C ′
1.

Moreover, C ′
1 is independent of (δψ,f )−1.

4.1. Proof of Proposition 2.4

The proof follows the outline of the proof of corresponding proposition in [39].
Fix p ∈ ∂M = S×{a}∪S×{b}. In what follows the discussion will be given
at p, and the Greek letters α, β range from 1 to n− 1, we can assume further
that {g

αβ̄
} is diagonal at p (otherwise we can make a suitable transformation

for {g
αβ̄
} at p). It follows from the boundary value condition that

(33) gαβ̄ = g
αβ̄
, at p,

where 1 ≤ α, β ≤ n− 1, g = g[u].
Firstly, we claim that there exist two uniformly positive constants ε0, R0

depending on g and f , such that

(34) f(g11̄ − ε0, · · · , g(n−1)(n−1) − ε0, R0) ≥ ψ

and (g11̄ − ε0, · · · , g(n−1)(n−1) − ε0, R0) ∈ Γ. We leave the proof of (34) at the
end of the proof of this proposition.

Next, we apply Lemma 2.5 together with (34) to establish the quantitative
boundary estimates for double normal derivative. Let’s denote

A(R) =

⎛
⎜⎜⎜⎜⎜⎜⎝

g11̄ g1n̄
g22̄ g2n̄

. . . ...
g(n−1)(n−1) g(n−1)n̄

gn1̄ gn2̄ · · · g
n(n−1) R

⎞
⎟⎟⎟⎟⎟⎟⎠
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and

A(R) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g11̄ g1n̄
g22̄ g2n̄

. . . ...
g(n−1)(n−1) g(n−1)n̄

gn1̄ gn2̄ · · · g
n(n−1) R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Let’s pick ε = ε0
128 in Lemma 2.5, and we assume

Rc = 128(2n− 3)
ε0

n−1∑
α=1

|gαn̄|2 + (n− 1)
n−1∑
α=1

|g
αᾱ

| + (n− 2)ε0

128(2n− 3) + R0.

It follows from Lemma 2.5 that the eigenvalues of A(Rc) (possibly with an
order) shall behavior like

(35) λ(A(Rc)) ∈ (g11̄ −
ε0

128 , · · · , g(n−1)(n−1) −
ε0

128 , Rc) + Γn ⊂ Γ.

Applying (3), (33), (34) and (35), one hence has

F (A(Rc)) =F (A(Rc))

≥ f(g11̄ −
ε0

128 , · · · , g(n−1)(n−1) −
ε0

128 , Rc)

>f(g11̄ − ε0, · · · , g(n−1)(n−1) − ε0, Rc) ≥ ψ.

Therefore,
gnn̄(p) ≤ Rc.

To finish the proof of Proposition 2.4, what is left to prove is the key
inequality (34). We propose two proofs of (34). Writing

B(R) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g11̄ g1n̄
g22̄ g2n̄

. . . ...
g(n−1)(n−1) g(n−1)n̄

g
n1̄ g

n2̄ · · · g
n(n−1) R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The first proof is as in the following: For R > sup∂M |g|, one has

(36) f(λ(B(R))) > ψ on ∂M.
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It follows from (3), (4), (36) and the openness of Γ that

(37) f(λ(B(R1)) −
ε0
2
�1) > ψ and (λ(B(R1)) −

ε0
2
�1) ∈ Γ,

where �1 = (1, · · · , 1) ∈ Rn defined as in Section 2, and ε0 (small enough)
and R1 (large enough) are two uniformly positive constants depending only
on g and other known data. Moreover, by applying Lemma 2.5 to the matrix
B(R) (by setting the parameter ε = ε0

128 in Lemma 2.5), we know that the
eigenvalues λ(B(R2)) = (μ1, · · · , μn) (R2 = O(128(2n−3)

ε0
|g|2)) behavior as

g
αᾱ

− ε0
128 < μα < g

αᾱ
+ ε0

128 , R2 ≤ μn < R2 + (n− 1)ε0
128 .

Combining it with (37) we can derive (34) by setting ε0 = 63
128ε0. We shall

point out that in this proof (4) may be replaced by the convexity of the level
sets of f . Moreover, condition (37) can be also derived from

lim
R→+∞

f(λ(B(R))) > ψ on ∂M.

This condition can be achieved by the boundary data ϕ according to Lemma
2.5 and (33). Also, this condition is satisfied by a C-subsolution u with the
same boundary value condition u|∂M = ϕ.

The second proof is the following: Applying Lemma 2.5 to B(R) we can
prove there is a uniformly positive constant R3 depending on g such that

(g11̄, · · · , g(n−1)(n−1), R3) ∈ Γ.

Here we also use the fact that Γ is an open set. The ellipticity and concavity
of equation (2), couple with Lemma 6.2 in [2], therefore yield that

F (A) − F (B) ≥ F ij̄(A)(aij̄ − bij̄)

for the Hessian matrices A = {aij̄} and B = {bij̄} with λ(A), λ(B) ∈ Γ.
Thus, there exists a uniformly positive constant R4 ≥ R3 depending only on
g such that

f(g11̄, · · · , g(n−1)(n−1), R4) =F (diag(g11̄, · · · , g(n−1)(n−1), R4))

>F (g) ≥ ψ.

Thus one can derive (34). We thus complete the proof of Proposition 2.4.



Fully non-linear elliptic equations 1601

4.2. Proof of quantitative boundary estimates for mixed
derivatives

In this subsection we establish the quantitative boundary estimates for mixed
(tangential-normal) derivatives. It is an extension of Proposition 1 in [26].

Proposition 4.1. Let u ∈ C3(M) ∩ C2(M̄) be any admissible solution to
Dirichlet problem (2). Let ψ ∈ C1

B(M) ∩ C0,1(M̄), we also assume that con-
ditions (3), (4), (5) and (8) hold. Then for any 1 ≤ α ≤ n − 1 there is a
positive constant C depending on |u|C2(M̄), |ϕ|C2,1(M̄), |ψ|C0,1(M̄) and other
known data, such that

(38)
∣∣∣∣∣ ∂2u

∂r∂zα
(p)

∣∣∣∣∣ ≤ C(1 + sup
M̄

|∇u|).

Moreover, the constant C in (38) does not depend on (δψ,f )−1.

Proposition 4.1 yields that the quantitative boundary estimates for the
mixed (tangential-normal) derivatives

(39) |gαn̄(p)|, |gnᾱ(p)| ≤ C(1 + sup
M̄

|∇u|),

for any 1 ≤ α ≤ n − 1. Here we use the fact that u is basic according to
Lemma 1.1.

The quantitative boundary estimates for mixed derivatives will be proved
by constructing barrier functions. This type of construction of barrier func-
tions originally follows from [22, 18, 13].

Let b1 =
√

1 + 2 supM̄ |∇u|2 + 2 supM̄ |∇ϕ|2. The barrier function is given
by

(40) Ψ = A1b1v − A2b1ρ
2 + A3

b1

n−1∑
τ=1

|Xτ (u− ϕ)|2,

where A1, A2, A3 are positive uniform constants to be determined, ρ(z) =
distM̄ (z, p) is as defined before (23), and v is the function defined by

(41) v =

⎧⎪⎪⎨
⎪⎪⎩
u− u + N

2 (r − a)2 − t(r − a) in S × (a, a + δ),

u− u + N

2 (b− r)2 − t(b− r) in S × (b− δ, b).
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We choose δ small enough (δ ≤ 2t
N ), such that v ≤ 0 in Mδ := S× (a, a+ δ)∪

S × (b− δ, b). Moreover, |∇r| = 1
2 , L(r) = 0 in Mδ, and

(42) Lv = L(u− u) + N

4 F nn̄.

Next, we are going to prove

Lemma 4.2. Given some constants A1 � A2 � A3 � 1 and small δ > 0,
one has Ψ(p) = 0 and

(43)

⎧⎪⎪⎨
⎪⎪⎩
L(Ψ) ≥ 1 + b1F

ij̄ ḡij̄ in Ωδ,

Ψ ≤ 0 on ∂Ωδ ∩ ∂M,

Ψ ≤ −b1 on ∂Ωδ ∩ Ω̄δ.

A key ingredient in the proof of Lemma 4.2 is the following lemma proved
in [17].

Lemma 4.3 ([17]). ε′ > 0 such that when |νμ − νλ| ≥ β Suppose that f
satisfies (3) and (4). Let K be a compact subset of Γ and β > 0. There is a
constant ε > 0 such that, for any μ ∈ K and λ ∈ Γ, when |νμ − νλ| ≥ β,

(44)
n∑

i=1
fi(λ)(μi − λi) ≥ f(μ) − f(λ) + ε(1 +

n∑
i=1

fi(λ))

where νλ = Df(λ)/|Df(λ)| denotes the unit normal vector to the level surface
of f through λ.

When equation (2) becomes degenerate (δψ,f = 0), we shall use the fol-
lowing observation [17, 38].

Lemma 4.4. If (3)-(4) hold, then for any λ ∈ Γ with |λ| ≤ R one has

(45)
n∑

i=1
fi(λ) ≥ 1

1 + 2R (f((1 + R)�1) − f(R�1)) > 0.

Proof. Using the formula

(46) t
n∑

i=1
fi(λ) ≥

n∑
i=1

fi(λ)λi + f(t�1) − f(λ),

we can derive that t
∑n

i=1 fi(λ) ≥ −R
∑n

i=1 fi(λ) + f(t�1)− f(|λ|�1). Then one
has (45) by setting t = 1 + R.
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Proof of Lemma 4.2. It is easy to verify that F ij̄ ḡij̄ =
∑n

i=1 fi. We know that
there is a uniform positive constant Cρ such that

(47) |L(ρ2)| ≤ Cρ

∑
fi in Ωδ.

The key step of the proof is to estimate

L(
n−1∑
τ=1

|Xτ (u− ϕ)|2) =
n−1∑
τ=1

L(|Xτ (u− ϕ)|2).

From Lemma 1.1 and the construction of ϕ as in (13), we know that both u

and ϕ are basic, and so Xk(u− ϕ) = ∂
∂zk

(u− ϕ), X̄i(u− ϕ) = ∂
∂z̄k

(u− ϕ) for
each 1 ≤ k ≤ n− 1. Similar to the computation in (4.9) of Guan-Zhang [21],
fix 1 ≤ k ≤ n− 1,

|L(Xk(u− ϕ))| = |F ij̄XiX̄jXku− L(Xkϕ)|
= |F ij̄XkXiX̄ju− L(Xkϕ)|
= |F ij̄Xk(gij̄ − χij̄) − L(Xkϕ)|

≤ |Xkψ| + C
n∑

i,j=1
F ij̄gij̄ ,

and |L(X̄k(u−ϕ))| ≤ |X̄kψ|+C
∑n

i,j=1 F
ij̄gij̄ . In the proof, the second equality

follows from the basic of solution u, and

[Xn, X̄n] = −1
2
√
−1r−2ξ, [Xα, X̄β ] = −2

√
−1hαβ̄ξ,

[Xα, Xβ] = [Xα, Xn] = [X̄α, X̄β ] = [Xα, X̄n] = 0

for α, β < n. Thus

(48)

L(|Xk(u− ϕ)|2) =Xk(u− ϕ)L(X̄k(u− ϕ)) + X̄k(u− ϕ)L(Xk(u− ϕ))

+ F ij̄(XiXk(u− ϕ))(X̄jX̄k(u− ϕ))

+ F ij̄(XiX̄k(u− ϕ))(X̄jXk(u− ϕ))

≥ 1
2F

ij̄gik̄gkj̄ − Cb1(1 +
∑

fi),

where we use the inequality F ij̄(ai − bi)(āj − b̄j) ≥ 1
2F

ij̄aiāj − F ij̄bib̄j .



1604 Rirong Yuan

As in Proposition 2.19 of [14], there is an index r such that

(49)
n−1∑
τ=1

F ij̄giτ̄gτ j̄ ≥
1
4
∑
i	=r

fiλ
2
i .

For completeness we leave the proof of (49) at the end of the proof.
Therefore, it follows from (47), (48) and (49) that

(50) L (Ψ) ≥ A1b1Lv + A3

8b1

∑
i	=r

fiλ
2
i − A3C1 − (A2Cρb1 + A3C1)

n∑
i=1

fi.

Denote by λ[v] := λ(g[v]) for convenience. For the admissible subsolution
u, λ[u] falls in a compact subset of Γ,

(51) β := 1
2 min

M̄
dist(νλ[u], ∂Γn) > 0.

Case I: Lemma 4.3 implies that when |νλ[u] − νλ[u]| ≥ β, we have

L(u− u) ≥ ε(1 +
n∑

i=1
fi),

where ε is the positive constant in Lemma 4.3 determined by f , β and λ[u].
Let A1 � A2 � A3 � 1. By (50) and (42), we have

L(Ψ) ≥ b1(1 +
n∑

i=1
fi).

Case II: Suppose that |νλ[u] − νλ[u]| < β. Then νλ[u] − β�1 ∈ Γn and

fi ≥
β√
n

n∑
j=1

fj .

Combining it with (42) one derives

Lv ≥ βN

4
√
n

n∑
i=1

fi,

where we use L(u− u) ≥ 0 in M .
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As in [17] there exist two uniformly positive constants c0 and C0, such
that

(52)
∑
i	=r

fiλ
2
i ≥ c0|λ|2

n∑
i=1

fi − C0

n∑
i=1

fi,

where c0 depends only on β and n, while C0 depends only on β, n and |λ[u]|.
By setting A1 large such that

A1Nβ√
n

− 8A2Cρ − 8A3C1 −
A3C0

b1
≥ 0,

then we have

(53)

L(Ψ) ≥ (A1Nβb1
4
√
n

− A2Cρb1 − A3C1 −
A3C0

8b1
)

n∑
i=1

fi

+ A3c0
8b1

|λ|2
n∑

i=1
fi − A3C1

≥ A1Nβ

16
√
n
b1

n∑
i=1

fi + 1
8

√
A1A3c0Nβ

2b1
√
n

|λ|
n∑

i=1
fi − A3C1,

where we use the elementary inequality a + b ≥ 2
√
ab for a, b ≥ 0.

We know that if |λ| ≥ R0 ≡ 1 + supM̄ |λ[u]|, then

(54) |λ|
n∑

i=1
fi(λ) ≥ b0,

where b0 ≡ 1
2{f(R0�1)− supM̄ f(λ[u])}. Let us verify it here. By the concavity

of f ,
|λ|

∑
fi(λ) ≥ f(|λ|�1) − f(λ[u]) − |λ|

∑
fi(λ),

thus
|λ|

∑
fi(λ) ≥ 1

2(f(|λ|�1) − f(λ[u])).

So (54) holds by setting |λ| ≥ R0.
Therefore, by using (54) and Lemma 4.4 we derive that if A1 � A2 �

A3 � 1 then

L(Ψ) ≥ 1 + b1

n∑
i=1

fi.
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Moreover, {
Ψ ≤ 0 on ∂Ωδ ∩ ∂M,

Ψ ≤ −b1 on ∂Ωδ ∩ Ωδ.

We sketch the proof of (49) to complete the proof: Let U = (aij) be a
n × n unitary matrix that simultaneously diagonalizes (F ij̄) and (gij̄) at a
fixed point. That is

(
F ij̄

)
= U∗diag(f1, · · · , fn)U,

(
gij̄

)
= U∗diag(λ1, · · · , λn)U.

Here U∗ = (bij), bij = aji. Since U is unitary, U∗ = U−1. Thus
(
gij̄

)
· (F ij̄) ·(

gij̄

)
= U∗diag(f1λ

2
1, · · · , fnλ2

n)U , which implies

n∑
i,j=1

F ij̄giτ̄gτ j̄ =
n∑

k=1
fkλ

2
k|akτ |2

for fixed τ . So

n−1∑
τ=1

n∑
i,j=1

F ij̄giτ̄gτ j̄ =
n∑

k=1
fkλ

2
k(1 − |akn|2) ≥

n− 1
n

∑
k 	=r

fkλ
2
k ≥ 1

4
∑
k 	=r

fkλ
2
k,

where |arn|2 ≤ 1
n corresponding to r (such arn exists).

The following lemma can be found in [26].

Lemma 4.5. Let ϕ be the function which is defined in (13). There is a
positive constant C depending on |χ|C0,1(M̄), |ϕ|C2,1(M̄) and other known data,
such that

(55) |LXi(u− ϕ)| ≤ sup
Ωδ

|Xiψ| + CF ij̄ ḡij̄ in Ωδ

for 1 ≤ i ≤ n. Moreover, C is independent of (δψ,f )−1.

Combining Lemma 4.2 with Lemma 4.5, we obtain Proposition 4.1.
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5. The equations with right-hand side depending on
unknown solutions

Let’s turn our attention to Dirichlet problem for the equations with right-
hand side ψ[u] = ψ(z, u) with ψu ≥ 0,

(56)

⎧⎪⎨
⎪⎩
f(λ(g[u])) = ψ[u] in M,

u|r=a = ϕa,

u|r=b = ϕb.

It is similar to the proof of Lemma 1.1, we can conclude that every admis-
sible solution u ∈ C3(M) ∩ C1(M̄) of equation (56) is basic with assuming

(57) ∇ξχ = 0,∇′
ξψ = 0, and ϕa, ϕb are both basic

where ∇′
ξψ denotes the partial covariant derivative (along the Reeb field ξ)

of ψ[u] when viewed as depending on z ∈ M only.
If f satisfies (9) and (64), then any C2-admissible function u ∈ C2(M̄)

must satisfy

(58) lim
t→+∞

f(λ(g[u]) + tei) > ψ[u] in M̄ for each i,

where ei is the i-th standard basis vector, and u is the unknown admissible
solution. Such a condition is hard to verify, since the right hand side depends
on the unknown solution u. It is a slight modification of the notion of a C-
subsolution introduced by Székelyhidi [30], thereby allowing one to use the
following lemma, according to Székelyhidi’s insight.

Lemma 5.1. Suppose that there exists a C-subsolution u ∈ C2(M̄). Then
there exist two positive constants R0 and ε with the following property. If
|λ| ≥ R0, then either

(59) F ij̄(g
ij̄
− gij̄) ≥ ε′F ij̄ ḡij̄

or

(60) F ij̄ ≥ ε′(F pq̄ ḡpq̄)ḡij̄ .

In this paper, the lower bound of
∑n

i=1 fi

(61)
n∑

i=1
fi ≥ κ(σ) in ∂Γσ := {λ ∈ Γ : f(λ) = σ},
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plays an important role in the proof of (67), as
∑n

i=1 fi(λi − λi) < 0 may
occur at some points when ψu ≥ 0. Part (b) of Lemma 9 in Székelyhidi [30]
states (61) holds if f satisfies (3), (4) and (6). In a previous paper [39] the
author gave a characterization of level sets of f satisfying (3), (4) and (6) and
then proved the following Lemma 5.2 which slightly extends (8)′ of Caffarelli-
Nirenberg-Spruck [2], thereby giving a new proof of (61); moreover, couple
with (46), we can prove that κ(σ) can be chosen as κ(σ) = f((1+cσ)�1)−σ

1+cσ
which

is independent of δψ,f , where �1 = (1, · · · , 1) ∈ Rn and cσ is the positive
constant such that f(cσ�1) = σ.

Lemma 5.2. Assume f satisfies (3), (4) and (6). Then
∑n

i=1 fiλi > 0 in Γ.

To construct the admissible subsolution or (modified) C-subsolution obey-
ing (58), we hence need assuming that there is a basic function v ∈ C4,α

B (M̄)
such that for large R, one has

(62) v|r=a = ϕa, v|r=b = ϕb, ψ[v] < sup
Γ

f, λ(g[v] +
√
−1Rθn ∧ θ̄n) ∈ Γ.

By the maximum principle, one derives u ≤ v. Based on v, as in (18), we can
construct the desired admissible subsolution u if (9) holds. (Here we also use
ψ[u] ≤ ψ[v] which follows from u ≤ v and ψu ≥ 0). Namely, there is a basic
admissible function u ∈ C4,α

B (M̄) with

(63)

⎧⎪⎨
⎪⎩
f(λ(g[u])) ≥ ψ[u] in M,

u|r=a = ϕa,

u|r=b = ϕb.

Let w be the supersolution obeying (21). Then the comparison principle im-
plies (22) holds in this case, and ψ[w] ≥ ψ[u] ≥ ψ[u] as ψu ≥ 0. We need
moreover assuming

(64) ψ[w] < sup
Γ

f

so that one can construct (modified) C-subsolutions by using (9) and (62).

Theorem 5.3. Let ψ[u] = ψ(z, u) be a smooth function with ψu ≥ 0 and

(65) inf
z∈M̄

ψ(z, t) > sup
∂Γ

f for any fixed −∞ < t < +∞

Suppose that (3), (4), (6), (57), (9), (62) and (64) hold. Then Dirichlet prob-
lem (56) is uniquely solvable in class of smoothly basic admissible functions.
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Proof. Let u be the admissible subsolution satisfying (63) which is constructed
in (18), and we denote λ = λ(g[u]). We need only to prove (39) for admissible
solutions of Dirichlet problem (56), as the global second order estimate

sup
M̄

|Δu| ≤ C(1 + sup
M̄

|∇u|2 + sup
∂M

|Δu|)

can be derive by a slight modification of the proof of second order estimate
in [26].

We assume |λ| ≥ R0 (otherwise the equation is uniformly elliptic and
the proof is trivial). If (59) holds then the proof is almost same as that
in Proposition 4.1. As above, (52) is important for the boundary estimates
when (60) holds, while the original proof of (52) uses

∑n
i=1 fi(λi − λi) ≥ 0,

which can be derived from (4) and ψu = 0. However, in our case that ψu ≥ 0,
one has

(66)
n∑

i=1
fi(λi − λi) ≥ ψ[u] − ψ[u],

which implies that
∑n

i=1 fi(λi − λi) < 0 may occur. Next, we give a proof of

(67)
∑
i	=r

fiλ
2
i ≥ c′0|λ|2

n∑
i=1

fi − C ′
0

n∑
i=1

fi

without using
∑n

i=1 fi(λi − λi) ≥ 0 but with using (61).
If λr ≤ 0 then

∑
i	=r λi > |λr| and λ2

r ≤ (n − 1)
∑

i	=r λ
2
i . So

∑
i	=r λ

2
i ≥

1
n |λ|2 and (67) holds for c′0 = ε′

n and C ′
0 = 0 (where ε′ is the constant in

Lemma 5.1). If λr > 0, then one has

f2
r λ

2
r ≤ 4(ψ[u] − ψ[u])2 + 2 sup

M̄

|λ|2(
n∑

i=1
fi)2 + 2(n− 1)

∑
i	=r

f2
i λ

2
i ,

here we use (66) and Cauchy-Schwarz inequality. Thus

∑
i	=r

fiλ
2
i ≥

ε′ 2

2n− 1 |λ|
2

n∑
i=1

fi −
2 supM̄ |λ|2

2n− 1

n∑
i=1

fi −
4(ψ[u] − ψ[u])2

(2n− 1)
∑n

i=1 fi
,

and (67) holds by using (61).
Following the line of proof of Proposition 4.1 we can derive (39), and then

obtain quantitative boundary estimates (14).
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Appendix A

In this appendix, we will give the proof of Lemma 2.5 building on [39].
We start with the case of n = 2. In this case, we prove that if a ≥ |a1|2

ε +d1
then

0 ≤ d1 − λ1 = λ2 − a < ε.

Let’s briefly present the discussion as follows: For n = 2, the eigenvalues
of A are λ1 = a+d1−

√
(a−d1)2+4|a1|2

2 and λ2 = a+d1+
√

(a−d1)2+4|a1|2
2 . We can

assume a1 �= 0; otherwise we are done. If a ≥ |a1|2
ε + d1 then one has

0 ≤ d1 − λ1 = λ2 − a = 2|a1|2√
(a − d1)2 + 4|a1|2 + (a − d1)

<
|a1|2

a − d1
≤ ε.

Here we use a1 �= 0 to verify that the strictly inequality in the above formula
holds. We hence obtain Lemma 2.5 for n = 2.

The following lemma enables us to count the eigenvalues near the diagonal
elements via a deformation argument. It is an essential ingredient in the proof
of Lemma 2.5 for general n.

Lemma A.1 ([39]). Let A be an n× n Hermitian matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

d1 a1
d2 a2

. . . ...
dn−1 an−1

ā1 ā2 · · · ān−1 a

⎞
⎟⎟⎟⎟⎟⎟⎠

with d1, · · · , dn−1, a1, · · · , an−1 fixed, and with a variable. Denote λ1, · · · , λn

by the eigenvalues of A with the order λ1 ≤ λ2 ≤ · · · ≤ λn. Fix a positive
constant ε. Suppose that the parameter a in the matrix A satisfies the following
quadratic growth condition

(68) a ≥ 1
ε

n−1∑
i=1

|ai|2 +
n−1∑
i=1

[di + (n− 2)|di|] + (n− 2)ε.

Then for any λα (1 ≤ α ≤ n − 1) there exists an diα with lower index 1 ≤
iα ≤ n− 1 such that

|λα − diα | < ε,(69)
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0 ≤ λn − a < (n− 1)ε + |
n−1∑
α=1

(dα − diα)|.(70)

Proof. Without loss of generality, we assume
∑n−1

i=1 |ai|2 > 0 and n ≥ 3
(otherwise we are done, since A is diagonal or n = 2). Note that in the
assumption of the lemma the eigenvalues have the order λ1 ≤ λ2 ≤ · · · ≤ λn.
It is well known that, for a Hermitian matrix, any diagonal element is less
than or equals to the largest eigenvalue. In particular,

(71) λn ≥ a.

We only need to prove (69), since (70) is a consequence of (69), (71) and

(72)
n∑

i=1
λi = tr(A) =

n−1∑
α=1

dα + a.

Let’s denote I = {1, 2, · · · , n − 1}. We divide the index set I into two
subsets by

B = {α ∈ I : |λα − di| ≥ ε, ∀i ∈ I}

and G = I \ B = {α ∈ I : There exists an i ∈ I such that |λα − di| < ε}.
To complete the proof we need to prove G = I or equivalently B = ∅. It

is easy to see that for any α ∈ G, one has

(73) |λα| <
n−1∑
i=1

|di| + ε.

Fix α ∈ B, we are going to give the estimate for λα. The eigenvalue λα

satisfies

(74) (λα − a)
n−1∏
i=1

(λα − di) =
n−1∑
i=1

(|ai|2
∏
j 	=i

(λα − dj)).

By the definition of B, for α ∈ B, one then has |λα − di| ≥ ε for any i ∈ I.
We therefore derive

(75) |λα − a| =
∣∣∣∣∣
n−1∑
i=1

|ai|2
λα − di

∣∣∣∣∣ ≤
n−1∑
i=1

|ai|2
|λα − di|

≤ 1
ε

n−1∑
i=1

|ai|2, if α ∈ B.
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Hence, for α ∈ B, we obtain

(76) λα ≥ a − 1
ε

n−1∑
i=1

|ai|2.

For a set S, we denote |S| the cardinality of S. We shall use proof by
contradiction to prove B = ∅. Assume B �= ∅. Then |B| ≥ 1, and so |G| =
n− 1 − |B| ≤ n− 2.

In the case of G �= ∅, we compute the trace of the matrix A as follows:

(77)

tr(A) =λn +
∑
α∈B

λα +
∑
α∈G

λα

>λn + |B|(a − 1
ε

n−1∑
i=1

|ai|2) − |G|(
n−1∑
i=1

|di| + ε)

≥ 2a − 1
ε

n−1∑
i=1

|ai|2 − (n− 2)(
n−1∑
i=1

|di| + ε)

≥
n−1∑
i=1

di + a = tr(A),

where we use (68), (71), (73) and (76). This is a contradiction.
In the case of G = ∅, one knows that

(78) tr(A) ≥ a + (n− 1)(a − 1
ε

n−1∑
i=1

|ai|2) >
n−1∑
i=1

di + a = tr(A).

Again, it is a contradiction.
We now prove B = ∅. Therefore, G = I and the proof is complete.

Consequently we can apply it to prove Lemma 2.5 via a deformation
argument.

Proof of Lemma 2.5. Without loss of generality, we assume n ≥ 3 and∑n−1
i=1 |ai|2 > 0 (otherwise n = 2 or the matrix A is diagonal, and then

we are done). Fix a1, · · · , an−1, d1, · · · , dn−1. Denote λ1(a), · · · , λn(a) by the
eigenvalues of A with the order λ1(a) ≤ · · · ≤ λn(a). Clearly, the eigenvalues
λi(a) are all continuous functions in a. For simplicity, we write λi = λi(a).

Fix ε > 0. Let I ′α = (dα − ε
2n−3 , dα + ε

2n−3) and

P ′
0 = 2n− 3

ε

n−1∑
i=1

|ai|2 + (n− 1)
n−1∑
i=1

|di| +
(n− 2)ε
2n− 3 .
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In what follows we assume a ≥ P ′
0 (i.e. (15) holds). The connected components

of
⋃n−1

α=1 I
′
α are as in the following:

J1 =
j1⋃

α=1
I ′α, J2 =

j2⋃
α=j1+1

I ′α · · · , Ji =
ji⋃

α=ji−1+1
I ′α · · · , Jm =

n−1⋃
α=jm−1+1

I ′α.

(Here we denote j0 = 0 and jm = n− 1). Moreover,

Ji
⋂

Jk = ∅, for 1 ≤ i < k ≤ m.

Let
C̃ardk : [P ′

0,+∞) → N

be the function that counts the eigenvalues which lie in Jk. (Note that when
the eigenvalues are not distinct, the function C̃ardk denotes the summation
of all the multiplicities of distinct eigenvalues which lie in Jk). This function
measures the number of the eigenvalues which lie in Jk.

The crucial ingredient is that Lemma A.1 yields the continuity of C̃ardi(a)
for a ≥ P ′

0. More explicitly, by using Lemma A.1 and

λn ≥ a ≥ P ′
0 >

n−1∑
i=1

|di| +
ε

2n− 3

we conclude that if a satisfies the quadratic growth condition (15) then

(79)
λn ∈ R \ (

n−1⋃
k=1

I ′k) = R \ (
m⋃
i=1

Ji),

λα ∈
n−1⋃
i=1

I ′i =
m⋃
i=1

Ji for 1 ≤ α ≤ n− 1.

Hence, C̃ardi(a) is a continuous function in the variable a. So it is a constant.
Together with the line of the proof Lemma 1.2 of Caffarelli-Nirenberg-Spruck
[2] we see that C̃ardi(a) = ji − ji−1 for sufficiently large a. The constant of
C̃ardi therefore follows that

C̃ardi(a) = ji − ji−1.

We thus know that the (ji − ji−1) eigenvalues

λji−1+1, λji−1+2, · · · , λji
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lie in the connected component Ji. Thus, for any ji−1 + 1 ≤ γ ≤ ji, we have
I ′γ ⊂ Ji and λγ lies in the connected component Ji. Therefore,

|λγ − dγ | <
(2(ji − ji−1) − 1)ε

2n− 3 ≤ ε.

Here we also use the fact that dγ is midpoint of I ′γ and every Ji ⊂ R is an
open subset.

To be brief, if for fixed index 1 ≤ i ≤ n − 1 the eigenvalue λi(P ′
0) lies

in Jα for some α, then Lemma A.1 implies that, for any a > P ′
0, the corre-

sponding eigenvalue λi(a) lies in the same interval Jα. Adapting the line of
the proof Lemma 1.2 of Caffarelli-Nirenberg-Spruck [2] to our context, we get
the asymptotic behavior as a goes to infinity.
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