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Rank of ordinary webs in codimension one
an effective method

Jean-Paul Dufour and Daniel Lehmann

Abstract: We are interested by holomorphic d-webs W of codi-
mension one in a complex n-dimensional manifold M . If they are
ordinary, i.e. if they satisfy to some condition of genericity (whose
precise definition is recalled below), we proved in [CL] that their
rank ρ(W ) is upper-bounded by a certain number π′(n, d) (which,
for n ≥ 3, is strictly smaller than the Castelnuovo-Chern’s bound
π(n, d)).

In fact, denoting by c(n, h) the dimension of the space of homo-
geneous polynomials of degree h with n unknowns, and by h0 the
integer such that

c(n, h0 − 1) < d ≤ c(n, h0),

π′(n, d) is just the first number of a decreasing sequence of positive
integers

π′(n, d) = ρh0−2 ≥ ρh0−1 ≥ · · · ≥ ρh ≥ ρh+1 ≥ · · · ≥ ρ∞ = ρ(W ) ≥ 0

becoming stationary equal to ρ(W ) after a finite number of steps.
This sequence is an interesting invariant of the web, refining the
data of the only rank.

The method is effective: theoretically, we can compute ρh for
any given h; and, as soon as two consecutive such numbers are
equal (ρh = ρh+1, h ≥ h0 − 2), we can construct a holomorphic
vector bundle Rh → M of rank ρh, equipped with a tautological
holomorphic connection ∇h whose curvature Kh vanishes iff the
above sequence is stationary from there. Thus, we may stop the
process at the first step where the curvature vanishes, and compute
the rank without to have to exhibit explicitly independant abelian
relations.

Examples will be given.
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1. Introduction

Recall that a totally decomposable holomorphic d-web of codimension one
without singularity on a complex n-dimensional manifold M is defined by
the data of d holomorphic regular foliations Fi of codimension one on M ,
(1 ≤ i ≤ d), any one of them being transverse to each other at any point.

We assume d > n and the web to be at least in weak general position: this
means that, at any point m, there exists at least n of the foliations among
the d’s, whose tangent spaces at m are in general position (if any family of
n foliations among the d’s has this property, the web is said to be in strong
general position).

An abelian relation on an open set U (assumed to be connected and simply
connected) of M is then the data of a family (Fi)i of holomorphic functions on
U , 1 ≤ i ≤ d, such that the sum

∑d
i=1 Fi is a constant on U , and Fi is a first

integral of Fi (maybe with singularities) for any i. These first integrals being
defined up to an additive constant, we are only interested by their differential
ωi = dFi, in such a way that we may still define an abelian relation as a
family (ωi)1≤i≤d of holomorphic 1-forms ωi on U (maybe with singularities),
which are

(i) closed (hence locally exact): dωi = 0,
(ii) verifying TFi ⊂ Ker ωi (TFi = Ker ωi at any point where ωi doesn’t

vanish),
(iii) such that

∑d
i=1 ωi = 0.

The germs of abelian relations at a point m constitute a vector space, whose
dimension is called the rank of the web at this point (A. Hénaut ([H2]) proved
that this rank doesn’t depend on m, as far as the web satisfies to the assump-
tion of strong general position). In case we have only weak general position,
we shall define the rank of the web as being the highest of the rank at a point).

It will be useful to give an equivalent definition in words of differential
operator. Then, denote by TFi

(
⊂ TM

)
the vector bundle of vectors tangent
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to Fi, and Ai

(
⊂ T ∗M

)
the dual vector bundle of TM/TFi (i.e. the vector

bundle of holomorphic 1-forms vanishing on TFi). Let

Tr : ⊕d
i=1Ai → T ∗M

be the morphism of vector bundles (the trace1), defined by Tr
(
(ωi)i

)
=∑d

i=1 ωi. The assumption of “at least weak general position” means that Tr
has maximal rank n: its kernel

A := Ker Tr

is therefore a holomorphic vector bundle of rank d − n. We define a linear
differential operator of order one

D : J1A → B,

where B = (∧2T ∗M)⊕d, by mapping any section s = (ωi)i of A onto the
family (dωi)i of the differentials. Then, an abelian relation may be identified
with a holomorphic section s of A such that D(j1s) = 0.

The kernel R1 = Ker(D : J1A → B) is the vector bundle of formal
abelian relations at order one. More generally, the space Rh of formal abelian
relations at order h is the kernel of the (h − 1)th-prolongation Dh of the
differential operator D (= D1):

Rh = Ker(Dh : JhA → Jh−1B).

For any h (h ≥ 1), abelian relations may still be identified with holomorphic
sections s of A such that jhs belongs to Rh.

In ([C]), Chern proved that the maximal rank of a d-web of codimen-
sion one in a n-dimensional manifold, satisfying to the assumption of strong
general position, is equal to the Castelnuovo number

π(n, d) :=
∑
h≥1

(
d− h(n− 1) − 1

)+, where a+ = sup (a, 0)

(which is also the maximal arithmetical genus of irreducible algebraic curves
of degree d in the complex n-dimensional projective space Pn).

1The map Tr being a symmetric function of the indices i, the order of the num-
bering of the foliations doesn’t matter. It is the main reason why the definitions
above and results make sense globally, even for webs which are not totally decom-
posable.
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But if the web is ordinary (definition recalled below), we proved in [CL]
that its rank is at most equal to the integer

π′(n, d) :=
∑
h≥1

(
d− c(n, h)

)+
,

strictly smaller than π(n, d) for n ≥ 3, with notation2

c(n, h) := (n− 1 + h)!
(n− 1)! h! .

Denoting by πh : Rh → Rh−1 the natural projection, we first observed that
the elements of Rh which are mapped by πh onto a given element ah−1 of
Rh−1 are the solutions of a linear system Σh(ah−1) of c(n, h + 1) equations
with d unknowns, whose homogeneous part doesn’t depend on ah−1.

Case of ordinary webs: They are the webs for which all of the linear
systems Σh(ah−1) above have maximal rank inf

(
d, c(n, h + 1)

)
. Denoting by

h0 the integer such that

c(n, h0 − 1) < d ≤ c(n, h0),

it is in fact sufficient that this rank be maximal for h ≤ h0, for being maximal
for any h.

Since, for h ≤ h0 − 2, the set of solutions of Σh(ah−1) is an affine space of
dimension d− c(n, h+1), then, for any k ≤ h0−2, Rk → M is a holomorphic
vector bundle of rank ρk =

∑k+1
h=1

(
d− c(n, h)

)
. In particular,

Rh0−2 → M is a holomorphic vector bundle of rank π′(n, d).

But for h ≥ h0 − 1, Σh(ah−1) has now rank d, and has at most one solution
(since it contains a cramerian sub-system), but maybe no one (since it is
over-determined). In general, Rh will still be a vector bundle, but it may
happen that the projection πh+1 : Rh+1 → Rh be no more surjective, hence:
ρh ≥ ρh+1.

When ρh = ρh+1, (h ≥ h0 − 1), the projection πh+1 : Rh+1 → Rh is
an isomorphism of vector bundles. The inverse isomorphism Rh

∼=→ Rh+1
composed with the natural inclusion Rh+1 ⊂ J1Rh defines a connection ∇h

on Rh, and abelian relations may be identified with sections s of A = R0 such
that ∇h(jhs) ≡ 0. Hence the rank ρ(W ) of the web will be at most equal to

2We prefer this notation to the usual one for the binomial coefficient, because
it suggests explicitly that it is the dimension of the vector space of homogeneous
polynomials of degree h with n variables, and also because it needs less space.
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the rank ρh of Rh, and equal iff the curvature Kh of ∇h vanishes. This proves
in particular the inequalities
(
(h+1)d−c(n+1, h+1)+1

)+
≤ ρh ≤ (h0−1)d−c(n+1, h0−1)+1 = π′(n, d)

for h ≥ h0 − 2.
When d = c(n, h0) (then, d is said to be calibrated), ρh0−2 = ρh0−1, and

∇h0−2 is the connection defined in [CL]. A program by Maple for computing
Kh0−2 has been written in [DL].

[If n = 2, any planar web is ordinary and calibrated
(
d = c(2, d−1)

)
; then,

the connection ∇d−3 has been defined by Hénaut ([H1]), and independently
by Pirio ([Pi]) who related its curvature to invariants defined formerly by
Pantazi ([Pa] (the Blaschke-Dubourdieu curvature ([BB]) when d = 3). See
also Ripoll ([R]).]

Case of non-ordinary webs: In this case, everything may happen: we
may not affirm anymore that the sequence of the ρh’s increases for h ≤ h0−2
and decreases for h bigger; the rank of the web may be smaller or bigger than
π′(n, d) (but always at most equal to π(n, d)). However, if by chance, we can
find some h such that πh+1 : Rh+1 → Rh is an isomorphism of vector bundles
(ρh = ρh+1), then we still can define the connection ∇h, and it is still true
that the vanishing of the curvature Kh implies the equality ρ(W ) = ρh.

Sections 2 and 3 are technical, respectively devoted to the computation
of Rh and ∇h.

In section 4, we sketch an algorithm for the explicit computation of the
decreasing sequence (ρh), h ≥ h0 − 2.

In section 5, we give some examples of application of our methods. In par-
ticular, the concept of ordinary algebraic curve seems to us very interesting,
and we sketch what we know about it. But, unless the curve is simultaneously
ordinary and arithmetically Cohen-Macauley (and in this case, g = π′(n, d)),
we cannot say really for the moment that our method allows to compute their
arithmetical genus g. Up to now, our applications to Algebraic Geometry re-
main poor; in the future, we hope to improve the results in this direction.

2. Computation of Rh

Denote by

i an index from 1 to d,
λ, μ,... an index from 1 to n,
L = (�1, �2, · · · , �n) a multi-index �λ ≥ 0 of n integers, and |L| :=

∑
λ �λ

its degree.
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If L = (�1, �2, · · · , �n)), and L′ = (�′1, �′2, · · · , �′n)), L+L′ (resp. L−L′) denotes
(�1 + �′1, · · · , �n + �′n) (resp (�1 − �′1, · · · , �n − �′n)).

In particular 1λ denotes the multi-index obtained with 1 at the place λ
and 0 elsewhere.

Relatively to local coordinates x = (x1, · · · , xn) in M , we shall denote
by ∂λa or a′λ the partial derivative ∂a

∂xλ
of a holomorphic function a or of a

matrix with holomorphic coefficients.
More generally, a′L denotes the partial derivative ∂|L|a

(∂x1)�1 ···(∂xn)�n of order
|L|.

We assume that each foliation Fi is defined by a first integral ui without
singularity. The data of another first integral Fi = Gi(ui) up to an additive
constant is equivalent to the data of the derivative gi = (Gi)′. Each vector
bundle Ai being now trivialized by dui, we set ωi = gi(ui) dui (such a 1-form
is automatically closed). The data of an abelian relation is now equivalent to
the data of a family (gi) of holomorphic functions of one variable (1 ≤ i ≤ d)
such that

∑
i gi(ui) dui ≡ 0, or equivalently:

(Eλ)
∑
i

(ui)′λ gi(ui) ≡ 0 for any λ,

which can still be written < P1 , f >≡ 0, where P1 := D(u1,··· ,ud)
D(x1,··· ,xn) denotes

the jacobian matrix and f the d-vector
(
g1 ◦u1, · · · , gd ◦ud

)
, the functions ui

being given and the functions gi unknown.

Coefficients Ch
L(u) and matrices M

(h)
j : For any h ≥ 0, g(h)

i will denote
the h− th derivative of gi (with the convention g

(0)
i := gi);

We set:

fi := gi ◦ ui and
f

(h)
i := g

(h)
i ◦ ui,

f := d-vector (f1, f2, · · · , fd), and f (h) := d-vector (f (h)
1 , f

(h)
2 , · · · , f (h)

d ).

For any integer k (k ≥ 0), a k-jet of abelian relation at a point m of M
is defined by the family

(
f

(h)
i (m) = (g(h)

i ◦ ui)(m)
)
i,h
, (0 ≤ h ≤ k, 1 ≤ i ≤ d).

The partial derivatives of the relations (Eλ) will make us able to compute
locally Rh. In fact, the functions Ch

i,L will be defined by iteration on |L| in



Rank of ordinary webs in codimension one an effective method 1569

such a way that
(
fi.(ui)′λ

)′
L
≡

|L|∑
h=0

Ch
i,L+1λ . f

(h)
i

as far as (fi dui)i is an abelian relation.

Lemma 2-1: For any holomorphic function u of n variables, and any holo-
morphic function g of one variable,

(i) The derivatives
(
(g ◦ u) u′λ

)′
L

are linear combinations

(
(g ◦ u) u′λ

)′
L

=
|L|∑
h=0

Ch
L+1λ(u) . (g(h) ◦ u)

of the successive derivatives g(h) of g (we set: g(0) = g), whose coef-
ficients Ch

L′(u) = Ch
L+1λ(u) depend only on u and on the multi-index

L′ = L + 1λ, and not on its decomposition under the shape L + 1λ.
(ii) They can be computed by iteration on |L|, using the formula

C0
1λ(u) = u′λ ,

C0
L+1μ(u) = ∂μC

0
L(u),

Ch
L+1μ(u) = ∂μC

h
L(u) + Ch−1

L (u) . u′μ for 1 ≤ h ≤ |L| − 1,

C
|L|
L+1μ(u) = C

|L|−1
L (u) . u′μ.

The 1-form d
(
G(u)

)
is closed, where G denotes a primitive of g. The

formulae above are then obtained by iteration on |L|.
For a web locally defined by the functions ui, we set:

Ch
i,L = Ch

L(ui).

We check in particular C0
i,L = (ui)′L, and C

|L|−1
i,L =

∏n
λ=1

(
(ui)′λ

)�λ for L =
(�1, �2, · · · , �n).

We set:

Θr denotes the trivial holomorphic bundle of rank r,
βk := c(n + 1, k) − 1

(
=

∑k
h=1 c(n, h)

)
,
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M
(h)
j denotes the matrix ((Ch

i,L))(i,|L|=j) of size c(n, j)×d, (1 ≤ j, 0 ≤ h),
(with M

(h)
j = 0 for h ≥ j),

Pj := M
(j−1)
j (symbol of the differential operator Dj−1),

Mk denotes the matrix of size βk × kd built with the blocks M
(h)
j for

1 ≤ j ≤ k and 0 ≤ h ≤ k− 1, where the block M
(h+1)
j is on the right of

M
(h)
j , and M

(h)
j+1 below,

and Qk+1 denotes the sub matrix of size c(n, k + 1)× kd in Mk+1 built with
the blocks M

(h)
k+1 for 0 ≤ h ≤ k − 1:

Mk =
⎛
⎜⎜⎜⎜⎜⎜⎝

M
(0)
1 = P1 0 0 .... .... 0 0
M

(0)
2 M

(1)
2 = P2 0 .... .... 0 0

.... .... .... .... .... 0 0
M

(0)
k−1 M

(1)
k−1 M

(2)
k−1 .... .... M

(k−2)
k−1 = Pk−1 0

M
(0)
k M

(1)
k M

(2)
k M

(3)
4 .... M

(k−2)
k M

(k−1)
k = Pk

⎞
⎟⎟⎟⎟⎟⎟⎠

Qk+1 =(
M

(0)
k+1 M

(1)
k+1 M

(2)
k+1 M

(3)
k+1 .... M

(k−2)
k+1 M

(k−1)
k+1

)

Theorem 2-2:

(i) Locally, Rk is the kernel of Mk+1 (included into the trivial bundle
Θ(k+1)d). Hence, when the matrix Mk+1 has constant rank (always true
for k ≤ h0 − 2), Rk → M is a holomorphic vector bundle of rank

ρk = (k + 1)d− rank(Mk+1).

(ii) If an element ak−1 ∈ Rk−1 (imbedded into Θkd) is defined by the family
f of d-vectors (f (h))h, (0 ≤ h ≤ k−1), the elements of Rk which project
onto ak−1 are those whose last component f (k) is solution of the linear
system Σh(ah−1):

< Pk+1 , f (k) > = − < Qk+1 , f >,

= −∑k−1
h=0 < M

(h)
k+1 , f (h) > .

Proof: A k-jet of abelian relation at a point m ∈ M is then represented by its
components jhm(ui ◦ gi) in JhAi, and each of them is completely defined by
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the family of the numbers
(
f

(h)
i = (g(h)

i ◦ ui)(m)
)

0≤h≤k
.

Thus a family of numbers
(
w

(h)
i

)
i,h

belongs to the set Rk of formal abelian
relations at order k (may be bigger than the jets of the true abelian relations),
if it satisfies to any of the equations

(EL)
d∑

i=1

|L|−1∑
h=0

Ch
iL . w

(h)
i = 0. QED

Estimation of the ranks ρh: The assumption for the web to be ordinary
means that the matrices Pj := M

(j−1)
j have all maximal rank, that is c(n, j)

for j ≤ h0 − 1, and d for j ≥ h0.

Lemma 2-3: If Pj has maximal rank c(n, j) for 1 ≤ j ≤ h0, it has maximal
rank d for any j ≥ h0.

Proof: The meaning of the lemma not depending on the local coordinates,
we may assume that all foliations are transversal to the xn-axis near a point;
therefore all derivatives (ui)′n are not zero. The formula

(
Pj+1

)
i,L+1n

= (ui)′n.
(
Pj

)
i,L

proves that the rank of Pj+1 is at least equal to that of Pj , thus is equal if j
is big enough for this rank to be stationary equal to d. QED

Theorem 2-4 ([CL]): Let ρk be the rank of Rk.
For k ≤ h0 − 2, Rk → M is a holomorphic vector bundle of rank

ρk = (k + 1)d− βk+1.

In particular, ρh0−2 = π′(n, d).

Proof: In fact, the matrices Mh, of size βh × hd, are triangular by blocks,
and the diagonal blocks are the Pj ’s. Since the rank of Pj is c(n, j) for j ≤
h0 − 1, Mk+1 has maximal rank βk+1 =

∑k+1
h=1 c(n, h) in this range. Thus

Rk (= Ker Mk+1) has there rank (k + 1)d− βk+1. QED

The sequence (hd−βh)h becomes decreasing for h ≥ h0 Then, for h ≥ h0,
it may be no more true that Mh+1 has maximal rank βh+1, so that the rank
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ρh of Rh may be now bigger than (h+1)d−βh+1 (but remains at most equal
to π′(n, d) = (h0 − 1) d− βh0−1). Thus, we get:

Theorem 2-5: Assuming that πh+1 has a constant rank for h ≥ h0 − 2, the
sequence (ρh)h≥h0−2 is decreasing from π′(n, d) to the rank ρ(W ) of the web,
and satisfies to the inequalities

(h + 2)d− βh+2 ≤ ρh+1 ≤ ρh ≤ π′(n, d).

3. The connections ∇h

In this section, we assume:

h ≥ h0 − 2,
and ρh = ρh+1, πh+1 : Rh+1

∼=→ Rh being an isomorphism of vector
bundles.

If ρh = 0, then ρ(W ) = 0. If ρh > 0, we shall define a connection ∇h on Rh,
whose curvature vanishes iff ρh = ρ(W ).

We recall that Rh+1 is the intersection of J1(Rh) and Jh+1R0 into
J1(JhR0):

Rh+1 = J1Rh ∩ Jh+1R0.

Denote by

εh : Rh+1 ↪→ J1Rh the natural inclusion,
and by vh : Rh → Rh+1 the inverse isomorphism.

The composed map ξh := εh ◦ vh is a splitting of the exact sequence

0 → T ∗(V ) ⊗Rh → J1Rh

ξh←−−→ Rh → 0

and defines consequently a holomorphic connection on Rh, whose covariant
derivative is:

∇hσ = j1σ− < ξh, σ > .

Since the abelian relations may be identified by the map s → jh+1s to the
sections s of R0 (= A) such that jh+1s belong to Rh+1, and since ξh factorizes
through Rh+1, the following assertions are equivalent:

(i) s is an abelian relation,
(ii) ∇h(jhs) ≡ 0.
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Since the framework is holomorphic, ρ∞ = ρ(W ), and we get therefore the

Theorem 3-1:

(i) A section s of A (= R0) is an abelian relation iff jhs is a section of Rh

and ∇h(jhs) ≡ 0.
(ii) The rank ρ(W ) of the web is at most equal to the rank ρh of the bundle

Rh.
(iii) There exists an integer h1 such that

– either ρh1 = 0 and then ρ(W ) = 0,
– or ρh1 = ρh1+1 ( �= 0), the curvature Kh1 vanishes, and then ρ(W ) = ρh1 .

Remark: If the web is not-ordinary, we still may define the connection ∇h,
as far as we can find some h for which the projection Rh+1 → Rh is an
isomorphism of vector bundles, whatever be h. And it remains true that the
vanishing of its curvature Kh implies ρ(W ) = ρh.

4. Algorithm

From the previous sections, we deduce the following procedure for computing
the rank, even when it is not maximal, without having to exhibit explicit
abelian relations.

First, we compute the successive symbols P1, · · · , Ph0 , and check that the
rank of Pj is equal to c(n, j) for 1 ≤ j ≤ h0−1 and to d for j = h0, (condition
for the web to be ordinary).

We then compute Mh0 .
We define a loop L(h) (from h = h0 − 2), by computing Mh+2 (and its

sub-matrix Mh+1), and by computing ρh = (h + 1) d − Rank (Mh+1) and
ρh+1. Then

– if ρh > ρh+1, we go to L(h + 1),
– if ρh = ρh+1, we compute ∇h and Kh;
– if Kh �= 0, we still go to L(h + 1), else, ρ(W ) = ρh.

Theoretically, this algorithm always works for any ordinary web. But it
may need a long time of computer. Practically, in some cases, considerations
specific to each example may be used for making the process shorter, some
of them being sketched below:
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1- When ρh = ρh+1, it is often useful to check immediately if there would
not be some k, k > h, such that ρk > ρk+1. In this case, we know a priori
that Kh doesn’t vanish, without to have to compute it.

2- There are usually two ways for computing ρh: the first one, used in
the algorithm above, consists in computing the kernel of the matrix Mh+1 of
size

(
c(n + 1, h + 1) − 1

)
× (h + 1)d:

ρh = (h + 1) d−Rank(Mh+1).

This size increases more rapidly with h than the size c(n, h + 1) × d of the
matrix Ph+1 of the linear system Σh(a) (essentially because the process uses
the knowledge of Rh−1 that we got previously, which is not true for the first
process). Thus, for h big enough, knowing already ρh−1 and a trivialization
(εs)s of Rh−1, the following process may need a shorter time of computer
than the previous one, despite of the fact that there are more operations to
be done:

– choose a d× d invertible sub-matrix P 0
h+1 of Ph+1,

– solve the corresponding cramerian sub-system of Σh(a),
– for each line � among the c(n, h + 1) − d deleted for getting P 0

h+1 from
Ph+1, and for each εs belonging to the trivialization of Rh−1, build the
characteristic determinant Δ(s, �) whose vanishing asserts the compat-
ibility of the new equation � with the cramerian sub-system,

– then the kernel of the matrix Δh := ((Δ(s, �))) of size
(
c(n, h+1)−d

)
×

ρh−1 defines the projection of Rh onto Rh−1, and

ρh = ρh−1 −Rank(Δh).

5. Examples

The process described in the algorithm above works for any (n, d, h). However,
most of our examples are relative to low values of these integers: in fact, the
size of the involved matrices becomes very rapidly huge, and would often need
in practice more powerful computers than our small portable.

5.1. Case n = 2, d = 3

There is no hope to refine the classification of the non-hexagonal planar 3-
webs by the order of the step from which the sequence of the ρh’s vanishes. In
fact, we can prove easily that the sequence of the ρh’s becomes immediately
stationary after the first step, and there are only two possibilities:
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– sequence (1, 1, · · · , 1 = ρ∞) if the Blaschke-Dubourdieu curvature K0

vanishes (hexagonal case),
– sequence (1, 0, · · · , 0 = ρ∞) if K0 �= 0.

5.2. Example n = 2, d = 4
(
π′(2, 4) = 3

)

We recall that all planar webs are ordinary, and calibrated with h0 = d − 1.
Moreover π′(2, d) is then equal to π(2, d)

(
= (d−1)d−2)

2

)
.

For the planar 4-web

(x, y, x + y + xy, x− y + x5),

we have an obvious abelian relation f ◦u1 −u2 −u4 ≡ 0, with f(x) := x+x5.
Thus, we know already

1 ≤ ρ(W ) ≤ 3.
Computing ρk, we get

ρ1 = ρ2 = 3 > ρ3 = ρ4 = 2.

Since ρ3 < ρ2, we are sure that the curvature K1 doesn’t vanish, without to
have to compute it. We get K3 = 0. Therefore, the sequence of the ρi’s is
necessarily stationary equal to 2 from ρ3:

ρ(W ) = 2.

We are sure that there is another abelian relation independant on the obvious
one, without to have to exhibit it.

5.3. Example n = 2, d = 8
(
π′(2, 8) = 21

)

Let W be the planar 8-web

x, y, x + y, x− y, xy, x2 + y2, x2 − y2, x4 + y4.

We observe that its curvature K5 doesn’t vanish, but that the space generated
by the 19 first columns is preserved by the connection form ω5 relative to some
“adapted” trivialization (matrix of size 21 × 21), and that the restriction of
the curvature K5 to this subspace vanishes. Consequently, the rank of W
is at least 19, and at most 20: in fact, ρ5 = 21, ρ6 = 20 and ρ7 = 19.
Thus

ρ(W ) = 19.
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By the way, we check that the sub-webs generated by the 5, 6 and 7 first
functions have maximal rank (respectively 6, 10 and 15). This has already
been quoted by Pirio. In particular, exhibiting a basis of algebraic abelian
relations ([Pi]), he proved that the conjecture by Chern and Griffiths (ac-
cording which polylogarithms must necessarily occur in the abelian relations
of an exceptional web) was wrong.

5.4. Case d = n + 1, n > 2
(
π′(n, n + 1) = 1

)

Denoting by (x1, . . . , xn) local coordinates, we consider the (n+1)-web W de-
fined by the functions (x1, . . . , xn, F (x1, · · · , xn)). Relatively to a convenient
order of the multi-indices L, the matrix M2 has the shape

⎛
⎜⎝
In F (1) 0 0
0 F (2) In F 2

0 G(2) 0 G2

⎞
⎟⎠ ,

where

In is the identity n× n-matrix,
F (1) is the column of the (F ′

i )1≤i≤n, (with n rows),
F (2) is the column of the (F ′′

ii)1≤i≤n, (with n rows),
F 2 is the column of the ((F ′

i )2)1≤i≤n, (with n rows),
G(2) is the column which has coefficients F ′′

ij (i �= j, (with c(n, 2) − n

rows),
and G2 is the column which has coefficients F ′

iF
′
j (i �= j, (with c(n, 2)−n

rows, the pairs (i, j) being in the same order of as for G(2)).

The sub-matrix M1 has always rank n, hence ρ0 = 1, while M2 has generally
rank 2n + 2; hence, in general ρ1

(
= ρ(W )

)
= 0, and there is no abelian

relation.
The exceptional case (Rank(M2) = 2n + 1, and ρ1 = 1) happens iff G(2)

and G2 are collinear. This means the set of relations

F ′′
ij

F ′
iF

′
j

≡ F ′′
rs

F ′
rF

′
s

for any i, j, r and s with j �= i and s �= r.
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We shall now study this case by mean of the connection ∇0. A trivializa-
tion of R0 = Ker M1 is then given by the (n + 1)-vector

f (0) = (−F ′
1,−F ′

2, · · · ,−F ′
n, 1)

and a trivialization of R1 = Ker M2 is given by some (n + 1)-vector

f (1) = (X1, X2, · · ·Xn+1)

satisfying in particular to the identities

Xn+1 = −
F ′′
ij

F ′
iF

′
j

whatever be i, j, (i �= j).

Denoting by Δi the (n+1)×(n+1) diagonal matrix built on the (n+1)-vector

(0, · · · , 0, 1, 0, · · · , 0, F ′
i ),

with 1 as i − th component, F ′
i as (n + 1) − th component and 0 elsewhere,

the connexion ∇0 on R0 is then defined by

∇0
i f

(0) = ∂if
(0)− < Δi, f

(1) >,

where ∂i (resp. ∇0
i ) means the partial derivative (resp. the covariant deriva-

tive) with respect to ∂
∂xi

. Thus, we get:

∇0
i f

(0) = −F ′
iXn+1f

(0).

The curvature has then components

K0
ij = ∂i(F ′

jXn+1) − ∂j(F ′
iXn+1).

Fix a pair (i, j) and choose an index k different from i and j. We get:

F ′
iXn+1 = −F ′′

ik/F
′
k,

hence
∂j(F ′

iXn+1)) = −∂j(F ′′
ik/F

′
k)

= −∂j(∂i ln(F ′
k))

.

This gives K0
ij = 0. So, if we set

Lij = ln(F ′
i/F

′
i ),

we have proved the following proposition:
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Proposition 5-2: The web W has a non-trivial abelian relation iff

(Lij)′k = 0,

for any triple i, j, k of indices, each one being different to each other.

Notice that, when W is in strong general position, the existence of an
abelian relation is equivalent to the fact that we can choose new coordinates
(xi)i such that

F (x1, . . . , xn) ≡ x1 + · · · + xn.

Thus, the existence of an abelian relation is equivalent for the web to be
“parallelisable”.

5.5. An example n = 3, d = 5
(
π′(3, 5) = 2

)

Denoting by (x, y, z) local coordinates, and defining the web by the functions(
x, y, z, x + y + z, F (x, y, z)

)
, assume that F depends only on x + y and z:

F (x, y, z) ≡ g(x + y, z) for some function g.

We set:

u := x + y,
p := g′u, q := g′z,
r := g′′u2 , s := g′′uz, t := g′′z2 ,
a := g′′′u3 , b := g′′′u2z, c := g′′′uz2 , e := g′′′z3 .

We consider M1, M2 and Q3 as sub-matrices of the matrix M3 described
below relatively to a convenient order of the multi-indices L. We can check
that M1, M2 below have respectively rank 3, 8; thus

ρ0 = 2 (= 5 − 3), and ρ1 = 2 (= 10 − 8).

In general M3 has rank 14 and ρ2 = 1 (= 15 − 14). But it may happen
that M3 has rank 13 and ρ2 = 2 for exceptional g’s. This can be seen by
computing the curvature K0.

A basis for R0 = Ker M1 is

f1 =
(
−1,−1,−1, 1, 0

)
, f2 =

(
−p,−p,−q, 0, 1

)
,
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and

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

1 0 0 1 p
0 1 0 1 p
0 0 1 1 q

⎞
⎟⎠ 0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 r
0 0 0 0 r
0 0 0 0 t
0 0 0 0 s
0 0 0 0 s
0 0 0 0 r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 p2

0 1 0 1 p2

0 0 1 1 q2

0 0 0 1 pq
0 0 0 1 pq
0 0 0 1 p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 a
0 0 0 0 a
0 0 0 0 e
0 0 0 0 b
0 0 0 0 b
0 0 0 0 b
0 0 0 0 c
0 0 0 0 c
0 0 0 0 a
0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 3pr
0 0 0 0 3pr
0 0 0 0 3qt
0 0 0 0 2ps + rq
0 0 0 0 2ps + rq
0 0 0 0 2ps + rq
0 0 0 0 2qs + pt
0 0 0 0 2qs + pt
0 0 0 0 3pr
0 0 0 0 3pr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 p3

0 1 0 1 p3

0 0 1 1 q3

0 0 0 1 p2q
0 0 0 1 p2q
0 0 0 1 p2q
0 0 0 1 pq2

0 0 0 1 pq2

0 0 0 1 p2q
0 0 0 1 p2q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The lines 7 and 8 of M2 being the same, we may ignore the line 8 in the
computation of R1 = Ker M2. We assume p �= q, in such a way that the
sub-matrix P 0

2 of P2 that we get in forgetting its line 5 is invertible. Thus,
R1 has rank ρ1 = 2, and we can lift f1 and f2 in R1, defining f

(1)
1 = − <

(P 0
2 )−1. M

(0)
2 , f1 >, and f

(1)
2 = − < (P 0

2 )−1. M
(0)
2 , f2 >. We get:

f
(1)
1 =

(
0, 0, 0, 0, 0

)
, f

(1)
2 =

(
0, 0, Z, T, U

)
,

where Z, T and U are solution of the cramerian linear system

T + p2U + r = 0
T + pqU + s = 0

Z + T + q2U + t = 0

Denoting respectively by Δx, Δy, and Δx, the 5 × 5 diagonal matrices built



1580 Jean-Paul Dufour and Daniel Lehmann

with (1, 0, 0, 1, p), (0, 1, 0, 1, p), and (0, 0, 1, 1, q), the connection ∇0 on R0 is
then given by the formulae:

∇0f1 ≡ 0,
∇0

xf2 ≡ ∂
∂xf2− < Δx, f

(1)
2 >,

∇0
yf2 ≡ ∂

∂yf2− < Δy, f
(1)
2 >,

∇0
zf2 ≡ ∂

∂zf2− < Δz, f
(1)
2 >,

where ∇0
x, ∇0

y and ∇0
z denote the covariant derivative with respect to ∂

∂x , ∂
∂y ,

and ∂
∂z . The connection form relative to (f1, f2) is then

ω0 =

⎛
⎜⎝

0 −T (du + dz)

0 −U
(
p du + q dz

)

⎞
⎟⎠ ,

and the curvature is

K0 =

⎛
⎜⎝

0 T ′
z − T ′

u + (q − p)TU

0 pU ′
z − qU ′

u

⎞
⎟⎠ (dx + dy) ∧ dz.

If this curvature vanishes (according to g), ρ(W ) = 2. Otherwise, ρ(W ) = 1.
(The rank may not be zero, because of the obvious non-trivial abelian relation
(x) + (y) + (z) − (x + y + z) ≡ 0).

For example, if g(u, z) = u2 + 2λuz + μz2, (λ, μ ∈ C), we can affirm that
there is no other independant abelian relation if λ �= 1. If λ = 1, we have
a vanishing curvature, corresponding to the second abelian relation u5 ≡
(u4)2 + (μ− 1)(u3)2.

5.6. An example n = 3, d = 11
(
π′(3, 11) = 14

)

Let W be the 11-web (quasi-parallel: all ui’s but one are affine functions):

x, y, z, x + y + z, x + 2y + z, x + 3y + z, x + y + 5z,
x + y + 7z, x + 11y + z, 19x + y + z, x + yz.

We get ρ2 = 14 > ρ3 = ρ4 = 13, and K3 = 0. Hence

ρ(W ) = 13.
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5.7. Parallelisable webs

These are webs such that all ui’s are affine functions relatively to some system
of local coordinates. Then, with these coordinates, the only blocks M (h)

k which
are not zero in the matrices Mk are the diagonal blocks Pk = M

(k−1)
k , and

the rank of Mk is equal to
∑k

h=1 Rank(Ph). Thus

ρh+1 = ρh +
(
d−Rank(Ph+2)

)
.

In particular, if the web is ordinary, ρh+1 = ρh for h ≥ h0 − 2. Therefore all
ordinary parallelisable webs have maximal rank π′(n, d)

(
= ρh0−2

)
. (This has

already been quoted in [CL] (theorem 6-5) by other considerations.)
If a parallelisable web is now not ordinary, and if there exists some h1

(≥ h0 − 2) such that ρh1+1 = ρh1 , then the sequence of the ρh’s is stationary
from there because of the lemma 2-3 above, and then

ρ(W ) = ρh1

(
> π′(n, d)

)
.

Such an example is given below.

5.8. Non ordinary example n = 3, d = 10

Let W10 be the parallel 10-sub-web of the ordinary 11-web above, obtained
by deleting u11. It is not ordinary (since P3 has rank 9, not 10). We then get:

ρ3 < ρ4 = ρ5 = 12 = ρ(W10).

The rank is then strictly bigger than π′(3, 10) = 11, but smaller of course
than the Castelnuovo number π(3, 10) = 16.

5.9. Ordinary algebraic curves

Recall that a non-degenerate algebraic curve Γ of degree d in the complex
projective space Pn induces a linear d-web WΓ of codimension one on the
dual projective space P̌n, a generic hyperplane H intersecting Γ in d distinct
points. The curve is said to be ordinary if this web is ordinary, which means
that, for any generic hyperplane H, and for any integer h ≥ 1, the restriction
map

H0(OH(−h)
)
→ H0(OH∩Γ(−h)

)
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has maximal rank (geometrically, the d points of H ∩ Γ are in “general po-
sition”: the space of algebraic hypersurfaces of H going through d′ points
among the d′s of H ∩ Γ is a projective space of dimension c(n, h) − 1 − d′

if d′ ≤ c(n, h) − 1, and is empty if d′ ≥ c(n, h)
)
. If Γ is irreducible, it is

known that its arithmetical genus g is equal to the rank of the web. There-
fore, the arithmetical genus of a ordinary algebraic curve is upper-bounded
by the number π′(n, d).

Theoretically, we could compute the genus g of a ordinary curve by the
general method described above. But unfortunately, unless the curve is ratio-
nal (and then we have generally simpler methods for computing g), it seems
to be difficult to write a good program by Maple, which will not need a too
long time of computer.

However, we proved in [GHL] that the number π′(n, d) is also a lower-
bound for the genus g of the curves of degree d in Pn which are arithmetically
Cohen-Macaulay (acm) (they are the curves for which the restriction map

H0(OPn∩Γ(−h)
)
→ H0(OH∩Γ(−h)

)

is always surjective, whatever be the generic hyperplane H, and whatever be
h: geometrically, any algebraic hypersuface of H going through H ∩ Γ is the
intersection with H of a algebraic hypersurface in Pn going through Γ); we
gave examples of curves which are both ordinary and acm, and have therefore
a genus g equal to π′(n, d). On the other hand, up to the exception of the
elliptic quartic (intersection of two quadrics in P3), the algebraic curves which
are complete intersections of n − 1 algebraic hypersurfaces in Pn are never
ordinary, but are all acm, and have therefore a genus g strictly bigger than
π′(n, d) (but equal to π′(3, 4) = 1 for the elliptic quartic).
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